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into multicellular assemblies and inter-
action between single cells can also be 
studied at high-throughput and used for 
generating physiologically relevant 3D cell 
cultures and the isolation of rare cells, for 
example, for cancer research.[2,5] The core 
principle of droplet-based microfluidics 
is to harness the precision of microfabri-
cated devices to manipulate small volumes 
of reagents and enable high-throughput, 
low-waste experiments. To generate micro-
droplets, a shear force is applied at the 
interface between two immiscible phases, 
dividing the continuous flow into discrete 
picoliter droplets, such that individual 
cells or other objects can be encapsulated 
within. Incorporating assay components 
provides the ability to effectively control 
individual cellular micro-environments, 
isolated by the oil–water interface which 
acts as a barrier to diffusion.

A key aspect in cell encapsulation is 
the development of protocols in which 
the experimenter exerts control over the 
exact make-up of droplets, including the 

number of cells per micro-reactor and the addition of other 
discrete objects necessary to the high-throughput assay. For 
instance, co-encapsulation of individual cells together with 
individual hydrogel beads carrying barcoding DNA primers is 
used for the capture of DNA/RNA molecules and extraction of 
quantitative information on whole transcriptomes or genomes, 
across thousands of cells.[6,7] Likewise, cellular co-cultures typi-
cally require two single cells of different types to be placed in 
the same droplet.

Although used in many such applications, achieving con-
trolled multi-object microfluidic capture on a droplet-by-droplet 
basis is far from trivial. The loading of discrete objects into 
droplets is usually stochastic and therefore fundamentally 
limited by Poisson statistics.[8] In single-cell applications, if a 
maximum 10% of droplets are permitted to contain more than 
one cell, then in a Poisson limited system, only 15.6% of the 
drops can theoretically contain exactly one cell, with most drop-
lets being empty. In the study of cell–cell interactions or cell 
doublets, the theoretical maximum number of droplets having 
2 cells of the same type is only ≈27%.

Therefore, specialized approaches to microfluidic encapsula-
tion are needed to confer a higher degree of control with respect 
to the desired droplet contents, transitioning from stochastic 

The encapsulation of cells together with micro-objects in monodispersed 
water-in-oil microdroplets offers a powerful means to perform quantitative 
biological studies within large cell populations. In such applications, accu-
rate object detection is crucial to ensure control over the content for every 
compartment. In particular, the ability to rapidly count and localize objects 
is key to future applications in single-cell -omics, cellular aggregation, and 
cell-to-cell interactions. In this paper, the authors combine the Deep Learning 
object detector YOLOv4-tiny with microfluidic Image-Activated Droplet 
Sorting (DL-IADS), to perform flexible, label-free classification, counting, and 
localization of multiple micro-objects simultaneously and at high-throughput. 
They trained YOLOv4-tiny to detect SH-SY5Y cells, polyacrylamide beads, and 
cellular aggregates in a single model, with a precision of 92% for cells, 98% 
for beads, and 81% for aggregates. They exploit this accuracy and counting 
ability to implement a closed-loop feedback that enables controlled loading of 
microbeads via the automated adjustment of flow rates. They subsequently 
demonstrate the combinatorial sorting of co-encapsulated single cells and 
single beads based on real-time classification at up to 111 Hz, with enrichment 
factors of up to 145. Finally, they demonstrate spatially-resolved sorts by evalu-
ating cell-to-cell distances in real-time to isolate cell doublets with high purity.
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1. Introduction

Droplet microfluidics is a powerful technology that provides 
a quantitative biological platform to study single-cell hetero-
geneity or cell–cell interactions.[1–3] Single-cell -omic assays 
allow access to genetic information which can be correlated 
with cellular phenotypes, providing insight into tissue physi-
ology and disease pathways that are impossible to infer from 
bulk analysis alone.[4] On the other hand, aggregation of cells 

© 2021 The Authors. Advanced Materials Technologies published by Wiley-
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Commons Attribution License, which permits use, distribution and repro-
duction in any medium, provided the original work is properly cited.
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(Poisson) to fully deterministic loading. Previous deterministic 
approaches typically introduce constraints on experimental 
parameters or have small operational windows that limit 
their use (e.g., aspect ratio, geometries, flow rates, etc.). For 
instance, high-aspect ratio channels can be used to provide self-
organization of cells at high flow rates.[9] Passive microfluidic 
methods such as inertial ordering have demonstrated single-
cell encapsulation of up to 80% efficiency but are limited by 
high flow rate requirements and applicability only to single 
objects at specific concentrations.[10] Close-packed ordering of 
soft objects (e.g., hydrogel beads) can be used to provide deter-
ministic loading of single beads, but requires channel dimen-
sions matching accurately the size of the beads.[11] Therefore, 
techniques to selectively control the number of micro-objects in 
droplets, “beating” Poisson statistics, are crucial in overcoming 
the inherent limitations of stochastic encapsulation.

To generalize micro-loading operations in cases where deter-
ministic loading cannot be implemented, active sorting of 
subpopulations provides a means to select droplets of interest 
with high flexibility and high purity. Techniques such as 
image-activated droplet sorting (IADS) have proven effective 
for the identification and classification of a variety of micro-
objects in bright-field images. To date, approaches based on 
template-matching and thresholding have been implemented, 
demonstrating the feasibility to reconcile imaging with high-
throughput.[12–14] However, these methods do not fully leverage 
the spatial resolution offered by bright-field microscopy, lack 
robustness to differing object appearance, and cannot easily 
deal with multi-class, multi-object counting, particularly with 
overlapping objects. Furthermore, although progress has been 
recently made in imaging flow cytometers, they still require flu-
orescent cell stains to trigger acquisition of bright-field images 
and are not designed to handle water-in-oil emulsions.[15,16] 
Combining bright-field microscopy and label-free microflu-
idics allows rapid collection of large and temporally resolved 
datasets of images. Such datasets are particularly suitable for 
advanced image analysis and particularly machine learning 
tasks including image classification and object detection. This 
allows access to higher level information including the identifi-
cation and localization of objects in individual droplets, as well 
as global loading distributions and characterization of device 
operation such as throughput and monodispersity.

Previously, we have demonstrated the use of convolutional 
neural networks (CNNs) to perform real-time sorting of cells 
and polyacrylamide beads.[17] However, traditional image classi-
fication CNNs were not well suited to the simultaneous iden-
tification and counting of multiple objects. Such is the task of 
object detectors, which can both classify and localize multiple 
classes of objects within bounding boxes. Amongst these is 
YOLOv4; the fourth iteration of the ‘You Only Look Once’ one-
stage, anchor-based detector.[18] The model uses a single neural 
network to process the entire image and identify objects within, 
making YOLOv4 significantly faster than other two-stage tech-
niques such as Fast R-CNN.[19] Reduced implementations of 
YOLOv4 such as YOLOv4-tiny further improve timing perfor-
mance, simplifying the network architecture, and reducing the 
number of free parameters to make detection feasible for high-
throughput applications at rates of hundreds of frames per 
second (FPS).[18]

A secondary challenge for optimized object loading in 
real-time in microfluidic experiments is the mostly manual, 
arbitrary, and often time-consuming process of adjusting 
experimental variables such as flow rates of the carrier oil and 
aqueous phases. Furthermore, drift correction is often needed 
during experiments to adjust for pressure fluctuations in the 
device, meaning constant operator supervision is required. In 
contrast, methods relying on feedback loops allow for auto-
mated corrections, optimizing device operation and func-
tion, and bypassing constraints of flow instabilities and strict 
requirements on microfluidic geometries. For instance, an 
image-based feedback loop has been developed to keep droplets 
monodisperse long-term.[20,21]

In this work, the recently developed object detection algo-
rithm YOLOv4-tiny was implemented for multi-class counting 
of cells, cell aggregates, and polyacrylamide (PA) beads with 
both high precision and processing speed. We subsequently 
show integration of deep learning detections with a feedback 
control loop to enable controlled loading of soft PA beads with 
a chosen target occupancy. Using feedback, we demonstrate 
an on-demand combinatorial selection of droplets co-encapsu-
lating both a single-cell and a single-bead. Finally, we utilize the 
localization ability of our system to study cell association by iso-
lation of cell doublets using real-time calculation of cell-to-cell 
distances.

2. Results

In this study, we focused on the development of a generic 
platform for the rapid and accurate identification of micro-
objects used in high-throughput screening experiments. To this 
end, we have implemented the deep learning object detector 
YOLOv4-tiny to detect, classify, and localize cells and beads 
encapsulated in water-in-oil droplets from bright-field images. 
The microfluidic device for droplet creation and sorting, along 
with the optical setup, was used as previously reported.[17] This 
setup offers a flexible platform for on-demand droplet sorting 
and enrichment, with droplets formed in the same device 
(Figure 1A).

In brief, image acquisition is triggered using a photode-
tector that detects light fluctuation at the interface between the 
aqueous droplets and surrounding oil, enabling imaging at 
reproducible locations. An iris diaphragm (I1) was placed after 
the collimated white LED light source to increase the effective 
depth of field at the focal plane. The image is subsequently 
grabbed, pre-processed, and passed to the YOLOv4-tiny object 
detector whose identifications are used to trigger electrodes, 
permitting selection of droplets having the desired content. In 
addition to multiclass detection, we have implemented a feed-
back mechanism for deterministic PA bead loading in which 
real-time counting is used to feedback the flow rates of syringe 
pumps, as described in Section 2.3 below.

2.1. Object Detection for Droplet Sorting

A primary requirement of our system is to recognize, count, 
and localize multiple micro-objects of different types using 
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a single deep learning model. A total of three classes were 
selected to demonstrate this: PA beads, SH-SY5Y cells, and cell 
aggregates. In this work, we define cell aggregates as any cell 
cluster of 3 or more contiguous cells which have grouped in 
suspension following dissociation from their monolayer culture 
and can be used as initial templates for growing multicellular 
spheroids.[22] The aggregate class is useful to detect single cells 
overlapping which are difficult to enumerate and can be used 
as a criterion for selection or exclusion.

To classify images of microdroplets, YOLOv4-tiny neural net-
works were trained on custom datasets obtained from micro-
fluidic experiments. Ground truth datasets were constructed 

from a total of 2000 images, each of a single microdroplet con-
taining n cells (SH-SY5Y) and m beads (65 µm in diameter, 
polyacrylamide) with n, m as integers greater than or equal to 
zero. When possible, individual cells within cell aggregates 
were labelled in addition to the aggregate itself which allows for 
the estimation of the number of cells making up each aggre-
gate. Prior to labelling, a circular mask was applied to confine 
the region of interest to within the droplet diameter and images 
converted to greyscale. YOLOv4 format labels were created 
using the open-source tool LabelImg to annotate images in 
the ground truth dataset.[23] Objects were labelled by drawing 
bounding boxes fully closing objects and allocating the correct 

Figure 1. A) Schematic of the microfluidic platform for droplet sorting based on real-time object detection. Yellow arrows indicate the optical path 
and red arrows show the control sequence for feedback and sorting. The droplet generation and sorting junctions are illustrated, with black arrows 
representing the direction of flows. Droplets are imaged in bright-field with an inverted microscope, illuminated by white light passing through an iris 
(I1). After magnification by a 10× objective lens, the light is split towards a fast-scan camera, a photodetector, and a high-speed camera. Four lenses 
in the optical path allow the high-speed camera to capture an area covering the whole sorting junction (800 µm × 800 µm) while the fast-scan camera 
captures a close-cropped image of the droplet (160 µm × 160 µm). Light fluctuations due to a droplet passing by is detected with a photodetector placed 
directly behind an iris (I2), causing the FPGA to trigger acquisition of a single frame. The YOLOv4-tiny deep neural network detects micro-objects in 
the image, outputting a logical decision to the DAQ card and a correction to the proportional-derivative (PD) controller. To sort a droplet, an electric 
pulse from the function generator is relayed to the high voltage (HV) amplifier to deflect it by dielectrophoresis. Closed-loop feedback is completed 
with syringe pumps which vary the flow rate to optimize droplet loading. Plano-convex lenses L1, L2, L3, and L4 have focal lengths of 50, 50, 25.4, and 
25.4 mm, respectively. B) Image of the microfluidic device, incorporating three main modules: a droplet generation junction with two inlets for cells and 
beads, respectively, a serpentine mixing channel and an active sorting junction. A respacing oil inlet increased inter droplet distances such that multiple 
droplets did not get selected simultaneously. Salt solutions were used to conduct the electric fields triggering dielectrophoretic motion. Scale bar: 2 mm.
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class, including partially obscured or out-of-frame objects with 
greater than 50% in view.

Following training set construction, training took place 
on a cloud virtual machine and took ≈1.5 h. As expected, the 
model loss fell exponentially as the iteration number increased 
(Figure S1, Supporting Information), dropping to below 0.3 in 
the latter half of the training which indicates strong feature 
learning from example images. Every 1000 iterations, the valida-
tion set was used to calculate the mean average precision (mAP), 
which plateaued at ≈90% after 4000 iterations. This mAP meas-
ures performance both in terms of classification ability (the 
types of objects in an image) and localization ability (the posi-
tion of the objects in the image). mAP is calculated by the mean 
of the average precision over all classes, for a range of thresh-
olds defining the minimum overlap between the predicted and 
ground truth bounding boxes (intersection over union, or IoU). 
The optimal model weights were selected at 4000 iterations, the 
threshold for maximal feature learning before overfitting—where 
further training causes a loss decrease without a corresponding 
increase of mAP. This is important as overfitted models have 
poor generalizability to unseen data, becoming overly complex to 
fit for noise or features specific to the training set.

To validate model performance, the network was evaluated 
against a hand-labelled, ground truth dataset of test images 
unseen by the computer during training. YOLOv4-tiny clas-
sifications show strong agreement with the ground truth 
(Figure 2A), effectively locating and classifying single and mul-
tiple objects, even in cases of overlapping or partially obscured 
objects in multi-object images. The model correctly identified 
cells with a variety of morphologies, in different brightness 
and contrasts modes, including many of those in proximity as 
doublets or part of larger aggregates. Experimental predictions 
were confirmed on over 10 000 images, acquired across 4 sepa-
rate experiments, on two different dates, and manually labelled 
before comparison with YOLOv4-tiny predictions. The results 
can be summarized by confusion matrices (Figure 2B) showing 
the comparison between ground truth and YOLOv4-tiny object 
classification.

Figure 2B-(i) shows the overall number of true positive, false 
positive, and false negative predictions for each class, normal-
ized by the total number of images. Cell counting was found 
to have a true positive rate of 92% with no false positives. PA 
beads had a true positive and false positive rate of 98.3% and 
0.6%, respectively. This indicated that sorting based on the 
number of beads and/or cells would lead to a droplet popu-
lation of high purity with a low proportion of unnecessarily 
wasted droplets. Selection of aggregates had a lower true posi-
tive rate of 80.7% and false positive rate of 3.8%, which may be 
partially attributed to ambiguities in the ground truth labelling 
of large aggregates.

The per class counting accuracy for beads, cells, and aggre-
gates (Figure  2B-(ii), (iii), and (iv), respectively) shows high 
precision in counting beads (over 95.2% in all cases) and 
cells (from 96% for one cell down to 64.1% for 5 cells), which 
decreases with increasing cell number mainly due to the 3D 
orientation of cell clusters obscuring individual cells. Impor-
tantly, single cells and single beads were identified with high 
precision, a crucial criterion for selection in many single-cell 
applications.

2.1.1. Application to Detection of Cellular Aggregates

Even at fixed cell density, we observed variations in droplet-
by-droplet cell loading numbers due to both Poisson sta-
tistics and pre-aggregation events. This is reflected in the 
histogram for the number of cells per droplet in a typical 
experiment (Figure S2A, Supporting Information) which 
does not follow expected Poisson statistics. We attribute this 
to the lack of stirring of the cell suspension during handling 
and injection.

The aggregate class detection helped us identify large groups 
of single cells overlapping and hard to enumerate and could be 
used as criterion for selection of multicellular clusters or exclu-
sion during sorts. The number of cells detected per aggregate 
typically ranged from 3 to 20 with rapid decrease in occurrence 
beyond small cell clusters with 5 cells or fewer (Figure S2B, 
Supporting Information). The number of aggregates also ena-
bled us to study the kinetics of cellular aggregation over the 
experimental course, following detachment from the plastic 
substrate of the culture dish by trypsinization. We generally 
observed a gradual decrease in the rate of single cells, coupled 
with an increase in the rate of aggregates (Figure S3, Sup-
porting Information) despite cells being suspended in a den-
sity-matching solution. This apparent decrease in the incoming 
rate of single cells was up to 40% for experiments lasting over 
15 min.

2.2. Timing Performance

The classification speed of neural networks is vital for inte-
gration within high-throughput microfluidic systems where a 
capacity to image tens to thousands of droplets per second is 
a requirement to enable population scale experiments. Here, 
the reduced architecture of YOLOv4-tiny is shown to be not 
only viable for real-time applications, but also for the very 
high working throughputs of microfluidics. The time for each 
processing step was measured using the python system-wide 
performance counter, at the highest available clock resolution. 
As with a previous study, microdroplet images were acquired 
individually on a photodetector trigger, rather than continuous 
processing of video data.[17] This had the advantage of allowing 
a higher effective throughput by preventing processing of 
redundant frames in between droplets. Once an image was 
acquired, it was grabbed from the camera buffer and pre-pro-
cessed by resizing it to 416 × 416 pixels, the application of a 
circular mask, followed by normalization. The latency due to 
data transfer and pre-processing was found to be small, aver-
aging less than 0.4 ms per image. On average, object detec-
tion took 9 ms per image, implying a maximum possible 
framerate of 111 FPS. At the cost of additional processing 
time, it is also useful to save the images and YOLO detection 
outputs when obtaining training data, or for verification of 
sorting accuracy. Of three different python computer vision 
libraries benchmarked (OpenCV, PIL, and Scikit-image), 
saving images in the JPEG format with OpenCV was most 
performant, allowing sorting and image acquisition at up to 
101 FPS. Additional information including bounding box coor-
dinates and individual confidence scores for all objects could 
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be recorded to allow full reconstruction of YOLO detections 
at up to 85 FPS. Rank-ordered timing for over 15 000 images 
showed that images were classified and saved with bounding 
boxes with a minimum timing of 11.5 ms, a median timing 
of 14 ms, and with only 3% of the images processed in over  
20 ms (Figure S4, Supporting Information). However the exper-
imental sorting rates achieved were lower than this theoretical 

maximum as the distance travelled by droplets between detec-
tion and triggering at high flow rates (above 35 µL min−1 for 
total flow rates) exceeded the distance between imaging and 
sorting junction. A maximum sorting rate of ≈45 Hz was 
achieved at flow rates of 2 µL min−1 for both cells and PA 
beads supernatant and 15 µL min−1 for both the carrier and 
respacing oil phases.

Figure 2. Object classification and detection with YOLOv4-tiny. A) Example images showing correct YOLOv4-tiny bounding boxes for combinations of 
beads and cells (blue: PA bead, yellow: cell, red: aggregate). Scale bar: 65 µm. B) (i) Normalized confusion matrix showing rates of true positive (TP), 
false positive (FP), and false negative (FN) predictions per class. (ii) to (iv) Normalized confusion matrix showing ground truth (true nb) versus number 
of detected objects (Predicted nb) for PA beads (ii), cells (iii), and aggregates (iv).

Adv. Mater. Technol. 2022, 7, 2101053
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2.3. Closed-Loop Feedback for Controlled PA 
Bead Encapsulation

Typical microfluidics encapsulation experiments require empir-
ical determination of flow conditions that result in optimum 
object loading occupancies. However, tuning flows can be time-
consuming, susceptible to inter-device variability, and may not 
be stable over the duration of a prolonged high-throughput 
experiment (e.g., over 10 min), requiring constant operator 
attention.

One such example is flow-rate dependent bead loading. 
Although fully deterministic loading has been demon-
strated for the loading of soft microbeads in channel sizes 
closely matching the beads’ diameters (in which they form 
a monolayer), this is generally not the case in other geom-
etries. For example, in the deeper microchannels we have 
used, beads form a close-packed double layer upon loading 
(Figure 3A) so that several beads can be co-encapsulated in 
the same droplet. However, faster flow rates for PA delivery 
leads to a greater number of beads per droplet, making 
their distributions tuneable.[11] This opens a path for a fully 
integrated droplet loading system, where active feedback is 

used to automatically control pump flow rates and optimize 
droplet loading for optimal operation and minimum waste 
(Figure 3).

High accuracy object detection and counting by YOLOv4-tiny 
can be used to adjust flows, creating a closed-loop feedback. We 
have implemented the scheme shown in Figure  3B where the 
correction factor represents the difference between a target and 
actual occupancy for PA beads (target λPA and λPA) whose average 
is measured over 200 consecutive images to prevent sudden 
changes in operation. We tested mainly a target occupancy of one 
bead per droplet to demonstrate deterministic loading but other 
occupancies, including non-integers, can be used. Figure S5, 
Supporting Information, shows an example feedback control for 
a target occupancy of 2. In a typical experiment, the flow rate for 
the oil phase and a PBS solution (not shown in Figure 3A) were 
kept constant at 12 and 1 µL min−1 respectively, while the PA 
beads flow rate was determined by the state of the feedback loop. 
A proportional (P) or proportional-derivative (PD) feedback was 
used to update the flow rate of the PA beads:

d

d
p du t K e t K

e t

t
( ) ( ) ( )= +  (1)

Figure 3. Closed-loop feedback for optimized encapsulation of PA beads. A) Image of bead packing at the entrance of the device. The inset highlights 
the multilayer packing just before encapsulation. Black arrows indicate flow directions. Scale bar: 200 µm. B) Feedback loop implementation flowchart: 
a target occupancy is set (target λPA), and the YOLOv4-tiny counting used to update the flow rate for the beads by calculating the difference between 
actual and target occupancies (correction). C) (i), (iii), (v): Average occupancy (blue line) and flow rate for the beads (orange line) as a function of time 
for proportional (i) and proportional-derivative ((iii) and v)) corrections. A horizontal dashed line represents the target occupancy of 1. The black curves 
in (i) and (iii) are the best fit for PA bead counts using a damped oscillation model. (ii), (iv), and (vi): Fraction of droplets containing a given number 
of beads as a function of time averaged over 200 images for proportional (ii) and proportional-derivative corrections ((iv) and (vi)).
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where u is the new flow rate for PA beads, t is time, e is the 
error, and Kp and Kd represent the proportional and derivative 
gains, respectively. The gain constants Kp and Kd were tested 
empirically to determine the optimal response of the loop. In 
absence of a derivative component, it was found that setting 
Kp above 0.5 resulted in highly undamped to slightly damped 
oscillations (Figure S6, Supporting Information). Generally, 
proportional correction alone did not fully stabilize the average 
loading occupancy over 30 min, leading to a periodic oscillation 
around the target value as seen in Figure 3C-(i),(ii). In contrast, 
adding a derivative gain term, which anticipates future error, 
resulted in slightly damped to critically damped oscillations 
(Figure 3C-(iii) to (vi) and Figure S7, Supporting Information), 
stabilizing occupancies around the target value much more 
efficiently.

The feedback was also robust to step changes in oil flow 
rates as shown in Figure S8, Supporting Information, as could 
happen in cases of channels being obstructed by foreign objects.

Using a 110 µm height channel and 65 µm beads, we were 
unable to reach perfect loading of one bead per droplet, even 
using pulseless syringe pumps, because of instabilities in 
flow delivery and irregular bead arrival at the flow-focusing 
junction. This suggests that the operational window to obtain 
such one-bead-one-droplet synchrony may be small. Indeed, 
the maximum proportion of single beads averaged over 200 
droplets was ≈90%. Above 9% of the remaining 10% of drop-
lets contained either zero or two beads, with few droplets con-
taining 3 or more beads. Although capturing 4 or more beads 
was feasible, it was exceedingly rare at the low occupancies we 
targeted, for example, with 3 droplets containing 4 beads out of 
over 19 000 for Figure 3-(vi). The use of fast response pressure 
pumps may enable the required higher degree of control.[20] 
Furthermore, monodispersity was not found to change signifi-
cantly with the adjustment of flow rates as the aqueous:oil ratio 
was kept above 1:5 at all times. Nonetheless, if significant, the 
adjustment of two or more flows could be implemented to keep 
the overall aqueous flow rate constant. Additionally, within the 
110 µm device, multilayer packing allowed us to demonstrate 
encapsulation of beads around a target number higher than 
1 (Figure S5, Supporting Information).

To test deterministic single-bead loading in geometries 
matching more closely the object size, we fabricated a device 
of height 70 µm, in which encapsulating more than 2 beads is 
rare because of the physical constraints (e.g., 13 occurrences 
of three beads in over 13  000 drops in Figure S9, Supporting 
Information).

In such geometries, single bead loading could reach 100% 
fidelity (Figure S9, Supporting Information), although flow 
instabilities prevented this loading to be stable over long time 

periods (>10 s). The higher throughput (≈40 Hz versus ≈15 Hz 
in 110 µm device) obtained using this device for the same flow 
rates resulted in more frequent flow rate adjustments such that 
the PD correction previously used did not damp the oscillations 
as heavily as in the 110 µm device. However, this demonstrates 
the possibility to autonomously reach optimum one-to-one 
loading of soft beads. Overall, with devices of different heights, 
we show that the method can be flexibly applied to devices 
operating in different regimes (with higher throughput and 
lower bead occupancy for smaller devices).

2.3.1. Analysis of Damped Oscillations

We could fit the average loading occupancy by modelling the 
time response with a damped oscillator model. We used the fol-
lowing equation to fit the curves shown in Figure 3C-(i),(iii):

C sin w Dby e tt ϕ( )= + +−  (2)

where C, b, ω, φ, and D are constants and t is time. The exponen-
tial envelope of the damped oscillations is defined by the expo-
nential term b which dictates the strength of the damping. In 
the examples given in Figure 3C, it was found to be 6.4 10−3 s−1 
versus 12.5 10−3 s−1 for P and PD corrections, respectively). The 
fits were closely matching experimental data, with average occu-
pancy (coefficient D) very close to the target occupancy of 1 bead 
per droplet (0.994 ± 0.002 for Figure  3C-(i), 1.034 ± 0.006 for 
Figure 3C-(iii)) for 5-min experiments. Natural oscillations were 
calculated from the coefficient ω to be ≈17 s, indicating a slow 
time response of the system as observed from the time delay 
between flow rate adjustments and average loading curves.

2.4. Combinatorial Object Sorting

Integration of powerful object detectors with microfluidic 
sorting allows for new types of droplet selection not previously 
possible, using multiclass counting and localization as selec-
tion criteria. To demonstrate this, we designed an experiment 
to showcase selection of multiple discrete objects for co-encap-
sulation events of exactly one cell and one bead as required in 
emerging screening techniques such as single-cell sequencing 
or drug discovery.[24] To this aim, cells and PA beads were co-
flown and co-encapsulated in droplets, imaged, classified by 
YOLOv4-tiny neural networks and subsequently sorted in 
real-time.

A summary of four ‘single-cell-single-bead’ sorting experi-
ments performed on three separate dates is displayed in Table 1. 

Table 1. Summary of the results for four ‘single-cell-single-bead’ distinct sorting experiments.

Experiment 
number

Cell density  
[106 mL−1]

Number of droplets 
screened

Number of droplets 
sorted

Average throughput 
[Hz]

Number of false 
detections for beads

Number of false 
detections for cells

Overall percentage 
true detections

1 1.5 13 423 610 22 0 (0%) 15 (2.5%) 97.5

2 1.5 13 930 1006 14.5 32 (3.2%) 30 (3.0%) 93.8

3 0.15 19 351 115 20.2 2 (1.7%) 5 (4.3%) 93.9

4 0.15 15 382 99 7.3 9 (9%) 2 (2%) 88.9
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We exemplify two different regimes for these sorts: at high cell 
density, we show that we can rapidly accumulate a large sorted 
fraction while keeping purity high (experiments 1 and 2 have 
an average 8 single cells per 100 droplets), while at lower cell 
densities (experiments 3 and 4 have an average 8 single cells 
per 1000 droplets), we demonstrate high enrichment rates. 
Each of these experiments included over 13  000 droplets, at 
throughput ranging from 7.3 to 22 Hz. In all experiments, the 
sorted droplet fraction showed significant droplet enrichment 
in the target occupancy.

The multi-object distribution for droplet loading before and 
after sorting can be displayed through heatmaps as shown 
in Figure 4A-(i),(ii) (which corresponds to experiment 1 in 
Table 1), visually displaying the change in combinations of cells 
and beads before/after sorting. All experiments shown imple-
mented the closed-loop feedback mechanism described in the 
previous section.

The low cell density experiment (0.15 million mL−1) allowed 
us to check for the ability to enrich for a target droplet popula-
tion. For instance, in experiment 3 (Table 1), sorting increased 
the population of single-cell-single-bead droplets from ≈0.65% 
before sorting to ≈94% when active sorting by deep neural net-
works was incorporated, representing an overall enrichment 
factor (ratio of the fractions of single cell + single bead after and 
before sorting) of 145 in the target droplet population. Only 11 
droplets were wrongly classified as waste (i.e., droplets that do 
meet the sorting criteria) out of a total of 126 amongst 19 351 
droplets.

Correct channel sorting was confirmed using a high-speed 
camera and images of sorted droplets were hand-labelled to 
check detection accuracy, with strict negative labelling of unclear 
objects. Strict negative labelling was done by expert judgement 
to ensure that images classified as true positive are indeed true 
positives. The overall percentage of true positive events con-
taining 1 cell and 1 bead ranged between 88.9% to 97.5%. The 
predominant cause for false detections was the presence of cell 
doublets, especially those where cells were overlapping to the 
point of near total eclipse at the time of imaging. This could 
be minimized by more stringent cell straining protocols and 
addition of additional reagents preventing cellular attachment. 
Further, oil satellite droplets were sometimes falsely recognized 
as cells, and cells contacting the droplet interface were occa-
sionally missed. It was also observed that cells and PA beads 
were sometimes not detected in cases of low contrast. These 
issues represent a small fraction (a maximum ≈5%) of the total 

number of detections in a typical experiment but could be fur-
ther alleviated by ensuring cleaner microfluidic conditions to 
prevent oil contaminants in the device, by using fixed optical 
components to decrease variability in object appearance, and by 
improving the imaging contrast by use of higher power light 
sources. It may be possible to further improve the precision of 
detections by retraining on a data set with additional training 
examples, especially those with varying contrast and in the 
presence of contaminants to improve sensitivity.

In practice, extra erroneous droplets may arise from device 
priming and flow instabilities that lead to droplets transiently 
leaking into the sorting outlet, lowering the effective enrich-
ment rate. Therefore, we have verified purity obtained by 
manual labelling of droplets for the sorted droplet fraction cor-
responding to experiment 2 in Table  1 and found that ≈85% 
were true positives with most incorrect droplets (determined 
by reviewing the saved image collection) corresponding to cell 
doublets (Figure 4B).

2.5. Sorting of Cell Doublets Using Real-Time Relative 
Object Locations

The long-held view in flow cytometry type experiments is to 
discard cell doublets as they contribute to blurring of cellular 
identity and individual cell responses.[25] However, cell dou-
blets or clusters are known to have important functional roles 
in many biological processes relying on dynamic interactions. 
For instance, immune-cell pairs are formed in response to viral 
infection and autoimmune diseases.[26] In contrast to training 
a model to recognize cell pairs, we have used the localization 
ability of the object detector to distinguish cells in close prox-
imity to those which are more distant. An example histogram 
of cell pair distances and representative images of cell pairs are 
shown in Figures 5A and 5B. A distinct peak corresponding to 
cell-to-cell distance of ≈15 µm can be seen. The additional cal-
culations needed for working out intercell distances increases 
analysis time for sorted droplets to ≈41 ms in total, reducing 
the theoretical maximum throughput by a factor of 3 com-
pared to classification and counting alone. We therefore imple-
mented a two-step process of droplet generation followed by 
re-injection of the droplets using the same sorting device. This 
enabled flowing droplets at lower rates by dividing the total 
oil flows twofold in the device compared to in-line generation 
and sorting. With this strategy, we could sort cell doublets at a 

Figure 4. A) Enrichment of droplets containing exactly one cell and one bead. i) Initial combinations of beads and cells for >13 000 droplets prior to 
sorting. ii) Enriched droplet population containing exactly a single cell and a single PA bead after sorting by YOLOv4-tiny. B) Example image of sorted 
droplets containing a single cell (black arrows) and a single bead (white arrows). Red arrows indicate false positive cell doublets. Scale bar: 65 µm.
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maximum rate ≈10 Hz. We set a cell-to-cell distance threshold 
equal to 15 µm (the average cell diameter), ensuring the selec-
tion of cells in close contact. An image of the sorted fraction for 
a typical sorting experiment (Figure  5C) shows high purity in 
cell doublets (≈80% of the sorted population) with most of the 
incorrect droplets corresponding to cell triplets.

The model selection contained ≈20% cell triplets that were 
counted as false positives, presumably because the 3D orientation 
of small cell clusters renders classification difficult, which was con-
sistent with the expected number of misclassified events shown in 
Figure 2B-(iii). However, our selection shows that the probability 
for two cells to be close-by but not attached during imaging is very 
low as no cells were found to be separated after selection.

3. Discussion and Outlook

Modern deep learning object detectors such as YOLOv4-tiny 
stand to provide powerful capabilities for droplet microfluidics, 
especially for single-cell sorting applications. Such neural net-
works can be trained to localize and classify any number of 
micro-objects without explicit definition and with high adapt-
ability, instead learning their general features from a set of 
example images. Here, three classes were trained: PA beads, 
SH-SY5Y cells, and cellular aggregates. Detections were com-
parable in their precision to hand-labelled images and are 
robust to experimental variation such as the presence of foreign 
objects (e.g., oil droplet satellites, dust particles). This enabled 
the same model to be used on different days without need for 
drift correction. Use in real-time microfluidic combinatorial 
experiments highlights the network’s ability to label objects in 

complex environments with many overlapping objects. Object 
detection with inference of bounding boxes is also useful for 
confirming correct training of such networks, whereas deci-
sions made by traditional CNN image classifiers cannot be so 
easily explicated (although interpretative techniques such as 
integrated gradients, XRAI are emerging).[27]

In Table 2, we summarize the most relevant image-activated 
sorters including the ones implementing neural networks 
approaches, summarizing the advantages of object detection 
methods over previously demonstrated workflows.

The speed of object detector CNNs are already shown to be 
appropriate for integration with high-throughput techniques, 
but could be pushed significantly further using improved GPU 
hardware, such as the new Ampere microarchitecture which 
represents a significant improvement in computational power, 
with deep learning performance three times higher than the 
GTX 1080Ti used in this study. Further performance increase 
could be achieved using TensorRT, NVIDIA’s high-performance 
neural network inference optimizer which converts a TensorFlow  
graph to a more efficient structure for improved latency, 
throughput, and efficiency.[29] Recent works have implemented 
the TensorRT framework giving a ≈5× increase in inference 
time.[28] Practically, achieving higher sorting rates will provide 
other experimental challenges, in particular balancing the need 
for high-contrast, high-resolution images with decreased lumi-
nosities at high shutter speeds. This will require a combination 
of high-power light sources and scan cameras with low acquisi-
tion times to reduce motion blur. The ability to trigger images 
further away from the sorting junction whilst still monitoring 
sorting will also enable faster sorts up to the theoretical rates of 
over 100 Hz provided by object detectors such as YOLOv4-tiny.

Figure 5. Spatially-resolved selections: cell-to-cell distances are used as criterion for droplet sorting. A) Representative distribution of cell pair distances 
for a total of 2701 cell pairs. A distance of 15 µm (red dashed line), corresponding to the average cell diameter is used as a threshold for sorting.  
B) Example images of cell pairs with red line representing the calculated distances between the centers of the cell bounding boxes. C) Image of sorted 
droplets containing mostly cell doublets. Scale bar: 65 µm.
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We have demonstrated that object detectors allow for the 
precise selection of a droplet subpopulation based on both the 
number and type of micro-objects encapsulated. In this study, 
co-encapsulated single-cell and single-beads formed the criteria 
for model selections, demonstrating the applicability to double 
Poisson sorting, a configuration used in an increasing number 
of novel microfluidic-based methods.[6,30] The same detector 
could be used to sort cell doublets using location information in 
real-time. enabling cell–cell interactions to be studied label-free 
and combined with other downstream assays. Further, although 
only 3 classes were implemented in this study, YOLOv4-tiny can 
been trained for many independent classes (e.g., 80 classes in 
the MS COCO dataset), offering potential for further customi-
zation of microfluidic experiments.[18] For example, this method 
could be scaled to a single general model able to recognize a 
variety of biological objects of interest.[31]

In the future, coupling high-magnification microscopy with 
multimodal detection (e.g., with fluorescence read-outs), it may 
be possible to perform cellular phenotyping in blood samples, 
detect morphological changes during cell differentiation, or 
analyze intratumor heterogeneity indicative of cancer.[31,32] This 
offers a broad range of novel possibilities for future studies in 
analytical biology, with the training of new object detectors lim-
ited only by the availability and quality of training datasets and 
the labor-intensive labelling process.

4. Conclusions

In conclusion, we have demonstrated selection using real-time 
object detection, including single cells and the targeted isolation 
of cell doublets based on inter-cell distances. Results obtained 
with this platform will improve the biological outcome, predict-
ability, and quality of single-cell -omics experiments. They will 
also pave the way for performing assays interrogating the spa-
tial distributions of micro-objects. Example applications include 
the screening of antibody libraries against cellular targets using 
bead display systems, or the quantification of cellular aggrega-
tion events.[33,34] Coupled to hardware interfacing and closed-loop 
feedbacks, we have also demonstrated the potential for such plat-
forms to develop into robust, operator-free machines able to con-
duct biological experimentation autonomously. This showcases 
the trend towards generic, adaptable platforms that can self-adjust 
towards optimal functionality across a range of experimental con-
ditions (e.g., fluid viscosities, temperature changes, etc.).

In the future, low or dual magnification imaging could be 
used to monitor several areas simultaneously with different 
target process variables (e.g., cell loading, sorting, adjustment 
of throughput). Finally, we foresee other areas of research that 
are enabled by image analyses such as the development and 
study of biodegradable materials, biofilm formation, the enzy-
matic degradation of polymer microparticles or rheological 
studies of soft microgels in microchannels.

5. Experimental Section
Microfluidics Platform for Droplet Imaging and Real-Time Object 

Detection: The microfluidic device for droplet creation and in-line sorting 
was used as previously reported and the chip CAD design available 
online on DropBase (openwetware.org/wiki/DropBase).[17] The device 
consisted of one inlet for the continuous oil phase and two inlets 
for the aqueous phases to allow for simultaneous cell and PA bead 
loading. For the carrier oil, 1% w/w surfactant (008-Fluorosurfactant, 
Ran Biotechnologies) dissolved in HFE-7500 (3M) was used. Aqueous 
and carrier phases were loaded into 1 mL glass syringes (SGE) and  
5 mL plastic syringes (BD Plastipak), respectively, and their flow rates 
controlled by pulseless syringe pumps (Nemesys, Cetoni). The PA beads 
were 65 µm in diameter (Droplet Genomics) and suspended in 10 mm 
Tris-HCl (pH 8.0), 137 mm NaCl, 2.7 mm KCl, 10 mm EDTA, and 0.1% v/v  
Triton X-100. For closed-loop feedback, the Nemesys pumps Qmix 
SDK was used to update the flow rates of syringe pumps using Python 
control sequences.

Cell Culture: The human neuroblastoma cell line SHSY-5Y (Sigma) 
was cultured in Dulbecco’s Modified Eagle Medium (DMEM, Gibco), 
supplemented with 10% Fetal Bovine Serum (Gibco), 1% Glutamax (100×, 
Gibco), and 1% Non-Essential Amino Acids (Gibco) at 37  °C with 5% 
CO2. The medium was filtered using a 0.2 µm Sartorius filter prior usage. 
Cells were passaged at ≈80% confluency using 0.05% trypsin-EDTA 
(1×, Gibco). For all the experiments, the cells were passaged at ≈80% 
confluency using 0.05% trypsin-EDTA (1×, Gibco), resuspended in fresh 
media containing 15% (v/v) OptiPrep density gradient medium (Sigma), 
counted (density 1.5 × 106 cells mL−1), and passed through a 20 µm cell 
strainer (Falcon, Fisher Scientific) to minimize cellular aggregation.

Droplet Selection Experiments: For single-cell-single-bead sorting 
experiments, the flow rates used were 1 µL min−1 for aqueous solutions 
and 12 µL min−1 for the carrier oil phases. Droplets were subsequently 
respaced by an additional insertion of the same carrier oil to better 
frame individual droplets and facilitate in-line sorting.

For cell doublet selections, droplets were generated using the 
microfluidic sorting device (Figure  1) and collected in a reservoir  
0.5 mL PCR tube (Eppendorf). For generation, the flow rates for the oil, 
cells, and second aqueous phase (PA bead supernatant) were 30, 3, and 
3 µL min−1, respectively. The droplets were then collected for 10 min and 

Table 2. Comparison between YOLOv4-tiny and other image analyses methods from previous studies.

Reference Type of image analysis Droplets used in 
study

Multiclass counting and 
sorting

Spatially-resolved sorting Sorting Throughput

Anagnostidis et al.[17] CNN, 3 convolutional layers Yes No No 40 Hz

Lee et al.[27] Resnet-18 (CNN, 18 layers) No No No 82.8 Hz

Template-matching 
Girault et al.[12]

Template-matching Yes Yes No 10 Hz

Isozaki et al.[28] CNN, 6 convolutional layers No No No 1133 Hz

Sesen et al.[13] Image thresholding Yes Yes Not shown 4 Hz

This study YOLOv4-tiny Yes Yes Yes 45 Hz
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re-injected into the sorting device through the bead inlet (Figure 1B) at 
a flow rate of 2 µL min−1. Oil was flown in the main carrier oil inlet at 
12 µL min−1 for respacing the droplets.

A dedicated optical setup built around an inverted trinocular 
microscope (SP-98-I, Brunel) allowed for the bright-field imaging of 
microdroplets in real time, capturing close-cropped images of individual 
droplets using a triggered acquisition approach as previously reported 
(Figure  1A).[17] The input of a photodetector (PDA36A, Thorlabs) was 
processed by a low latency Field-Programmable Gate Array (FPGA) 
controller, which in turn outputs a 5  V trigger to the fast scan CCD 
camera (Pike F-032B, Allied Vision).

Images of individual droplets are immediately fetched, and a single 
NVIDIA (GTX 1080Ti) GPU was used to evaluate the YOLOv4-tiny model 
frame by frame in the Python 3.7.0 API of TensorFlow 2.3.0rc0, running 
on a Windows 7, 64-bit operating system with an Intel i5-6500 3.2 GHz 
processor and 32 GB DDR4 RAM. If desired, images and bounding box 
information was also saved to an SSD drive. The resulting classification 
was compared to a chosen sorting criterion, with a probability threshold to 
activate sorting set at 0.25. If the logical condition for sorting is met, a USB 
data acquisition card (DAQ, USB-6009, National Instruments) board relays 
into a function generator which creates a 10 kHz rectangular signal at 8 Vpp 
for 20 ms. This pulse is amplified 100-fold, and the electric field propagates 
through a saturated 5 m salt solution flowed into dedicated electrode 
channels close to the sorting junction. This non-linear field causes selected 
droplets to be deflected towards the sorting channel via dielectrophoresis, 
while unsorted droplets proceed to the waste.[35] A high-speed camera 
(Miro ex4, Vision Research) was used to confirm correct sorting.

Training YOLOv4-Tiny to Detect Micro-Objects: YOLOv4-tiny neural 
networks were trained on custom datasets obtained from microfluidic 
experiments. A stratified split was then used to create the training set 
(70%), validation set (15%), and test set (15%). This ensured subsets 
contained an equal number of examples from each class, shuffling the 
images, and selecting randomly from each stratum to avoid bias. A 
total of 1400 images were used in training, 300 for network validation, 
and 300 reserved for testing, which were not seen by the network during 
training. In the 1400 test images, a total of 1571 beads, 2134 cells, and 
317 aggregates were present; as many images contained more than 
a single object. In addition, images with foreign objects such as dust 
particles or oil microdroplets, as well as different focus and contrast 
were deliberately included to create a model which is robust to varying 
experimental conditions and the presence of contaminants. YOLOv4-
tiny training was conducted using Python 3.7.10 on a cloud virtual 
machine provided by Google Colaboratory. A single GPU (Tesla T4 
GPU, NVIDIA) was configured with CUDA Toolkit 11.0, cuDNN 7.6.5, 
and the Darknet framework built from YOLOv4-tiny implementation 
for Windows.[18] To train 3 classes, the network was constructed with 
a batch size 64 and subdivisions of 16, in addition to an image height 
and width of 416 pixels with 1 color channel, max batches of 6000, and 
24 filters for each convolutional layer sequentially before each of the  
3 YOLO layers. To increase the rate of convergence, pre-trained weights 
were used as a starting point for transfer learning. The YOLO network was 
then trained over a total of 6000 iterations and the weights saved every 
100 iterations. The curve for training loss and corresponding validation 
precision is shown in Figure S1, Supporting Information. Finally, the 
optimum network weights were converted to a TensorFlow protocol 
buffer file with both the graph definition and model weights needed to 
run detections on the local machine connected to the microscope rig.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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