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                                                              Abstract 57 

The general psychopathology factor (GPF) has been proposed as a way to capture variance 58 

shared between psychiatric symptoms. Despite a growing body of evidence showing both 59 

genetic and environmental influences on GPF, the biological mechanisms underlying these 60 

influences remain unclear. In the current study, we conducted epigenome-wide meta-analyses 61 

to identify both probe- and region-level associations of DNA methylation (DNAm) with 62 

school-age general psychopathology in six cohorts from the Pregnancy And Childhood 63 

Epigenetics (PACE) Consortium. DNAm was examined both at birth (cord blood; prospective 64 

analysis) and during school-age (peripheral whole blood; cross-sectional analysis) in total 65 

samples of N=2,178 and N=2,190, respectively. At school-age, we identified one probe 66 

(cg11945228) located in the Bromodomain-containing protein 2 gene (BRD2) that negatively 67 

associated with GPF (p=8.58×10–8). We also identified a significant differentially methylated 68 

region (DMR) at school-age (p=1.63×10–8), implicating the SHC Adaptor Protein 4 (SHC4) 69 

gene and the EP300-interacting inhibitor of differentiation 1 (EID1) gene that have been 70 

previously implicated in multiple types of psychiatric disorders in adulthood, including 71 

obsessive compulsive disorder, schizophrenia, and major depressive disorder. In contrast, no 72 

prospective associations were identified with DNAm at birth. Taken together, results of this 73 

study revealed some evidence of an association between DNAm at school-age and GPF. 74 

Future research with larger samples is needed to further assess DNAm variation associated 75 

with GPF. 76 

  77 
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Introduction 78 

Psychiatric disorders or symptoms co-occur more often than would be expected by chance 79 

alone.1,2 In light of the negative clinical and functional outcomes associated with psychiatric 80 

co-occurrence,3,4 it is important to identify early indicators of risk and underlying biological 81 

mechanisms. There is accumulating evidence that, as early as in childhood, the shared 82 

variance between psychiatric disorders or symptoms may be usefully represented by a general 83 

psychopathology factor (GPF).5–8 This GPF in childhood has been found to show temporal 84 

stability6 and to predict long-term functional and psychiatric outcomes in adolescence 85 

throughout adulthood.9,10 Although previous research has found evidence for both genetic and 86 

environmental influences on GPF,7,11–16 the biological mechanisms underlying these 87 

influences remain unclear.  88 

One of the ways by which genetic and environmental factors might contribute to 89 

disease susceptibility is through epigenetic mechanisms that regulate gene expression, such as 90 

DNA methylation (DNAm).17 Studies have shown that variation in DNAm is influenced by a 91 

dynamic interplay of genetic and environmental factors.18 In turn, alterations in DNAm 92 

patterns across the genome in peripheral tissues including cord blood, and peripheral blood 93 

have been found to associate with a wide range of child and adult mental health outcomes, 94 

such as conduct problems, attention deficit hyperactivity disorder (ADHD) symptoms, major 95 

depressive disorder (MDD), and schizophrenia.19–22 Despite a growing body of research 96 

implicating an involvement of DNAm in individual mental health outcomes, much less work 97 

has focused on the relationship between DNAm and general psychopathology.23 To the best 98 

of our knowledge, only one study examined the association between genome-wide DNAm 99 

patterns and GPF in childhood. In this study, data were analyzed cross-sectionally in one 100 

cohort, focusing on wider biological networks (so called ‘modules’) of co-methylated DNAm 101 

probes across the genome.23 As such, we still lack knowledge on how GPF relates to single 102 
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DNAm probes and the extent to which associations vary across time (i.e., both cross-sectional 103 

and prospective associations). Large multi-cohort epigenome-wide studies, which allow for 104 

increased power and generalizability, are needed to improve our understanding of the 105 

biological mechanisms underlying shared variance across mental health problems. 106 

We conducted epigenome-wide meta-analyses to investigate both probe-level and 107 

region-based associations of DNAm with school-age GPF in the Pregnancy And Childhood 108 

Epigenetics (PACE) Consortium. Because it is unclear at which time point differential DNAm 109 

may be most relevant to GPF, we examined DNAm both at birth (cord blood; prospective 110 

study; pre-symptom manifestation) and at school-age (peripheral whole blood; cross-sectional 111 

study) in pooled samples of N=2,178 and N=2,190 children, respectively. 112 

Methods 113 

Participants 114 

The prospective analyses included four cohorts from PACE, using complete data on DNAm at 115 

birth, general psychopathology in childhood and covariates: the Avon Longitudinal Study of 116 

Parents and Children (ALSPAC), Drakenstein Child Health Study (DCHS), Generation R 117 

(GENR), and INfancia y Medio Ambiente (INMA). These cohorts have a combined sample 118 

size of 2,178 (see Table 1). All prospective cohorts included participants of European 119 

ancestry, except for DCHS, which included participants of predominantly Black African 120 

ancestry or mixed ancestry. See Supplementary Methods for full cohort descriptions.  121 

The cross-sectional analyses included four cohorts from the PACE consortium, using 122 

complete data on DNAm and general psychopathology in childhood, as well as covariates; 123 

ALSPAC, GENR, Glycyrrhizin in Licorice (GLAKU), and Human Early Life Exposome 124 

(HELIX; including six jointly analyzed sub cohorts). These cohorts have a combined sample 125 

size of 2,190 (see Table 1). All cross-sectional cohorts included participants of European 126 
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ancestry, except for HELIX, which included participants of European ancestry and 127 

participants with a Pakistani background living in the United Kingdom, which were analyzed 128 

as separate cohorts in our meta-analysis. 129 

Measures 130 

DNA methylation 131 

DNAm was assessed with the Illumina Infinium HumanMethylation450 (ALSPAC, DCHS, 132 

GENR, HELIX, INMA) or the Infinium HumanMethylationEPIC (DCHS, GLAKU) 133 

BeadChip assays in cord blood and in peripheral whole blood at ages 7-12 years. The cohorts 134 

performed sample processing, quality control (QC) and normalization based on their preferred 135 

protocols as described in the Supplementary methods. We used normalized, untransformed 136 

beta values, ranging from 0 (fully unmethylated) to 1 (fully methylated). Methylation levels 137 

that fell outside of the lower quartile minus 3 × interquartile or upper quartile plus 3 × 138 

interquartile range were removed.  139 

We excluded probes with a call rate <90%, control probes, and probes that mapped to 140 

X/Y chromosomes. Following Zhou et al.,24 we further excluded probes with poor base 141 

pairing quality (lower than 40 on 0-60 scale), probes with non-unique 30bp 3'-subsequence 142 

(with cross-hybridizing problems), Infinium II probes with SNPs of global MAF over 1% 143 

affecting the extension base, and probes with a SNP in the extension base that causes a color 144 

channel switch from the official annotation. We also excluded a subset of probes (n=69) that 145 

have shown to be unreliable in a recent comparison of the Illumina 450K and EPIC 146 

BeadChips.25 At the meta-analysis level, we excluded probes which were available in <50% 147 

of the cohorts and <50% of the participants. After QC, 404,017 probes remained at birth and 148 

413,497 probes remained at school-age. 149 

General psychopathology factor 150 
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Mental health symptoms were assessed when children were aged 6-12 years, depending on 151 

the cohort. Parent-rated instruments were used, including (i) the Child Behavior Checklist 6-152 

18 (CBCL/6-18) in DCHS, GENR, GLAKU, HELIX, and INMA, and (ii) the Development 153 

and Well-being Assessment (DAWBA) in ALSPAC. Instruments are described in more 154 

detailed in the Supplementary methods. Whereas a single general factor loaded on all CBCL 155 

or DAWBA problem subscales, two specific factors loaded on internalizing (CBCL: 156 

anxious/depressed, withdrawn/depressed, somatic complaints; DAWBA: generalized anxiety 157 

disorder, major depressive disorder, social phobia, separation anxiety, specific phobia) versus 158 

externalizing (CBCL: rule-breaking behavior, aggressive behavior, attention problems; 159 

DAWBA: attention deficit hyperactivity disorder, oppositional defiant disorder, conduct 160 

disorder) subscales. For the CBCL, three subscales (social problems, thought problems, other 161 

problems) were indicators of the general factor but were not part of the specific internalizing 162 

or externalizing factors. Of note, GLAKU included only two of these three CBCL subscales 163 

as the 'other problems' subscale was not available.  164 

The internalizing and externalizing factors were allowed to correlate with each other but not 165 

with the general factor. As such, the general factor represents the shared variance among all 166 

problem scales that is independent of the more specific internalizing and externalizing factors. 167 

Previous research reported negative correlations between the GPF and cognitive 168 

outcomes 10,14,26. To support the criterion validity of the GPF, we estimated the 169 

correlation between the GPF and child cognition across the cohorts. 170 

Covariates 171 

We adjusted for the following potential confounders: child sex, gestational age at birth, child 172 

age at the assessment of outcome, maternal age, maternal educational level, prenatal maternal 173 

smoking status, cell-type proportions estimated using standard algorithms for DNAm at 174 
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birth27 or childhood,28 ancestry (depending on the specific cohort), and technical covariates 175 

(e.g., batch) (see Supplementary methods). To test the robustness of findings when using 176 

a different method to estimate cell-type proportions, we re-ran the cross-sectional 177 

EWAS analyses within the cohort with the largest sample size (HELIX, itself comprised 178 

of different participating cohorts) with newly estimated cell proportions using IDOL 179 

(Salas et al., 2018 29) instead of Houseman’s approach28.  180 

 181 

Statistical analyses 182 

General psychopathology factor 183 

We used confirmatory factor analysis (CFA) to fit a general psychopathology model in the 184 

full samples with mental health data available (see Supplementary Information 1). Each 185 

cohort ran the CFA according to a predefined script, using the Lavaan statistical package32 in 186 

R (https://www.r-project.org/). GPF scores were extracted, winsorized at +/- 3SD, and 187 

standardized. 188 

Cohort-specific EWAS 189 

Each cohort ran the EWAS according to a predefined analysis plan, using robust linear 190 

regression (rlm; MASS R-package) to account for potential heteroscedasticity and non-191 

normality. Cohorts excluded all multiple births and chose one random sibling per non-twin 192 

sibling pair. 193 

Meta-analysis 194 

The cohort-specific results were meta-analyzed at Erasmus MC Rotterdam. A shadow meta-195 

analysis was conducted independently at the Barcelona Institute for Global Health. We 196 
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performed an inverse-variance weighted fixed effects approach using R and METAL.33 197 

Probes were annotated using meffil.34 Genome-wide significance was defined at the 198 

Bonferroni-corrected threshold of p< 1×10–7, and suggestive significance at p< 1×10–5. We 199 

included p< 1×10–4 specifically for pathway and enrichment analyses to allow a sufficient 200 

number of genes to be included. 201 

 We ran two sensitivity meta-analyses. First, we included only cohorts of 202 

predominantly European ancestry to check if the results of the main analysis were influenced 203 

by ancestry. Second, we performed leave-one-out meta-analyses for hits showing genome-204 

wide significant associations with GPF to ensure that associations were not driven by a single 205 

cohort. 206 

Differentially methylated regions 207 

Differentially methylated regions (DMRs) were identified using the dmrff package35 in R. 208 

This method first identifies candidate DMRs by screening the meta-level EWAS results for 209 

genomic regions each covered by a sequence of CpG sites with EWAS effects in the same 210 

direction, EWAS p-values <0.05, and <500bp gaps between consecutive CpG sites. Then, 211 

summary statistics are calculated for each candidate DMR within each of the cohorts by meta-212 

analyzing the cohort-level EWAS summary statistics of the CpG sites in the region. Meta-213 

analysis is performed by a variation of inverse weighted fixed effects meta-analysis that 214 

accounts for non-independence between CpG sites. Finally, for each candidate DMR, the 215 

summary statistics from each cohort are meta-analyzed to obtain a cross-cohort meta-analyzed 216 

DMR statistic and p-value. 217 

Follow-up analyses 218 

Individual probes showing genome-wide or suggestive significance were looked up in 219 

the EWAS catalog36 and EWAS atlas37 to examine potential associations with exposures and 220 
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health outcomes based on existing studies. To further characterize potential environmental - 221 

as well as genetic – influences on these sites, we used two different tools: 1) a heritability tool 222 

quantifying additive genetic influences as opposed to shared and non-shared environmental 223 

influences on DNAm, based on data from monozygotic and dizygotic twins38; and 2) the 224 

GoDMC database (http://mqtldb.godmc.org.uk/) as a more specific tool for identifying 225 

genetic influences on DNAm levels via mQTL mapping. GoDMC is a large-scale 226 

collaborative effort including 36 cohorts (4 of which participated in this study: INMA, 227 

ALSPAC, GENR, GLAKU), based on whole blood from over 27,000 European samples. We 228 

characterized cross-tissue correspondence of DNAm using the Blood Brain DNA Methylation 229 

Comparison Tool by Hannon et al.39, the Blood–Brain Epigenetic Concordance (BECon)40, 230 

and the Iowa Methylation Array Graphing for Experimental Comparison of Peripheral tissue 231 

& Gray matter (IMAGE-CpG)41. To assess whether methylation levels of CpGs were 232 

associated with the expression levels of nearby genes in child blood, we consulted the HELIX 233 

Expression Quantitative Trait Methylation (eQTM) catalogue 234 

(https://helixomics.isglobal.org/), generated from samples overlapping with those included in 235 

this study (from the HELIX cohort). Finally, chromatin states associated to the most 236 

significant CpGs were assessed using ROADMAP blood 15 reference chromatin states 237 

(annotation and enrichment analysis conducted using the Enrichment module of the EASIER 238 

R package). Genome Browser (UCSC) was used to further explore the genomic context of the 239 

identified DMR.  240 

To identify broader pathways and enrichment for molecular functions, we used the 241 

gene ontology (GO-biological processes, GO-molecular functions and GO-cellular 242 

components), the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and the 243 

Molecular Signature Database (MSigDB) enrichment methods from the missMethyl R 244 

package,42 as implemented in the Functional Enrichment module of the EASIER R package.43 245 

https://helixomics.isglobal.org/
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We ran GWAS enrichment analyses for EWAS using the GenomicRanges Package,44 to 246 

identify genomic regions of EWAS suggestive hits (p< 1×10–4) that overlapped with the 378 247 

genome-wide significant loci previously reported in GWASs on general psychopathology,16 248 

schizophrenia,45 neuroticism46, ADHD47 or anxiety48 (0.5Mb window centered to the genomic 249 

locus indicated in the original studies).  250 

Results 251 

General psychopathology factor 252 

All mental health subscales had significant loadings on the general factor across all cohorts, 253 

with all loadings >0.30. For full details on the GPF loadings, correlations, and model fit, see 254 

Supplementary Table 1. The loadings of the mental health subscales on the specific 255 

internalizing and externalizing factors tended to be lower and were less consistent across the 256 

cohorts, as were the correlations between these specific factors. In INMA and HELIX, a 257 

model including the correlation between the specific internalizing and externalizing factors 258 

did not fit the data well (see Supplementary Information 1). Therefore, in both INMA and 259 

HELIX, the specific internalizing and externalizing factors were not allowed to correlate (i.e., 260 

completely orthogonal model; see Supplementary Table 1). In line with previous research,5,7,14 261 

GPF consistently negatively correlated with child cognition (see Supplementary methods) 262 

across the cohorts (mean r=-0.12, range=-0.08 to -0.13).  263 

Epigenome-wide meta-analysis 264 

Descriptive statistics across the cohorts are shown in Supplementary Table 2. We note that 265 

some differences were observed in GPF levels and sociodemographic characteristics between 266 

the full cohort samples and analytical subsamples used in the present study (see 267 

Supplementary Table 2). These differences varied depending on the specific cohort and 268 

variable examined. We prospectively examined associations of DNAm at birth (n=2,178) at 269 
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404,017 CpG sites with GPF at school-age. There was no evidence of genomic inflation in the 270 

cohort-specific EWASs (range λ=0.95-1.14), nor in the meta-analysis (λ=1.08, see also Figure 271 

1). As can be seen in Figure 2, no CpG reached genome-wide significance at p< 1×10–7, with 272 

four CpGs showing p< 1×10–5 (see Table 2). For the top hit (cg02084087), annotated to 273 

TNFRSF25 (TNF Receptor Superfamily Member 25), a 10-point increase in percentage 274 

methylation was related to a 0.43 SD increase in general psychopathology symptoms 275 

(p=5.54×10–6).  276 

In the cross-sectional meta-analysis of DNAm at school-age (n=2,190) at 413,497 277 

sites, one CpG reached genome-wide significance (see Figure 2). For this CpG probe 278 

(cg11945228), mapped to BRD2 (Bromodomain-containing protein 2 gene), a 10-point 279 

increase in percentage methylation was related to a 3.70 SD decrease in general 280 

psychopathology symptoms (p=8.58×10–8). Of note, there was a negative association between 281 

DNA methylation at this CpG and GPF in all cohorts except for the HELIX-Pakistani cohort. 282 

It is not possible based on the present data however to establish whether this may reflect an 283 

ancestry-specific association pattern or the influence of other cohort-specific factors 284 

(Supplementary Figure 2). Twenty other CpGs showed p< 1×10–5. These 21 top hits identified 285 

at school-age did not overlap with the ones observed at birth. Furthermore, as shown in 286 

Supplementary Table 3, the significant hit identified at school-age did not reach nominal 287 

significance (p <0.05) at birth (B=5.28, SE=3.76, p=0.16). Nominally significant probes 288 

identified in childhood correlated at r=0.004, p=0.55 (n=23,764) with respective probes at 289 

birth. 290 

Sensitivity analyses 291 

Restricting the meta-analysis to children with European ancestry did not change the 292 

overall pattern of results for both prospective (n=2,027) and cross-sectional (n=2,125) studies, 293 
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as evidenced by cross-meta-analysis correlations of effect estimates (rprospective=0.99, rcross-294 

sectional=0.99) and consistent directions (95% and 96%, respectively) of effect estimates. The 295 

top hit identified at school-age remained genome-wide significant (B=-38.02, SE=6.95, 296 

p=4.47x10-8).  297 

Leave-one-out meta-analyses showed that the significant top hit identified during 298 

childhood (cg11945228) was robust to excluding all individual cohorts, except GENR (for a 299 

leave-one-out plot, see Supplementary Figure 1). Furthermore, when looking at the cohort-300 

level EWAS results, the cross-sectional association between cg11945228 and GPF was 301 

statistically significant in GENR (B=-41.87, SE=7.78, p=7.39x10-8) but not in the other 302 

cohorts (all p >0.25, see Supplementary Figure 2 for a forest plot).  303 

Finally, we re-ran the cross-sectional EWAS analyses within HELIX using a 304 

different method to estimate cell-type proportions (i.e. based on Salas et al., 201829 305 

instead of Houseman et al., 201228.  We found that the correlation between the 306 

regression beta coefficients for all CpGs was very high (r = 0.97) (Supplementary Figure 307 

3), indicating that results are highly concordant when using these two different methods. 308 

Differentially methylated regions 309 

In the prospective analyses, there was no evidence of DMRs at birth associated with GPF. In 310 

the cross-sectional analyses, one DMR at childhood was associated with GPF 311 

(estimate=10166.54, SE=1800.19, p=1.63×10–8). As shown in Supplementary Table 4, this 312 

DMR included 6 CpGs mapped to the gene body of the SHC Adaptor Protein 4 gene (SHC4) 313 

and close to the Transcription Start Site of the EP300 Interacting Inhibitor Of Differentiation 314 

1 gene (EID1) at chromosome 15. From the 6 CpGs, 2 showed positive associations and 4 315 

showed negative associations between methylation level and GPF.  316 

Follow-up analyses 317 
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All probes showing significant or suggestive associations with DNAm had twin heritability 318 

estimates available, showing mean additive genetic influences of rbirth=0.16 and 319 

rchildhood=9.44x10-2 (see Supplementary Table 5).  320 

Of the four suggestive probes identified at birth, three were associated with at least one 321 

known methylation quantitative trait locus (mQTL) (see Supplementary Table 5a) and one 322 

(cg09437808) showed a concordant DNAm pattern (r >0.28, p <0.01) between blood and 323 

several brain regions (the prefrontal cortex, entorhinal cortex, and the superior temporal 324 

gyrus) according to Hannon et al. tool (see Supplementary Table 6a). This positive correlation 325 

between blood and brain is also reported by IMAGE CPG tool (r = 0.35, p=0.31) 326 

(Supplementary Table 7a) but not identified in BECon.  327 

The genome-wide significant probe identified during childhood (cg11945228) was 328 

unrelated to known mQTLs and showed non-significant correlations between blood and brain 329 

DNAm (data only available in one of the three online tools used to assess this concordance) 330 

(Supplementary Tables 5b and 6b). Of the 20 suggestive probes identified in childhood, ten 331 

were associated with at least one known mQTL (see Supplementary Table 5b) and four 332 

(cg22691524, cg09040034, cg25182716, cg18436008) showed a significant correlation 333 

between blood and at least one brain region DNAm (r > 0.25, p <0.04; see Supplementary 334 

Table 6b) according to Hannon et al tool. These sites also showed positive correlations in the 335 

BECon (3 out of 4 CpGs; Supplementary Table 8b) and IMAGE CPG tool (3 of the 4 CpGs; 336 

Supplementary Table 7b). None of the suggestive probes identified at birth or childhood 337 

showed links to an eQTM. According to EWAS Atlas and EWAS Catalogue, methylation 338 

levels at these top CpGs seem to be variable and sensitive to age, sex, tissue, or substance 339 

exposure (smoking, alcohol, polychlorinated biphenyls), and/or associated to several traits 340 

such as inflammatory and neurological diseases (rheumathoid arthritis, Behcet's disease, 341 

myalgic encephalomyelitis, multiple sclerosis, among others) (see Supplementary Table 9). 342 
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The six probes in the DMR within the childhood analyses showed low evidence of 343 

genetic effects, as indicated by both twin-based estimates (mean variance explained by 344 

additive genetic influences r=0.007) and the lack of associations with known mQTLs. One 345 

probe, cg05867423, was positively correlated between blood and brain according to data from 346 

Hannon et al. tool (r=0.36, p<0.002), with positive correlations also identified in the BECon 347 

and IMAGE CPG tools (see Supplementary Tables 6c, 7c, 8c). In addition, cg08455700 348 

showed high correlations (r=0.71) between blood and Brodmann area 20 according to the 349 

BECon tool (Supplementary Table 7c). None of these probes was related to eQTMs in blood. 350 

Regarding chromatin states, we found that the genome-wide significant probe 351 

(cg11945228) and the DMR found at childhood were associated with active states (active 352 

transcription start site (TSS)-proximal promoter state and a transcribed state at the 5′ and 3′ 353 

end of genes showing both promoter and enhancer signatures) (Supplementary Table 10). In 354 

fact, an enrichment analysis for chromatin states revealed an overrepresentation of active 355 

states associated with zinc finger protein genes (ZNF/Rpts) within the most significant CpGs 356 

(p< 1×10–4) detected in the prospective meta-analysis (Supplementary Table 11a). In 357 

contrast, no consistent enrichment for active states vs repressed states was found based on the 358 

most significant CpGs detected in the cross-sectional meta-analysis (p< 1×10–4). However, 359 

we observed a significant underrepresentation of active transcription start site (TSS)-proximal 360 

promoter states (TssAFlnk), and an overrepresentation of actively-transcribed states (Tx, 361 

TxWk) together with inactive quiescent states (Quies) (Supplementary Table 11b). Moreover, 362 

according to ENCODE data on several cell lines, including different blood cell types, the 363 

DMR (chr15:49,170,042-49,170,244, GRCh37/hg19) is enriched by H3K27Ac histone marks 364 

and overlaps with DNAse hypersensitive areas, which are usually associated to active 365 

regulatory elements (Supplementary Figure 4a). Hence, according to Chromatin interaction 366 

data (in situ Hi-C Chromatin Structure from a lymphoblastoid cell line), the genomic elements 367 
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comprised in the region involving the two genes associated with the DMR seem to strongly 368 

interact with each other (Supplementary Figure 4b). 369 

GO, KEGG, and MSigDB analyses revealed no significantly enriched common 370 

biological processes, cellular components, molecular functions or pathways for the genes 371 

mapped to the probes at p< 1×10–4 in the meta-analyses at birth (n=56) and during childhood 372 

(n=104) (see Supplementary Tables 12a-f).  373 

Results of the GWAS enrichment analyses for EWAS are presented in 374 

Supplementary Table 13. Of the 56 probes at p< 1×10–4 in the prospective EWAS meta-375 

analysis, six overlapped with genomic loci previously linked to general psychopathology16, 376 

schizophrenia45, neuroticism46, ADHD47 or anxiety48 based on GWASs. Of the 104 probes at 377 

p< 1×10–4 in our cross-sectional EWAS meta-analysis, 13 (12.5%) overlapped with genomic 378 

loci previously linked to these psychiatric outcomes. Most notably, this cross-sectional 379 

enrichment analysis prioritized cg08514304 (TAOK2), which was among the top 10 380 

suggestive hits identified in our cross-sectional EWAS meta-analysis and showed a consistent 381 

direction of effect in all cohorts.  Finally, regarding the DMR, SNPs within the region 382 

comprising the associated genes SHC4 and EID1 have been related with psychiatric disorders 383 

such as major depressive disorder49,50, bipolar disorder51, mood and psychotic disorders52, 384 

obsessive compulsive disorder53, and schizophrenia54 (Supplementary Table 14) 385 

(Supplementary Figure 4b). Interestingly, both SHC4 and EID1 genes are highly expressed in 386 

the brain according to GTEx data (Supplementary Figure 4). 387 

Discussion 388 

We conducted the largest epigenome-wide meta-analysis of GPF in childhood, using DNAm 389 

assessments at two different time points (birth and childhood). The analyses revealed little 390 

evidence for probe-specific associations between DNAm in cord blood or peripheral blood 391 
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and GPF. However, we did identify a significant DMR in childhood, implicating two relevant 392 

genes. 393 

On the basis of probe-level genome-wide meta-analyses, we found that lower DNA 394 

methylation at cg11945228 at school-age was significantly associated with higher levels of 395 

GPF. Cg11945228 is located within the BRD2 gene, a BET (bromodomains and extra 396 

terminal domain) family chromatin adaptor that controls the transcription of a wide range of 397 

pro-inflammatory genes55 and is involved in neural tube closure,56 neurogenesis,57 and 398 

neuroinflammation.58 DNAm of the BRD2 promotor has been implicated in juvenile 399 

myoclonic epilepsy, a common adolescent-onset genetic generalized epilepsy syndrome.59 400 

However, we advise caution when interpreting this specific site because, despite having low 401 

variation attributable to heterogeneity across the cohorts, its genome-wide significant 402 

association with GPF seems to be driven by one single cohort.  403 

With regards to genes with probes at suggestive significance at school-age (WDR20, 404 

MOV10, and TAOK2), these have previously been linked to neurodevelopmental and 405 

psychiatric risk, such as autism spectrum disorder (ASD) and schizophrenia.60–67 Pleiotropy 406 

was supported by our cross-sectional GWAS enrichment analyses for EWAS, showing that 407 

TAOK2 overlapped with genomic loci previously linked to schizophrenia,16,45 as well as 408 

obsessive compulsive disorder and bipolar disorder.16 However, despite these previously 409 

established links with mental health outcomes, annotated genes of our overall top hits 410 

identified in the EWAS meta-analyses were not enriched for common biological processes, 411 

cellular components, molecular functions, or pathways. 412 

The significant DMR identified at school-age included 6 CpGs mapped to SHC4 and 413 

EID1 genes, which are highly expressed in the brain. SHC4 regulates BDNF-induced MAPK 414 

activation68 and EID1 plays an important role in the central nervous system69, being involved 415 
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in cell proliferation in the brain, synaptic plasticity and memory function. Interestingly, 416 

genetic variants in these genes have been previously implicated in multiple psychiatric 417 

disorders according to several studies (mostly GWAS), including bipolar disorder51, 418 

obsessive-compulsive disorder53, mood and psychotic disorders52, schizophrenia54, or 419 

MDD49,50,70 (Supplementary Table 14) (Supplementary Figure 4b).  The fact that the DMR 420 

overlaps with active regulatory elements of these genes and shows evidence of blood-brain 421 

concordance for some of the CpGs supports the potential functional relevance of this region. 422 

Mechanistic studies will be needed in future to elucidate biological processes underlying the 423 

observed link between DNAm in this region and increased risk for multiple psychiatric 424 

outcomes. Of interest, despite similar sample sizes and measures (i.e., almost exclusively the 425 

CBCL), the top signals were very different between the prospective and cross-sectional 426 

EWASs, as evidenced for example by the lack of a correlation between nominally significant 427 

sites for these analyses. This low overlap might be due to the temporally dynamic nature of 428 

the methylome. DNAm patterns vary substantially over time71 and can show temporally 429 

specific associations with outcomes, including psychiatric symptoms.20 Unlike an existing 430 

EWAS meta-analysis on ADHD symptoms, which showed the strongest signal prospectively 431 

at birth compared to childhood,20 we did not detect any significant prospective associations. 432 

This is particularly interesting given the use of largely overlapping samples, suggesting that 433 

cord blood DNAm may capture risk for specific psychiatric problems (in this case ADHD) 434 

rather than a broader liability to psychopathology. 435 

Strengths of this study include the large sample size and the use of DNAm at two 436 

different time points (birth and childhood), enabling the assessment of both prospective and 437 

cross-sectional associations with GPF. Another important strength is the use of standardized 438 

protocols and scripts to fit GPF to the data in a multi-cohort setting. The GPF scores we 439 

analyzed were previously found to associate with a module of co-methylated DNAm probes 440 
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across the genome,23 suggesting that it is possible to detect biological correlates of GPF using 441 

this study’s measure. Furthermore, the current study showed that GPF consistently negatively 442 

correlated with child cognition across the cohorts as expected based on existing evidence,7 443 

suggesting that it is capturing a similar, valid construct across the cohorts. 444 

However, the current findings should also be interpreted in the context of several 445 

limitations. First, given the possibility of residual confounding and reverse causality, the 446 

direction of the observed associations cannot be inferred. DNAm might be a marker for 447 

unmeasured environmental factors that could affect GPF via independent pathways. 448 

Furthermore, children with higher levels of mental health problems may evoke a particular 449 

environment,72 which might affect DNAm. Second, our top hits were unrelated to eQTMs. 450 

Future research integrating transcriptomic data will be important for assessing the functional 451 

relevance of DNAm changes to gene expression in the brain. Third, because DNAm is tissue 452 

specific, our observations in peripheral blood may not reflect DNAm levels in other, 453 

potentially more relevant, tissues such as the brain. Despite potential sex differences in mental 454 

health problems,73 the current study did not examine sex-specificity for power reasons. 455 

Further, participating cohorts used different normalization pipelines, which may have 456 

contributed to cohort differences and influenced our results. Further, participating cohorts 457 

used different normalization pipelines, which may have contributed to cohort 458 

differences and influenced our results. In future, it would be optimal for meta-analytic 459 

studies to utilize a standardized processing pipeline across all samples. Furthermore, we 460 

found heterogeneity in CFA parameters, particularly for the specific internalizing and 461 

externalizing factors (especially in the GLAKU cohort). This precluded us from 462 

investigating whether, aside from the GPF, DNA methylation patterns also associate 463 

with variance that is unique to these symptom domains – an interesting question for 464 

future research. In future, it would be optimal for meta-analytic studies to utilize a 465 
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standardized processing pipeline across all samples. Finally, the present findings are based on 466 

a predominantly European population and the cohorts are sampled from settings which largely 467 

have socialized healthcare, access to mental health services, and different cultural stigma 468 

surrounding mental health than other population groups. Future genome-wide studies with 469 

larger sample sizes are needed to replicate our findings in other ancestries and in more diverse 470 

settings to further characterize DNAm sites associated with GPF. 471 

In summary, this large EWAS meta-analysis identified one probe (Cg11945228) for 472 

which lower DNAm in childhood was associated with higher levels of GPF. Furthermore, one 473 

DMR in childhood was associated with GPF. This DMR included 6 CpGs mapped to the 474 

SHC4 gene that has previously been implicated in multiple types of psychiatric disorders in 475 

adulthood. In contrast, no prospective associations were identified with DNAm patterns at 476 

birth. The current findings call for a more integrative approach to the study of GPF, using 477 

multiple omics sources, including the genome, epigenome, and transcriptome, to achieve a 478 

more comprehensive understanding of its biological underpinnings. 479 
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Fig. 1. Quantile-quantile plot of the meta-analytic associations of DNA methylation at 669 

birth and DNA methylation at school-age with general psychopathology. The diagonal 670 

line represents the distribution of the expected p-values under the null. Points above the 671 

diagonal refer to p-values that are lower than expected.  672 

 673 

  674 

 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 



30 
 

Fig. 2. Manhattan plot of –log10 p-values versus CpG position (base pair and 697 

chromosome) showing meta-analytic associations of DNA methylation at birth and DNA 698 

methylation at school-age with general psychopathology. The red line indicates genome-699 

wide significance (p < 1 ×10–7). 700 
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Table 1 Cohort characteristics 

Cohort Ancestry/ethnicity n DNAm 

age 

GPF age GPF instrument Effect sizes λ 

      1st Qu Median 3rd Qu  

Birth EWAS          

ALSPAC European 643 0 10 DAWBA -1.10 0.02 1.18 0.98 

DCHS Black African, 

mixed 

151 0 6 CBCL -4.35 -0.77 2.75 0.95 

Generation R European 1092 0 10 CBCL -0.77 0.08 1.00 1.01 

INMA European 292 0 9 CBCL -1.53 0.39 3.03 1.14 

Meta  2178    -0.51 0.07 0.77 1.08 

Childhood EWAS          

ALSPAC European 697 7 10 DAWBA -1.26 0.02 1.28 1.00 

Generation R European 434 10 10 CBCL -1.51 0.08 1.84 1.03 

GLAKU European 215 12 12 CBCL -1.66 0.31 2.24 0.91 

HELIX European 779 8 8 CBCL -1.36 0.32 2.22 0.99 
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HELIX Pakistani 65 7 7 CBCL -4.47 2.52 10.95 1.20 

Meta  2190    -0.54 0.18 1.00 1.07 
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Table 2 DNA methylation at birth and general psychopathology: meta-analytic associations with p < 1×10–5 

CpG Gene Chr Position n B SE p Direction I2 Heterogeneity 

p-value 

cg02084087 TNFRSF25 chr1 6526049 2175 4.31 0.95 5.54x10-6 ++++ 46.2 0.13 

cg11777523 GPR148 chr2 131485418 2019 9.26 2.07 7.80x10-6 +?++ 23.6 0.27 

cg14358879 SLC8A3 chr14 70655920 2174 -7.82 1.75 8.20x10-6 ---- 33.7 0.21 

cg09437808 - chr5 176107069 2177 2.46 0.55 8.96x10-6 ++++ 0 0.47 

Chr = chromosome, n = number of participants, SE = standard error, Direction = direction of the effect per study (ALSPAC, DCHS, GENR, 

INMA) in alphabetical order (+ = positive direction, - = negative direction, ? = not present); I2 = heterogeneity statistic reflecting the variation 

attributable to heterogeneity across studies (high values suggest high heterogeneity)  

Note. Effect estimates (B) represent the SD increase in GPF for each increase of 100% in DNAm.  
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Table 3 DNA methylation at school-age and general psychopathology: meta-analytic associations with p < 1 ×10–5 

CpG Gene Chr Position n B SE p Direction I2 Heterogeneity 

p-value 

cg11945228 BRD2 chr6 32940368 2173 -37.00 6.91 8.58x10-8 ----+ 0 0.53 

cg18862005 - chr2 177940863 1972 3.78 0.72 1.78x10-7 ++?++ 0 0.64 

cg22691524 - chr3 185300576 2180 7.84 1.52 2.54x10-7 +++++ 0 0.47 

cg00719568 MOV10 chr1 113239645 2184 4.20 0.83 3.62x10-7 +++++ 0 0.67 

cg09040034 KIFC1 chr6 33362567 1966 4.89 1.01 1.25x10-6 ++?+- 40 0.17 

cg24514921 VPS54 chr2 64246311 2184 12.17 2.51 1.27x10-6 ++++- 0 0.45 

cg25182716 - chr20 13622875 2178 6.42 1.36 2.52x10-6 +++++ 0 0.76 

cg08514304 TAOK2 chr16 29994437 2175 6.88 1.48 3.36x10-6 +++++ 0 0.59 

cg00470277 - chr7 2669915 2185 4.55 0.98 3.62x10-6 +++++ 0 0.99 

cg26353764 WDR20 chr14 102660055 2187 6.82 1.48 3.86x10-6 +++++ 43.7 0.13 

cg27009703 HOXA9 chr7 27204894 2121 -8.58 1.86 3.93x10-6 ----- 0 0.52 

cg12492087 ZFP106 chr15 42749885 2178 6.39 1.39 4.01x10-6 +++++ 0 0.92 
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cg18436008 - chr10 80535327 2176 5.48 1.19 4.31x10-6 +++++ 0 0.56 

cg17281031 - chr12 128223216 2186 4.50 0.98 4.73x10-6 +++++ 14.6 0.32 

cg08327106 RALYL chr8 85094842 2175 8.60 1.89 5.60x10-6 +++++ 0 0.66 

cg11236841 - chr4 35567978 2175 4.67 1.03 6.08x10-6 +++++ 54.3 0.07 

cg21525176 LHFPL2 chr5 77906752 2182 6.09 1.36 7.19x10-6 ++-++ 59.2 0.04 

cg26420013 NSUN2;SRD5A1 chr5 6632020 2189 2.44 0.55 8.03x10-6 +++++ 56.1 0.06 

cg17087232 MAN2C1 chr15 75651821 2187 3.45 0.78 9.00x10-6 +++++ 0 0.98 

cg16360861 RAI14 chr5 34684597 2175 5.12 1.16 9.36x10-6 +++++ 0 0.53 

cg00737264 SMOC2 chr6 169049498 2188 1.88 0.42 9.40x10-6 +-+++ 41.3 0.15 

Chr = chromosome, n = number of participants, SE = standard error, Direction = direction of the effect per study (ALSPAC, GENR, GLAKU, 

HELIX, HELIX-Pakistani) in alphabetical order (+ = positive direction, - = negative direction, ? = not present); I2 = heterogeneity statistic 

reflecting the variation attributable to heterogeneity across studies (high values suggest high heterogeneity) 

Note. Effect estimates (B) represent the SD increase in GPF for each increase of 100% in DNAm. 
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1. Analytical models 

Prospective model: DNA methylation at birth and the general psychopathology factor 

Outcome Exposure Covariates 

General 

psychopathology 

factor 

DNA 

methylation 

at birth 

Covariates*: maternal smoking status, gestational age,  

sex, child age at outcome assessment,  

estimated cell proportions (Gervin et al., 2019), batch (optional),  

maternal age at birth, maternal educational level, 

ancestry (optional), selection factors (optional) 

Cross-sectional model: Childhood DNA methylation and the general psychopathology factor 

Outcome Exposure Covariates 

 

General 

psychopathology 

factor 

 

DNA 

methylation 

at childhood 

Covariates*: maternal smoking status, gestational age,  

sex, child age at outcome assessment,  

estimated cell proportions (Houseman et al., 2012), batch (optional),  

maternal age at birth, maternal educational level, 

ancestry (optional), selection factors (optional) 

 

*Maternal smoking status, gestational age, sex, ancestry, maternal age, maternal educational level, estimated cell proportions, and child 

age were considered potential confounders given previous evidence on their association with offspring DNA methylation patterns (Alfano 

et al., 2019; Chu & Yang, 2017; Cosin-Tomas et al., 2022; Gervin et al., 2016; Houseman et al., 2012; Markunas et al., 2016; Merid et al., 

2020; Mulder et al., 2021; Yousefi et al., 2015) and/or cognitive and psychiatric outcomes (Ashford et al., 2008; Carslake et al., 2017; 

Meyrose et al., 2018; Moster et al., 2008; Riecher-Rössler, 2017; Solmi et al., 2022). 
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2. Avon Longitudinal Study of Parents and Children (ALSPAC) 

Design and study population: Pregnant women resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st December 1992 

were invited to take part in the study (Boyd et al., 2013; Fraser et al., 2013). The initial number of pregnancies enrolled was 14,541 (for these at 

least one questionnaire has been returned or a “Children in Focus” clinic had been attended by 19/07/99). Of these initial pregnancies, there was a 

total of 14,676 foetuses, resulting in 14,062 live births and 13,988 children who were alive at 1 year of age. When the oldest children were 

approximately 7 years of age, an attempt was made to bolster the initial sample with eligible cases who had failed to join the study originally. As 

a result, when considering variables collected from the age of seven onwards (and potentially abstracted from obstetric notes) there are data 

available for more than the 14,541 pregnancies mentioned above. The number of new pregnancies not in the initial sample (known as Phase I 

enrolment) that are currently represented on the built files and reflecting enrolment status at the age of 24 is 913 (456, 262 and 195 recruited 

during Phases II, III and IV respectively), resulting in an additional 913 children being enrolled. The phases of enrolment are described in more 

detail in the cohort profile paper and its update (Boyd et al., 2013; Fraser et al., 2013; Northstone et al., 2019). The total sample size for analyses 

using any data collected after the age of seven is therefore 15,454 pregnancies, resulting in 15,589 foetuses. Of these 14,901 were alive at 1 year 

of age. A 10% sample of the ALSPAC cohort, known as the Children in Focus (CiF) group, attended clinics at the University of Bristol at 

various time intervals between 4 to 61 months of age. The CiF group were chosen at random from the last 6 months of ALSPAC births (1432 

families attended at least one clinic). Excluded were those mothers who had moved out of the area or were lost to follow-up, and those partaking 

in another study of infant development in Avon.  

Please note that the study website contains details of all the data that is available through a fully searchable data dictionary and variable search 

tool" and reference the following webpage: http://www.bristol.ac.uk/alspac/researchers/our-data/.  

 

http://www.bristol.ac.uk/alspac/researchers/our-data/
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Consent and ethical approval: Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local 

Research Ethics Committees. 

 

DNA methylation measurements: As part of the Accessible Resources for Integrated Epigenomic Studies (ARIES, 

http://www.ariesepigenomics.org.uk/) project, DNA methylation was generated for 1018 mother-offspring pairs from the ALSPAC cohort, using 

the Infinium HumanMethylation450 BeadChip array (Illumina Inc., San Diego, United States). ARIES participants were selected based on 

availability of DNA samples at two time points for the mother (antenatal and at follow-up when the offspring were adolescents) and at three time 

points for the offspring (neonatal, childhood (age 7), and adolescence (age 17)). The current study used child cord blood at birth and whole blood 

at age 7. 

  

Generation of methylation data and pre-processing methods: Methods for methylation measurements in ALSPAC have been described 

previously (Relton et al., 2015). Briefly, cord blood was collected according to standard procedures. DNA methylation assays and data pre-

processing was performed at the University of Bristol as part of the ARIES project. DNA was extracted using standard protocol and was 

bisulfite-converted using the Zymo EZ DNA MethylationTM kit (Zymo, Irvine, CA). DNA methylation was then measured using the Infinium 

HM450 BeadChip assay (Illumina Inc, San Diego, CA), according to the standard protocol. Arrays were scanned using an Illumina iScan. An 

initial review of data quality was assessed using GenomeStudio (version 2011.1). A semi-random approach (sampling criteria were in place to 

ensure that all time points were represented on each array) was used to distribute ARIES samples across slides to minimize the possibility of 

potential confounding by batch. Data were normalised using the meffil R package (Min, Hemani, Davey Smith, Relton, & Suderman, 2018) 

using the functional normalisation approach. 

 

http://www.ariesepigenomics.org.uk/
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Child psychopathology data: Offspring psychopathology was assessed using the parent version of the Development and Well-being 

Assessment (DAWBA; R. Goodman, Ford, Richards, Gatward, & Meltzer, 2000) at the age of 10 years. The DAWBA band computer prediction 

variables indicate the probability of disorder in 6 categories, ranging from very unlikely (<0.1%) to probable (>70%). Variables based on the 

ICD-10 and DSM-IV were used to assess ADHD, Conduct Disorder, Depression, Generalized Anxiety Disorder, Obsessive Compulsive Disorder 

Social Phobia and Specific Phobia and Oppositional Defiant Disorder (A. Goodman, Heiervang, Collishaw, & Goodman, 2011).The DAWBA 

band variable for Separation Anxiety was based on the DSM-IV only  

 

Cell type correction: Estimated cell type proportion types were obtained using the houseman method (Houseman et al., 2012) with a cord blood 

reference panel (Gervin et al., 2019) for the prospective analysis and a whole-blood reference panel (Reinius et al., 2012) for the cross-sectional 

analysis. 

 

Batch correction: Batch effects were accounted for by adjusting for 20 surrogate variables, that were generated using the R package SVA (Leek 

et al., 2019). 

Ancestry/ethnicity:  European ancestry was detected by multidimensional scaling analysis using child GWAS data (Gaunt et al., 2016). 

Smoking during pregnancy: Maternal smoking during pregnancy was assessed as a categorical variable representing 0 = no smoking during 

pregnancy, 2 = Stopped before the second trimester of pregnancy and 3 = Smoking in the third trimester or throughout pregnancy. 

Gestational age: Gestational age was calculated (in days) based on the date of the mother’s last menstrual period (LMP) when the mother was 

certain of this, but for uncertain LMPs and conflicts with clinical assessment the ultrasound assessment was used. Where maternal report and 

ultrasound assessment conflicted, an experienced obstetrician reviewed clinical records and made a best estimate. 
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Child sex: Offspring biological sex at birth was taken from obstetric records. 

Child age at behavioral assessment: Child age at the completion of the DAWBA was calculated based on the children’s date of birth and the 

date of DAWBA completion. 

 

Maternal age: Continuous (years). 

 

Maternal education: Maternal education was assessed in the third trimester of pregnancy and coded as a categorical variable representing: high 

education = advanced-level school-leaving certificate (post-16)/degree, medium education = ordinary-level school-leaving certificate (at 16)  and 

low education = vocational/certificate of secondary education (at 16, equivalent to lower grades of ordinary-level)/none. 

Child cognition (external variable): Child IQ was assessed using the WISC-III UK at the age of 8.5 years (Wechsler, Golombok, & Rust, 

1992). 

 

Deviations from analysis plan: Sample plate correction in ALSPAC led to model convergence errors because of small batches in ALSPAC. 

Therefore surrogate variable analysis was used to correct for technical variation instead. Further, estimated cell proportions in ARIES cord blood 

were normalised using the R-package meffil (Suderman, Hemani, & Min, 2019) instead of the FlowSorted.CordBloodCombined.450k R-package 

(Salas, Gervin, & Jones, 2020). 
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3. Drakenstein Child Health Study (DCHS)  

Design and study population: Drakenstein Child Health Study (DCHS). The DCHS, a population-based birth cohort,has been described 

previously (Zar, Barnett, Myer, Stein, & Nicol, 2015). Mothers were enrolled prenatally in their second trimester and followed through 

pregnancy at two primary care clinics serving two distinct populations (predominantly black African ancestry or predominantly mixed ancestry). 

Mother-child pairs were followed from birth and infants enrolled in the DCHS were followed until at least five years of age (Zar et al., 2015). All 

births occurred at a single, central facility, Paarl Hospital. The present study is based on children from the DCHS with DNA methylation data 

from cord blood, genotyping data, and information on psychopathology factors and covariates. 

 

Consent and ethical approval: Ethical approval for human subjects’ research was obtained from the Human Research Ethics Committee of the 

Faculty of Health Sciences of University of Cape Town (HREC UCT REF 401/2009; HREC UCT REF 525/2012). Written informed consent 

was signed by the mothers on behalf of herself and her infant for participation in this study. 

 

DNA methylation measurements: DNA was isolated from cord blood samples that were collected at time of delivery (Morin et al., 2017). DNA 

methylation was assessed with the Illumina Infinium HumanMethylation450 BeadChips (n=156) and the MethylationEPIC BeadChips (n=160). 

Pre-processing and statistics were done using R 3.5.1 (https://www.r-project.org/). Raw iDat files were imported to RStudio where 

intensity values were converted into beta values. The 450K and EPIC datasets were then combined using the minfi package (Aryee et al., 2014) 

resulting in 316 samples and 453,093 probes. Background subtraction, color correction and normalization were performed using the 

preprocessFunnorm function (Fortin et al., 2014).  

https://www.r-project.org/
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Samples were determined to be outliers if detected using two or more of the following methods: detectOutlier function from the lumi 

package (Du, Kibbe, & Lin, 2008), Hannum et al. (2013) method using the locFDR package (https://cran.r-project.org/package=locfdr) and both 

the outlyx and pfilter functions from the watermelon package (Pidsley et al., 2013). However, no samples we detected in more than one method 

and so none were removed for this reason. Samples containing maternal blood contamination (n = 33) were removed (Morin et al., 2017). After 

the completion of pre-processing technical replicates (n = 7) and samples where reported sex did not match sex chromosome methylation 

signatures (n = 3) were removed leaving a total of 273 samples remaining for downstream analysis.  

This dataset contains 59 probes which detect single nucleotide polymorphisms for quality control purposes and so once observed, were 

removed. Probes with NAs in ≥ 1% of samples or had a detection p value ≥ 1x10-16 in ≥ 1% of samples were removed (n = 10,868). Probes 

which bind to the sex chromosomes were removed due to the distribution differences observed (n = 9,896). Probes whose sequence contains a 

SNP either at the CpG site being measured or at the site of the single base pair extension with a minor allele frequency ≥ 1% (Pidsley et al., 2013; 

Price et al., 2013) were removed (n = 13,598). Autosomal probes which were in silico predicted to non-specifically bind to sex chromosomes in 

the genome were also removed (n = 9,698) leaving a total of 409,033 probes remaining for downstream analysis (Pidsley et al., 2013; Price et al., 

2013). 

 

Child psychopathology data: Psychopathology symptoms were assessed with the Child Behavior Checklist 6-18 (CBCL/6-18), a validated and 

widely used parental assessment of a child's behavioral and emotional problems (Achenbach & Rescorla, 2001). Mothers completed questions 

about a range of emotional and behavioral problems of the child in the past six months on a three-point scale (0=not true, 1=somewhat true, 

2=very true). 

 

https://cran.r-project.org/package=locfdr
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Cell type correction: Seven default cell types as mentioned in analysis plan. Cord blood cell type composition was predicted using the most recent 

cord blood reference data set (Gervin et al., 2019) and the IDOL algorithm and probe selection (Koestler et al. 2016). 

Batch correction: Batch effects were removed using ComBat from the R package sva (Leek et al., 2019). 

Ancestry/ethnicity: 5 genetic principal components included in the model to adjust for population stratification 

Smoking during pregnancy: Smoking during pregnancy was assessed based on maternal urine cotinine levels at time of enrollment (second 

trimester). Passive smokers (exposed in environment but did not smoke themselves, cotinine concentrations >=10 -499 ng/ml) and no smoke 

exposure (<10 ng/ml) were classified as non-smokers. Active smokers (cotinine concentrations >= 500ng/ml) were classified as smokers. "[0] Non-

smokers", "[1] Smokers". 

Gestational age: Gestational age was recorded from ultrasound measurements in the second trimester of pregnancy. In cases where no ultrasound 

measurement was available, the expected date of delivery was calculated using symphysis-fundal height, recorded by trained clinical staff at 

enrolment, or date of last normal menstrual period. 

Child sex: "[1] female", "[2] male" 

Child age at behavioral assessment: Continuous (years). 

 

Maternal age: Continuous (years). 

 

Maternal education: "[0] primary", "[1] some secondary", "[2] completed secondary", "[3] any tertiary" 
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Child cognition (external variable): Child cognitive development was assessed using the Wechsler Preschool and Primary Scale of Intelligence 

(WPPSI-IV), where cognition was represented by a full-scale IQ (FSIQ) composite score derived from performance across 6 subtests covering 

verbal and non-verbal areas of cognition; including verbal comprehension, fluid reasoning, visual-spatial ability, processing speed and working 

memory. 

4. Generation R Study (Generation R) 

Design and study population: The Generation R Study is a population-based prospective cohort study (Kooijman et al., 2016). All pregnant 

women living in Rotterdam, the Netherlands, with an expected delivery date between April 2002 and January 2006 were invited to participate. 

These women and their children have been followed at regular intervals since recruitment. For the current study, only children of European ancestry 

were included. 

Consent and ethical approval: All parents gave informed consent for their children’s participation. The Generation R Study is conducted in 

accordance with the World Medical Association Declaration of Helsinki and study protocols have been approved by the Medical Ethics Committee 

of the Erasmus Medical Center, Rotterdam. 

DNA methylation measurements: Preparation and normalization of the Illumina Infinium® HumanMethylation450 BeadChip array data was 

performed according to the CPACOR workflow using the software package R. In detail, the idat files were read using the minfi package. Probes 

that had a detection p-value above background (based on sum of methylated and unmethylated intensity values) >  or equal to 1E-16 were set to 

missing per array. Next, the intensity values were stratified by autosomal and non-autosomal probes and quantile normalized for each of the six 

probe type categories separately: type II red/green, type I methylated red/green and type I unmethylated red/green. Beta values were calculated as 

proportion of methylated intensity value on the sum of methylated+unmethylated+100 intensities. Arrays with observed technical problems such 

as failed bisulfite conversion, hybridization or extension, as well as arrays with a mismatch between sex of the proband and sex determined by the 
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chromosome X and Y probe intensities were removed from subsequent analyses. Additionally, only arrays with a call rate > 95% per sample were 

processed further. The final dataset contained information on 458,563 CpGs for 1,396 samples at birth and 464 samples at age 10. 

Child psychopathology data: Psychopathology symptoms were assessed with the Child Behavior Checklist 6-18 (CBCL/6-18), a validated and 

widely used parental assessment of a child's behavioral and emotional problems (Achenbach & Rescorla, 2001). Mothers completed questions 

about a range of emotional and behavioral problems of the child in the past six months on a three-point scale (0=not true, 1=somewhat true, 2=very 

true). 

Cell type correction: Cell counts estimated using the Gervin et al. (2019) (DNAm data at birth) or Houseman et al. (2012) (DNAm data at age 

10) blood reference panels were included as covariates. 

Batch correction: Adjustment for batch effects was done by including sample plate as a covariate. 

Ancestry/ethnicity: Ancestry came from child GWAS data. All children with DNA methylation data were of European ancestry. 

Smoking during pregnancy: Smoking during pregnancy was assessed with postal questionnaires in early pregnancy (Gestational Age <18 weeks), 

mid pregnancy (Gestational Age 18-25 weeks) and late pregnancy (Gestational Age>25 weeks). It was classified in three categories: “Never smoked 

during pregnancy”, “Quit when pregnancy was known” and “Continued during pregnancy”. 

Gestational age: (continuous, weeks). Gestational age at birth was established by fetal ultrasound examination  

Child sex: (0 = female, 1 = male). Child sex was obtained from midwife and hospital registries at birth. 

Child age at behavioral assessment: Continuous (years). 
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Maternal age: Continuous (years, at intake). 

 

Maternal education: Maternal educational level was based on self-reported levels of education during pregnancy. It was classified following the 

definition of Statistics Netherlands into three-level ordinal categories: 0= high (higher vocational training or higher academic education), 1= 

medium (>three years general secondary school); 2= low (lower vocational training or three or less years general secondary school). 

Child cognition (external variable): Child cognition was assessed using a nonverbal IQ test when children were 5–7 years old. Two subtests of 

the Snijders‐Oomen Niet‐verbale intelligentie test, 2.5‐7‐ revisie (SON‐R 2.5‐7; Tellegen, Winkel, Wijnberg-Williams, & Laros, 2005) were 

administered, including “Mosaics” (spatial insight) and “Categories” (abstract reasoning abilities).  

 

5. Glycyrrhizin in Licorice (GLAKU) 

Design and study population:  

The adolescents of the Glaku (Glycyrrhizin in Licorice) cohort came from an urban community-based cohort comprising 1049 infants of 

European descent born between March and November 1998 in Helsinki, Finland (Strandberg, Jarvenpaa, Vanhanen, & McKeigue, 2001). In 

2009–2011, initial cohort members who had given permission to be contacted and whose addresses were traceable (N = 920, 87.7% of the 

original cohort in 1998) were invited to a follow-up, of which 692 (75.2%) could be contacted by phone (mothers of the adolescents). Of them, 

451 (65.2% of those who could be contacted by phone, 49% of the invited) participated in a follow-up at a mean age of 12.3 years (SD = 0.5, 

range 11.0–13.2 years).  
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Consent and ethical approval: Informed consent was obtained from all participants. The study protocol was approved by the ethical committees 

of the City of Helsinki and the Uusimaa Hospital District. 

 

DNA methylation measurements:  

DNA was extracted from child blood samples collected through venepuncture at the mean age of 12.3 years (range 11.1-13.2 years). 

DNA was extracted at the National Institute for Health and Welfare, Helsinki, Finland and the Department of Medical and Clinical Genetics, 

University of Helsinki, Finland [LJMT1] and methylation analyses were performed at the Max Planck Institute in Munich, Germany. DNA was 

bisulphite-converted using the EZ-96 DNA Methylation kit (Zymo Research). Genome-wide methylation status of over 850 000 CpG sites was 

measured using the Infinium Methylation EPIC array (Illumina Inc., San Diego, USA) according to the standard protocol in 240 blood samples. 

The arrays were scanned using the iScan System (Illumina Inc., San Diego, USA). The quality control pipeline was set up using the R-package 

minfi. Methylation beta-values were normalized using the funnorm function.One IDs showed density artefacts after normalization and was 

removed from further analysis. We excluded any probes on chromosome X or Y, probes containing SNPs and cross-hybridizing probes according 

to Chen (Chen et al., 2013), Price (Price et al., 2013) and McCartney (McCartney et al., 2016). Furthermore, any CpGs with a detection p-value > 

0.01 in at least 25% of the samples were excluded. The final dataset contains 812,943 CpGs and 239 IDs. We used ComBat to check and adjust 

for the batch effects. 

Genotyping was performed on Illumina Human OmniExpress Exome 1.2 bead chip (Illumina Inc., San Diego, CA) at the Tartu University, 

Estonia in September 2014 according to the standard protocols. Genomic coverage was extended by imputation using the 1000 Genomes Phase I 

integrated variant set (v3/April 2012; NCBI build 37/hg19) as the reference sample and IMPUTE2 software. Before imputing the following QC, 

filters were applied: SNP clustering probability for each genotype > 95%, Call rate > 95% individuals and markers (99% for markers with MAF 
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< 5%), MAF > 1%, HWE p > 1*10–6. Moreover, heterozygosity, sex check, and relatedness checks were performed and any discrepancies were 

removed (N = 2). 

 

Child psychopathology data: Psychopathology symptoms were assessed with the Child Behavior Checklist 6-18 (CBCL/6-18), a validated and 

widely used parental assessment of a child's behavioral and emotional problems (Achenbach & Rescorla, 2001). Mothers completed questions 

about a range of emotional and behavioral problems of the child in the past six months on a three-point scale (0=not true, 1=somewhat true, 

2=very true). 

 

Cell type correction: The Houseman method (Houseman et al., 2012) was applied with Reinius reference data (Reinius et al., 2012) using the 

estimateCellCounts function from the Minfi package (Jaffe & Irizarry, 2014) in R (https://www.r-project.org/) to estimate the proportions of six 

white blood cell subtypes (CD4+ T-lymphocytes, CD8+ T-lymphocytes, NK (natural killer) cells, B-lymphocytes, monocytes and granulocytes). 

Batch correction: We used ComBat to check and adjust for the batch effects. 

Ancestry/ethnicity: We performed multi-dimensional scaling (MDS) analysis on the identity by state matrix of quality-controlled genotypes. The 

first three components depicted the origin admixture and were included as covariates in the regression analyses. 

Smoking during pregnancy: was self-reported and categorized as yes or no. 

Gestational age: was based on ultrasound scans and derived from the birth register. 

Child sex: was derived from the Finnish social security number. 

https://www.r-project.org/
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Child age at behavioral assessment: Continuous (years), calculated from the dates of CBCL assessment and birth date. 

 

Maternal age: Continuous (years), derived from the birth register. 

 

Maternal education: was assessed by question “What is the highest education level you have achieved” with 8 categories: 1=four-to-eight-year 

primary school in the former Finnish school system, 2=nine-year primary+lower secondary school in the current Finnish school system, 3=upper 

secondary education, 4=post-secondary degree, 5=bachelor’s degree, 6=master’s degree, 7=doctoral dissertation or 8=some other education. There 

were no occurrences of the categories 1 nor 8 in the data. Since gaining the primary and lower secondary education takes ~9 years in the current 

Finnish school system, the maternal education level 2 in Glaku would probably correspond to the ISCED levels 0-2 (‘low’ maternal education in 

the study plan). However, in the data there were only 4 mothers with the maternal education level 2. Therefore, we combined the maternal education 

levels 2 and 3. Furthermore, the cumulative years of schooling for upper secondary education, post-degree, bachelor’s degree and master’s degree 

are about 12, 14, 15-16, 17-18 and 22, respectively. For the analysis, the categories 2-3 were assigned to 0, categories 4-5 to 1 and categories 6-7 

to 2. The resulting frequencies of these categories were 36, 101 and 78, respectively. 

Child cognition (external variable): 

Children were administered two subtests tapping on verbal abilities (Similarities, Vocabulary) and two subtests tapping on non-verbal abilities 

(Block Design and Picture Arrangement) from the Finnish translation of the Wechsler Intelligence Scales for Children, 3rd Edition (WISC-III). 

The age and sex standardized scores were summed and converted to z-scores based on the observed distribution to produce estimated IQ. 
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6. Human Early Life Exposome (HELIX) 

Design and study population: The present study used data from the Human Early Life Exposome Study (HELIX; https://www.projecthelix.eu/), 

a collaborative project across six established and ongoing longitudinal population-based birth cohort studies in six European countries (Maitre et 

al., 2018). The project counts with a harmonization protocol for exposures and phenotypes. For this particular analysis, data from six different 

HELIX cohorts were used: BIB (United Kingdom), EDEN (France), KANC (Lithuania), INMA (Spain), MOBA (Norway) (Magnus et al., 2016), 

and RHEA (Greece). From the dataset we only included children of European ancestry (selected by genetic background data). The number of 

participants with both blood DNA methylation (Infinium®HumanMethylation450 BeadChip) and phenotype data (CBCL test) at the age of 7-9 

years was 779. Models were adjusted for 20 GWAS PCs to account for genetic substratitification within Europe.     

In parallel, the same analysis was conducted with participants of Pakistani ancestry only (selected by genetic background data). In this 

case, the number of participants with both DNA methylation and phenotype data is 74. For this particular analysis we did not adjust for PCs since 

all participants are from the same cohort (BIB, United Kingdom).  

 

Consent and ethical approval: Prior to the start of HELIX, all six cohorts on which HELIX is based had been in existence for some years, had 

undergone the required evaluation by national ethics committees and had obtained all the required permissions for their cohort recruitment and 

follow-up visits. Each cohort also confirmed that relevant informed consent and approval were in place for secondary use of data from pre-existing 

data. The work in HELIX was covered by new ethics approvals in each country, and at enrolment in the HELIX subcohort and panel studies 

participants were asked to sign an informed consent form for the specific HELIX work including clinical examination and biospecimen collection 

and analysis. An Ethics Task Force was established to support the HELIX project on ethical issues, for advice on the project’s ethical compliance, 

identification and alerting to changes in legislation where applicable. 

https://www.projecthelix.eu/
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Specific procedures are in place within HELIX to safeguard the privacy of study subjects and confidentiality of data. First, any reported study 

results pertain to analyses of aggregate data; no variables or combination of variables that can identify an individual will be associated with any 

published or unpublished report of this study. Primary databases with personal information (such as geocodes, dates, questionnaires or health 

outcomes) have been stored on separate computers with personal identifiers removed. Subjects are identified by a unique study number, linking all 

basic data required for the study. The master key file linking the study numbers with personal identifiers is maintained in each cohort. For the 

dataset analysis, all information that enables identification of an individual (dates, geocodes, etc) is removed before distribution of datasets to the 

researchers. All data exchanges will adhere to the most up-to-date EU and national data protection regulations. 

 

DNA methylation measurements: The following procedure was conducted in the same lab for all the samples from the different cohorts 

comprising HELIX, which were previously randomized. DNA was obtained from buffy coat collected in EDTA tubes at age 7-9y. Briefly, DNA 

was extracted using the Chemagen kit (Perkin Elmer) in batches of 12 samples. Samples were extracted by cohort and following their position in 

the original boxes. DNA concentration was determined in a NanoDrop 1000 UV-Vis Spectrophotometer (ThermoScientific) and with Quant-iT™ 

PicoGreen™ dsDNA Assay Kit (Life Technologies). DNA methyaltion was assessed with the Infinium HumanMethylation450 beadchip from 

Illumina, following manufacturer’s protocol. Briefly, 700 ng of DNA were bisulfite-converted using the EZ 96-DNA methylation kit following 

the manufacturer’s standard protocol, and DNA methylation measured using the Infinium protocol. A HapMap sample was included in each 

plate. In addition 24 HELIX inter-plate duplicates were included. Samples were randomized taking into account cohort, sex and panel. Samples 

from the panel study (samples of the same subject obtained at two time points) were processed in the same array. Two samples were repeated due 

to their overall low quality. The final number of analyzed samples was 1,361. DNA methylation data were pre-processed using the minfi package 

(Aryee et al. 2014). Following guidelines of Lehne work (Lehne et al., 2015), we increased the stringency of the detection p-value threshold to 

10E-16 and probes not reaching a 98% call rate were excluded. Two samples were filtered due to overall quality: one had a call rate <98% and 

the other did not pass QC parameters of the MethylAid package (van Iterson et al., 2014). Then, data was normalized with the functional 
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normalization method, which also includes Noob background subtraction and dye-bias correction (Triche, Weisenberger, Van Den Berg, Laird, 

& Siegmund, 2013). After that, several quality control checks were performed. First, we checked sex consistency using the shinyMethyl package 

(Fortin et al., 2014) and two samples were excluded. Genetic consistency of duplicates and samples from the same participant was checked with 

the 450k genotypes. In addition, genetic consistency was evaluated in those samples that had GWAS data and two of them were excluded. 

Centered-correlation was around 0 for unrelated samples and around 0.8 for duplicates and panel samples. Principal component analysis showed 

no differential clusters, however a degree of grouping within the cluster was observed for some biological variables (sex, cohort) and for some 

technical variables. Because of this, we further used COMBAT algorithm (Johnson, Li, & Rabinovic, 2007) to adjust for potential batch effects, 

using slide as the major known technical bias. Duplicated samples and HapMap samples were removed as well as control probes, probes 

designed to detect SNPs and probes to measures methylation levels at non-CpG sites. The final dataset for this analysis consisted of 853 HELIX 

subjects (779 of European ancestry +74 of Pakistani ancestry) with phenotypic data and covariates and 480071 probes. 

 

Child psychopathology data: Psychopathology symptoms were assessed with the Child Behavior Checklist 6-18 (CBCL/6-18), a validated and 

widely used parental assessment of a child's behavioral and emotional problems (Achenbach & Rescorla, 2001). Mothers completed questions 

about a range of emotional and behavioral problems of the child in the past six months on a three-point scale (0=not true, 1=somewhat true, 

2=very true). 

Cell type correction: blood reference panel with 6 cell types by Houseman et al. (2012). 

Batch correction: Potential batch effects were adjusted for by the COMBAT algorithm (Johnson et al., 2007), using slide as the major known 

technical bias. 
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Ancestry/ethnicity: In the analysis with participants of European ancestry, models were adjusted for the first 20 genetic principal components 

(PCs) to adjust for population stratification. Since the PCs also capture variation due to cohort, we did not adjust for a cohort variable to avoid 

multicollinearity. 

 

Smoking during pregnancy: three-level ordinal category (never smoked during pregnancy, smoked during first trimester only, smoked after first 

trimester/sustained smoking) 

Gestational age: Gestational age (continuous, weeks) was established by combination of the variables indicated below and is equal to: - e3_galmp 

if available, - OR e3_gaultr if e3_galmp not available, - OR e3_gama if e3_galmp and e3_gaultr not available. 

e3_galmp: LMP-based GA (date of delivery - date of LMP)/7 (without rounding), where LMP is last menstrual period; e3_galultr: gestational age 

estimated using ultrasound measurements if there were performed before 20 weeks of gestation: (date of delivery-date of conception estimated by 

US)/7; e3_gama: GA registered by the maternity records (e3_gama). This is the obstetrician estimation, which is usually based on ultrasound 

measurements or LMP and possibly corrected for long durations by the obstetrician. 

Child sex: (0 = female, 1 = male). 

Child age at behavioral assessment: Continuous (years). 

 

Maternal age: Continuous (years). 
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Maternal education: Maternal education was classified into 0 = low (primary or less), 1 = medium (secondary), 2 = high (university). 

Child cognition (external variable): The total number of correct responses in Raven’s Colored Progressive Matrices (Raven & Raven, 1998) was 

used as a measure of general cognitive index (continuous). 

 

7. INfancia y Medio Ambiente (INMA) 

Design and study population: The present study used data from participants recruited between 2003 and 2008 in the de novo cohort sited in 

Sabadell of the INfancia y Medio Ambiente (INMA; http://www.proyectoinma.org/) Project, a population-based mother–child cohort study in 

Spain (Guxens et al., 2012). Cord blood methylation was measured using the Infinium® HumanMethylation450 BeadChip. The number of 

participants with both DNA methylation and phenotype data is 292.  

 

Consent and ethical approval: The study was approved by the Ethics Committee of the reference hospital, and all participants gave their 

written informed consent. 

 

DNA methylation measurements: Cord blood was extracted using the Chemagen kit (Perkin Elmer). DNA concentration was determined by 

NanoDrop spectrophotometer (Thermo Scientific) and with the Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies). Methylation data 

was produced in two different laboratories as part of two different projects: in the Genome Analysis Facility of the University Medical Center 

Groningen (UMCG) in Holland, and in the Bellvitge Biomedical Research Institute (IDIBELL, Barcelona). Both laboratories used the 

recommended Illumina protocol for the Infinium HumanMethylation450 beadchip. Briefly, 500 ng of DNA was bisulfite-converted using the EZ 

http://www.proyectoinma.org/
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96-DNA methylation kit following the manufacturer’s standard protocol, and DNA methylation measured using the Illumina Infinium 

HumanMethylation450 beadchip.DNA methylation data were preprocessed using the minfi package (Aryee et al., 2014).  

A series of steps were completed for quality control and data analysis. The first step was low quality sample removal. First, 2 samples 

with bad overall quality or with low detection p-value according to the output of the MethylAid package (van Iterson et al., 2014) were removed. 

Then, we removed 3 samples whose sex was wrongly predicted using shinyMethyl (Fortin et al., 2014). Following guidelines of Lehne work 

(Lehne et al., 2015), we increased the stringency of the detection p-value threshold to 10-16 and we filtered 18 samples with a call rate lower 

than 98%. The second step was normalizing data with functional normalization. Correlation between SNP in replicates samples was checked and 

probes not measuring SNPs were discarded. 7,136 probes with a call rate lower than 95% were also removed. Probes in sexual chromosomes, 

crosshibridizing or containing SNPs were flagged but not removed at this point. ComBat was applied to remove batch effect (Johnson et al., 

2007). Finally, duplicated samples were removed. The final dataset consisted of 292 samples and 476,946 probes with behavioral data available. 

 

Child psychopathology data: Psychopathology symptoms were assessed with the Child Behavior Checklist 6-18 (CBCL/6-18), a validated and 

widely used parental assessment of a child's behavioral and emotional problems (Achenbach & Rescorla, 2001). Mothers completed questions 

about a range of emotional and behavioral problems of the child in the past six months on a three-point scale (0=not true, 1=somewhat true, 

2=very true). 

 

Cell type correction: Cord blood reference panel with 7 cell types by Gervin et al. (2019). 

Batch correction: ComBat was applied to remove batch effect (Johnson et al., 2007). 
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Ancestry/ethnicity: All individuals are classified as Europeans taking into account ethnic origin and country of origin of both parents 

Smoking during pregnancy: Three-level ordinal category (never smoked during pregnancy, smoked during first trimester only, smoked after first 

trimester/sustained smoking). 

Gestational age: Gestational age at blood sampling was calculated based on last menstrual period (LMP) reported at recruitment and confirmed 

using estimates based on ultrasound examina­tion in the 12th week of gestation. When the difference between the LMP reported at recruitment and 

estimated from the ultra­sound was ≥ 7 days (n=91; 16%), we esti­mated LMP using a quadratic regression formula (Westerway, Davison, & 

Cowell, 2000). 

Child sex: (0 = female, 1 = male). Derived from medical/maternity records at birth 

Child age at behavioral assessment: Continuous (years). 

 

Maternal age: Continuous (years). 

 

Maternal education: Maternal education was classified into 0 = low (primary or less), 1 = medium (secondary), 2 = high (university). 

Child cognition (external variable): General cognitive index (continuous) was assessed using the McCarthy Scales of Children’s Abilities 

(MCSA; McCarthy, 1996) at age 5 (mean=5.09; SD=0.69; Range=4.03-6.86).  
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