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Abstract 

Vegetation ecosystems are increasingly under pressure from both direct human influence 

and indirect anthropogenically-driven climate change. Increasing amounts of data are made 

available from satellite systems which can image these ecosystems from afar. The work in 

this thesis provides several examples of the utility of remotely sensed data from satellites to 

assess the resilience of ecosystems. This notion of resilience is measured by considering the 

return rate following a perturbation, with statistical metrics such as AR(1) and variance 

providing an indication of system resilience and the proximity to a potential tipping point. 

The first focus of this work is on direct human environmental intervention through 

community-based agroforestry groups in Kenya. These results show that the efforts of these 

groups can be detected with satellite data as a greening trend which occurs both within 

designated tree planting groves and in the surrounding landscape. These groups provide a 

case study for the power of positive social tipping points to achieve environmental 

improvement. Following this, the potential of high-resolution satellite data from Sentinel-2 

to quantify patterned vegetation in the Sahel is explored. These striking patterns have often 

been associated with vegetation resilience in drylands. No correlation is found between 

pattern morphology and resilience, contrary to a previously held hypothesis from the 

literature. Precipitation is also identified as a key driver of these patterns. Moving beyond 

drylands, satellite data is utilised at a global scale to assess the link between vegetation 

resilience and climatic variables across the world. There is a clear relationship between 

average resilience, as measured by AR(1), and precipitation, which is evident at three spatial 

scales; the local (pixel), ecoregion and biome. There is also a temperature component, with 

hotter, drier locations displaying lower levels of resilience. This thesis finishes with a 
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discussion of the potential for a resilience sensing framework constructed by combining 

remote sensing data with new cloud computing technologies. This will enable the 

monitoring of resilience change across the world and the identification of regions which 

require further investigation and intervention. 
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The anthropogenic impact on natural ecosystems is experienced across the world. There are 

a myriad of direct effects including land-use change, degradation, deforestation, pollution, 

and indirect effects through rising temperatures and increased climate variability driven by 

anthropogenic climate change. This impact is felt so widely the term ‘Anthropocene’ has 

been proposed to describe the current epoch (Crutzen, 2006; Lewis and Maslin, 2015). The 

potential for drastic and irreversible changes in the state of the climate and ecosystems has 

encouraged research into tipping points (Scheffer et al., 2001, 2009, 2012; Dakos et al., 

2008, 2012; Lenton et al., 2008; Lenton, 2011; Kéfi et eal., 2014) and has prompted an 

examination of the resilience of these systems to change. It is also clear that human 

communities have the ability to affect positive environmental change, with some authors 

suggesting the power of tipping points should be harnessed to promote this (Lenton, 2020).  

As anthropogenic pressure on ecosystems has grown, so have the tools and data available 

to monitor these changes  Satellites provide the opportunity to analyse inaccessible regions, 

to complement in situ experiments and to validate models (Woodcock et al., 2008; Thépaut 

et al., 2018; Wulder et al., 2019). The increasing availability of this data from satellites offers 

an opportunity to analyse ecosystem resilience and land-use change in regions across the 

world. Improved resolution and longevity of these satellite systems allows us to conduct 

analysis across different spatial and temporal scales. These datasets can be applied to 

detect both direct and indirect human impacts. 

Much of the work in this thesis is centred around examining the resilience of ecosystems. 

Shifts in vegetation resilience due to climate change serves as a measure of the indirect 

impact that humans may be having on the natural world. This notion of resilience is 

considered within a tipping point framework, whereby the resilience of a system relates to 
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its return rate following a perturbation, with declining resilience corresponding to a slowing 

return rate. This provides an indicator of a systems proximity to a catastrophic shift into an 

alternative state, i.e. a tipping point. In addition to this, the role of community-based tree 

planting groups in improving degraded ecosystems is considered. These community groups 

represent positive change and provide an example of the potential of social dynamics to 

induce ‘positive tipping points’. Through an examination of both direct and indirect 

anthropogenic influences on ecosystems the utility of remote sensing for monitoring the 

resilience of the natural world is demonstrated.  

The work in this thesis is guided by research questions which are developed through an 

initial literature review. These questions address themes around our ability to detect 

changes in the resilience of ecosystems and to understand how these changes may occur 

through the use of remotely sensed data. This work will assess whether satellite data is 

capable of measuring the impact of agroforestry community groups in Kenya, to quantify 

patterned vegetation in the Sahel and to analyse vegetation resilience across the world.  

The literature review in Chapter 2 focuses on summarising the literature around tipping 

points and ecosystem resilience and some of the available statistical methods to understand 

these changes. This will start with a consideration of the technical background of tipping 

point analysis and some of the available methods that enables the measurement of these 

tipping points. Following this, there is an overview of recent efforts to apply remotely 

sensed data to ecosystems around the world. At the end of the literature review, there is a 

discussion of the relevant gaps in the literature and how the research questions develop 

from these gaps. Chapter 3 provides a research component of this project which focuses on 

community based tree planting programs in Kenya. Here an assessment is made of the 



Chapter 1: Introduction 

27 
 

impact that these groups have had on the landscape and whether satellite data can be 

utilised to detect this impact as a greening trend. Chapter 4 focuses on another dryland 

ecosystem, the Sahel in northern Africa, and presents an application of remotely sensed 

data to identify the patterned vegetation which characteristically occurs in these regions. In 

this chapter the issue of the resilience of these patterned vegetation systems is addressed, 

as well as the link between this resilience and pattern morphology. Moving beyond 

drylands, Chapter 5 explores the capabilities of satellite data and cloud computing resources 

to assess vegetation resilience across the globe. This resilience is considered at multiple 

spatial scales, the local (pixel), ecoregion and biome scale. The role of climatic drivers of 

vegetation resilience is also assessed. Chapter 6 provides a discussion of the implications of 

the work presented in this thesis, by considering the potential and limitations of remote 

sensing for assessing vegetation resilience. This chapter expands upon the global 

perspective presented in Chapter 5 with a framework for assessing vegetation resilience 

trends and offers thoughts on potential future work.
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2.1 Tipping points, resilience and the statistical methods to 

measure them 

2.1.1 Theory of tipping points and resilience 

A dynamic system, when exposed to a small perturbation or change in forcing, can undergo 

an abrupt and substantive shift to a different state (Lenton, 2011). This is known as a 

‘tipping point’. There are two main ways that these tipping points can primarily occur. 

Bifurcation can occur when a parameter (or multiple parameters) in the system change, and 

this causes the system to transition to an alternative state. Alternatively, the state of a 

system can be shifted by some form of stochastic forcing which pushes the system outside 

its basin of attraction; this is known as noise-induced tipping. These two forms of tipping can 

occur in conjunction with each other; as bifurcation in a system approaches, the system’s 

basin of attraction shrinks (see Figure 2.3), therefore making it more conceivable that a 

perturbation will lead to a state transition, or a ‘tipping point’. Ashwin et al., (2012) also 

identifies a third classification of tipping point known as ‘rate-dependent tipping’; these 

occur when a parameter experiences rapid change and this causes the system to move to an 

alternate state. This third classification is not considered further here. 

The potential for tipping points has been identified in a diverse range of ecological and 

climatic systems (Lenton, 2011; Armstrong McKay et al., 2021), with recent evidence of 

approaching tipping points identified in the Atlantic Meridional Overturning Circulation 

(AMOC) (Boers, 2021), the Amazon rainforest (Boulton, Lenton and Boers, 2022), and the 

western Greenland Ice Sheet (Boers and Rypdal, 2021). There would be drastic regional and 
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global impacts should these systems tip into alternative states. Figure 2.1 maps these 

climate tipping elements and divides them into core and regional tipping points. These core 

tipping points affect the global Earth system, while regional tipping points act on a sub-

continental scale (Armstrong McKay et al., 2021). 

Following a tipping point, it can be difficult (or impossible) to tip a system back to a previous 

state if it experiences hysteresis. The environmental conditions required for a return to its 

previous state may be different than the conditions required for the initial transition 

(Scheffer et al., 2001)), as shown in Figure 2.2.  
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Figure 2.1: Map of potential tipping points across the Earth system that could be passed 

should global warming continue. Core climate tipping elements are identified in (a) and 

regional ones are in (b). Green areas relate to the biosphere, orange are ocean-atmosphere 

and blue are cryosphere. Source: Armstrong McKay et al. (2021). 
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Figure 2.2: Visual representation of hysteresis of an ecosystem. A system may experience a 

slight change which forces it through the bifurcation point at F2, resulting in it reaching the 

alternative state (the lower branch). A return to the previous state requires the conditions to 

be sufficiently changed to allow the system to pass through the bifurcation point at F1. 

Figure adapted from Scheffer et al. (2001). 

 

The potential for tipping points to cause non-linear, irreversible change has increased the 

interest in this field of study to both scientists and policy makers, with concerns around the 

occurrence of ecological and climatic tipping points identified in the recent IPCC Working 

Group 1 Sixth Assessment Report (IPCC, 2021). This requires us to think about the likelihood 

of a system to tip into an alternative state - its resilience. 

Here the notion of the resilience of a dynamic system is considered, an idea which has a 

long history in the literature, with much discussion over its definition. In one of the earliest 

publications concerning the idea of ecological system resilience, Holling (1973) defines 
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resilience as the ability of a system to withstand a perturbation and to maintain internal 

relationships. Additionally, Holling (1973) presents the idea of stability as the return rate of 

a system to its initial state following a perturbation. Pimm (1984), however, restricts the 

definition of resilience to the recovery of the system after a disturbance, as do Grimm and 

Wissel (1997). In attempt to clarify these definitions, Holling (1996) defines the recovery of 

the system as ‘engineering resilience’ and describes their earlier, broader idea of resilience 

as ‘ecological resilience’. It is therefore apparent that these differing definitions of resilience 

have led to confusion in the literature. Therefore it is necessary to clarify what is meant by 

the resilience of a system as considered here.  

The focus of this work is upon a simple, well-founded notion of resilience which is applicable 

to both biological and climatic systems. This requires the examination of the response of 

systems to perturbations and their ability to return to their initial states.  
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Figure 2.3: Representation of a system losing resilience before undergoing a tipping point. 

(a) Time series of this system as it loses resilience and then tips into an alternative state. The 

system experiences critical slowing down prior to the tipping point as it struggles to return to 

its previous state following a perturbation. The colouring of the time series corresponds to 

the valley cartoon of that colour. (b-d) Ball in valley cartoon of a system approaching a 

tipping point. As the system resilience declines over time due to the bifurcation parameter 

approaching a critical value, the valley becomes shallower and it is easier for the system to 

be tipped into an alternative state. 

 

Consider some dynamical system, which has a state variable x and an equilibrium state x* 

(there may be other equilibria of the system). When this system experiences a perturbation, 
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it may recover back to its previous state, in this case x*. A potential function, U(x), can be 

used to describe the attractor of the equilibrium state. This is commonly visualised as a 

valley, as seen in Figure 2.3, with the equilibrium state x* the bottom of the valley, and the 

current state of the system, x, shown as a ball. This visualisation includes other valleys, 

which represent alternative equilibria 

This system experiences perturbations, which can be known events, and is also exposed to 

noise, such as additive white noise η with standard deviation σ. The dynamics of a system 

experiencing this perturbation at some time point t is given as: 

𝑑𝑥

𝑑𝑡
=  −𝑈′(𝑥(𝑡)) +  𝜂(𝑡) (2.1) 

In the vicinity of the equilibrium point, x*, the function U can be approximated such that for 

some value λ < 0 (Scheffer et al., 2009): 

𝑈(𝑥) ~ −
𝜆

2
𝑥2 (2.2) 

λ is the recovery rate of the system to the equilibrium state x* following a perturbation; this 

provides a measure of the negative feedback. A more negative λ corresponds to a faster 

recovery rate, which suggests that the equilibrium state of the system is more resilient, 

while a λ closer to 0 corresponds to a slower recovery rate following a perturbation, which 

means the system is less resilient. As discussed in Scheffer et al. (2009), if the dynamics of 

the system are discretised into timesteps Δt, then the autocorrelation function, α(n), at n 

timesteps and variance can be derived as: 

𝛼(𝑛) =  𝑒𝜆𝛥𝑡𝑛 (2.3) 

𝑣𝑎𝑟(𝛥𝑥) =  
𝜎2

1 − 𝛼2
=

𝜎2

1 − 𝑒2𝜆𝛥𝑡𝑛
 ~ 

−𝜎2

2𝜆
(2.4) 
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For lag-1 autocorrelation (AR(1)), n=1. As the system loses resilience and its return time 

increase, λ tends towards zero as the likelihood of the system tipping into an alternative 

state increases. From the equations above, as this happens AR(1) increases towards one, 

and the variance increases (tends towards infinity). AR(1) and variance are commonly used 

statistical indicators for pre-tipping point ‘critical slowing down’ behaviour and are used 

throughout the literature (Carpenter and Brock, 2006; Lenton et al., 2008; Scheffer et al., 

2009, 2012; Lenton, 2011; Dakos et al., 2012). 

There are numerous statistical signals that can be detected as a system approaches a tipping 

point and its resilience declines. These can be classified into those which analyse temporal 

data and those that consider the spatial properties of a system.   

2.1.2 Temporal resilience indicators 

As a system approaches a tipping point, its ability to return to its initial state following an 

external perturbation declines, therefore its return rate begins to decrease and the system 

experiences Critical Slowing Down (CSD) (Lenton, 2011; Scheffer et al., 2015). As discussed 

earlier, an increase in lag-1 autocorrelation (AR(1)) is a classic signal of resilience loss in a 

system. As the system loses resilience and experiences CSD, each time step becomes more 

correlated with the previous one, and therefore the autocorrelation increases. 

Some studies directly consider the return rate of a system following a perturbation as a 

measure of resilience (Drake and Griffen, 2010; Carpenter et al., 2011), with a lower return 

rate corresponding to a less resilient system (Wissel, 1984). While this is a simple notion, it 

can be a difficult metric to measure for large scale climate systems, as it is difficult to 
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ascertain when a system has sufficiently returned to its equilibrium state. This behaviour is 

observed in various ecological models (Wissel, 1984; Van Nes and Scheffer, 2007; Chisholm 

and Filotas, 2009) as well as in lab experiments (Drake and Griffen, 2010). 

Measuring AR(1) allows us to gain an understanding of the return rate and therefore the 

resilience of the system. Increases in AR(1) with loss of resilience and prior to a tipping point 

has been observed in models (Held and Kleinen, 2004; Boulton, Allison and Lenton, 2014),  

prior to numerous paleo-climate events using paleorecords, such as the end of the Younger 

Dryas event and glaciation periods (Dakos et al., 2008) and under controlled laboratory 

conditions for a diverse range of ecosystems such as zooplankton populations (Drake and 

Griffen, 2010), aquatic food web collapse (Carpenter et al., 2011) cyanobacteria exposed to 

increasing light stress (Veraart et al., 2012) and yeast populations exposed to salt shocks 

(Dai et al., 2012).  

Another common identifier for a system approaching a tipping point and losing resilience is 

an increase in variance (Carpenter and Brock, 2006; Scheffer et al., 2009); as the system 

loses resilience its ability to return to an equilibrium state declines and the perturbations do 

not decay away, thus the variance of the system increases. This is often tested alongside 

AR(1), however some studies identify an increase in AR(1) with loss of resilience without a 

corresponding increase in variance (Veraart et al., 2012). It has been suggested by Ditlevsen 

and Johnsen (2010) that an increase in both AR(1) and variance are necessary predictors of a 

tipping point and that one without the other is not valid. However as can be seen in 

equation 2.4, variance can change independently of AR(1) as a result of a change in the 

forcing variability σ. This suggests that requiring both AR(1) and variance to increase is a 

potentially flawed ‘necessary’ condition and underlines the importance of AR(1) as a 
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measure of resilience loss. Other studies consider standard deviation instead of variance 

(Takimoto, 2009), although these are directly comparable. 

Guttal and Jayaprakash (2008) identify skewness as an additional metric for detecting 

resilience loss in a system prior to a tipping point, as this measures the rising variability 

within the system. However a change in this skewness metric is only apparent in the classic 

fold (or saddle-node) bifurcation, rather than other bifurcation types which are symmetrical, 

such as a pitchfork. Takimoto (2009) suggests that standard deviation is a more robust 

estimate, with other studies, such as Dai et al. (2012) confirming this. Along with variance, 

skewness can also be used to identify ‘flickering’, a phenomenon whereby a system with a 

high level of stochastic forcing can be observed to flicker between the alternative basins of 

attraction of two states prior to a bifurcation (Scheffer et al., 2009). 

Some studies have created and applied composite early warning metrics to detect collapse 

of whale stocks (Clements et al., 2017), modelled fishing stock collapse (Clements, McCarthy 

and Blanchard, 2019) and critical transitions within lake ecosystems (Su et al., 2021). In the 

global resilience analysis in Feng et al. (2021), a composite indicator is constructed from 

numerous early warning indicators in addition to AR(1) and variance, such as skewness and 

kurtosis. 

There must be some consideration given to the response time scale of the system being 

studied. Faster growing ecosystems, such as grass or shrublands, may demonstrate climate-

driven changes in resilience on a different time scale to slower systems, such as forests. The 

time series interval may not be sufficiently frequent to detect all changes in a system with a 

fast recovery rate. Also, the length of the time series must be long enough to detect 

statistically reliable changes in systems (Dakos et al., 2012). 
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Some studies apply temporal resilience measures across space in a space-for-time 

substitution. This is useful in systems where the temporal extent of the data is not long 

enough to observe clear changes in resilience, or to ascertain whether specific climate 

regimes relate to differences in resilience over large regions. This enables a single resilience 

indicator for each location to be calculated and related to multiple potential explanatory 

variables. This form of analysis is used in Verbesselt et al. (2016), Eby et al. (2017) and 

Majumder et al. (2019) which are discussed further below in Section 2.3.2.  

2.1.3 Spatial resilience signals 

So far consideration has been given to measures which can be applied to time series, i.e. 

temporal resilience indicators. Now the utility of the spatial component of the data to 

understand resilience is considered. Some of these are spatial analogues of time series 

indicators.  The correlation between nearest neighbours, the spatial equivalent of AR(1), can 

be calculated using Moran’s i. This spatial correlation would increase as the system loses 

resilience (Dakos et al., 2010). Similarly, spatial variance is expected to increase with 

declining resilience, as identified in simple models (Oborny, Meszéna and Szabó, 2005; 

Guttal and Jayaprakash, 2009) and marine ecosystems (Litzow, Urban and Laurel, 2008). The 

spatial analogue of skewness has also been identified as a signal of declining resilience 

(Guttal and Jayaprakash, 2009). In a connected population, Dai et al. (2012) identify that the 

recovery length, that is the distance necessary for these populations to recover from spatial 

perturbations, increases prior to a tipping point. This is the spatial analogue of the recovery 

time of a system. 

Another method to identify loss of resilience via slowing down in spatial systems is to 

consider how the spatial spectral properties change. Discrete Fourier Transforms (DFT) 
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provide a measure of spatial frequency, i.e. how often a pattern repeats within a certain 

spatial zone. This frequency will decline with spectral reddening as the system loses 

resilience (Kéfi et al., 2014). 

While much attention has been given here to resilience indicators which are the spatial 

counterparts of traditional temporal early warning indicators, other approaches are unique 

to the spatial domain. For example, by considering vegetation pattern models as a network, 

with biomass grid cells as nodes and statistically significant temporal cross correlations 

forming edges between nodes, Tirabassi et al. (2014) demonstrate that increased network 

connectivity is observed prior to a tipping point. Network based indicators are also 

considered alongside more conventional early warning indicators to analyse regime shifts in 

a land-atmosphere-ecological model in (Yin et al., 2016). 

In addition to this, the emergence of patchiness within spatial systems can be a measure of 

system change. In irregular patterned systems patch size frequency can fit certain 

distributions, such as power- law. Deviations from these distributions can be an indicator of 

resilience change (Kéfi et al., 2014). Competing feedbacks in ecosystems can lead to the 

formation of both irregular and regular pattern (Rietkerk et al., 2004; Kéfi et al., 2007; 

Rietkerk and Koppel, 2008; Von Hardenberg et al., 2010). It has been hypothesised that 

these patterns given an indication of the underlying feedbacks and resilience of these 

systems (Rietkerk et al., 2004; Kéfi et al., 2014). Dryland patterned vegetation is a common 

topic of discussion in the literature around patterns and resilience analysis. This literature is 

considered further in Section 2.3.3 and in Chapter 4.  
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2.2 Remote sensing 

So far most of the previous studies to detect changes in systemic resilience have focused on 

the use of models, paleo-records or controlled lab experiments. Remote sensing data from 

satellites provides an increasingly useful tool for understanding the changing resilience of 

ecosystems. This section provides a brief overview on the history and developments of 

remote sensing technology, before discussing recent applications of remote sensing to 

understanding ecosystem resilience.  

2.2.1 History of remote sensing 

There are many definitions of what constitutes remotely sensed data (Campbell and Wynne, 

2011), but at its simplest it is any data which is acquired at a distance without touching the 

object (Fischer, Hemphil and Kover, 1976). This was initially done through aerial 

photography using balloons and then planes (Campbell and Wynne, 2011); however 

technological developments have led to the frequent use of satellites to gain remotely 

sensed data. There is also an increasing use of drone technology to collect remotely sensed 

data for purposes such as plant biomass estimation (Cunliffe, Brazier and Anderson, 2016).  

One of the earliest examples of satellite remote sensing systems was TIROS-1, a satellite 

launched in 1960 which was designed to record meteorological data (Campbell and Wynne, 

2011). Landsat 1, a satellite launched in 1972, was the first satellite equipped with a 

multispectral scanner and was able to record images of the Earth at a resolution of 80m 

(Short, 1976; Williams, Goward and Arvidson, 2006). Following the launch of 7 more Landsat 

satellites, the Landsat collection now provides nearly 50 years worth of Earth observation 

data (Wulder et al., 2019). 
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2.2.2 Developments in remote sensing 

In addition to the Landsat collection, numerous other satellite systems have been 

established to monitor the Earth system. Remote sensing systems are grouped into two 

classes – active or passive. Active systems contain an instrument which emits 

electromagnetic energy and records the resulting reflection. An example of this is the 

synthetic-aperture radar (SAR) sensor deployed on the Sentinel-1 satellites (Torres et al., 

2012). Due to emitting an energy pulse, active sensors are less likely to be affected by cloud 

cover and can record images at night. Passive instruments are designed to measure energy 

which is being reflected from the Earth’s surface, such as the Operational Land Imager (OLI) 

and Thermal Infrared Sensors (TIRS) present on the Landsat 8 satellite (Wulder et al., 2019). 

Data quality from passive sensors can be affected by cloud cover and air quality. Some 

satellites are equipped with both active and passive instruments, such as Sentinel-3A, which 

is equipped with a radiometer and radar (Nieke and Mavrocordatos, 2017). 

Temporal resolution varies between satellites and is dependent on the return time of the 

satellite. Some datasets are created by multiple satellites to increase the temporal 

resolution, i.e. the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset is 

generated by sensors which operate on the Terra and Aqua satellites (King et al., 2003), or 

to generate global datasets, such as the Vegetation Optical Depth Climate Archive (VODCA), 

which utilises data collected from several satellites with active instruments (Moesinger et 

al., 2020). Spatial resolution can vary from the scale of kilometres, such as VODCA data on 

the coarser end with a Ku-band resolution of 0.25⁰x0.25⁰ (approximately 277.5x277.5km at 

the equator) (Moesinger et al., 2020) and the Advanced Very High Resolution Radiometer 

(AVHRR) with a spatial resolution of 1.1km at nadir (Cracknell, 1997), down to 30m for 
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Landsat 8 (Loveland and Irons, 2016) and 10m for Sentinel-2 imagery (Drusch et al., 2012). 

Commercial satellite imagery is also available at the sub-metre scale and represents a 

growing dataset of Earth observations (Dial et al., 2003; Tyc et al., 2005). 

The sensors on satellites such as Landsat and MODIS are designed to capture images which 

are composed of data bands from across the electromagnetic spectrum, for example images 

from Landsat 8’s OLI and TIRS instruments are composed of 11 different bands (Loveland 

and Irons, 2016). The multi-band nature of these images can be used to create indices which 

detect different properties of land systems; some examples of these different visualisations 

are given in Figure 2.4. A frequently used example of this is the Normalized Difference 

Vegetation Index (NDVI), which is calculated from the near-infrared and infrared bands and 

is used as a measure of vegetation greenness (Rouse, 1973; Rouse, Benton and Haas, 1975), 

which is a proxy of photosynthetic capability. These properties can be analysed to 

understand the behaviour and resilience of vegetation systems. 
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Figure 2.4 : Images from the Sentinel-2 satellite dataset which provide examples of the 

applicability of multi-band data for vegetation imaging. The region shown is Garden City, 

Kansas, USA and the surrounding agricultural landscape. The images show (a) a standard 

RGB image, (b) a false colour image using near-infrared, red and green bands, (c) NDVI, a 

measure of plant greenness calculated from the near-infrared and red bands, (d) NDMI 

(Normalised Difference Moisture Index), a measure of plant moisture content which is 

calculated from the near-infrared and short-wave infrared bands. Higher NDMI values 

correspond to higher canopy cover with no water stress, while negative values correspond to 

regions of low vegetation cover or highly stressed vegetation. 
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Previously, access to remotely sensed data was limited by the high cost of purchasing the 

data and the GIS software to analyse it, however data has become increasingly freely 

disseminated (Wulder et al., 2012). For example, one of the largest continuous datasets, the 

Landsat collection, was made freely available in 2008 by the United States Geological Survey 

(USGS) (Woodcock et al., 2008). 

Another major barrier to the usability of remotely sensed data has been the computational 

costs associated with analysing big data. The launch of openly accessible cloud computing 

platforms such as Google Earth Engine (GEE) (Gorelick et al., 2017) and Microsoft’s 

Planetary Computer enables greater access to computational capabilities and allows 

researchers to utilise the growing resource of remotely sensed data. Combining increased 

computational power with freely available data provides an avenue for easily accessible 

continuous monitoring of terrestrial ecosystems. 
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2.3 Measuring ecosystem resilience with remote sensing 

data 

2.3.1 Analysing vegetation trends 

The longevity and spatial cover of remotely sensed data presents an opportunity to monitor 

vegetation trends and to classify land cover systems.  There are numerous studies which 

apply multi-band data to assess vegetation trends, with AVHRR and MODIS data both 

popular choices for this (Cai and Yu, 2009). Vegetation trend analysis can be used to assess 

land degradation at a national level (Eckert et al., 2015; Gichenje, and Godinho, 2018), at a 

regional level, such as in the Sahel where the interpretation of these trends is the subject of 

much discussion (Fensholt et al., 2013; Dardel et al., 2014; Knauer et al., 2014; Mbow et al., 

2015), and some studies have considered greening trends across the world (de Jong et al., 

2011; Fensholt and Proud, 2012; Liu et al., 2015). Some studies seek to analyse these 

greening trends following a known anthropogenic direct intervention, such as government 

directed afforestation campaigns in China (Zhang et al., 2016). The importance of 

understanding and engaging local communities to monitor and avoid land degradation is 

well known (Gichenje, Pinto-correia and Godinho, 2019; Willemen et al., 2020). However, 

for most remote sensing studies there is little or no available detailed data on the activities 

of these communities at a landscape scale. 

2.3.2 Application of remote sensing to measure ecosystem resilience 

The formulation of long-term time series from satellite data presents an opportunity to 

consider the resilience of terrestrial vegetated ecosystems. High frequency sampling is 
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necessary to understand a system’s resilience (Scheffer et al., 2009; Dakos et al., 2012); 

repeated Earth monitoring by satellites addresses this need. In addition to this, remote 

sensing can provide high resolution data with a large geographical coverage and can enable 

analysis of regions which may be difficult to access. For this reason, this work focuses on the 

application of remote sensing to analyse and understand the resilience of ecosystems. 

Over the last few years there has been a growth of interest in this field. A non-exhaustive 

list of relevant studies is provided in Table 2.1 (found at the end of this chapter) which is 

adapted from Lenton et al. (2022) and provide some discussion on some of these recent 

examples below. These studies utilise a range of satellites and indices to analyse the 

resilience of various ecosystems. The majority of these studies focus on the regional and 

local level, however increased computation capacity has encouraged some studies to look at 

the resilience of ecosystems across the globe. There are a variety of ways that ‘resilience’ is 

described in the literature. Some of these consider a framework similar or equivalent to that 

described earlier in this review, while others take a different approach, with some studies 

taking more of a ‘resistance’ perspective.  

2.3.2.1 Regional analysis 

Verbesselt et al. (2016) utilises a space-for-time substitution method to consider the 

resilience of equatorial tropical forests. This study uses MODIS NDVI data to analyse tropical 

forest resilience, as well as Vegetation Optical Depth (VOD) data. However, instead of 

analysing resilience changes over time, it takes an interesting approach which uses a space-

for-time substitution, with mean AR(1) considered across a precipitation gradient. Notably, 

this study finds increasing levels of AR(1) with declining rainfall, with a sharp decline in 

resilience observed in areas where mean annual precipitation falls below ~2000 mm year-1. 
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This threshold may represent a point where tropical rainforests may become more 

susceptible to wildfires and could be tipped into an alternative savannah state. 

A space-for-time substitution method is also used in Eby et al. (2017). This is applied along a 

spatial gradient to assess critical slowing down across the Serengeti-Mara ecosystem. This 

study uses land classification data to classify pixels as woodland or grassland and considers 

the impact of rainfall as a driver of land cover types. To analyse critical slowing down they 

measure spatial variance, spatial skewness, spatial correlation and spatial DFT along these 

gradients. They find that a transition between grassland and woodland as rainfall increases, 

with signs of bistable regions of grassland and woodland. As stable grassland gives way to 

bistable regions along the spatial gradients, spatial variance, spatial correlation and DFT all 

show signs of an increase. 

Van Belzen et al. (2017) measures the resilience of a tidal marsh system in the Netherlands 

by considering the return time of the vegetation using NDVI values from aerial photography. 

This was done by considering the amount of time that vegetation took to return to a grid 

cell after it had previously disappeared. In this study, vegetation which experiences higher 

levels of inundation displays a longer recovery time and is therefore less resilient. Spatial 

variance and correlation are also tested in this study and are found to be less consistent 

than return rate at detecting resilience. 

The loss of resilience in a wetland system in Iran and Armenia is analysed in Alibakhshi et al. 

(2017). MODIS data from January 2001 to December 2014 is used. A composite multi-

spectral index, the Modified Vegetation Water Ratio (MVWR), is created by rescaling a 

vegetation index, NDVI, and a water index, the Modified Normalized Difference Water Index 

(MNDWI). AR(1), variance and skewness are used as indicators of a loss of resilience. This 
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study suggests that the AR(1) of MVWR increases as the system loses resilience and 

approaches a critical transition. 

Remote sensing data from Landsat 7 with a 30m pixel resolution is used to analyse the 

resilience of Californian forests in Liu et al. (2019). These forests are at risk from drought-

induced mortality events, with a potential for the system to tip into an alternative shrubland 

state. Here they utilise NDVI, a measure of plant greenness, along with a Bayesian dynamic 

linear model to identify changes in autocorrelation. In this study, an early warning signal 

was identified if the autocorrelation exceeded a certain threshold (the average of the 80th 

percentile of autocorrelation) for a minimum of three months. This study also considers 

abnormally low NDVI (ALN) events as precursors to mortality events; these occur when 

trees shed their leaves due to stress. They find that early warning signals (EWS) are 

apparent at least 6 months prior to mortality events and provide an earlier indication of 

resilience loss than ALN events.  

Majumder et al. (2019) use a space-for-time substitution with MODIS Enhanced Vegetation 

Index (EVI) data to analyse bistability in woodland and savanna areas in Australia and 

Congo-Gabon. This analysis is also applied to a control area in the Serengeti. This study 

considers EVI spatial variance and spatial autocorrelation across transects with a 

precipitation gradient. It finds peaks in spatial variance and spatial autocorrelation of EVI at 

thresholds associated with a transition between savannah and woodland. This approach is 

applied to both transects as well as the wider study area. 

White et al. (2020) employ MODIS EVI data to propose a framework for calculating the 

resilience of vegetation across the island of Ireland. Here they consider the recovery rate, 

variability, recovery time and resistance (as defined as the ability of the system to absorb a 
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disturbance (Pimm, 1984)). This study identifies long recovery rates with major weather 

events and crop disturbances. 

Boulton, Lenton and Boers, (2022) consider trends in the AR(1) of VODCA data and AVHRR 

NDVI data to assess changes in resilience in the Amazon rainforest. VOD provides an 

estimate of plant biomass. While both VOD and NDVI are utilised, the authors identify VOD 

as a more reliable dataset for the study area. This study investigates the impact of 

precipitation and human influence as two potential drivers of loss of resilience. Here they 

find that after 2003 there is an increase in VOD AR(1), which corresponds to a decline in the 

resilience of the Amazon. This resilience loss is seen across more than three-quarters of the 

Amazon and is occurring in regions which are closer to human land use, as well as regions 

with lower mean annual precipitation (MAP). 

2.3.2.2 Global analysis 

A ‘global’ analysis of vegetation stability using a subset of MODIS NDVI data for 2001-2006 

can be found in De Keersmaecker et al., (2014). This analysis considers NDVI time series for 

a 7km x 7km area around flux tower sites (meteorological sensors which measure CO2 and 

water vaper exchange between the atmosphere and biosphere) in each land cover 

classifications across the globe. The primary purpose of this study is to assess how the 

characteristics of the data, i.e. noise, uncertainties etc, can affect stability metrics. The 

metrics considered in this study are resistance (the impact of a perturbation), resilience (or 

return rate following a perturbation), and variance. These metrics are considered within the 

context of the 2003 European heat wave. This study finds that early warning signals are 

more sensitive to data noise than factors such as time series length. It also shows that 
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forests display the highest level of resistance and resilience to these perturbations, with 

grasslands and shrubland showing lower levels of resilience. 

De Keersmaecker et al. (2015) provides a global analysis of vegetation resilience and 

resistance through the formulation of an AR(1) model using Global Inventory Monitoring 

and Modelling System (GIMMS) NDVI data. This model identifies areas of low resilience in 

semi-arid areas including Australia, southern Africa and western North America. Areas of 

poor model fit are removed from the study; this includes densely vegetated tropical 

rainforests and high latitude regions. These areas of poor model fit correspond to areas with 

snow cover or low levels of vegetation which introduce noise into the data, and regions of 

densely vegetated forests with a small disturbance signal. 

Feng et al. (2021) applies remote sensing data to ascertain vegetation resilience across the 

globe. In this study they utilise monthly NDVI data from the GIMMS dataset covering a time 

period of July 1981 to December 2015. They calculate a composite early warning indicator 

from lag-1 autocorrelation, standard deviation, skewness and kurtosis. Resilience loss is 

considered at two different scales: the local, or pixel, scale and then the global scale. 

Greater resilience loss is identified at the local scale, with temperature and climatic mean 

state identified as key drivers of resilience loss. Tundras, deserts and xeric shrubland, 

montane grasslands and temperate grasslands are all biomes which are identified as having 

the lowest resilience levels. This study also measures the increase in spatial asynchrony of 

ecosystems and proposes it as a factor for the stability seen at the global level. 

 



Chapter 2: Literature Review 

54 
 

2.3.3 Patterned vegetation 

A prime candidate for the application of resilience indicators are ecosystems which form 

clear and distinct patterns. Patterning in nature is observed across a broad range of systems 

(Rietkerk and Koppel, 2008), including dryland vegetation, mussel beds and ribbon forests. 

Patterns in dryland vegetation are among the most commonly discussed in the literature. 

These patterns form across the globe in regions which experience low levels of rainfall 

(Deblauwe et al., 2008). Vegetation pattern formation is an example of Turing patterning 

(Turing, 1952); they are driven by feedbacks operating across two different scales – the 

formation of the pattern allows more water for the vegetation within the pattern and in 

doing so reduces the water availability for vegetation outside of the pattern 

(HilleRisLambers et al., 2001; Barbier et al., 2006).  

Dryland vegetation pattern morphologies are often classified as gaps, labyrinths, ‘tiger 

bush’, and spots, with rainfall often identified as the primary driver of these patterns 

(Meron and Gilad, 2004). It has been hypothesised that as rainfall levels decline, vegetation 

transitions through these classes, from gaps down to labyrinths, then spots, before finally 

disappearing to bare ground (Meron and Gilad, 2004). This suggests that the morphology of 

pattern vegetation provides an indication of the feedback mechanisms of the system and 

consequently the resilience of the ecosystem (Rietkerk et al., 2004), as visualised in Figure 

2.5. It is worth noting that there is an absence of work on establishing the link between 

patterned vegetation morphology and system resilience using real world data. Much of the 

work on this has relied on models (Dakos et al., 2011; Siero et al., 2015, 2019). In Dakos et 

al. (2011) critical slowing down is seen prior to vegetation pattern collapse for some classes 

of vegetation model, however for regular patterns there is no associated change in 
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resilience indicators, such as AR(1), for this transition. While some studies have used aerial 

photography to document changes in patterned vegetation (Leblanc et al., 2008; Gowda, 

Iams and Silber, 2018) and have posited the link between its decline and tipping points 

(Trichon et al., 2018), more work is required to assess this relationship. 

 

 

Figure 2.5: Conceptual model of declining resilience of a patterned vegetation system with 

increasing dryness and a reduction in vegetation cover. Vegetation transitions from gaps 

through labyrinths and on to spotted vegetation prior to a collapse to a homogenous barren 

state. Solid lines represent a stable equilibrium state. Source: Scheffer et al. (2009). 
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There are also suggestions that real world vegetation displays multistability, with multiple 

forms of patterned vegetation existing within the same area, and that the picture may be 

more complicated. Rietkerk et al. (2021) suggests that spatial pattern formation can help a 

system to evade a tipping point and can provide more stability. 
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2.4 Unanswered Questions 

2.4.1 Common themes and future directions 

As discussed in this literature review, there is a subset of resilience literature which utilises 

remote sensing to assess vegetation resilience. These studies include those which consider 

distinct shock events, such as extreme droughts (Lees et al., 2021), and those which 

consider vegetation resilience over time along with the impact of long term stressors such 

as precipitation change or anthropogenic pressure (Feng et al., 2021; Boulton, Lenton and 

Boers, 2022). Some studies also make use of the spatial properties of remotely sensed data 

to analyse resilience changes across a spatial gradient rather than a temporal gradient 

(Verbesselt et al., 2016; Eby et al., 2017; Majumder et al., 2019). The nature of spatial data 

from satellites makes these space-for-time substitutions an ideal method for analysing the 

resilience of terrestrial ecosystems. This is why it is perhaps surprising that these types of 

analysis, along with the use of spatial resilience indicators, are less common in the 

literature.  

In addition to this, one would expect that the spatial nature of satellite imagery should, at 

high enough resolution, provide a way to provide information about the resilience and 

trends in patterned vegetation. With these sites often occurring in inaccessible locations, 

thus making constant site monitoring impractical, satellite data should prove useful. 

However, much of the analysis of these vegetation forms has taken place with limited 

amounts of aerial photography or spatially limited in situ observations. This presents a clear 

gap in the literature.  
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As seen in Table 2.1, vegetation indices, such as NDVI or EVI, are among the most commonly 

used remote sensing metrics for ascertaining the resilience of terrestrial ecosystems. This is 

likely to be driven by the ease with which they can be calculated from most multi-spectral 

imagery, rather than requiring a specifically equipped satellite. This allows for the 

generation of long term time series. In addition to this, NDVI provides a simple, relatively 

robust measure of vegetation greenness, which serves as a proxy of its health and 

productivity. The stress experienced by vegetation as it loses resilience is likely to be 

manifested in reduced recovery rate of photosynthetic capabilities, something which can be 

detected through NDVI (Liu et al., 2019). However, NDVI is not without its flaws. In regions 

with low levels of vegetation there is potential for soil to interfere with the NDVI values, 

while for high biomass areas, such as forests, NDVI values can become oversaturated 

(Huete, Liu and van Leeuwen, 1997). This has prompted some studies to apply other 

remotely sensed metrics to forests, such as VOD used in Boulton, Lenton and Boers (2022). 

It is clear that remotely sensed data holds great potential for the continued monitoring of 

the resilience of terrestrial ecosystems in near real time. The availability of free cloud 

computing resources through GEE and Microsoft’s Planetary Computer, combined with a 

growing body of satellite data, provides the potential for enhanced resilience monitoring 

efforts of vegetation. 

2.4.2 Research questions 

As outlined above, with natural ecosystems experiencing the impact of both direct and 

indirect anthropogenic pressures, there is clear potential for the use of satellite remote 

sensing data to analyse trends in vegetation cover and resilience. However, there continue 

to be gaps in the literature. This thesis focuses on three key areas of research; the capability 
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of remote sensing to identify and evaluate long term greening trends caused by agroforestry 

community groups in Kenya, the link between dryland patterned vegetation morphology 

and resilience in the Sahel, and the global relationship between vegetation resilience and 

climate along with the potential of remote sensing to monitor this. Each of these projects 

rely on freely available data from satellites, although each operates at a different spatial and 

temporal scale. The motivation for and the development of each research question is 

provided below.  

To assess the capabilities of remote sensing for monitoring direct human impact on 

ecosystems, a human network that has undergone drastic growth in the form of an ‘s-curve’ 

is considered. The case study that is the focus of this work is The International Small Group 

and Tree Planting Program (TIST), a network of smallholder farmers within the Mount Kenya 

region. Discussions with local farmers suggest that this tree planting network has had a 

noticeable impact on their land, however the extent of this has not been quantified. As a 

deforested area, there is an expectation that tree planting in the Mount Kenya region will 

have a noticeable effect upon the landscape. The fast vegetation growth rates associated 

with the tropics also makes this a favourable study area, as well as the overlap between TIST 

establishment and Landsat data availability. Previous studies have focused on broader, 

lower resolution trend greening trend analysis (Fensholt and Proud, 2012; Gichenje and 

Godinho, 2018) or on top-down mass tree planting projects, such as those conducted in 

Northern China (Zhang et al., 2016). No studies have investigated large scale, dynamic and 

community led tree planting with high resolution satellite data. This leads us to the first 

research question (RQ). 
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RQ1: What effect are community-level tree planting groups having on a dryland landscape 

and can this be quantified this with remotely sensed data? 

While the ability of patterned vegetation morphology to act as a predictor of system 

resilience has been proposed in the literature, most of the work done to assess this idea has 

focused on vegetation modelling. In addition to this, few studies have focused on 

monitoring changes in patterned vegetation in a quantitative manner. The development of 

high-resolution satellites with frequent return times, such as Sentinel-2, provides a potential 

tool for assessing these vegetation formations. This prompts the following research 

questions: 

RQ2: Can data from satellites effectively distinguish between different patterned vegetation 

morphologies? 

RQ3: Is the resilience of a patterned vegetation system linked to its morphology? 

Much of the literature which applies remote sensing to monitor ecosystem resilience is 

focused on limited geographical areas or ecosystem types. While some recent studies have 

considered ecosystem resilience across the globe (Feng et al., 2021; Rocha, 2021), these rely 

on composite early warning signals or employ confused notions of critical slowing down and 

observe conflicted trends across spatial scales. The increasing availability of easily accessible 

cloud computing aids the task of conducting global analysis and provides the potential for 

the monitoring of on-going changes in the resilience of ecosystems or to identify areas of 

interest for further evaluation. The following research questions are developed from this: 
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RQ4: What can be learnt about the relationship between ecosystem resilience and climatic 

drivers across the globe using remotely sensed data? If these connections do exist, how 

consistent are they across different geographical and ecosystem scales? 

RQ5: Can geographic areas of interest with distinct resilience levels or trends be identified 

with remotely sensed data? 

These research questions will guide the rest of this thesis and will be addressed in each 

research chapter, as outlined below. 
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2.5 Thesis outline 

The work in Chapter 3 considers the Mount Kenya region, which has suffered from historical 

deforestation and land degradation. A network of smallholder farmers, TIST, have sought to 

implement agroforestry plots in and around their farms to build resilience. This social 

scheme is spread through the community. Growth of this scheme follows an s-curve, 

suggestive of a social tipping point, although this was not tested. However, this represents a 

clear example using remote sensing to show how ‘social tipping’ might have a positive 

impact on the environment, so forms a part of this thesis. In this chapter, RQ1 is addressed 

by developing an understanding of the impact of tree planting on the local landscape and to 

identify whether this can be detected using Landsat 7 remotely sensed data. The work in 

this chapter is adapted from Buxton et al. (2021).  

Chapter 4 presents an analysis of patterned vegetation across the dryland region of the 

Sahel. This work seeks to ascertain whether data from remote sensing sources is sufficiently 

high resolution to distinguish between vegetation pattern classes and provide a method for 

quantifying vegetation morphology, thus addressing RQ2. This enables an analysis of the 

resilience of these vegetation sites and to understand what the potential drivers of this 

resilience might be. In doing so this addresses themes in the literature that link pattern 

morphology and resilience which have previously only been considered through modelling 

experiments. This work also aims to analyse the relationship between precipitation and 

patterned vegetation. Chapter 4 presents work which is adapted from Buxton et al. (2022). 

The software developed for this study consists of a published python package called pyveg 

(Barlow et al, 2020). 
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A global analysis of vegetation resilience is provided in Chapter 5. This study aims to 

combine the computational capabilities offered by cloud computing with remotely sensed 

data to assess vegetation resilience across the globe. Here the AR(1) of MODIS NDVI data 

and VODCA data across the globe is considered and a space-for-time substitution is applied 

to understand the resilience of vegetation and the effect that climatic drivers have on this 

resilience. These results are presented across three different spatial scales; the local, 

ecoregion and biome scale. Results from NDVI and VOD are compared for this form of 

analysis. In addition to this, some discussion is provided around the potential limitations 

presented by the temporal resolution of this data. 

Chapter 6 provides a discussion of the findings presented in this thesis and considers the 

utility of remote sensing to determine the resilience of ecosystems. Some of the limitations 

identified through this work are discussed and avenues for future research are highlighted. 

In particular, a framework for the long-term analysis of trends in vegetation resilience across 

the world is proposed, along with the identification of particular biomes which display signs 

of resilience loss and some potential ecoregions of interest that may require continued 

study. 
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Table 2.1: Summary table of select literature concerning resilience analysis using remote sensed data. Adapted from Lenton et al. (2022) 

Study Region Ecosystem Satellite Data 

product 

Time 

period 

Environmental 

stressor 

Resilience Metric Results Notes 

De 

Keersmae

cker et al. 

(2014) 

Global 15 global 

landcover 

types 

MODIS NDVI 2001-2006 Sensitivity analysis 

of early warning 

signals within 

context of 2003 

European heat 

wave. 

Resistance, return 

rate and variance. 

Forests display 

highest level of 

stability. Biased data 

points have a large 

impact on resilience 

metrics. 

Study on which 

characteristics of 

the data affect 

stability metrics. 

De 

Keersmae

cker et al. 

(2015) 

Global All GIMMS NDVI 1981-2006 Temperature, SPEI 

(Standardised 

Precipitation-

Evapotranspiration 

Index). 

Linear model of 

standardised NDVI 

anomaly based on 

previous time step 

and climatic 

factors. 

Low levels of 

resilience in 

Australia, Southern 

Africa and drylands 

in North America. 

Pixels which are a 

poor fit of this 

model are 

removed, these 

primarily 

correspond to 

deserts, snow 

covered high 

latitudes and 

densely vegetated 

forests 

(presumably due to 

the fast recovery 

time of the latter). 

Verbessel

t et al. 

(2016) 

 

Equatorial 

tropical 

rainforest

s 

Tropical 

rainforests 

MODIS NDVI 2000-2011 Precipitation Mean AR(1). Increasing AR(1) in 

regions with Mean 

Annual Precipitation 

Space-for-time 

substitution study. 
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below 1500 mm per 

year. 

(Seddon 

et al., 

2016) 

Global All MODIS EVI 2000-2013 Water availability, 

air temperature 

and cloud cover. 

Vegetation 

sensitivity index 

Sensitive regions 

identified in tropical 

forests, alpine 

regions, the Caatinga 

dryland forest In 

South America, 

eastern areas of 

Australia and steppe 

regions in central 

Asia. 

This study isn’t 

strictly measuring 

early warning 

signals, and is more 

of a consideration 

of ‘resistance’. 

van 

Belzen et 

al. (2017) 

Netherlan

ds - two 

tidal 

marshes 

in 

Westersc

helde 

Estuary. 

Tidal 

marshes 

Digitised 

aerial 

photogr

aphy 

NDVI 1976-2012 Seawater 

inundation. 

Recovery rate, 

spatial variance, 

spatial correlation. 

Longer recovery time 

with increased 

inundation. Some 

trend of spatial 

variance and 

correlation, but less 

robust. 

Parallel 

transplantation 

experiment is 

conducted in 

Maryland, USA. 

Alibakhsh

i et al. 

(2017) 

Iran and 

Armenia 

Wetland 

ecosystem 

MODIS Composite 

indicator 

MVWR 

created 

from NDVI 

and 

MNDWI 

2001-2014 Water level 

fluctuations due to 

drought and 

overuse. 

AR(1), standard 

deviation and 

skewness. 

AR(1) and skewness 

increased as the 

wetland system loses 

resilience. One site 

showed a decline in 

standard deviation. 
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Eby et al. 

(2017) 

Serengeti-

Mara 

Savannah 

and 

woodland 

Landsat Land 

classificatio

n map 

2000 Precipitation Spatial variance, 

spatial skewness, 

spatial correlation, 

spatial DFT. 

Spatial variance, 

spatial correlation 

and DFT all seemed 

to increase within 

transitional regions 

between grassland 

and woodland. 

Space-for-time 

substitution study. 

Schwalm 

et al. 

(2017) 

Global All MODIS GPP (as 

well fluxnet 

and 

observatio

n driven 

drought 

modelled 

data) 

2000-2010 Drought Recovery time Recovery time most 

associated with post-

drought temperature 

and precipitation. 

Tropical and high 

latitude regions had 

the longest recovery 

times. Recovery  

times from drought 

have increased over 

time too. 

 

Liu et al. 

(2019) 

 

California, 

USA 

Forests Landsat 

7 

NDVI 2000-2016 Drought-induced 

mortality 

Autocorrelation of 

Bayesian dynamic 

linear model. 

EWS are apparent at 

least 6 months prior 

to mortality event. 

 

Majumde

r et al. 

(2019) 

 

Australia, 

Congo-

Gabon 

and 

Serengeti 

Savannah 

and 

woodland 

MODIS EVI 2010 Precipitation Spatial variance 

and spatial 

autocorrelation. 

Peaks in EWS at 

transitional 

threshold 

Space-for-time 

substitution study. 

White et 

al. (2020) 

 

Island of 

Ireland 

 MODIS EVI 2003-2019 Disturbances from 

major weather 

events 

Recovery rate, 

variability, recovery 

Long recovery rates 

associated with 
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time and 

resistance. 

known ‘fodder crisis’ 

event. 

Wu and 

Liang 

(2020) 

Global All  GLASS 

and 

GIMMS 

AVRR 

Leaf Area 

Index (LAI) 

1982-2016 

and 1982-

2011 

Temperature, 

precipitation and 

soil moisture 

Resilience as ratio 

of maximum 

resistance to the 

return time. 

Evergreen broadleaf 

forests show the 

highest resilience, 

while deciduous 

needleleaf trees 

showed the lowest. 

No consistent 

relationship between 

temperature and 

resilience. 

 

White et 

al. (2021) 

 

Island of 

Ireland 

Agricultural 

pastures 

MODIS EVI 2000-2019 Impact of species 

richness, land 

cover 

heterogeneity and 

climatic history 

Recovery rate, 

variability, recovery 

time and 

resistance. 

Long-term history of 

extreme events leads 

to slower recovery 

rates. 

 

Feng et 

al. (2021) 

Global All GIMMS NDVI 1981-2015 Precipitation and 

temperature 

Composite early 

warning metric 

created from AR(1), 

standard deviation, 

skewness and 

kurtosis. 

Loss of resilience at 

the 'local' (or pixel) 

scale. Moist 

broadleaf forests, 

montane grasslands, 

and deserts were 

most sensitive to 

change in mean 

climate state. Not 

replicated at the 

global scale. 

 



Chapter 2: Literature Review 

68 
 

 

Lees et al. 

(2021) 

UK  Peatland  Sentinel

-1 

Synthetic 

Aperture 

Radar (SAR) 

2016-2019 Drought Recovery time Areas with high 

recovery time, and 

are therefore less 

resilient, have 

suffered from large 

amounts of human 

pressure, such as 

excessive draining. 

 

Boulton, 

Lenton 

and Boers 

(2022) 

 

Amazon 

rainforest 

Tropical 

rainforests 

AVHRR VOD 1991-2016 Precipitation and 

anthropogenic 

pressure. 

AR(1) and variance. Increase in AR(1) 

with decreasing 

rainfall and with 

distance to human 

settlements. 

 

(Rocha, 

2021) 

Global 

(Terrestri

al and 

Marine) 

 FLUXCO

M 

Terrestrial 

systems: 

Gross 

primary 

productivit

y and 

ecosystem 

respiration.  

Marine 

ecosystems

: 

Chlorophyll

-a 

concentrati

on 

Terrestrial 

systems: 

2001-2018 

 

Marine 

systems: 

1998-2018 

 AR(1), variance, 

skewness and 

kurtoses. 

Resilience loss is 

observed in 

approximately 29% 

of terrestrial and 

24% of marine 

ecosystems. 

  

Author considers 

both critical 

slowing down and 

‘critical speeding 

up’ as loss of 

resilience. This 

seems to not be 

backed up by 

established 

theories of 

resilience. 
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3.1 Abstract  

Nature-based solutions to climate change are growing policy priorities yet remain hard to 

quantify. Here we use remote sensing to quantify direct and indirect benefits from 

community-led agroforestry by The International Small group and Tree planting program 

(TIST) in Kenya. Since 2005, TIST-Kenya has incentivised smallholder farmers to plant trees 

for agricultural benefit and to sequester CO2. We use Landsat-7 satellite imagery to examine 

the effect on the historically deforested landscape around Mount Kenya. We identify 

positive greening trends in TIST groves during 2000-2019 relative to the wider landscape. 

These groves cover 27,198 hectares, and a further 27,750 hectares of neighbouring 

agricultural land is also positively influenced by TIST. This positive ‘spill-over’ impact of TIST 

activity occurs at up to 360m distance. TIST also benefits local forests, e.g. through reducing 

fuelwood and fodder extraction. Our results show that community-led initiatives can lead to 

successful landscape-scale regreening on decadal timescales. 
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3.2 Introduction 

At least 29% of land is degraded globally, negatively affecting living conditions for 40% of 

people (Le, Nkonya and Mirzabaev, 2016). Land degradation can be driven by deforestation, 

grazing and poor cropland management, demographic and economic trends, as well as 

climatic trends (IPBES, 2018). It reduces both the resilience of terrestrial systems to climate 

change, and the capacity of agricultural communities to adapt (Webb et al., 2017). Extensive 

land degradation has occurred in sub-Saharan Africa, and is expected to continue in the 

future (IPBES, 2018), threatening the livelihoods of smallholder farmers by reducing land 

productivity, eroding soil and reducing soil fertility (Waswa et al., 2013; Mbow et al., 2014). 

Agroforestry can reverse degradation, improve soil quality and increase the resilience of 

smallholder farmers (Thorlakson and Neufeldt, 2012; Lasco et al., 2014; Giusti, Kristjanson 

and Rufino, 2019), however perceptions of costs and risks among farming communities with 

marginal livelihoods mean that uptake of restorative practices has not been widespread 

(Meijer et al., 2015). Agroforestry in degraded African landscapes has potential to sequester 

significant amounts of carbon (Henry et al., 2009), indicating the potential for carbon 

markets as a funding mechanism for environmental rehabilitation (Jindal, Swallow and Kerr, 

2008) with potentially powerful benefits for participating communities (Estrada and 

Corbera, 2011), but the need to aggregate sequestration across large numbers of small 

farms has been identified as a significant barrier (Henry et al., 2009). As such, successful 

projects are often localised and limited in scalability, and the impacts of grass-roots actions 

in rural areas are under-quantified. Local knowledge is essential in enabling context-

dependent solutions that prioritise the agency of community-members in decision-making 

(Reed, 2007; Willemen et al., 2020), and successful and sustained adoption is more likely 
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when farmers are able to adapt new technology themselves and apply in their local context 

(Meijer et al., 2015), as well as carrying socio-economic benefits for participants (Giusti, 

Kristjanson and Rufino, 2019). One project offering a scalable, farmer-led approach that 

accesses benefits from carbon markets is The International Small Group and Tree Planting 

Program (TIST) (Jindal, Swallow and Kerr, 2008; Shames et al., 2012). 

TIST is a farmer-led network of over 100,000 smallholder farmers in Tanzania, Uganda, 

Kenya and India, organised around agroforestry and regenerative farming practices (Henry 

et al., 2009). The TIST programme develops and shares best-practices for tree-planting, 

sustainable agriculture and gender-balanced leadership opportunities, bringing multiple 

economic, social and health benefits to its members (I4EI, 2014). TIST provides a strong 

incentive to plant and maintain trees by training farmers to systematically quantify and 

aggregate tree-growth data, which is packaged as verified carbon credits for sale on 

international voluntary markets. Trees are generally grown from locally collected seed, with 

species choice left entirely to the farmer, and many TIST members or their families establish 

tree nurseries and sell on seedlings to generate extra income. In this study we focus on the 

Mt Kenya region of Kenya, which has the highest concentration of TIST members across all 

four countries. Farmers in this region typically grow a range of crops, most commonly 

including maize, legumes and tubers (Oppenheimer, 2011), with two cropping seasons 

determined by the two distinct rainy seasons each year. 

TIST-Kenya farmers plant a mix of tree species, with over 160 species reported, including 

more than 90 indigenous species (Oppenheimer, 2011; I4EI, 2014). Species selection is 

dominated by trees that provide the most reliable products including fuelwood, animal 

fodder and coppiced timber (Giusti, Kristjanson and Rufino, 2019), often supplemented with 
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fruit and nut trees which can provide high value crops. Early in the programme farmers 

planted a high proportion of Eucalyptus grandis due to encouragement by the Kenyan 

Forest Service (KFS). TIST have since discouraged planting of Eucalyptus, but standing trees 

from this period still represent a high proportion of the total (up to 33.1% in some project 

areas (I4EI, 2014)).  Grevillea robusta, a multi-use non-native tree planting of which has 

been encouraged by World Agroforestry (ICRAF), is also a dominant species, with native and 

non-native Acacia species and a range of others also present in significant numbers.   

TIST credits have high value due to their associated social and environmental benefits (I4EI, 

2014; CAAC, 2020). In addition to the income derived from carbon credit sales, TIST farmers 

gain substantial benefits via production of fuelwood, animal fodder, food and diversification 

of livelihoods, with an estimated average value of USD $1,324 per member per year (I4EI, 

2014; CAAC, 2020). Other benefits include shade provision, reduced soil erosion and 

increased water penetration (Jose, 2009; Lasco et al., 2014), with certain TIST activities 

aimed at maximising these, e.g. targeted planting in riparian areas (I4EI, 2014). Alongside 

tree-planting, TIST farmers often use sustainable farming practices such as ‘conservation 

farming’ (I4EI, 2014; CAAC, 2020), which can improve soil organic matter and water 

retention through a combination of no-till planting, mulching and cover cropping 

(Mafongoya et al., 2016).  The rapid growth of TIST, which resembles an s-curve (as seen in 

Figure A.1), combined with its potential to improve the local environment suggests that it 

may represents an example of a social tipping point which can affect positive environmental 

change (Lenton, 2020). 
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Figure 3.1: Study area: a) Map of TIST groves in the Mount Kenya region and agricultural 

land within the study area. TIST groves are clustered and spatially correlated within the 

study area due to the spread of TIST through community networks.  b) Map of TIST groves 

and study area within Kenya. Map data: © OpenStreetMap contributors. Figure created with 

QGIS. 

 

Here we use Landsat 7 satellite data to examine whether TIST farmers in Kenya have 

achieved regreening within their own farms and at landscape scale. Figure 3.1 shows the 

location of TIST tree-groves in Kenya and the study region. We analyse trends in the 

Normalised Difference Vegetation Index (NDVI), a measure of plant greenness (Wang et al., 

2004), over the period 2000-2019 at 34,699 TIST tree-groves established since 2005. A 

‘grove’ represents a defined tree planting area within the boundaries of a farm, which we 

compare with the wider agricultural landscape. Trends in NDVI are measured using Mann-

Kendall’s Tau rank correlation coefficient; this statistic indicates the tendency of a trend, 

with τ=1 showing a continuous increase, τ=0 showing no trend, and τ=-1 showing a 

continuous decrease. Therefore pixels with a τ>0 value display a ‘greening’ trend, while 
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those with τ<0 display a ‘browning’ trend. As detailed below, we further classify these 

greening and browning trends as ‘moderate’ or ‘strong’, following Gichenje and Godinho 

(2018). Other studies have used similar methods to analyse trends in NDVI and land 

degradation across Kenya with lower resolution data (Fensholt and Proud, 2012; Gichenje, 

and Godinho, 2018). 
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3.3 Results 

 

Figure 3.2: Greening trends across study area: (a) Distribution of NDVI Kendall Tau for TIST 

groves, neighbouring pixels and other agricultural pixels within the study area. Trends in 

NDVI Kendall tau are positively shifted for TIST groves and neighbouring pixels relative to 

other agricultural pixels within the study area. (b) Classified greening and browning trends 

b 

a 
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within TIST groves, TIST Neighbour pixels and other agricultural pixels. Based upon Mann-

Kendall Tau values pixels are binned into ordered groups showing “strong browning” (-0.8 < 

τ < -0.4), “moderate browning” (-0.4 < τ < 0), “moderate greening” (0 < τ < 0.4) and “strong 

greening” (0.4 < τ < 0.8), following Gichenje and Godinho (2018). TIST grove pixels and TIST 

neighbouring pixels show a larger proportion of greening pixels than other agricultural land. 

Over 67% of TIST grove pixels show some form of greening compared to 51% of other 

agricultural land.  

 

Figure 3.2a shows the distribution of NDVI Mann-Kendall Tau values for pixels which 

subdivide the study area into three landscape classes: TIST groves, neighbouring pixels and 

other agricultural pixels. Due to the 30m resolution of Landsat, TIST groves are defined as 

those which have a centroid either within a TIST grove or a 15m radius from a grove 

boundary, while neighbouring pixels are defined such that they fall within a 30m buffer of 

TIST pixels. These neighbouring pixels represent farmland upon which TIST farmers may 

utilise sustainable agricultural practices, as well as neighbouring farms. 

As can be seen in Figure 3.2b, the majority (67.20%) of TIST grove pixels and neighbouring 

pixels (61.63%) display a positive greening trend, while other agricultural pixels display a 

broadly neutral trend. A two sampled t-test determined that TIST groves are significantly 

different to other agricultural areas (p<0.001). This suggests that TIST groves are distinct 

from the wider landscape and that trees planted by farmers contribute an observable 

change. While not all TIST grove pixels display an absolute greening trend, it is worth noting 

that there is a large amount of variability across the TIST network in the number and density 

of trees planted in a grove. Some groves consist of boundary trees or windbreaks, with 
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crops, buildings or other land use types included within the grove, these may cause a 

browning trend. Other factors which may cause browning within TIST groves are climatic 

trends, the possibility that the groves are unsuccessful or the farmer leaves TIST. 

Neighbouring pixels display a closer similarity to TIST groves than to the rest of the 

landscape and appear to have a stronger greening trend than other agricultural pixels. TIST 

neighbouring pixels are statistically significantly different to other agricultural regions 

(p<0.001), as well as to TIST groves (p<0.001).  

Spill-over effects in the surrounding agricultural landscape due to TIST farmers are likely to 

be the result of several factors, such as the sustainable agriculture employed by these 

farmers, as well as the microclimatic effects of tree planting. Figure 3.3a and 3.3b shows an 

example of a group of TIST groves which are situated within a wider greening of agricultural 

land. 
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Figure 3.3: Examples of greening in the vicinity of TIST groves: (a,b) Example of a group of 

TIST sites within a greening agricultural landscape. (a) TIST sites within a heterogenous 

landscape. (b) NDVI Kendall Tau greening trends for this area. (c,d) TIST sites in Meru County 

bordering a small woodland. (c) Extent of this small woodland area neighbouring TIST 

groves. (d) Greening of the woodland. This greening effect is likely to be caused by a 

reduction in the extraction of firewood and forage from these woodlands and represents a 

a b 

d 

c 
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very specific form of natural vegetation improvement. (a) and (c) map data: ©2020 Google, 

CNES/Airbus, Maxar Technologies.  

 

Discussions with TIST farmers suggest that in areas with numerous TIST groves there can be 

co-benefits to local woodland as well as agricultural land. Figure 3.3c and 3.3d shows an 

example of this, with numerous TIST groves bordering a confirmed natural woodland site 

which has a positive NDVI Kendall Tau. This strong positive trend is noticeable within the 

borders of these woodland areas and is in addition to improvements in farmland due to the 

restorative activities of TIST farmers. This woodland greening trend serves as an additional 

environmental benefit to the positive trends seen in agricultural land adjacent to TIST sites. 

Woodland improvements are attributed to a reduction in human pressures on woodland for 

firewood and forage for animals. Other reasons given by farmers is the creation of 

woodland protection and education groups due to the increased environmental awareness 

promoted by TIST membership. TIST have also encouraged members to establish 

Community Forest Associations (CFAs) (I4EI, 2014). 
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Figure 3.4: Average NDVI Kendall Tau of TIST groves compared with neighbouring pixels at 

increasing distances: Greening effect of TIST is observable in neighbouring pixels and then 

declines with distance from TIST groves. The red line represents the average NDVI Kendall 

Tau value for all Non TIST values in the study area. Distances which display a significant TIST 

effect are represented with a black outline. Standard error not shown due to very small size, 

provided in Table A.1. 

 

Figure 3.4 shows the NDVI trend at increasing distance from TIST sites. TIST groves’ 

immediate neighbours have a stronger average greening trend than those which are further 

away. This TIST effect seems to decay with distance, until it reaches a local background 
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greening level which is higher than the average trend across the agricultural land within the 

study area. This suggests that TIST groves are clustered in areas that already show a weak 

greening trend, but that TIST activities contribute to a greening trend of greater magnitude 

on top of this. TIST groves are themselves spatially correlated to a degree, as can be seen in 

Figure 3.1, due to the way that TIST spreads through local community networks. While TIST 

groves tend to be in areas that experience a greening trend (Figure A.2), background 

greening is not exclusive to areas with a high density of TIST groves.  

The benefits of TIST, such as microclimatic effects and the use of sustainable farming 

practices adjacent to tree-groves, decline with distance hence the decay in greening. An 

analysis of the TIST effect over distance considers the asymptotic nature of the curve in 

Figure 3.4. With the use of a categorical regression model, as detailed in the methodology, 

we establish that pixels do not reach the local background level of greening until 390m away 

from TIST groves (Table A.2). This suggests a secondary TIST effect present up to 360m 

away, although this weakens greatly with distance. 
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3.4 Discussion 

Here we have shown that the activities of a community-led tree planting programme are 

observable using Landsat 7 satellite imagery as increasing greening trends that are clearly 

distinguishable from the wider landscape. TIST groves display a trend not seen in the rest of 

the study area, with over 67% of TIST pixels displaying a greening effect, compared to 51% 

of other agricultural land in the study area. This greening is directly associated with tree 

planting by farmers in TIST tree-groves over a total area of 27,198 hectares in our study 

area.   

In addition to this, we observe an overspill effect, 

with land near to TIST groves showing a greening 

trend. This effect is most strongly observed in pixels 

immediately adjacent to tree groves, suggesting 

direct impacts of TIST activities on an additional 

27,750 ha of farmland; an area slightly greater than 

that of the groves themselves. Weaker, but 

statistically significant, effects can be observed up to 

360m away from TIST groves, suggesting that the full 

extent of TIST impacts in the study area may extend 

across a further 234,720 ha, leading to a total area of 

289,668 ha (Figure 3.5). This spill-over effect highlights 

a substantive benefit of mosaic tree-planting schemes and shows that membership of TIST, 

which promotes both tree planting and sustainable agriculture, can have landscape level 

impacts.  

 

Figure 3.5: Total extent of greening 

associated with TIST groves. 
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Spill-over effects from agroforestry programs have previously been identified with regards 

to community capital and knowledge (Borish, King and Dewey, 2017), and ’positive leakage’ 

of carbon sequestration (De Jong, Bazán and Montalvo, 2007). Spill-over impacts on NDVI 

trends in our study area are likely to be caused by multiple interacting drivers. Immediately 

in and around TIST groves, reduced soil erosion, increased soil nutrition and increased shade 

from TIST planted trees is likely to benefit other vegetation (Jose, 2009; Lasco et al., 2014). 

There is also evidence that managed tree planting within dry tropical areas can improve 

groundwater recharge (Ilstedt et al., 2016), which is likely to be of benefit in some TIST 

groves. In addition to tree-planting, TIST is an example of community capital that serves an 

important role in generating and spreading other best practices for sustainable land 

management. Higher yields and the use of cover crops associated with ’conservation 

farming’ (Mafongoya et al., 2016)  are likely to play a significant role in the strong greening 

trend in pixels immediately adjacent to TIST groves, many of which will fall within the 

boundaries of farms belonging to TIST members. Furthermore, as TIST membership itself is 

most commonly spread via neighbour-to-neighbour interactions, adoption of beneficial 

farming practices likely spreads in the same way.  

 A secondary effect identified by TIST farmers suggests that areas of natural woodland can 

be improved by the presence of TIST farms, as shown in Figure 3.3c. As farmers produce 

more animal fodder and firewood within their farm (I4EI, 2014), they are less likely to 

remove vegetation from local woodland, thus reducing anthropogenic pressure on the 

woodland,(Ndayambaje and Mohren, 2011; Iiyama et al., 2014; Giusti, Kristjanson and 

Rufino, 2019). In addition, farmers have become more environmentally aware due to their 

engagement with TIST (TIST, 2011) and some have joined with forest protection groups to 
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educate others on the dangers of depleting local woodlands (TIST, 2012). Further research is 

needed to understand the full extent of these effects.  

There is currently little available literature which combines remote sensing with grassroots 

community tree planting. Much of the focus is placed upon large scale, government led 

projects, such as that in semi-arid Northern China (Zhang et al., 2016). These tree planting 

projects are often driven from the top down and occur over a large contiguous area, in 

contrast to farmer-led initiatives that contribute to development of rural livelihoods and 

which are likely to have more successful adoption and more sustained impacts (Reed, 2007; 

Meijer et al., 2015). Governments worldwide have announced tree planting projects with 

large target numbers (Holl and Brancalion, 2020), with international efforts such as the 

Trillion Tree Campaign and Africa’s Great Green Wall. Our results show that the cumulative 

impacts of a bottom-up, community-driven tree planting initiative can contribute to 

rehabilitating degraded landscapes, while enabling local farmers to access direct economic 

benefits from carbon credit payments, substantial indirect benefits from diversified 

livelihoods and farm improvements (Jindal, Swallow and Kerr, 2008; I4EI, 2014; CAAC, 2020) 

and agricultural, health and other training opportunities (I4EI, 2014). These restoration 

schemes can have multiplier effects, with improvements occurring in land adjacent to tree 

planting sites. This restoration can be achieved with the engagement of local people, with 

organisations like TIST providing agency to farmers and highlighting the value that these 

grassroots initiatives can have.  We suggest that enhanced community capital and the 

biophysical and agro-ecological impacts of TIST best-practices combine in a reinforcing 

feedback to produce widespread, landscape-scale effects, with such programmes 

representing a mechanism to initiate rapid positive change through social-ecological tipping 

points (Lenton, 2020).   
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3.5 Methodology 

3.5.1 Study area 

The study area outlined in Figure 3.1 covers a total area of 26,864km2 and was chosen to 

include TIST groves in proximity to Mount Kenya and the Aberdare Mountain Range. This 

area constitutes the majority of TIST groves within Kenya as seen in Figure 3.1. The 

expansion and intensification of agricultural land in the region of Mount Kenya has occurred 

at the expense of the natural environment, with increasing pressure associated with a 

growing population (Eckert et al., 2017). Within the Mount Kenya region there exists two 

rainy and two dry seasons per year. The topography of the region means that there is much 

spatial variability in rainfall, with mean annual rainfall varying between 600 mm year-1 and 

>1300 mm year-1 (Schmocker et al., 2016). 

As well as the bounding box around this region, satellite data was then filtered to only 

include agricultural areas as defined by the FAO (FAO, 2000). This agricultural boundary 

ensures the removal of pixels within National Parks and forests, large urban areas and other 

non-agricultural regions, the extent of this is shown in Figure 3.1. 

3.5.2 Data 

Grove locations and shapefiles were supplied by TIST for this analysis. These shapefiles are 

constructed of the perimeter of TIST groves and are recorded by TIST quantifiers who walk 

the boundary of the grove several times to get an accurate measurement using GPS 

trackers. These groves are usually distinct areas of farms where TIST members have chosen 

to plant trees and often represent degraded land (I4EI, 2014) where other crops may not be 
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suitable. However, it is not uncommon for farmers to plant trees around the borders of their 

farm, meaning that some grove shapefiles will contain the whole farm. TIST grove data in 

Kenya is provided from the beginning of 2005 up to the end of 2018 and includes TIST 

groves which have been validated. The median grove size in the study area is 0.285 

hectares, with the median number of trees being 83. 

Due to the establishment of TIST in Kenya in 2005 and the small size of TIST groves, it was 

necessary to select a satellite which had both sufficient temporal coverage and spatial 

resolution. Landsat 7 ETM+ data was used because of its 30m resolution and availability 

since 1999 (Williams, Goward and Arvidson, 2006). The study period was from January 2000 

to December 2019, as this is the largest full year extent available for the satellite. The 

Landsat 7 Collection 1 Tier 1 8-Day NDVI Composite was selected from the GEE data 

repository.  

This 8 day NDVI composite dataset was used to calculate monthly data based upon the 

monthly maximum value composite technique. This method selects the maximum value for 

each pixel within a monthly period and is used in order to reduce the impact of water 

vapour, cloud cover, aerosols and the angle of the sun (Holben, 1986). This monthly NDVI 

data was then used to calculate multi-annual monthly averages for the period. 

3.5.3 Analysis 

The trend in NDVI was calculated using the following steps (see Figure A.3 for workflow). To 

remove the seasonal cycle from the data, the multi-annual monthly averages are subtracted 

from the monthly maximum composite. This creates a decycled dataset. Then, to smooth 
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and detrend the data, a 12-month moving average is taken of the decycled data. Any values 

which did not fall within a full 12 month window are then removed.  

The non-parametric Mann-Kendall tau, or Kendall’s tau, is a common test of the trend of a 

time series. It provides a value between -1 and 1. The Kendall Tau of the detrended and 

decycled NDVI data set is calculated, with Kendall Tau values of greater than 0 suggesting a 

greening trend, and thus more vegetation, with values less than 0 suggesting a browning 

trend of a pixel, and therefore less vegetation. 

These pixels are then separated into TIST pixels, TIST neighbour pixels and other agricultural 

pixels. A pixel is classed as a TIST pixel if its centroid falls within a 15m buffer of a TIST grove. 

This is to ensure that border areas of TIST groves are included as these are often where a 

farmer will plant their trees. Pixels are classed as neighbouring to a TIST grove if their 

centroid falls within a 30m buffer of a TIST pixel. This 30m buffer represents the size of a 

Landsat pixel. Other agricultural pixels are defined as those which are neither TIST or 

neighbouring pixels and fall within the agricultural area as defined by the FAO (FAO, 2000) 

and within the study area. 

This method of calculating neighbours is then applied to each successive set of neighbours, 

with the buffer increasing by 30m each time. Each distance class only includes unique values 

and ignores values that might be within a smaller distance class. This is done to calculate 

any spill-over effects of TIST groves, as well as to compare the groves to their local trend. 

We include all pixels within the study area for the neighbouring analysis to consider non-

agricultural land such as national parks. 

The magnitude of the trends in greening and browning are then classified as strong 

browning (-0.8 < τ  < -0.4), Moderate Browning  (-0.4 < τ  < 0), Moderate Greening (0 < τ  < 
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0.4) and Strong Greening (0.4 < τ  < 0.8) (Gichenje, and Godinho, 2018). Two sample t-tests 

were used to assess for statistically significant differences between TIST pixels, neighbouring 

pixels and other agricultural areas.  

To assess the effect of TIST upon neighbouring agricultural land, as shown in Figure 3.4, we 

considered the declining effect with distance as an asymptotic curve. We consider the 

largest 3 distances, at 450m, 480m and 510m, as an asymptote of this curve and take the 

mean of these values. We then fit a categorical regression model with an intercept of this 

mean and with categories corresponding to each distance class. We then test whether 

coefficient of each category is statistically different to the intercept (the asymptote value). If 

a coefficient is statistically different then this suggests that the TIST effect is present, while if 

it is not statistically different then that distance class does not differ from the local 

background level. 

The remote sensing component of this study was undertaken primarily with Google Earth 

Engine (GEE) (Gorelick et al., 2017). This data was then extracted from GEE for further 

analysis in QGIS (QGIS.org, 2021), Matlab R2020a and R (R Core Team, 2021). 

3.5.4 Limitations  

There are well known difficulties with cloud cover when using remote sensed data to 

conduct time series analysis. To create a continuous time series and to reduce the influence 

of cloud cover, this study has relied on decycling and detrending techniques. A reduction in 

cloud cover influence was also achieved by the use of maximum monthly pixel composites 

(Holben, 1986). An additional aim of this study was to assess changes in vegetation 

resilience within the Mount Kenya region due to TIST farmers. However, flickering resilience 
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signals in adjacent pixels caused by the well documented scan line error of the Landsat 7 

satellite (Williams, Goward and Arvidson, 2006) meant that this was not possible. An 

expanded Landsat 8 dataset may enable this form of long-term resilience analysis in the 

future. An additional limitation is presented by the TIST grove data. As some TIST groves 

include the entirety of a farm, this will include cropland and buildings. These are likely to 

influence the trends in NDVI.  
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4.1 Abstract 

Patterning of vegetation in drylands is a consequence of localised feedback mechanisms. 

Such feedbacks also determine ecosystem resilience - i.e. the ability to recover from 

perturbation. Hence the patterning of vegetation has been hypothesised to be an indicator 

of resilience, i.e. spots are less resilient than labyrinths. Previous studies have made this 

qualitative link and used models to quantitatively explore it, but few have quantitatively 

analysed available data to test the hypothesis. Here we provide methods for quantitatively 

monitoring the resilience of patterned vegetation, applied to 40 sites in the Sahel (a mix of 

previously identified and new ones). We show that an existing quantification of vegetation 

patterns in terms of a feature vector metric can effectively distinguish gaps, labyrinths, 

spots, and a novel category of spot-labyrinths at their maximum extent, whereas NDVI does 

not. The feature vector pattern metric correlates with mean precipitation. We then 

explored two approaches to measuring resilience. First we treated the rainy season as a 

perturbation and examined the subsequent rate of decay of patterns and NDVI as possible 

measures of resilience. This showed faster decay rates - conventionally interpreted as 

greater resilience - associated with wetter, more vegetated sites. Second we detrended the 

seasonal cycle and examined temporal autocorrelation and variance of the residuals as 

possible measures of resilience. Autocorrelation and variance of our pattern metric increase 

with declining mean precipitation, consistent with loss of resilience. Thus, drier sites appear 

less resilient, but we find no significant correlation between the mean or maximum value of 

the pattern metric (and associated morphological pattern types) and either of our measures 

of resilience. 
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4.2 Introduction 

Ecosystems with strong internal feedback mechanisms can exhibit multiple stable states. 

Abrupt changes, known as regime shifts, can occur when such systems pass a tipping point 

and transition from one stable state to another (Scheffer et al., 2001). Once a system has 

transitioned to a new stable state it is usually difficult to reverse this transition, due to 

hysteresis. Hence regime shifts can have severe consequences for those who depend upon 

an ecosystem. Predicting tipping points in complex systems is difficult because of their 

inherent nonlinearity. However, a growing body of work has shown that the phenomenon of 

‘critical slowing down’ prior to a tipping point can give generic early warning signals  (Dakos 

et al., 2008; Scheffer et al., 2009; Lenton, 2011). In essence, a system becomes slower at 

recovering from short term fluctuations before it undergoes an abrupt shift. This is because 

under steady forcing, the restoring negative feedbacks that maintain the original state get 

weaker before strong positive feedbacks take over at the tipping point. This precursor signal 

is often referred to in ecology as ‘loss of resilience’ - where resilience is defined as the rate 

at which a system recovers to its initial state after perturbation (Pimm 1984).  

Multiple metrics have been employed to measure changes in resilience. Where individual 

perturbations can be clearly identified, the response time of a system to return back to its 

initial state can be directly measured (Pimm, 1984; Lees et al., 2021). Where a system is 

subject to continual stochastic perturbations (‘noise’), increasing temporal autocorrelation 

(e.g. lag-1 autocorrelation; AR(1)) (Dakos et al., 2008) and increasing variance (Scheffer et 

al., 2009) signal loss of resilience. Spatial equivalents of these temporal signals can also be 

used (Kéfi et al., 2014). Due to the difficulty in obtaining frequent, high quality spatial data 

and the high levels of computational power required to analyse it, most studies focus solely 
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upon spatially aggregated data for time series analysis of systems to analyse their resilience. 

This difficulty can be mitigated by using space-for-time substitutions (Kéfi et al., 2014; 

Verbesselt et al., 2016). Other spatial resilience studies are often conducted with modelled 

data (Chen et al., 2015; Siero et al., 2019) or in laboratory conditions (Dai et al., 2012). Kéfi 

et al. (2014) suggest that a combination of spatial pattern analysis with temporal analysis 

can improve our understanding of system resilience. 

Dryland patterned vegetation belongs to a special class of reaction-diffusion systems, first 

recognised by Alan Turing (1952), where feedback gives rise to regular spatial patterns. The 

patterns result from an interplay of a local facilitation mechanism; here plants retain water, 

and a more distant competition mechanism; this denies other plants water (HilleRisLambers 

et al., 2001; Barbier et al., 2006). Typically patterns transition from “gaps” to “labyrinths” to 

“spots” as rainfall declines - then vegetation reaches a tipping point - abruptly disappearing 

below a critical rainfall level (Meron and Gilad, 2004).  Furthermore, different pattern 

morphologies affect the ability of the system to conserve resources (Mayor et al., 2013). 

Consequently, in patterned systems the pattern itself may act as a visual indicator of the 

changing balance of feedbacks - leading to the hypothesis that the pattern could act as a 

resilience indicator of proximity to a tipping point (Rietkerk et al., 2004; Kéfi et al., 2014). 

However, Dakos et al. (2011) find that different models of vegetation patterning give 

qualitatively different results for how resilience varies approaching a tipping point. In 

particular, a ‘scale dependent feedback’ pattern vegetation model displays slowing down 

prior to a tipping point, but AR(1) does not increase as the pattern morphology transitions. 

Hence we set out to test the hypothesis of a link between vegetation pattern and resilience 

with remotely sensed data. 
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Here, we focus on patterned vegetation in the Sahel, this region extends across Northern 

Africa from Mauritania in the west through to Chad and central Sudan in the east. The 

region is characterized by low levels of rainfall (Le Houérou, 1989), depleted soils (Sanchez, 

2002), increasing use of marginal lands (Doso Jnr, 2014), weak states and institutions 

(Raleigh, 2010), extreme poverty (Beegle and Christiaensen, 2019), a growing population 

(May, Guengant and Barras, 2017), and degradation of land and resources during times of 

drought (IPBES, 2018). The Sahel became a region of international concern following the 

severe droughts and famines of the late 1960s and 1970s. It was thought that this would 

lead to the southwards expansion of the Sahara desert and provoked a broader discussion 

about desertification (Helldén, 1991; Nicholson, Tucker and Ba, 1998). The changes affecting 

the precipitation regime and the vegetation across the Sahel were seen, by some, as 

irreversible (Charney, 1975) and led to the development of the United Nations Convention 

to Combat Desertification (Herrmann and Hutchinson, 2005). Subsequent changes in 

precipitation and the apparent recovery of vegetation in parts of the Sahel has caused much 

debate about the wider resilience of Sahelian vegetation to precipitation changes 

(Herrmann and Hutchinson, 2005; Kusserow, 2017). 
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Figure 4.1: Examples of the four classes of pattern vegetation site analysed in this study. (a) 

Gaps - ID 02 - 10-2016.  (b) Labyrinths - ID 01 - 10-2016. (c) Spots - ID 00 - 10-2016. (d) 

Spot/Labyrinths - ID 28 - 09-2017. All images are of the (cloud free) peak cover of the 

vegetation within a seasonal cycle. 

 

The pronounced North-South precipitation gradient of the Sahel (Le Houérou, 1989) enables 

the formation of vegetation patterns of diverse morphologies, including gaps, labyrinths and 
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spots (Deblauwe et al., 2008; Mander et al., 2017; Trichon et al., 2018), as seen in Figure 

4.1. Some of these patterns have previously been studied within the context of wider 

Sahelian precipitation trends and human influence (Barbier et al., 2006; Leblanc et al., 

2008). Trichon et al. (2018) present evidence of vegetation patterns undergoing degradation 

and decline during Sahelian drought periods, with some recovery observed following the 

increase in rainfall. This recovery is limited to areas of higher precipitation, with northern 

sites undergoing less recovery. It is suggested that this is due to lower precipitation sites 

displaying lower resilience and therefore having proceeded past a tipping point during the 

drought (Trichon et al., 2018). Model studies have shown that in addition to changes in 

rainfall, overgrazing can decrease the resilience of patterned vegetation and induce tipping 

points at rainfall levels that would otherwise be stable (Siero et al., 2019). 

Few quantitative measures of pattern vegetation are available; these include Fourier 

analysis (Couteron, 2002; Penny, Daniels and Thompson, 2013), Shannon entropy (Konings 

et al., 2011) and morphometric analysis (Mander et al., 2017). Due to the necessity of 

having high resolution data in order to perform these analyses, few studies have quantified 

changes in patterned vegetation. Existing studies rely on infrequent historical aerial data 

(Trichon et al., 2018) or consider the changes in vegetation at certain time points relating to 

human intervention, such as road construction (Gowda, Iams and Silber, 2018) or firewood 

collection and land-use change (Leblanc et al., 2008). We build upon the method presented 

in Mander et al. (2017) and offer a novel way of continued monitoring of patterned 

vegetation sites and their response to precipitation. Satellite imagery from Sentinel-2 has 

the potential to provide high-resolution data over large areas of land at a frequent time 

step, thereby enabling the changes in pattern vegetation to be analysed across regions.  
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Here we examine the utility of morphological analysis to distinguish between patterned 

vegetation classes and the relationship between these patterns and precipitation. We apply 

our vegetation pattern metric to understand the resilience of patterned vegetation and 

which factors, such as morphology and rainfall level, affect this resilience. We measure 

resilience as decay rate following a perturbation, and in terms of AR(1) and variance. We 

also investigate the spatial distribution of pattern trends across the Sahel in the context of 

the North-South rainfall gradient and changes in the East-West precipitation regime 

(Nicholson, Fink and Funk, 2018).  
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4.3 Methods 

In this study we utilise a remotely-sensed resilience monitoring Python toolkit for patterned 

vegetation, with an initial focus on drylands, called pyveg (Barlow et al., 2020). This draws 

on a number of existing tools and insights. It requires: (1) a source of remotely-sensed data 

of patterned vegetation, derived from the Sentinel-2 satellite accessed through Google 

Earth Engine (GEE); (2) a method of turning the qualitative observation of pattern into a 

quantitative metric called Offset50, based upon feature vector analysis used in Mander et 

al. (2017); and (3) additional data on the potential environmental determinants of 

resilience, using precipitation data from the ERA5 dataset. 

4.3.1 Sites of patterned vegetation 

We reviewed existing literature for sites across the Sahel that were characterized by 

patterned vegetation. We considered a wider range of locations, of an initial 56 sites (8.5km 

x 8.5km in size) and filtered the sites selected for analysis down to 40 sites, as shown in 

Table 4.1, based on several criteria. Some initial sites in northern Africa had two rainy 

seasons per year and were therefore not true Sahelian sites, other historical sites that were 

reported in the literature were removed as they had suffered such significant degradation 

that the vegetation morphology was unclear or occupied very small areas, such as a tiger 

bush and dotted vegetation site in Burkina Faso (Leprun, 1999). Other sites were removed 

due to unclear vegetation patterning or incorrect labelling (see Table B.1 for full list) or due 

to outliers linked to too small vegetation to be recorded (Figure B.4). Of the sites considered 

as part of this analysis, 13 are in Mali, 2 in Mauritania, 5 in Niger, 1 in Nigeria, 4 in Senegal 

and 15 in Sudan (Figure 4.2 and Table 4.1). The chosen sites represent a mix of different 
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types of patterned vegetation with 7 sites demonstrating gaps (near complete vegetation 

coverage with patches of bare ground), 12 demonstrating labyrinths (interconnected 

vegetation and bare soil) and 11 demonstrating spots (clusters of vegetation surrounded by 

near complete bare soil), examples of these are given in Figure 4.1. In addition to these 

recognised vegetation patterns, we include sites which we call ‘spot-labyrinths’, these 

patterns seem to be highly dependent on precipitation and have more dramatic annual 

changes than spots or labyrinths. The form that these patterns take post-precipitation is 

determined by the landscape, with the precipitation that collects in small channels and 

gullies enabling the spread of this vegetation (an example of the topography of this region is 

provided in Figure B.3). In the dry season the ‘spot-labyrinth’ patterns often appear to be 

isolated, highly degraded spots. However, following the rainy season the vegetation will 

spread across the landscape and form ‘labyrinth-esque’ patterns.  There are 10 of these 

‘spot-labyrinth’ sites. They are included due to their resemblance to other vegetation 

patterns and rapid changes across their annual cycles. The pattern morphology of sites were 

classified by inspection by considering the images of the sites across the whole time series, 

with particular focus given to the fullest extent of vegetation following a rainy season. This 

was done by two researchers initially, before consensus was gained from the rest of the 

authors. 
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Figure 4.2: Map of patterned vegetation sites within the Sahel in North Africa. Western sites 

are shown in panel (b) and eastern sites are in panel (c). 

 

Table 4.1: Table of patterned vegetation sites included in this study. 

ID Country Latitude Longitude Type Source 

0 Sudan 11.58 27.94 Spots 
Mander et al. (2017) 

1 Sudan 11.12 28.37 Labyrinths Mander et al. (2017) 

2 Sudan 10.96 28.2 Gaps Mander et al. (2017) 

3 Niger 13.12 2.59 Labyrinths 
Valentin and d’Herbès 

(1999) 

4 Niger 13.17 1.58 Labyrinths 
Valentin and d’Herbès 

(1999) 
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5 Senegal 15.2 -15.2 Labyrinths Deblauwe et al. (2008) 

6 Senegal 15.09 -15.04 Labyrinths Deblauwe et al. (2008) 

7 Senegal 15.8 -14.36 Gaps De Wispelaere (1980) 

8 Senegal 15.11 -14.53 Gaps De Wispelaere (1980) 

16 Mali 15.03 -0.87 Spot-labyrinths 
Leprun (1999) 

18 Mali 15.34 -1.15 Spot-labyrinths Leprun (1999) 

20 Mali 14.85 -1.43 Spot-labyrinths Leprun (1999) 

21 Mali 14.97 -1.12 Spot-labyrinths Leprun (1999) 

23 Mali 15.02 -1.35 Spot-labyrinths 
Deblauwe et al. (2008) 

(by inspection) 

25 Mali 16.19 -1.83 Spot-labyrinths 
Deblauwe et al. (2008) 

(by inspection) 

26 Mali 16.17 -2.03 Spot-labyrinths 
Deblauwe et al. (2008) 

(by inspection) 

27 Mali 16.48 -1.87 Spot-labyrinths 
Deblauwe et al. (2008) 

(by inspection) 

28 Mali 15.95 -1.52 Spot-labyrinths 
Deblauwe et al. (2008) 

(by inspection) 

29 Mali 15.86 -2.05 Spot-labyrinths 
Deblauwe et al. (2008) 

(by inspection) 
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30 Mali 14.8 -3.38 Labyrinths Leprun (1999) 

31 Mali 14.94 -3.56 Labyrinths Leprun (1999) 

48 Mali 15.48 -5.83 Labyrinths 
Audry and Rossetti 

(1962) 

49 Mauritania 15.57 -5.92 Labyrinths 
Audry and Rossetti 

(1962) 

50 Mauritania 15.58 -13 Gaps De Wispelaere (1980) 

51 Nigeria 12.58 3.75 Labyrinths Barbier et al. (2006) 

52 Niger 12.7 2.63 Labyrinths Barbier et al. (2006) 

53 Niger 12.54 2.26 Gaps Barbier et al. (2006) 

54 Niger 13.12 2.17 labyrinths Barbier et al. (2006) 

55 Sudan 11.07 27.93 Gaps Mander et al. (2017) 

56 Sudan 11.28 27.96 Gaps Mander et al. (2017) 

57 Sudan 11.27 27.55 Spots 
Mander et al. (2017) 

58 Sudan 11.47 27.97 Spots Mander et al. (2017) 

59 Sudan 11.51 27.87 Spots Mander et al. (2017) 
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60 Sudan 11.22 27.73 Spots Mander et al. (2017) 

61 Sudan 11.62 27.86 Spots Mander et al. (2017) 

62 Sudan 11.32 27.88 Spots Mander et al. (2017) 

63 Sudan 11.37 27.68 Spots Mander et al. (2017) 

64 Sudan 11.6 27.73 Spots 
Mander et al. (2017) 

65 Sudan 11.46 27.68 Spots Mander et al. (2017) 

66 Sudan 11.71 27.91 Spots Mander et al. (2017) 

 

4.3.2 Satellite data and preliminary data processing 

The data used in this analysis were taken from the Sentinel-2 satellite, which captures 

remotely sensed data with a resolution of 10m with its multispectral imager (MSI) (Drusch 

et al., 2012). This resolution provides enough clarity to visualize vegetation patterning. For 

the purpose of this study, Sentinel-2 data from January 2016 to December 2019 was 

extracted from Google Earth Engine (GEE), a data repository and cloud computing service 

(Gorelick et al., 2017). Large scale data analysis was undertaken using the Microsoft Azure 

Cloud computing service.  

Our data processing workflow is as follows and is outlined in Figure 4.3. We start preliminary 

data processing by creating monthly median composites of the multi-band Sentinel-2 data. 

This is done in order to remove extreme pixel values caused by clouds, air pollution, and sun 
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angle. From these monthly multi-band images two sets of images are constructed; Red-

Green-Blue (RGB) images and Normalized Difference Vegetation Index (NDVI) images. NDVI 

is a measure of plant health and is connected to the level of chlorophyll in plant leaves 

(Rouse, 1973), it is calculated from multispectral images using the near-infrared (NIR) band 

and the red band (RED), and is defined as:  

𝑁𝐷𝑉𝐼 =  (
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
) (4.1) 

These NDVI images are rescaled from the original -1 to 1 in order to fit a 0-255 greyscale. 

Prior to the morphological analysis of vegetation patterns, several image enhancement 

steps occur for the greyscale NDVI images. Image contrast is increased through histogram 

equalization, these images then undergo adaptive thresholding to classify vegetation pixels 

as black and background pixels as white. This adaptive thresholding step calculates the 

mean brightness of a 51x51 pixel block around each pixel, and offsets this value by 5 to 

create the soil-vegetation threshold. Median filtering is also applied to reduce noise within 

the image. Once processed, these images are then divided into a 17x17 grid of 50x50 pixel 

sub-images, these sub-images contain the same number of pixels as those used in Mander 

et al. (2017). 

Sub-image patterned vegetation is quantified using the network centrality calculation first 

described in Mander et al. (2017). A graph with vertices corresponding to each pixel is 

formed for each binary sub-image. If a vegetation pixel falls within a 3x3 neighbourhood of 

another, then an edge connects the corresponding two vertices. These graph vertices are 

then ranked using subgraph centrality (SC) (Estrada and Rodríguez-Velázquez, 2005). For 

some vertex v, with a non-negative integer l, where ul is the number of closed walks with 

length l which begin at v, the centrality of the vertex v is given by: 
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𝑆𝐶(𝑣) = ∑
𝑢𝑙(𝑣)

𝑙!

∞

𝑙=1

(4.2) 

This can be calculated using eigenvalues and eigenvectors of the graph’s adjacency matrix. 

These vertices are then collected into a sequence of expanding subregions based upon their 

subgraph centrality rank. 20 of these subgraphs are formed, beginning with the top 5% 

vertices, with the groups then expanded by each 5% increment. A graph, designated G, to 

describe each subregion is composed of each connected component. We define the Euler 

characteristic of a subregion as: 

𝜒(𝐺) = 𝑉 − 𝐸 (4.3) 

Where V is the number of vertices of the graph G, and E is the number of edges. This Euler 

characteristic is plotted for each subregion of an image in order to create a 20-dimensional 

feature vector which describes the morphology of a pattern vegetation image. 

In order to generate a single value corresponding to a pattern’s morphology, we subtract 

the feature vector value at the 50% point from the 100% point of the feature vector. This 

was chosen as this part of the vector is often more linear than the slope at the start of the 

vector, and allows us to convert from a vector to a scalar value. We call this value the 

‘Offset50’. Each sub-image has an Offset50 value, these are then averaged to form one 

Offset50 value per image. This process is then repeated across the full extent of the 

available satellite data in order to create an Offset50 time series. 
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Figure 4.3: Data analysis workflow. This flow diagram shows the steps taken to calculate the 

Offset50 value of a patterned vegetation site (ID: 58). 

 

Steps are taken at several stages of this process to ensure high data quality and to mitigate 

the effects of cloud cover on Offset50 values. The formation of monthly median images 

removes some influence of cloud cover and aerosols. Cloud masking is applied to Sentinel 2 

images in GEE; pixels which are masked will appear as completely black pixels. When the 

images are separated into sub-images, any sub-image which appears as completely black, 
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due to clouds or unsuitable vegetation morphology, or completely white, such as bare soil, 

is rejected. For each sub-image within a given month that is rejected, we resample this by 

taking the mean of the same sub-image in the same month in other years.  Despite this step, 

some interference due to cloud cover is still possible and small clouds can still be present in 

final images and sub-images which can lead to spurious NDVI or Offset50 values. Any values 

which are more than three standard deviations away from the time series mean are classed 

as outliers and are removed. 

In images which consisted of small amounts of patterned vegetation or of mixed land cover, 

such as patterned vegetation and seasonal agriculture, we tested methods to remove the 

influence of non-patterned vegetation. These methods include reduced image sizes and 

image classifiers and are detailed further in the supplementary information provided in 

Appendix B (Figures B.1 and B.2). However, we found that these steps did little to change 

the trend of the results. 

4.3.3 Weather data 

Daily precipitation data is taken from the ERA5 dataset via Google Earth Engine, which is a 

comprehensive reanalysis that provides hourly estimates of a large number of atmospheric, 

land and oceanic climate variables. Currently, ERA5 data is available from 1979 to within 5 

days of real time (Hersbach et al., 2020). The dataset has a resolution of 31km and is formed 

by combining as many historical observations as possible with an atmospheric model that is 

coupled with a land surface model and a wave model (Hersbach et al., 2020). We generate 

monthly averages of the ERA5 precipitation data obtained from GEE to compare with 

monthly NDVI and Offset50 values by plotting precipitation time series against the Offset50 

time series (Figure 4.7) and the mean annual precipitation values at different sites. 
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Precipitation data from 1986 - 2016 is also included in this analysis to understand the role 

that historical precipitation has played in the formation and stability of patterns. 

Furthermore, we calculate the cross-correlation of Offset50 and precipitation at increasing 

time lags.  

4.3.4 Resilience - Decay rate analysis 

One way to calculate the resilience of these patterned vegetation systems is to consider 

rainfall as a perturbation event from a background dry state. Return rate following a 

perturbation can be taken as a direct measure of resilience (Pimm, 1984; Lees et al., 2021), 

with higher decay rates associated with more resilient systems. Usually this approach 

considers detrimental perturbations, instead we consider how vegetation responds to the 

beneficial perturbation of rainfall, yet we retain the definition that faster recovery to the 

background dry state equates to greater resilience (see Discussion). The average annual 

cycle of Offset50 and NDVI were taken with a monthly resolution. In order to fit an 

exponential model to these time series, the natural log of the average annual cycle is taken, 

followed by a linear regression, an example is shown in Figure 4.4. This was used to 

determine the rate of decay for the system from its peak greenness, for NDVI, or peak 

connectedness, for Offset50, to the state of minimum vegetation in the dry season. 
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Figure 4.4: Example of exponential decay curve (red line) fitting for annual average NDVI 

cycle (black line) at site 63. 

 

4.3.5 Resilience - Autocorrelation and variance 

Another way to test the resilience of patterned vegetation is to calculate the well-

established resilience metrics lag-1 autocorrelation (AR(1)) and variance, of Offset50 and 

NDVI. Prior to this we remove the seasonality of the Offset50 and NDVI time series by 
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calculating a multi-annual monthly average, this is then subtracted from the time series.  

These residuals are then smoothed by applying LOESS smoothing. 

Usually when calculating AR(1) we would use a moving window of length equal to half of the 

time series (Boulton, Allison and Lenton, 2014). However, due to the shortness of these time 

series (48 data points), the average AR(1) and variance of the whole time series were 

calculated. This provides us with a single AR(1) and variance value for each time series.  

4.3.6 Trend analysis 

STL-decomposition of NDVI and Offset50 time series is used in order to establish the trends 

for each site. This separates these time series into the corresponding trend and seasonality 

of the underlying data. We then calculate the Mann-Kendall Tau value of this trend 

component. This gives a positive value if a trend is increasing, a negative value if a trend is 

decreasing and we classify non-significant changes as ‘no trend’. We also calculate the 

precipitation trend of each site in this way. In addition to this we calculate the change in 

precipitation in every pixel across the whole of the Sahel. This is done by taking monthly 

precipitation averages, removing the seasonal trend by subtracting a multi-annual monthly 

average, then taking a 12-month moving average, before the Kendall Tau of each pixel is 

calculated.  
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4.4 Results 

4.4.1 Distinguishing patterns with ‘Offset50’ 

 

Figure 4.5: Examples of time series of Offset50 metric across four sites. An example is 

provided for each type of pattern. These sites correspond to the pattern type examples given 

in Figure 4.1. Offset50 standard deviation is given for each time series. 

 

As seen in Figure 4.5, the Offset50 value of a site displays a seasonal cycle and tracks the 

changes in vegetation connectivity. The Offset50 value is different for each pattern type; for 

the examples shown, spot-labyrinths display the lowest Offset50 values, followed by spots, 

whilst the most connected vegetation patterns, gaps or labyrinths, display the highest 

Ofset50 values.  
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Figure 4.6: (a) Box plots of Max Offset50 values for pattern vegetation sites as grouped by 

pattern classification. Two tailed Mann-Whitney U-tests suggest that the Max Offset50 

value for these group classes are statistically significantly different from each other (p-values 

in Table B.2). (b) Box plots of Max NDVI values for pattern vegetation sites as grouped by 

pattern classification. Use of a Mann-Whiteny U-test suggests that while the gaps class may 

be distinct from the other groups, there is no statistically significant difference between the 

other classes (Table B.3). Mean Offset50 and Mean NDVI are shown in Figure B.5. 

 

We have chosen to compare the Max NDVI and Max Offset50 values of the vegetation as 

this represents the extent of the vegetation following a precipitation event when the 

vegetation is at its full extent, is most connected, and most representative of the pattern 

label assigned at the classification stage (as detailed in the methodology). When comparing 

the Max Offset50 value as grouped by vegetation pattern, as in Figure 4.6, we can see that 

they are broadly distinct classes; there is some overlap between gaps and labyrinths, 

although gaps display broadly larger values. We also find that despite the visual similarities 

between ‘spot-labyrinths’ and conventional labyrinths and spots, they exist as a distinct 

class. Max NDVI values for each pattern type are also given. U-tests suggest that the max 
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Offset50 of each pattern for these sample sites is statistically significantly different to each 

other (p < 0.05; Table B.2). When using U-tests to distinguish between the pattern classes 

for Max NDVI values, we find that while the gaps vegetation is distinct, the rest of the 

vegetation classes are not statistically significantly distinct (Table B.3). When compared with 

the Max NDVI of a site over the same time period, we can see that Max Offset50 does a 

better job of differentiating between the different patterns.  

4.4.2 Seasonal and interannual variability of Offset50 

As can be seen in Figure 4.7, the timing of the peak of Offset50 is closely linked with the 

peak of the annual precipitation cycle, with this peak occurring either within the same or 

following month of the precipitation peak. The Offset50 signal then decays away following 

the end of the rainy season. At the peak Offset50 value ‘(i)’ in Figure 4.7, there is much more 

vegetation cover than during the dry season ‘(ii)’. 
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Figure 4.7: Example of Offset50 seasonal variability in a spotted vegetation site (ID: 61) with 

(i) an image of the vegetation at its 2018 peak and (ii) the following Offset50 minimum in 

March 2019. Shown below (i) and (ii) are the binary images used to calculate the Offset50 
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value for that month. In these binary images, black pixels are vegetation, while white pixels 

are bare soil. 

 

The vegetation shown in Figure 4.8 is classified as ‘spot-labyrinths’. This vegetation forms a 

pattern which resembles faint, degraded spots in drier years, while in wetter periods it 

forms interlinked stripes across the landscape. The morphology of these patterns appears to 

be topographically driven, with vegetation forming within shallow gullies and between sand 

dunes following a rainy season. These patterns display strong interannual variability. It is 

clear that if there is not sufficient rain within a season, then much of the vegetation will not 

grow. 
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Figure 4.8: An example of interannual variability of spot-labyrinth vegetation (ID 26). This 

displays the extreme variation in this vegetation with (i) an example of peak vegetation 

cover in a dry year and (ii) an example of peak vegetation cover in a comparatively wet year. 

The formation of this vegetation as influenced by the topography, as detailed in Figure B.3. 

 

4.4.3 Factors determining Offset50 and vegetation pattern resilience 

Figure 4.9 displays the correlation values for important variables which measure vegetation 

connectedness (Offset50), abiotic influences (precipitation, latitude), and measures of 

resilience of vegetation (decay rates, AR(1), variance). We have used these to further 
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understand the dynamics and resilience of the vegetation pattern system as well as the 

utility of our Offset50 metric. 

 

Figure 4.9: Correlation image showing Pearson's correlation values for Offset50-precip 

correlation, Offset50 decay rate correlations, and AR(1) and Variance correlations. Values in 

bold are significant, with ** corresponding to p<0.05 and * corresponding to p<0.1. Scatter 

plots are given in Figures B.6-B.13. Pearson’s correlation coefficient and p-values for 

Offset50 and NDVI variables are given in Tables B.4-B.7. 
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4.4.3.1 Precipitation and Offset50 

As seen in Figure 4.9, Offset50 max displays a significant moderate positive correlation with 

mean precipitation, while Offset50 mean has a strong positive correlation with 

precipitation. This means that ‘gap’ sites are the wettest, while ‘spot-labyrinth’ sites are the 

driest. Thus, precipitation levels contribute to pattern morphology, as measured by 

Offset50. 

The historic precipitation mean from 1976-2016 is included in order to understand whether 

historic climate has influenced the current pattern morphology or its resilience. We find that 

while historic rainfall means do correlate with the Offset50 metric, these correlations are 

less strong than current precipitation levels, noting also the strong link between historical 

and current precipitation levels. 
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Figure 4.10: Correlation between Offset50 and precipitation at increasing monthly lags 

across all sites. Each line represents one of the sites in this study.  

 

As can be seen in Figure 4.10, there is a lagged relationship between precipitation and the 

Offset50 metric across all of the sites. With a close coupling between precipitation and 

vegetation, these sites experience one significant rainy season per year, after which the 

vegetation reaches its maximum extent, and therefore so does the Offset50.  

There are two trends apparent in this plot, with most sites experiencing the highest 

correlation between Offset50 and precipitation after 1 month. A clustering analysis of these 

trends reveals that there are two separate groupings (as seen in Figure B.14), with one 

group composed almost entirely of all of the spot-labyrinth sites. These sites display a faster 
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decline in the correlation between Offset50 and precipitation following their initial peak. 

We propose that this is due to the morphological nature of these patterns, in addition to 

needing to have a certain threshold of rainfall to enable large scale vegetation growth.  

4.4.3.2 Resilience 

As seen in Figure 4.9, the Offset50 decay rate has a significant moderately positive 

correlation with the average precipitation. Therefore, areas with higher rainfall are (by 

convention) more ‘resilient’ following this perturbation. This is perhaps a surprising result, 

as it suggests that areas with a higher level of precipitation experience a faster decay from 

the peak vegetation state to the minimum vegetation state and that this base state is more 

resilient. Importantly, Offset50 decay rate does not show a significant correlation to either 

maximum or mean Offset50 values, thus suggesting that pattern morphology does not 

correlate with a decay rate measure of resilience (and this null result would, of course, still 

hold if we inverted our assumed relationship between decay rate and resilience). 

When we consider the NDVI decay rate (Table B.6), we find it is greater at wetter sites. We 

also find a strong positive correlation between average NDVI and NDVI decay rate.  

Therefore, wetter sites with higher NDVI levels have a higher decay rate from maximum 

greenness to the bare soil state.  

For our other metrics of resilience of vegetation patterns, AR(1) and variance of Offset50, 

there are significant, moderate negative correlations with mean precipitation (Figure 4.9). 

Thus, wetter sites have a higher level of resilience of vegetation patterns by these metrics. 

However, we find that there is no significant correlation between mean or max Offset50 and 

AR(1) or variance of Offset50. This fails to support the hypothesis from the literature that 

the morphology of a pattern affects its resilience. 
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There are also significant weak positive correlations between AR(1) or variance of Offset50 

and latitude. This supports an observation in the literature that more northern sites are less 

resilient (Trichon et al., 2018). This is likely driven by the lower level of precipitation at 

higher latitudes.  

There is a weak negative correlation (which tends towards significance, p<0.1) between 

AR(1) or variance and longitude (Figure 4.9) - i.e. resilience increases with longitude. This is 

likely linked to a strong positive correlation between longitude and precipitation (Figure 

4.9). 

4.4.4 Offset50 and precipitation trends across sites 

We now turn to trends in the absolute values of precipitation and Offset50 across sites 

(Figure 4.11).  

 

Figure 4.11: ERA5 Precipitation trends from 2016-2019 in the vicinity of the Sahel ecoregion. 

Also shown are the Offset50 trends of each patterned vegetation site. NDVI trends are given 

in Figures B.15 and B.16. 
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Western sites, such as those in Senegal, display a negative trend of Offset50, while those in 

Mali are much more mixed. Eastern sites all show a positive or no Offset50 trend. Sites with 

positive Offset50 trends are broadly clustered in areas with a positive precipitation trend, 

while negative Offset50 trends are clustered in areas where there has been a declining level 

of precipitation from 2016-2019. This makes sense given the established positive correlation 

between Offset50 and rainfall (Figure 4.9). 
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4.5 Discussion 

4.5.1 Utility of Offset50 metric and relationship with precipitation 

This study provides a framework for vegetation pattern quantification and long term 

analysis of these sites within the Sahel. The pyveg package (Barlow et al., 2020) allows for 

long-term analysis of patterned vegetation sites, which often occur in hard to reach places 

around the world. By building on the work presented in Mander et al. (2017) we use 

Offset50, a numerical metric, to quantify vegetation patterns using freely available satellite 

data. Previous studies have sought to visually assess vegetation pattern health using 

infrequent aerial photography (Couteron, 2002; Trichon et al., 2018), these are often limited 

in extent both spatially and temporally. Sentinel-2 data, with its 10m resolution, when 

combined with the pyveg package, provide a way to repeatedly analyse pattern vegetation 

anywhere in the world and to generate time series of its state. We find that our Offset50 

metric is more capable than NDVI of differentiating between four pattern vegetation classes 

at their maximum extent; gaps, labyrinths, spots and spot-labyrinths. This allows us to 

quantify inter- and intra-annual changes in vegetation pattern morphology. 

Precipitation levels have often been identified as the predominant factor in patterned 

vegetation formation and morphology (HilleRisLambers et al., 2001). The correlation 

between Offset50 values and average precipitation levels at our sites shows that our 

Offset50 metric successfully captures this relationship. We have also considered the lagged 

correlation between Offset50 and precipitation, which for most sites peaks after 1 month 

and then declines. The difference between spot-labyrinths and other vegetation types is 

clear in the lagged correlation trend. This further reveals the different mechanisms of 
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formation of the vegetation morphologies, with the lagged correlation decreasing faster for 

the spot-labyrinth sites. This is likely to be the result of vegetation formation from the 

collection of rainfall within gullies and between sand dunes, within which the vegetation 

then grows. If this precipitation stays below a certain threshold then the vegetation is 

minimal and unconnected. 

4.5.2 Resilience 

We have taken two different approaches to measuring the resilience of vegetation patterns 

by examining different time series properties of the Offset50 metric.   

First we considered the decay rate of Offset50 following the annual rainy season. The 

conventional understanding is that a faster decay rate equates to a more resilient system. 

Here we conceptualise the stable state as one of low vegetation cover in the dry season and 

consider the resilience of this state to an annual rainy season which acts as a perturbation to 

this system. This unconventional approach would suggest that sites with a faster decay rate 

have a more ‘resilient’ low vegetation state, or potentially a less resilient wet state. 

Following this, we find that sites which have higher precipitation display a higher decay rate 

from the peak vegetation to low vegetation cover and are therefore more ‘resilient’. 

However, this is somewhat counter-intuitive, in that it refers to the resilience of the dry 

season minimum vegetation cover state to occurrences of rainfall, which is found to be 

more ‘resilient’ under higher precipitation levels. We also find the same result when 

considering the NDVI decay rate. This suggests that, while higher levels of precipitation may 

lead to a larger burst in vegetation cover, it tends to die off faster. This can also be seen in 

the positive correlation between average precipitation and NDVI standard deviation 
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(correlation = 0.4752, p=0.0019), with wetter sites showing greater standard deviation due 

to the greater quantity of vegetation die off each year.  

Second we removed the seasonal cycle and then calculated lag-1 autocorrelation (AR(1)) 

and variance of the detrended Offset50 time series, both of which are conventional 

resilience measures. This probes behaviour on shorter timescales than the annual cycle, 

which is appropriate given the multi-month memory in the system (Figure 4.10). We find 

that sites which experience higher precipitation levels show lower AR(1) and variance levels 

and are therefore more resilient according to these metrics. This is in agreement with our 

understanding of rainfall levels and vegetation morphology, and suggests that vegetation 

which exists under lower rainfall regimes may be at risk of further degradation or state 

transitions. This is supported by results found in the literature, which find that drier sites 

have experienced greater levels of degradation during a drought period and have been less 

able to recover (Trichon et al., 2018). We consider the relationship between historical 

precipitation levels and patterned vegetation resilience to understand the effect that past 

climate may have had on the adaptive capacity of patterned vegetation. While there is some 

correlation, this is most likely due to the strong correlation between historic and modern 

precipitation, as opposed to any underlying property of the system. 

We also tested the hypothesis that vegetation pattern morphology itself provides a measure 

of resilience (Rietkerk et al., 2004; Mayor et al., 2013). Dakos et al. (2011) suggest that while 

critical slowing down is observed as pattern morphology shifts in a ‘scale dependent 

feedback’ vegetation model, there is no consistent increase in AR(1) with these changes. 

This is in line with our results, which show that pattern morphology does not significantly 

correlate with any of the resilience indicators we consider; decay rate, AR(1) or variance. 
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This suggests that while the nature of vegetation patterning does reflect underlying 

precipitation, it cannot be linked directly to the resilience of the vegetation, at least across 

the sample of 40 sites we consider. 

There is evidence that severe and prolonged droughts cause a greater reduction in coverage 

of northern Sahelian patterned vegetation sites (Trichon et al., 2018). This is consistent with 

our results that patterned vegetation sites at higher latitudes have a lower level of 

resilience, likely linked to the lower levels of precipitation at higher latitude.  

4.5.3 Trends in Offset50 

Identification of trends in Offset50 between 2016 and 2019 in sites across the Sahel reveal a 

mixed picture. No sites with negative trends for Offset50 appear in the east of the Sahel, 

while these are more common in the west. This is in line with trends in precipitation (Figure 

4.11), with declining Offset50 trends situated in areas with declining precipitation trends. 

Nicholson, Fink and Funk (2018) identifies a difference in rainfall between the east and west, 

with the eastern precipitation regime showing a greater recovery from historic dry periods. 

This east-west division is reinforced by the eastern vegetation sites displaying higher 

resilience levels. However, more data is needed to understand whether this east-west divide 

in patterned vegetation trends is sustained at the decadal level. A more global analysis could 

provide an indication of different pattern vegetation resilience and the drivers of this. Aside 

from climatic factors, other potential causes of declining pattern vegetation cover, and 

therefore declining Offset50, relate to human activities, such as the collection of forage for 

livestock, or the conversion of land to agriculture. 
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4.5.4 Limitations and future work 

Interference from cloud cover creates difficulties for most remote sensing studies. In this 

study we have sought to limit the impact of cloud cover through numerous methods, as 

detailed in the Methods. There are some limitations introduced by the availability of 

satellite data. Sentinel-2 was launched in 2015, therefore we have been unable to observe 

multi-decadal trends in the patterned vegetation at the appropriate scale. The time series 

was also determined to be too short to conduct some forms of time series analysis.  To 

counter this, attempts were made to use data from Landsat 7 and Landsat 8 to provide 

longer analysis at lower spatial resolution; however well documented issues with the 

Landsat 7 scan line error (Storey, Scaramuzza and Schmidt, 2005) prevented this. 

In addition to this, attempts were made to source vegetation patterning from a diverse 

range of sites across the Sahel. This was successful for every form apart from spots, where 

difficulty with establishing degraded spot sites meant the removal of several sites from the 

dataset. This meant that all of the sites are located within a similar area of Sudan. This was 

further compounded by inconsistencies in historical literature in spot definition, with gaps 

and spots often interchangeable terms. Some sites which were identified in historical 

literature as showing spotted vegetation were limited in size and difficult to analyse or have 

since become much more degraded. 

The creation of the pyveg package will allow future work to continue monitoring pattern 

vegetation morphology and the health of dryland ecosystems. The increasing availability of 

high resolution Sentinel-2 images will enable longer and more in depth time series analysis. 

In addition to this, future work could apply the pyveg package to global drylands in order to 

develop a more comprehensive understanding of resilience trends in these regions. 
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Based upon the lack of relationship between pattern morphology and resilience, we suggest 

that further work is required to define and measure resilience of these patterned systems. 

With an increased availability of sufficiently high resolution satellite data, we believe that 

other resilience tools should be brought to bear on these systems, with consideration given 

to spatial resilience statistics as well as temporal analysis. 
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4.6 Conclusion 

Dryland ecosystems are among the most sensitive to climate change. Accurately assessing 

and understanding vegetation patterning morphology is an important step towards 

understanding the effect of a changing climate and direct anthropogenic pressure on 

drylands. Here we have shown that a previously proposed feature vector Offset50 metric 

detects changes in pattern vegetation morphology and is sensitive to changes in 

precipitation, the underlying driver of pattern vegetation. We find that three different 

measures of resilience - the decay rate from perturbation, AR(1) and variance of Offset50 - 

all show declining resilience of vegetation patterns with declining rainfall (as do the same 

statistics for NDVI). However, we find no significant correlation between the Offset50 

pattern metric and any of these three measures of resilience. This fails to support a widely 

cited hypothesis in the literature that the nature of vegetation pattern (quantified here) 

reflects resilience. This negative result should not be wholly surprising, as we are unaware 

of any theoretical demonstration that there should be a direct relationship between regular 

pattern morphology and resilience. We also find that geographical gradients of patterned 

vegetation resilience reflect well known rainfall gradients, and that recent trends in rainfall 

are largely reflected in corresponding trends in vegetation patterns. Notably, consistent 

recent wetting of eastern sites is reflected in positive trends in Offset50, while the picture 

for the west is more mixed. As a longer timescale sample of high resolution satellite data 

accumulates, this should enable further enhanced understanding of the resilience of these 

special ecosystems. 
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5.1 Abstract 

Across much of the world, vegetation is being affected by climate change, but how does 

climate affect the resilience of different ecosystems? A generic measure of resilience is the 

recovery rate from perturbations, which theory suggests is inversely related to lag-1 

temporal autocorrelation (AR(1)). Here we assess how vegetation resilience depends on 

climate by analysing remotely-sensed vegetation greenness (MODIS NDVI) and optical depth 

(VODCA) data. We show that for NDVI, vegetation resilience is strongly correlated with 

precipitation levels across three spatial scales; local (pixel), ecoregion and biome. 

Vegetation resilience declines markedly below 2000mm of precipitation per year. 

Additionally, higher temperatures tend to lead to lower resilience, especially when 

associated with low precipitation. A similar, but less clear, relationship is observed between 

VOD resilience and precipitation. Our results support suggestions that regions subject to 

drying due to climate change will lose vegetation resilience. Here we show the opportunity 

for global resilience analysis with increased data availability and computational resources. 
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5.2 Introduction 

Vegetation in many ecosystems around the world is at risk from interlinked pressures such 

as rising temperature, drought and pests (McDowell et al., 2011). We take ‘resilience’ to 

mean the capacity of a system to recover from perturbations, measured as its recovery rate, 

which theory suggests is inversely related to lag-1 temporal autocorrelation (AR(1)). This has 

recently been validated with remotely sensed data in Smith, Traxl and Boers (in press). Less 

resilient vegetation is more affected by a given perturbation and responds slower, when 

compared to the effect the same perturbation would have on more resilient vegetation. For 

those ecosystems that display bistability (Hirota et al., 2011; Staver, Archibald and Levin, 

2011; Abis and Brovkin, 2017; Wuyts, Champneys and House, 2017), loss of resilience is 

expected before they reach a tipping point to an alternative state. These early warning 

signals of loss of vegetation resilience have been detected using remotely sensed data prior 

to localised forest dieback events (Liu et al., 2019) and over the much larger spatial scale of 

the Amazon (Boulton, Lenton and Boers, 2022). Such analysis can be limited by the 

availability of climatic and vegetation data over a sufficient time scale to detect changes in 

resilience, particularly for intrinsically ‘slow’ vegetation systems. Instead, space-for-time 

substitutions can be utilised to assess how vegetation resilience changes with 

environmental conditions (Verbesselt et al., 2016). Existing application to tropical forests 

shows that areas with lower precipitation levels display lower resilience, with a notable loss 

of resilience (increase in AR(1)) below a precipitation threshold of ~2000mm year-1. Here we 

apply this approach globally to see if there is a general relationship between climate drivers 

and vegetation resilience. 
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We analyse the average lag-1 temporal autocorrelation (AR(1)) of fluctuations in vegetation 

across the world to understand the effect of climatic drivers on resilience. For this, we utilise 

the Normalised Difference Vegetation Index (NDVI) from MODIS data from 2001-2020, 

which is used to calculate AR(1) at its native 250m resolution in Google Earth Engine (GEE), 

then aggregated to 2.5km for offline analysis. We also conduct the same analysis using 

Vegetation Optical Depth data (VODCA) from 1991-2016, at 0.25°x0.25° resolution, for 

comparison. Seasonality and any trend in the data are first removed (see Methods), before 

using the NDVI residuals to calculate the mean NDVI AR(1) and compare this with mean 

precipitation and temperature data, as well as mean Dry Season Length (DSL) and 

percentage tree cover. This analysis considers these relationships across the world at three 

different scales; the local (pixel), ecoregion and biome levels.   

  



Chapter 5:  Global relationship of vegetation resilience with precipitation 

142 
 

5.3 Methods 

5.3.1 Data 

In this study we use NDVI data from the MODIS satellites for the period of January 2001 to 

December 2020. The initial stages of data analysis are undertaken in GEE which allows for 

large scale computational processes (Gorelick et al., 2017) and enables us to build upon the 

work of Verbesselt et al. (2016) at a global scale. The dataset that we utilised is a NDVI 

dataset which is available on GEE. NDVI is a commonly used remote sensing metric which 

measures the greenness of vegetation, i.e. the photosynthetic activity of plants. It is used as 

a proxy of vegetation productivity (Pettorelli et al., 2005) and relates to plant biomass (Zhu 

and Liu, 2015) and leaf area index (Carlson and Ripley, 1997; Tian et al., 2017; Waring, 

1983). Due to the link between NDVI and vegetation health, it has been used in other 

vegetation resilience studies (De Keersmaecker et al., 2014, 2015; Verbesselt et al., 2016; 

Liu et al., 2019; Feng et al., 2021). Although it is worth noting that NDVI does have some 

limitations, with issues concerning oversaturation in high biomass regions and soil 

reflectance in areas with little vegetation (Huete, Liu and van Leeuwen, 1997). 

To address any potential limitations in NDVI, data is also used from the ku-band of the 

Vegetation Optical Depth Climate Archive (VODCA), which has a spatial resolution of 

0.25°x0.25° and a temporal resolution of 1 month (Moesinger et al., 2020). The VODCA data 

used covers the period from January 1991 to December 2016. VODCA responds to moisture 

content in the canopy and may be a better proxy for changes in biomass than NDVI in 

tropical forest settings (Boulton, Lenton and Boers, 2022), but potentially has issues from 

biased data in high latitudes for certain years (Moesinger et al., 2020). Due to differences in 
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resolution, comparisons between VODCA and NDVI data are made at the ecoregion level, 

rather than the pixel level. 

Precipitation and surface temperature datasets were used from the ERA5-Land reanalysis 

dataset with post processing from ECMWF (Hersbach et al., 2020). This was accessed via 

GEE. We use the precipitation data to define our average dry season length (DSL) as the 

average number of months in a year that the precipitation value falls below 100mm in 

keeping with Boulton, Booth and Good (2017). We also consider the average percentage 

tree cover in 2000 using data from Hansen et al. (2013).  

5.3.2 Methodology 

To conduct our global analysis, we calculate the NDVI AR(1) values using the cloud 

computational capabilities of GEE. This enables us to calculate the AR(1) for each individual 

pixel, rather than having to spatially aggregate data prior to analysis. It also allows a global 

overview which can then be easily reapplied to specific areas of interest. We calculate this 

resilience metric without the impact of seasonality and any confounding trends as these can 

influence AR(1) in ways unrelated to response to short-term perturbations.  

We begin by aggregating the NDVI data at a monthly level, this reduces the likelihood of 

missing data due to cloud cover. Then we calculate a multi-annual monthly average value, 

i.e. an average January across all 20 years. To remove the average seasonal cycle we 

subtract the multi-annual monthly average from our monthly average time series. Following 

this, we subtract a 25 month moving average from the decycled time series. This then leaves 

us with a series of residuals which have had the seasonal cycle removed and have been 

smoothed. Finally, we calculate the AR(1) of this residual time series using a moving window 
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which is equal to half the length of the time series. This method is applied globally to every 

pixel with the use of GEE. The VODCA AR(1) is also calculated in this way for consistency, 

however where VODCA data is missing, this is infilled using linear interpolation at the 

decycling stage, but this infilled data is then removed when the residuals are calculated, so 

should not overly influence the AR(1) values. 

The 250m NDVI AR(1) data is then exported from GEE with a coarser resolution of 2.5km for 

further analysis. Spatial averages are used to reduce the image resolution. We then utilise 

QGIS, Matlab and R to analyse the resilience relationship at a global, ecoregion and local 

scale. Pixels with low average NDVI corresponding to ice, cloud and soil, are removed from 

the analysis. The threshold for this is 0.16, with pixels below this removed. This value was 

chosen by considering the distribution of mean NDVI pixels and identifying 0.16 as the 

minima between the peaks corresponding to no vegetation and low vegetation. The same 

method is used for VOD data, with a threshold of 0.25 identified. This data is divided 

according to the Ecoregions2017 map (Dinerstein et al., 2017). These 846 ecoregions are 

contiguous regions which are defined according to local climatic values and vegetation 

types, with ecoregions then grouped into 1 of 14 larger biomes. Ecoregions are removed 

from our ecoregion level analysis if more than 50% of their constituent pixels consist of low-

NDVI pixels (corresponding to no or very low vegetation); this leaves us with 715 

ecoregions. We then compare the average AR(1) against climatic data at the biome, 

ecoregion and pixel scale. 

5.3.3 Comparing decycling methods 

To properly isolate and analyse changes in resilience in this study we have removed the 

seasonal cycle from the data prior to calculating the AR(1) using a relatively simple method, 
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as detailed above. This method is necessary due to the limited functionality of the Javascript 

coding language required to use GEE and is similar to other methods found in the literature 

(De Keersmaecker et al., 2015). We compare the utility of this relatively simple approach 

with a more complex STL decomposition on 100 random points (4 of which are removed as 

they are located in regions with no data). This STL decomposition utilises a periodic seasonal 

window. The mean AR(1) of each pixel is consistent across each method, but our initial 

approach produces larger mean AR(1) values, as shown in Figure 5.1. We also find 

similarities in the AR(1) time series for each method.  The focus of this study is to compare 

the AR(1) between points, rather than the absolute value of AR(1) at each point. As such, 

the decycling method which has been applied here seems valid for this purpose. 

 

Figure 5.1: Scatter plot of mean AR(1) values from time series which have been calculated by 

our initial method and by an STL decomposition. Spearman’s rho = 0.94, p<2.2e-16. 
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5.4 Results 

5.4.1 Spatial distribution of resilience 

Mean ecoregion-scale AR(1) values across the globe (Figure 5.2) clearly show arid and semi-

arid regions generally have highest mean AR(1) values (suggesting lowest resilience), 

including the Mediterranean, Australia, southwestern North America and southern Africa. 

Some equatorial tropical rainforest regions have the lowest AR(1) values (corresponding to 

the highest resilience). However, higher latitude ecoregions also display low AR(1) values. 

This could represent the impact of snow cover in these regions, which may introduce noise 

into the data and will buffer changes in NDVI (De Keersmaecker et al., 2015). There are also 

contrasting trends in this region, with both greening and browning observed due to a 

changing climate (Myers-Smith et al., 2020).  Negative AR(1) values should also be noted as 

potentially erroneous, as these are likely to be a product of the noise in the data in densely 

forested regions with greater cloud cover, poor fit of our detrending model or the slow 

response time of this dense vegetation. 
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Figure 5.2: A map of mean NDVI AR(1) values at (a) the pixel level and (b) as averaged by 

ecoregion. Darker regions correspond to higher AR(1) and therefore lower resilience levels. 

Grey pixels in (a) have low vegetation cover (NDVI <0.16), while grey ecoregions in (b) have 

been removed due to >50% of their pixels filtered out because of low NDVI levels. 

 

5.4.2 Precipitation and resilience 

The relationship between mean NDVI AR(1) and precipitation at the pixel level, then 

aggregated to the ecoregion and biome levels shows a consistent pattern (Figure 5.3). AR(1) 

generally increases (therefore resilience declines) below precipitation levels of ~2000 mm 
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year-1. As this relationship is nonlinear, we consider the Spearman’s rho to compare 

variables.  

At the pixel level, low AR(1) values of ~0.1 (high resilience) occurs for precipitation >2000 

mm year-1. AR(1) increases (resilience decreases), approximately linearly, with decreasing 

precipitation levels <2000 mm year-1. There is a moderate to strong negative correlation 

(rho=-0.39, p<2.2e-16) between AR(1) and precipitation. The relationship is consistent with 

previous findings for tropical forests (Verbesselt et al., 2016) which identifies a threshold of 

~1500-2000 mm year-1 below which there is resilience loss.   

Aggregating to the ecoregion scale, the same nonlinear threshold relationship is apparent, 

with drier ecoregions displaying lower resilience (correlation=-0.77, p<2.2e-16). There are 

some outliers, some of which are Arctic or boreal ecoregions which is evident from the map 

in Figure 5.2.  

When we consider the biome scale, the wettest biomes, Mangroves and Tropical Moist 

Broadleaf Forests, have a mean annual precipitation ~2250 mm year-1; below this there is an 

approximately linear relationship of AR(1) to precipitation. Two high latitude biomes, 

Tundra and Boreal Forest/Taiga, represent clear outliers, and may suggest other drivers of 

ecosystem resilience which we proceed to investigate. 
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Figure 5.3: Mean AR(1) compared with mean annual precipitation at (a) pixel scale (rho = -

0.39, p<2.2e-16), with a moving average of 1000mm applied, grey area represents standard 
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deviation, (b) ecoregion scale (rho=-0.77, p<2.2e-16) and (c) biome scale (rho=-0.62, p= 

0.02). Biome abbreviations correspond to the following biomes: BoFT – Boreal Forests/Taiga, 

DXS – Desert and Xeric Shrublands, FGS – Flooded Grasslands and Savannas, Man – 

Mangroves, Med – Mediterranean Forests, Woodlands and Scrub, MGS - Montane 

Grasslands and Shrublands, TeBF – Temperate Broadleaf and Mixed Forests, TCF – 

Temperate Conifer Forests, TGSS – Temperate Grasslands, Savannas and Shrublands, TrCF – 

Tropical and Subtropical Coniferous Forests, TrDBF -  Tropical and Subtropical Dry Broadleaf 

Forests, TrGSS – Tropical and Subtropical Grasslands, Savannas and Shrublands, TrMBF – 

Tropical and Subtropical Moist Broadleaf Forests, Tu – Tundra. 
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5.4.3 Temperature and resilience 

The outlier results for tundra and boreal forest showing high resilience despite low 

precipitation led us to consider whether there is also a temperature control on resilience.  

 

Figure 5.4: Scatter plot of each ecoregion’s mean annual precipitation and mean 

temperature which is coloured according to the mean AR(1). 
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While there is no statistically significant relationship between mean AR(1) and temperature 

at the ecoregion scale (correlation: -0.07, p=0.07), when we consider the relationship 

between these variables and precipitation (Figure 5.4) then there is a trend that appears. 

Vegetation in ecoregions with higher temperature and low precipitation levels experience 

the highest AR(1) values and therefore the lowest resilience, while drier, cooler regions 

display a higher resilience level.  

5.4.4 Dry season length and resilience 

In addition to temperature and precipitation, we also consider the effect of dry season 

length on ecosystem resilience. The relationship between mean DSL and temperature for 

each ecoregion are displayed in Figure 5.5. Here we can see that high AR(1) (low resilience) 

ecoregions primarily have a large DSL and high temperature. These ecoregions also have low 

levels of tree cover. There is a visual boundary between forested and non-forested areas 

within the DSL-temperature space, beyond which the ecosystems display low resilience. This 

seems to support the findings of Boulton, Booth and Good (2017) which identify such a 

boundary in models of tropical rainforests.  
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Figure 5.5: Scatter plot of mean temperature and mean dry season length (DSL) at the 

ecoregion level. Colour is given by mean AR(1) and shape is based upon the average 

percentage tree cover within each ecoregion. 

 

5.4.5 Linear regression analysis 

To investigate the potential role of multiple climate drivers on vegetation resilience we 

utilise multivariate linear regression models using temperature, precipitation (MAP), dry 

season length and percentage tree cover. We consider this at the ecoregion scale and the 

pixel scale, with R2 values presented in Table 5.1. As some variables, such as precipitation, 

may not have a linear relationship with NDVI AR(1) (as seen in Figure 5.3), we examined 
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whether linearity was achieved by taking the logarithm of each variable. We found that 

precipitation has a long tail distribution, so by taking the logarithm we convert it to a 

Gaussian distribution, and find that the relationship between NDVI AR(1) and the logarithm 

of precipitation is linear. 

Here we find that the primary predictive variable is precipitation, which accounts for most 

of the variance within the mean AR(1) values. This suggests that precipitation is the primary 

driver of vegetation resilience. The inclusion of temperature and tree cover also increases 

the accuracy of our predictive model, while DSL does not improve it. This is confirmed by 

the R2 values below, as well as by using a stepwise regression function, which selects the 

variables which produce the model with the lowest AIC (Akaike Information Criterion); this 

indicates the best fit. The regression model relationships are consistent between the 

ecoregion and pixel scale, although the pixel level models display a lower R2 value, which is 

to be expected due to the substantially larger number of data points. 

Also considered are the regression models at ecoregion scale which have had high 

latitudinal ecoregions removed. These ecoregions are classified as part of the Tundra or 

Boreal Forest biomes, which are noted as outliers in Figure 5.3. We can see that the R2 

values increase for each model when these outliers are removed, with precipitation 

accounting for 66% of the variation in vegetation resilience.  
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Table 5.1: R2 value for NDVI linear regression models. 

NDVI Regression model Pixel scale: R2 

values 

Ecoregion 

scale: R2 

values 

Ecoregion scale 

without Boreal or 

Tundra 

ecoregions: R2 

values 

 

AR(1) ~ MAP + Temperature 0.3953 0.4313 0.4546  

AR(1) ~ log(MAP) 0.1951 0.5597 0.6615  

AR(1)~ Temperature 0.1185 0.0002314 0.0025  

AR(1) ~ log(MAP) + Temperature 0.4735 0.6296 0.6718  

AR(1)~ Temperature + DSL 0.4515 0.595 0.6414  

AR(1) ~ log(MAP) + Temperature + 

DSL 

0.4828 0.6384 0.6833  

AR(1) ~ log(MAP) + Temperature + 

DSL + Tree Cover 

0.5285 0.6178 0.7136  

AR(1) ~ log(MAP) + Temperature + 

Tree Cover 

0.5252 0.6715 0.7129  

 

We also assess the ability of these climatic variables to predict resilience by comparing the 

linear regression model predicted values with the original NDVI AR(1) values (Figure 5.6). 

Here we use the linear regression model with predictor variables log(MAP), temperature 
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and tree cover. The predicted AR(1) values and the original NDVI AR(1) values are highly 

correlated (rho= 0.83, p<2.2e-16). However it seems that model predicted AR(1) values are 

lower. This can be seen in biomes with high AR(1) values, such as the Desert and Xeric 

Shrubland and Mediterranean Forests, Woodlands and Scrub biomes. These biomes display 

low levels of resilience on account of the high temperature and lower precipitation. This 

may suggest that there is a non-linear relationship between temperature and precipitation 

in regions with high AR(1) which our linear regression models are unable to resolve. 

Figure 5.6: Comparison of NDVI AR(1) with the predicted AR(1) values from the linear 

regression model at the ecoregion scale. Ecoregions are coloured according to their biome. 

The model used for this is AR(1) ~ log(MAP) + Temperature + Trees. Rho: 0.83, p<2.2e-16.  
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5.4.6 VOD Resilience and Climate Variables 

We also measure vegetation resilience with data from the Vegetation Optical Depth  

Climate Archive which provides a measure of vegetation structure and water content. 

The spatial distribution of vegetation resilience as measured with VOD (Figure 5.7) shows a 

similarity to NDVI AR(1). High AR(1), and therefore low resilience, is seen in Australia, the 

Mediterranean and southern Africa, which mirrors the NDVI resilience measure. Similarly, 

low AR(1) (and high resilience) is seen in tropical forests and high latitudes. 

 

Figure 5.7: Map of VOD mean AR(1) values aggregated by ecoregion. Higher AR(1) values 

correspond to less resilient vegetation. Low vegetation pixels are removed if VOD <0.25, 

ecoregions in grey have had more than 50% of their pixels filtered out.  

 

 A comparison of VOD mean AR(1) with precipitation (Figure 5.8) supports our evaluation 

that drier ecoregions are less resilient. However, at the ecoregion scale, resilience, as 

measured by VOD, is less closely correlated with precipitation (rho = -0.43, p<2.2e-16) than 
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our NDVI AR(1) measure. Unlike NDVI, there is no clear precipitation threshold below which 

resilience begins to decline.  

 

Figure 5.8: Mean VOD AR(1) compared with mean annual precipitation.  VOD pixels with low 

vegetation levels (VOD <0.25) are removed prior to analysis and VOD ecoregions with less 

than 50% pixels remaining are also removed. Rho = -0.4345, with p<2.2e-16. 

 

We construct the same multivariate regression models for VOD AR(1) to detect the 

influence of climate variables on resilience (Table 5.2). Compared to those of our NDVI 

AR(1), these display less predictive power when using VOD data; this is unsurprising given 

the lower correlation between VOD AR(1) and precipitation. 
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Table 5.2: R2 value for VOD linear regression models. 

VOD Regression model VOD Ecoregion result R^2 

AR(1) ~ MAP + Temperature 0.2746 

AR(1) ~ log(MAP) 0.1635 

AR(1)~ Temperature 0.04995 

AR(1) ~ log(MAP) + Temperature 0.2682 

AR(1)~ Temperature + DSL 0.3387 

AR(1) ~ log(MAP) + Temperature + DSL 0.3437 

AR(1) ~ log(MAP) + Temperature + DSL + Tree 

Cover 

0.3569 

AR(1) ~ log(MAP) + Temperature + Tree Cover 0.3135 

 

5.4.7 Recovery time scales 

In this analysis, we have used remotely sensed data with a monthly resolution to analyse 

resilience. However, following a perturbation, some vegetation may display a recovery time 

which is faster than 1 month, thus making it difficult to resolve these responses with 

monthly resolution data. As outlined in Chapter 2, the relationship between AR(1) and the 
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recovery rate λ is as follows: 

𝛼(𝑛) =  𝑒𝜆𝛥𝑡𝑛 (5.1) 

With the recovery timescale of a system equal to 1/ λ (assuming linearity). We can therefore 

establish an AR(1) threshold below which the recovery timescale will be faster than 1 

month. As discussed in Section 5.3.3, the detrending method can cause a shift in AR(1) 

values. As such, we consider the recovery timescale from the raw data. From equation 5.1 

above, a pixel with a recovery timescale shorter than 1 month corresponds to a mean AR(1) 

of 0.367 or lower. Therefore we plot the mean AR(1) from the raw NDVI data (Figure 5.9) to 

ascertain which pixels fall below this threshold. 

 

 

Figure 5.9: NDVI Mean AR(1) from monthly data with no detrending or removal of the 

seasonal cycle. Values which are below 0.367, corresponding to a response timescale < 1 

month, are shown in grey. 

  



Chapter 5:  Global relationship of vegetation resilience with precipitation 

161 
 

Here we can see that the primary areas which may have a response timescale lower than 

our data temporal resolution are dense tropical forests. These high biomass regions may 

respond too quickly to the average perturbation to be detected at a monthly resolution. 

This suggests that some caution is needed when considering trends in these regions.  

Similar spatial trends are observed with VOD data, as seen in Figure 5.10. Less tropical forest 

pixels have a recovery timescale less than 1 month with VOD, as the recovery in ‘greenness’ 

for NDVI appears to be faster than the recovery in biomass as recorded by VOD. Some high 

latitude regions also display a fast timescale for VOD data.  

 

Figure 5.10: Mean VOD AR(1) which have not been detrended or decycled. Grey areas 

correspond to regions with a recovery time less than 1 month (mean AR(1) <0.367), or to 

areas with no data. 

 

We then assess whether removing the pixels which display a <1 month recovery time 

improves the predictive ability of our regression models (Table 5.3). However, we can see 

that this is not the case for the NDVI AR(1) models. For example, the regression model 
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which consists of log(MAP), temperature and tree cover has a lower R2 value when we have 

filtered out these pixels (R2 = 0.6009) compared to our initial model (R2=0.6715). However, 

the VOD AR(1) regression models seem to be improved by removing these pixels; this 

suggests that VOD resilience in these highly forested pixels may be difficult to predict with 

these climatic variables. 

 

Table 5.3: Regression model results of NDVI and VOD resilience for ecoregions where pixels 

have been removed that correspond to a response timescale which may be too fast to detect 

with monthly resolution data. 

Regression model NDVI - Ecoregion scale 

without AR(1) values less 

than 0.367: R2 values 

VOD - Ecoregion scale 

without AR(1) values less 

than 0.367: R2 values 

AR(1) ~ MAP + Temperature 0.4914 0.3268 

AR(1) ~ log(MAP) 0.404 0.209 

AR(1)~ Temperature 0.08259 0.0538 

AR(1) ~ log(MAP) + 

Temperature 

0.5725 0.2996 

AR(1)~ Temperature + DSL 0.5051 0.3823 

AR(1) ~ log(MAP) + 

Temperature + DSL 

0.5721 0.3875 

AR(1) ~ log(MAP) + 

Temperature + DSL + Tree 

Cover 

0.6002 0.459 

AR(1) ~ log(MAP) + 

Temperature + Tree Cover 

0.6009 0.3568 
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5.5 Discussion 

5.5.1 Relationship of resilience with climate 

We find a clear relationship between precipitation and vegetation resilience across the 

world; this is evident at the local pixel, ecoregion and biome scale, with a sharp decline in 

resilience for precipitation levels <2000 mm year-1. This corroborates and builds upon the 

results of Verbesselt et al. (2016), which identifies this trend within tropical forests. With 

climate change likely to cause precipitation levels to decline in drier regions (Trenberth, 

2011), this is likely to lead to a decline in vegetation resilience in areas which already 

experience threats to vegetation. In addition to this, we identify the role that temperature 

plays in vegetation resilience, with hotter and drier regions, such as the Mediterranean, 

Deserts and Montane Grasslands, showing lower levels of resilience. Expected temperature 

increases from climate change will further compound vegetation resilience decline in low 

rainfall regions. The spatial distribution of resilience in this analysis, with low resilience seen 

in regions such as Australia, southern Africa, the Mediterranean and southwestern USA, is in 

agreement with the resilience model presented in De Keersmaecker et al. (2015).           

Regions with higher average precipitation, such as tropical forests, display higher levels of 

resilience. However, that does not guarantee the long-term stability of these regions. For 

example much of the moisture in the Amazon basin is recycled within this ecosystem (Salati 

et al., 1979). Anthropogenic pressure, such as deforestation, can reduce this moisture 

recycling; consequentially the lower levels of rainfall may lead to a decline in resilience, with 

Boulton, Lenton and Boers (2022) identifying greater loss of resilience in drier parts of the 

Amazon. 
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5.5.2 Comparison of resilience measured from NDVI and VOD 

A parallel analysis with VOD data was conducted to assess the validity of the relationship 

between resilience as measured by NDVI and climatic variables. While VOD is lower 

resolution that MODIS NDVI, it is not affected by cloud cover and has a lower sensitivity to 

atmospheric water vapour. Although the time frames of each dataset are not exactly the 

same, the mean AR(1) values from VOD and NDVI are broadly consistent (Figure 5.11) and 

are highly correlated (rho = 0.67, p<2.2e-16).  It also seems that on average, ecoregion level 

NDVI AR(1) displays a greater range of values than VOD AR(1), with a regression analysis 

showing a gradient of 0.54. Relatively lower AR(1) values (corresponding to a faster recovery 

rate) are to be expected for NDVI compared with VOD, as following a perturbation 

vegetation structure (as measured by VOD) can take longer to return than greenness (as 

measured by NDVI). 
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Figure 5.11: Comparison of mean NDVI AR(1) and mean VOD AR(1) at the ecoregion level. 

Rho = 0.67, p<2.2e-16. 

 

Precipitation accounts for much of the variation in each of these measures. Longer response 

times seen with VOD (Figure 5.10) are likely due to it providing a measure of changes in 

vegetation structure, which takes longer to recover from a perturbation, compared to NDVI 

measuring greenness. It is also possible that following a disturbance, vegetation may be 

replaced, i.e. forest with grassland; this is more likely to be reflected in a nuanced way in 

VOD than NDVI. However, at a global scale, climatic means appear to explain NDVI resilience 
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more than VOD resilience, with precipitation more closely correlated to NDVI AR(1). It is 

possible that while VOD provides a greater measure of resilience in specific ecosystems, 

such as tropical forests (Boulton, Lenton and Boers, 2022), the generality of NDVI allows for 

a broader application across the globe. 

5.5.3 Temporal resolution and recovery timescales 

We identify densely vegetated, high resilience regions as having an average recovery 

timescale which may be faster than 1 month, as seen in Figure 5.9 and 5.10. This means that 

it will not be possible to record the response of an average perturbation for vegetation in 

these regions. This occurs for both NDVI and VOD, although for a larger area in the NDVI 

dataset, corresponding to a faster response of greening. These areas are removed from the 

analysis in De Keersmaecker et al. (2015) owing to the poor fit for the resilience model. 

When we filter out all of the pixels which have a recovery time of less than 1 month, we find 

no improvement in our regression models. This suggests that while some caution should be 

applied when considering resilience in these regions, the global relationship between 

climatic variables and resilience still seems to hold. 

5.5.4 Limitations and future work 

Our regression model analysis shows that precipitation, temperature and tree cover account 

for much of the variation in resilience. However, by comparing the initial NDVI AR(1) values 

with the predicted AR(1) values, it seems that the regression model is unable to predict the 

highest AR(1) values (corresponding to the ecoregions with the lowest resilience). These 

ecoregions are generally the hottest and driest, and it may be that there is a non-linear 

relationship between these variables. This therefore suggests that a non-linear regression 
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model may need to be used to better predict vegetation resilience. In addition to this, the 

regression analysis considers all ecoregions regardless of biome classification. It is likely that 

the relationship between vegetation resilience and climate varies between biomes. Future 

work may separate this analysis out between biomes to account for these differences and to 

better predict resilience levels. 

High latitudinal regions display low AR(1) values in our study. This would suggest that 

vegetation in these regions is resilient, a surprising result given the changing climate 

regimes in high latitudes (Walsh et al., 2020). However snow cover is likely to introduce 

noise into the data in these regions (De Keersmaecker et al., 2014). We also know that 

trends in NDVI in these regions are inconsistent, with both browning and greening observed 

due to climate change (Myers-Smith et al., 2020). This suggests that the resilience values in 

these regions may be unreliable. The high latitude biomes are clear outliers in Figure 5.3, as 

such we conduct a regression analysis with these regions removed. This shows that climatic 

variables have a greater predictive power for ecoregion level resilience when these 

anomalous high latitudinal regions are removed. 

The analysis presented in this study has focused on the mean vegetation resilience state and 

how this relates to mean climatic variables across the world. This provides the basis to 

monitor how these resilience states are changing over time. This has been done in regional 

analysis and there have been some efforts to apply this globally (Feng et al., 2021). 

However, combining NDVI and VOD data with cloud computing resources may offer an 

opportunity to detect changing vegetation resilience with a changing climate. Future work 

may apply NDVI and VOD datasets to analyse resilience in specific ecosystems, with VOD 

applied to forests and NDVI to grasslands. The biome and ecoregion data from 
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Ecoregions2017 and tree cover maps providing a useful way to decide this division. In 

addition to this, other studies may seek to apply data with a greater temporal resolution in 

an attempt to resolve issues discussed in this study surrounding the response timescale of 

highly resilient, densely vegetated regions. 
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5.6 Conclusion 

Here we have shown the close relationship between climatic variables, primarily 

precipitation, and vegetation resilience across the globe, as validated by both NDVI and VOD 

data. There is a precipitation threshold of approximately 2000 mm year-1 below which 

vegetation resilience declines. This relationship is repeated at the biome, ecoregion and 

local level. With current water-scarce regions expected to get drier with climate change, this 

suggests that vegetation will be at further risk in these areas. Increased temperatures are 

also likely to contribute to resilience loss. Further efforts should seek to monitor these 

vegetation resilience trends, with a particular focus applied to regions of low resilience. 
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6.1 Thesis synthesis - Measuring ecosystem resilience using 

satellite data  

The work presented in the previous three chapters of this thesis has sought to assess the 

ability of remote sensing for analysing and understanding the resilience of terrestrial 

ecosystems. This has included an analysis of the impact of community-driven agroforestry 

projects in the Mount Kenya region, the resilience of patterned vegetation in the Sahel and 

finally how vegetation resilience is influenced by climate across the world. This chapter 

provides some reflection on the merits of this approach and what has been learnt from it 

within the context of the initial research questions.  

This thesis considers a simple notion of resilience that relates to the increased return time 

of a system following a perturbation. Chapters 3 and 4 focused on dryland regions with high 

turnover of vegetation as likely candidates for the manifestation of detectable vegetation 

resilience signals. This focus is then expanded to study ecosystem resilience across the globe 

at multiple spatial scales in Chapter 5. 

The analysis presented in Chapter 3 revealed that the actions of a network of smallholder 

farmers can generate an observable greening effect at the landscape scale in the Mount 

Kenya region. This greening trend occurred both within and around tree planting groves and 

it appears that when linked with sustainable agriculture, this network has a multiplicative 

effect which is observable with Landsat 7 data. Owing to Landsat 7 data constraints (as 

discussed in Section 6.2), an effective assessment of resilience signal from this activity was 

not possible. However, once sufficient Landsat 8 data is available this will provide fertile 

territory for future research. This analysis is among the first to focus on applying remote 
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sensing to assess the effect of a widespread bottom-up approach to afforestation and 

agroforestry, which has the potential to promote a more sustainable landscape-level 

change. The rapid growth of networks like TIST which enhance community capital and 

spread knowledge and environmental awareness to smallholder farmers present a clear 

example of the power of rapid positive environmental-social tipping points. 

The focus on vegetation resilience in dryland systems continues in Chapter 4, where 

consideration is given to patterned vegetation in the Sahel and the applicability of remote 

sensing to quantify it and its resilience. This work shows the capability of Sentinel-2 data to 

assess vegetation pattern connectivity through Offset50, a feature vector metric. This 

enabled the differentiation between four classes of vegetation pattern and assessment of 

the widespread hypothesis that pattern morphology is an indicator of ecosystem resilience. 

While this notion has been suggested in the literature (Rietkerk et al., 2004; Mayor et al., 

2013), prior to this analysis it had only been tested in models where it was found to not 

apply for certain classes of vegetation model (Dakos et al., 2011). For the sites featured in 

this study, the hypothesised relationship between pattern morphology and ecosystem 

resilience does not hold for the resilience measures considered (AR(1), variance and return 

rate following a perturbation). It seems that no other studies have applied regularly 

returning satellite data to assess the resilience of patterned vegetation. Precipitation is 

identified as a key driver of vegetation patterning and also resilience, with drier regions 

displaying less connected vegetation patterns with lower levels of resilience. Geographical 

gradients of patterned vegetation resilience are reflective of wider precipitation gradients. It 

is clear that observations from high resolution satellites are immensely valuable to studying 

these sites and the collection of Sentinel-2 data over a longer timeframe will allow the 

development of a greater understanding of the resilience of these patterned systems. 
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Having established a link between precipitation and the resilience of patterned vegetation in 

the Sahel, remote sensing was applied at the global scale to evaluate the impact of climatic 

variables on vegetation resilience across the world in Chapter 5. By considering resilience 

levels across multiple spatial regions with MODIS NDVI data, i.e. a space-for-time 

substitution analysis, a strong relationship between vegetation resilience (mean AR(1)) and 

precipitation is identified. This occurs at the pixel, ecoregion and biome scale. The sharp 

decline in resilience below a precipitation threshold of 2000 mm per year indicates that 

declining vegetation resilience in drier regions is a risk should precipitation levels fall. In 

addition to this, there is a temperature component of resilience, with hotter, drier regions 

displaying lower vegetation resilience. Comparing these NDVI resilience results with VOD 

data corroborates this relationship between vegetation resilience and precipitation. 

However, the greater predictive power of climate variables for NDVI resilience suggests that 

relative to VOD, NDVI has greater utility when applied at a global level owing to its 

generality. In addition to this, some regions of the world display a resilience level which is 

consistent with a return time of less than 1 month following an average perturbation. This 

suggests that there may be some limitations to the use of monthly resolution satellite data 

for analysing resilience trends. 

While each research chapter in this thesis focuses on a different geographical region, this 

body of work is unified by its attempt to apply remote sensing data to understand the 

development and resilience of vegetation systems. A commonality of each of these studies 

is the use of NDVI to measure the state of vegetation and to infer its resilience. This relies on 

the link between NDVI, the photosynthetic capability and productivity of these plants, i.e. 

vegetation health. Changes in NDVI level, and therefore plant health, can be used to 

understand the resilience of these vegetated systems when they experience a perturbation; 
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with the recovery rate of these systems indicating its resilience. This can be measured 

directly or if this is not possible, then indirectly with statistical measures such as AR(1). The 

resilience of vegetation may be affected by one factor, such as a changing climate or 

anthropogenic pressure, which leads it to be more susceptible to mortality inducing events 

from other perturbations, such as fires, pests or disease. Clear increases in NDVI are 

observed in Kenya through the tree planting activities of TIST in Chapter 3, while vegetation 

resilience is shown to strongly relate to climate via an NDVI derived measure of resilience in 

Chapter 5.  

Another lesson that can be drawn from this research is the need to balance the benefits and 

drawbacks of different remote sensing systems when considering ecosystems at varying 

spatial and temporal scales. Each research chapter of this thesis has applied a different 

satellite dataset to assess vegetation; this involves a compromise between the spatial scale 

of the research subject and the time period of study. High resolution Sentinel-2 data is 

necessary for quantifying patterned vegetation in Chapter 4, while despite its lower 

resolution, the longer time series of MODIS data makes it more appropriate for evaluating 

resilience at a global scale in Chapter 5. The size and duration of the smallholder farms 

which constitute the TIST network in Chapter 3 meant that a high-resolution dataset with a 

long temporal length was required. In this case, Landsat 7 was the only appropriate dataset, 

despite its scan-line error issues. Despite the variation in datasets used across this thesis and 

some of their limitations, it is clear from this work that remotely sensed data enables the 

study of vegetation resilience in hard-to-reach locations, with increasing data capacity 

providing further opportunities in the future. 
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As well as considering the appropriateness of a dataset when designing a study, a further 

compromise often faced by users of remote sensing data, as with all ‘big data’, is the 

computational capacity required to analyse it. The work in each chapter of this thesis has 

aimed to test the capability of new cloud-computing GIS platforms, such as GEE, for 

performing resilience analysis across large geographical areas, including at the global scale 

in Chapter 5. It is clear that these new platforms offer the potential to increase the usability, 

availability and utility of remotely sensed data. However, it was necessary to conduct some 

parts of these studies ‘offline’ due to the limitations imposed by these platforms, some of 

which are inherent in the coding languages required to use them. 
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6.2 Limitations of remote sensing ecosystem resilience 

While the analysis in Chapter 3 shows the capability of remote sensing data to assess the 

greening effect of community-led tree planting in the Mount Kenya region, there are 

difficulties in detecting explicit changes in the resilience of this landscape. This is due to well 

documented Landsat 7 issues resulting from the scan-line error (Storey, Scaramuzza and 

Schmidt, 2005). While this did not drastically alter the greening trends (as detailed in 

Appendix A), it suggested that Landsat 7 may not be appropriate for assessing long term 

resilience trends. With start years of 2013 and 2015, Landsat 8 and Sentinel-2 did not have a 

sufficiently long dataset to be utilised for resilience analysis for the period of study up to 

2019.  

Another limitation results from the extent and availability of data. While remotely sensed 

datasets continue to expand both in spatial and temporal extent, the existing archive of this 

data does not always align with the time scales associated with changes of vegetation 

resilience. Chapters 3 and 4 focused upon equatorial drylands with fast growing vegetation, 

as it was expected that these resilience signals would be manifested more clearly in these 

regions. However, for the study conducted in Chapter 4, Sentinel-2 data, the only freely 

available satellite collection of sufficiently high spatial resolution, was only available for four 

complete years over the study period. While a measure of resilience is provided through 

AR(1), variance and return rate, it was not possible to provide a longer-term measure of the 

trends in resilience of these patterns. It is possible that observations of resilience trends 

from shorter time series are driven by underlying variability in the climate system. Longer 

term observations from the accumulation of satellite data can begin to detect whether 



Chapter 6: Discussion 

179 
 

these trends are a true shift in ecosystem resilience or the manifestation of multi-decadal 

climate variability. 

Consideration must also be given to the resolution of remote sensing data. If the average 

recovery rate of a system following a perturbation is greater than the temporal resolution of 

the satellite, then there is a chance that the system’s response to an average perturbation 

may go undetected. It is therefore apparent that there is a trade-off between high temporal 

resolution to detect all perturbations and the monthly aggregation steps taken in these 

chapters to decrease the likelihood of missing data or anomalous values due to cloud cover. 

Similarly, some thought must be given to spatial resolution when designing remote sensing 

resilience analysis. While commercial satellites can have ultra high resolutions of 0.8m to 6.5 

m (Dial et al., 2003; Tyc et al., 2005), for freely available satellites with regular return rates 

the highest spatial resolution is 10m provided by Sentinel-2 (Malenovský et al., 2012). It is 

clear that for the majority of satellites, a single pixel incorporates numerous plants, as well 

as bare soil in heterogenous landscapes. Therefore, metrics of resilience may be masking 

changes across different vegetation types. The analysis in Chapter 3 established that 30m 

pixels are sufficiently high resolution to detect a greening trend in (often) well defined TIST 

tree planting groves, thus suggesting that this may be an appropriate resolution to begin 

analysing resilience change in these ecosystems. Similarly, the approach for quantifying 

patterned vegetation in Chapter 4 is accurate at 10m. Attempts to verify this at 30m were 

undermined by the Landsat 7 scan line error. 

The work presented in each chapter of this thesis has made use of NDVI, a measure of 

vegetation greenness, to assess vegetation dynamics. This is a commonly used vegetation 

metric in the remote sensing community that has been applied to resilience detection (De 
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Keersmaecker et al., 2014; Verbesselt et al., 2016; van Belzen et al., 2017; Liu et al., 2019; 

Feng et al., 2021) and was selected due to its broad applicability, both spatially and across 

satellite datasets. However, NDVI does have limitations, such as saturation in highly 

vegetated areas (Huete, Liu and van Leeuwen, 1997) and issues with soil brightness, and 

resilience in NDVI may not always encapsulate the full picture. Other datasets, such as VOD, 

which is used in Chapter 5, can be applied to detect changes in vegetation water content or 

biomass. As well as appropriate spatial and temporal resolution, the dataset selected should 

be tailored to the needs of the user.  

Cloud cover presents a potential limitation for any remote sensing studies relying on data 

from passive optical sensors. Steps are taken throughout this thesis to reduce the impact of 

cloud cover; in the analysis presented in Chapters 3 and 5 NDVI data is aggregated to a 

monthly resolution. In addition to this in Chapter 4 any sub-images which appear as 

completely black, due to cloud cover, are removed and then resample this sub-image. The 

use of microwave-frequency sensors, such as those used to create the VOD dataset 

considered in Chapter 5, removes the issue of cloud influence, although these sensors do 

have limitations relating to spatial resolution. 
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6.3 Future work 

A clear example of the way that community groups can affect environmental change in the 

form of regreening at a landscape scale is presented in Chapter 3. While this is one measure 

of the impact that these groups can have, there is further work that can be undertaken with 

other remote sensing systems. For example, LIDAR data enables the quantification of forest 

biomass and can be used to estimate carbon sequestration rates (Gleason and Im, 2012; 

Hudak et al., 2012; Kaasalainen et al., 2015). If this data was collected for the Mount Kenya 

region, it could be coupled with TIST tree growth data. This could provide a large dataset for 

‘ground truthing’ these carbon sequestration remote sensing methods.  

With rapid growth through social networks (Figure A.1) and a positive environmental impact 

on the surrounding landscape, organisations like TIST provide a clear example of the power 

of positive social tipping points and their potential for enacting environmental change. 

Further work should examine groups like TIST which expand through underlying social 

networks to assess what drives this growth. Even within TIST there is variability in its 

effectiveness; the TIST network in Kenya has been extremely successful in connecting 

farmers, while in Tanzania its influence has been much more limited. By understanding how 

these fast spreading and successful environmental-social groups can be replicated, rapid 

environmental change may be achieved in other regions. 

Through this analysis, the spatial extent of TIST’s greening influence was assessed, however 

as discussed earlier, this work was unable to directly detect how the resilience of the Mount 

Kenya region has changed with the actions of TIST farmers. This is due to issues with Landsat 

7 imagery. Future work could utilise Landsat 8 imagery to begin to consider this resilience 

question. This would require the identification of TIST groves within which trees were 
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planted after 2013, the year that Landsat 8 was launched (Loveland and Irons, 2016), and a 

suitably long period prior to the tree planting to observe a change in the resilience. One 

approach to this may be to identify a known extreme event, such as a drought, and to 

compare the recovery timescale of vegetation within TIST groves to that within the 

surrounding area. 

While the patterned vegetation analysis in Chapter 4 focuses on the Sahel, these vegetation 

forms occur in drylands around the world (Deblauwe et al., 2008). The published pyveg 

software package allows others to apply these analytical techniques to these sites, whether 

to track vegetation response to well defined events or to monitor long term trends. With 

the data made available from Sentinel-2 growing over time, the potential for the resilience 

analysis of patterned vegetation will only increase.  

It is also worth considering the potential for the application of deep learning techniques to 

this form of analysis. With some algorithms, such as Convolution Neural Networks (CNN), 

being well known for their ability to identify images and patterns (Albawi, Mohammed and 

Al-Zawi, 2018; Li et al., 2019), there is a clear applicability for these algorithms for the study 

of patterned vegetation. For example, if trained with a suitable dataset of patterned 

vegetation images, of the sort that has begun to be built in Chapter 4, a CNN could be 

applied to find and classify vegetation across the globe to enhance the previous work of 

Deblauwe et al. (2008). This could conceivably be coupled with the pyveg package to 

analyse the resilience of patterned vegetation worldwide. This could be developed 

alongside other efforts to apply machine learning to provide early warning signals of tipping 

points (Bury et al., 2021).  
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All of the resilience analysis in this thesis relies on temporal resilience indicators, such as 

AR(1), variance and return rates. However, as discussed in Chapter 2, there are numerous 

spatial statistics for detecting resilience change which are often underutilised in the 

literature. The increasing availability of satellite data provides opportunities to assess 

ecosystem resilience using spatial statistics, with patterned vegetation systems being just 

one focus for future research. 

The work presented in Chapter 5 provides an example of the applicability of remote sensing 

to analyse drivers of vegetation resilience at multiple spatial scales across the globe. While 

this work primarily focuses on NDVI due to its broad applicability, some consideration is 

given to results from a VOD dataset which broadly agree with the overall trend shown in 

NDVI. Future work may integrate other vegetation indices or global datasets to enhance this 

analysis.  

All of the work in this thesis focuses on resilience in terrestrial ecosystems, however 

resilience analysis of marine ecosystems may uncover significant trends and drivers. Rocha 

(2021) provides an example of the applicability of chlorophyll-a concentration data to 

analyse marine ecosystem resilience. Other potential analyses may consider the resilience 

of marine vegetation systems which display alternative states, such as giant kelp forests, 

which can be observed with satellite data (Cavanaugh et al., 2010). 

6.3.1 A framework for remotely sensing resilience trends across the world 

The global resilience analysis in Chapter 5 focused on how climate can determine ecosystem 

resilience across the world at different spatial scales. In addition to this, increasingly large 

datasets coupled with cloud computing capabilities provide a means to track changes in 
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resilience over time. Alongside the mean AR(1), the trend in AR(1) for pixels across the 

world is also considered in Figure 6.1. From this some spatial structure in the resilience 

trends can be seen, i.e. areas in eastern Brazil such as the Caatinga dry forests show a 

decline in resilience. Having identified these regions of interest, online software such as 

Google Earth Engine can allow the users to then zoom into these areas to undertake further 

analysis. This begins to provide the framework for a ‘resilience sensing system’, as discussed 

in Lenton et al. (2022). 

 

Figure 6.1: (a) Map of mean AR(1) from MODIS NDVI data, high positive values suggest low 

levels of resilience. (b) Map of Kendall Tau of NDVI AR(1) for each pixel. Values of 1 

(a) 

(b) 
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correspond to a monotonic increase (or loss of resilience), -1 correspond to a decrease. Grey 

areas are regions of low vegetation cover and are removed if the mean NDVI < 0.16. Analysis 

and figure production undertaken by the author and is featured in Lenton et al. (2022). 

Figure 6.2: Trends in mean AR(1) when aggregated to Biome level, as well as a global 

average. Each region has had pixels removed where mean NDVI <0.16, in addition to this the 

global average has pixels removed which are classified as rock or ice. The AR(1) Kendall tau 
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value is included on each plot to provide a measure of the trend. Biome abbreviations 

correspond to the following biomes: BoFT – Boreal Forests/Taiga, DXS – Desert and Xeric 

Shrublands, FGS – Flooded Grasslands and Savannas, Man – Mangroves, Med – 

Mediterranean Forests, Woodlands and Scrub, MGS - Montane Grasslands and Shrublands, 

TeBF – Temperate Broadleaf and Mixed Forests, TCF – Temperate Conifer Forests, TGSS – 

Temperate Grasslands, Savannas and Shrublands, TrCF – Tropical and Subtropical Coniferous 

Forests, TrDBF -  Tropical and Subtropical Dry Broadleaf Forests, TrGSS – Tropical and 

Subtropical Grasslands, Savannas and Shrublands, TrMBF – Tropical and Subtropical Moist 

Broadleaf Forests, Tu – Tundra. 

 

Another way to conceptualise this is to aggregate this pixel data to the global and biome 

level to see how NDVI resilience levels have changed over time, as seen in Figure 6.2. At the 

global scale, with rock, ice and low mean NDVI (<0.16) pixels removed, NDVI AR(1) has 

steadily increased over time, with τ= 0.66, suggesting a general loss of global resilience. A 

noticeable loss of resilience is observable in Tropical and Subtropical Dry Broadleaf Forests 

(τ= 0.72), Montane Grasslands and Shrublands (τ= 0.69), Temperate Conifer Forests (τ= 

0.63) and Temperate Broadleaf and Mixed Forests(τ= 0.55). The three forest biomes which 

display resilience loss here are identified as highly vulnerable to climate change in Wang, 

Zhang and Wan (2019), thus suggesting that further resilience loss is possible for these 

regions. In addition to this, Montane grasslands may be highly sensitive to climate change (Li 

et al., 2018; Feng et al., 2021), which suggests that the resilience loss seen in this biome 

here may continue with a changing climate. 
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One biome that shows a clear trend of AR(1) decline, and therefore resilience increase, is 

the Deserts and Xeric Shrublands biome. This is somewhat unexpected, as other literature 

has identified declining resilience in desert regions (Feng et al., 2021). However, in our 

analysis many pixels classified as being part of the Desert biome have been filtered out due 

to their low NDVI values, with a majority of pixels remaining in western Australia, Namibia 

and parts of North America. A particular driver of this resilience trend may be caused by 

increased precipitation in inland areas of western and northwestern Australia (Dey et al., 

2019) , a region with a notable increase in resilience, as seen in Figure 6.1. 

By considering which biomes display clear resilience loss trends from Figure 6.2 and then 

identifying regions with a clear resilience trend from our global map, areas that may warrant 

further study can begin to be identified. An example of this is given in Figure 6.3, where 

several ecoregions have been identified from resilience loss biomes which appear clearly in 

the map. By aggregating at the ecoregion level, the resilience loss trend in each of these 

regions can be seen (Figure 6.4).  
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Figure 6.3: Map of AR(1) Kendall tau trends showing spatial structure of resilience loss in 

southern and eastern Asia with select ecoregions shown. These ecoregions are categorised 

as being part of three of the top four biomes to suffer resilience loss. From left to right, these 

ecoregions are ‘Central Deccan Plateau dry deciduous forests’, ‘Nujiang Langcang Gorge 

alpine conifer and mixed forests’, ‘Hengduan Mountains subalpine conifer forests’, ‘Qionglai-

Minshan conifer forests’ and ‘Ordos Plateau steppe’. Pixels with a mean NDVI <0.16 are 

shown in grey and have been filtered out. Analysis and figure production undertaken by the 

author and is featured in Lenton et al. (2022). The time series of AR(1) Kendall tau for these 

ecoregions is shown in Figure 6.4. 
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Figure 6.4: Trends in AR(1) averaged over each ecoregion featured in Figure 6.3, along with 

the Kendall tau value of each time series. Each ecoregion displays an increase in AR(1) over 

the study period, thus suggesting a loss of resilience. 

 

Here a selection of ecoregions have been presented to show the utility of global scale 

remote sensing for monitoring resilience vegetation trends. While further work is needed to 

completely verify the validity of these trends and to investigate the underlying drivers, it is 

clear that this approach has the potential to yield powerful insights. Several biomes display 



Chapter 6: Discussion 

190 
 

noticeable trends in resilience loss and should be the target of further study. Combining 

remotely sensed data with cloud computing enables a flexible approach to assessing 

vegetation resilience across the world at multiple spatial scales. Future work should aim to 

develop this with expanded vegetation resilience monitoring from other remotely sensed 

datasets, increased accessibility of cloud computing resources and employ vegetation 

models to assess where resilience loss is most likely in the future, so that monitoring can be 

targeted. These monitoring efforts will reveal where vegetation is experiencing resilience 

loss from a changing climate or direct anthropogenic pressure, and could influence targeted 

interventions to prevent this. Distinguishing between the drivers of these resilience changes 

could be achieved by monitoring human activity through physical features on the landscape, 

such as roads and buildings, which can be identified with machine learning land 

classification algorithms. This can be compared with the influence of climatic variables. 
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6.4 Conclusion 

The research in this thesis has shown the capability of remotely sensed data to assess 

vegetation resilience and to identify its potential for detecting ongoing changes in resilience. 

This has taken the form of an evaluation of the potential for rapid change through direct 

human intervention, the resilience of visually striking vegetation patterning in drylands and 

then a broader perspective of the climatic drivers of vegetation resilience across the world.  

Mobilising positive environmental-social tipping points of the kind presented by TIST offers 

a potential solution to environmental degradation. Satellite data can then be employed to 

analyse the effects, both direct and indirect, of these upon the landscape, with future data 

availability offering a path to directly evaluating the resilience of these landscapes.  

Data provided by satellites display great potential for assessing vegetation resilience in hard-

to-reach regions, such as patterned vegetation sites. While vegetation morphology may not 

be directly linked with resilience, it is clear that precipitation is a driver of both morphology 

and resilience. With the accumulation of more data, there will be an increased ability to 

conduct long-term resilience monitoring and to untangle multi-decadal climate variability 

from true ecosystem resilience trends. 

Further to this, the global relationship between climatic variables, such as precipitation, and 

vegetation resilience is shown. This relationship is likely to become more important with 

climate change induced shifts in precipitation regimes. Through this, and the work 

presented in the discussion, it is clear that the combination of global level remote sensing 

data with increasingly available cloud computing platforms provides a path towards 

adaptable resilience monitoring of terrestrial ecosystems. This can be applied at multiple 
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spatial scales and targeted to specific regions. Further enhancements of these efforts are 

possible through the increased accessibility of these platforms and a variety of additional 

remote sensing datasets.
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Supplementary Figures: 

 

Figure A.1: Plot of the growth of farmers in the TIST network across all four countries (Kenya, 

Tanzania, Uganda and India). This growth curve shows similarities of an s-curve associated 

with a tipping point. Data is aggregated at the monthly scale. The black line shows total 

number of farmers who have joined the network by that month. The red line shows the 

number of farmers still in the network, with a major decline in March 2012 corresponding to 

a concerted effort to remove farmers from the database who had left the network. 
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Figure A.2: Map of NDVI Kendall Tau trends across the agricultural land within the study 

area for the period 2000-2019. 

  

Figure A.3: Data analysis workflow for calculation of NDVI Kendall Tau trends across the 

study area. 
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Figure A.4: Comparison of Kendall tau values of 2014-2019 Landsat 7 and Landsat 8 data for 

agricultural pixels in the study area. 
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Supplementary Tables: 

Table A.1: Standard error of the mean for NDVI Kendall Tau values of TIST neighbouring 

classes. 

Distance from TIST (m) Standard Error of the Mean 

0 3.43E-04 

30 3.34E-04 

60 3.32E-04 

90 3.38E-04 

120 3.49E-04 

150 3.62E-04 

180 3.74E-04 

210 3.88E-04 

240 4.09E-04 

270 4.15E-04 

300 4.30E-04 

330 3.44E-05 

360 3.45E-05 

390 3.45E-05 

420 3.46E-05 

450 3.48E-05 

480 3.48E-05 

510 3.49E-05 
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Table A.2: Values from the Categorical Regression Model used to assess the extent of TIST’s 

landscape effects. Values which are significant with a p-value <0.05 are presented in bold. 

This suggests that areas up to and including 360 metres display a distinct difference to the 

local background greening trend. 

Distance 

(metres) 

Estimate Std. 

Error 

p-value 

0 0.0668 0.000342 <2e-16 

30 0.0364 0.000339 <2e-16 

60 0.0228 0.000335 <2e-16 

90 0.0176 0.000341 <2e-16 

120 0.0144 0.00035 <2e-16 

150 0.0117 0.000363 <2e-16 

180 0.00914 0.000375 <2e-16 

210 0.00694 0.000389 <2e-16 

240 0.00518 0.000409 <2e-16 

270 0.00449 0.000416 <2e-16 

300 0.00308 0.00043 6.85E-13 

330 0.0029 0.000446 8.09E-11 

360 0.00191 0.000456 2.75E-05 

390 0.000541 0.000468 0.248 

420 0.000582 0.000486 0.231 

450 -0.0003 0.000492 0.548 

480 0.00046 0.000501 0.358 

510 -0.00016 0.00051 0.754 
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Supplementary Figures 

Testing site size impact 
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Figure B.1: Test of site size on Offset50 metric. In order to test the impact of the size of the 

site upon the Offset50 metric, we considered a site which had full coverage of patterned 

vegetation (ID:00). In this analysis, we divide the site in half horizontally, then further 

separate these into four quadrants (NE, SE, SW, NW). We then proceed with the analysis for 

each of these 8 subsections. Column 1 shows the time series for each subregion (red) with 
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the time series for the whole of the image (black). We can see that this trend is similar, with 

a similar standard deviation. The middle column shows the p-values for t-test comparisons 

between the sub-region and the whole image, with a significance value of p=0.05 shown 

with a horizontal bar. The last column shows the percentage difference between the 

subregion and the whole image, with the maximum (absolute) difference recorded above. 

This analysis shows that the size of the region selected does not seem to have a significant 

effect upon the trend of the Offset50 value, and we hypothesise that any variations are due 

to heterogeneity of the patterned vegetation. 

  



Appendix B: Supplementary Information for Quantitatively monitoring the resilience of patterned vegetation in the Sahel 

208 
 

Image Classifier Results 

 

Figure  B.2: Test of masking out non-patterned vegetation in heterogenous sites. To test the 

utility of masking non-patterned vegetation in heterogeneous sites, we had three of the co-

authors manually classify all 289 sub-images of an image of a heterogenous site (ID:04). This 

image was selected as it had little cloud cover, heterogeneous vegetation coverage and was 

shortly after a rainy season, so had high vegetation coverage. If any of the sub-images were 

classified as not patterned vegetation by any of the classifiers, i.e. as bare soil or complete 

vegetation, then they were removed from every image in the series. We then compare the 

Offset50 values of the masked and unmasked time series above. From this we can see that 

there is little difference in the values from the manual classification. This is likely due to the 
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workflow which automatically removes non-patterned vegetation sub-images from the time 

series and reinforces the utility of this approach. 

 

Spot-labyrinth DEM 

 

Figure B.3: Spot-labyrinth pattern vegetation site (ID:26) (a) Sentinel-2 RGB image of site 

from 09-2018. (b) Elevation of the same site. This shows the lower altitude of the channels 

within which vegetation grows following the rain season. Elevation data from NASA SRTM 

Digital Elevation Model 30m. 
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Outlier sites 

 

Figure B.4: (a) Mean Offset50 compared with mean precipitation across all sites. Outlier sites 

shown in red, these prompted further investigation as is detailed below. (b) Sentinel-2 

images of outlier sites with (i) ID 46 and (ii) ID 47. These were removed as upon closer 

inspection, the gaps pattern vegetation were over a small area and the size of the gaps was 

insufficient to be regularly measured. 
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Mean Offset50 and NDVI 

 

Figure B.5: Pattern vegetation sites separated into classes, displaying boxplots of (a) mean 

Offset50 and (b) mean NDVI. 
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Scatter plots 

 

Figure B.6: Scatter plot of mean precipitation and max Offset50 over the course of the time 

series for each site. Vegetation pattern morphology is indicated by colour. We can see that 

for all sites higher precipitation values are associated with higher maximum Offset50 values, 

with this trend consistently followed in most pattern types. 
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Figure B.7: Scatter plot of mean precipitation and mean Offset50 over the course of the time 

series for each site. Vegetation pattern morphology is indicated by colour. We can see that 

higher average precipitation is associated with higher mean Offset50. 

 



Appendix B: Supplementary Information for Quantitatively monitoring the resilience of patterned vegetation in the Sahel 

214 
 

 

Figure B.8: Scatter plot of mean precipitation and the decay rate of the annual average 

Offset50. Vegetation pattern morphology is indicated by colour. We can see that higher 

precipitation values are broadly associated with faster Offset50 decay rates following the 

rainy season. 
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Figure B.9: Scatter plot of mean precipitation and the decay rate of the annual average 

NDVI. Vegetation pattern morphology is indicated by colour. We can see that higher 

precipitation values are closely associated with faster NDVI decay rates following the rainy 

season, this seems especially true for spot-labyrinth vegetation. 
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Figure B.10: Scatter plot of NDVI standard deviation and NDVI decay rate. Vegetation 

pattern morphology is indicated by colour. We can see that the NDVI decay rate is detecting 

vegetation which rapidly spreads following the rainy season, however this dies away quickly. 

This is shown through the high standard deviation in sites with higher decay rates. 
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Figure B.11: Scatter plot of mean precipitation and Offset50 AR(1). Vegetation pattern 

morphology is indicated by colour. We can see that higher precipitation values are broadly 

associated with lower Offset50 AR(1) values, therefore these sites are more resilient. 
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Figure B.12: Scatter plot of mean precipitation and Offset50 variance. Vegetation pattern 

morphology is indicated by colour. We can see that higher precipitation values are broadly 

associated with lower Offset50 variance values, therefore these sites are more resilient. 
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Figure B.13: Scatter plot of latitude and mean precipitation across all sites included in the 

study. We can see that more northern sites display a lower average rainfall. 

 

  



Appendix B: Supplementary Information for Quantitatively monitoring the resilience of patterned vegetation in the Sahel 

220 
 

Lagged correlation clustering 

 

Figure B.14: (a) Cluster analysis of lagged correlation between Offset50 and precipitation 

across all sites. In order to disentangle the two apparent trends, we use a k-mean clustering 

algorithm  (MacQueen, 1967) with the data points at lag-3 and lag-8. This reveals two 

distinct clusters which are shown in red and blue, with the correlation trends shown in (b). 

The blue clustering is composed of almost exclusively spot-labyrinth patterned vegetation. 
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NDVI and Offset50 Trend Analysis 

 

Figure B.15: Analysis of trend in NDVI and Offset50 across all sites. We conduct an STL 

decomposition of the Offset50, NDVI and precipitation time series for each site between 

2016-2019. This reveals the underlying trend of the data. Following this we calculate the 

Mann-Kendall tau value of this trend to provide a numerical component. This scatter plot 

shows the trend among Kendall Tau values of the trend component of the NDVI and Offset50 

time series of each site. The color of the scatter points corresponds to the precipitation trend 

of the site, with blue representing an increasing trend, red representing a decreasing trend 

and grey representing no trend. 

 



Appendix B: Supplementary Information for Quantitatively monitoring the resilience of patterned vegetation in the Sahel 

222 
 

 

 

Figure B.16: ERA5 Precipitation trends from 2016-2019 in the Sahel ecoregion. These trends 

are calculated by taking monthly averages, removing the seasonal trend by subtracting a 

multi-annual monthly average, then taking a moving average, before the Kendall Tau of 

each pixel is calculated. Also shown are the NDVI trends of each site. 
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Supplementary Tables 

Table B.1: Table of patterned vegetation sites which were removed from the analysis at 

various stages. The location and reason for the removal of each site is given within the table. 

ID Country Lat Long Type Source Reason for removal 

10 Kenya 0.43 40.3 Spots 

Deblauw

e et al. 

(2008) 

Ineligible due to two rainy 

seasons. Lots of cloud cover. 

11 Somalia 8.09 47.44 Labyrinths 
Boaler and 

Hodge (1964) 

Ineligible due to two rainy 

seasons. 

15 
Burkina 

Faso 
14.91 -0.66 Unclear 

Leprun 

(1999) 

Unclear patterned vegetation 

type, very large scale. 

17 Mali 15.23 -0.97 Unclear 
Leprun 

(1999) 

Unclear patterned vegetation 

type, very large scale. Data 

quality was suboptimal. 

19 Mali 15.14 -1.56 Unclear 
Trichon et 

al. (2018) 

Unclear patterned vegetation 

type and poor coverage. 

22 Mali 15.14 -1.16 Unclear 
Leprun 

(1999) 

Unclear patterned vegetation 

type. 

24 Mali 16.25 -1.83 Unclear 

Deblauwe 

et al. 

(2008) (by 

inspection) 

Unclear patterned vegetation 

type. 
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37 Somalia 9.34 48.64 Labyrinths 

Boaler and 

Hodge 

(1964) 

Ineligible due to two rainy 

seasons. 

38 Somalia 9.63 47.93 Labyrinths 

Boaler and 

Hodge 

(1964) 

Ineligible due to two rainy 

seasons. 

39 Somalia 9.98 48.44 Labyrinths 

Boaler and 

Hodge 

(1964) 

Ineligible due to two rainy 

seasons. 

40 Somalia 4.64 43.26 Labyrinths 

Riché and 

Ségalen, 

(1971) 

Ineligible due to two rainy 

seasons. Lots of cloud cover. 

41 Ethiopia 4.69 43.21 Gaps 

Riché and 

Ségalen, 

(1971) 

Ineligible due to two rainy 

seasons. Lots of cloud cover. 

42 Ethiopia 7.43 42.90 Labyrinths 

Deblauwe 

et al. 

(2008) 

Ineligible due to two rainy 

seasons. 

43 Kenya 0.96 40.37 Gaps 

Deblauwe 

et al. 

(2008) 

Ineligible due to two rainy 

seasons. 

46 Chad 12 19.99 Gaps 

Deblauwe 

et al. 

(2008) 

Outlier with too little patterned 

vegetation, and the vegetation 

patterning is small. 
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47 Chad 12.05 20.08 Gaps 

Deblauwe 

et al. 

(2008) 

Outlier with too little patterned 

vegetation, and the vegetation 

patterning is small. 

 

 

Table B.2: P-values following a Mann-Whitney U-test on max Offset50 values for vegetation 

pattern classes. 

Pattern type Gaps Labyrinths Spots Spot-labyrinths 

Gaps N/A 0.00998 9.85E-05 0.00014 

Labyrinths 0.00998 N/A 0.000109 0.000165 

Spots 9.85E-05 0.000109 N/A 0.04224 

Spot-labyrinths 0.00014 0.000165 0.04224 N/A 
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Table B.3: P-values following a Mann-Whitney U-test on max NDVI values for vegetation 

pattern classes. 

NDVI Max Gaps Labyrinths Spots Spot-Labyrinths 

Gaps 
N/A 

0.00998 0.00119 0.001874 

Labyrinths 0.00998 
N/A 

0.3493 0.3116 

Spots 0.00119 0.3493 
N/A 

0.3493 

Spot-

Labyrinths 

0.001874 0.3116 0.3493 
N/A 
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Table B.4: Pearson's correlation values for Offset50-precip correlation, Offset50 decay rate 

correlations, and AR(1) + Variance correlations. 

Pearson’s 

correlation 

coefficient 

Offset50 

Max 

Offset50 

Mean 

Mean 

precipitati

on 

Mean 

historic 

precipitati

on 

Offset50 

decay rate 

Offset50 

AR(1) 

Offset50 

Variance 

Latitude Longitude 

Offset50 

Max 

1 0.8613 0.4122 0.3466 0.0962 0.0048 0.2510 -0.2052 -0.1043 

Offset50 

Mean 

0.8613 1 0.5972 0.4647 -0.0289 -0.2438 -0.0052 -0.3343 -0.0028 

Mean 

precipitation 

0.4122 0.5972 1 0.8780 0.3794 -0.4309 -0.3410 -0.8404 0.6518 

Mean 

historic 

precipitation 

0.3466 0.4647 0.8780 1 0.3711 -0.4595 -0.2965 -0.9481 0.8055 

Offset50 

decay rates 

0.0962 -0.0289 0.3794 0.3711  0.2115 -0.0999 -0.4902 0.5219 

Offset50 

AR(1) 

0.0048 -0.2438 -0.4309 -0.4595 0.2115 1 0.1918 0.4020 -0.2854 

Offset50 

Variance 

0.2510 -0.0052 -0.3410 -0.2965 -0.0999 0.1918 1 0.3388 -0.2663 

Latitude -0.2052 -0.3343 -0.8404 -0.9481 -0.4902 0.4020 0.3388 1 -0.9051 

Longitude -0.1043 -0.0028 0.6518 0.8055 0.5219 -0.2854 -0.2663 -0.9051 1 

 



Appendix B: Supplementary Information for Quantitatively monitoring the resilience of patterned vegetation in the Sahel 

228 
 

Table B.5: Pearson's correlation p-values for Offset50-precip correlation, Offset50 decay rate 

correlations, and AR(1) + Variance correlations. 

p-value Offset50 
Max 

Offset50 
Mean 

Mean 
precipitati
on 

Mean 
historic 
precipitati
on 

Offset50 
decay rate 

Offset50 
AR(1) 

Offset50 
Variance 

Latitude Longitude 

Offset50 
Max 

0 0 0.0082 0.0284 0.555 0.9768 0.1182 0.2039 0.5217 

Offset50 
Mean 

0 0 0 0.0025 0.8593 0.1295 0.9747 0.035 0.9862 

Mean 
precipitation 

0.0082 0 0 0 0.0158 0.0055 0.0313 0 0 

Mean 
historic 
precipitation 

0.0284 0.0025 0 0 0.0184 0.0029 0.0632 0 0 

Offset50 
decay rates 

0.555 0.8593 0.0158 0.0184 0 0.1901 0.5396 0.0013 0.0006 

Offset50 
AR(1) 

0.9768 0.1295 0.0055 0.0029 0.1901 0 0.2358 0.0101 0.0743 

Offset50 
Variance 
(0.99 rolling 
window) 

0.1182 0.9747 0.0313 0.0632 0.5396 0.2358 0 0.0325 0.0967 

Latitude 0.2039 0.035 0 0 0.0013 0.0101 0.0325 0 0 

Longitude 0.5217 0.9862 0 0 0.0006 0.0743 0.0967 0 0 
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Table B.6: Pearson’s correlation values for NDVI decay rate compared with other NDVI 

variables for all patterned vegetation sites.  

Pearson’s 
correlation 
coefficient 

NDVI 
Max 

NDVI 
Mean 

Mean 
precipitation 

Mean historic 
precipitation 

NDVI 
decay 
rates 

NDVI AR(1) NDVI 
Variance 

Latitude Longitude 

NDVI Max 
1 0.8371 0.3571 0.3504 

0.561
8 

0.0180 0.4971 -0.2158 -0.0713 

NDVI Mean 
0.8371 1 0.6688 0.5965 

0.733
8 

-0.1914 0.1238 -0.4556 0.1118 

Mean 
precipitation 0.3571 0.6688 1 0.8780 

0.675
8 

-0.2350 -0.3763 -0.8404 0.6518 

Mean 
historic 
precipitation 

0.3504 0.5965 0.8780 1 
0.701
8 

-0.1176 -0.3034 -0.9481 0.8055 

NDVI decay 
rates 

0.5618 0.7338 0.6758 0.7018 1 -0.1234 -0.0456 -0.5572 0.2583 

NDVI AR(1) 

0.0180 -0.1914 -0.2350 -0.1176 
-
0.123
4 

1 0.3781 0.1555 -0.0191 

NDVI 
Variance 0.4971 0.1238 -0.3763 -0.3034 

-
0.045
6 

0.3781 1 0.3860 -0.3952 

Latitude 
-
0.2158 

-0.4556 -0.8404 -0.9481 
-
0.557
2 

0.1555 0.3860 1 -0.9051 

Longitude -
0.0713 

0.1118 0.6518 0.8055 
0.258
3 

-0.0191 -0.3952 -0.9051 1 
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Table B.7: P-values for NDVI decay rate compared with other NDVI variables for all patterned 

vegetation sites. 

p-values NDVI 

Max 

NDVI 

Mean 

Mean 

precipitation 

Mean historic 

precipitation 

NDV 

decay 

rates 

NDVI AR(1) NDVI 

Variance 

Latitude Longitude 

NDVI Max 0 0 0.0237 0.0266 0.0002 0.9123 0.0011 0.1811 0.662 

NDVI Mean 0 0 0 0 0 0.2369 0.4466 0.0031 0.4921 

Mean 

precipitation 

0.0237 0 0 0 0 0.1444 0.0167 0 0 

Mean 

historic 

precipitation 

0.0266 0 0 0 0 0.47 0.057 0 0 

NDVI decay 

rates 

0.0002 0 0 0 0 0.448 0.7799 0.0002 0.1075 

NDVI AR(1) 0.9123 0.2369 0.1444 0.47 0.448 0 0.0162 0.3379 0.9069 

NDVI 

Variance 

0.0011 0.4466 0.0167 0.057 0.7799 0.0162 0 0.0139 0.0116 

Latitude 0.1811 0.0031 0 0 0.0002 0.3379 0.0139 0 0 

Longitude 0.662 0.4921 0 0 0.1075 0.9069 0.0116 0 0 
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