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Abstract 

Amazonian forests have exceptional biodiversity with the highest species richness on 

Earth, providing vital ecosystem services that regulate carbon and hydrological cycles 

both regionally and globally. Despite rainforests being a naturally fire-free system, 

increasing evidence has shown that fires existed in Amazonian forests before 

European colonization, where its ignition depended on a combination of drought and 

human activity. Nowadays, anthropogenic actions, such as land-use and land-cover 

changes, associated to global climate change, increasingly transform these forests 

into a more fire-prone environment. Fire brings several impacts to tropical forests, 

transforming these forests into a carbon source, altering forest dynamics, microclimate 

and forest structure. Despite studies on the impacts of fire on carbon dynamics in 

Amazonian forests, there is still a knowledge gap in how historical fires impact the 

current forest dynamics, especially over increased frequency of droughts, and how 

modern fires affects the vertical canopy structure of primary and secondary forests 

and their ability to recover from fires. The aim of this thesis is to investigate the impacts 

of historical and recent fires on current carbon dynamics and forest structure.   

In chapter 2, I investigate the effects of historical fires on the current response of 

forests to drought. For this, I used soil pyrogenic carbon (PyC) as a proxy of historical 

fires and field-based biomass estimates across the Amazon Basin spanning drought 

and non-drought years. My results show a strong positive correlation between soil PyC 

and soil fertility, clay and silt, and a negative correlation between soil PyC and wood 

density and sand. Furthermore, I found that forests with low concentrations of soil PyC 

were more impacted by drought. These findings support the hypothesis that soil PyC 

increases soil fertility and soil water holding capacity, affording higher resistance to 

drought, whilst also favouring the establishment of species associated with historical 

disturbances such as fire and drought.   

In chapters 3 and 4, I focus on the impacts of recent fires on primary and secondary 

forests, respectively. Chapter 3 investigates the effects of fire and fire reoccurrences 

on the canopy structure of primary forests. I used a range of forest structure attributes 

from airborne lidar data across the Brazilian Amazon. My findings show that forests 
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that experienced repeated fires experience greater changes after fire and need longer 

to recover.   

In chapter 4, I used lidar data to analyse the impacts of fire on the forest structure of 

secondary forests. The results show that fires negatively affect canopy structure of 

secondary forest in early and later successional stages, however, forests in later 

successional stage have lower potential to recover forest structure after fire than early 

successional stages. 

Overall, the results of this thesis show that the impacts of fire on Amazonian forests 

affect carbon dynamics and storage, as well as altering forest structure and many 

related ecosystem services. Impacts caused by fire can be irreversible or may take 

many decades to fully recover, leaving traces behind after burns which happened 

centuries ago. My results indicate that forest conservation and management policies 

should be implemented to avoid fires and protect the long-term future of Amazonian 

forests.    
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1.1 Amazonian forests  

The Amazon forest spans approximately 6 million km2, and represents the largest and 

most biodiverse of global tropical forests, containing about a quarter of all global 

terrestrial species (Field et al., 1998). Tropical forests provide many ecosystem 

services such as controlling precipitation regimes (Salati & Vose, 1986; Avissar & 

Werth, 2005; Langenbrunner et al., 2019) and regulating the global carbon cycle. 

Tropical forests store 55% of the carbon found globally in forests and contribute to the 

carbon sink at approximately 2.4 ± 0.4 Pg C yr-1 (Pan et al., 2011). Across the Amazon 

Basin, forests are not uniform, but instead have variable temperature and precipitation 

regimes, species composition, and physical and chemical soil properties (Fyllas et al., 

2009; Quesada et al., 2012). These differences have significant impacts on their 

carbon cycle. For example, across the large soil fertility gradient from the West (near 

Andes) to the East, aboveground carbon stocks increase but productivity declines 

(Quesada et al., 2012). The capacity of tropical forests to store and sequester carbon 

is, however, in decline because of climate change, land conversion and other 

anthropogenic influences such as deforestation and fires (Harris et al., 2012; Brienen 

et al., 2015; Hubau et al., 2020). Understanding the effects of anthropogenic 

disturbances on tropical forests is important when predicting the future carbon and 

water cycles, and for conservation planning, which directly and indirectly impacts all 

ecosystems.  

 

1.2 Primary and secondary forests  

Across the Amazon, ~88% of old-growth forests have not experienced clear-cutting in 

recent history (35 years) and exist as intact or primary forests (MapBiomas, 2021). In 

contrast, secondary forests, forests which have experienced clearance and regrowth, 

comprise ~4% of Amazonian forests (Heinrich et al., 2021). Major differences exist 

between primary and secondary forests in biomass, forest structure and plant function, 

which I outline in this section. 
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1.2.1 Biomass and carbon sequestration 

Primary forests have higher aboveground biomass (AGB) stocks because these 

forests are formed by tree species with high wood density, large diameter stems and 

tall trees (Chave et al., 2005). However, this high AGB stock is unevenly distributed 

across the Amazon Basin (Quesada et al., 2012). Forests with higher AGB are 

concentrated in the Eastern region of the Amazon, where soils have low fertility 

(Quesada et al., 2012) and forests have slower dynamics (Phillips et al., 2004), 

creating conditions for taller trees (Feldpausch et al., 2011)  that hold more biomass 

(Feldpausch et al., 2012). Soils rich in nutrients may play an important role in 

explaining the almost double rates of stem turnover in the Western and Central areas 

compared with the Eastern Amazon (Phillips et al., 2004; Stephenson & van Mantgem, 

2005; Aragão et al., 2009).  

When tree growth and recruitment exceed tree mortality, forests act as a net 

aboveground carbon sink, having the ability to convert about 15% of anthropogenic 

CO2 emissions into biomass (Phillips et al. 2008). However, a long-term declining 

trend of carbon accumulation has been observed in recent decades (Brienen et al., 

2015; Hubau et al., 2020) when compared to the 1990s, the rate of net increase in 

aboveground biomass has declined by one-third (Brienen et al., 2015). This is because 

growth rates have levelled off at the same time as an increase in the mortality rate, 

leading to a shorter carbon residence time (Brienen et al., 2015). Tree mortality is 

mainly driven by the interaction between species traits and the environment, which 

results in physiological failure or structural damage that causes death (Franklin et al., 

1987; McDowell et al., 2018). Tree death caused by physiological failures is related to 

senescence, stress caused by light competition and moisture, or hydraulic failure due 

to water transport difficulties (McDowell, 2011; Rowland et al., 2015). Tree mortality 

caused by structural failure has been more dominant in Western regions of Amazonia, 

where soils are more fertile, and trees invest more in growth than wood structure (Chao 

et al., 2009). Growth rates are an important factor when predicting tree death, with 

faster-growing species having a higher risk of death (Esquivel-Muelbert et al., 2020). 

Tree species with slower growth rates tend to have higher wood density, investing in 

defence and structure and consequently are expected to have lower rates of mortality 

(Coelho de Souza et al., 2016).  
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In the Brazilian Amazon, secondary forests are mainly located in the South-East region 

and span the Arc of Deforestation (Smith et al., 2020). Regrowth of secondary forests 

is highly dependent on climatic conditions, having slow carbon accumulation with 

intense dry seasons and lower annual rainfall (Poorter et al., 2016). The historical land 

use of secondary forests also determines their regrowth rate, with the intensity of land 

use, frequency and duration of land degradation and type of management practices 

interfering in the recovery of these areas (Jakovac et al., 2021). Secondary forests 

growing on abandoned cropland have faster carbon accumulation rates than those 

growing on abandoned pastures (Fearnside & Guimaraes, 1996). Secondary forest 

regrowth in areas that experienced a high number of slash-and-burn cycles or shifting 

cultivation, in contrast, have the slowest rates of carbon accumulation (Jakovac et al., 

2015; Heinrich et al., 2021). The rate of carbon accumulation also changes between 

successional stages. Aboveground biomass accumulation rates in young secondary 

forests (≤ 20 years) are 5.9 ± 0.8 Mg ha-1 year-1, while in older secondary forests (> 

20 years) this rate decreases to 2.3 ± 0.3 Mg ha-1 year-1 (Requena Suarez et al., 2019). 

The rate of AGB accumulation likely decreases with succession because later 

successional stage forests have lower productivity. Moreover, AGB is one of the 

slowest attributes to fully recover in secondary forests, because it is predominantly 

driven by large trees (Poorter et al., 2016; Poorter et al., 2021). Despite this, 

Amazonian secondary forests had a substantial carbon stock of 294 Tg in 2017 

(Heinrich et al., 2021). However, secondary forests are vulnerable to droughts and 

fire, which leads to increased mortality rates in these forests and consequently carbon 

emissions to the atmosphere (Berenguer et al., 2018b; Rappaport et al., 2018).  

 

1.2.2 Forest structure 

Besides different AGB stocks and rates of AGB gain, primary and secondary forests 

also have differences in canopy structure. Primary forests normally have higher mean 

canopy heights and also fewer canopy gaps than secondary forests (Almeida et al., 

2016; Sato et al., 2016). The tallest trees in Amazonia are found in primary forests. 

However, their distribution is not equal, driven instead by wind, light availability, 

precipitation and temperature (Gorgens et al., 2021). Leaf area index (LAI) is also 

higher in primary forests because of a more complex canopy structure with more 
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vertical strata than secondary forests (Chazdon & Pearcy, 1991; Feldpausch et al., 

2005; Brando et al., 2014). Primary forests also present a less dense understory, 

except in canopy gaps, because greater shade levels produced by higher LAI in these 

forests are not suitable for the establishment of shade-intolerant pioneer species that 

grow in the understory (De Frenne et al., 2021). These pioneer species are more 

dominant, however, in secondary forests in early successional stages. This results in 

different canopy structures as pioneer species become replaced by later successional 

species. Not all secondary forests follow the same successional pathway, but it is 

typically linked to the previous land-use and locality (Mesquita et al., 2001; Jakovac et 

al., 2021). Over succession, canopy structure may change and later successional 

stage forests begin to become more similar to primary old-growth forests (Poorter et 

al., 2016). 

 

1.2.3. Functional composition 

Primary and secondary forests also possess different species composition that 

present different functional strategies. A spectrum of functional traits exists within 

trees, as species trade-off between fast growth rates and high survival rates 

(Salguero-Gómez et al., 2016), including resistance to fire and drought (Brando et al., 

2012; Rowland et al., 2015; Barros et al., 2019; Bittencourt et al., 2020). Tropical 

forests support a wide range of functional strategies as species adapt to a range of 

conditions. In primary forests, a wide diversity of functional strategies exists as species 

partition their environmental niche to avoid competition (Ricklefs, 1977; John et al., 

2007; Oliveira et al., 2019). Functional strategies are not limited to the overall life 

history strategy, but also exist at the organ level, including the leaf economic and wood 

economic spectrum (Wright et al., 2004; Chave et al., 2009). Fast growing species 

typically have low wood density and acquisitive leaves with high specific leaf area, low 

herbivory resistance and short leaf longevity (Wright et al., 2004; Chave et al., 2009). 

Soil nutrient availability is an important determinant of where species are found along 

the leaf and wood economic spectra (Coomes et al., 2009; Ordoñez et al., 2009; 

Quesada et al., 2012; Bartholomew et al., 2022). Given the gradient in soil nutrients 

across the Amazon Basin, the nutrient-rich soils of the West typically support more 

acquisitive species with a faster life-history strategy, whilst the nutrient-poor East 
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supports more conservative strategies that favour survival (Ordoñez et al., 2009; 

Quesada et al., 2012). Consequently, there is a gradient in plant functional traits 

across the Amazon Basin, with higher wood density and lower specific leaf area (SLA) 

in the nutrient-poor East compared with the nutrient-rich West. Functional traits of 

trees that are adapted to low nutrient availability are also typically traits that promote 

greater drought and fire resistance (Pellegrini et al., 2021). Consequently, forests in 

the East Amazon are more likely to be pre-adapted to deal with these emerging 

stresses than species with a faster life-history strategy in the West Amazon.  

In secondary forests, a filtering of plant functional traits occurs because of their more 

extreme environment. In the highly open canopies of secondary forests, functional 

strategies are restricted to those that favour growth over survival, as conservative 

strategies that favour survival are quickly outcompeted. Pioneer species are typically 

found towards the more acquisitive end of the plant economics spectrum, growing fast 

and optimising the use of the readily available resources, such as high photosynthetic 

capacity to optimise the use of light (Wright et al., 2004) and traits that allow them to 

compete for nutrients, such as nitrogen-fixation (Batterman et al., 2013). As 

succession occurs in secondary forests, the canopy begins to close and light in the 

understory becomes more limiting. Therefore, more shade-tolerant, conservative 

species can establish as they can compete more effectively for light in a darker 

environment (Denslow et al., 2019). As a consequence of the shift in community 

composition, there is a shift in the community average of plant functional traits with 

secondary forest succession, with wood density increasing and specific leaf area 

decreasing (Poorter et al., 2021). Given the link between more conservative traits and 

resistance to drought and fire, later successional stage secondary forests may be 

more able to resist these stresses. 

 

1.3 Fires in the Amazon 

1.3.1 Historical fires 

The historical fire regime of the Amazon has been identified through 14C radiocarbon 

dating of charcoal using an Accelerator Mass Spectrometry (AMS). The pattern of fire 

occurrence in the last millennium can even affect wetlands, and there are still trees 
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surviving from these historical fire events (McMichael et al., 2012; Power et al., 2012). 

The origin of these historical fires is associated with climatic variation and/or land use 

in Pre-Columbian times (Denevan, 1992; Bush & Silman, 2007). Many of these areas 

were occupied by humans as evidenced by domesticated tree species, artefacts, and 

Anthropogenic Dark Earth soil (Terra Preta de Índio) (Clement, 1999; Petersen et al., 

2001; Neves et al., 2003; Neves et al., 2004; de Oliveira et al., 2020). 

Evidence suggests that past human activities influenced the floristic composition and 

structure of Amazonian forests (de Oliveira et al., 2020). Levis et al. (2017) found a 

significantly higher abundance and richness of domesticated species in South-

Western Amazonian forests, followed by North-Western, Southern and Eastern 

Amazonia. Forests closer to archaeological sites or rivers also have a richer 

assemblage of domesticated species than forests elsewhere (Figure 1.1). Up to 50% 

of the variation in the abundance, relative abundance, richness and relative richness 

of domesticated species in southwestern and eastern regions can be explained 

exclusively by human influence (Levis et al., 2017).  
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Figure 1.1. Spatial variation of 85 domesticated species across Amazonia. (A to D) 

Maps showing (A) the spatial variation of the total number of individuals of 

domesticated species (abundance) per hectare (ha), (B) the relative abundance of 

domesticated species, (C) the total number of domesticated species (richness) per 

plot, and (D) the relative richness of domesticated species in lowland plots in six 

geological regions of Amazonia (NWA, northwestern Amazonia; SWA, southwestern 

Amazonia; SA, southern Amazonia; CA, central Amazonia; GS, Guiana Shield; and 

EA, eastern Amazonia). Black circles show the observed values of absolute 

abundance (A) and relative abundance (B), ranging from 0 to 292 individuals of 

domesticated species per 1 ha and 0 to 61% of the total number of individuals, and 

the observed values of absolute richness (C) and relative richness (D), ranging from 

0 to 19 domesticated species per plot and 0 to 19% of the total number of species. 

The white-green background shows the interpolation of the observed values (in 

percent) in each plot modeled as a function of latitude and longitude on a 1°-grid cell 

scale by use of loess spatial interpolation. 

Source: Levis et al. (2017) 
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Soil charcoal dated in the Amazon is concentrated between 2,700 and 500 years BP 

Goulart et al. (2017), with the oldest charcoals found in Eastern Amazonia (Belterra, 

Pará) with 7,759-7,585 cal years BP and the most recent in central Amazonia (Careiro, 

Amazonas) with 472-311 cal years BP (Goulart et al., 2017). In another study, Santos 

et al. (2000) performed soil charcoal dating in central Brazilian Amazon and found the 

ages of charcoal vary between 130 to 2,400 years, but mostly between 1,200 and 

1,400 years BP. These charcoal dating have been associated with human occupation, 

mainly following the course of rivers and with dry periods during the Holocene in the 

Amazon region (Sanford et al., 1985; Denevan, 1996; Pessenda et al., 1998; Neves 

et al., 2003; Neves et al., 2004). In a more recent study across Amazonia, fire history 

also spans 11,500 cal years BP, showing a peak in fire records preceding the 

Columbian Encounter (Feldpausch et al., 2022) (Figure 1.2). Charcoal radiocarbon 

dating analysis shows that at some sites the maximum fire return time interval was 

shorter than the time since last fire, suggesting that in the last ~800 years these forests 

had gone a longer period without fire occurrences than in the past 2,000-3,500 years 

(Feldpausch et al., 2022).    

 

Figure 1.2. Frequency of dates from charcoal and soil charcoal by years calibrated 

before present (BP) in fraction of total dates per study from Goulart et al. 2017, 

compilations by McMichael and Bush, 2019, and Feldpausch, 2022. 

Source: Adapted from Feldpausch et al. 2022 
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The use of fire in the Amazon as a tool for forest management and domestic use was 

very common for the first human civilizations (Denevan, 1992). Fire escaping from the 

controlled boundaries and spreading through the forest (Sanford et al., 1985) had 

become very frequent throughout the Basin (Zarin et al., 2005; Balch et al., 2008) and 

has left a considerable amount of charcoal and pyrogenic carbon in the soil (Pivello, 

2011; Koele et al., 2017; da Silva Carvalho et al., 2018).  

Despite historical fires causing tree mortality, damage to vegetation and reductions in 

carbon stocks, fire may also increase forest productivity by producing pyrogenic 

carbon (PyC), which increases soil fertility, improves water holding capacity, 

decreases aluminium toxicity and improves cations exchange capacity in the soil 

(Glaser et al., 2000; Glaser et al., 2001). Therefore, initial slow forest regeneration 

may be compensated later by higher forest productivity that owes to the effects of soil 

PyC (Glaser et al., 2002; Cheng et al., 2008). 

Pyrogenic carbon is a thermochemically altered (pyrolysed) carbon originated from 

biomass and fossil fuel burning that has incomplete combustion of organic matter (Bird 

et al., 2015). It is produced at temperatures between 400˚C to 600˚C (Miranda et al., 

1993; Saiz et al., 2014; Saiz et al., 2015) and it can be found in the atmosphere, soils, 

sediments, ice, terrestrial water bodies and the oceans (Schmidt & Noack, 2000). 

Since there has been enough oxygen on Earth to sustain a combustion process, PyC 

has been produced, which is recorded to up 420 Myr ago (Scott & Glasspool, 2006). 

Due its recalcitrant characteristic, PyC has a mean residence time (MRT) in a range 

of 700 to 9,000 years (Lehmann et al., 2008). However, as PyC is formed by high 

temperatures and depends on existing biomass, it could also be interpreted as a proxy 

for fire severity. Some research shows that PyC is a dominant component in the global 

carbon cycle (Preston & Schmidt, 2006; Lehmann et al., 2008; Bird et al., 2015) and 

can represent more than 30% of total soil organic carbon (SOC) (Reisser et al., 2016). 

Moreover, PyC can act as an important proxy of past fire disturbances (Rehn et al., 

2021).  

In Amazonia, there is a large soil fertility gradient (higher in the west near the Andes) 

that affects carbon stocks and forest productivity (Quesada et al., 2012). Despite this 

knowledge, it is not yet known whether PyC can contribute to the large basin-scale 

variation in forest productivity. Currently, PyC has been mainly studied in areas of 
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Anthropogenic Dark Earth and biochar (deliberate production of PyC) additions in 

agriculture. 

A study from southern Amazonia found that PyC can significantly and positively affect 

soil fertility but found no relationship with species richness. In areas with high 

concentrations of PyC in the soil, such as in Anthropogenic Dark Earth, there was 

significantly higher biomass and species composition. There is also a positive 

correlation between PyC and clay content in soils and a negative correlation with soil 

sand content. Therefore, soil clay content and forest aboveground biomass can 

contribute to explaining the PyC content of soils (Oliveira, 2017). 

There have been few studies of the spatial distribution of PyC in the Amazon. Koele 

et al. (2017) analysed 37 plots across the Amazon Basin and estimated a PyC stock 

of 1.10 Pg over 0-30 cm soil depth (1.44 Mg PyC ha-1), and 2.76 Pg over 0-100 cm 

soil depth (3.62 Mg PyC ha-1). When analysed by depth, they found a gradient in the 

average concentration of PyC, with the highest concentration of PyC situated in the 

surface layers, with the values of 0.76 g kg-1 for the 0-5 cm depth, 0.63 g kg-1 for the 

5-10 cm depth, 0.52 g kg-1 for the 30-50 cm depth, 0.41 g kg-1 for the 50-100 cm depth 

and 0.28 g kg-1 for 150-200 cm depth (Figure 1.3).   
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Figure 1.3. Spatial variability of PyC in 0–5 cm, 5-10 cm, 30-50 cm and 50-100 cm, in 

37 one hectare forest plots, with no known recent fire or anthropogenic disturbance, 

sampled in the Amazon Basin. Points are scaled to the amount of PyC in percentage. 

Symbols are semi-transparent to allow visualization when overlapping. 

Source: Koele et al. (2017) 

Information on PyC stocks throughout the Amazon Basin acts as another metric of 

past fires, and together with charcoal radiocarbon dating, it will help to identify the 

occurrence and effects of the last fire disturbance, contributing to a better 

understanding of the functional and structural dynamics of the Amazonian forest. 

Greater knowledge of post-fire effects can improve estimates of the future of the 

carbon sink and the ability of forests to respond to future fire events. For example, if 

the long-term carbon sink is partially driven by recovery from past disturbance or PyC 

fertilization, then the strength of CO2 fertilization effects on the carbon sink may be 

overestimated. 

 

1.3.2 Recent fires  

Tropical forests are not a fire-prone environment since they have high annual 

precipitation and closed canopies leading to a humid understory. Therefore, most fires 

in these forests are from anthropogenic sources that are mainly related to activities 
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such as land use changes. Because of the high humidity, fires in tropical forests are 

primarily understory fires and predominantly occur during severe droughts (Alencar et 

al., 2006), when dry litter and dry accumulated woody biomass on the ground act as 

fuel and carry fire. These fires can weaken trees by charring stems, leading to post-

burn tree mortality (Balch et al., 2011). Consequently, canopy gaps are created, 

generating a drier microclimate that transforms the forest into an environment that is 

more susceptible to future fire disturbances. Tree species in tropical rainforests are 

poorly adapted to fire with thin bark, low wood density and small diameter trees being 

at greater risk of mortality (Brando et al., 2012). 

Recent fires are become more frequent and are closely related to deforestation and 

the increasing frequency and intensity of droughts in Amazonia (Silva Junior et al., 

2019). Between 1998 and 2020 the number of fires in the Brazilian Amazon increased 

74% (INPE, 2021). Forest degradation and fragmentation are also strongly linked to 

fire occurrences because they generate a drier microclimate (Bullock et al., 2020; Silva 

Junior et al., 2020b). During the 2015/2016 drought in Amazonia, the extension of 

burned forest areas in the Brazilian Amazon reached 9,246 Km2 which represented ~ 

25% of all burned areas in that period (Silva Junior et al., 2019). Forests affected by 

fires store 25% less biomass than adjacent unburned forests even 31 years after the 

fire event (Silva et al., 2018). Another study in Eastern Amazonia found that five years 

after fire, forests still have 23% less biomass stocks than unburned areas (Sato et al., 

2016). Delayed losses of biomass driven by tree mortality are estimated to occur from 

3 to 8 years after the fire (Barlow et al., 2003b; Berenguer et al., 2021), but can persist 

for at least three decades, as a result of mortality of large trees (> 50 cm DBH) with 

high wood density (Silva et al., 2018). The increase in the rate of fires in the last 

decade has led to uncertainties in carbon emission estimates, since the gross 

emissions by fire during drought years (989 ± 504 Tg CO2 year-1) correspond to more 

than half of the emissions from old-growth forest deforestation (Aragão et al., 2018). 

In addition to the negative impact on biomass stocks in Amazonian forests, fire can 

also affect the vertical structure of the forests. However, few studies have addressed 

this impact on Amazonian forests and are restricted in spatial coverage (Almeida et 

al., 2016; Sato et al., 2016; Rappaport et al., 2018). In the Rio Negro basin, burned 

forests had 16% lower maximum height and 166% more gap fractions than 

surrounding unburned areas (Almeida et al., 2016). Meanwhile, in western Amazonia, 
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forest height after fires was not able to recover within 10 years (Sato et al., 2016). The 

length of time for the recovery of the vertical canopy structure after fire still needs to 

be explored further to assess whether these patterns extend to the whole of Amazonia. 

Leaf area index (LAI) is another attribute that decreases with fire (Brando et al., 2014), 

allowing an increase in solar radiation and, consequently, a drier and hotter 

understory. These changes in the understory microclimate transform the forest to 

become more susceptible to fire reoccurrences, arresting the succession process in 

these forests (Mata et al., 2022). Therefore, fire impacts can lead to long-term changes 

in carbon stocks and forest structure (Rappaport et al., 2018; Silva Junior et al., 2018).  

 

1.4 Drought in Amazonian forests 

The frequency of drought events in Amazonian forests is increasing and has been 

estimated to reoccur on average each 5 years (Panisset et al., 2018). Droughts can 

be caused by natural processes related to changes in sea surface temperature, e.g., 

the Atlantic Multidecadal Oscillation, the El Nino Southern Oscillation and the Pacific 

Decadal Oscillation (Marengo & Espinoza, 2016; Aragão et al., 2018). However, 

changes in patterns of large-scale atmospheric circulation caused by anthropogenic 

action such as land-use and land-cover changes may exacerbate the intensity of 

droughts (Spracklen & Garcia‐Carreras, 2015; Llopart et al., 2018). Climate change is 

predicted to increase the frequency, intensity, and length of droughts in Amazonia 

(Malhi et al., 2008; Bonini et al., 2014). The carbon sink of Amazonian forests 

diminishes during droughts as photosynthesis and net productivity decrease, and tree 

mortality caused by the direct effect of droughts and by the indirect effect of understory 

fires increases (Phillips et al., 2010; Brando et al., 2014; Gatti et al., 2014; Rowland et 

al., 2015; Bonal et al., 2016).  

In the extreme drought of 2015/2016, 46% of the Brazilian Amazon biome was under 

severe hydric stress, which led to a decrease in the photosynthetic capacity and 

changes in canopy structure (Anderson et al., 2018). In 2005, western Amazonia 

experienced a strong water deficit which resulted in a decline in canopy structure and 

moisture. Despite the gradual recovery in total rainfall in the following years, these 

attributes did not fully recovery within 4 years, suggesting the reoccurrence of drought 

in Amazonia will lead to persistent changes in forest structure (Saatchi et al., 2013). 
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Another drought in 2010 also negatively impacted growth rates in Amazonian forests 

(Feldpausch et al., 2016).  

Large trees are more affected in growth and mortality rates during droughts than 

smaller trees (Phillips et al., 2010; Bennett et al., 2015; Rowland et al., 2015). This 

higher sensitivity of large trees to drought is likely driven by greater vulnerability to 

hydraulic stress (Ryan et al., 2006; McDowell, 2011; Rowland et al., 2015; Bittencourt 

et al., 2020), higher radiation and evaporative demand on exposed crowns (Roberts 

et al., 1990; Nepstad et al., 2007). The mortality of these large trees can cause great 

negative impacts on carbon storage (Rowland et al., 2015), and because they play 

important roles in forests as keystone species (Lindenmayer et al., 2012). The loss of 

the large trees can thus cause changes to the microenvironment, soil nutrient 

availability, local hydrological regimes, food abundance in form of fruits, seeds, 

flowers, foliage and nectar for several organisms (Lindenmayer et al., 2012). Large 

tree mortality also opens gaps in the canopy, leading to a dry understory and 

consequently an increase in the susceptibility of these forests to fire. This increase in 

drought frequency then also leads to an increase in fire occurrence, with 

consequences for future forest dynamics and climate change.  

 

1.5 Forest monitoring using field measurements and remote sensing  

1.5.1 Field measurements 

Field measurements are used to quantify carbons stocks, forest structure and wood 

volume. Overall, these measurements are made in a delimited sample of the forest, 

the forest plot (e.g. 1 ha), where all living trees, palms and lianas are censused by 

measuring their diameter at breast height (DBH), which typically corresponds to 1.3 m 

from the ground (Phillips et al., 2009b). Tree attributes including DBH, tree height, 

wood density and taxonomic information are measured and used to calculate several 

plot-level metrics such as the number of individuals or stems (n ha-1) – stem density; 

total basal area of all stems (m2 ha-1); wood volume (m3 ha-1); and the total 

aboveground live biomass (Mg ha-1), the AGB (Souza & Soares, 2013). These data 

measured in the field, especially AGB, are used in regression models, spatial 

interpolation techniques and in combination with remote sensing datasets to upscale 
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its spatial distribution to larger areas. In general, AGB data is obtained by allometric 

AGB equations and from destructive sampling methods. The destructive sampling 

method is considered the most accurate approach (Lu et al., 2016), whereby trees are 

felled and cut, the wet weight is estimated, and then a subset is dried and weighed to 

convert to dry biomass (Soares et al., 2011). From this highly laborious approach, it is 

possible to derive allometric regression equations for AGB estimation from individual 

tree attributes such as DBH, crown diameter and total tree height (Soares et al., 2011). 

However, allometric regressions are specific to their environmental conditions from 

their reference data (Lu et al., 2016), such as forest and soil types.  

Frequent forest recensuses, usually in permanent plots (Phillips et al., 2009b; Davies 

et al., 2021), allow investigation of temporal changes in species composition, forest 

structure, wood volume and biomass (Souza & Soares, 2013). Some metrics usually 

analysed refer to growth, recruitment, mortality and net change rates, which are often 

calculated in terms of biomass or carbon in ecological studies (Phillips et al., 2009a). 

Forest plots are not just important for understanding biomass and forest structure, but 

can also reveal important information about soil, other components of carbon budget 

and species interactions. The infrastructure generated by permanent research plots 

also provides a platform for detailed functional trait studies (Davies et al., 2021; 

ForestPlots.net et al., 2021; Malhi et al., 2021).  

 

1.5.2 Remote sensing 

Forests can also be monitored by a range of remote sensing technologies, including 

passive and active technologies. One increasingly common active remote sensing 

technology is Light Detection and Ranging (lidar). I focus on this technology here as it 

is the basis of this thesis. 

Lidar was developed after World War II and evolved quickly in 1960 with the invention 

of the laser system (Carter et al., 2012; Hassebo, 2012). The first aim of lidar was to 

topographically map and develop a Digital Model of Elevation (DEM) with a high level 

of accuracy in areas that were difficult to access (Wagner et al., 2004; Giongo et al., 

2010). In forest applications, lidar can provide accurate measurements of forest 

structure and carbon stocks over large areas (Lu, 2006; Stark et al., 2012; Rappaport 

et al., 2018), allowing the evaluation of forest changes after environmental 
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disturbances (Andersen et al., 2014; Leitold et al., 2018). Lidar is a laser scanning 

technology and works by emitting sheaves of laser (generally in near-infrared band - 

0.9 to 1.1 μm) directed to the surface, computing the distance between the sensor and 

the target (Lefsky et al., 2002). Lidar sensors are coupled to inertial navigation systems 

and global positioning system (GPS) receivers on airborne platforms, to record data 

across large areas (van Leeuwen & Nieuwenhuis, 2010) (Figure 1.4).  

 

Figure 1.4. Principles and components of an airborne handling system. 

Source: Adapted from Giongo et al. 2010. 

 

Lidar sensors have two main data processing possibilities. The first is discrete-return, 

which is when the return signal identifies one or a small number of major peaks 

representing objects in the laser path. Most studies of forests in Amazonia use the 

discrete return method with small footprints. The second type is known as full-

waveform, which records and reconstructs the entire reflected signal (Lefsky et al., 

2002; Ullrich & Pfennigbauer, 2011). This method can provide a more complete three-

dimensional representation of the forest canopy (Ullrich & Pfennigbauer, 2011; 

Anderson et al., 2016), but also demands higher computational power and generates 

a large volume of data due to its greater complexity (Anderson et al., 2016). New tools 

are being developed to facilitate the processing of full-waveform lidar data (Zhou & 

Popescu, 2019). Moreover, recently, a satellite-based full-waveform lidar system has 

been placed in orbit, developed specifically for forest and ecosystem studies - the 



36 
 

Global Ecosystem Dynamics Investigation (GEDI). GEDI will allow understanding of 

vertical canopy structure variations to advance rapidly in the coming decades 

(Dubayah et al., 2020).  

Many studies have used lidar to monitor forest structure dynamics in the Amazon  e.g. 

(Andersen et al., 2014; Leitold et al., 2018; Dalagnol et al., 2019; de Almeida et al., 

2020; Moura et al., 2020), but few studies have addressed the impacts of fire on 

canopy structure (Almeida et al., 2016; Sato et al., 2016; Rappaport et al., 2018). To 

generate models to estimate AGB from lidar, it is common to use reference data from 

permanent forest plot inventories. With these data, it is possible to calibrate regression 

models between AGB and lidar return point metrics, normalized by the DEM 

(Andersen et al., 2014; Longo et al., 2016; Silva et al., 2017). Longo et al. (2016) 

calibrated their model using 407 plots across the Amazon Basin, comprising old-

growth areas and areas disturbed by fire and selective logging. Their research 

comprised several lidar overflights, conducted with similar parameterization, e.g., the 

minimum point return (4 return points m-2), avoiding inconsistency and tendency in 

biophysical parameters models (Silva et al., 2017). Besides the use for AGB 

estimations, the ability of lidar to penetrate the canopy allows the generation of high 

resolution topographic maps and accurate estimates of vegetation height, cover and 

structure (Lefsky et al., 2002). From the lidar point cloud, it is possible to extract 

several metrics from the canopy model, such as average height, percentiles and 

standard deviation (d’Oliveira et al., 2014). From the interpolation of first and last 

returns, the digital surface model (DSM) and digital terrain models (DTM) are 

generated. When subtracting the DTM from the DSM, a canopy height model (CHM) 

is produced (Leitold et al., 2015). Several metrics can be extracted from the CHM 

providing information about, for example, canopy gaps fractions, maximum and mean 

canopy height, canopy roughness, among others (Stark et al., 2012; Andersen et al., 

2014; d’Oliveira et al., 2014; Longo et al., 2016). Although these metrics are very 

useful to describe forest structure, other more sophisticated analysis can better 

describe forest structure (Lefsky et al., 2002). The leaf area index (LAI) and leaf area 

density (LAD) can be obtained from transmission rates of pulses (or light energy) 

through the volumetric units of the canopy (Stark et al., 2012; Tang et al., 2012; Detto 

et al., 2015). The LAI provides information on the ratio of canopy leaf area per unit 

ground surface area (m2 m-2) (Wilson, 1959), while the LAD represents the vertical 
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distribution of LAI as subcomponents of the height strata (m2 m-3) (de Almeida et al., 

2019b). Lidar technology is, therefore, a powerful tool capable of providing detailed 

information about the vertical canopy structure, AGB and changes in structure over 

time and after forest disturbances.  

 

1.6 Outline chapters  

The overall aim of this thesis is to investigate the effects of past and recent fires on 

the dynamics and structure of Amazonian forests. For this, I use both field-based and 

remote sensing methodologies. I combine data on soil fertility, soil pyrogenic carbon, 

forest inventory data, satellite data and airborne lidar data across the Amazon Basin, 

revealing how the world’s largest tropical forest responds to historical and recent fires.  

This thesis is divided into 5 chapters (Figure 1.5). This chapter, chapter 1, outlines 

our current understanding of primary and secondary Amazonian forests and their 

response to fire and drought. In particular, I focus on biomass and forest structure as 

these are the main themes of my thesis. I also compare field-based and remote 

sensing methodologies for forest monitoring as these are techniques I employ in my 

thesis. 

My empirical research is presented in chapters 2-4. In chapter 2, I aim to evaluate 

whether fires have left a legacy on soil and vegetation, which may affect how forests 

now respond to droughts. In this chapter I use an Amazon-wide, long-term plot network 

ranging from 1981 to 2017, spanning drought and non-drought years, and soil fertility 

and pyrogenic carbon data. More specifically, I investigate how net aboveground 

carbon, including its components (gain and loss), varies with soil pyrogenic carbon 

concentration and how this moderates the response of aboveground carbon to 

drought.  

Chapters 3 and 4 of my thesis focus on the impacts of recent fires on Amazonian 

forests. In chapter 3, I aim to investigate the impacts of recent fires and their 

reoccurrence on biomass and the vertical canopy structure of primary forests across 

Amazonia. I use 110 airborne lidar sites covering unburned and burned areas, burned 

between 2001 and 2018. A range of lidar metrics is used to evaluate changes in forest 

structure caused by fire, the impact of fire reoccurrence and the potential for recovery. 
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I also compare forests with low and high carbon stocks to test whether they experience 

different responses to fire.  

In chapter 4, I focus on analysing the impact of recent fires on the vertical canopy 

structure of secondary forests across the South-Eastern region of the Brazilian 

Amazon. For this study, I use 20 airborne lidar sites, which covered unburned and 

burned secondary forests. In this chapter, I use lidar metrics to evaluate how 

secondary forest successional stage influences the impact of fire on forest structure 

and its subsequent recovery. 

Finally, chapter 5 synthesises the overall findings of this thesis and draws 

recommendations derived from this body of research. 
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Figure 1.5. Conceptual diagram of the specific aims of each chapter. Each box represents a chapter as indicated in each box.
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Chapter 2: Past fires enhance Amazon forest drought 

resistance 

 

Soil, charcoal, and soil PyC sampling in a field campaign in Alta Floresta, MT, Brazil 

This chapter was submitted to Frontiers in Forests and Global Change journal as 

Laura B. Vedovato, Lidiany C. S. Carvalho, Luiz E.O.C Aragão, Michal Bird, Oliver L. 

Phillips, Patrícia Alvarez, Jos Barlow, David C. Bartholomew, Erika Berenguer, 

Wendeson Castro, Joice Ferreira, Filipe M. França, Yadvinder Malhi, Beatriz Marimon, 

Ben Hur Marimon Júnior, Abel Monteagudo, Edmar A. Oliveira, Luciana O. Pereira, 

Aline Pontes-Lopes, Carlos A. Quesada, Camila V. J. Silva, Javier E. Silva Espejo, 

Marcos Silveira, Ted R. Feldpausch.  



41 
 

2.1 Abstract 

Drought and fire reduce productivity and increase tree mortality in tropical forests. 

However, fires also produce pyrogenic carbon (PyC), which persists in situ for a long 

time, and represents a legacy of past fires, potentially improving soil fertility and water 

holding capacity, and/or favouring establishment and stimulating growth of fire and 

drought-associated tree species. Using an Amazon-wide, long-term plot network, in 

forests without known recent fires, integrating site-specific measures of forest 

dynamics, soil properties and a unique soil PyC concentration database, we 

investigate how PyC is correlated with physicochemical soil properties, wood density, 

aboveground carbon (AGC) dynamics and affects forest resistance to severe drought. 

We found that forests with higher concentrations of soil PyC had both higher soil 

fertility (p<0.001) and lower wood density (p<0.001). Soil PyC is not associated with 

AGC dynamics in non-drought years. However, during extreme drought events, forests 

with higher concentrations of soil PyC experience lower reductions in AGC gains 

(woody growth and recruitment), with this drought-immunising effect increasing with 

drought severity. Forests with a legacy of past fires are therefore more likely to 

continue to grow and recruit under increased drought severity. Forests with high soil 

PyC concentrations (third quartile) have 3.8% greater AGC gains under mean drought, 

but 33.7% greater under the most extreme drought than forests with low soil PyC 

concentrations (first quartile), offsetting losses of up to 0.68 Mg C ha-1yr-1 of AGC under 

extreme drought events. This suggests that past fires have legacy effects on current 

forest dynamics, by altering soil fertility and/or favouring establishment of earlier 

successional tree species capable of faster growth during droughts. Therefore, mature 

forest that experienced fires centuries or millennia ago may have greater resistance 

to current short-term droughts.  

  

2.2 Introduction  

Despite the long-standing view that tropical rainforests are fire-free systems, there is 

increasing evidence that fires existed in Amazonian forests before European 

colonization (Richards, 1973; Erickson, 2008). Fires in these wet environments 

depend on the combination of drought and ignition from human activity (Bush et al., 

2008; França et al., 2020). Pre-Columbian fires were widespread and, in some areas, 
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recurrent, with return intervals of hundreds of years (Sanford et al., 1985; Feldpausch 

et al., 2022). These fires mostly spanned 7,000 to 250 years before present (BP), with 

an increase in fire frequency ~1,500 to 500 years BP (Sanford et al., 1985; Santos et 

al., 2000; Goulart et al., 2017). Fires today are associated with deforestation and 

droughts (Silva et al., 2020; Silveira et al., 2020) and increased 74% in 2020 compared 

to 1998 in the Brazilian Amazon (INPE, 2021). Fragmented forests are at a greater 

risk of fire, especially in El Niño years, because fire spreads from forest edges to the 

interior of forests (Silva Junior et al., 2018; Silva Junior et al., 2020a). However, the 

long-term legacy of these fires on soil and vegetation remains unclear.  

Forest fires produce pyrogenic carbon (PyC) which can act as an important proxy of 

past forest fire disturbances (Rehn et al., 2021). PyC is formed through the incomplete 

combustion of biomass (Bird et al., 2015). Some PyC can be lost as aerosols during 

burning (Bird et al., 2015) and through decomposition and erosion from steep slopes 

(Rumpel et al., 2006; Bird et al., 2015; Coppola et al., 2019). However, the remaining 

PyC is highly recalcitrant and can persist in the environment for millennia, including in 

soil (Bird et al., 2015). In the Amazon, there is a large stock of soil PyC (1.1 Pg in the 

top 30 cm alone) as a result of long-term PyC accumulation produced mostly by 

historical fires (Koele et al., 2017). A well-known example of long-term PyC 

accumulation and amendment of soil fertility are the Amazon Dark Earth soils (ADE, 

Anthrosols or Terra Preta de Índio), which are rich in PyC because of historical 

indigenous land management with fire and, as a result of this, have higher fertility than 

adjacent areas (Glaser, 2007; de Oliveira et al., 2020). 

Fire can alter soil physicochemical properties. In addition to producing ash that can 

have a positive short-term effect on soil fertility, PyC produced by fires can also have 

positive long-term effects (Glaser et al., 2002), e.g., decreasing aluminium toxicity and 

improve cation exchange capacity via surface carboxylic groups on aromatic 

backbones, increasing soil organic carbon and water holding capacity because of the 

porous structure of PyC (Glaser et al., 2002). These changes potentially alleviate soil 

water deficits during drought events and improve soil fertility. Furthermore, forests rich 

in soil PyC (Amazon Dark Earth) have higher productivity (Aragão et al., 2009) and 

can allocate more carbon towards tree growth than forests in adjacent areas (Doughty 

et al., 2014). 
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In recent decades, Amazonian forests have experienced an increase in drought 

frequency and severity (Lopes et al., 2016; Paredes-Trejo et al., 2021). Under future 

climate scenarios this trend will continue to increase greenhouse gas concentrations 

(Duffy et al., 2015). Forest dynamics play an important role in determining whether the 

Amazon acts as a net carbon sink, with drought events reducing the carbon 

sequestration capacity of the forest (Brienen et al., 2015; Hubau et al., 2020). In 2005, 

the mega-drought experienced by Amazonian forests caused an estimated carbon 

loss over the entire basin at a rate of 0.3 Pg C yr-1 (Yang et al., 2018). Furthermore, 

during the 2010 drought, the Amazon forest experienced a net biomass loss of 1.95 

Mg ha-1 yr-1, driven by an increase in biomass mortality and a decrease in biomass 

productivity (Feldpausch et al., 2016). However, the response to drought events can 

vary according to soil properties and plant functional traits such as wood density. 

Forests growing on more fertile soils and with lower wood density species which also 

experience faster tree turnover (Quesada et al., 2012), are often more vulnerable to 

severe drought (Feldpausch et al., 2016; Greenwood et al., 2017) and consequently, 

more vulnerable to fire (Berenguer et al., 2021). After fire events in Amazonian forests, 

severe structural and compositional changes frequently occurs, with early 

successional tree species with low wood density favoured for establishment (Barlow 

& Peres, 2008; Berenguer et al., 2018b). Fire can affect forest carbon dynamics for 

over a decade (Sato et al., 2016; Silva et al., 2020), but it is unclear if it leaves a legacy 

impact on forest carbon dynamics over much longer periods, either through changes 

induced in the soil by PyC or by selection for species and traits associated with fire 

and drought.  

Here, we evaluate whether historical fires have left a legacy on soil and vegetation 

that affect how, over the past four decades, Amazonian forests have responded to 

drought. Historical fires in this chapter refer to fires that occurred any time prior to 

satellite records (i.e. before 1985). The aims of this research are: i) to understand how 

soil PyC concentration is associated with physicochemical soil properties and tree 

wood density, ii) to determine whether there is an association between soil PyC and 

aboveground carbon (AGC) dynamics, iii) to understand whether forests with higher 

soil PyC concentrations and/or more favourable soil physicochemical properties, 

change AGC dynamics during severe droughts. We hypothesised that soil PyC as a 

proxy or legacy of past fires might influence Amazonian forests in three non-exclusive 
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ways, by: (1) improving soil fertility, tending to accelerate the turnover in Amazonian 

forests, (2) increasing water holding capacity, potentially conferring a higher resistance 

to droughts and (3) favouring the establishment of species in a long-term succession, 

associated with past fire and drought disturbances. In this chapter, we define 

resistance as the capacity of the forest to maintain carbon gains rates during drought 

events. 

 

2.3 Methods  

2.3.1 Forest dynamics   

We used forest dynamics data of 95 plots encompassing 432 censuses from a 

published dataset plus data obtained via ForestPlots.net (Hubau et al., 2020; 

ForestPlots.net et al., 2021) (Figure 2.1). Censuses took place between 1981 and 

2017, including drought and non-drought periods. Plot size ranged from 0.25 ha to 9 

ha, with a mean size of 1.14 ha and total plot area of 108 ha. Census interval ranged 

from 4 months to 5.6 years, and plots have been monitored for an average of 15 years 

each. For each census interval we calculated Aboveground Biomass (AGB) gains 

through growth and recruitment, AGB losses through mortality and AGB net change 

as the difference between AGB gains and AGB losses. Wood density used to calculate 

AGB is available on ForestPlots.net dataset and is derived from a global wood density 

database (Lopez-Gonzalez et al., 2011). AGB rates were transformed into 

Aboveground Carbon (AGC) stocks using the ratio 2:1 (IPCC, 2006). We excluded 

from the analysis censuses with an interval length longer than twice the mean value 

of all censuses (> 5.77 years), since long intervals are less likely to be able to detect 

any effects of drought. All plots are in mature lowland forest (< 1500 m above sea 

level), without known recent fire disturbances or selective logging and represent a 

climatic and edaphic variation gradient across the Amazon Basin.  

  

2.3.2 Soil Pyrogenic Carbon and Non-PyC fraction of Organic Carbon    

Soil samples were collected from the same plots as the forest inventory data (Figure 

2.1) at depths of 0-5, 5-10, 10-20 and 20-30 cm as part of past studies (Koele et al., 

2017; Quesada et al., 2020) and this study. In plots ≥ 1 ha we sampled a minimum of 
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5 different locations across the plot, and in plots < 1 ha we sampled 3 locations. Then, 

we combined the samples in each plot by depth to result in one sample per plot per 

depth. For each sample, we measured the total organic carbon (TOC), pyrogenic 

carbon (PyC), and non-PyC fraction of the organic carbon (OC). The hydrogen 

pyrolysis technique (HyPy) (Ascough et al., 2009) was used to quantify the PyC 

fraction of TOC, which represents stable polycyclic aromatic carbon with a ring number 

of > 7 (Meredith et al., 2013). However, there is potentially more PyC that is not 

quantified by this technique since PyC produced by forests fires includes a variable 

fraction of PyC with an aromatic ring size of < 7 that is not quantified by the technique. 

The non-PyC fraction of organic carbon (OC) is the difference between TOC and PyC 

and will include low temperature PyC not quantified by HyPy (if present). 

 

Figure 2.1. Spatial distribution of the plots analysed. Note that locations are 

approximate and displayed to reduce overlapping points where multiple plots are 

sampled. The size of grey dots is proportional to the mean concentration of PyC in the 

0-30 cm interval at each site. Amazon regions are defined following Feldpausch et al. 

(2011). 
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We calculated the weighted mean for all depths to estimate the PyC and non-PyC OC 

concentrations in the soil surface (0-30 cm). The statistical analyses use continuous 

values; for Figure 2.4, we assigned each plot to one of two PyC classes based on the 

PyC median distribution: “Low” - values smaller than 0.048% and “High” - values equal 

or higher than 0.048%.   

 

2.3.3 Maximum Cumulative Water Deficit anomaly  

The Maximum Cumulative Water Deficit (MCWD) is a well-established metric to 

indicate water stress in forests (Aragão et al., 2007), based on studies that show the 

average evapotranspiration (E) of lowland moist tropical forests is approximately 100 

mm per month (da Rocha et al., 2004; von Randow et al., 2004). Consequently, if the 

monthly precipitation (P) is lower than 100 mm, the forest enters a state of water deficit 

(WD), which can accumulate over time (CWD). To calculate CWD, we used monthly 

precipitation data from Climate Hazards Group InfraRed Precipitation with Stations 

(CHIRPS) from January 1981 until December 2017 (Funk et al., 2015). The following 

rule was applied to calculate the CWD per plot (p) for each month (n), using the 

evapotranspiration fixed at 100 mm month-1:  

If WDn-1(p) – E(p) + P n(p) < 0; 

then WDn(p) = WDn-1(p) – E(p) +P n(p); 

else  WDn(p) = 0                                                (2.1) 

 The most negative CWD value among all months in each calendar year was taken as 

the MCWD. Subsequently, we calculated MCWD for each census interval, which 

refers to the most negative CWD during the census interval. The mean annual MCWD 

from 1981 to 2017 for each plot was used as the baseline to compute MCWD 

anomalies (Z-score) for each census interval, normalized by the standard deviation 

(σ). Censuses with anomalies ≤ -1.65 were classified as severe drought events, based 

on a confidence level of 90% (Aragão et al., 2018).   
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2.3.4 Physicochemical soil properties  

Soil physicochemical data derived from plot samples were provided by ForestPlots.net 

(ForestPlots.net et al., 2021). We used data for surface (0-30 cm) soil including soil 

texture (silt, clay, sand fractions), total P, pH and exchangeable cations (K, Mg, Ca). 

The soils samples were all analysed following the protocol described in Quesada et 

al. (2010). 

All soil fertility variables were centred, scaled and condensed into one axis using a 

principal component analysis (PCA) using the R package FactoMineR (Husson et al., 

2016). The first eigenvalue explained 73.3% of the variance and was used as a single 

soil fertility variable in the analysis, visualized using the R package factoextra 

(Kassambara & Mundt, 2017) (SI Figure 2.1, SI Table 2.1). 

 

2.3.5 Data Analysis   

To evaluate the relationship between soil PyC and soil fertility, OC, wood density and 

soil texture we used Pearson’s correlation test. We applied a natural log transformation 

to soil PyC, soil fertility and OC to meet assumptions for data normality.  

We applied a generalized linear mixed effects model (GLMM) to evaluate the 

relationship between soil PyC and AGC gain, loss and net change. To account for 

census replication per plot and for regional differences across the Amazon Basin, we 

used the plot code nested in plot clusters as a random intercept effect in the models, 

with a fixed slope. The plot clusters refer to plot codes that are located within the same 

local group and are represented by the same three first letters of the plot codes (Lopez-

Gonzalez et al., 2011).  

To evaluate the effects of soil PyC on the change in AGC dynamics with drought 

severity, we filtered our database to only include censuses classified as severe 

drought (MCWD anomalies ≤ -1.65σ) (Feldpausch et al., 2016). In this analysis, we 

also applied a GLMM using the same random effect cited above. Soil PyC, severe 

MCWD anomalies, OC, soil fertility, wood density and interaction between variables 

were used as predictors to evaluate differences in AGC dynamics according to drought 

severity. We applied a square-root transformation of AGC loss, and a log 

transformation of soil PyC and MCWD anomalies to ensure a normal distribution of 
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fitted residuals. All variables were standardised to allow comparisons between model 

outputs. We applied a backwards stepwise selection procedure and selected the best 

models according to the lowest corrected Akaike Information Criterion (AICc) values 

using the MuMIn package (Barton, 2020). To evaluate spatial autocorrelation which 

could bias the models’ coefficients, we used the models’ residual to plot spline 

correlograms with 95% confidence interval based on 1,000 bootstrap resamples using 

spline.correlog function of the package ncf (BjØrnstad & Falck, 2001). In order to 

understand whether the effects of soil PyC were driven by organic carbon soil 

amelioration, we re-ran the models with OC instead of soil PyC. All GLMM models 

were performed using the lme4 package (Bates et al., 2018). All statistical analyses 

were conducted using R statistical software version 4.0.3 (R Core Team, 2020).   

 

2.4 Results  

2.4.1 Soil PyC, physicochemical soil properties and wood density  

Soil PyC was significantly correlated with all measured variables including soil fertility, 

OC, wood density and soil texture as percentage of sand, clay and silt. We found 

highly significant positive correlations between soil PyC with soil fertility (PCA axis-1) 

(r =0.49, p<0.001), OC (r=0.30, p=0.003), clay (r=0.52, p<0.001) and silt (r=0.34, 

p=0.002), and a negative correlation between soil PyC with wood density (r= -0.33, 

p<0.001) and sand (r= -0.6, p<0.001) (Figure 2.2).  
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Figure 2.2. Relationship between soil PyC, physicochemical soil properties and wood 

density. (A) Soil fertility (log scale), (B) Organic Carbon (log scale) (%), (C) Wood 

Density (g cm-3), (D) Sand (%), (E) Clay (%), (F) Silt (%). Shading denotes 95% 

confidence intervals of the linear models. Soil PyC is log transformed.  

 

2.4.2 Soil PyC and AGC dynamics across all census 

Our results showed no significant relationship between soil PyC with AGC gain, AGC 

loss or AGC net change (Figure 2.3, SI Table 2.2). There was no significant 

autocorrelation in the model residuals and thus no spatial bias in the model results (SI 

Figure 2.2).   
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Figure 2.3. Relationship between AGC dynamics with PyC (log-scale) for (A) AGC 

gains, (B) AGC losses and (C) AGC net change. Dashed lines represent non-

significant relationships between variables and the shading denotes the 95% 

confidence interval from our GLMM.   
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2.4.3 Soil PyC effects on AGC dynamics with drought severity  

To investigate the effect of PyC on AGC dynamics during drought events, we selected 

only censuses that had experienced a severe drought (i.e., MCWD anomalies ≥ 

1.65σ). Soil PyC, MCWD anomalies, OC, soil fertility, wood density, and interactions 

between variables were used as predictors to evaluate AGC dynamics with drought 

severity (SI Table 2.3). The best models selected to explain AGC dynamics based on 

AICc values are reported in Table 2.1. Spline correlograms of the best models show 

no significant spatial autocorrelation in the model residuals (SI Figure 2.3).  Wood 

density and the interaction of soil PyC with MCWD anomalies were significant 

predictors of AGC gains (i.e., woody productivity) during severe droughts. Our results 

show lower rates of AGC gains in forests with greater wood density. We also found a 

significant interaction between soil PyC and MCWD anomalies on AGC gains 

(p=0.041), with the slope between AGC gains and MCWD anomalies increasing with 

soil PyC (Table 2.1).   

We found a difference in AGC gains between low and high soil PyC forests (i.e., forests 

with PyC concentrations lower or greater than the median, respectively) to increase 

with drought severity, as AGC gains significantly declined at a greater rate in low soil 

PyC forests compared with high soil PyC forests (Figure 2.4). We compared events 

around the mean MCWD anomaly (~ -2σ, p<0.046) and the most severe MCWD 

anomaly (~ -4.3σ, p<0.001) for forests with the first quartile of observed soil PyC 

concentration (0.038%) to forests with the third quartile of observed soil PyC 

concentration (0.056%), which is ~1.5 times greater. Our models suggest that forests 

with the third quartile of observed soil PyC concentrations have 3.8% greater AGC 

gains under mean drought conditions, but 33.7% greater under the most extreme 

drought conditions compared with forests with the first quartile of observed soil PyC 

concentrations. These results may translate to a difference in the gain of 0.68 Mg C 

ha-1yr-1 during a most extreme drought.  

The best model to explain AGC losses also included WD and the interaction between 

soil PyC and MCWD anomalies. However, the effect size was not significantly different 

from zero. We could not explain any of the variance in AGC net change during severe 

droughts with the tested variables (Table 2.1). We also found the non-PyC OC had no 
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significant effect to explain AGC gain and loss with drought severity when tested 

instead of soil PyC (SI Table 2.4).  
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Figure 2.4. The relationship between soil PyC and (A) AGC gains, (B) AGC losses 

and (C) AGC net change with drought severity (MCWD anomaly). Blue lines and dots 

represent plots classified as low percentage of PyC in soil (<0.048%) and red as high 

percentage of PyC in soil (≥ 0.048%). Solid lines represent significant relationships 

between MCWD anomalies and AGC dynamics, whilst different slopes between blue 

and red lines represent a significant interaction between soil PyC and MCWD anomaly 

in the best model (p<0.05). Dashed lines represent non-significant relationships 

between variables. Shading denotes the 95% confidence interval. The MCWD 

anomaly is log transformed. 

 

Table 2.1. Parameter estimates for the selected models explaining AGC (gain, loss 

and net change) during severe droughts (σ ≤ -1.65).   

  Intercept MCWD 

Anom 

PyC WD PyC:MCWD 

Anom 

Plot 

code: 

Plot 

cluster 

Fixed 

effect 

(marginal) 

R2 

Total 

(conditional) 

R2 

AGC 

gain 

2.55 ± 

0.09*** 

-0.071 ± 

0.08 

0.1 ± 

0.08 

-0.25 ± 

0.11* 

0.18 ± 0.08* 0.49 0.21 0.73 

AGC 

loss 

1.48 ± 

0.07*** 

0.06 ± 

0.06 

-0.01 

± 0.07 

-0.15 ± 

0.08 

0.12 ± 0.07 0.35 0.08 0.49 

AGC net 

change 

0.18 ± 

0.20 

- - - - 0.00 0.00 0.00 

Note: Coefficient estimates ± SE are presented for each fixed effect. Total (conditional) R2 

represents the total variation explained by the model and is partitioned into the variation 

explained by the fixed effects (marginal R2) and fixed plus random-effects (conditional R2). 

Asterisks represent the significance level of each variable: *p<0.05; **p<0.01; ***p<0.001.  

 

2.5 Discussion   

Drought drives major reductions in the rate of biomass growth and increases in tree 

mortality across Amazonia (Feldpausch et al., 2016; Aleixo et al., 2019), but the effect 

of past disturbances on modulating forest responses to drought were largely unknown. 

This is the first study to analyse the effects of soil PyC, acting as a proxy of past fire 

legacies on AGC dynamics in Amazonian forests. Overall, we found that soil PyC does 

not have a significant effect on rates of AGC dynamics (Figure 2.3, SI Table 2.2). 
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However, under severe droughts, the drought impact on AGC gains is significantly 

greater in forests with low soil PyC compared to those with high soil PyC (Figure 2.4, 

Table 2.1). This pattern, though, did not affect the overall AGC net change during 

severe droughts. Our results also show that soil PyC is positively correlated with soil 

fertility and soils with higher clay and silt content (Figure 2.2 –A, E, F). Moreover, we 

found a negative correlation between soil PyC and tree wood density (Figure 2.2 –C). 

Our research highlights the potential importance of past fire legacies on forest soils 

and long-term forest succession a basis for further investigations of repercussions of 

past fires across Amazonia.  

    

2.5.1 Soil PyC, soil physicochemical properties and wood density  

Our findings indicate that soil PyC is associated with increased soil fertility (Figure 2.2-

A). Studies of ADE and biochar (PyC) addition indicate that PyC can improve soil 

fertility via several mechanisms (Glaser et al., 2001; Czimczik & Masiello, 2007). PyC 

has a polycyclic aromatic structure and can persist in the environment for centuries to 

millennia (Bird et al., 2015). Therefore, PyC can reduce aluminium toxicity, increase 

cation exchange capacity, and improve water holding capacity (Glaser et al., 2001; 

Czimczik & Masiello, 2007). The ADE are historical indigenous lands where fire was 

frequently used as a land-management tool. Covering only 3% of Amazonia 

(McMichael et al., 2014), these small-scale areas (e.g., 0.5-300 ha in size) (Paz‐Rivera 

& Putz, 2009) are more fertile and richer in soil PyC than adjacent areas (Glaser et al., 

2002; Liang et al., 2006; Glaser, 2007). The mean concentration of soil PyC across 

six ADE plots was 0.18% (range = 0.03-0.34%) (Oliveira et al 2022, in press), 

representing a 3.5 fold greater mean soil PyC concentration compared to the non-ADE 

soils (range = 0.01-0.18%) sampled in this study. As ADE soils were intentionally 

formed by indigenous populations by burning discarded organic and inorganic matter, 

there is expected to be higher concentrations of PyC in these areas. In non-ADE soils, 

we found the effect of PyC to rise with its concentration. Even though soil PyC 

concentrations in non-ADE soils are lower when compared to ADE soils, in the low 

fertile soils of the Amazon, soil PyC still had effects on these forests. Higher 

concentrations of soil PyC in non-ADE areas are likely related to more recent and/or 

frequent fires; however, since we do not have information on charcoal dating in these 
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areas, it remains uncertain. On the other hand, it is likely that the concentrations of 

soil PyC found in non-ADE soils have a long-term effect on soil fertility and/or indicates 

changes in species composition. Our study highlights the impact of soil PyC-

associated changes in soil fertility for non-ADE soils representing the remaining 97% 

of the Amazon Basin, where we found a positive correlation between PyC and soil 

fertility.  

We quantified total resistant PyC, representing PyC produced in situ by local fires and 

PyC that may have been deposited by aeolian transport from remote fires. The 

aerosol-derived PyC is derived semi-continuously from ancient to modern fires and 

fluxes have recently been estimated (fossil fuel + biomass burning) at approximately 

6 kg km-2 yr-1 in Amazonia (Coppola et al., 2019). Given this rate, it would still take 

approx. 27,000 years to accumulate the estimated store of 1.1 Pg (0-30 cm) of PyC in 

the Amazon Basin from aerosol deposition alone (Koele et al., 2017). This suggests 

that the majority of the PyC analysed derives from ancient local fires. Whilst, 

atmospheric transport, over centennial-scales, may also have been important, and 

these processes combined may have improved soil fertility over time.  

Soil texture is a key determinant of soil fertility. There is a large range of physical and 

chemical soil properties across the Amazon Basin that vary according to gradients of 

pedogenic development, where nutrient pools are lowest in the most weathered soils 

(Quesada et al., 2010). We found the same pattern for soil PyC, with soil PyC 

concentration negatively correlated with soil sand content (Figure 2.2-D), occurring in 

highly weathered soils. Due to macropore predominance, sandy soils are more 

aerated and, consequently, destabilise PyC through high rates of oxidation and 

potentially greater rates of vertical translocation (Major et al., 2010). On the other 

hand, soils that suffered less weathering and, consequently, have more clay and silt, 

showed a positive association with PyC (Figure 2.2-E, F) because of lower PyC 

oxidation rates. Our results corroborate other studies showing that soils with > 50% 

clay content have significantly more PyC (Reisser et al., 2016). Moreover, clay-rich 

soils present more opportunities for organo-mineral interactions, helping to stabilise 

PyC (Sørensen, 1972; Six et al., 2002; Reisser et al., 2016).  

We also found a negative correlation between wood density and soil PyC (Figure 2.2-

C). A previous large-scale fire experiment has already shown that tropical soft-wood 

trees are at greater risk of death from fire, in part because tree species with low wood 
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density are less likely to close wounds postfire (Balch et al., 2015). Moreover, wood 

density had an important effect on tree survival rates in areas burned repeatedly, 

where increasing wood density by 0.8 g cm-3 can enhance survival probability by 15% 

(Brando et al., 2012). Note that only one previous work has investigated the 

relationship between soil PyC and wood density and did not find a significant tendency 

(Massi et al., 2017). However, it included fewer than half the number of plots used in 

our study.  

It is well established that wood density is negatively correlated with soil fertility (Baker 

et al., 2004; Quesada et al., 2012). We found a strong correlation between soil PyC 

and soil fertility (Figure 2.2-A), and other previous studies have shown soil PyC can 

increase soil fertility as discussed previous in this section. Despite not being able to 

separate the origin of soil PyC (aerosol deposition or local produced) in our analyses, 

we hypothesise that forests with high soil PyC concentrations added by aerosol 

deposition are more likely to have low wood density. This may be because soil PyC 

can increase soil fertility, leading to forests with fast stem turnover (Quesada et al., 

2012). Meanwhile, forests with high concentrations of locally produced soil PyC may 

have experienced past fire disturbances in situ. Low wood density in these forests with 

high concentrations of soil PyC may be an indicator of disturbance and an earlier 

successional state, rather than merely changes in soil fertility.  

Whilst we found correlations between soil PyC and soil fertility, soil texture and tree 

wood density, we were unable to directly test causal relationships in this study and 

these results should therefore be interpreted with caution. It should be noted that the 

highest concentration of soil PyC were found in the West Amazon that also has the 

most fertile soils, the lowest sand content and the lowest stand-level wood density 

(Quesada et al., 2012). 

 

2.5.2 Soil PyC effects on AGC dynamics across all census  

Our results do not show an effect of soil PyC on AGC dynamics when analysed across 

all census intervals. This result may be related to low concentrations of soil PyC found 

in the majority of the plots analysed in this study. A study from eastern and southern 

Amazonia showed that biomass and forest composition had legacy effects in forests 

on or near ADE soils with high soil PyC and a history of ancient fires, which in general 
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presented higher aboveground biomass (de Oliveira et al., 2020). It is likely that soil 

PyC has a greater effect at high concentrations since the effect of PyC on soil fertility 

and water holding capacity is likely to be small at the concentrations found in this study 

(Glaser et al., 2002; Glaser, 2007). Moreover, disturbances in ADE are likely to be 

much greater (de Oliveira et al., 2020) and therefore they may still have differences in 

species composition and traits that would not have persisted in forest that were less 

disturbed. 

 

2.5.3 Effects of soil PyC on AGC dynamics in relation to drought severity  

Drought events can occur because of natural processes that are related to changes in 

sea surface temperature, e.g., Atlantic Multidecadal Oscillation, El Niño Southern 

Oscillation and Pacific Decadal Oscillation (Marengo & Espinoza, 2016; Aragão et al., 

2018). However, anthropogenic actions such as land-use and land-cover changes and 

greenhouse gas emissions may exacerbate the intensity of droughts by changing 

patterns of large-scale atmospheric circulation (Spracklen & Garcia‐Carreras, 2015; 

Llopart et al., 2018). Drought events in the Amazon are becoming more frequent, 

prolonged and intense and as a result of both globally and locally driven climate 

change (Malhi et al., 2008; Dubreuil et al., 2012; Bonini et al., 2014). Amazonian 

forests are vulnerable to drought, which causes biomass losses and reducing forest 

productivity, enough to temporarily reverse a large multi-decadal carbon sink into 

mature forest biomass (Phillips et al., 2009a; Feldpausch et al., 2016; Anderson et al., 

2018; Gatti et al., 2021). 

Our results show that during extreme droughts events, forests with greater soil PyC 

have significantly greater rates of AGC gain compared to forests with lower soil PyC, 

with this difference increasing with drought severity (Figure 2.4). These results may 

be driven by the capacity of soil PyC to hold more water in the soil (Glaser et al., 2002; 

de Melo Carvalho et al., 2014), alleviating the effects of severe droughts, and allowing 

trees to continue to grow under drought conditions. This significant difference on AGC 

gains during drought events in forests with higher soil PyC compared to lower soil PyC, 

may also be related to soil fertility, since forests with high concentrations of soil PyC 

are also more fertile soils. The drought immunisation response is associated with the 

PyC fraction of TOC and not the non-PyC fraction of the organic carbon, since we 
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found no significant effect of OC on changes in AGC gains and losses with drought 

severity. This indicates that the responses we found are potentially related to past fire 

effects on soil and vegetation (Quesada et al., 2012). 

Some studies have shown that during extreme droughts, undisturbed forests can lose 

more AGC than forests disturbed by past fires (Brando et al., 2014; Berenguer et al., 

2021). Since undisturbed forests have trees with higher wood density than those in 

disturbed forests, the death of few large trees in an undisturbed forest can cause a 

greater amount of carbon loss than in disturbed forests (Brando et al., 2014; 

Berenguer et al., 2021). Therefore, our results may demonstrate that forests with a 

stronger history of fires, here identified by high concentrations of soil PyC, can be more 

resistant to current drought events since they may have lower overall biomass 

resulting from an establishment of long-term successional species, and consequently 

not showing a significant reduction of biomass growth during drought events.  

In contrast to finding a significant effect of PyC on AGC gains, we were unable to 

explain any of the variance in AGC losses (Table 2.1). Berenguer et al. (2021) found 

that forests increase the carbon loss rates for up to 3 years after a drought, and 

consequently, forest inventories taken in the first year after a drought may not detect 

the full drought impact on tropical vegetation. Since many of our census intervals did 

not capture 3 years of post-drought dynamics, we may be failing to capture any effect 

of PyC on long-term carbon losses. Moreover, high spatial and temporal heterogeneity 

in tree mortality may prevent a signal from being detected in this study (Johnson et al., 

2016; Pugh et al., 2020). Many of our plots were small (≤ 1 ha) or had short census 

intervals (< 2 years), making it difficult to estimate AGC losses precisely. Much larger 

datasets may be needed to separate a trend from the large natural variance in tree 

mortality. Despite an increase in AGC gains, we are not able to detect an increase in 

AGC net change. Since spatial variation in carbon stocks depends more on losses 

than gains (Johnson et al., 2016; Hubau et al., 2020; Pugh et al., 2020) the caveats 

outlined above are also likely to hold true for the AGC net change data. 

 

2.5.4 Implications for the future of Amazonian forests  

It is critical to understand the impacts of past fire events on contemporary forest 

dynamics. Our results highlight the importance of understanding past fire regimes 
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when predicting how species composition and carbon storage will change as a result 

of drought events. Our results suggest past fires may influence current forest dynamics 

by altering soil fertility and/or establishing earlier successional tree species. A major 

shift in the frequency and intensity of fires and droughts has occurred this century, 

bringing large uncertainties for future predictions of the carbon cycle (Aragão et al., 

2007; Aragão et al., 2018; Silva Junior et al., 2019). This increase in fire represents a 

new fire regime for the Amazon (Aragão et al., 2018; Silveira et al., 2020). These fires 

bring several impacts to tropical rainforests such as changes in forest structure, 

species composition and carbon dynamics (Sato et al., 2016; Prestes et al., 2020; 

Silva et al., 2020; Pontes-Lopes et al., 2021). Forests that burned 30 years ago still 

have ~25% less aboveground biomass than unburned forests (Silva et al., 2018), 

showing these impacts can persist over decades. From our analysis using soil PyC as 

a proxy and/or legacy of past fires, it is possible that forests which burned centuries 

ago may still not have recovered to their pristine state but instead continue to exhibit 

some attributes associated with recently disturbed or secondary forests  (Berenguer 

et al., 2018b; de Oliveira et al., 2020; Heinrich et al., 2021). Our study, however, 

suggests that mature forests that experienced fires centuries or millennia ago have 

greater resistance to short-term droughts, as consequence of past fires. Further 

studies and experiments are needed to identify whether the effects of PyC on fertility 

and/or water holding capacity drive the patterns we observe, or whether PyC simply 

acts as a proxy of past fires. 
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Chapter 3: Fire reoccurrence increases recovery time of 

canopy structure in Amazonian primary forests 

 

National Forest of Caxiuanã, PA, Brazil 

This chapter is in preparation for submission to Remote Sensing of Environment or 

a related journal as Laura B. Vedovato, Ted R. Feldpausch, Danilo Roberti Alves de 

Almeida, Aline Pontes-Lopes, Celso H. L. Silva Júnior, David Bartholomew, Ricardo 

Dalagnol, Mauro Assis, Eric B. Gorgens, Carlos A. Silva, Ruben Valbuena, Luiz E. O. 

C. Aragão (in prep). Fire reoccurrence increases recovery time of canopy structure in 

Amazonian primary forests. 
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3.1 Abstract 

Fire frequency has increased in recent decades in Amazonian forests, bringing 

changes to forest structure and impacting the global carbon balance. To date, the 

effects of fire have largely been assessed by ground-based in situ measurements and 

remote sensing data collected from passive sensors. We used airborne light detection 

and ranging (lidar), an active remote sensing technology, with the ability to penetrate 

the forest canopy and provide detailed information of the vertical forest profile, to 

analyse post-fire changes in forest structure. We utilised 110 airborne lidar transects 

across the Brazilian Amazon which spanned unburned and burned areas. The MODIS 

burned area product (MCD64A1) was used to detect burned areas from 2001 to 2018 

and to calculate the years since the last fire (YSLF) occurrence and fire reoccurrences. 

Then, we calculated canopy structure and aboveground carbon density (ACD) metrics 

to analyse the impact of fire by years since last fire (YSLF) and fire reoccurrence on 

forest structure. Our results show ACD, maximum and mean canopy height did not 

recover to unburned state after ten YSLF in areas with repeated fire events. The leaf 

area index (LAI) and roughness also did not recover after ten YSLF within areas which 

had a single fire event. Overall, repeated fires degrade the canopy structure further 

and increase the time needed for forests to recover to the pre-burned state. Changes 

in canopy structure creates conditions that increase the likelihood of further fire events 

reoccurring before full recovery. Fire mitigation actions are needed to avoid increasing 

losses in carbon stocks, reducing biodiversity, and affecting regional climate and 

hydrological cycles. 

 

3.2 Introduction 

Wildfires in moist, closed-canopy Terra Firme Amazonian forests are estimated to 

have been rare events before European colonisation, with median intervals of fire 

return of 450 years in some forests (Feldpausch et al., 2022). However, the frequency 

of fires in Amazonia has increased, especially in the last few decades, with an increase 

of 74% in 2020 compared to 1998 (INPE, 2021). These forest fires are mainly 

associated with anthropogenic activities (Pausas & Keeley, 2009) and are more 

frequent during drought years (Alencar et al., 2006; Gatti et al., 2014; Anderson et al., 

2018; Aragão et al., 2018). During drought, the dry litter and dry wood debris on the 
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forest floor act as fuel for these understory fires, with slow-moving ground fire heating 

stems and weakening the non-fire adapted tree species, which can ultimately cause 

these trees to die. 

Tree mortality is high after fires and can persist for decades with delayed mortality of 

large trees, greatly reducing carbon stocks (Kauffman, 1991; Barlow et al., 2003b; 

Haugaasen et al., 2003; Silva et al., 2018). Consequently, forest structure is likely to 

be affected considerably. However, little is known how vertical forest structure is 

altered by fire and its ability to recover over time. 

In the short-term, fire causes a 36-74% increase in mortality for trees ≥10 cm diameter 

at breast height (DBH) and increased mortality of larger trees (DBH >50 cm) up to 3 

years after fire (Kauffman, 1991; Barlow et al., 2003b; Haugaasen et al., 2003). Tree 

mortality creates canopy gaps and decreases mean height and biomass of the forests. 

Losses of the largest trees will also reduce the maximum height, create particularly 

large gaps and reduce biomass storage (Dalagnol et al., 2019). Moreover, forests 

affected by fires have been shown to store approximately 25% less biomass than 

adjacent unburned plots even after 31 years (Silva et al., 2018). Only recently, studies 

have revealed a decrease in leaf area index (LAI) and canopy height in burned forest, 

which are accentuated with fire reoccurrences; however, these studies have been 

limited to a floodplain of the Rio Negro in Amazonas, central Amazonia and an 

experimentally burned forest site in Mato Grosso, southern Amazonia (Brando et al., 

2014; Balch et al., 2015; Almeida et al., 2016).  

Fire and the reoccurrence of fire affects the long-term recovery of Amazonian forests 

by killing 76% of saplings and leading to rapid growth of early successional tree 

species (Haugaasen et al., 2003). However, in areas severely burned the growth of 

aggressive bamboo and grasses seems to inhibit seedling regeneration (Haugaasen 

et al., 2003). In a study in Brazil’s Pará State, there was no, or little, recovery in forest 

structure and floristic composition nine years after a single fire event, with species that 

are common in unburned forest being rare or totally absent in the burned forest (Barlow 

& Peres, 2008). Fire reoccurrence further affects forests, potentially turning closed-

canopy primary forests to more open forests dominated by short-lived pioneer species 

(Barlow & Peres, 2008). During a drought year, forests that experienced repeated fires 

had the majority of trees killed, the canopy cover reduced by half, and invasive grasses 

became dominant (Balch et al., 2015). Forest areas that burned multiple times within 



63 
 

a decade had up to 94% less aboveground carbon than unburned forests (Longo et 

al., 2016). Fire also reduces biomass accumulation in regrowing secondary forests 

(forests deforested and allowed to regrow) (Zarin et al., 2005; Feldpausch et al., 2007), 

with forests burned five or more times having >50% reduction in carbon accumulation 

(Zarin et al., 2005). Therefore, the reoccurrence of fire further increases greenhouse 

gas emissions beyond those emitted from single forest fire events (Fearnside, 2012; 

Vasconcelos et al., 2013). 

The exclusive use of ground-based in situ measurements and remote sensing data 

collected by passive sensors are not able to detect subtle changes in canopy structure 

caused by fire. Consequently, the use of these techniques in combination with light 

detection and ranging (lidar) is recommend to obtain more accurate results when 

estimating changes in canopy structure (Goetz et al., 2015). Lidar can provide a 

detailed vertical forest profile from which it is possible to estimate canopy height, 

openness, spatial heterogeneity, leaf area index (LAI) and other metrics related to 

forest structure (van Leeuwen & Nieuwenhuis, 2010; Stark et al., 2012; Almeida et al., 

2016). These metrics are useful to better assess changes in forest dynamics and 

ecology beyond carbon stocks and sequestration. 

Few studies have used lidar to evaluate forest degradation by fire in Amazonia 

(Almeida et al., 2016; Longo et al., 2016; Sato et al., 2016; Rappaport et al., 2018). A 

study in the Rio Negro floodplain in Amazonia found that seasonally flooded forests 

experienced greater damage than surrounding unflooded forests four years after 

burning; burned unflooded forests had 12% lower maximum height, 134% more open 

canopies and 166% higher gap fraction when compared to unburned areas, while the 

differences in flooded forests were even bigger (44%, 1282% and 206%, respectively) 

(Almeida et al., 2016). In western Amazonia, lidar measurements indicated that forest 

height and biomass of burned areas had not recovered 10 years after burning (Sato 

et al., 2016). A study in southern Amazonia found that forest structure varied with fire 

severity and frequency, with forests with a history of one, two and three or more fires 

having 54%, 25% and 8% of aboveground carbon density (ACD), respectively, when 

measured a year after burning (Rappaport et al., 2018).  

These studies provide clear evidence of the profound changes in ACD and long-term 

effects of fire on Amazonian forests, with several studies providing estimates by region 
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and forest type. However, there is a major gap in understanding the effects of fire 

reoccurrence on canopy structure and the time required for burned forests to return to 

their unburned state or whether they can totally recover. This research aims to 

investigate, the changes in canopy structure and its recovery after single and repeated 

fires across the Brazilian Amazon. More specifically, we address the following 

research questions: (i) how fire and fire reoccurrence change canopy structure, (ii) 

how long does canopy structure take to recover following fires,  (iii) how do repeated 

fires affect this recovery and (iv) how fire changes the relationship between canopy 

structure attributes in primary forests. 

 

3.3 Methods 

3.3.1 Study area and lidar data 

To address our questions, we selected 110 airborne lidar collections from the more 

than 900 lidar data available across the Brazilian Amazon, collected by the 

Sustainable Landscape project (Sustainable-Landscapes, 2016) and Improving 

Biomass Estimation Methods for Amazon (EBA) project (EBA, 2016), with both 

datasets having a minimum point density of 4 points m-2. The lidar data were collected 

between 2016 and 2018 and span primary forests in different climates and soil types 

(Figure 3.1). The selection of the lidar data was based on the criteria that within the 

lidar transect there was primary forests unburned and burned. Moreover, we applied 

a negative buffer of 60 m around the primary forests boundaries and excluded all 

patches of unburned and burned areas smaller than 1 ha to avoid using any area that 

does not represent the core of a mature forest.  

To identify mature forest within the lidar data, we used the land use and land cover 

classification data from MapBiomas collection 5 (MapBiomas, 2021). Then, we used 

burned area data from the MODIS, MCD64A1 product, with a monthly temporal 

resolution and a spatial resolution of 500 m (Giglio, 2015) which overlapped the 

primary forests within the lidar sites to identify the burned areas. For our purposes, we 

obtained the burned area product from 2001 to 2018 and combined it annually. For 

each pixel of burned area we computed how many years had passed since the last 

fire before the airborne lidar flight date (YSLF), and the number of fire reoccurrences. 
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We classified the forests according to the number of fire reoccurrences, as either 

single burned (B1) or repeated burned (B2+) forests. This methodology allowed us to 

analyse the effects of fire in mature forest for up to 17 years since burning.   

 

Figure 3.1. Study area. The blue areas represent the lidar sites used in this study. 

Black lines represent country limits. Red colours represent frequency of fire, with 

darker red showing higher fire frequency.  

 

3.3.2 Lidar metrics 

We measured a range of lidar metrics for the selected unburned and burned areas. 

The lidar data were pre-processed following de Almeida et al. (2019b). From the 

normalised cloud points, we extracted the Canopy Height Model (CHM) at 1 m-grid 

spatial resolution and then calculated the following metrics: Aboveground Carbon 

Density (ACD), maximum canopy height, mean canopy height, canopy roughness, and 

canopy openness at 5 m, 10 m and 15 m height. The ACD was calculated at a spatial 

resolution of 50 m following equation S7-supporting information in Longo et al. (2016) 

which uses the mean top canopy height. The maximum and mean height were 

obtained by aggregating the 1 m-grid CHMs to a 10 m-grid, getting the maximum and 

the average values respectively. Roughness was obtained by the standard deviation 

divided by the mean height resulting from the 1 m-grid to 10 m-grid aggregation. The 

openness at 5 m, 10 m and 15 m represents the fraction of  pixels below 5, 10 and 15 



66 
 

m, respectively (de Almeida et al., 2020). In addition to CHM derived metrics, we used 

metrics derived from the Leaf Area Density profile (LAD), which is the area of leaves 

found at each height interval per volume of canopy (m2 m-3) (de Almeida et al., 2019b). 

From the LAD we extracted the Leaf Area Index (LAI), which is the sum of LAD values 

obtained along the profile, the Understory LAI, which corresponds to the sum of LAD 

values from 1 m to 5 m from the ground and the Leaf Area Height Volume (LAHV), 

which is the sum of the products of height and mean LAD at that height for each 1 m 

height interval i in the LAD profile (Eq. 3.1). All metrics extracted by LAD were also 

calculated at 10 m of spatial resolution. These metrics were developed by de Almeida 

et al. (2019a).  

LAHV = ∑ (i x LADi)                                                  (3.1)                 

where i (i= 1,2,3, …, maximum height) is the height within the canopy, and LADi
 is the 

horizontal mean of leaf area densities at that respective height.                                              

We consider each delimitation of burned and unburned areas within the lidar site as 

individual samples. As each sample has multiple pixels, we calculated the average for 

each sample by generating bootstrap estimates, resampling 50 observations with 

replacement across 10,000 iterations. We considered the unburned mature forest 

inside each transect as the reference value for the lidar metrics. In transects with more 

than one unburned sample, we used the mean value between the bootstrap results 

from these samples. Then, we calculated a relative delta between burned and 

unburned areas sampled for each lidar transect (Eq. 3.2).  

    ΔLMrel = ((BALM - UBLM)/UBLM) *100                             (3.2) 

Where LM correspond to the different lidar metrics used in this study, BA is the value 

of the lidar metric for the burned area sampled, and UB is the value of the lidar metric 

for the unburned area sampled. Use of relative delta values helps to minimise the 

regional differences between locations of the lidar transects, to account for variance 

explained by the regions.  

 

3.3.3 Data Analysis 

To visualise the distribution of lidar metrics across the three different treatments of 

unburned, burned in a single event and burned in multiple events, we ran a principal 
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component analysis (PCA) using the R package FactoMineR (Husson et al., 2016). 

We grouped the years since the last fire (YSLF) into 3 classes: 0-3, 4-9 and 10+ years 

to visualise the differences over time. For this analysis, we used the absolute values 

of each lidar metric centred and scaled to their unit variance.  

The standardised major axis regression (SMA) from the package smatr (Warton et al., 

2012) was used to test for relationships among the lidar metrics. The ACD, Openness 

at 5 m, Openness at 10 m and Understory LAI were squared root transformed and 

Roughness was natural log transformed. Sidak adjusted p-values were used to 

account for multiple pairwise comparisons. We compared the intercept and slope of 

these relationships between different lidar metrics using Wald tests. Additionally, we 

tested for bivariate relationships between fire reoccurrence groups.  

To evaluate differences between the fire reoccurrence groups (B1 and B2+), we used 

the Mann-Whitney U test for non-normal distributed data and the t-test for the normal 

distributed lidar metrics data. We used the same tests to evaluate if the relative delta 

values for each metric are significantly different from zero in each treatment analysed 

(Reoccurrences and YSLF groups).  

Different regions of Amazon have different biomass stocks (Feldpausch et al., 2012) 

and forest structure (Feldpausch et al., 2011) resulting from different soil types, 

precipitation, tree species composition, amongst others, which may affect the recovery 

after fire (De Faria et al., 2021; Heinrich et al., 2021). Therefore, we classified our 

samples in “Low” and “High” biomass stock, using the median value (64 Mg C ha-1) 

calculated in all unburned areas sampled. To analyse the effect of different biomass 

stocks on forest recovery, we also tested for significant differences in each lidar metric 

across all group treatments, using the Mann-Whitney U test for non-normal distributed 

data and t-tests for normally distributed data. 

To evaluate the effects of YSLF and fire reoccurrence on each lidar metric, we applied 

linear models including the variable biomass stock as a predictor. To test for the effect 

of larger regional spatial differences, we also applied equivalent linear mixed effect 

models using the lme4 package (Bates et al., 2018), using regions defined by Heinrich 

et al. (2021) as a random effect with a random intercept and a fixed slope. To improve 

the predictive power, we used the continuous value of the YSLF variable in the models 

rather than groups.   
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3.4 Results 

3.4.1 Post-fire changes on canopy structure 

Our results show that fire has negative impacts on canopy structure. The metrics ACD, 

maximum and mean height, LAI and LAHV had significant negative delta values, 

showing a decrease in these metrics when forests area burned (p<0.001). Meanwhile, 

openness at 5 m, 10 m and 15 m, and roughness had significant positive delta values, 

indicating higher openness and roughness in burned forests (p<0.001; Table 3.1). 

Understory LAI was the only metric that did not have significant differences between 

unburned and burned forests in the first 3 years after burning (Table 3.1, Figure 3.2, 

and SI Figure 3.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



69 
 

Table 3.1. Parameter estimates ± standard error of linear models for the delta values of the canopy metrics analysed using as 

predictors: years since last fire (YSLF), Reoccurrences groups (B1 and B2+), Biomass groups (Low and High), and interaction 

between YSLF and Reoccurrences groups. Significance level: *p<0.05; **p<0.01; ***p<0.001. 

 

  Intercept YSLF Reoccurrences Biomass  YSLF:Reoccurrences R2 

Δ ACD -24.98 ± 3.62*** 1.63 ± 0.42*** -14.42 ± 5.14** 7.24 ± 3.44* -0.88 ± 0.80 0.11 

Δ  Maximum H.  -8.54 ± 1.68*** 0.5 ± 0.2* -5.56 ± 2.39* 2.10 ± 1.60 -0.46 ± 0.38 0.06 

Δ Mean H. -16.01 ± 2.38*** 1.08 ± 0.28*** -11.11 ± 3.38** 4.64 ± 2.27* -0.14 ± 0.53 0.11 

Δ Openness 5m 93.56 ± 13.47*** -8.3 ± 1.58*** 24.40 ± 19.16 -3.14 ± 12.84 1.48 ± 3.01 0.08 

Δ Openness 10m 50.04 ± 7.59*** -3.94 ± 0.89*** 23.89 ± 10.80* -0.51 ± 7.24 0.97 ± 1.7 0.08 

Δ Openness 15m 19.84 ± 4.31*** -2.40 ± 0.50*** 12.98 ± 6.14* 13.4 ± 4.11** 1.17 ± 0.96 0.1 

Δ Roughness 33.18 ± 4.82*** -3.15 ± 0.56*** 16.80 ± 6.86* -4.89 ± 4.6 -1.64 ± 1.08 0.13 

Δ LAI -21.25 ± 2.87*** 1.82 ± 0.34*** -3.64 ± 4.04* 6.41 ± 2.72 -0.16 ± 0.63 0.11 

Δ Understory LAI -4.33 ± 5.06 0.17 ± 0.5 17.62 ± 7.12* 4.63 ± 4.81 0.087 ± 1.11 0.02 

Δ LAHV -26.82 ± 3.68*** 2.17 ± 0.43*** -12.09 ± 5.18* 8.03 ± 3.5* -0.69 ± 0.81 0.13 
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Figure 3.2. Violin plots for the canopy metrics (A) ACD, (B) Mean Height, (C) 

Openness at 10m and (D) LAI. Yellow violins represent areas with single fire event 

and red violins represent areas with repeated fire events. Significance levels on the 

bottom of the violin represent significant difference from 0 (unburned state) and 

significant levels on top of violins represent significant difference between 

reoccurrences groups. Groups without brackets had no significant difference. 

Significance level: *p<0.05, **p<0.01, ***p<0.001; ns, non-significant difference. 

 

Our PCA analysis showed the overall structure of recently burned forests (0-3 YSLF) 

differs from unburned forests (Figure 3.3 -A). We also evaluated the effects of fire on 

canopy metrics separating forests with low (ACD < 64 Mg C ha-1) and high (ACD ≥ 64 

Mg C ha-1) carbon stocks. The effect of fire significantly changed between low and 
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high carbon stock forests, with greater differences in ACD, mean height, and LAHV in 

low carbon stock forests (p<0.05), but reduced differences in low carbon forests for 

openness at 15 m (p<0.01; Table 3.1). When we included region in the model as a 

random effect, the effect of carbon stock was not significant for any metric except 

openness at 15 m (SI Table 3.2), indicating that our results are driven by differences 

in biomass between regions rather than within regions.  
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Figure 3.3. Principal Component Analysis for the different YSLF groups A) 0-3 YSLF, 

B) 4-9 YSLF and C) 10+ YSLF. Ellipses represent the 95% data distribution for 

Unburned (blue), single fire event (yellow) multiple fire events (red). Percentage values 
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in parentheses represent the proportion of variance explained the respective axis 

dimension. For weighting of each variable on each dimension, see SI Table 3.1. 

 

3.4.2 Impacts of repeated fires on canopy structure 

Our results show that the reoccurrence of fire increased changes in canopy structure 

(Table 3.1; Figure 3.2, Figure 3.3-A). We found the reoccurrence of fire significantly 

explained changes in all metrics (p<0.05) analysed except for openness at 5 m 

(p>0.05; Table 3.1).  

When focusing on recently burned areas, the 0-3 YSLF group, repeated fires had 

significantly greater impacts on canopy structure than one fire event for all metrics 

(p<0.05), except LAI, roughness and openness at 5 m (Figure 3.2; SI Figure 3.1). The 

PCA analysis also showed that burned forests are more variable in overall canopy 

structure and that this variance increases when the forest burns more than once 

(Figure 3.3-A). Overall, forest that experienced repeated fires are more dissimilar from 

unburned forests than those that experienced a single fire event.  

 

3.4.3 Recovery after single and repeated fires 

All canopy metrics significantly changed over time after the last fire event (p<0.05), 

except for understory LAI. Over time ACD, maximum and mean height, LAI and LAHV 

increased after fire, and openness at 5 m, 10 m and 15 m and roughness decreased 

(Table 3.1). However, the interaction between YSLF and fire reoccurrence did not 

significantly explain changes in the canopy structure, showing the rate of recovery 

does not depend on the number of fires experienced. These relationships held even 

when accounting for regional differences across Amazonia (SI Table 3.2). 

We also analysed canopy recovery after fire by YSLF groups (Figure 3.2). Our results 

showed a trend whereby the violin plots became more similar to forests in an unburned 

state as YSLF increased. However, this recovery after fire was not consistent for all 

metrics.  For example, in areas with single fire events, the metrics LAI and roughness 

became similar to an unburned state after 4-9 YSLF; however, in the 10+ YSLF group 

these metrics were again significantly different from an unburned forest, but now with 

higher LAI and lower roughness (Figure 3.2-D; SI Figure 3.1-B). This recovery pattern 
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was consistent across the combined canopy structure as indicated by greater 

convergence of the fire reoccurrence groups in PCA analysis with YSLF. As the time 

since the last fire event increases, we find greater overlap in the PCA, with only forests 

that experienced multiple fire events (B2+) showing a wider spread at 10+ YSLF.  

We also compared recovery between forests with low and forests with high carbon 

stocks by YSLF groups. We found that ACD, mean and maximum canopy height have 

the same responses. In low carbon stock forests, these metrics did not recover to the 

unburned state even after 10+ YSLF when they had repeated fire events (p<0.05, SI 

Figure 3.2). In high carbon stocks forests, these metrics recovered to the unburned 

state in the 4-9 YSLF group if only a single fire event occurred. Areas with multiple fire 

events still had significantly lower values than unburned forests for ACD, mean and 

maximum canopy height (p<0.001). Also, areas with multiple fire events in forests with 

high carbon stocks had significantly lower values of ACD, mean and maximum canopy 

height when compared to forests that had single fire events  in 4-9 YSLF group 

(p<0.001; SI Figure 3.2-A,C). Overall, the response of the metrics shows that forests 

with low carbon stocks take longer time to achieve the unburned state than forests 

with high carbon stocks, especially in areas that suffered repeated fires. Moreover, 

these low carbon forests present more significant differences between single and 

repeated fire events in the metrics analysed (SI Figure 3.2).  

 

3.4.4 Changes in relationships between canopy structure attributes after fire 

We analysed the relationship between canopy metrics using standardised major axis 

regression (SMA) and how these were affected by repeated burning. All metrics were 

significantly related among them, except by maximum height vs roughness, openness 

at 5 m vs understory LAI and roughness vs understory LAI (Table 3.2, SI Table 3.3). 

We also found that fire changed the relationship between all metrics, except by ACD 

vs mean height and LAI vs roughness, meaning the impacts of fire is not equal on all 

components of the vertical canopy structure of the forest (Table 3.2, SI Table 3.3). 

However, the effect of burning on these relationships varied depending on number of 

fire reoccurrences and the group of YSLF. We found that 44% of the 45 relationships 

analysed showed significant differences between single fire and unburned forests in 

the first 3 years after the fire. However, this rose to 80% of the relationships when the 
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forest burned more than once. In the first 3 years, 69% of relationships were different 

between single and repeated burns. Over time, we found that the relationships 

recovered, with only 0% and 24% of relationships of single and repeated fires, 

respectively, differing from unburned forests more than 10 years after the fire, and only 

13% of relationships differing between single and repeated fires (SI Table 3.4). 

In particular, the relationship between canopy openness (5 m, 10 m and 15 m) with 

ACD and LAHV persists between single and repeated burns with ACD and LAHV 

decreasing in repeated burns. In single burned forests, we find the difference 

increased in the period 4-9 years after fire to 56% of the relationships, indicating an 

uncoordinated recovery of forest structure metrics. Overall, relationships between 

forest structure metrics recover with time, but take longer to recover in areas with 

repeated fires. 
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Table 3.2.  Summary of standardised major axis regression between lidar metrics for different treatments and YSLF groups. Significance level: 

*p<0.05, **p<0.01, ***p<0.001; ns, non-significant relationships. The grey box denotes invalid correlations where x and y variables are the same.  

Bivariate 
relationship (y 

vs x -axis) 
Treat. 

Intercept Slope r2 p Difference in slope and elevation 

YSLF YSLF group  YSLF group YSLF group Treat. YSLF group 

0-3 4-9 10+ 0-3 4-9 10+ 0-3 4-9 10+ 0-3 4-9 10+  0-3 4-9 10+ 

                        B1+ B2+ B1+ B2+ B1+ B2+ 

A
C

D
 

Mean 
H. 

Unb. 0.29 0.29 0.29 0.48 0.48 0.48 0.98 0.98 0.98 *** *** *** Unb. ns ns ns ns ns ns 

B1 0.15 0.21 0.20 0.49 0.48 0.48 1.00 1.00 1.00 *** *** *** B1   **   ns   ns 

B2+ 0.32 0.23 0.13 0.48 0.49 0.49 0.99 0.99 1.00 *** *** *** B2+             

Open 
10m 

Unb. 14.09 14.09 14.09 -12.39 -12.39 -12.39 0.63 0.63 0.63 *** *** *** Unb. *** ns ** *** ns ** 

B1 15.61 12.87 13.93 -14.69 -10.42 -12.30 0.86 0.86 0.79 *** *** *** B1   ***   ns   * 

B2+ 13.92 12.28 11.78 -12.57 -9.70 -9.12 0.94 0.86 0.85 *** *** *** B2+             

LAI 

Unb. 0.45 0.45 0.45 2.06 2.06 2.06 0.20 0.20 0.20 *** *** *** Unb. ns ** ** ns ns ns 

B1 1.29 -3.85 -0.96 2.47 2.82 2.36 0.55 0.40 0.14 *** *** ** B1   ***   ***   ns 

B2+ 1.88 0.75 -4.94 1.59 1.54 3.08 0.66 0.46 0.32 *** *** ** B2+             

M
e

a
n

 H
e
ig

h
t Open 

10m 

Unb. 28.67 28.67 28.67 -26.05 -26.05 -26.05 0.69 0.69 0.69 *** *** *** Unb. ** ns *** *** ns ** 

B1 31.41 26.28 28.43 -29.94 -21.71 -25.58 0.87 0.87 0.79 *** *** *** B1   *   ns   * 

B2+ 28.65 24.60 23.87 -26.62 -19.70 -18.78 0.95 0.86 0.87 *** *** *** B2+             

LAI 

Unb. -0.03 -0.03 -0.03 4.34 4.34 4.34 0.24 0.24 0.24 *** *** *** Unb. ns *** ** * ns ns 

B1 2.24 -8.41 -2.58 5.03 5.84 4.91 0.55 0.39 0.14 *** *** ** B1   ***   ***   ns 

B2+ 3.23 1.01 -10.79 3.32 3.18 6.40 0.67 0.45 0.32 *** *** ** B2+             

O
p

e
n

. 

1
0
m

 

LAI 

Unb. 1.08 1.08 1.08 -0.16 -0.16 -0.16 0.36 0.36 0.36 *** *** *** Unb. ns ** *** ns ns * 

B1 0.96 1.64 1.15 -0.16 -0.28 -0.18 0.59 0.36 0.18 *** *** *** B1   *   **   ns 

B2+ 0.96 1.23 1.67 -0.13 -0.17 -0.30 0.65 0.37 0.44 *** *** ** B2+             

Correlation coefficient (r2) and significant value (p) for SMA analysis and slope. The metrics showed are Aboveground Carbon Density (ACD), Mean height 

(Mean H.), Openness at 10 m (Open 10m), and Leaf Area Index (LAI). The treatment groups (Treat.) are unburned (Unb.), single fire event (B1) and repeated 

fire events (B2+).
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3.5 Discussion 

The impacts of fire on forests can persist for decades, causing losses to biomass 

stocks and altering canopy structure (Almeida et al., 2016; Sato et al., 2016). These 

effects are intensified by the reoccurrence of fire (Rappaport et al., 2018). However, 

uncertainties remain regarding how fire affects the vertical canopy structure of forests 

and their ability to recover. We showed that fires have negative impacts on canopy 

structure, with areas that experienced repeated burns and/or have lower biomass 

stocks more affected. This indicates that fire reoccurrence exacerbates the effects of 

burning and low carbon stock forests are less resistant. The reoccurrence of fires also 

slows recovery of the forests, with some metrics such as ACD, mean and maximum 

height not recovering for more than a decade. Fire can degrade forests for long periods 

because canopy structure is highly complex. 

 

3.5.1 Impacts of single and repeated fires on Amazonian forests 

Biomass stocks decrease following a fire event and these changes are more 

accentuated with repeated fires (Rappaport et al., 2018). Our findings, spanning areas 

across the Brazilian Amazon show that areas burned once had 23% less ACD than 

an unburned area in the first three years after the fire event, but in areas that had 

repeated fires this difference increases to 54%. This impact of repeated fires on ACD 

is still present even after 10 years since the last fire event (i.e., 18% less ACD than 

unburned areas), indicating a long-term carbon loss. Previous studies in southern 

Amazonia show that forests burned once, twice and 3 times lost 46%, 75% and 93% 

of ACD compared to an intact forest, respectively, when measured one year after fire 

(Rappaport et al., 2018). Our results show lower values compared to this study which 

is possibly explained by the different time lag since the last fire event and indicating 

forest recovery.  

Our observed losses in ACD are likely driven by tree mortality and branch fall. In a 

burning experiment in the southern region, tree mortality in a forest that burned 

annually for 3 years was only 16% greater than in areas that burned once, and this 

mortality was mostly restricted to trees with <20 cm DBH (Balch et al., 2011). However, 

large diameter trees were also shown to die following drought-induced fires when 

burned annually for 3 to 6 years (Brando et al., 2014). Since large diameter trees store 
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~25% of carbon in Amazonian forests (Clark et al., 2019), their mortality could 

represent the additional ACD loss that we observed when forests experienced multiple 

burns.  

Fire typically kills smaller trees after single fire events, but can also kill large trees if 

repeated fire events occur (Brando et al., 2014). The loss of large trees is particularly 

important when considering canopy structure since they can create large gaps in the 

forest canopy, decreasing forest height and increasing canopy roughness (Dalagnol 

et al., 2019). A study in central Amazon found 166% more opening at 15 m even 3 to 

4 years after a fire, in a forest that underwent only one known fire event (Almeida et 

al., 2016). In our analysis, we found forest areas with repeated fires increase canopy 

gaps at 5 m height up to 88% more than forests with a single burn in the first 3 years 

after fire. In the 4 to 9 years since last fire, this difference decreased to 51%. Moreover, 

when we analysed gaps at 10 m height, we found areas with repeated fires had 29% 

more gaps than areas with single burn. Canopy openings increase light penetration in 

the sub-canopy which accelerates recovery, but also favours the establishment of 

lianas that could halt seedling growth (Schnitzer et al., 2000; Gerwing & Vidal, 2002). 

Furthermore, the increase in canopy openings can make forests more susceptible to 

subsequent fire disturbances, since with more light penetration, the canopy and 

ground tend to become drier, creating a positive feedback cycle (Balch et al., 2008; Le 

Roux et al., 2022). In drier conditions fire probability and intensity increases, and 

consequently, mortality rates, especially in extreme drought years (Aragão et al., 2007; 

Brando et al., 2014; Aragão et al., 2018).  

Canopy openings that emerge after fire-induced tree mortality are likely to decrease 

the mean and maximum height of the forest. We observe this tendency in our results, 

where repeated fires decrease mean and maximum heights by 8% and 12%, 

respectively when compared to unburned forests, after 10 years since the last fire. In 

western Amazonia, Sato et al. (2016) also found significantly greater mean height in 

unburned areas than in burned areas after 4 and 9 years from the fire event. Moreover, 

in central-east Amazonia in a multi-temporal study, mean height of burned areas was 

significantly lower than the unburned areas 2.5 and 3.5 years since the last fire 

(Pontes-Lopes, 2021), which aligns with our findings and indicates burned forests are 

shifting to shorter forests. 
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The changes in forest structure caused by fire also impacts the distribution of leaves, 

branches and tree recruitment (Brando et al., 2012; Balch et al., 2015; Pontes-Lopes, 

2021). Our findings show significant differences in forest understory in areas with 

repeated fire events, where in 4-9 YSLF events the understory LAI increased 28% 

compared to unburned forests and 5% compared to areas that burned once. Almeida 

et al. (2016) evaluated the forest understory in upland forest of the Rio Negro Basin, 

using a similar metric used in this study, the LAD from 1-4 m, where they found an 

increase of 52% of LAD 1-4 m compared to the pre-burned state within 3-4 years 

before the fire. The lower values in our study may be related to regional differences, 

since our study spans areas across the whole of the Brazilian Amazon. An increase in 

understory LAI indicates that understory vegetation can respond to greater light 

availability following canopy opening and remains resilient to multiple burning events, 

indicating a potential for regrowth even after repeated burns. 

Although the burned dataset MCD64A1 has a coarse spatial resolution that brings 

uncertainties about the overlapping areas within the lidar transects, our results were 

consistent with the literature, with repeated fires intensifying the forest disturbances 

(Balch et al., 2011; Brando et al., 2014; Rappaport et al., 2018). However, it is likely 

that there is a considerable underestimation in the extent of burned areas since the 

coarse resolution of the product is not suited to detect small fires, especially understory 

fires. If detected, these data would potentially increase the certainty of the effects of 

fire on the vertical structure of tropical forests. 

 

3.5.2 Forest recovery following fire events 

Studies across different regions of Amazonia show the effects of fire on forest structure 

can persist for many years (Almeida et al., 2016; Sato et al., 2016; Rappaport et al., 

2018; Silva et al., 2020). Forests can recover low-density biomass quickly, since after 

a fire, tree species with faster growth and low wood density thrive (Berenguer et al., 

2018b) under post-fire conditions of high irradiance and soil enriched by ash from 

burning (Glaser et al., 2002). However, this fast growth does not always lead to a 

recovery to the biomass stock of non-burned forests. Our results showed that areas 

burned multiple times were not able to recover ACD within 10 years since last fire, 

presenting 19% less ACD than unburned forests. In western Amazonia, biomass 
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stocks decreased by 7% 10 years after the fire event (Sato et al., 2016). Our higher 

values are likely driven by the effects of fire reoccurrences and regional differences. 

Overall, these results show that ACD can take more than one decade to fully recover 

from fire.  

Besides ACD, other important canopy structure attributes are also affected by fire and 

can take decades to fully recover, having impacts on microclimate and forest 

functioning (De Frenne et al., 2021). In our analysis, maximum and mean height of the 

forests were not able to recover within one decade after the last fire event if they 

suffered repeated burns, indicating that these forests shift to shorter forests for more 

than a decade. However, canopy openings at 5 m, 10 m and 15 m fully recovered 

within the first 9 years since fire in areas with single and repeated fires. The closure of 

the canopy over time is likely related to the growth of understory vegetation. The 

understory growth is driven by reduced competition for light that emerges after canopy 

LAI is reduced, supporting greater leaf growth in the understory and transformed into 

a dense environment (Laurance et al., 2006b). In a forest that suffered only one known 

fire, LAI reduced 10% compared to 3-4 years before fire (Almeida et al., 2016). Our 

results show a similar pattern in areas of repeated fires with reductions of 12% 

compared to the unburned state. Changes in LAI and understory LAI may affect 

biodiversity promoting species typical of disturbed habitats and reducing habitat 

available for those species associated with microclimatic and ecological conditions in 

undisturbed environments. 

The ability to recover may be affected by repeated burns if successive burns reduce 

resilience. However, we found no interaction between recovery and fire reoccurrence, 

indicating that forests can still recover even after multiple burns if they are given 

sufficient time in a fire-free state. Whilst we find the potential for forests to recover, 

multiple burns create a micro-climate where the forest becomes drier and fire ignition 

is more likely to occur. Re-burning is more likely with fragmentation (Armenteras et al., 

2013; Silva Junior et al., 2020a; Driscoll et al., 2021) and the large-scale increase in 

fire (74% in 22 years) across Amazonia (INPE, 2021). Where the forests continue to 

re-burn, it is unlikely they will fully recover.  

 



81 
 

3.5.3 Effects of fire: low versus high carbon stocks forests 

Across Amazonia, forests differ in dynamics and carbon stocks because of contrasting 

climatic and edaphic characteristics of each region (Phillips et al., 2008; Feldpausch 

et al., 2011; Feldpausch et al., 2012; Quesada et al., 2012). Forests with higher carbon 

stocks typically have taller trees, tree species with higher wood density and are found 

on low fertility soils, while forests with low carbon stocks are mostly formed by shorter 

trees, tree species with lower wood density and likely on high fertility soils, with a 

resultant fast turnover (Baker et al., 2004; Feldpausch et al., 2011; Quesada et al., 

2012). We found that forests with low carbon stocks take longer to achieve the 

unburned state, especially when suffering from multiple fire events, compared to 

forests with high carbon stocks. Since forests with low carbon stocks are likely to have 

more tree species with low wood density, they are also more vulnerable to fire 

(Berenguer et al., 2021), increasing mortality rates in the following years after fire. This 

may alter canopy structure and leave the forest prone to other fire events. On the other 

hand, forests with high carbon stocks are more likely to have tree species with high 

wood density, which are more resistant to fire (Brando et al., 2012), and consequently 

have higher rates of survival after fire. Small trees with low wood density have the 

potential for greater short-term impacts by fire, but they also have greater potential to 

recover carbon stocks and canopy structure within 10 years.  

 

3.5.4 Holistic recovery of the canopy 

A full recovery of the canopy depends on the recovery of all attributes of the canopy, 

as it provides suitable microclimate and other conditions for several species to survive, 

e.g. epiphytes, arboreal animals, insects, etc (Lindenmayer & Laurance, 2017; Parra-

Sanchez & Banks-Leite, 2022). Although all aspects of forest canopy structure that we 

measured were shown to be able to recover, different components of forest structure 

recover at different rates, creating differences in bivariate attribute relationships after 

fire. Our results consequently indicate that the holistic structure of the canopy does 

not completely recover after fire. This pattern is intensified in forests that experienced 

repeated fires with relationships not recovering even after more than a decade. As a 

result, highly specialised species that may depend on a fully intact canopy for survival 

may be vulnerable or not return for many years after fire, especially if forests burn 
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more than once. Conservation of these species is likely to be dependent on preventing 

fire.  

Shifts in attribute relationships after fire will also affect our ability to estimate other 

attributes of forest structure. Metrics, e.g. biomass, are frequently predicted from 

canopy height model when using lidar data (Asner & Mascaro, 2014; Longo et al., 

2016; Rappaport et al., 2018). However, we found shifts in the relationships between 

lidar metrics when forests are burned, which means these predictions should not be 

used for burned areas or should be re-calibrated. Moreover, these shifts persist for 

more than a decade, indicating that it is vital to know the history of fire when using lidar 

to predict attributes from lidar metrics.  

 

3.6 Conclusion 

Our study that spans the Brazilian Amazon shows post-fire changes to forest canopy 

structure can persist over decades. Fire impacts not only ACD stocks but also several 

attributes in the vertical profile of forests that are important to recreate microclimate 

and ecological conditions essential for long-term forest recovery. Repeated fires have 

a greater impact on forest structure and increase the time needed to recover to the 

pre-burned condition. Forests with high carbon stocks are more resistant to fires, but 

their slower growth rates mean they are less resilient than forests with lower carbon 

stocks. Different components of canopy structure recover at different rates, causing a 

decoupling of relationships between metrics that can persist for more than a decade. 

Whilst some Amazonian forests can recover following fires, fires create conditions that 

increase the likelihood of further fire re-occurring before full recovery. A drier and 

hotter climate under climate change and increasing deforestation and fragmentation 

may further exacerbate the risks of fire reoccurrence, generating a positive feedback 

cycle where forests have insufficient fire-free time for full recovery. 
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Chapter 4: Resistance and resilience of canopy structure to 

fire depends on successional stage in Amazonian 

secondary forests 
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4.1 Abstract 

Secondary forests in the Amazon are important carbon sinks, biodiversity reservoirs, 

and connections between forest fragments. However, increasing fire frequency 

threatens their regrowth. In this study, we investigate the impacts of fire on vertical 

canopy structure of secondary forests of different successional stages and their ability 

to recover after fire. We used 20 airborne lidar sites across the South-East Amazonian 

region, which covered both unburned and burned secondary forests. We calculated 

the following canopy metrics: maximum and mean canopy height, openness at 5 m 

and 10 m, canopy roughness, leaf area index (LAI) and leaf area height volume 

(LAHV). Fire negatively affects canopy structure of secondary forests in early 

successional (ES) and later successional (LS) stages. We only found one instance, in 

roughness in LS forests, when unburned and burned forests did not significantly differ. 

In the overall means for each metric, forests in ES stages were less resistant to fire, 

but more resilient in their post-fire regrowth than LS stage forests. Six out of seven 

canopy attributes studied showed some potential to recover after fire, but recovery 

rates were highly variable, taking 12-70 years and were typically faster in ES stages. 

The greater sensitivity of ES forests likely owes to a drier microclimate due to more 

pre-existing canopy gaps and their composition and stature, e.g., tree species with 

traits more vulnerable to fire, and smaller tree sizes with greater exposure to fire. 

However, the faster recovery in ES stage forests could be due to a greater density of 

fast-growing, low wood density pioneer species and greater availability of resources 

such as light and nutrients. Our results indicate that management and policies that 

mitigate against fire in secondary forests should be implemented to guarantee the 

success of forest regeneration. These policies are increasingly important as forest 

succession progresses because of their declining resilience to recover. Mitigation of 

fires in secondary forests is likely to be critical if they are to continue to provide their 

wide array of ecological services. 

 

4.2 Introduction 

The regrowth of secondary forests on converted land is extensive across the tropics 

covering 28% of the Neotropics alone (Chazdon et al., 2016). Within Brazil, 56% of all 

secondary forests are concentrated in the Amazon biome (Silva Junior et al., 2020b). 
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Tropical secondary forest regrowth plays an important role in climate change 

mitigation  (Chazdon et al., 2016), acting as a carbon sink of 1.6 ± 0.5 Pg C year–1 

(Pan et al., 2011). Secondary forests also act as important reservoirs of biodiversity, 

supporting up to 80% of species found in primary forests when reaching 20 years of 

regrowth (Rozendaal et al., 2019). Furthermore, the conservation value of a secondary 

forest increases over time (Chazdon et al., 2009; Dent & Joseph Wright, 2009), 

recovering 2.6% of its species richness and 2.3% of its species composition per year 

(Lennox et al., 2018). Secondary forests also play an important role in re-establishing 

connectivity in fragmented landscapes (Metzger, 2003; Uriarte et al., 2016).  

Despite tropical forests not being a fire prone environment because of their high 

humidity, anthropogenic activities combined with severe droughts create conditions 

for fire ignition, spread, and disturbances in these forests. These are usually 

understory fires, which weaken the non-fire adapted tree species, causing reductions 

in the carbon storage and vertical canopy structure of tropical forests. In old-growth 

forests, fires greatly reduce carbon stocks (Longo et al., 2016; Aragão et al., 2018) 

decreasing biomass levels by 25% (Silva et al., 2018). Moreover, burning of old-growth 

forests creates canopy gaps, increases the understory leaf area, and decreases 

maximum and mean canopy heights (Chapter 3; Almeida et al., 2016; Sato et al., 2016; 

Pontes-Lopes et al., 2021). The recovery of biomass after fires can take more than a 

decade in old-growth forests (Chapter 3; Sato et al., 2016; Silva et al., 2018). Although 

some attributes such as openness and understory leaf area index can fully recover 

within nine years after the fire event, other canopy metrics such as maximum and 

mean height, leaf area index (LAI) and roughness can take more than a decade to 

reach an unburned state (Chapter 3; Almeida et al., 2016). Furthermore, previously 

burned areas are more susceptible to fire recurrence, especially during drought 

periods when flammability increases (Alencar et al., 2004). Part of the increase in 

flammability is driven by changes in the vertical canopy structure of the forest. Since 

the vertical structure of the forest is responsible for regulating the microclimate in the 

understory (Ray et al., 2005), changes to it also alter the light availability, temperature 

and wind in the understory, and determine whether shade tolerant or shade intolerant 

species recruit (Laurance et al., 2006b). 

Secondary forests are even more susceptible to fire events than old-growth forests. 

Forests with a history of five or more fire reoccurrences accumulate 50% less carbon 
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than forests without fire or forests that only burned 1 to 2 times (Zarin et al., 2005; 

Wandelli & Fearnside, 2015). In the Brazilian Amazon, the secondary forest carbon 

stock could be 8% higher if fire and deforestation were avoided (Heinrich et al., 2021). 

Although studies of the effects of fire on secondary forest biomass recovery is 

increasingly widespread (e.g. Zarin et al., 2005; Wandelli & Fearnside, 2015; Heinrich 

et al., 2021), knowledge is lacking on how fire impacts the vertical structure of 

secondary forests and whether it can recover.  

Old-growth and secondary forests have different forest structures, with secondary 

forests having shorter trees, more open canopies, lower basal area, and lower 

maximum diameters (Feldpausch et al., 2005; Berenguer et al., 2018a). Secondary 

forests typically have lower species richness and a higher density of faster growing 

tree species with low wood density and higher specific leaf area (Feldpausch et al., 

2004; Feldpausch et al., 2005; Berenguer et al., 2018b; Poorter et al., 2021). Primary 

forests with lower carbon stocks are more vulnerable to canopy structural changes 

after fire than primary forests with high carbon stocks (Chapter 3). The structure and 

biomass of secondary forests more closely resembles primary forest with low carbon 

stocks than those with high carbon stocks. We may therefore expect that secondary 

forests will respond to fire in a similar manner to primary forests with low carbon stocks. 

However, secondary forests have different land management histories before 

becoming secondary forests, which may alter the way that fire impacts these forests 

and their potential for recovery.  

As secondary forests regrow, several attributes associated with plant functioning, 

species composition, biomass, microclimate and canopy structure recover (Poorter et 

al., 2021). Secondary forests shift from early successional (ES) stages dominated by 

light demanding, r-strategy species to later successional (LS) forests with more shade 

tolerant tree species (Laurance et al., 2006b). The abundance of pioneer species with 

low wood density and higher specific leaf area, in addition to the dominance of 

nitrogen-fixing species, declines with secondary succession (Laurance et al., 2006b; 

Batterman et al., 2013). Meanwhile biomass stocks begin to recover, although at a 

much slow rate (Steininger, 2000; Jakovac et al., 2021; Poorter et al., 2021). The 

growth of these trees causes the canopy to increase in height and become less open, 

changing the microclimate, with the buffering of understory humidity and temperature 
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increasing (De Frenne et al., 2021). Consequently, LS secondary forests are less 

prone to burning as they start to resemble primary forests more closely (Chapter 3).  

In this landscape-scale study, we evaluated the impact of fires on the canopy structure 

of tropical secondary forests. Here, we focused on the South-East region of the 

Brazilian Amazon where secondary forests and fires events are abundant (Smith et 

al., 2020; Barros-Rosa et al., 2022). We used canopy forest structure metrics derived 

from airborne lidar data to investigate the resistance of secondary forests in different 

successional stages to fires and their resilience for regrowth after fire. Here, we 

defined resistance as the capacity of the forest to remain largely unchanged despite 

disturbances, and resilience as the capacity of the forest to recover from a disturbance. 

Specifically, we addressed the following research questions: (i) How does fire impact 

the canopy structure of secondary forests? (ii) Does this impact differ by successional 

stage? (iii) Does canopy structure recover after fire? and (iv) Does the rate of forest 

recovery differ between early (ES) and later successional (LS) stages? 

 

4.3 Methods  

4.3.1 Study area and data 

Our study spans secondary forests across the South-East region of the Brazilian 

Amazon (Figure 4.1). Region classification is based on Heinrich et al. (2021), which is 

defined by shortwave radiation, annual precipitation and maximum cumulative water 

deficit (MCWD). We focus on the South-East region as secondary forests are 

concentrated in this region and are not uniformly distributed across the Amazon (Smith 

et al., 2020).  
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Figure 4.1. The study region with dark blue areas representing the location of lidar 

flights, red areas representing the South-East & North region, yellow the North-West 

region, green the North-East & Central region and blue South-West & Central region 

based on Heinrich et al. (2021).   

 

We used 20 airborne lidar sites from the Sustainable Landscape project (Sustainable-

Landscapes, 2016) and Improving Biomass Estimation Methods for Amazon (EBA) 

project (EBA, 2016), which overlapped burned and unburned secondary forests areas  

within the same site. The used lidar dataset has a minimum point density of 4 points 

m-2.  

To identify areas of secondary forests we used the land use and land cover 

classification data from MapBiomas collection 5 with spatial resolution of 30 m, which 

covers the period from 1985 until 2018, allowing analysis of secondary forests of up 

to 33 years in age (MapBiomas, 2021). We applied a negative buffer of 60 m around 

our patches of secondary forests and excluded unburned and burned areas smaller 

than 1 ha to ensure areas represent the core of secondary forests and reduce 

uncertainty.  

To identify the fire events in the lidar surveyed secondary forests, we used the MODIS 

burned area product (MCD64A1) with a spatial resolution of 500 m (Giglio, 2015) and 
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overlapped it onto the buffered secondary forests within our lidar sites. As the burned 

area product has a monthly temporal resolution, we combined it annually from 2001 

to 2018, which allowed us to analyse the effects of fire for up 17 years after burning. 

Then, we calculated for each polygon of burned area how many years have passed 

since the fire event to the date of the lidar flight. We removed from the analysis areas 

with repeated fires events because reoccurrence of fire is known to enhance changes 

canopy structure (Chapter 3; Brando et al., 2014; Balch et al., 2015).  

 

 4.3.2 Lidar metrics   

We computed several lidar metrics to analyse the vertical structure of unburned and 

burned secondary forests. The pre-processing of lidar data were executed following 

Almeida et al. (2019). After computing the normalised point cloud, we extracted the 

canopy height model (CHM) at a spatial resolution of 1 m-grid and we calculated the 

following metrics: maximum canopy height, mean canopy height, canopy openness at 

5 m and 10 m, and canopy roughness. The maximum and mean canopy height values 

were calculated by aggregating 1 m-grid CHMs to a 10 m-grid, obtaining the maximum 

and mean values, respectively. Openness at 5 m and 10 m represents the fraction of 

pixels at heights below 5 m and 10 m, respectively, when aggregating 1 m-grid to 10 

m-grid (de Almeida et al., 2020). Roughness was calculated by the standard deviation 

divided by the mean canopy height resulting from the aggregation of 1 m-grid to 10 m-

grid. Besides the CHM-derived metrics, we also calculated metrics derived from the 

Leaf Area Density (LAD), a voxelized matrix (3D data), which corresponds to the area 

of leaves found at each height interval per volume of canopy (m2 m-3) (Stark et al., 

2012; Detto et al., 2015; de Almeida et al., 2019b). From the LAD product, we 

calculated the gridded Leaf Area Index (LAI), which is the sum of LAD along the 

vertical profile; and the Leaf Area Height Volume (LAHV), which is the sum of the 

products of height and mean LAD at that height for each 1 m height interval in the LAD 

profile (Equation 4.1) (de Almeida et al., 2019a). The metrics derived from LAD were 

also calculated at the 10 m-grid spatial resolution. The use of these metrics allows us 

to have a detailed information of the vertical distribution of canopy components and 

detect even subtle differences in the canopy related to fire.  

LAHV= ∑ (i x LADi)                                             (4.1)                 
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where i (i= 1,2,3, …, maximum height) is the height within the canopy, and LADi
 is the 

horizontal mean of leaf area densities at that respective height.                      

               

4.3.3 Early and Later Successional Stage classification   

We classified our dataset of secondary forests into early and later successional stages 

(ES and LS, respectively) by first calculating the mean value of mean canopy height 

(8.5 m) of all unburned areas inside of each lidar site. Subsequently, we used this 

threshold to classify the unburned secondary forest polygons as ES stage (average 

height <8.5 m) and LS stage (average height ≥ 8.5 m) (Figure 4.2). The classification 

for burned areas followed the same classification as the unburned areas within the 

same lidar sites, since it is expected they would have the same canopy structure to 

neighbouring unburned forests if they had not experienced fire.  

 

Figure 4.2. Example of (A) early successional stage forest and (B) later successional 

stage forest. Dashed line represent the height threshold (8.5m) for the classification.  
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We adopted this height threshold for successional-stage classification since the age 

of secondary forest introduces additional uncertainty as different previous land use 

and land management technics alter the rate of successional regrowth and thus the 

canopy structure recovery (Jakovac et al., 2021). For example, abandoned areas may 

have greater regrowth when compared with areas of the same age that have ongoing 

land use, e.g. grazing, that arrests succession (Jakovac et al., 2015; Jakovac et al., 

2021). From our classification, in the ES stage (average height < 8.5 m) there are more 

pixels concentrated in young forest (less than 10 years old) but also older secondary 

forests which did not achieve a mean canopy height taller than 8.5 m (SI Figure 4.1). 

In contrast, in the LS stages areas, we found young secondary forests with mean 

canopy heights taller than 8.5 m (SI Figure 4.1). This pattern is likely driven by previous 

land use and land cover before the area was classified as a secondary forest, which 

can interfere with the recovery of these secondary forests (Wandelli & Fearnside, 

2015; Jakovac et al., 2021). However, these incidents represented a small proportion 

of the data meaning the mean age of secondary forests in an ES stage was 7.4 years 

and 6.5 years in unburned areas and burned areas, respectively, while in LS stage it 

was 13.8 and 11.1 years respectively (SI Table 4.1). Overall, forests classified as ES 

stage according to their canopy height are younger than LS stage forests in our 

dataset. An example of CHMs in ES and LS unburned and burned is demonstrated on 

Figure 4.3. 
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Figure 4.3. Examples of CHM of (A) early successional stage forest unburned, (B) 

early successional stage burned, (C) later successional stage forest unburned and (D) 

later successional stage forest burned.   

 

4.3.4 Data Analysis  

To evaluate differences between unburned and burned areas for each lidar metric, 

addressing our research question i, we used Mann-Whitney U tests for non-normally 

distributed data and t-tests for the normally distributed data.  

A linear mixed effect model was fitted to analyse differences between unburned and 

burned areas in the different successional stages, addressing our question ii. Burned 

status, successional stage and their interaction were included as fixed effects and lidar 

sites (ID) was included as random effect. We applied a squared root transformation 

on maximum and mean canopy height and LAHV, and natural logarithmic 

transformation on openness at 5 m and roughness to normalise the data.  
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To evaluate the recovery of the canopy structure metrics over time (question iii) and 

differences in recovery rates between ES and LS stages (question iv), we analysed 

the LiDAR metrics as a chronosequence. We applied an additional linear mixed effect 

model using only the burned area data. The time since the last fire (YSLF), the 

successional stage and their interaction were included as fixed effects and the lidar 

site ID was again included as a random effect variable. We used this model to predict 

the recovery time for burned forests to reach the mean values of unburned areas for 

each lidar metric. All linear mixed effect models were undertaken using the lme4 

package (Bates et al., 2018) in R statistical software v4.1.2 (R Core Team, 2020).  

 

4.4 Results  

4.4.1 Impacts of fire on secondary forests   

Fire negatively affects canopy structure of secondary forests, with a more degraded 

state for all metrics in burned forests compared to unburned secondary forests 

(p<0.001) (SI Figure 4.2). Compared to unburned areas, burned areas had lower 

canopy heights (mean and maximum), LAI, and LAHV; and higher values of openness 

(at both 5 m and 10 m) and roughness. These patterns were consistent even when we 

divided the forests into ES and LS stages (Figure 4.3, Table 4.1). We only found one 

instance when unburned and burned forests did not significantly differ, with roughness 

being equivalent in LS forests irrespective of burning status (p>0.05; Figure 4.4-E). 

Although fire impacted all metrics in both ES and LS forests (except roughness in LS), 

the magnitude of the observed differences varied by successional stage. This is 

showed by a significant interaction in our models between burning status and 

successional stage for all metrics analysed (p<0.001), except by the LAI (p>0.05; 

Figure 4.4). When analysed by the overall means of each metric, a large difference 

was observed in the percentage change in openness at 5 m, with 115% more 

openness in burned than unburned areas in ES stage, but only 32% more openness 

in a LS stage. This pattern was also found in the other metrics. Maximum and mean 

height was 22% and 33% lower in burned areas compared to unburned areas in ES 

stage forests, but only 8% and 14% in LS stage, respectively. Roughness was 25% 

higher in burned areas compared to unburned areas in ES stage forests and 10% 
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higher in LS stage forests. LAI and LAHV was 36% and 49% lower in burned than 

unburned areas in ES stage forests and only 18% and 24% lower in LS stages, 

respectively (Figure 4.4).  

 

Figure 4.4. Boxplots for the canopy metrics (A) Maximum height (m), (B) Mean height 

(m), (C) Openness at 5 m (%), (D) Openness at 10 m (%), (E) Roughness (m), (F) 

Leaf Area Index (m2 m-2) and (G) Leaf Area Height Volume (m). Boxplots are divided 

into unburned (blue) and burned (orange) categories and grouped by the forest 

successional stage: Early (left), Later (right). The Y-axis is square root transformed for 

maximum height, mean height and LAHV; and natural log transformed for openness 
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at 5 m and roughness. Asterisks represent significant differences between unburned 

and burned categories for each successional stage and the interaction effect from the 

mixed effects model. Significance levels: *p<0.05, **p<0.01, ***p<0.001; ns, non-

significant relationships.  
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Table 4.1. Parameter estimates ± standard error for canopy metrics analysed as fixed effects in the mixed effects models for forest 

successional stage (ES and LS), status of the forest (Unburned and Burned) and their interaction. Lidar flight site ID was included as 

a random effect and the coefficient represents the variance between levels. Asterisks represent the significance level of each variable: 

*p<0.05; **p<0.01; ***p<0.001. Successional stages and forest status coefficients represent comparisons between categories (ES 

and LS; Unburned and Burned, respectively). Total (conditional) R2 represents the proportion of variance explained by our model and 

fixed effect (marginal) R2 represents the variance explained by the fixed effect parameters. 

 

  Intercept 
Successional 

Stage (LS) 

Forest Status 

(Burned) 

Successional Stage 

(LS):Forest Status 

(Burned) 

Flight ID 
Fixed effect 

(marginal)R2 

Total 

(conditional) 

R2 

 Sqrt. Maximum H.  3.41 ± 0.12*** 0.78 ± 0.15*** -0.17 ± 0.01*** -0.27 ± 0.02*** 0.09 0.29 0.48 

Sqrt. Mean H. 2.63 ± 0.11*** 0.72 ± 0.13*** -0.22 ± 0.02*** -0.16 ± 0.02*** 0.07 0.24 0.39 

Ln Openness 5m -1.84 ± 0.29*** -0.94 ± 0.3** 0.4 ± 0.04*** -0.2 ± 0.04*** 0.51 0.09 0.3 

Openness 10m 0.78 ± 0.06*** -0.38 ± 0.07*** 0.07 ± 0.01*** 0.12 ± 0.01*** 0.02 0.23 0.38 

Ln Roughness -1.15 ± 0.13*** -0.07 ± 0.15 0.15 ± 0.02*** -0.16 ± 0.02*** 0.1 0.004 0.24 

LAI 2.56 ± 0.42*** 0.72 ± 0.48 -0.19 ± 0.04*** 0.03 ± 0.05 0.7 0.06 0.41 

Sqrt. LAHV 2.98 ± 0.39*** 1.54 ± 0.45* -0.29 ± 0.04*** -0.24 ± 0.05*** 0.62 0.22 0.47 
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4.4.2 Recovery of secondary forests after fire   

Our results show that the canopy structure of secondary forests becomes more similar 

to that of nearby unburned forests with the same successional stage with time after 

fire. In the ES stage, maximum canopy height (p<0.001), mean canopy height 

(p<0.001), openness at 5 m (p<0.01), openness at 10 m (p<0.001) and LAHV (p<0.05) 

could recover over time to the unburned state (Figure 4.5, Table 4.2, indicate in YSLF 

(ES) column). However, in the LS stage secondary forests, only maximum canopy 

height (p<0.01), openness at 5 m (p<0.05) and roughness (p<0.001) could recover to 

the unburned state (Figure 4.5, Table 4.2, indicate in YSLF (LS) column).  

Early and later successional stage secondary forests also have different rates of 

recovery for some canopy structure metrics. According to the adjusted linear models, 

maximum canopy height and openness at 5 m have a faster recovery rate in ES 

stages, reaching the unburned state in 12 and 14 years, respectively (Figure 4.5, Table 

4.2 indicated in YSLF (ES) column, Table 4.3), while LS stages take 19 and 29 years 

to recover these metrics to the unburned state, respectively (Figure 4.5, Table 4.2 

indicated in YSLF (LS) column, Table 4.3). The mean canopy height and openness at 

10 m also has significantly different rates of recovery between successional stages 

(Table 4.2, indicated in YSLF:Successional Stage (LS) column). However, these 

metrics do not have a significant rate of recovery in LS stages. Instead, only forests in 

ES stages have significant rates of recovery for these metrics, requiring 20 years for 

mean canopy height to reach the unburned state and 17 years for openness at 10 m. 

In ES stage forests, LAHV could recover to the unburned state in 40 years. Whilst in 

LS stage forest, we also found that roughness could reach the unburned state, but 

only 70 years after fire (Table 4.3). Overall, recovery rates of different forest structure 

metrics are highly variable and dependent on the successional stage. 
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Figure 4.5. Recovery of canopy structure metrics with the year since last fire (YSLF). 

(A) Maximum height (m), (B) Mean height (m), (C) Openness at 5 m (%), (D) Openness 

at 10 m (%), (E) Roughness (m), (F) Leaf Area Index (m2 m-2) and (G) Leaf Area Height 

Volume (m). The y-axis is square root transformed for maximum height, mean height 

and LAHV; and natural log transformed for openness at 5 m and roughness. Purple 

lines indicate forests in an early successional stage and yellow lines forests in a later 

successional stage. Dashed lines refer to mean values of unburned areas for each 

successional stage. 
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Table 4.2. Parameter estimates ± standard error for canopy metrics analysed as fixed effects in the mixed effects models for year 

since last fire (YSLF). Model estimates are provided for both successional stages (ES and LS). Successional Stage (LS) represents 

the difference in the intercept and YSLF: Successional Stage (LS) represent the difference in the slope of the line in later successional 

stage forests compared to early successional stage forests. Lidar flight site ID was included as a random effect and the coefficient 

represents the variance between levels. Asterisks represent the significance level of each variable: *p<0.05; **p<0.01; ***p<0.001. 

Total (conditional) R2 represents the proportion of variance explained by our model and fixed effect (marginal) R2 represents the 

variance explained by the fixed effect parameters. 

 

    

Intercept (ES) Intercept (LS) YSLF (ES) YSLF (LS) LS 
YSLF:Successional 

Stage (LS) 
Flight ID 

Fixed effect 

(marginal) 

R2 

Total 

(conditional) 

R2 

Sqrt. Maximum H. 2.92 ± 0.24*** 3.78 ± 0.13*** 0.05 ± 0.01*** 0.01 ± 0.005** 0.87 ± 0.28** -0.04 ± 0.01*** 0.17 0.14 0.42 

Sqrt. Mean H. 2.05 ± 0.23*** 3.01 ± 0.12*** 0.04 ± 0.01*** 0.002 ± 0.005 0.95 ± 0.26*** -0.04 ± 0.01*** 0.15 0.2 0.5 

Ln Openness 5m -0.8 ± 0.53 -2.6 ± 0.27*** -0.05 ± 0.02** 0.02 ± 0.01* -1.83 ± 0.6** 0.07 ± 0.02*** 0.82 0.16 0.5 

Openness 10m 1.01 ± 0.11*** 0.6 ± 0.06*** -0.02 ± 0.004*** -0.004 ± 0.002 -0.41 ± 0.13** 0.01 ± 0.005** 0.04 0.15 0.45 

Ln Roughness -0.78 ± 0.19*** -1.26 ± 0.1*** 0.01 ± 0.01 0.02 ± 0.004*** -0.48 ± 0.22* 0.01 ± 0.008 0.11 0.09 0.4 

LAI 1.80 ± 0.48*** 3.07 ± 0.3*** 0.005 ± 0.01 -0.01 ± 0.01 1.26 ± 0.55* -0.01 ± 0.02 0.67 0.12 0.53 

Sqrt. LAHV 2.15 ± 0.45*** 3.96 ± 0.25*** 0.03 ± 0.01* -0.01 ± 0.01 1.81 ± 0.52** -0.04 ± 0.02 0.58 0.2 0.52 

  



100 
 

Table 4.3. Recovery of canopy metrics by forest successional stage and time to 

recover to the mean unburned state. Recovery times are predicted from mixed effects 

models (Table 4.2).    

  Early Stage Later Stage 

  Does it recover? How long? Does it recover? How long? 

Maximum Height √ 12 √ 19 

Mean Height √ 20 X NA 

Openness at 5m √ 14 √ 29 

Openness at 10m √ 17 X NA 

Roughness X NA √ 70 

LAI X NA X NA 

LAHV √ 40 X NA 

  

 

4.5 Discussion   

Secondary forests are highly susceptible to fire, especially because of their drier 

understory and high abundance of pioneer species with low wood density that are 

more likely to die after fire (Berenguer et al., 2021). Repeated burning of secondary 

forests can reduce carbon stocks by more than 50% (Zarin et al., 2005; Wandelli & 

Fearnside, 2015). However, uncertainty remains regarding how fires affects the 

vertical structure of secondary forests, and how successional stage affects their 

resistance and resilience to fire. By analysing airborne lidar data on nearby burned 

and unburned secondary rainforests with different post-fire ages, we show that the 

vertical structure of secondary forests is vulnerable to fire, but that these impacts are 

dependent on successional stage. Recovery rates, however, vary among attributes, 

with maximum height and a closed canopy recovering faster than mean height, 

roughness and biomass. Overall, ES stage forests show more potential for faster 

recovery than LS stage forests despite experiencing greater changes in their canopy 

structure post-fire.  
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4.5.1 Impacts of fire on secondary forests  

We found that the canopy structure of ES stage forests is more affected by fires based 

on the overall mean of each metric, which has important implications for forest 

recovery. Canopy gaps at 5 m height presented the highest difference between ES 

and LS stages, when compared differences of burned and unburned areas, where ES 

stages had 83% more gaps than LS stage forests. This pattern is consistent for canopy 

height, roughness and leaf area height volume (LAHV). Early successional stage 

forests are probably less resistant to fire because these forests have a greater 

dominance of pioneer species with low wood density (Park et al., 2005; d’Oliveira & 

Ribas, 2011; Berenguer et al., 2018a), which have greater propensity to die within the 

first years after a fire (Barlow et al., 2003a; Brando et al., 2012; Berenguer et al., 2021). 

The higher frequency of canopy gaps in our studied forests can be attributed to 

contagiousness, which is the tendency of new canopy gaps to form nearby to previous 

gaps (Jansen et al., 2008; Hunter et al., 2015). This contagiousness is driven by how 

fire changes interrelated microclimatic factors such as humidity, temperature buffering, 

and wind exposure (De Frenne et al., 2021). Following changes in the microclimate, 

these areas are prone to more intense and recurrent fires that may cause more 

damage to the forest structure, with declines of more than 50% of small, medium and 

large basal areas plants (Prestes et al., 2020). LAI was the only metric analysed which 

was equally affected in both ES and LS forest stages. We hypothesise that this result 

may be driven by the equivalent spread of fire over the vertical profile, burning leaves 

and branches equally in ES and LS stages, since the difference in mean canopy height 

was only 2 m before burning. Moreover, the drop of leaves may be a stress reaction 

of trees after fire which may not differ between successional stages (Karavani et al., 

2018). However, LAI may also not be a good metric to evaluate the vertical effects of 

fire in canopy structure because LAI does not differentiate between leaves and 

branches of different heights in the vertical profile and also because of the saturation 

of the LAI, a well-known problem in optical remote sensing data (Huete et al., 2002; 

Galvão et al., 2011). 
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4.5.2 Recovery of secondary forest after fire  

Different attributes of the vertical canopy structure have different potential to recover 

after fire. Fire, and recurrent fire in understory vegetation affect the forests by changing 

species composition and forest structure (Prestes et al., 2020). Following fire, the 

understory regrows quickly in some forests, causing a rapid closure of the canopy at 

5 m height (d’Oliveira & Ribas, 2011). The presence of pioneer species in secondary 

forests, e.g., Cecropia sp. and Miconia sp. (Mesquita et al., 2001; Zambiazi et al., 

2021), allows the canopy to recover quickly owing to their fast growth rates. We found 

that maximum canopy height could recover quickly, probably because only one single 

tree is required to grow to the top of the canopy. This can happen more easily in 

secondary forests because the open environment allows light-dependent pioneer 

species to recruit (Laurance et al., 2006b). In contrast, LAI was not able to recover 

within the timeframe of this study (16 years). This finding is likely related to an intense 

reduction in leaf and branch density across the whole vertical strata caused by fire, 

which does not show a tendency to recover over time, potentially because of damage 

to the stems that then leads trees to die. On other hand, this finding may just be a 

limitation of lidar-derived LAI at detecting differences over time as stated in section 

4.1. Further studies are necessary to determine more precisely the role of LAI in 

detecting the effects of fire on the vertical forest structure. 

Although maximum height and openness at 5 m recovered in both ES and LS stage 

secondary forests, ES stage forests recovered faster. For example, the recovery of 

openness at 5 m in LS stages takes more than double the length of time to recover 

than in ES stage forests (29 vs 14 years, respectively). This emphasises the low 

resilience of LS forest compared to ES. This is probably related to a greater dominance 

of nitrogen fixing species in ES stages (Batterman et al., 2013; Poorter et al., 2021), 

increasing the soil fertility and providing a suitable environment for low wood density 

tree species with higher specific leaf area (Quesada et al., 2012; Poorter et al., 2021). 

These species regrow faster and consequently decrease canopy openness faster in 

ES forests. A lower density of stems in ES forests (Feldpausch et al., 2007) is also 

likely to increase the rate of canopy closure as competition for resources is reduced. 

Secondary forests have a large density of low wood density trees and are highly 

vulnerable to drought conditions (Phillips et al., 2009a; Feldpausch et al., 2016; 
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Berenguer et al., 2021), which typically co-occur with fire, and therefore the potential 

for regrowth is likely to be higher when competition for water is reduced. 

The recovery of mean canopy height after burning to an unburned forest state is likely 

to be more challenging for a LS stage forest because for this recovery to happen, LS 

forests would need to achieve a higher number of trees close to 10 m height than ES 

forests. However, tree mortality after fires probably prevents this recovery within the 

timeframe of this study (Silva et al., 2018). Meanwhile, for forests in ES stages, mean 

canopy height in the unburned state is shorter (8 m). Consequently, recovery can 

happen within two decades as a lower density of stems need to regrow after mortality 

to attain this mean canopy height of 8 m. Whilst our results suggest ES stage forests 

recover faster after burning, this is explained by both a faster growth rate and a shorter 

height to grow when compared with LS forests.  

Biomass is particularly slow to recover after disturbance events since it is 

predominantly driven by the abundance of large trees (Poorter et al., 2021) and 

secondary forests lose biomass through self-thinning as dense even-aged regrowing 

stems compete (Feldpausch et al., 2007). In our study, we used the LAHV metric, 

which is closely related to biomass (de Almeida et al., 2019a), and found that it was 

also slow to recover after fire. Forests in a LS stage have greater biomass and could 

not recover within the timeframe of our analysis. In contrast, ES stage forests are 

populated by low wood density tree species that have lower biomass and faster growth 

rates (Poorter et al., 2021). Therefore, these forests have greater resilience to recover 

any reductions in biomass within approximately four decades after fire.  

Although ES stage forests have greater potential to recover most canopy attributes, 

canopy roughness could only recover in LS secondary forests. ES stages may not 

recover canopy roughness during the study period due to post-fire recruitment and 

competition among dense even-aged individuals where canopy recovery occurs but is 

dominated by many individuals of the same height (Feldpausch et al., 2007; Prestes 

et al., 2020). Recovery of canopy roughness in LS is particularly slow, taking on 

average 70 years. This is because canopy roughness results from a heterogeneous 

mix of gaps dynamic and tree size, form, and age classes that require time to develop, 

and that are often lacking secondary forests experiencing severe or multiple 

disturbances that create structural homogeneity (Poorter et al., 2021).  
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Even with some uncertainties in the dataset about burned areas owing to a coarse 

spatial resolution, our results were consistent with the literature, showing ES stage 

forests more vulnerable to fire effects (Brando et al., 2012; Berenguer et al., 2021). 

However, it is likely that many understory fires in these secondary forests were 

underestimated since the coarse resolution of the product is not suited to detect small 

fires. The use of a higher spatial resolution in the burned area products would support 

a more precise estimation of the impacts of fire on the vertical canopy structure of 

secondary forests. 

 

4.5.3 Implications of burning secondary forests  

Secondary forests in Amazonia play an important role in biodiversity conservation and 

mitigation of carbon emissions (Pan et al., 2011; Chazdon et al., 2016; Lennox et al., 

2018; Rozendaal et al., 2019). An increased frequency of fire in these secondary 

forests, however, threatens their potential to regrow. We show that fire disturbances 

during secondary forest regrowth can delay the regeneration of vertical structure for 

decades because they are unable to fully recover from fires. Later successional stage 

forests have low resilience because the damage caused to their vertical structure is 

rarely recovered within two decades. The recovery of vertical structure and 

heterogeneity has important implications for flora and fauna biodiversity ensuring a 

sufficiently complex canopy structure for species coexistence and a microclimate that 

supports subcanopy specialists (Lindenmayer & Laurance, 2017). Policies that 

mitigate against fire, therefore, should be implemented in secondary forest to facilitate 

successful forest regeneration. These policies are increasingly important as forest 

succession progresses because of their declining resilience to recover. Mitigation of 

fires in secondary forests is likely to be critical if they are to continue to provide their 

wide array of ecological services.  

 

4.6 Conclusions   

In this study, we investigate the impacts of fire on the structure of secondary forests 

of different successional stages and their ability to recover. Secondary forests of all 

successional stages that experienced fire were more degraded than unburned forest 
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areas. Roughness was the only canopy metric that did not differ between unburned 

and burned areas in secondary forests, but only in later successional stages. 

Secondary forests in the early successional stage experienced more negative impacts 

on canopy structure from fire than later successional stages, except for leaf area index 

(LAI), which did not experience different impacts between early and later successional 

stages. Recovery rates were highly variable among the canopy metrics and depended 

on the successional stage of the forest. Overall, early successional stage forests have 

more potential for a faster recover than later successional stage forests despite 

experiencing greater changes in canopy structure post-fire. To improve our findings, 

we recommend future studies to develop lidar-based equations for secondary forests, 

as well as more acquisitions of field-base data that integrates with lidar measurements 

over larger patches of secondary forests. In addition, more lidar time series will help 

to confirm the temporal patterns indicated by our chronosequences. Fire management 

policies need to be introduced in secondary forests in ES and LS stages, assuring 

protection for vulnerable ES stage forests and sufficient time for LS forest to 

regenerate and provide key ecosystem services. 
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Chapter 5: Synthesis and Conclusions 
  

 

Jamaraquá Community, National Forest of Tapajós, PA, Brazil 
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5.1 Summary of key findings 

The research presented in this thesis investigates the effects of historical and recent 

fires on the dynamics and structure of Amazonian forests. The main aims of this thesis 

are to understand the long-term and short-term legacies of fire in both old-growth and 

secondary Amazonian forests. This thesis focuses on changes in biomass and vertical 

canopy structure as these are important for maintaining the carbon sink and 

microclimate of tropical forests.  

My first empirical chapter (Chapter 2) focuses on the effects of historical fires on the 

response of forests to drought, using PyC as a proxy. This chapter reveals that forests 

that experienced historical fires potentially have a greater resilience to drought. The 

subsequent empirical chapters (Chapters 3 and 4) focus on the effects of recent fires 

in old-growth and secondary Amazonian forests. These chapters show that forests are 

negatively affected by fire. However, the extent of damage and recovery is highly 

variable, depending on fire reoccurrence, carbon stocks and forest successional 

stage.  

In the next paragraphs I present the key findings of this thesis.  

 

5.1.1 Chapter 2: Past fires enhance Amazon forest drought resistance 

Forest productivity and rates of tree mortality are sensitive to drought and fire. 

Understanding whether past disturbances increase the resilience of forest to modern 

disturbances is critical in predicting how these forests will respond to a greater 

frequency and intensity of fire and drought. To understand the legacy of historical fires 

on Amazonian forests responses to drought, I first investigated the relationship of PyC 

with physicochemical soil properties and wood density, because soil PyC has the 

capacity to improve soil fertility, accelerating forest stem turnover. The results showed 

a strong positive correlation between soil PyC and soil fertility, clay and silt, and a 

negative correlation between soil PyC and wood density and sand. Secondly, I 

investigated if there is an association between soil PyC and aboveground carbon 

dynamics. The result of the linear mixed model analysis shows there are no significant 

relationships between soil PyC and forest dynamics in the analysed forest plots. 

However, when analysing the relationship for forest censuses that had experienced a 
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severe drought, my results show that the impact of drought is significantly greater in 

forest with low concentrations of soil PyC. These findings support the hypothesis that 

soil PyC increases soil fertility and water holding capacity in the soil, potentially 

affording a higher resistance to drought where soil PyC is abundant, whilst also 

favouring the establishment of species associated with historical disturbances, such 

as fire and drought.  

 

5.1.2 Chapter 3: Fire reoccurrence increase recovery time of canopy structure 

in Amazonian primary forests 

In recent decades, fire frequency has increased in Amazonia, bringing uncertainties 

about the future of this forest. Understanding changes in not only aboveground 

biomass, but also in the vertical canopy structure caused by fires and fire reoccurrence 

is important to evaluate the time for the forest to recover and its impacts on the global 

carbon balance. To investigate the effects of fire and fire reoccurrences on the canopy 

structure of primary forests, I compared vertical structure metrics derived from lidar 

data of unburned and burned areas across Amazonia. The results show that forests 

that experienced repeated fires are more dissimilar to the unburned forests than areas 

that only experienced one fire event. Repeated fires have a greater impact on forest 

structure and increases the time to recover to the unburned state. Fires create a 

condition whereby a drier and hotter microclimate increases the likelihood of new fire 

events, generating a positive feedback cycle where forests have an insufficient fire-

free time to fully recovery, leading to losses in carbon stocks, reductions in biodiversity 

and altered regional climates.  

 

5.1.3 Chapter 4: Resistance and resilience of canopy structure to fire depends 

on successional stage in Amazonian secondary forests 

Secondary forests act as large carbon sink and play an important role in biodiversity 

conservation and forest fragment connectivity. However, fire also threatens the 

regrowth of secondary forests, and can have varying impacts on different successional 

stages. To understand the effects of fires on secondary forests, I used a range of 

canopy structure metrics derived from airborne lidar data across the South-Eastern 
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region of Brazilian Amazon. I investigated if the effects of fire on secondary forests 

differ by successional stage, if the canopy structure can recover after fire and if the 

rate of recovery between early and later successional stages is different. The results 

show that fires negatively affect canopy structure of secondary forest in early and later 

successional stages, however, forests in early successional stage have more potential 

for a faster recovery. The results also show that later successional stages have a very 

low resilience because their vertical structure was scarcely able to recover within two 

decades.  

 

5.2 Implications of fire for the Amazonian forest carbon sink  

The results from this thesis suggest that historical fires can increase forest resilience 

to drought by either increasing soil fertility and/or changing species composition. 

Therefore, forests that experienced historical fires may be less affected by drought 

and still act as a carbon sink, while forests that did not experience historical fires are 

more prone to becoming a carbon source during drought years. This result highlights 

that historical events in Amazonian forests may play an important role in determining 

how forests respond to modern disturbances. As our knowledge of historical 

disturbances advances, it is important to consider their effects and add them into 

models that predict the response of forests to fires and droughts, because areas with 

historical fires may have different carbon sink rates. Failure to include these data may 

result in less accurate predictions of how the terrestrial carbon sink will respond to 

drought in the future and thus the amount of carbon dioxide removed from the 

atmosphere by tropical forest vegetation. 

Nowadays, forests are still experiencing fires and at a much higher frequency than in 

the past (Aragão et al., 2018; Silva Junior et al., 2018), leading to degradation of 

Amazonian forests. My results show that forests that experienced one fire event 

decrease their carbon stocks and can take almost one decade to recover to an 

unburned state. In addition, the reoccurrence of fires aggravates the loss in carbon 

stocks and has a strong role in slowing down recovery rates of these forests. Forests 

with low carbon stocks have experienced more negative impacts of fire than forests 

with high carbon stocks. These findings highlight the urgency of forest management 

and identify important areas for prioritisation. Areas that have already been burned 
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need to be protected to avoid any reoccurrences of fire because the repeated burning 

intensifies the damage caused to carbon stocks. To also maintain carbon stores, it is 

necessary to prioritise protection of forests with low carbon stocks, as fire has a greater 

impact on biomass in these forests. New legislations, implantation of active 

management and an improved and greater monitoring of illegal actives that are related 

to fire in Amazonian forests are potentially critical for maintaining the carbon 

sequestration potential of these forests.  

This thesis also focuses on the impacts of fire in secondary forests. Whilst I did not 

analyse aboveground carbon density (ACD) directly, I did analyse the metric leaf area 

height volume (LAHV), which is closely related to ACD. Secondary forests, as also 

observed in primary forests, show a decrease in carbon stocks after fire. Secondary 

forests in early and later successional stages experienced significant declines in LAHV 

after fire. However, later successional stage forests have a lower potential to recover 

to an unburned state. Fire occurrences in secondary forests, especially in later 

successional stages may release the carbon sequestered during the regrowth of these 

forests, as they are unable to recover their biomass stock after fire. Therefore, when 

aiming to conserve the carbon sink of secondary forests, we should prioritise later 

successional forests to stay in a fire-free condition since these forests cannot easily 

recover lost biomass. Changes in species composition are also common after fires, 

driven by tree mortality and consecutive growth of pioneer species that have lower 

wood density (Mata et al., 2022). Since species with low wood density typically store 

less carbon, forests will have lower carbon stocks with a greater density of pioneer 

species (Baker et al., 2004). These tree species with low wood density, however, have 

faster growth rates. This fast growth may allow faster carbon accumulation with 

positive results for carbon sink, at least in the initial years until they reach saturation. 

Shifts in community mean wood density should thus also be considered when 

modelling the Amazonian carbon sink to more accurately predict how carbon 

sequestration will change in the future.  

 

5.3 Implications of fire on Amazonian forest structure and biodiversity 

Although assessing the impact of historical fires on the structure of Amazonian forests 

was beyond the scope of my research, my results do suggest long-term successional 
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changes in species composition. Areas with higher concentration of soil PyC had 

community-level low wood density, indicating a shift towards earlier successional 

species. This indicates that over long time periods, some species, particularly with 

high wood density could be more vulnerable to extinction, especially as the frequency 

of fire events in Amazonian forests is increasing (Aragão et al., 2018; Berenguer et 

al., 2018b; Silva Junior et al., 2018).  

Modern day fires increase tree mortality. As trees die, more gaps form in the forest 

canopy, altering the microclimate and consequently leaving a forest that is more 

vulnerable to the reoccurrence of fire (Prestes et al., 2020). Forests that experienced 

the reoccurrence of fires need longer to recover their canopy structure. In secondary 

forests, both early and later successional stages experienced negative impacts of fire 

on the vertical canopy structure. However, early successional stages show faster 

recovery in the canopy attributes studied. Some canopy attributes, such as mean 

height and leaf area index (LAI), did not recover after fire during the studied regrowth 

interval, but did recover in later successional stages. When the frequency of canopy 

gaps increases in both primary and secondary forests in later successional stages, a 

shift in species composition is likely to occur as the microclimate of the forest changes 

and shade tolerant species cannot compete with pioneer species. Closing canopy 

gaps is likely to be important to allow more shade tolerant species to re-establish 

themselves (Laurance et al., 2006a). Active management should therefore focus on 

closing the canopy, such as management of lianas (Finlayson et al., 2022), 

supplementary planting (Philipson et al., 2020), reduced logging  (Milodowski et al., 

2021), among others. Preventing fire from reoccurring is also likely to be important to 

recover the canopy and provide the shade conditions needed to allow shade tolerant 

species to grow. 

The drier microclimate created by changes in forest structure after fire is also likely to 

increase in the drought susceptibility of the forest. In drought periods, big trees are 

more likely to die (Phillips et al., 2010; Rowland et al., 2015). Since big trees act as 

keystone species (Lindenmayer & Laurance, 2017), their loss may have cascading 

impacts on the whole ecosystem. Changes to the hydrological regime, nutrient cycles 

and the distribution and abundance of conspecifics and heterospecifics (Lindenmayer 

& Laurance, 2017) are all potential consequences of the loss of these large trees. If 

fire leads to more frequent droughts, there may also be changes in the phenology and 
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reproductive cycles of many tree species (Rowland et al., 2018). These shifts may 

reduce the evolutionary fitness of these trees, leaving them vulnerable to extinction. 

Changes in the forest structure caused by fire may also put other life forms in danger, 

such as epiphytes that are unlikely to survive in drier environments and without the 

presence of big trees (Lindenmayer & Laurance, 2017). Many animals and insects that 

depend on large trees and need complex canopy structures to survive may also 

decline (Lindenmayer & Laurance, 2017). It is therefore vital to introduce management 

actions that protect these areas from fire and guarantee their ecosystem services such 

as biodiversity conservation and climate change mitigation are kept intact.  

 

5.4 Perspectives and challenges  

The results from this thesis provide an insightful direction for the future of Amazonian 

forests under the increasing risk of degradation by fire. Several research challenges 

and opportunities for future research were identified during the development of this 

thesis, which I outline in this section.  

In my first empirical chapter (Chapter 2), the PyC dataset, used as a proxy of historical 

fires, had some limitations. This dataset does not inform when the PyC was formed 

(e.g., 30 or 3000 years ago), and neither whether it originated from one large fire or 

several smaller fires, which would affect the vegetation in different ways. Further 

analysis including radiocarbon dating will help to address the knowledge gap and allow 

us to better understand the legacy effect of fire on vegetation. In my analysis of the 

impacts of fire reoccurrence in primary forests (Chapter 3), I was unable to investigate 

the influence of the time between fire reoccurrences owing to a lack of replication 

across fire interval periods. This is an important variable that should be addressed in 

future research, since previous studies have shown that forests burned in subsequent 

years are more impacted (Brando et al., 2014). Moreover, I was unable to investigate 

the effects of fire reoccurrences on the canopy structure of secondary forests since 

my dataset did not provide enough areas that experienced more than one fire event. 

Therefore, the effect of fire reoccurrence on the vertical canopy structure of secondary 

forests and its impacts for forest regrowth still needs to be investigated in future 

research. Investigating the impacts of drought on modern day fires and its effects on 

forest structure and recovery from fire is another important area of research, but was 
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beyond the scope of this thesis. I recommend further research on this topic as it is 

known that drought exacerbates the occurrence of fire (Aragão et al., 2018; Silva et 

al., 2018; Silva Junior et al., 2019), which may aggravate the impact of fire on carbon 

storage and forest structure. 

In the chapters where I investigate the effect of recent fires on Amazonian forests 

(Chapters 3 and 4), the burned area data that I used was the MCD64A1 product from 

the MODIS sensor with a spatial resolution of 500 m, available from November 2000. 

This product has some uncertainties because its coarse spatial resolution leads to 

considerable underestimation of burned areas (Randerson et al., 2012; Giglio et al., 

2018) and struggles to detect small burns. However, when compared with other 

burned area products with better spatial resolution, MCD64A1 shows a good 

performance (Pessôa et al., 2020). A new burned area product using Landsat images 

was launched in May 2022 covering a period from 1985 to the present and with a 

spatial resolution of 30 m (Alencar et al., 2022). This is a very promising new dataset, 

allowing an understanding of the effects of recent fires over a longer time series than 

MCD64A1 and also with a higher spatial resolution, thus decreasing uncertainties.  

The empirical chapters developed in this thesis also have spatial limitations. Field plot 

inventories used in chapter 2 are mainly areas of 1 ha, which in total covered an area 

of 108 ha. Whilst this represents a relatively large number of plots, it remains less than 

0.001% of the total area of the Amazon Basin. To better estimate forest dynamics, 

larger forest plots, with higher re-censusing frequency are needed. Larger forest plots 

have recently been established in some parts of the Amazon, but are too limited in 

number to provide a good spatial coverage of the whole of Amazonia. An effort to 

establish research plots with better distribution across the Amazon Basin would help 

improve our understanding of forest dynamics across all different climatic and edaphic 

conditions in the basin. Moreover, more field data combined with lidar measurements 

will guarantee better estimations of biomass and other forest attributes as well as lidar 

time series that could confirm the temporal patterns indicated by my results.  

Besides, in chapter 4, my research focuses only on the south-eastern region of the 

Amazon forest because it is where the highest concentration of secondary forests is 

found. I recommend future research to address the effect of fire on canopy structure 

of secondary forests in other regions of the Amazon, as fire impacts and recovery rates 

may change in different climatic and edaphic conditions (Heinrich et al., 2021). 
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Moreover, this thesis is only focused on Amazonian forests. Understanding the 

impacts of fire and the recovery after fire is crucial not only in the Amazon but also in 

all other tropical forests. More studies that follow the similar methodologies to this 

thesis, should be undertaken in Asian and African tropical forests providing better 

estimates of impacts of fire in tropical forests and its implications for the global carbon 

cycling and biodiversity conservation. Analyses that use similar methods could also 

reveal important information about the differences in ecology between tropical forest 

regions and highlight differences in long-term adaptations to fire. 

In this thesis, I focus on aboveground carbon and forest structure. Further investigation 

into the impacts of fire on other forest attributes, such as eco-physiology, species 

diversity, impacts on animal communities, soil carbon, among others, will reveal the 

full impacts of fire on the whole forest ecosystem. Additionally, I only use soil analyses 

in chapter 2, since few airborne lidar sites overlap areas of permanent forest inventory 

plots with soil analyses, thereby preventing the inclusion of these variables in the 

analysis of chapters 3 and 4.  

Finally, the results presented in this thesis have temporal limitations as they mainly 

focus on the impact of historical and recent fires in Amazonian forests. Further and 

more detailed investigations of how the frequency and intensity of fires affects forest 

aboveground biomass and vertical canopy structure and its effects on the global 

carbon and hydrological cycles and biodiversity are needed. Furthermore, my 

analyses focus on fire under current climatic conditions. Under future climate change, 

it is predicted that the Amazon will experience higher temperatures and drier 

conditions (IPCC, 2022). Since these conditions exacerbate the effects of fire on 

Amazonian forests (Aragão et al., 2018), the impacts of fire on these forests is likely 

to change over time. Development of models that can predict how fire will change with 

time will be necessary if we wish to fully understand how the Amazon forest may 

change in the future. 

 

5.5 Conclusion  

The Amazon forest is the most biodiverse forest on Earth and has great importance 

for regulating carbon and hydrological global cycles. Despite tropical rainforest being 

an ecosystem with historically infrequent fires, forest degradation can transform these 
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forests into a fire prone environment. The advance of deforestation, degradation, and 

more frequent and intense droughts in recent decades, has increased the threat of fire 

in Amazonian forests. In the research developed in this thesis, I address the effects of 

fire on Amazonian forests from past to present. I found that historical fires may still be 

having an influence on current forest dynamics during drought years, by fires having 

added PyC to the soil that improves soil fertility and water holding capacity, whilst also 

favouring the establishment of species associated with historical disturbances. When 

studying the impacts of modern fires, I show they have large negative impacts on both 

old-growth and secondary forests. Modern fires affect carbon storage and canopy 

structure, with their effects more intense when fire reoccurs. Secondary forests have 

a low resilience when found in later successional stages, accentuating the importance 

of protecting these areas. Overall, impacts of fire on the carbon stocks and canopy 

structure of forests can take many decades to fully recover, with some parameters 

showing no recovery. This has substantial implications for the global carbon cycle and 

biodiversity. Implementation of forest conservation and monitoring and acting against 

illegal activities that produce forest fires is vital for the long-term future of the Amazon 

forest and its contribution to the planet.  
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Appendix 1: Co-authored publications 

Some co-authored research has been developed during my PhD. The following papers 

have been published or are in preparation for submission. The abstracts of these 

papers are presented below.  

 

21st Century drought-related fires counteract the decline of Amazon 

deforestation carbon emissions  

Luiz E.O.C. Aragão, Liana O. Anderson, Marisa G. Fonseca, Thais M. Rosan, Laura 

B. Vedovato, Fabien H. Wagner, Camila V.J. Silva, Celso H.L. Silva Junior, Egidio 

Arai, Ana P. Aguiar, Jos Barlow, Erika Berenguer, Merritt N. Deeter, Lucas G. 

Domingues, Luciana Gatti, Manuel Gloor, Yadvinder Malhi, Jose A. Marengo, John B. 

Miller, Oliver L. Phillips & Sassan Saatchi. Nature Communications, 2018, 9, 536. 

Abstract  

Tropical carbon emissions are largely derived from direct forest clearing processes. 

Yet, emissions from drought-induced forest fires are, usually, not included in national-

level carbon emission inventories. Here we examine Brazilian Amazon drought 

impacts on fire incidence and associated forest fire carbon emissions over the period 

2003–2015. We show that despite a 76% decline in deforestation rates over the past 

13 years, fire incidence increased by 36% during the 2015 drought compared to the 

preceding 12 years. The 2015 drought had the largest ever ratio of active fire counts 

to deforestation, with active fires occurring over an area of 799,293 km2. Gross 

emissions from forest fires (989 ± 504 Tg CO2 year−1) alone are more than half as 

great as those from old-growth forest deforestation during drought years. We conclude 

that carbon emission inventories intended for accounting and developing policies need 

to take account of substantial forest fire emissions not associated to the deforestation 

process.  

Author contributions 

L.E.O.C.A. and L.O.A. designed the research with additional input from M.G.F. L.O.A., 

M.G.F., F.H.W., C.S, C.H.L.S.J., L.V., T.M.R., E.A. and M.N.D. prepared the database 

and processed remote sensing data. L.O.A., M.G.F., M.N.D., F.H.W., C.H.L.S.J. and 
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L.E.O.C.A. analysed the data, with input from L.G.D. and L.G. L.E.O.C.A., L.O.A., 

M.G.F., A.P.A., J.B., E.B., L.G.D., L.G., M.G., Y.M., J.A.M., O.P., S.S., M.N.D. and 

J.B.M. analysed and interpreted the results. L.E.O.C.A. and L.O.A. wrote the 

manuscript, with input from all authors.  

 

Deforestation-Induced Fragmentation Increases Forest Fire 

Occurrence in Central Brazilian Amazonia  

Celso H. L. Silva Junior, Luiz E. O. C. Aragão, Marisa G. Fonseca, Catherine T. 

Almeida, Laura B. Vedovato & Liana O. Anderson. Forests, 2018, 9(6), 305.  

Abstract  

Amazonia is home to more than half of the world’s remaining tropical forests, playing 

a key role as reservoirs of carbon and biodiversity. However, whether at a slower or 

faster pace, continued deforestation causes forest fragmentation in this region. Thus, 

understanding the relationship between forest fragmentation and fire incidence and 

intensity in this region is critical. Here, we use MODIS Active Fire Product (MCD14ML, 

Collection 6) as a proxy of forest fire incidence and intensity (measured as Fire 

Radiative Power—FRP), and the Brazilian official Land-use and Land-cover Map to 

understand the relationship among deforestation, fragmentation, and forest fire on a 

deforestation frontier in the Brazilian Amazonia. Our results showed that forest fire 

incidence and intensity vary with levels of habitat loss and forest fragmentation. About 

95% of active fires and the most intense ones (FRP > 500 megawatts) were found in 

the first kilometre from the edges in forest areas. Changes made in 2012 in the 

Brazilian main law regulating the conservation of forests within private properties 

reduced the obligation to recover illegally deforested areas, thus allowing for the 

maintenance of fragmented areas in the Brazilian Amazonia. Our results reinforce the 

need to guarantee low levels of fragmentation in the Brazilian Amazonia in order to 

avoid the degradation of its forests by fire and the related carbon emissions.  

Author contributions  

C.H.L.S.J. and L.E.O.C.A. led in the design of the experiment. C.H.L.S.J. performed 

data analysis. C.H.L.S.J., L.E.O.C.A., M.G.F., C.T.A., L.B.V. and L.O.A. interpreted 
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the results. C.H.L.S.J., M.G.F. and C.T.A. wrote the paper with significant contributions 

from all authors.  

 

Taking the pulse of Earth’s tropical forests using networks of highly 

distributed plots  

ForestPlots.net. This article is attributed collectively as ForestPlots.net et al. A list 

with all authors in alphabetical order first by country of institution and secondly by 

family name can be found here: 

https://www.sciencedirect.com/science/article/pii/S0006320720309071, Biological 

Conservation, 2021, v. 260.  

Abstract  

Tropical forests are the most diverse and productive ecosystems on Earth. While 

better understanding of these forests is critical for our collective future, until quite 

recently efforts to measure and monitor them have been largely disconnected. 

Networking is essential to discover the answers to questions that transcend borders 

and the horizons of funding agencies. Here we show how a global community is 

responding to the challenges of tropical ecosystem research with diverse teams 

measuring forests tree-by-tree in thousands of long-term plots. We review the major 

scientific discoveries of this work and show how this process is changing tropical forest 

science. Our core approach involves linking long-term grassroots initiatives with 

standardized protocols and data management to generate robust scaled-up results. 

By connecting tropical researchers and elevating their status, our Social Research 

Network model recognises the key role of the data originator in scientific discovery. 

Conceived in 1999 with RAINFOR (South America), our permanent plot networks have 

been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely 

emulated worldwide. Now these multiple initiatives are integrated 

via forestplots.net cyber-infrastructure, linking colleagues from 54 countries across 24 

plot networks. Collectively these are transforming understanding of tropical forests and 

their biospheric role. Together we have discovered how, where and why forest carbon 

and biodiversity are responding to climate change, and how they feedback on it. This 

long-term pan-tropical collaboration has revealed a large long-term carbon sink and 

its trends, as well as making clear which drivers are most important, which forest 

https://www.sciencedirect.com/science/article/pii/S0006320720309071
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processes are affected, where they are changing, what the lags are, and the likely 

future responses of tropical forests as the climate continues to change. By leveraging 

a remarkably old technology, plot networks are sparking a very modern revolution in 

tropical forest science. In the future, humanity can benefit greatly by nurturing the 

grassroots communities now collectively capable of generating unique, long-term 

understanding of Earth's most precious forests.  

Author contributions  

All authors have contributed to ForestPlots.net-associated networks by leading, 

collecting or supporting field data acquisition, or implementing and funding network 

development, data management, analyses and outputs. O.L.P. wrote the manuscript 

with initial contributions from S.L.L., M.J.S. contributed new analyses, M.J.S., G.L.P. 

and A.L. helped prepare the figures, and all authors reviewed the manuscript with 

many suggesting valuable edits. O.L.P., T.R.B., G.L.-G. and S.L.L. 

conceived ForestPlots.net. R.B., T.R.B., T.F., D.G., E.G., E.H., W.H., A.E.-M., A.L., 

S.L.L., K.M., Y.M., G.C.P., O.L.P., B.S-M., L.Q., and M.J.P.S have contributed tools, 

funding or management to its development since.  

 

Forest Fragmentation and Fires in the Eastern Brazilian Amazon–

Maranhão State, Brazil  

Celso H. L. Silva-Junior, Arisson T. M. Buna, Denilson S. Bezerra , Ozeas S. Costa, 

Jr., Adriano L. Santos, Lidielze O. D. Basson, André L. S. Santos, Swanni T. Alvarado, 

Catherine T. Almeida, Ana T. G. Freire, Guillaume X. Rousseau, Danielle Celentano, 

Fabricio B. Silva, Maria S. S. Pinheiro, Silvana Amaral, Milton Kampel, Laura B. 

Vedovato, Liana O. Anderson & Luiz E. O. C. Aragão. Fire, 2022, 5, 77. 

Abstract  

Tropical forests provide essential environmental services to human well-being. In the 

world, Brazil has the largest continuous area of these forests. However, in the state of 

Maranhão, in the eastern Amazon, only 24% of the original forest cover remains. We 

integrated and analyzed active fires, burned area, land use and land cover, rainfall, 

and surface temperature datasets to understand forest fragmentation and forest fire 

dynamics from a remote sensing approach. We found that forest cover in the 
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Maranhão Amazon region had a net reduction of 31,302 km2 between 1985 and 2017, 

with 63% of losses occurring in forest core areas. Forest edges extent was reduced 

by 38%, while the size of isolated forest patches increased by 239%. Forest fires 

impacted, on average, around 1031 ± 695 km2 year−1 of forest edges between 2003 

and 2017, the equivalent of 60% of the total burned forest in this period. Our results 

demonstrated that forest fragmentation is an important factor controlling temporal and 

spatial variability of forest fires in the eastern Amazon region. Thus, both directly and 

indirectly, forest fragmentation can compromise biodiversity and carbon stocks in this 

Amazon region.  

Author contributions  

Data curation, C.H.L.S.-J.; Formal analysis, C.H.L.S.-J.; Methodology, C.H.L.S.-J.; 

Writing- original draft, C.H.L.S.-J., A.T.M.B. and D.S.B.; Writing-review and editing, 

O.S.C.J., A.L.S., L.O.D.B., A.L.S.S., S.T.A., C.T.A., A.T.G.F., G.X.R., D.C., F.B.S., 

M.S.S.P., S.A., M.K., L.B.V., L.O.A. and L.E.O.C.A. All authors have read and agreed 

to the published version of the manuscript.   

 

Environmental and Human Controls on Soil Pyrogenic Carbon in 

Amazonia  

Lidiany C.S. Carvalho, Michael I. Bird, Oliver L. Phillips, A. Junqueira, Ben H. 

Marimon-Junior, Carlos A. Quesada, Beatriz S. Marimon, Luiz E.O.C. Aragão, 

Gustavo Saiz, Laura B. Vedovato, Luciana Pereira, Edmar A. de Oliveira, E.N.H. 

Coronado, R. Herrera, C. Flores-Negron, C.P. Paz, E.M.O. Mendoza, L.A. Padilla, 

R.S. Thomas & Ted R. Feldpausch (in preparation to be submitted to Nature) 

Abstract  

Soils can store more C than atmosphere and vegetation combined and even modest 

changes in this major pool of C have the potential to significantly impact concentration 

of atmospheric CO2. Soil organic carbon (SOC) is compound for hundreds of different 

organic materials, ranging from more labile to stable forms of C with different turnover 

times. Fire derived C (also called pyrogenic carbon – PyC) is potentially the most 

stable C fraction of SOC with great mean residence time and strong capacity to act as 

a long-term C sink in geological C cycle scale.  Besides the importance of soil PyC to 
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understand the global C carbon budget, the present understanding of SOC stocks and 

cycling has generally focused on labile fractions of C in the topsoil above 0.3 m and 

much less is known about the mechanisms that control variations in PyC 

concentration. Here we present results from the first analysis of drivers of PyC for 

whole-soil-profile (0-100 cm) coupled with spatial and temporal heterogeneity in fire 

and land use, vegetation, climate and pedogenesis at Amazon Basin scale. Our results 

demonstrate that different drivers are related with PyC variation, depending on soil 

depth. Fire and land use, climate, pedogenesis and vegetation are important in 

determining variations in PyC in the Amazon Basin. At soil surface (0-30 cm), 

variations of PyC can be explained by combination of Clay% in soil, wood density and 

precipitation, while the PyC deposited at deeper soil layer (50-100 cm) is associated 

with archaeological sites distribution in the Amazonia and lower precipitation during 

the Holocene. These results suggest that PyC at 50-100 cm depth may represent old 

pools of PyC derived from middle-late Holocene anthropogenic fires and the PyC at 

soil surface is driven by factors that represent proxies of PyC decomposition and 

stabilization on soil.  
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Appendix 2: Supporting Information of Chapter 2 

  

SI Figure 2.1. Principal component analysis of Total P, pH and the exchangeable 

cations K, Ca and Mg used to construct the soil fertility variable.  
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SI Figure 2.2. Spline correlograms describing spatial autocorrelation for the residual 

of the models related to AGC gain (A), AGC loss (B) and AGC net change (C) 

predicted by soil PyC. The black line represent the estimate and grey shade 

represents 95% confidence interval using 1000 bootstrap resamples.  
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SI Figure 2.3. Spline correlograms describing spatial autocorrelation for the residual 

of the best model after model selection to predict AGC gain (A), AGC loss (B) and 

AGC net change (C) in census that experienced a severe drought (see methods). The 

black line represent the estimate and grey shade represents 95% confidence interval 

using 1000 bootstrap resamples.  
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SI Table 2.1. Variables loadings on soil fertility variable (PC1) and values of the others 

axis (PC2, PC3, PC4, PC5).  

   
PC1  

(73.3%)  

PC2  

(13.7%)  

PC3  

(6.9%)  

PC4  

(4.4%)  

PC5  

(1.7%)  

pH  0.840  -0.441  0.025  0.301  0.097  

Total P  0.801  0.393  -0.447  0.068  0.008  

Ca  0.935  -0.252  0.011  -0.082  -0.234  

Mg  0.926  -0.108  0.040  -0.328  0.147  

K  0.765  0.512  0.379  0.097  -0.006  

  

  

SI Table 2.2. Generalized Mixed Model (GLMM) to predict AGC gain, AGC loss and 

AGC net change with log PyC as fixed factor and Plot code nested in Plot cluster as 

random effect. AGC loss is squared transformed to ensure a normal distribution of 

fitted residuals.  

  Intercept  Log PyC  Plot code: 

Plot cluster  

Fixed effect 

(marginal) R2  

Total (conditional) 

R2  

AGC gain  3.35 ± 0.4*** 0.18 ± 0.13 0.29 0.01 0.41 

AGC loss  1.5 ± 0.26*** 0.02 ± 0.08 0.14 0.00 0.13 

AGC net 

change  

0.65 ± 0.74 0.07 ± 0.24 0.54 0.00 0.09 

Note: Coefficient estimates ± the SE are presented for each fixed effect. Total 

(conditional) R2 represents the total variation explained by the model and is partitioned 

into the variation explained by the fixed effects (marginal R2) and fixed plus random-

effects (conditional R2). Asterisks represent the significance level of each variable: 

*p<0.05; **p<0.01; ***p<0.001. 
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SI Table 2.3. Model selection to predict AGC Gain, AGC Loss and AGC Net Change for census classified as severe drought. The 

predictors variables were MCWD anomalies (MCWD Anom), soil PyC (PyC), Non-PyC Organic Carbon (OC), soil fertility (Fert) and 

wood density (WD) as fixed effects and plot code nested in plot cluster as random effect. MCWD Anom, PyC and OC were log 

transformed and AGC Loss was squared root transformed to ensure a normal distribution of fitted residuals. All independent variables 

are standardized. All models tested are presented and the best model was selected based on the Akaike Information Criterion 

corrected for sample size (AICc). The optimal model for AGC Gain, AGC Loss and AGC Net Change is highlighted in bold. ΔAICc 

values represent the difference in the AICc for each model compared to the optimal model.  

Model  AGC Gain  AGC Loss  AGC Net 

Change  

AICc  ΔAICc  AICc  ΔAICc  AICc  ΔAICc  

MCWD Anom *PyC + MCWD Anom *OC + MCWD Anom * Fert + PyC * Fert 

+PyC *WD  

162.2  29.5  146.2  34.1  277.8  29.4  

MCWD Anom *PyC + MCWD Anom *OC + MCWD Anom * Fert + PyC * Fert 

+ WD  

157.3  24.6  140.9  28.8  274.8  26.4  

MCWD Anom *PyC + MCWD Anom *OC + PyC * Fert + WD  151.8  19.1  136  23.9  272.6  24.2  

MCWD Anom *PyC + MCWD Anom *OC + Fert + WD  147.2  14.5  129.2  17.1  267.9  19.5  

MCWD Anom *PyC + MCWD Anom *OC + WD  142.2  9.5  124  11.9  265.1  16.7  

MCWD Anom *PyC + OC + WD  138.1  5.4  117.9  5.8  261.6  13.2  

MCWD Anom *PyC + WD  132.7  0  112.1  0  259.1  10.7  

MCWD Anom *PyC   135.1  2.4  116.1  4  257.1  8.7  
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MCWD Anom + PyC +WD    134.2  1.5  112.3  0.2  -  -  

MCWD Anom + PyC  -  -  -  -  255.9  7.5  

MCWD Anom   -  -  -  -  251.9  3.5  

Null  -  -  -  -  248.4  0  
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SI Table 2.4. Generalized Mixed Model (GLMM) to predict AGC gain and AGC loss 

with log Non-PyC Organic Carbon (OC) and MCWD anomalies (MCWD Anom) as 

fixed factor and Plot code nested in Plot cluster as random effect. AGC loss is squared 

transformed to ensure a normal distribution of fitted residuals.  

  

  

  

  

Intercept MCWD 

Anom 

OC OC:MCWD 

Anom 

Plot code: 

Plot 

cluster 

Fixed effect 

(marginal) 

R2 

Total 

(conditional) 

R2 

AGC 

gain 

2.59 ± 

0.11*** 

-0.10 ± 

0.09 

-0.00± 

0.09 

-0.13 ± 0.09 0.42 0.03 0.66 

AGC 

loss 

1.60 ± 

0.11*** 

-0.03 ± 

0.11 

-0.19 ± 

0.15 

0.15 ± 0.15 0.37 0.04 0.62 

Note: Coefficient estimates ± the SE are presented for each fixed effect. Total 

(conditional) R2 represents the total variation explained by the model and is partitioned 

into the variation explained by the fixed effects (marginal R2) and fixed plus random-

effects (conditional R2). Asterisks represent the significance level of each variable: 

*p<0.05; **p<0.01; ***p<0.001. 
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Appendix 3: Supporting Information of Chapter 3 

 

SI Figure 3.1. Violin plots for the canopy metrics (A) maximum height, (B) Roughness, 

(C) Openness at 5 m, (D) Openness at 15 m and, (E) LAI Understory and (F) LAHV. 

Yellow violins represent areas with single fire events (B1) and red violins represent 

areas with multiple fire events (B2+). Significance levels on the bottom of the violin 

represent significative difference from 0 (unburned state) and significant levels on top 

of violins represent significant differences between reoccurrences groups. There is no 

signficant difference between groups when brackets are absent. Significance level: 

*p<0.05, **p<0.01, ***p<0.001; ns, non-significant relationships. 
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SI Figure 3.2. Violin plots for the canopy metrics (A) ACD, (B) maximum height, (C) 

Mean Height, (D) Roughness, (E) Openness at 5 m, (F) Openness at 10 m,  (G) 

Openness at 15 m and, (H) LAI, (I) LAI Understory and (J) LAHV divided by forest with 

Low and High carbon stocks. Yellow violins represent areas with single fire events 

(B1) and red violins represent areas with multiple fire events (B2+). Significance levels 

on the bottom of the violin represent a significant difference from 0 (unburned state) 

and significant levels on top of the violins represent significant differences between 

reoccurrence groups. There is no signficant difference between groups when brackets 

are absent. Significance level: *p<0.05, **p<0.01, ***p<0.001; ns, non-significant 

relationships. 
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SI Table 3.1. Percentage contributions to dimension 1-5 for each lidar metric to the principal component analysis for the different 

YSLF groups. 
 

  Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5 

YSLF group 0-3 4-9 +10 0-3 4-9 +10 0-3 4-9 +10 0-3 4-9 +10 0-3 4-9 +10 

% Contribution 71.97 67.96 65.30 17.54 18.27 20.91 4.55 7.44 7.44 2.82 2.77 2.90 1.59 1.80 1.83 

M
e

tr
ic

s
 

Max H. 10.00 10.27 9.83 7.37 8.32 9.99 18.45 13.28 14.45 17.79 12.72 7.99 0.04 0.00 0.07 

Mean H. 13.14 13.79 14.07 2.18 1.87 2.30 1.74 2.15 2.85 1.61 2.71 2.06 0.58 2.19 2.54 

Openness 5m 10.71 8.90 8.79 5.93 11.90 14.19 10.11 10.81 6.16 12.56 23.91 18.45 13.19 0.22 1.45 

Openness 10m 12.34 12.66 12.70 0.24 0.08 0.05 14.03 6.21 9.32 1.58 0.77 4.94 14.00 41.84 40.95 

Openness 15m 11.39 12.88 13.13 7.15 3.25 3.61 0.02 0.19 0.05 0.04 0.56 0.09 0.55 6.60 8.40 

Roughness 8.49 6.11 6.01 12.69 23.72 23.18 14.89 11.85 8.64 2.49 0.40 1.05 56.33 20.68 18.73 

ACD 11.74 12.63 12.84 4.59 3.07 3.33 9.04 5.47 6.93 0.67 0.33 0.01 8.86 18.57 15.61 

LAI 9.54 6.55 6.36 13.20 23.42 22.24 0.18 6.58 4.87 24.05 20.52 20.87 5.54 5.75 8.22 

Understory LAI 0.32 2.98 2.74 46.49 24.13 20.66 31.16 41.74 45.46 3.54 11.93 12.72 0.79 1.86 3.66 

LAHV 12.33 13.22 13.53 0.16 0.25 0.45 0.39 1.71 1.27 35.68 26.15 31.81 0.10 2.29 0.37 

 

Acronyms: YSLF: Years Since Last Fire, Max H.: Maximum Height, Mean H.: Mean Height, ACD: Aboveground Carbon Density, LAI: 

Leaf Area Index, Understory LAI: Leaf Area Index of Understory, LAHV: Leaf Area Height Volume. 
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SI Table 3.2. Parameters estimates ± standard error for the canopy metrics analysed as fixed effects in the linear mixed models for years since 

last fire (YSLF), Reoccurrences groups (B1 and B2+), Biomass groups (Low and High) and interaction of YSLF and Reoccurrence. Region was 

included as random effect and coefficient represents the variance between levels. Total (conditional) R2 represents the proportion of variance 

explained by our model and fixed effect (marginal) R2 represents the variance explained by the fixed effect parameters. Asterisks represent the 

significance level of each variable: *p<0.05; **p<0.01; ***p<0.001. 

  

  Intercept YSLF Reoccurrences Biomass YSLF:Reoccurrences Region 

Fixed effect 
(marginal) 

R2 

Total 
(conditional) 

R2 

Δ ACD -24.98 ± 3.62 1.63 ± 0.42*** -14.42 ± 5.14** 7.24 ± 3.44 -0.88 ± 0.80 0 0.12 0.12 

Δ  Maximum H.  -8.55 ± 3.11 0.444± 0.20* -5.94 ± 2.39* 2.44 ± 1.72 -0.45 ± 0.38 15.18 0.07 0.12 

Δ Mean H. -16.47 ± 3.49* 1.05 ± 0.28*** -11.38 ± 3.38** 5.03 ± 2.38 -0.14 ± 0.53 10.88 0.12 0.13 

Δ Openness 5m 101.82 ± 22.58* -8.10 ± 1.61*** 26.94 ± 19.15 -8.05 ± 13.65 1.59 ± 3.02 657.5 0.09 0.12 

Δ Openness 10m 51.36 ± 19.07 -3.55 ± 0.91*** 27.01 ± 10.71* -4.23 ± 7.76 0.92 ± 1.69 872.3 0.08 0.2 

Δ Openness 15m 15.29 ± 13.28 -2.1 ± 0.52*** 14.85 ± 6.07* 12.18 ± 4.41** 1.07 ± 0.96 496.3 0.08 0.27 

Δ Roughness 33.18 ± 4.82 -3.15 ± 0.56*** 16.80 ± 6.86* -4.89 ± 4.6 -1.64 ± 1.08 0 0.13 0.13 

Δ LAI -21.25 ± 2.87 1.82 ± 0.34*** -3.64 ± 4.04 6.41 ± 2.73 -0.16 ± 0.63 0 0.12 0.12 

Δ Understory LAI -2.11 ± 10.03 0.37 ± 0.60 18.93 ± 7.10** 4.18 ± 5.09 0.01 ± 1.12 172.7 0.03 0.1 

Δ LAHV -26.82 ± 3.68 2.17 ± 0.43*** -12.09 ± 5.18* 8.03 ± 3.5 -0.69 ± 0.81 0 0.14 0.14 

 

 

 

 

 

 



135 
 

 

SI Table 3.3.  Summary of standardised major axis regression between lidar metrics for different treatments and YSLF groups. Significance 

level: *p<0.05, **p<0.01, ***p<0.0001; ns, non-significant relationships. The grey box denotes invalid correlations where x and y variables are 

the same. Correlation coefficient (r2) and significant value (p) for SMA analysis and slope. The metrics showed are Aboveground Carbon Density 

(ACD), Mean height (Mean H.), Openness at 5m (Open 5m), Openness at 10m (Open 10m), Openness at 15m (Open 15m), Leaf Area Index 

(LAI), Understory Leaf Area Index of (Under LAI) and Leaf Area Height Volume (LAHV). The treatment groups (Treat.) are unburned (Unb.), 

single fire event (B1) and multiple fire events (B2+).  

Bivariate 
relationship (y 

vs x -axis) 
Treat. 

Intercept Slope r2 p Difference in slope and elevation 

YSLF group YSLF group YSLF group YSLF group 

Treat. 

YSLF group 

0-3 4-9 10+ 0-3 4-9 10+ 0-3 4-9 10+ 
0-
3 4-9 10+ 0-3 4-9 10+ 

                        B1+ B2+ B1+ B2+ B1+ B2+ 

A
C

D
 

Max H. 

Unb. -1.20 -1.20 -1.20 0.40 0.40 0.40 0.86 0.86 0.86 *** *** *** Unb. * *** ns ns ns ns 

B1 -2.81 -1.92 -1.47 0.44 0.43 0.41 0.88 0.93 0.92 *** *** *** B1   **   ns   ns 

B2+ -4.14 -1.71 -0.90 0.51 0.40 0.40 0.91 0.87 0.94 *** *** *** B2+             

Mean 
H. 

Unb. 0.29 0.29 0.29 0.48 0.48 0.48 0.98 0.98 0.98 *** *** *** Unb. ns ns ns ns ns ns 

B1 0.15 0.21 0.20 0.49 0.48 0.48 1.00 1.00 1.00 *** *** *** B1   **   ns   ns 

B2+ 0.32 0.23 0.13 0.48 0.49 0.49 0.99 0.99 1.00 *** *** *** B2+             

Rough. 

Unb. 1.81 1.81 1.81 -5.66 -5.66 -5.66 0.13 0.13 0.13 *** *** *** Unb. ns *** ** ns ns ns 

B1 2.76 -2.14 0.25 -6.07 -7.95 -6.76 0.36 0.33 0.12 *** *** ** B1   ***   **   ns 

B2+ 3.22 1.73 -5.34 -4.00 -4.54 -9.45 0.72 0.21 0.08 *** *** ns B2+             

Open 
5m 

Unb. 12.83 12.83 12.83 -15.66 -15.66 -15.66 0.28 0.28 0.28 *** *** *** Unb. ns *** ns *** ns ns 

B1 13.51 11.98 13.27 -13.56 -15.93 -18.40 0.71 0.54 0.27 *** *** *** B1   ***   ***   ns 

B2+ 10.56 9.55 11.36 -9.36 -8.69 -14.33 0.85 0.62 0.54 *** *** *** B2+             

Open 
10m 

Unb. 14.09 14.09 14.09 -12.39 -12.39 -12.39 0.63 0.63 0.63 *** *** *** Unb. *** ns ** *** ns ** 

B1 15.61 12.87 13.93 -14.69 -10.42 -12.30 0.86 0.86 0.79 *** *** *** B1   ***   ns   * 

B2+ 13.92 12.28 11.78 -12.57 -9.70 -9.12 0.94 0.86 0.85 *** *** *** B2+             

Unb. 12.34 12.34 12.34 -9.21 -9.21 -9.21 0.86 0.86 0.86 *** *** *** Unb. *** *** *** ns ns * 
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Open 
15m 

B1 13.10 11.57 12.06 -11.44 -7.92 -8.67 0.91 0.91 0.91 *** *** *** B1   ns   ns   ns 

B2+ 13.08 11.96 11.23 -11.62 -8.56 -7.47 0.87 0.86 0.93 *** *** *** B2+             

LAI 

Unb. 0.45 0.45 0.45 2.06 2.06 2.06 0.20 0.20 0.20 *** *** *** Unb. ns ** ** ns ns ns 

B1 1.29 -3.85 -0.96 2.47 2.82 2.36 0.55 0.40 0.14 *** *** ** B1   ***   ***   ns 

B2+ 1.88 0.75 -4.94 1.59 1.54 3.08 0.66 0.46 0.32 *** *** ** B2+             

Under 
LAI  

Unb. 18.83 18.83 18.83 -10.12 -10.12 -10.12 0.12 0.12 0.12 *** *** *** Unb. ns ** ns ns ns ns 

B1 16.26 16.72 19.47 -11.97 -8.39 -10.84 0.00 0.18 0.42 ns *** *** B1   ***   ns   ns 

B2+ -0.62 15.54 17.64 7.08 -8.15 -9.75 0.16 0.05 0.63 *** ns *** B2+             

LAHV 

Unb. 3.54 3.54 3.54 0.12 0.12 0.12 0.73 0.73 0.73 *** *** *** Unb. *** *** *** ns ns * 

B1 2.75 2.11 3.10 0.16 0.15 0.13 0.84 0.90 0.74 *** *** *** B1   ns   ns   ns 

B2+ 2.27 2.52 1.49 0.17 0.14 0.16 0.87 0.82 0.92 *** *** *** B2+             

M
a
x
im

u
m

 H
e
ig

h
t 

Mean 
H. 

Unb. 4.09 4.09 4.09 1.20 1.20 1.20 0.84 0.84 0.84 *** *** *** Unb. ns *** ns ns ns ns 

B1 6.82 5.02 4.05 1.11 1.12 1.18 0.88 0.92 0.92 *** *** *** B1   ***   ns   ns 

B2+ 9.00 5.08 2.76 0.91 1.20 1.20 0.92 0.85 0.92 *** *** *** B2+             

Rough. 

Unb. 7.47 7.47 7.47 -14.25 -14.25 -14.25 0.00 0.00 0.00 ns ns ns Unb. ns *** ns ns ns ns 

B1 12.81 -0.72 4.03 -13.51 -18.63 -16.59 0.11 0.14 0.01 *** *** ns B1   ***   *   ns 

B2+ 14.58 8.62 -9.06 -7.56 -11.35 -22.10 0.53 0.02 0.00 *** ns ns B2+             

Open 
5m 

Unb. 35.25 35.25 35.25 -39.62 -39.62 -39.62 0.08 0.08 0.08 *** *** *** Unb. * *** ns *** ns ns 

B1 37.07 32.40 36.12 -30.93 -37.39 -45.85 0.48 0.34 0.11 *** *** ** B1   ***   **   ns 

B2+ 28.48 28.07 30.33 -17.88 -21.32 -35.10 0.70 0.36 0.38 *** *** ** B2+         ns   

Open 
10m 

Unb. 38.30 38.30 38.30 -30.88 -30.88 -30.88 0.37 0.37 0.37 *** *** *** Unb. ns *** *** ns   ns 

B1 41.98 34.46 37.52 -33.67 -24.44 -29.89 0.64 0.72 0.63 *** *** *** B1   ***   ns   ns 

B2+ 35.04 35.58 31.73 -24.10 -25.07 -23.11 0.81 0.62 0.75 *** *** *** B2+         ns   

Open 
15m 

Unb. 34.08 34.08 34.08 -23.10 -23.10 -23.10 0.68 0.68 0.68 *** *** *** Unb. * ns *** ns   * 

B1 36.26 31.41 33.45 -25.96 -18.68 -21.98 0.83 0.83 0.82 *** *** *** B1   ns   ns   ns 

B2+ 33.99 35.14 29.72 -22.94 -22.44 -17.31 0.84 0.76 0.85 *** *** *** B2+         ns   

LAI 

Unb. 4.03 4.03 4.03 5.20 5.20 5.20 0.06 0.06 0.06 *** *** *** Unb. ns *** ns ns   ns 

B1 9.63 -4.68 1.31 5.46 6.63 5.72 0.31 0.30 0.04 *** *** ns B1   ***   **   ns 

B2+ 11.94 6.33 -7.58 3.02 3.86 7.07 0.49 0.36 0.21 *** *** * B2+         ns   

Under Unb. 50.03 50.03 50.03 -25.21 -25.21 -25.21 0.11 0.11 0.11 *** *** *** Unb. ns *** * ns   ns 
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LAI B1 42.97 43.18 51.94 -26.66 -19.49 -27.48 0.02 0.16 0.36 ns *** *** B1   ***   ns   ns 

B2+ 6.86 41.58 43.13 13.93 -19.04 -21.19 0.09 0.03 0.64 ** ns *** B2+             

LAHV 

Unb. 12.09 12.09 12.09 0.31 0.31 0.31 0.47 0.47 0.47 *** *** *** Unb. * ns ns ns ns ns 

B1 12.63 9.68 11.25 0.37 0.35 0.31 0.64 0.78 0.54 *** *** *** B1   ns   ns   ns 

B2+ 12.68 10.67 5.66 0.32 0.37 0.40 0.70 0.68 0.82 *** *** *** B2+             

M
e
a
n

 H
e

ig
h

t 

Rough. 

Unb. 2.87 2.87 2.87 -11.88 -11.88 -11.88 0.18 0.18 0.18 *** *** *** Unb. ns *** ** ns ns ns 

B1 5.24 -5.04 -0.08 -12.36 -16.58 -14.09 0.37 0.33 0.12 *** *** ** B1   ***   **   ns 

B2+ 5.99 3.05 -11.58 -8.44 -9.33 -19.62 0.74 0.23 0.10 *** *** ns B2+             

Open 
5m 

Unb. 25.96 25.96 25.96 -32.71 -32.71 -32.71 0.35 0.35 0.35 *** *** *** Unb. * *** ns *** ns ns 

B1 27.13 24.39 27.06 -27.65 -33.23 -38.36 0.72 0.54 0.28 *** *** *** B1   ***   ***   ns 

B2+ 21.36 19.17 23.02 -19.53 -17.91 -29.49 0.87 0.64 0.57 *** *** *** B2+             

Open 
10m 

Unb. 28.67 28.67 28.67 -26.05 -26.05 -26.05 0.69 0.69 0.69 *** *** *** Unb. ** ns *** *** ns ** 

B1 31.41 26.28 28.43 -29.94 -21.71 -25.58 0.87 0.87 0.79 *** *** *** B1   *   ns   * 

B2+ 28.65 24.60 23.87 -26.62 -19.70 -18.78 0.95 0.86 0.87 *** *** *** B2+             

Open 
15m 

Unb. 25.08 25.08 25.08 -19.62 -19.62 -19.62 0.87 0.87 0.87 *** *** *** Unb. *** *** *** ns ns ** 

B1 26.37 23.53 24.53 -23.43 -16.43 -18.03 0.92 0.91 0.91 *** *** *** B1   ns   ns   ns 

B2+ 26.69 24.03 22.96 -24.45 -17.50 -15.82 0.87 0.86 0.93 *** *** *** B2+             

LAI 

Unb. -0.03 -0.03 -0.03 4.34 4.34 4.34 0.24 0.24 0.24 *** *** *** Unb. ns *** ** * ns ns 

B1 2.24 -8.41 -2.58 5.03 5.84 4.91 0.55 0.39 0.14 *** *** ** B1   ***   ***   ns 

B2+ 3.23 1.01 -10.79 3.32 3.18 6.40 0.67 0.45 0.32 *** *** ** B2+             

Under 
LAI 

Unb. 38.52 38.52 38.52 -21.14 -21.14 -21.14 0.11 0.11 0.11 *** *** *** Unb. ns *** ns ns ns ns 

B1 32.77 34.22 39.81 -24.41 -17.40 -22.41 0.00 0.19 0.42 ns *** *** B1   ***   ns   ns 

B2+ -1.98 31.57 36.29 14.78 -16.84 -20.42 0.17 0.06 0.64 *** ns *** B2+             

LAHV 

Unb. 6.46 6.46 6.46 0.26 0.26 0.26 0.76 0.76 0.76 *** *** *** Unb. *** *** *** ns ns * 

B1 5.18 3.83 5.85 0.34 0.32 0.27 0.84 0.90 0.73 *** *** *** B1   ns   ns   ns 

B2+ 3.98 4.58 2.66 0.35 0.30 0.32 0.87 0.83 0.93 *** *** *** B2+             

R
o
u
g

h
n
e
s
s
 

Open 
5m 

Unb. -1.95 -1.95 -1.95 2.80 2.80 2.80 0.88 0.88 0.88 *** *** *** Unb. * *** *** *** ns ns 

B1 -1.86 -1.80 -1.97 2.50 2.09 2.88 0.63 0.82 0.84 *** *** *** B1   ns   ns   ns 

B2+ -1.82 -1.71 -1.91 2.34 1.91 2.29 0.88 0.63 0.54 *** *** *** B2+             

Unb. -2.18 -2.18 -2.18 2.25 2.25 2.25 0.48 0.48 0.48 *** *** *** Unb. ns *** *** ns ns ns 
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Open 
10m 

B1 -2.14 -1.90 -2.07 2.48 1.36 2.01 0.52 0.38 0.26 *** *** *** B1   *   **   ns 

B2+ -2.66 -2.28 -2.00 3.11 2.08 1.50 0.74 0.34 0.20 *** *** * B2+             

Open 
15m 

Unb. -1.88 -1.88 -1.88 1.71 1.71 1.71 0.17 0.17 0.17 *** *** *** Unb. ns *** *** ns ns ** 

B1 -1.70 -1.74 -1.78 1.88 1.04 1.41 0.25 0.24 0.12 *** *** ** B1   ***   **   ns 

B2+ -2.42 -2.17 -1.76 2.85 1.74 0.79 0.46 0.10 0.06 *** * ns B2+             

LAI 

Unb. 0.21 0.21 0.21 -0.36 -0.36 -0.36 0.61 0.61 0.61 *** *** *** Unb. ns ns ns ns ns ns 

B1 0.23 0.28 0.12 -0.40 -0.38 -0.34 0.68 0.50 0.62 *** *** *** B1   ns   ns   ns 

B2+ 0.31 0.17 -0.02 -0.39 -0.33 -0.33 0.88 0.29 0.32 *** *** ** B2+             

Under 
LAI 

Unb. -2.99 -2.99 -2.99 1.75 1.75 1.75 0.00 0.00 0.00 ns ns ns Unb. ns ns *** ns ns ns 

B1 0.86 -2.35 -2.84 -2.04 1.02 1.59 0.21 0.01 0.02 *** ns ns B1   ns   *   ns 

B2+ 0.98 -2.85 -2.40 -1.79 1.61 1.00 0.50 0.00 0.03 *** ns ns B2+             

LAHV 

Unb. -0.32 -0.32 -0.32 -0.02 -0.02 -0.02 0.41 0.41 0.41 *** *** *** Unb. ** *** ns * ns ns 

B1 0.01 -0.57 -0.44 -0.03 -0.02 -0.02 0.46 0.39 0.40 *** *** *** B1   ***   **   ns 

B2+ 0.24 -0.22 -0.62 -0.04 -0.03 -0.02 0.77 0.24 0.15 *** *** ns B2+             

O
p
e
n
.5

m
 

Open 
10m 

Unb. -0.08 -0.08 -0.08 0.81 0.81 0.81 0.65 0.65 0.65 *** *** *** Unb. *** *** * *** ns ns 

B1 -0.15 -0.05 -0.06 1.08 0.66 0.76 0.89 0.58 0.39 *** *** *** B1   ***   ***   ns 

B2+ -0.37 -0.30 -0.07 1.37 1.10 0.75 0.86 0.74 0.75 *** *** *** B2+             

Open 
15m 

Unb. 0.02 0.02 0.02 0.62 0.62 0.62 0.30 0.30 0.30 *** *** *** Unb. *** *** ns ** ns ns 

B1 0.03 0.02 0.05 0.85 0.50 0.53 0.60 0.41 0.23 *** *** *** B1   ***   ***   ns 

B2+ -0.25 -0.26 0.00 1.23 0.96 0.55 0.59 0.36 0.42 *** *** ** B2+             

LAI 

Unb. 0.77 0.77 0.77 -0.13 -0.13 -0.13 0.65 0.65 0.65 *** *** *** Unb. *** *** ** *** ns * 

B1 0.88 0.97 0.71 -0.17 -0.17 -0.11 0.72 0.50 0.61 *** *** *** B1   ns   ns   * 

B2+ 0.92 1.04 1.07 -0.17 -0.19 -0.20 0.88 0.45 0.63 *** *** *** B2+             

Under 
LAI 

Unb. -0.35 -0.35 -0.35 0.61 0.61 0.61 0.00 0.00 0.00 ns ns ns Unb. * * ns * ns ns 

B1 1.12 -0.26 -0.30 -0.85 0.49 0.54 0.03 0.07 0.05 ns * ns B1   ns   **   ns 

B2+ 1.20 -0.66 -0.46 -0.77 0.91 0.71 0.36 0.03 0.33 *** ns ** B2+             

LAHV 

Unb. 0.58 0.58 0.58 -0.01 -0.01 -0.01 0.52 0.52 0.52 *** *** *** Unb. *** *** ns *** ns ns 

B1 0.80 0.59 0.54 -0.01 -0.01 -0.01 0.65 0.55 0.48 *** *** *** B1   ***   ***   * 

B2+ 0.91 0.81 0.71 -0.02 -0.02 -0.01 0.83 0.51 0.61 *** *** *** B2+             

O
p

e
n
.

1
0 m
 

Unb. 0.13 0.13 0.13 0.79 0.79 0.79 0.78 0.78 0.78 *** *** *** Unb. ns *** ns ns ns ns 



139 
 

Open 
15m 

B1 0.16 0.11 0.13 0.80 0.79 0.75 0.84 0.90 0.90 *** *** *** B1   **   ns   ns 

B2+ 0.09 0.03 0.05 0.91 0.90 0.85 0.86 0.75 0.78 *** *** *** B2+             

LAI 

Unb. 1.08 1.08 1.08 -0.16 -0.16 -0.16 0.36 0.36 0.36 *** *** *** Unb. ns ** *** ns ns * 

B1 0.96 1.64 1.15 -0.16 -0.28 -0.18 0.59 0.36 0.18 *** *** *** B1   *   **   ns 

B2+ 0.96 1.23 1.67 -0.13 -0.17 -0.30 0.65 0.37 0.44 *** *** ** B2+             

Under 
LAI 

Unb. -0.39 -0.39 -0.39 0.82 0.82 0.82 0.15 0.15 0.15 *** *** *** Unb. ns *** ns ns ns ns 

B1 -0.05 -0.39 -0.45 0.82 0.82 0.88 0.00 0.29 0.50 ns *** *** B1   *   ns   ns 

B2+ 1.15 -0.38 -0.60 -0.56 0.88 1.03 0.11 0.15 0.67 *** ** *** B2+             

LAHV 

Unb. 0.84 0.84 0.84 -0.01 -0.01 -0.01 0.71 0.71 0.71 *** *** *** Unb. *** *** *** *** ns *** 

B1 0.89 1.02 0.86 -0.01 -0.01 -0.01 0.75 0.85 0.68 *** *** *** B1   ns   ns   *** 

B2+ 0.93 1.01 1.15 -0.01 -0.01 -0.02 0.90 0.71 0.84 *** *** *** B2+             

O
p
e
n
.1

5
m

 

LAI 

Unb. 1.25 1.25 1.25 -0.22 -0.22 -0.22 0.19 0.19 0.19 *** *** *** Unb. ns *** *** ns ns ns 

B1 1.03 1.89 1.45 -0.22 -0.34 -0.26 0.39 0.33 0.09 *** *** * B1   ***   ***   ns 

B2+ 0.96 1.33 2.10 -0.14 -0.19 -0.39 0.38 0.35 0.20 *** *** * B2+             

Under 
LAI 

Unb. -0.71 -0.71 -0.71 1.10 1.10 1.10 0.21 0.21 0.21 *** *** *** Unb. ns *** ns ns ns ns 

B1 -0.30 -0.64 -0.83 1.08 1.05 1.23 0.03 0.25 0.51 ns *** *** B1   ***   ns   ns 

B2+ 1.18 -0.46 -0.80 -0.61 0.99 1.25 0.02 0.07 0.63 ns * *** B2+             

LAHV 

Unb. 0.92 0.92 0.92 -0.01 -0.01 -0.01 0.70 0.70 0.70 *** *** *** Unb. ** ns *** * ns *** 

B1 0.92 1.15 1.01 -0.02 -0.02 -0.01 0.71 0.87 0.64 *** *** *** B1   ns   ns   * 

B2+ 0.93 1.09 1.28 -0.01 -0.02 -0.02 0.74 0.75 0.80 *** *** *** B2+             

L
A

I 

Under 
LAI 

Unb. -1.10 -1.10 -1.10 4.81 4.81 4.81 0.11 0.11 0.11 *** *** *** Unb. ns ns *** ns ns ns 

B1 -1.49 0.59 -0.52 4.97 2.88 4.50 0.26 0.06 0.02 *** * ns B1   ns   *   ns 

B2+ -1.56 -2.31 0.82 4.42 4.73 3.15 0.61 0.15 0.03 *** ** ns B2+             

LAHV 

Unb. 1.51 1.51 1.51 0.06 0.06 0.06 0.59 0.59 0.59 *** *** *** Unb. ns *** ns *** ns ns 

B1 0.58 2.20 1.70 0.07 0.05 0.05 0.74 0.53 0.53 *** *** *** B1   ***   ***   ns 

B2+ 0.17 1.23 1.97 0.11 0.09 0.05 0.78 0.69 0.52 *** *** *** B2+             

U
n
d
e
r 

L
A

I 

LAHV 

Unb. 1.50 1.50 1.50 -0.01 -0.01 -0.01 0.06 0.06 0.06 *** *** *** Unb. ns *** *** * ns ns 

B1 0.41 1.71 1.52 0.01 -0.02 -0.01 0.01 0.18 0.24 ns *** *** B1   ***   ns   ns 

B2+ 0.39 1.59 1.66 0.03 -0.02 -0.02 0.20 0.01 0.49 *** ns *** B2+             
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SI Table 3.4. Number of significant different relationship in the SMA analysis between all lidar metrics by YSLF groups. B1 

represents areas with single fire events and B2+ represents areas with multiple fire events 

 

 
Unburned vs B1 Unburned vs B2+ B1 vs B2+ 

YSLF groups 0-3 4-9 10+ 0-3 4-9 10+ 0-3 4-9 10+ 

Number of significant relationships 20 25 0 36 17 11 31 21 6 

% of significant relationships 44 56 0 80 38 24 69 47 13 
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SI Table 3.5. Mean values for each metric analysed separately by years since last fire (YSLF), number of fire events –single (B1) 

and multiple (B2+) and regions as defined in Heinrich et al. (2021).  

 

 

 

 

 

 

Region

Reoccurrens

YSLF Unb. 0-3 4-9 10+ 0-3 4-9 10+ Unb. 0-3 4-9 10+ 0-3 4-9 10+ Unb. 0-3 4-9 10+ 0-3 4-9 10+ Unb. 0-3 4-9 10+ 0-3 4-9 10+

ACD 66.1 56.7 46.5 66.1 31.1 36.4 56.7 96.3 131.6 104.1 90.9 132.2 NA 73.8 69.0 39.2 75.4 92.8 66.1 NA NA 69.0 70.0 NA 79.1 NA NA NA

Max H. 22.3 22.6 19.4 22.5 17.9 18.7 20.3 27.5 29.6 28.1 27.1 30.1 NA 23.1 22.6 18.4 23.3 27.4 22.8 NA NA 21.1 23.5 NA 21.7 NA NA NA

Mean H. 15.0 13.9 12.6 15.6 9.8 11.4 14.5 19.4 22.9 20.2 19.0 23.5 NA 16.1 16.2 11.5 17.3 19.3 14.2 NA NA 14.9 16.2 NA 17.7 NA NA NA

Roughness 0.4 0.6 0.4 0.3 0.7 0.4 0.3 0.3 0.2 0.3 0.3 0.2 NA 0.3 0.3 0.5 0.2 0.3 0.6 NA NA 0.4 0.4 NA 0.2 NA NA NA

Open. 5m 0.1 0.3 0.2 0.1 0.4 0.2 0.1 0.1 0.0 0.0 0.1 0.0 NA 0.1 0.1 0.4 0.0 0.1 0.2 NA NA 0.2 0.2 NA 0.0 NA NA NA

Open. 10m 0.3 0.4 0.4 0.3 0.5 0.5 0.3 0.2 0.1 0.1 0.2 0.0 NA 0.3 0.2 0.5 0.2 0.2 0.3 NA NA 0.3 0.3 NA 0.1 NA NA NA

Open 15m 0.5 0.5 0.6 0.5 0.7 0.7 0.5 0.3 0.1 0.3 0.3 0.1 NA 0.5 0.4 0.7 0.4 0.3 0.5 NA NA 0.5 0.4 NA 0.2 NA NA NA

LAI 3.6 2.3 3.6 4.0 2.0 3.3 3.9 4.2 3.4 4.5 4.1 5.4 NA 4.4 3.5 2.3 4.6 3.5 3.0 NA NA 3.8 4.1 NA NA NA NA NA

LAI Under 1.1 0.6 1.4 1.1 0.8 1.4 1.1 1.1 0.6 1.0 1.0 0.8 NA 1.4 0.9 0.9 1.3 0.7 1.0 NA NA 0.7 0.9 NA NA NA NA NA

LAHV 34.5 26.1 29.3 39.0 16.9 23.3 36.2 47.9 52.5 53.5 48.1 82.1 NA 45.3 36.8 19.6 42.8 42.1 29.8 NA NA 44.8 50.3 NA NA NA NA NA

B1 B2+

SE SW NE NW

B1 B2+ B1 B2+ B1 B2+
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Appendix 4: Supporting Information for Chapter 4 

 

SI Figure 4.1. Frequency of secondary forest age by secondary forest successional 

stage. In (A) unburned areas in early successional stage, (B) burned areas in early 

successional stage, (C) unburned areas in later successional stage and (D) burned 

areas in later successional stage.   
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SI Figure 4.2. Boxplots for the canopy metrics (A) Maximum height, (B) Mean height, 

(C) Openness at 5 m, (D) Openness at 10 m, (E) Roughness, (F) Leaf Area Index and 

(G) Leaf Area Height Volume. Boxplots are divided into unburned (blue) and burned 

(orange) categories. Asterisks represent significant differences between unburned 

and burned categories. Significance levels: *p<0.05, **p<0.01, ***p<0.001; ns, non-

significant relationships.  
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SI Figure 4.3 Coefficient estimates for each forest structure metric in early 

successional stage (blue) and later successional stage (orange) at zero years after 

the fire, predicted from linear mixed effects models (Table 4.2). Dots represent the 

coefficient mean and tails represent the 95% confidence interval of the mean.  

 

  

SI Table 4.1. Mean values of secondary forest age for each group of forest 

successional stage (Early Successional – ES and Later Successional – LS), for 

unburned and burned areas.  

   ES LS 

   Unburned  Burned  Unburned  Burned  

Mean of Sec. For Age  7.4 6.51 13.85 11.13 
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