
1.  Introduction
As a result of rapid urbanization and changing climate, urban catchments are experiencing a population growth 
in impervious areas and more frequent extreme rainfall events (Annus et al., 2021; Zheng et al., 2015). Conse-
quently, urban floods, caused by storms and overloading of drainage systems in urban areas, have become a 
serious disaster worldwide, posing significant threats to the economy, urban water environment and public safety 
(Lin et al., 2020). For example, Henan Province in China was hit by historically rare heavy rainstorms through 
17–23 July 2021. It has caused 398 deaths or missings and direct economic losses of 120 billion RMB (Xinhua 
News Agency, 2022). To mitigate the impact of urban floods, different solutions have been proposed, including 
(a) gray infrastructure solutions that use conventional drainage facilities, such as pumps, deep tunnels and large 
pipes, to increase the capacity of urban drainage systems (Berggren et al., 2012); (b) green or nature-based solu-
tions that retrofit the existing drainage system by local semi-engineered structures, such as permeable pavements, 

Abstract  Urban drainage models (UDMs) are often used to manage urban flooding. However, these 
models generally involve many parameters to represent the underlying complex hydrodynamic processes. This 
results in significant challenges to achieving effective and robust model calibration especially with frequently 
limited observations, leading to unreliable model predictions. This paper makes the first attempt at UDM 
calibration using the Bayesian-based Ensemble Smoother (ES) method. Three ES variants are considered, 
that is, the primary ES, the versions with multiple data assimilation (ES-MDA) and iterative local update 
(ES-ILU). Two synthetic cases and one real-world application with up to 5,236 calibration parameters are 
tested. Results obtained show that: (a) both ES-MDA and ES-ILU can produce effective model calibration 
with ES-ILU outperforming ES-MDA in terms of both accuracy and uncertainty while ES exhibits limited 
performance; (b) for the real-world case, both the ES-MDA and ES-ILU methods provide better calibration 
results than the best-known solution manually obtained, (c) a minimum number of observations are required 
to enable an overall accurate model calibration (e.g., four and ten more monitoring sites are needed in the 
two synthetic cases); and (d) the model calibrated using an intense rainfall event is generally robust to make 
reliable predictions across different rainfall events while the model calibrated using less intense rainfall event 
does not perform well for more intense rainfall events. It was also found that ubiquitous parameter equifinality 
significantly hinders unique parameter identification even when overall accurate state estimates are obtained. 
This should be clearly understood in practical applications.

Plain Language Summary  Urban floods have been a serious disaster worldwide. Urban drainage 
models (UDMs) have been widely used to facilitate flooding prevention and mitigation. However, a challenge 
associated with the UDMs is that a large number of parameters need to be specified and calibrated. While 
some optimization-based or manual calibration methods are available, their efficiency or accuracy are often 
unsatisfactory. This can lead to unreliable predictions of the rainfall-runoff process. To this end, this paper 
proposes the ensemble smoother (ES) methods to calibrate the UDMs. Benefits of these ES methods include 
the great efficiency, high accuracy and the identification of the uncertainty when calibrating model parameters. 
These conclusions are based on results of two synthetic cases and one real-world UDM.
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retention ponds, and rainwater gardens, to reduce the surface runoff as well as delay the flood peak (Fiori & 
Volpi, 2020; Lian et al., 2020).

To optimize flood prevention and mitigation, urban drainage models (UDMs) have been widely used, for example, 
the Storm Water Management Model (SWMM) (Zheng et al., 2018). UDMs can simulate complex hydrodynamic 
processes associated with urban floods, including precipitation, evaporation, infiltration, surface interception, 
overland flow, drainage network flow, water retention, etc. (Niazi et al., 2017). As a result, a large number of 
parameters usually need to be specified and calibrated, especially when many sub-catchments are involved (Wang 
et al., 2012). This poses huge challenges for model calibration, especially under limited observations.

Calibration methods for UDMs have been studied extensively (Clemens, 2001; Niazi et al., 2017). Manual or 
“trail-and-error” calibration is commonly used in practice (Wu et al., 2013). However, its utility relies heavily on 
the practitioner's experience (Duan & Gao, 2019), and this process is generally labor-intensive and time-consuming 
(Barco et al., 2008). Conversely, automatic calibration can improve calibration efficiency (Di Pierro et al., 2005), 
thus has received increasing attention in recent years (Alamdari et  al.,  2017). Most of the relevant methods 
developed so far use an optimization algorithm, such as gradient-based, heuristic or combinatorial methods, to 
search for an optimal parameter set that minimizes the difference between observed and modeling states (Behrouz 
et al., 2020).

While these automatic calibration methods are generally effective in finding an optimum, they are easily trapped 
in local minima or computationally inefficient. Those characteristics are particularly limiting the use of models 
for real-time prediction and control of urban floods (Niazi et al., 2017). Some studies have shown that the perfor-
mance of optimization-based calibrations is case-dependent, influenced by rainfall event (Swathi et al., 2019), 
objective function (Reed et al., 2013) and parameter type (Kanso et al., 2003). In addition, literature shows that 
the reduction of the number of parameters via sensitivity analysis, parameter grouping, principal component 
analysis, is commonly used to deal with the “curse-of-dimensionality” (Salvadore et al., 2015). However, Niazi 
et al. (2017) reviewed 34 studies using sensitivity analysis for SWMM calibration and found that the identified 
sensitive parameters are not always the same and even quite different from case to case. That finding means that 
one cannot simply determine a generic set of reduced parameters for the calibration of different models. Conse-
quently, there is still an urgent need to develop more robust methods for the UDM calibration.

Besides the above-mentioned approaches, there is also a need to explore the complexity and uncertainty under-
lying the calibration problem, aimed at improving the effectiveness of model calibration. Numerous studies have 
recognized the significant “parameter equifinality” problem. This refers to the situation when different parameter 
sets lead to an equally good fit between model predictions and observations (Her & Chaubey, 2015; Kelleher 
et  al.,  2017). Equifinality for UDMs mainly results from the insufficient observed data available and/or the 
observed data that is not well distributed, spatially and/or temporally, relative to calibration parameters (Vonach 
et al., 2018). It is anticipated that increasing the number of monitoring sites might mitigate this problem. This 
has led to the calibration practice moving away from the early studies that used only the observations at the outlet 
of the system (i.e., end-point observations) to multiple observation sites, thus improving the accuracy of model 
calibration (Guo et al., 2018; Vonach et al., 2018). However, investigations on how observations affect model 
calibration are still lacking. In addition, due to the equifinality issue, the calibration for observed states does not 
necessarily guarantee a good fit of model states other than those at observation sites (Moy de Vitry et al., 2017). 
Although this issue has been recognized in some previous studies (Moussa et al., 2007), surprisingly few efforts 
have been made to explicitly address this issue and formulate a rigorous calibration procedure.

This paper aims to address the above issues by introducing ensemble smoother (ES) methods to the UDM cali-
bration. As a class of Bayesian inversion methods for data assimilation, the ES methods perform well in terms of 
efficiency and accuracy for parameter estimation and uncertainty quantification of nonlinear problems (Hutton 
et al., 2014; Kapelan et al., 2007; Stuart & Zygalakis, 2015). They have received increased attention in areas of 
oceanic, geophysical and hydrological sciences (Aanonsen et al., 2009; Xue & Zhang, 2014). In particular, an iter-
ative application of ES with multiple data assimilation (ES-MDA), proposed by Emerick and Reynolds (2013), 
can be used for strongly nonlinear problems. Recently, Zhang et  al.  (2018) further integrated a local update 
strategy into the ES-MDA method to better deal with complex nonlinear models with multimodal distributions of 
parameters. The method is named the ES with iterative local update (ES-ILU) in this paper.
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This paper presents the primary and two enhanced ES methods (i.e., ES, ES-MDA, and ES-ILU) for the UDM 
calibration. Two synthetic cases with investigations on key apsects of the calibration problem and a real-world 
case are tested. The novelty/contributions of this paper include: (a) providing an alternative calibration approach 
based on the ES methods to obtain effective and robust UDM calibration; and (b) building knowledges on how 
observations and rainfall characteristics affect the model calibration performance as well as the parameter iden-
tification issue for the calibration problem. This paper is organized as follows. Section 2 describes the proposed 
calibration approach using the three ES methods and the key aspects of the problem to be considered for model 
calibration. Section 3 introduces the three case studies for verification and investigation of the developed cali-
bration method. Corresponding case results are given in Section 4, and conclusions are presented in Section 5.

2.  Methodology
The methodology starts with the formulation of the UDM calibration problem based on the Bayesian framework. 
This is followed by the description of ES, ES-MDA, and ES-ILU. Then key aspects of the problem that affect the 
effectiveness and robustness of model calibration are considered. Note that the model calibration considered in 
this paper is event-based, that is, the UDM is forced by a single rainfall event. The event-based rainfall modeling 
can provide system responses at a finer time scale (hourly or minutely) than the continuous rainfall modeling that 
uses several rainfall events in a long time span (i.e., days) (Behrouz et al., 2020; Swathi et al., 2019).

2.1.  Bayesian Parameter Estimation for Model Calibration

A UDM model predicts a number of outputs defining the system state over time (water levels and conduit/surface 
flows) for given inputs (e.g., system configuration data, rainfall data, etc.). A number of parameters describing 
the relevant process are also presented in these models as inputs (e.g., surface slope, Manning's coefficient, etc.). 
Let x denote a vector of all UDM inputs; m, a 𝐴𝐴 𝐴𝐴𝑚𝑚 × 1 vector of parameters; and y, a vector of model outputs, 
the UDM can then be defined as 𝐴𝐴 𝐲𝐲 = 𝑓𝑓 (𝐱𝐱;𝐦𝐦) where 𝐴𝐴 𝐴𝐴 (⋅) represents the mapping function. To enable effective 
modeling of urban floods, the parameters m usually need to be calibrated based on the observed (i.e., measured) 
output states resulted from rainfall events. Given a 𝐴𝐴 𝐴𝐴𝑑𝑑 × 1 vector of observed output states d and a 𝐴𝐴 𝐴𝐴𝑑𝑑 × 1 vector 
of the observation errors 𝐴𝐴 𝜼𝜼 , the relationship between model parameters and observed outputs can be formed as

𝐝𝐝 = 𝑓𝑓 (𝐦𝐦) + 𝜼𝜼� (1)

The above equation represents the fundamental formulation of the UDM calibration problem. From the Bayesian 
perspective, it can be presented in the following way (Stuart & Zygalakis, 2015):

𝑝𝑝(𝐦𝐦|𝐝𝐝) ∝ 𝑝𝑝(𝐝𝐝|𝐦𝐦)𝑝𝑝(𝐦𝐦)� (2)

where 𝐴𝐴 𝐴𝐴(𝐦𝐦) and 𝐴𝐴 𝐴𝐴(𝐦𝐦|𝐝𝐝) are the prior and posterior distributions of model parameters, respectively; 𝐴𝐴 𝐴𝐴(𝐝𝐝|𝐦𝐦) is the 
likelihood function. Equation 2 indicates that the prior and the likelihood can be combined to determine the poste-
rior distribution of parameters. If we assume that model parameter distributions and observation errors are both 
Gaussian and 𝐴𝐴 𝐴𝐴 (⋅) is linear, Equation 2 can be formulated as a minimization problem (Stuart & Zygalakis, 2015):

arg
min

𝐦𝐦

{
1

2

(
𝐦𝐦 −𝐦𝐦

)𝑇𝑇
𝐂𝐂

−1

𝐌𝐌

(
𝐦𝐦 −𝐦𝐦

)
+

1

2
[𝐝𝐝 − 𝑓𝑓 (𝒎𝒎)]

𝑇𝑇
𝐂𝐂

−1

𝐃𝐃
[𝐝𝐝 − 𝑓𝑓 (𝒎𝒎)]

}

� (3)

where 𝐴𝐴 𝐦𝐦 is the mean of model parameters, CM is the 𝐴𝐴 𝐴𝐴𝑚𝑚 ×𝑁𝑁𝑚𝑚 autocovariance matrix of model parameters, CD is 
the 𝐴𝐴 𝐴𝐴𝑑𝑑 ×𝑁𝑁𝑑𝑑 covariance matrix of observation errors.

Although the underlying minimization principle in Equation 3 is derived based on the linear Gaussian assump-
tion, it can be naturally generalized to non-Gaussian and nonlinear problems, such as the calibration problem 
considered in this paper. This can be done by approximating the Gaussian distributions by the Monte Carlo 
method (Stuart & Zygalakis, 2015). A family of methods has been developed following this approximation strat-
egy, such as ensemble smoother described below (Aanonsen et al., 2009; Xue & Zhang, 2014).
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2.2.  Ensemble Smoother Methods

2.2.1.  The Primary ES Method

The primary ES method employs an ensemble of realizations to obtain Monte Carlo approximations of the mean 
and covariance of the parameter vectors and computes a global update for model parameters with all observed 
data considered (Stuart & Zygalakis,  2015). More specifically, ES updates model parameters from the prior 

ensemble 𝐴𝐴 𝐌𝐌
𝑓𝑓 =

[

𝐦𝐦
𝑓𝑓

1
,⋯,𝐦𝐦

𝑓𝑓

𝑁𝑁𝑒𝑒

]

 to the posterior ensemble 𝐴𝐴 𝐌𝐌
𝑎𝑎 =

[

𝐦𝐦
𝑎𝑎

1
,⋯,𝐦𝐦

𝑎𝑎

𝑁𝑁𝑒𝑒

]

 (Ne is the number of realizations) 
in the following way:

𝐦𝐦
𝑎𝑎

𝑗𝑗
= 𝐦𝐦

𝑓𝑓

𝑗𝑗
+ 𝐂𝐂

𝑓𝑓

𝐌𝐌𝐌𝐌

(
𝐂𝐂

𝑓𝑓

𝐃𝐃𝐃𝐃
+ 𝐂𝐂𝐃𝐃

)−1 [
𝐝𝐝𝑗𝑗 − 𝑓𝑓

(
𝐦𝐦

𝑓𝑓

𝑗𝑗

)]
� (4)

where 𝐴𝐴 𝐴𝐴 = 1,⋯, 𝑁𝑁𝑒𝑒 , 𝐴𝐴 𝐂𝐂
𝑓𝑓

𝐌𝐌𝐌𝐌
 is the 𝐴𝐴 𝐴𝐴𝑚𝑚 ×𝑁𝑁𝑑𝑑 cross-covariance matrix between 𝐴𝐴 𝐌𝐌

𝑓𝑓 and 𝐴𝐴 𝐃𝐃
𝑓𝑓 =

[

𝑓𝑓
(
𝐦𝐦

𝑓𝑓

1

)
,⋯, 𝑓𝑓

(

𝐦𝐦
𝑓𝑓

𝑁𝑁𝑒𝑒

)]

 , 

𝐴𝐴 𝐂𝐂
𝑓𝑓

𝐃𝐃𝐃𝐃
 is the 𝐴𝐴 𝐴𝐴𝑑𝑑 ×𝑁𝑁𝑑𝑑 autocovariance matrix of 𝐴𝐴 𝐃𝐃

𝑓𝑓 , 𝐴𝐴 𝐝𝐝𝑗𝑗 = 𝐝𝐝 + 𝜼𝜼
𝑗𝑗
 is the jth realization of the observations, and 𝐴𝐴 𝜼𝜼

𝑗𝑗
 

represents the jth random observation error.

2.2.2.  ES-MDA

As ES performs only a single update, it may not be suitable for strongly nonlinear problems such as the UDM 
calibration, leading to the development of iterative forms of ES. Emerick and Reynolds  (2013) proposed the 
ES-MDA method to assimilate the same observation data multiple times by inflating the covariance matrix of 
observation errors as 𝐴𝐴 𝐴𝐴𝑖𝑖𝐂𝐂𝐃𝐃 , in which 𝐴𝐴 𝐴𝐴𝑖𝑖 is the inflation coefficient, satisfying 𝐴𝐴

∑𝑁𝑁iter

𝑖𝑖=1
(1∕𝛼𝛼𝑖𝑖) = 1 . A simple choice 

for 𝐴𝐴 𝐴𝐴𝑖𝑖 is 𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝑁𝑁iter for all iterations. In addition, the way to compute realizations of the observations in Equation 4 
should be changed accordingly:

𝐝𝐝𝑗𝑗 = 𝐝𝐝 +
√
𝛼𝛼𝑖𝑖𝐂𝐂

1∕2

𝐃𝐃
𝒛𝒛𝑑𝑑� (5)

where 𝐴𝐴 𝒛𝒛𝑑𝑑 ∼ 𝑁𝑁
(
0, 𝐈𝐈𝑁𝑁𝑑𝑑

)
 .

With enough iterations, ES-MDA can generally better match observation data than the primary ES method. 
However, according to Equation 3, both ES and ES-MDA rely on the first two statistical moments, thus they are 
most suitable for problems with unimodal Gaussian distributions. For complex UDMs, the distribution of model 
parameters may have multiple peaks, hence there is still a need to further employ a method to cope with the 
possible multimodal distributions.

2.2.3.  ES-ILU

Zhang et al. (2018) proposed the ES-ILU method for the estimation of model parameters with possible multimodal 
distributions by introducing a local update scheme into ES-MDA. The rationale is that the multimodal distribu-
tions are locally unimodal. The ES-ILU method identifies and updates each realization with a local ensemble 
rather than the global ensemble. For a realization 𝐴𝐴 𝐦𝐦

𝑓𝑓

𝑗𝑗
 , its local ensemble is identified by the following equation:

𝐽𝐽 (𝐦𝐦) = 𝐽𝐽1(𝐦𝐦)∕𝐽𝐽
max

1
+ 𝐽𝐽2(𝐦𝐦)∕𝐽𝐽

max

2� (6)

where 𝐴𝐴 𝐴𝐴1(𝐦𝐦) = [𝐝𝐝 − 𝑓𝑓 (𝐦𝐦)]
𝑇𝑇
𝐂𝐂

−1

𝐃𝐃
[𝐝𝐝 − 𝑓𝑓 (𝐦𝐦)] is the distance between the model responses 𝐴𝐴 𝐴𝐴 (𝐦𝐦) and the observa-

tions 𝐴𝐴 𝐝𝐝 ; 𝐴𝐴 𝐴𝐴2(𝐦𝐦) =
(
𝐦𝐦 −𝐦𝐦

𝑓𝑓

𝑗𝑗

)𝑇𝑇
𝐂𝐂

−1

𝐌𝐌𝐌𝐌

(
𝐦𝐦 −𝐦𝐦

𝑓𝑓

𝑗𝑗

)
 is the distance between model parameters 𝐴𝐴 𝐦𝐦 and the realization 𝐴𝐴 𝐦𝐦

𝑓𝑓

𝑗𝑗
 , 

in which CMM is the 𝐴𝐴 𝐴𝐴𝑚𝑚 ×𝑁𝑁𝑚𝑚 autocovariance matrix of model parameters; 𝐴𝐴 𝐴𝐴
max

1
 and 𝐴𝐴 𝐴𝐴

max

2
 are the maximum values 

of 𝐴𝐴 𝐴𝐴1(𝐦𝐦) and 𝐴𝐴 𝐴𝐴2(𝐦𝐦) respectively and used as scaling factors to scale the two parts within the same range of [0,1].

Then the local ensemble for 𝐴𝐴 𝐦𝐦
𝑓𝑓

𝑗𝑗
 is selected as the realizations with 𝐴𝐴 𝐴𝐴𝐿𝐿 = 𝛽𝛽𝛽𝛽𝑒𝑒 smallest J values, that is, 

𝐴𝐴 𝐌𝐌
𝑓𝑓

𝑗𝑗𝑗𝑗𝑗
=

[

𝐦𝐦
𝑓𝑓

𝑗𝑗𝑗1
,⋯,𝐦𝐦

𝑓𝑓

𝑗𝑗𝑗𝑗𝑗𝐿𝐿

]

 , where 𝐴𝐴 𝐴𝐴 ∈ [0, 1] is the local factor. Using the local update scheme, ES-ILU updates the 

local ensemble 𝐴𝐴 𝐌𝐌
𝑓𝑓

𝑗𝑗𝑗𝑗𝑗
 to 𝐴𝐴 𝐌𝐌

𝑎𝑎

𝑗𝑗𝑗𝑗𝑗
=

[

𝐦𝐦
𝑎𝑎

𝑗𝑗𝑗1
,⋯,𝐦𝐦

𝑎𝑎

𝑗𝑗𝑗𝑗𝑗𝐿𝐿

]

 by

𝐦𝐦
𝑎𝑎

𝑗𝑗𝑗𝑗𝑗
= 𝐦𝐦

𝑓𝑓

𝑗𝑗𝑗𝑗𝑗
+ 𝐂𝐂

𝐿𝐿𝐿𝐿𝐿

𝐌𝐌𝐌𝐌

(
𝐂𝐂

𝐿𝐿𝐿𝐿𝐿

𝐃𝐃𝐃𝐃
+ 𝐂𝐂𝐃𝐃

)−1 [

𝐝𝐝𝑗𝑗 − 𝑓𝑓

(

𝐦𝐦
𝑓𝑓

𝑗𝑗𝑗𝑗𝑗

)]

� (7)
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where 𝐴𝐴 𝐴𝐴 = 1,⋯, 𝑁𝑁𝐿𝐿 , 𝐴𝐴 𝐂𝐂
𝐿𝐿𝐿𝐿𝐿

𝐌𝐌𝐌𝐌
 is the 𝐴𝐴 𝐴𝐴𝑚𝑚 ×𝑁𝑁𝑑𝑑 cross-covariance matrix between 𝐴𝐴 𝐌𝐌

𝑓𝑓

𝑗𝑗𝑗𝑗𝑗
 and 𝐴𝐴 𝐃𝐃

𝑓𝑓

𝑗𝑗𝑗𝑗𝑗
=

[

𝑓𝑓

(

𝐦𝐦
𝑓𝑓

𝑗𝑗𝑗1

)

,⋯, 𝑓𝑓

(

𝐦𝐦
𝑓𝑓

𝐴𝐴 𝐃𝐃
𝑓𝑓

𝑗𝑗𝑗𝑗𝑗
=

[

𝑓𝑓

(

𝐦𝐦
𝑓𝑓

𝑗𝑗𝑗1

)

,⋯, 𝑓𝑓

(

𝐦𝐦
𝑓𝑓

𝑗𝑗𝑗𝑗𝑗𝐿𝐿

)]

 , 𝐴𝐴 𝐂𝐂
𝐿𝐿𝐿𝐿𝐿

𝐃𝐃𝐃𝐃
 is the 𝐴𝐴 𝐴𝐴𝑑𝑑 ×𝑁𝑁𝑑𝑑 autocovariance matrix of 𝐴𝐴 𝐃𝐃

𝑓𝑓

𝑗𝑗𝑗𝑗𝑗
 . Then the updated realization 𝐴𝐴 𝐦𝐦

𝑎𝑎

𝑗𝑗
 is randomly 

sampled from the updated local ensemble 𝐴𝐴 𝐌𝐌
𝑎𝑎

𝑗𝑗𝑗𝑗𝑗
 . In this way, the possible multimodal distributions of model 

parameters are well explored.

Complete schemes of the three methods are given in Algorithms S1, S2 and S3 in Supporting Information S1. 
Nonlinear but simple function 𝐴𝐴 𝐴𝐴 = 𝑎𝑎

2
𝑥𝑥1 + 𝑏𝑏

2
𝑥𝑥2 is used as an illustrative example to demonstrate the performance 

of the three ES methods. In this case, both parameters a and b follow a uniform prior distribution 𝐴𝐴 𝐴𝐴 (−2, 2) and 
the observed output is 𝐴𝐴 𝐴𝐴 = 1 with observation error following 𝐴𝐴 𝐴𝐴

(
0, 0.01

2
)
 corresponding to the model input 

𝐴𝐴 𝐴𝐴1 = 𝑥𝑥2 = 1 . It can be easily deduced that the posterior distribution of the two parameters approximates a circle 
of radius 1, which means that there is an infinite number of modes in this problem. By using the setting Ne = 300, 
Niter = 6 and 𝐴𝐴 𝐴𝐴𝑖𝑖  = 0.1 based on a few trial tests, the parameter estimates are obtained, as shown in Figure 1. It 
can be observed that the ES results (Figure 1a) are not good as the ensemble realizations are distributed far from 
matching the reference posterior distribution (i.e., a circle). ES-MDA (Figure 1b) obtained an improved parame-
ter estimation since the posterior distribution is more consistent to a circle; and a much better result can be further 
obtained by ES-ILU as shown in Figure 1c. These results indicate that ES-ILU can better handle multimodal 
problems involving equifinality issues.

2.3.  Key Aspects of the Calibration Problem

The ideal calibration approach should be effective, robust and computationally efficient. By model robustness we 
mean the ability of a calibrated model to preform well across a range of rainfall events with varying character-
istics. As this paper investigates different ES methods for the UDM calibration, it is necessary to investigate the 
key aspects of the problem that might impact the calibration effectiveness and robustness. By revisiting relevant 
literature (e.g., Reed et al., 2013; Swathi et al., 2019), this paper focuses on the following two key aspects.

1.	 �Spatial density of monitoring sites. The information provided by monitoring sites is crucial for model cali-
bration (Freni et al., 2009). This paper considers various monitoring schemes starting from only one monitor-
ing site being available at the outlet of the system to increasing numbers of sites spatially distributed within the 
system. The aim is to investigate how the number of monitoring sites affects the results of model calibration 
and how many observations are required to obtain accurate calibration results for the entire model domain. It 
is acknowledged that the layouts of monitoring sites would also affect the performance of model calibration, 
which is not considered in this paper.

2.	 �Temporal variability of rainfall events. Various studies on optimization-based calibration approaches have 
found that a calibration based on a single rainfall event cannot be normally generalized (Clemens, 2001). In 
other words, the calibrated model cannot guarantee good performance for another rainfall event, especially 

Figure 1.  Results of parameter estimations for the illustrative example.
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when the temporal characteristic of events are quite different (Barco et al., 2008; Swathi et al., 2019). To 
investigate the robustness of the ES methods on rainfall events, this paper considers multiple rainfall events 
with varying temporal characteristics to enable model calibration and validation.

3.  Case Studies
3.1.  Description of the Three Case Studies

Three cases (Cases 1–3 as shown in Figure 2) of UDMs built using the SWMM 
model (EPA, 2020) are tested in this paper. Case 1 (Figure 2a) is taken from 
the first illustrative example in the SWMM software manual that consists of 
8 sub-catchments, 14 nodes and 13 linkes as shown in Table 1. Both Cases 2 
and 3 originate from an open-access SWMM model of the real urban drain-
age system in Bellinge, Denmark (Figure 2c, Pedersen et al., 2021), which 
is termed as the Bellinge model in this paper. Case 2 (Figure 2b) is taken 
from a part of the Bellinge model (i.e., the part circled by the dot dash line in 
Figure 2c), where a free outfall has been added to this model as the terminal. 

Figure 2.  Urban drainage model layouts of the three cases.

Case Sub-catchments Nodes Links

Study 
area 

(km 2)

Number of 
calibration 
parameters

1 8 14 13 0.287 8 × 11 = 88

2 38 54 53 0.211 38 × 11 = 418

3 476 555 558 1.539 476 × 11 = 5,236

Table 1 
System Information of the Three Cases
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Case 2 consists of 38 sub-catchments, 54 nodes and 53 links (Table 1). Case 3 is the original Bellinge model 
(Figure 3c) and field observations are used for the analysis. Therefore, Cases 1 and 2 are two synthetic systems 
exhibiting different levels of complexity to demonstrate the utility of the three ES methods, Case 3 is a real-world 
system used to further validate the effectiveness of the proposed methods in practical applications. System infor-
mation of the three cases is given in Table 1.

In this study, five real rainfall events provided in Pedersen et al. (2021) are used for model inputs. Details of these 
rainfall events are presented in Figure 3 and Table 2. As shown in Figure 3, these five events occurred between 
29 June 2012, and 30 June 2012, and between 31 August 2015, and 1 September 2015. Rain gauge locations 
are presented in Figure 2c. As shown in Table 2, the mean intensities of the five rainfall events range from 1.6 
to 15.7 mm/hr with various peak intensities, total depths and durations. The flooding volumes of Cases 1 and 2 
corresponding to the five rainfall events are obtained by model simulations given the true parameter values rang-
ing from 0 to 589 m 3. Therefore, the analyzed five rainfall events represent a wide range of rainfall characteristics 
and hence can be used for effective model calibration and validation done in this paper.

A total of 8 and 15 in-situ monitoring sites, distributed across the systems analyzed, is assumed in Cases 1 and 
2, respectively. They are flow meters at the outlet recording the terminal discharge flow and water level meters 
at manholes recording the water levels, as shown in Figures 2a and 2b. The locations of these sites are artificially 
selected and used to provide various monitoring schemes (see Section 3.2 for detail). Synthetic state data at these 
monitoring sites are generated by adding white noise to the corresponding simulation model predictions based on 
true parameter values for the analyzed rainfall events. Here, Gaussian white noise 𝐴𝐴 𝜼𝜼 ∼ 𝑁𝑁(0, 0.033𝐝𝐝) is considered 
in all cases to approximately represent a typical 10% relative error of the monitoring devices according to the 
three-sigma rule (i.e., the observation errors are within ±0.099� with 99.7% confidence). For real-world Case 3, 
there are four water level meters installed in the system, as shown in Figure 2c. The observed data recorded at 
these meters during analyzed rainfall events are used in Case 3 analyses. A part of the Bellinge model where the 
four observation sites are located (i.e., the study area as shown in Figure 2c) is analyzed in detail. The relevant 

Figure 3.  Five rainfall events included in two rainfall data sets for the Bellinge model.

Rainfall 
event

Intensity (mm/h)
Total 
(mm)

Duration 
(min)

Time Flooding volume (m 3)

Mean Peak Start End Case 1 Case 2

1 5.5 108 19.4 210 2012/6/29 04:33 2012/6/29 08:03 383 135

2 7.7 36 6.4 50 2012/6/29 16:10 2012/6/29 17:00 13 4

3 1.6 36 3.2 119 2012/6/30 08:39 2012/6/30 10:38 0 1

4 3.3 24 4.2 76 2015/8/31 07:52 2015/8/31 09:08 0 1

5 15.7 60 22.0 84 2015/8/31 20:33 2015/8/31 21:57 589 118

Table 2 
Key Characteristics of the Five Real Rainfall Events
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components are listed in Table 1. Detailed information of the monitoring sites for the three cases is listed in Table 
S1 in Supporting Information S1. To clarify synthetic and real data used in the case studies, model simulations 
at the monitoring sites conditioned on true model parameters with noises added for Cases 1 and 2 are defined as 
synthetic data, while the real field data used in Case 3 are termed as observations. Note that dealing with fault 
data, anomalies and missing data are out of the scope of this study.

The parameters to be calibrated in the three cases are hydrological parameters associated with sub-catchments 
in the SWMM models. This is mainly due to: (a) sub-catchments are conceptual components with many param-
eters that are difficult or impossible to be measured directly; and (b) hydrological parameters are usually 
time-dependent, closely related to the changing land cover in urban areas. In contrast, the properties of the drain-
age network are relatively stable and much easier to identify. To simplify the implementation of the calibration 
method, no parameter reduction strategies are considered in this paper and a total of 11 hydrological parameters 
for each sub-catchment are calibrated. The types of calibration parameters and the corresponding ranges used for 
calibration are listed in Table 3 and follow the literature recommendations (Rossman, 2015; Swathi et al., 2019; 
Zhao et al., 2013). Note that m0 for the parameter “width” in the table indicates its assumed true value or specified 
value by modeler for each sub-catchment, and the range of “width” is given as ±50% of m0 rather than a fixed 
range as this parameter is empirical and different for each sub-catchment. In addition, for the two synthetic cases 
(i.e., Cases 1 and 2), the true values of the same type of parameter in different sub-catchments are intentionally 
modified to be more diverse enabling better generalization of calibration results. Modified parameter values of 
different sub-catchments are given in Data Sets S1–S4 in Supporting Information S1. As a result, there are 88, 

418, and 5,236 parameters associated with 8, 38, and 476 sub-catchments to 
be calibrated for Cases 1, 2, and 3, respectively, as shown in Table 1.

3.2.  Numerical Experiments for Model Calibration

A series of numerical experiments are designed and conducted with the ES 
methods for Cases 1 and 2, with the consideration of two key aspects of the 
calibration problem:

1.	 �Spatial density of monitoring sites. Five monitoring schemes with 
different distribution densities are applied to Cases 1 and 2 respectively, 
as shown in Table 4, to investigate the impact of the spatial density of 
monitoring sites on model calibration. Note that the scheme M1 with 
an end-point site for the two cases is the typical approach that is widely 
used in practice; the scheme M8 with eight sites for Case 1 is an ideal 
scheme as the outlets of eight sub-catchments (i.e., the related manholes) 
are all observed.

Parameters Units Descriptions Intervals

Width m Width of overland flow path (0.5m0, 1.5m0)

%Slope % Average surface slope (0.01, 10)

%Imperv % Percent of impervious area (0, 100)

N-Imperv – Manning coefficient for Impervious area (0.01, 0.04)

N-Perv – Manning coefficient for pervious area (0.1, 0.8)

Dstore-Imperv mm Depth of depression storage on impervious area (0.2, 5)

Dstore-Perv mm Depth of depression storage on pervious area (2, 10)

%Zero-Imperv % Percent of impervious area with no depression storage (0, 100)

MaxRate mm/h Maximum rate on Horton infiltration curve (20, 80)

MinRate mm/h Minimum rate on Horton infiltration curve (0, 10)

DecayCoeff 1/h Decay constant for the Horton infiltration curve (2, 7)

Table 3 
Hydrological Parameters to Be Calibrated for the Three Cases

Cases Schemes Sites

Case 1 M1 1

M2 1/2

M4 1/2/3/4

M6 1/2/3/4/5/6

M8 1/2/3/4/5/6/7/8

Case 2 M1 1

M3 1/2/3

M5 1/2/3/4/5

M10 1/2/3/4/5/6/7/8/9/10

M15 1/2/3/4/5/6/7/8/9/10/11/12/13/14/15

Table 4 
Monitoring Schemes for Cases 1 and 2
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2.	 �Temporal variability of rainfall events. The five real rainfall events with different temporal characteristics, 
as shown in Figure 3 and Table 2, are used for Cases 1 and 2 to investigate the robustness of the calibration 
method for different rainfall events. That is, the UDMs are calibrated based on each of the five rainfall events 
and validated for predicting model states of other rainfall events.

3.3.  Setup of the ES Methods for Model Calibration

The settings of the three ES methods for model calibration were optimally determined based on a few trial-error 
test runs. For Cases 1 and 2, ensembles of 300 and 1,000 realizations with 10 iterations are adopted, respectively. 
The inflation coefficient for ES-MDA and ES-ILU is set as 𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝑁𝑁iter for all iterations and the local factor for 
ES-ILU is set as 𝐴𝐴 𝐴𝐴 = 0.2 . In terms of the settings of the ES methods for Case 3, a large number of ensemble 
realizations are generally required due to the high dimension of the calibration problem (i.e., 5,236 calibra-
tion parameters) for this complex real-world case. However, a large ensemble size would lead to significant 
computational inefficiency that has hindered the application of many optimization methods in literature (Niazi 
et al., 2017). To cope with this issue, we managed a solution that uses a small ensemble of 1,000 realizations with 
10 iterations and optimal settings of the inflation coefficient and the local factor to obtain similar calibration and 
validation results to that using large ensembles. That is, the inflation coefficients were set in a decreasing order 
of 𝐴𝐴 𝐴𝐴𝑖𝑖 = {10000, 5000, 1000, 500, 100, 10, 8, 7, 5, 2.3875} for the 10 iterations (Emerick & Reynolds, 2013) and 
the local factors were unevenly set as 𝐴𝐴 𝐴𝐴𝑖𝑖 = {1.0, 0.8, 0.6, 0.4, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1} for the 10 iterations. Note 
that the optimal method setting in Case 3 reveals the potential performance improvements of the ES-MDA and 
ES-ILU methods. However, it is not the focus of this paper, thus the relevant results and analysis are not given 
herein.

To assess the accuracy and robustness of the calibrated models, two specific metrics, Nash-Sutcliffe Efficiency 
(NSE) and relative bias (RB; Zheng et al., 2018), are adopted to evaluate the accuracy of output states and esti-
mated parameters, respectively. Here RB is calculated as

RB = |𝑚𝑚 − 𝑚𝑚0|∕ (𝑚𝑚2 − 𝑚𝑚1) × 100%� (8)

in which the absolute deviation from the true parameter, that is, 𝐴𝐴 |𝑚𝑚 − 𝑚𝑚0| , is normalized by the parameter interval 
𝐴𝐴 𝐴𝐴2 − 𝑚𝑚1 , to enable objective comparisons among different parameters. Note that NSE can range from 𝐴𝐴 −∞ to 1 

with NSE = 1 being the optimal and the RB can range from 0 to 1 with RB = 0 being the optimal.

4.  Results and Discussions
4.1.  Performances of the Three ES Methods

To demonstrate the performances of the three ES methods in the UDM calibration, a general case with one 
end-point monitoring site (i.e., the scheme M1 for Cases 1 and 2) was first considered as an example. The rainfall 
events 1 and 2 were selected for model calibration and validation, respectively. Accordingly, the synthetic data of 
discharge flows at site 1 as shown in Figures 2a and 2b were used to enable the model calibration and validation 
in this case.

4.1.1.  State Estimation

Figure 4 presents flows at system outlets in Cases 1 and 2 for the three ES methods. The ensemble mean and 
the NSE mean value indicate the accuracy of state estimate, the 95% confidence interval (i.e., 95% CI) and the 
NSE standard deviation value (i.e., NSE std) represent the spread of the ensemble that indicate the uncertainty 
associated with the state estimate.

It can be generally observed from Figure 4 that the estimation accuracy improves in the order of ES, ES-MDA, 
and ES-ILU as the ensemble means match the state observation states in an increasing order. Meanwhile, the 
estimation uncertainties (i.e., the spreads of ensembles) decrease sequentially. This trend can be visualized more 
clearly by the NSE mean and std values in Figure 4, where a larger value of NSE mean and a smaller value of NSE 
std represent a better calibration/validation. More specifically, ES-ILU generally outperforms ES-MDA in terms 
of the estimation accuracy and the associated uncertainty (see the NSE mean and std values) while both the two 
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methods can achieve highly accurate estimates for the observed states (all the NSE mean values above 0.98). The 
standard ES method is less effective than the former two methods (e.g., the NSE mean values are below 0.90 for 
Case 2 as shown in Figures 4g and 4j).

A rigorous calibration should ensure that the state estimates of the entire model match the true states, not just for 
the observation states. Thus, we further investigated the accuracy of calibration and validation for water levels at 
all nodes for Cases 1 and 2, which is represented by boxplots of NSE mean and std values in Figure 5. As it can 
be seen from this figure, the state estimates for the entire model are not as accurate as that for the observation 

Figure 4.  Calibration and validation results of output state at the end-point monitoring sites for Cases 1 and 2 by the three ensemble smoother methods.
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state due to the distinct variation range of NSE mean and std values (i.e., box height), especially for Case 2 as 
shown in Figures 5c and 5d. For example, the NSE mean values range between −3.14 (not shown in the figure) 
and 0.96 with the mean value of 0.37 for the calibration results by ES for Case 2. These results reveal that the 
model calibration based on the single end-point observation cannot guarantee highly accurate state estimates for 
the entire model domain. This is easily overlooked in practical applications of model calibration.

Regarding the performance comparison of the three methods, it can be generally observed from Figure 5 that 
ES-ILU can achieve overall better state estimates than ES-MDA as the boxes of NSE mean values obtained 
by ES-ILU are generally higher (approaching one) than those by ES-MDA and the boxes of NSE std values 
by  ES-ILU are lower (approaching zero) than those by ES-MDA. Similar comparison results can be observed for 
ES-MDA and ES, indicating that ES-ILU outperforms ES. This finding can be further verified by the mean values 
of boxes in Figure 5, where a larger value of the box mean for NSE mean values and a smaller value of the box 
mean for NSE std values represent a better calibration/validation for the entire model state.

4.1.2.  Parameter Estimation

To explicitly demonstrate the parameter estimation results, the posterior distributions of the calibration param-
eters estimated by the three methods are compared in Figure 6. Considering that it is difficult to display a total 
of 88 and 418 calibration parameters for Cases 1 and 2, we only selected the parameters of two sub-catchments 
for demonstration purpose. It can be observed that only a few estimated parameter values are distributed close 
to the true values (e.g., the parameter “%Imperv” for both cases) while most of them deviate significantly. This 
finding suggests that despite the high accuracy of the single observation state, the parameter estimates by all three 
methods are inaccurate. In addition, by inspecting shapes of parameter distributions, we can identify that ES-ILU 
tends to get the tightest estimation results (i.e., the highest peaks) among the three methods. This is followed by 
ES-MDA and finally ES. This result indicates that the ability of the three methods to explore the parameter space 
increases in the order of ES, ES-MDA, and ES-ILU, as noted in literature (Emerick & Reynolds, 2013; Zhang 
et al., 2018).

Figure 5.  Boxplots of calibration and validation results (Nash-Sutcliffe Efficiency mean and std values for water levels at all 
nodes) for Cases 1 and 2.
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Overall, we can tentatively conclude that for the general case of model calibration and validation based on the 
end-point monitoring site: (a) all the three methods can produce accurate estimation for the observed states with 
their performances increasing in the order of ES, ES-MDA, and ES-ILU; (b) however, the accuracies of state and 
parameter estimation for the entire model domain are much less satisfactory, especially for parameter estimates 
wherein most values largely deviate from true values. The possible reason for the lack of estimation accuracy of 

Figure 6.  Posterior distributions of calibration parameters for sub-catchment 8 in Case 1 (a–k) and sub-catchment G80F390_8343 in Case 2 (l–v).
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the entire model could be attributed to the lack of observations in this case, which is further investigated in the 
following section.

4.2.  Investigation of Key Aspects of the Calibration Problem

4.2.1.  Spatial Density of Monitoring Sites

The impact of the spatial density of monitoring sites on model calibration was investigated by considering five 
different monitoring schemes as listed in Table 3 for Cases 1 and 2, respectively. The rainfall event 1 was used for 
this investigation. The calibration results for the observed states and the entire model states (i.e., water levels at all 
nodes) for Cases 1 and 2 are given as boxplots in Figures S1 in Supporting Information S1 and Figure 7, respec-
tively. For the estimation of observed states (see Figure S1 in Supporting Information S1), all the three methods 
produce highly accurate data-fits across different monitoring schemes for both cases. Particular good results are 
obtained by ES-ILU and ES-MDA, where the box mean of the NSE mean values are all above 0.98 and the box 
mean of the NSE std values are all below 0.01. This outcome reveals that the accuracy of the fit to the observed 
states are good no matter how many monitoring sites are used.

However, this is not the case for the estimation of the entire model states as shown in Figure 7. For each method, 
both the accuracy and associated uncertainty of the model calibration for all model states improve gradually as 
the number of monitoring sites increases (i.e., the boxes of NSE mean and std values approach one and zero, 
respectively). This trend can be visualized more clearly for the increase of the box mean values in Figures 7a 
and 7c and the decrease of the box mean values in Figures 7b and 7d with the increasing number of sites. Such 
consistent trends in both cases imply that increasing the number of monitoring sites can improve the overall 
performance of model calibration. Specifically, when four and ten monitoring sites are deployed in Cases 1 and 2 
respectively (i.e., M4 for Case 1 and M10 for Case 2), the NSE mean values for the entire model state obtained by 
ES-MDA and ES-ILU are overwhelmingly greater than 0.80, indicating that these two monitoring schemes can 
guarantee the overall high accuracy of model calibration for the two cases.

In addition, for the performance comparison among the three methods, it can be generally observed from Figure 7 
that the boxes of NSE mean values (and the box mean values) gradually increase to approach the optimal value 
of 1 and the boxes of NSE std values (and the box mean values) decrease to the optimal value of 0 in the order 

Figure 7.  Boxplots of calibration results (Nash-Sutcliffe Efficiency mean and std values for water levels at all nodes) for 
Cases 1 and 2 utilizing different monitoring schemes.
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of ES, ES-MDA, and ES-ILU for all monitoring schemes. This finding confirms again that ES-ILU has the best 
performance for model calibration, followed by ES-MDA and finally ES.

To evaluate the impact of the spatial density of monitoring sites on parameter estimation, the mean and stand-
ard deviation values of the metric RB (i.e., RB mean and std values) for the 11 calibration parameters for all 
sub-catchments and different monitoring schemes are summarized as boxplots in Figure  8 and Figure S2 in 
Supporting Information S1, respectively. Similar to the meanings of NSE mean and std values, the RB mean and 
std values herein indicate the accuracy of parameter estimate and the associated uncertainty, respectively. It can 
be observed from Figure 7 that for all the three ES methods and most of the 11 parameter types, the accuracy 
of parameter estimates (i.e., the RB mean values) does not improve with the increasing number of monitoring 
sites, even when the overall state estimates are highly accurate, such as M8 for Case 1 and M15 for Case 2. A few 
exceptions are the parameters “%Imperv,” “Dstore-Perv,” and “%Zero-Imperv” in Case 1 (with a small number of 

Figure 8.  Boxplots of calibration results (relative bias mean values) for the 11 parameters of all sub-catchments in Cases 1 and 2 by the three ensemble smoother 
methods utilizing different monitoring schemes.
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calibration parameters) that have been widely identified as sensitive parameters in literature (Niazi et al., 2017). 
Such results demonstrate the complexity and challenges of parameter identifiability for UDM calibration, which 
is intrinsically due to the parameter equifinality effects. When equifinality situation arises, using RB cannot 
reasonably evaluate the performance of parameter estimation. In addition, the results in Figure S2 in Supporting 
Information S1 (i.e., the RB std values) show that the associated uncertainties of parameter estimates can be 
decreased by increasing the number of monitoring sites.

4.2.2.  Temporal Variability of Rainfall Events

Five real rainfall events with different temporal characteristics as shown in Figure 3 and Table 2 were adopted to 
investigate the robustness of model calibration using the three ES methods. To enable a comprehensive investi-
gation, the calibrated models based on each of the five rainfall events were validated for predicting model states 
of other rainfall events. The monitoring schemes M4 in Case 1 and M10 in Case 2 were utilized considering that 
these two schemes can guarantee the overall high performance of model calibration as analyzed earlier from 
Figure 7. The calibration and validation results for the five rainfall events were given in Figures 9, 10 and Figures 
S3–S5 in Supporting Information S1. The results for rainfall events 1 and 3 were selected for detailed analysis 
(see Figures 9 and 10) as these two events respectively represent intense rainfall cases that lead to serious urban 
floods and small rainfall cases without or with minor overflows refer to the key rainfall characteristics as listed 
in Table 2.

It can be generally observed from Figure 9 that for ES-MDA and ES-ILU the boxes of NSE mean and std values 
for rainfall events 2–5 are essentially at the same level (i.e., similar heights and variation ranges) with the boxes 
for rainfall event 1. More specifically, the corresponding box mean values for ES-MDA and ES-ILU are all above 
0.90 for all the rainfall events. Such results indicate that the calibrated model by ES-MDA and ES-ILU based on 
rainfall event 1 can also achieve highly accurate model predictions for other four rainfall events. Similar results 
can be found for the calibration and validation results based on rainfall event 5 (see Figure S5 in Supporting 
Information S1).

However, this is not the general case for the validation results based on rainfall event 3 in Figure 10. For ES-MDA 
and ES-ILU in this figure, while the calibrated model based on rainfall event 3 can produce similarly and highly 
accurate model states for rainfall event 4, the predicted model states for rainfall events 1, 2, and 5 are less accu-
rate. For example, the boxes of ES-MDA and ES-ILU in Figure 10c for rainfall events 1, 2, and 5 are much wider 

Figure 9.  Boxplots of calibration and validation results (Nash-Sutcliffe Efficiency mean and std values for water levels at all 
nodes) for Cases 1 and 2 based on rainfall event 1.
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than those for rainfall events 3 and 4, and the corresponding box mean values can be as low as 0.68. This result 
indicates that the calibrated model based on rainfall event 3 cannot provide reliable model performance for rain-
fall events with larger intensities. Similar findings can be discovered from the validation results of rainfall events 
2 and 4 in Figures S3 and S4 in Supporting Information S1.

Overall, it can be generally concluded that ES-MDA and ES-ILU can produce robust UDM calibration based on 
intense rainfall events. The model calibration based on small rainfall events is less robust as the calibrated model 
cannot perform well for predicting model states for intense rainfall events. One possible reason could be that the 
system responses for intense rainfall events are more informative than those for small rainfall events. In addition, 
it can be also observed from Figures 9 and 10 that the ES method is less effective and robust than ES-MDA and 
ES-ILU, as previously observed in Figures 5 and 7. This can be due to the primary ES method performing only 
a single global update that is likely to be insufficient for the highly nonlinear problem of the UDM calibration 
in this paper. However, the ES-MDA and ES-ILU methods perform multiple smaller updates to the calibration 
problem, thus are more effective and robust than the ES method.

4.3.  Further Discussion of Parameter Identifiability for UDM Calibration

From the above investigation and analysis, we can generally identify that: (a) increasing the spatial density of 
monitoring sites can improve the performance of estimating the entire model states; (b) however there is no clear 
indication of noteworthy improvement in the identification of true parameter values. Therefore, it can be deduced 
that significant parameter equifinality exists within the calibration process, as recognized in literature (Her & 
Chaubey, 2015; Kelleher et al., 2017). The issue is thus further investigated and discussed hereafter.

To explicitly demonstrate the equifinality issue, we searched out the ensemble realizations with the mean of NSE 
values for water levels at all nodes above 0.99 from all the numerical experiments conducted in Sections 4.2.1. 

Figure 10.  Boxplots of calibration and validation results (Nash-Sutcliffe Efficiency mean and std values for water levels at all nodes) for Cases 1 and 2 based on 
rainfall event 3.
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Then the corresponding estimated parameter values of these selected realizations were plotted in Figures 11a 
and 11b. Note that the values of the 11 parameters for all sub-catchments of the two cases are normalized within 
the 0–1 range. As shown in Figures 11a and 11b, the parameter equifinality across different sub-catchments can 
be clearly identified as the estimated values for each parameter exhibit a wide range within their intervals. They 
also differ from the true values while these realizations can all be potential solutions for practical applications 
(i.e., the NSE mean values above 0.99).

Based on the above findings, we further explored whether parameter equifinality exists within each sub-catchment. 
Here, we selected sub-catchment 8 in Case 1 as an example and conducted Monte Carlo simulations to find 
samples that can produce an acceptable estimation of runoff flows for the sub-catchment. As a result, the samples 
with NSE > 0.99 were selected and plotted in Figure 11c. Three samples with NSE > 0.999 (blue lines) and the 
true parameter values (black lines) were also given for comparison. It can be observed that a wide range of param-
eter sets with significantly different values from true parameter values can yield highly accurate simulation results 
(i.e., NSE > 0.99). Interestingly, parameter values of the three samples with NSE > 0.999 still differ significantly 
from true values. This finding, combined with that in Figures 11a and 11b, further reveal that parameter equifinal-
ity exists not only across different sub-catchments but also within each sub-catchment. Consequently, parameter 
equifinality underlying the calibration problem makes the unique parameter identification a significantly complex 
and difficult task.

Notwithstanding the difficulties with unique parameter identification, it should be noted that good state esti-
mates can be achieved for the entire model while the parameter estimates are less accurate, as demonstrated in 
Section 4.2. Therefore, for practical applications where model estimation of system states are more concerned, 
the proposed ES-MDA and ES-ILU methods can be effective and robust for the UDM calibration. This seems to 
hold because these methods can identify a series of feasible parameter sets that can partially mitigate the equifi-
nality issue.

Figure 11.  Parameter equifinality illustration: (a, b) parameter values of ensemble realizations with highly accurate estimation of the water levels at all nodes; and (c) 
parameter values of samples with highly accurate estimation of the runoff flow for sub-catchment eight in Case 1.
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4.4.  Application to a Real-World Case

The proposed calibration methods were finally applied to a real-world Case 3 to demonstrate its utility in practi-
cal settings. As mentioned in Section 3.1, the original Bellinge model (Figure 2c) was used and a total of 5,236 
hydrological parameters (Table 1) were calibrated against four in-situ water level observations (Figure 2c). The 
parameter ranges were given in Table 3. Two continuous rainfall data sets including five rainfall events (i.e., 
rainfall events 1–5 in Figure 3) were considered for model calibration and validation. More specifically, for the 
first data set, rainfall event 1 was used for model calibration and rainfall events 2 and 3 for model validation; for 
the second data set, rainfall event 4 for model calibration and rainfall event 5 for model validation, as shown in 
Figures 12a and 13a. Correspondingly, the observations responding to these rainfall events were splitted into two 

Figure 12.  State trace results of calibration and validation at four observation sites for rainfall events 1–3 in Case 3.
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parts for model calibration and validation, respectively. The results of model calibration and validation at the four 
observation sites are given in Figures 12b–12e and 13b–13e. The original simulation results manually validated 
by Pedersen et al.  (2021) are also given for comparison. Statistical metrics including the NSE values for the 
hydrographs as well as the differences between estimated and observed water level peaks (time of occurrence and 
maximum value) are presented in Figure S6 in Supporting Information S1.

It can be observed from Figures 12 and 13 and Figure S6 in Supporting Information S1 that, for both calibration 
and validation, ES-MDA and ES-ILU produce overall similar observation-fitting results at the four sites. The 
results of the two methods improve upon those obtained by Pedersen et al. (2021), while ES exhibits the worst 
performance. For the estimation of peak states, which is often the key concern in practical applications, the peak 

Figure 13.  State trace results of calibration and validation at four observation sites for rainfall events 4 and 5 in Case 3.

 19447973, 2022, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
032440 by <

Shibboleth>
-U

niversity of E
xeter, W

iley O
nline L

ibrary on [25/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

HUANG ET AL.

10.1029/2022WR032440

20 of 22

magnitude and timing estimates obtained by ES-MDA and ES-ILU, in most cases, have both smaller deviations 
than those obtained by Pedersen et al. (2021). For instance, at the calibration stage for rainfall event 4 as shown in 
Figure 13c, the deviations of the peak water depth at site 2 estimated by ES-MDA and ES-ILU (0.05 and 0.07 m 
respectively) are much lower than those obtained by Pedersen et al. (2021) (0.55 m). For the validation of the 
model predictions for rainfall event 3 at site 2 as shown in Figure 12c, the peak times estimated by ES-MDA and 
ES-ILU are 4 and 3 min earlier than the observations, respectively, while it is 15 min earlier for the estimation by 
Pedersen et al. (2021). This apparent advantage of ES-MDA and ES-ILU can be useful for state prediction and 
real-time control in practical applications. Therefore, the above results indicate that ES-MDA and ES-ILU can 
provide improved calibration of the complex Bellinge model. Considering that the proposed calibration methods 
can be fully automated (i.e., no parameter reduction strategies are involved), it is a very effective tool for practical 
applications.

4.5.  Computational Efficiency

The calibration procedures in this paper were coded in MATLAB 2021a and run on a PC with a 10-core Intel 
Core i9-10900 (2.8 GHz) CPU. The times needed for the above ES, ES-MDA and ES-ILU procedures were 
about 0.2, 1.4, and 1.5 min, respectively, for Case 1, and 2.3, 16.7, and 26.8 min, respectively, for Case 2. For the 
real-world case (Case 3), the model calibration using ES, ES-MDA, and ES-ILU consumed about 1.4, 14.8, and 
22.3 hr, respectively, for rainfall event 1, and 1.2, 11.2, and 14.2 hr, respectively, for rainfall event 4.

5.  Summary and Conclusions
Urban drainage models (UDMs) are commonly used in urban flooding management. Due to complex and dynamic 
processes of urban flooding (especially the hydrological part), a typical UDM involves a large number of model 
parameters to represent the relevant hydrodynamic processes. Consequently, the application of such models is 
often limited by the difficulty of obtaining effective and robust calibration results. Limited observations, rainfall 
events with varying characteristics and the resultant parameter equifinality issue are the key reasons. To address 
these issues, this paper presented a Bayesian-based calibration method with three ensemble smoothers (ESs), 
that is, the primary one (ES), ES-MDA and ES-ILU. These ES methods can provide the estimates of parameter/
state values and the associated uncertainty (i.e., related errors to the estimates) at the same time. Aspects that 
may affect the model calibration performance, that is, the spatial density of monitoring sites and the temporal 
variability of rainfall events, were also investigated.

The utility of the three ES methods was first demonstrated with two synthetic cases. All hydrological parameters 
necessary to run the stormwater management model (88 and 418 parameters for the two cases, respectively) 
were calibrated against various monitoring schemes and then validated for different real rainfall events. Finally, 
a real-world case of complex UDM with 5,236 uncertain parameters was calibrated and validated to verify the 
effectiveness of the proposed method in practical applications. The main results and findings can be summarized 
as follows:

1.	 �When the same observation data and rainfall events are used for model calibration, the ES-ILU method 
generally outperforms the ES-MDA method in terms of both prediction accuracy and uncertainty while the 
primary ES method exhibits the worst performance. Specifically, for the real-world case, both the ES-MDA 
and ES-ILU methods provide better calibration results than the best-known solution manually obtained by 
Pedersen et al. (2021).

2.	 �It is found that a good overall fit to the observed data does not necessarily guarantee the good accuracy of esti-
mations for all model states. A minimum number of monitoring sites is required to enable an overall accurate 
model calibration. For instance, four more and ten more sites are needed to produce accurate estimates for all 
states in the two cases analyzed here.

3.	 �The models calibrated using ES-MDA and ES-ILU with intense rainfall events are found to be robust when 
predicting model states across different rainfall events. Opposite of this, the model calibrated using the same 
methods but with less intense rainfall event predicts well only for less intense rainfall events. This finding 
suggests that the proposed ES-based calibration method is promisingly robust when the intense rainfall events 
are used for calibration.
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4.	 �Regarding the UDM parameter calibration, the estimated values generally deviate significantly from the true 
values, even when state estimates for the entire model domain are accurate. Assimilating more observations 
has no significant effect on improving the parameter fit, at least not in the cases analyzed here. A more detailed 
investigation has found that the parameter equifinality issue is ubiquitous across different sub-catchments as 
well as within each sub-catchment. As a result, the unique identification of UDM parameters remains an 
extremely complex and difficult task.

In conclusion, the proposed ES-based method is a promising alternative for the calibration of complex UDMs in 
terms of effectiveness and robustness. In addition, this paper provides knowledges on the impacts of observations 
and rainfall characteristics on model calibration performance and parameter equifinality issue, which can facili-
tate the implementation of UDMs in practical applications. It is noted that the ES-based calibration can output the 
estimated parameter/state values as well as the associated uncertainties, which is more informative than the clas-
sical deterministic approaches (e.g., optimization-based methods). However, it is also noted that the model cali-
bration is still challenging in practical applications, for example, distinct deviations from fitting the observations 
still remain in the real-world case in this paper. Therefore, there is still a need to further improve  the  calibration 
performance for complex UDMs. For example, updating model structural errors together with model parameters 
(Evensen, 2019) or enhancing the capacity of ES with deep learning (Zhang et al., 2020) are potential solutions 
that can be further investigated.
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