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A B S T R A C T

Whether an outbreak of infectious disease is likely to grow or dissipate is determined through the time-varying
reproduction number, 𝑅𝑡. Real-time or retrospective identification of changes in 𝑅𝑡 following the imposition
or relaxation of interventions can thus contribute important evidence about disease transmission dynamics
which can inform policymaking. Here, we present a method for estimating shifts in 𝑅𝑡 within a renewal model
framework. Our method, which we call EpiCluster, is a Bayesian nonparametric model based on the Pitman–
Yor process. We assume that 𝑅𝑡 is piecewise-constant, and the incidence data and priors determine when or
whether 𝑅𝑡 should change and how many times it should do so throughout the series. We also introduce a
prior which induces sparsity over the number of changepoints. Being Bayesian, our approach yields a measure
of uncertainty in 𝑅𝑡 and its changepoints. EpiCluster is fast, straightforward to use, and we demonstrate that
it provides automated detection of rapid changes in transmission, either in real-time or retrospectively, for
synthetic data series where the 𝑅𝑡 profile is known. We illustrate the practical utility of our method by fitting
it to case data of outbreaks of COVID-19 in Australia and Hong Kong, where it finds changepoints coinciding
with the imposition of non-pharmaceutical interventions. Bayesian nonparametric methods, such as ours, allow
the volume and complexity of the data to dictate the number of parameters required to approximate the process
and should find wide application in epidemiology. This manuscript was submitted as part of a theme issue on
‘‘Modelling COVID-19 and Preparedness for Future Pandemics’’.
1. Introduction

Throughout the SARS-CoV-2 pandemic, the time-varying reproduc-
tion number,1 𝑅𝑡, has been estimated and used to gauge the effec-
tiveness of control measures (e.g. Flaxman et al., 2020; Li et al.,
2021; Parag et al., 2021; Brauner et al., 2021; meta-analysis of such
studies: Mendez-Brito et al., 2021). 𝑅𝑡 represents the average number
of secondary cases spawned by a single primary case. When 𝑅𝑡 > 1, an
outbreak is expected to grow exponentially; public health interventions
often attempt to permanently shift 𝑅𝑡 < 1 meaning an epidemic will,
in the long run, die out.

A widely used approach for estimating 𝑅𝑡 is through renewal equa-
tions which assume that future numbers of cases depend on the history
of case counts, the generation times, representing the typical timescales
between primary and secondary infections, and 𝑅𝑡 (theory: Fraser

∗ Corresponding authors.
E-mail addresses: richard.creswell@hertford.ox.ac.uk (R. Creswell), ben.c.lambert@gmail.com (B. Lambert).

1 Also known as the effective reproduction number.

(2007) and Nishiura and Chowell (2009); example software: Thomp-
son et al. (2019)). These models are typically formulated in discrete
time (usually at the daily resolution), and the dynamics are assumed
stochastic. Here, we focus on the most popular version of these models
which assume that the population is well-mixed and that there is no
demographic heterogeneity.

A variety of approaches exist for estimating 𝑅𝑡 using time se-
ries incidence data, either in real-time (i.e. using only information
up until a current time 𝑡; Cori et al., 2013; Parag, 2021) or ret-
rospectively (Wallinga and Teunis, 2004). These approaches make
diverse assumptions about the continuous structure of 𝑅𝑡: that it is
piecewise-constant within a sliding window of a given prespecified
length (Wallinga and Teunis, 2004; Thompson et al., 2019); that it
varies smoothly with the variation controlled by a Gaussian filter
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(Abbott et al., 2020; Parag, 2021); or that it is made up of an inferred
number of pieces with a single, optimal, number of pieces inferred
by considering a criterion derived from information theory (Parag and
Donnelly, 2020).

Our approach also assumes that 𝑅𝑡 is piecewise-constant, and that,
ithin each piece, the epidemic follows a standard Poisson renewal
rocess (Cori et al., 2013). We do not specify the number of pieces nor
rovide a limit on this number a priori. To do so, we use a Bayesian
odel with a Pitman–Yor process prior (Pitman and Yor, 1997) to

epresent the values of 𝑅𝑡 across any feasible number of pieces. This
rocess comes from the field of Bayesian nonparametrics—a broad class
f models where the data are modelled by a (potentially) countably
nfinite set of parameters, where the complexity of the models, indexed
y the number of parameters, increases in lockstep with the volume and
omplexity of the data (Ghahramani, 2013). Our approach, which we
all EpiCluster, avoids the need to directly specify how often and how
ast 𝑅𝑡 need change to represent a given incidence curve. Instead, the
ata and a prior jointly determine how many pieces are needed to ap-
roximate the 𝑅𝑡 curve, and, in Section 2, we introduce a default prior
eant to find a parsimonious approximation of it with few change-
oints. Our method, being Bayesian, provides a measure of uncertainty
n both the number of pieces and 𝑅𝑡 (see Fig. 1). We develop an efficient
arkov chain Monte Carlo (MCMC) inference method for fitting our
odel to incidence data using collapsed Gibbs sampling (Lambert,
018, Chapter 14), which efficiently steps between models of different
imensionalities (corresponding to different numbers of 𝑅𝑡 pieces).
e provide an open-source Python package implementing EpiCluster,
hich computes 𝑅𝑡 profiles and runs in seconds to minutes (dependent
n the length of data series and complexity of the 𝑅𝑡 profile), which is
vailable at github.com/SABS-R3-Epidemiology/epicluster.

By fitting our model to simulated data with known 𝑅𝑡 profiles (in
ection 3.1), we show that EpiCluster is adept at identifying times of
apid change in 𝑅𝑡 as may occur following the imposition of major
nd broad-scale interventions (Dehning et al., 2020; Flaxman et al.,
020; Brauner et al., 2021)—either in real-time or retrospectively. It is
ess well suited to estimate 𝑅𝑡 if it changes more gradually, and more
ppropriate methods exist for this purpose (e.g. Thompson et al., 2019;
arag, 2021). Unlike methods which directly model 𝑅𝑡 as a function of
nown intervention timings and severities (e.g. Dehning et al., 2020;
laxman et al., 2020; Brauner et al., 2021), our method is purely driven
y the incidence series. Because of this, it provides a straightforward
nd intervention-agnostic initial step for assessing the impact of inter-
entions, and similarly agnostic approaches have previously been used
n retrospective analyses of COVID-19 transmission (Parag et al., 2021).
ince it does not use additional information about interventions, our
pproach is likely to produce estimates with greater variability. But, it
equires fewer assumptions to be made, which may be beneficial, since
he assumptions around intervention timing (Soltesz et al., 2020) and
odelling details (Sharma et al., 2020) may affect estimates and their

nterpretation. In Section 3.5, we apply our framework to data from
he COVID-19 outbreaks in Australia and Hong Kong and show that it
s able to find changepoints in 𝑅𝑡 corresponding to the imposition of
nown interventions. Our method provides a tool for outbreak analysis
omplementary to existing methods and could form part of an analysis
ipeline for associating interventions with changes in transmission.

. Methods

.1. Renewal process model

We estimate instantaneous reproduction numbers and mean this when-
ver we write 𝑅𝑡. Instantaneous reproduction numbers represent the
verage number of secondary cases that would be generated by an
nfected case at time 𝑡 assuming that future transmission remains the
2

ame as at time 𝑡 (Fraser, 2007). We assume that the data consist of o
Fig. 1. Pitman–Yor based inference for the time-varying reproduction number. Panel
A represents the intrinsic assumption underpinning our method: that 𝑅𝑡 is piecewise-
constant, and the pieces are shown as different coloured bars. Panel B shows how
our nonparametric prior allows a decomposition of the time points into partitions
comprising different numbers of pieces (𝐾). Our MCMC sampler (see Algorithm 1)
explores this space over partitions efficiently, resulting in posterior uncertainty in 𝑅𝑡.
Whilst the individual samples of 𝑅𝑡 trajectories are piecewise-constant, the average
over many such trajectories is likely not to be, which is illustrated by the black point
estimate line in panel B.

a series of daily case counts2 for each day, 𝑡, from 𝑡 = 1 to 𝑡 = 𝑇 :
{𝐼𝑡}𝑇𝑡=1 and that the case counts are perfectly known. Due to the within-
and between-individual variability in rates of contact and infectivity, a
generation time distribution is used to represent the duration between the
time at which a parent case occurs and its offspring. We model the case
count 𝐼𝑡 as arising according to the Poisson renewal process:

𝐼𝑡 ∼ Pois
(

𝑅𝑡𝛬𝑡
)

, where 𝛬𝑡 =
𝑡−1
∑

𝑠=1
𝑤𝑠𝐼𝑡−𝑠, (1)

where 𝑅𝑡 ≥ 0 is the time-varying reproduction number on day 𝑡,
and 𝛬𝑡 ≥ 0 is the transmission potential. The 𝑤𝑠 terms represent the
eneration time distribution: 0 ≤ 𝜔𝑠 ≤ 1 indicates the probability
hat a primary case takes between 𝑠 − 1 and 𝑠 days to generate a

secondary case, and ∑∞
𝑠=1 𝜔𝑠 = 1. Since it is not typically possible to

know when individuals become infectious, generation times are not
directly observed, making it difficult to estimate the generation time
distribution. Here, we use the serial interval distribution in its place,
which describes the time between the onset of symptoms between a
primary and secondary cases. This is easier to estimate from infector–
infectee pairs, since it is more directly observable and has a similar
mean (Svensson, 2007), (although we recognize that it is possible to
estimate a generation time distribution with the same data used to
estimate serial intervals, by making assumptions about the duration of
the incubation period; Hart et al., 2021).

2.2. Model of changing 𝑅𝑡

2.2.1. Exchangeable partition probability functions and the Pitman-Yor
process

Here, we assume that the 𝑅𝑡 profile can be decomposed into a
number of regimes within which 𝑅𝑡 is constant. Our goal is to avoid
prespecifying the location of changepoints—representing the boundary
between two different 𝑅𝑡 regimes—nor their count, since these choices
can bias analyses, but rather to learn an appropriate configuration of
the time points into regimes using Bayesian inference. We develop a
probabilistic model of the division of the time points into regimes.

2 Technically, the renewal equation is formulated in terms of infections
ather than cases, but, since we use the serial interval distribution in place
f the generation time distribution, we keep with defining 𝐼 as a case count.
𝑡

https://github.com/SABS-R3-Epidemiology/epicluster
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To do so, we use a Pitman–Yor process (Pitman and Yor, 1997)3 to
ccount for a probabilistic decomposition of data points into clusters
nd, following (Martínez and Mena, 2014), we adjust this model to
ccount for the time series nature of our data. The remainder of this
ubsection serves as a brief review of this model, starting with a
reatment of the nonparametric clustering of unordered data points
ia exchangeable partition probability functions (EPPFs) and followed by
ppropriate modifications for the time series case (see Section 2.2.2).

In the standard clustering problem, we have a set [𝑇 ] = {1,… , 𝑇 }
(i.e., the labels of 𝑇 data points), which we would like to divide into
𝐾 mutually exclusive subsets {𝐴1,… , 𝐴𝐾} such that ∪𝑘𝐴𝑘 = [𝑇 ] where
none of the 𝐴𝑘 are empty. We denote the set of all such groupings by
[𝑇 ]; each element of [𝑇 ] is called a partition. Random variables 𝛱𝑇
taking values in [𝑇 ] are termed random partitions of [𝑇 ]. A random par-
tition has the property of exchangeability if its probability distribution
can be written as a symmetric function 𝑝 of the subset sizes, i.e.,

Prob(𝛱𝑇 = {𝐴1,… , 𝐴𝐾}) = 𝑝(𝑛1,… , 𝑛𝐾 )

where 𝑛𝑘 = |𝐴𝑘| (i.e. 𝑛𝑘 is the size of the subset, 𝐴𝑘).
Under these conditions 𝑝 is known as an EPPF. A more complete

treatment of the concept of EPPFs can be found in Pitman (2002) and
Lijoi and Prunster (2010). A fairly general EPPF, which we will employ
in this work, is derived from the Pitman–Yor process, a generalization
of the Dirichlet process (Teh, 2010). This EPPF is given by (Pitman,
2002, eq. (3.6)):

𝑝(𝑛1,… , 𝑛𝐾 |𝜃, 𝜎) =
∏𝑘−1

𝑖=1 (𝜃 + 𝑖𝜎)
(𝜃 + 1)𝑇−1↑

𝐾
∏

𝑗=1
(1 − 𝜎)𝑛𝑗−1↑, (2)

where 𝑥𝑚↑ ∶=
∏𝑚−1

𝑗=0 (𝑥 + 𝑗), and 𝜎 ∈ [0, 1) and 𝜃 > −𝜎 are the
two hyperparameters governing the process: 𝜎 is called the discount
parameter, which essentially controls how the number of regimes, 𝐾,
grows with the size of the dataset; 𝜃 is called the strength parameter
with larger values giving greater weight to series with more regimes.
In the limit 𝜎 → 0, a Pitman–Yor process becomes a Dirichlet process
which permits a slower growth (of order log 𝑇 opposed to 𝑇 𝜎 ; Pitman,
002, section 3.3) in the number of regimes with increases in data size.

.2.2. Applicability of EPPFs to time series problems
Unlike the general clustering problem, in the time series case,

he data points have an ordering which the clusters must respect.
or example, consider an incidence series of length three: (𝐼1, 𝐼2, 𝐼3).
or this series, allowable effective reproduction number allocations
nclude: {{𝐼1, 𝐼2, 𝐼3}}, where all the data points are generated from a
rocess with the same effective reproduction number: i.e. there is a
ingle regime (𝐾 = 1); {{𝐼1}, {𝐼2, 𝐼3}}, where the first data point was
enerated from a process with one effective reproduction number and
he latter two data points from a process with a different one: i.e. there
re two regimes (𝐾 = 2); {{𝐼1, 𝐼2}, {𝐼3}}, where the first two points
re grouped; and {{𝐼1}, {𝐼2}, {𝐼3}}, where each data point is generated
rom a process with a different reproduction number: i.e. there are three
egimes (𝐾 = 3).

An allocation which would be disallowed is: {{𝐼1, 𝐼3}, {𝐼2}}, where
he first and third data points come from the same process which
s distinct from that governing the second. Whilst, it is possible that
ransmission could return to a previous level, it is an assumption of
ur modelling process that only consecutive data points share the same
𝑡. By avoiding recurrence to historical regimes, we ensure that the
hangepoints identified are straightforward to interpret.

For a given EPPF, 𝑝′, we can obtain a distribution 𝑝 which is
upported only on those partitions which respect an ordering of the

3 Also known as the two-parameter Poisson–Dirichlet process.
3

labels using the following result (Martínez and Mena, 2014):

𝑝(𝑛1,… , 𝑛𝐾 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝐾!

⎛

⎜

⎜

⎝

𝑇

𝑛1,… , 𝑛𝐾

⎞

⎟

⎟

⎠

𝑝′(𝑛1,… , 𝑛𝐾 ), if allowable partitioning

0, otherwise,

(3)

here the large bracketed term indicates the multinomial coefficient.
Combining Eqs. (2) and (3), we obtain the following result for the

rior distribution on the sequence of regime sizes in the time series
ase:

(𝑛1,… , 𝑛𝐾 |𝜃, 𝜎) =
𝑇 !
𝐾!

∏𝑘−1
𝑖=1 (𝜃 + 𝑖𝜎)

(𝜃 + 1)𝑇−1↑

𝐾
∏

𝑗=1

(1 − 𝜎)𝑛𝑗−1↑
𝑛𝑗 !

. (4)

2.2.3. Hyperparameters of the process
In order to learn parsimonious assignments of the time points into

regimes, our prior, given by Eq. (4), should favour configurations
consisting of longer regimes. We favour longer regimes because they
mitigate against overfitting—for typical data, the likelihood of the
renewal process would be maximized by assigning each time point to
its own cluster with an idiosyncratic value of 𝑅𝑡; the resulting profile
of 𝑅𝑡 values will tend to be jagged and exhibit spurious fluctuations.
Additionally, longer regimes have the advantage of allowing more data
to be leveraged in order to learn more precise estimates of 𝑅𝑡. However,
by favouring longer regimes, it is possible that we miss shorter term
fluctuations in 𝑅𝑡—this is akin to the issue of choosing window lengths
for a number of existing methods (e.g. Thompson et al., 2019).

Eq. (4) induces a marginal distribution over the number of clusters
whose mean has been derived as (Pitman, 2002, eq. (3.13)):

E[𝐾] =
(𝜃 + 𝜎)𝑇 ↑

𝜎(𝜃 + 1)𝑇−1↑
− 𝜃

𝜎
, (5)

for 𝜎 ≠ 0. For small values of the hyperparameters 𝜃 and 𝜎, E[𝐾] is
ignificantly smaller than the number of time points 𝑇 (see Fig. S1),
nd the marginal distribution of 𝐾 places little weight on values of 𝐾

close to 𝑇 , thus preferring sparsity in the number of clusters. For all
results presented in this paper, we set 𝜃 = 0 and choose 𝜎 as a function
of 𝑇 such that 𝐸[𝐾] = 1.5 (with the appropriate value of 𝜎 selected by
numerical optimization of Eq. (5)); this represents a prior belief that
𝑅𝑡 is generally constant over the time series, but allows flexibility to
add clusters when the data provides evidence that they are needed.
For a time series of length 𝑇 = 100, our choice of prior hyperparameters
induces a marginal distribution over the number of clusters whose 2.5th
percentile is 1 cluster and 97.5th percentile is 4 clusters.

2.3. Marginal likelihood of the data

In this subsection, we calculate the marginal likelihood of the data
conditional on a particular arrangement of the time points into regimes,
which involves integrating out 𝑅𝑡 with respect to its prior distribution.
This marginal likelihood enables efficient inference for the posterior
distribution over regime configurations via collapsed Gibbs sampling
(see Section 2.4).

The marginal likelihood for an incidence series conditional on a
particular set of subset sizes 𝑛1,… , 𝑛𝐾 (see Section 2.2) can be written
as a product of marginal likelihoods for each regime:

𝑝(𝐼1,… , 𝐼𝑇 |𝑛1,… , 𝑛𝐾 ) =
𝐾
∏

𝑘=1
𝑘(𝐼𝑘,1,… , 𝐼𝑘,𝑛𝑘 |𝐼−𝑘), (6)

where 𝐼𝑘,𝑗 denotes the 𝑗th data point in regime 𝑘, and 𝑘 is the marginal
likelihood of the data in the 𝑘th regime, which we assume is conditional
on all cases observed prior to regime 𝑘 (denoted by 𝐼−𝑘). We derive the
regime-specific marginal likelihoods using the renewal model (Eq. (1)):

𝑘(𝐼𝑘,1,… , 𝐼𝑘,𝑛𝑘 |𝐼−𝑘) = ∫

∞
𝑝(𝑅𝑘)

𝑛𝑘
∏

Pois(𝐼𝑘,𝑗 |𝑅𝑘𝛬𝑘,𝑗 )𝑑𝑅𝑘, (7)

0 𝑗=1
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where 𝛬𝑘,𝑗 is the transmission potential calculated for the 𝑗th time point
in regime 𝑘, 𝑅𝑘 is the value of the effective reproduction number for
the 𝑘th regime, and 𝑝(𝑅𝑘) is the prior on 𝑅𝑘.

We choose a gamma distribution prior for 𝑅𝑘 with shape parameter
and rate parameter 𝛽.4 With this choice of prior, the integral in Eq.

q. (7) can be evaluated analytically, resulting in:

𝑘(𝐼𝑘,1,… , 𝐼𝑘,𝑛𝑘 |𝐼−𝑘) =
𝛽𝛼

𝛤 (𝛼)
𝛤

(

𝛼 +
𝑛𝑘
∑

𝑗=1
𝐼𝑘,𝑗

)(

𝛽 +
𝑛𝑘
∑

𝑗=1
𝛬𝑘,𝑗

)−𝛼+
∑𝑛𝑘

𝑗=1 𝐼𝑘,𝑗

×
𝑛𝑘
∏

𝑗=1

𝛬
𝐼𝑘,𝑗
𝑘,𝑗

𝐼𝑘,𝑗 !
,

here 𝛤 (⋅) is the gamma function.
Additionally, with the gamma prior on 𝑅𝑘, the posterior distribution

f each 𝑅𝑘, conditional on the data assigned to regime 𝑘, is given by
the conjugate gamma posterior (Creswell et al., 2022):

𝑝(𝑅𝑘|𝐼𝑘,1,… , 𝐼𝑘,𝑛𝑘 , 𝐼−𝑘) =

gamma(𝑅𝑘|shape = 𝛼 +
𝑛𝑘
∑

𝑗=1
𝐼𝑘,𝑗 , rate = 𝛽 +

𝑛𝑘
∑

𝑗=1
𝛬𝑘,𝑗 ). (8)

As prior hyperparameters, we select 𝛼 = 1 and 𝛽 = 0.2. With this choice,
the prior mean and standard deviation are both equal to 5. The high
standard deviation provides a relatively uninformative prior, and the
high mean ensures that the outbreak is unlikely to be determined as
under control (since >81% of prior probability is for 𝑅𝑡 > 1) unless
there is considerable evidence to suggest otherwise.

2.4. Inference

At particular values of the hyperparameters 𝜎 and 𝜃, the target
posterior of regime configurations is proportional to the product of and
Eqs. (4) and (6):

𝑝(𝑛1,… , 𝑛𝐾 |𝐼1,… , 𝐼𝑇 , 𝜎, 𝜃) ∝ 𝑝(𝐼1,… , 𝐼𝑇 |𝑛1,… , 𝑛𝐾 ) × 𝑝(𝑛1,… , 𝑛𝐾 |𝜃, 𝜎).

or brevity, we suppress the dependence on cases and hyperparam-
ters and denote the unnormalized posterior by 𝑝(𝛾𝐾 ), where 𝛾𝐾 ∶=
𝑛1,… , 𝑛𝐾 ) indicates a particular configuration of the time points into

regimes.
Inference for this posterior is performed via Markov Chain Monte

arlo (MCMC) which provides a distribution over the number of
egimes by jumping between models of different numbers of param-
ters. We use the same split-merge-shuffle structure as Martínez and
ena (2014). Each step of our MCMC algorithm is given in Algorithm

, and we now describe it.
Different configurations of the time points into regimes are explored

hrough the use of split, merge, and shuffle proposals. The split proposal
akes an existing regime and proposes to split it into two regimes at
ome randomly located changepoint. The merge proposal takes two
onsecutive regimes and proposes to merge them into one. Both of
hese proposals consider an update to the total number of regimes,
hus allowing the sampler to explore the marginal posterior distribution
ver the number of regimes. Additionally, the shuffle proposal shifts
he boundary between two consecutive regimes, thus keeping the same
umber of regimes but efficiently exploring uncertainty in the location
f a changepoint. At each iteration of the MCMC sampler, we make one
huffle proposal and randomly choose whether to make a split or merge
roposal, with the MCMC tuning parameter 𝑞 giving the probability of
aking the split proposal. For the results presented in this paper, we fix
= 0.5. The acceptance probabilities for the split, merge, and shuffle

roposals are derived in Martínez and Mena (2014) and are given by
in(1, 𝛼𝑒), with 𝑒 ∈ {split,merge, shuffle}.

4 𝑝(𝑅|𝛼, 𝛽) = 𝛽𝛼 𝑅𝛼−1𝑒−𝛽𝑅.
4

𝛤 (𝛼)
𝛼split is calculated by:

split =

⎧

⎪

⎨

⎪

⎩

(1 − 𝑞)(𝑇 − 1) 𝑝(𝛾𝐾+1)
𝑝(𝛾𝐾 ) , if 𝐾 = 1,

1−𝑞
𝑞

𝑝(𝛾𝐾+1)
𝑝(𝛾𝐾 )

𝑛splittable(𝑛𝑠−1)
𝐾 , if 𝐾 > 1,

here 𝑛splittable is the number of splittable regimes (i.e., those with more
han one time point assigned to them) in the original configuration,
nd 𝑛𝑠 is the length of the regime selected for a split; 𝛾𝐾 is the current

regime configuration, and 𝛾𝐾+1 is the split configuration.
The corresponding quantity for a merge move is given by:

𝛼merge =

⎧

⎪

⎨

⎪

⎩

𝑞
1−𝑞

𝑝(𝛾𝐾−1)
𝑝(𝛾𝐾 )

𝐾−1
𝑛∗splittable(𝑛𝑠+𝑛𝑠+1−1)

, if 𝐾 < 𝑇 ,

𝑞(𝑇 − 1) 𝑝(𝛾𝐾−1)
𝑝(𝛾𝐾 ) , if 𝐾 = 𝑇 ,

here 𝑛∗splittable is the number of splittable regimes in the proposed
onfiguration, and 𝑛𝑠 and 𝑛𝑠+1 are the sizes of the regimes which are
roposed to be merged; 𝛾𝐾−1 is the merged regime configuration.

The equivalent quantity for a shuffle move is given by:

shuffle =
𝑝(𝛾∗𝐾 )
𝑝(𝛾𝐾 )

,

where 𝛾∗𝐾 is the shuffled configuration obtained from 𝛾𝐾 as described
in Algorithm 1.

The values of 𝑅𝑡 are updated using Gibbs steps conditional on the
current regime configuration.

We run four separate MCMC chains, two initialized with all time
points assigned to a single regime (i.e. 𝐾 = 1) and the other two
initialized with all time points assigned to their own singleton regime
(i.e. with 𝐾 = 𝑇 ). We assessed convergence of our MCMC algorithm
(Algorithm 1) by monitoring convergence in 𝐾, the number of regimes.
To do so, we computed the 𝑅̂ statistic (Gelman and Rubin, 1992) and
required 𝑅̂ < 1.05. Once convergence was determined, we discarded
the first 50% of each of the MCMC chains as warm-up and combined
the rest of the samples in order to calculate posterior percentiles and
means.

Algorithm 1 One step of the MCMC sampler.
1: 𝑞 ← User specified value between 0 and 1 (MCMC tuning parameter)
2: 𝐾 ← Current number of regimes
3: for 𝑘 in 1,… , 𝐾 do ⊳ Update the 𝑅𝑡 via Gibbs steps.
4: Draw a value for 𝑅𝑡 in the 𝑘th regime from its conditional posterior,

Eq. (8).
5: end for
6: if 𝐾 = 1 then
7: 𝑞 ← 1
8: else if 𝐾 = 𝑇 then
9: 𝑞 ← 0

10: end if
11: Sp ∼ Bernoulli(𝑞) ⊳ Draw binary variable to allow random choice between

split and merge proposals.
12: if 𝑆𝑝 = 1 then ⊳ Perform a split proposal.
13: Uniformly at random propose a regime to split.
14: Uniformly at random propose an index within that regime at which to

split.
15: Accept the split regime configuration with probability 𝛼split.
16: else ⊳ Perform a merge proposal.
17: Uniformly at random propose a regime (not the last) which will be

merged with following regime.
18: Accept the merged regime configuration with probability 𝛼merge.
19: end if
20: 𝐾 ← Current number of regimes
21: if 𝐾 > 1 then ⊳ Perform a shuffle proposal.
22: Uniformly at random propose a regime 𝑗 (not the last) to shuffle.
23: Uniformly at random propose an index within either regime 𝑗 or 𝑗 + 1

to be the new changepoint between these two regimes.
24: Accept the shuffled regime configuration with probability 𝛼shuffle.
25: end if
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2.5. Comparator methods

In Section 3, we compare the posterior distribution for 𝑅𝑡 obtained
by our nonparametric method to those yielded by two comparator
methods. This first is the Cori sliding window method (Cori et al., 2013;
Thompson et al., 2019), which assumes that 𝑅𝑡 is constant over a sliding

indow of 𝜏 days looking backwards. The sliding window width has a
ignificant effect on the posterior and the effective bias–variance trade-
ff. As a result, we consider two choices of 𝜏 (7 days and 28 days)
hen applying the method to synthetic data. The second comparator is

he EpiFilter method (Parag, 2021), which applies sequential Bayesian
moothing and controls changes in 𝑅𝑡 through a random walk prior.

.6. Implementation and runtime

We implemented EpiCluster in Python 3. A Python package of the
odel, including the MCMC inference algorithm, is available at github.

om/SABS-R3-Epidemiology/epicluster, while the notebooks and data
or reproducing all results in this paper are available at github.com/
ABS-R3-Epidemiology/epicluster-results. We ran the sliding window
ethod using the branchpro Python package (Creswell et al., 2022).
e ran the EpiFilter method through R code made available through

arag (2021). Using our software library and typical consumer hard-
are (3.6 GHz CPU), EpiCluster takes from several seconds to several
inutes to learn the posterior, depending on the complexity of the
𝑡 profile. By comparison, the sliding window method and EpiFilter
ethods are effectively instantaneous to compute on the time series

tudied here.

.7. Handling imported cases

Some of the real data examples we consider (see Section 3.5) consist
f case counts in locations where a substantial proportion of the case
oads are due to imported cases. To account for this, we adapt our
enewal model using the methods described in Creswell et al. (2022). In
his approach, cases are classified as either local or imported. Local cases
{𝐼𝑡}𝑇𝑡=1 are those arising from local transmission in the spatial region
under consideration, while imported cases {𝐼 imp

𝑡 }𝑇𝑡=1 are those who
were infected elsewhere before travelling to the region. Thus, imported
cases contribute to local transmission, but did not arise from it. In
outbreaks where a significant proportion of cases are imported, distin-
guishing local from imported cases is important for accurate estimation
of 𝑅𝑡 (Roberts and Nishiura, 2011; Thompson et al., 2019). We allow
local and imported cases to have different risks of onwards transmission
by weighting the imported cases by a number 𝜖 > 0 (Creswell et al.,
022), and we set 𝜖 to appropriate values (see Section 2.8). The default
hoice of 𝜖 = 1 corresponds to an equal risk of onwards transmission
etween local and imported cases. Note, any case and any subsequent
ineages begot by an imported case are classified as local: it is only the
ate at which newly imported cases infect others which is assumed to
iffer from purely local transmission.

We adapt Eq. (1) to model the dynamics of local cases 𝐼𝑡, resulting
n:

𝑡 ∼ Pois
(

𝑅𝑡

𝑡−1
∑

𝑠=1
𝑤𝑠(𝐼𝑡−𝑠 + 𝜖𝐼 imp

𝑡−𝑠 )

)

, (9)

where 𝑅𝑡 is the effective reproduction number that characterizes local
transmission on day 𝑡. For problems where imported cases are not
considered, we use Eq. (1).

2.8. Real incidence data

We fit to real case incidence data for local and imported COVID-
19 cases for three regions: Victoria and Queensland in Australia and
5

Hong Kong. In each of these three locations, we used cases with dates
given by the date of symptom onset. We selected these regions as they
exhibit a variety of different trends in 𝑅𝑡: a gradual decrease in Victoria,
a more rapid decrease in Queensland, and a fall in 𝑅𝑡 followed by
the sudden appearance of a second wave in Hong Kong. Data for the
Australian regions were obtained from the Australian national COVID-
19 database (Price et al., 2020); data for Hong Kong were obtained
from the Hong Kong Department of Health COVID-19 database (Hong
Kong Department of Health, 2022). For the Australian states, cases of
unknown origin were assumed to be local, and in Hong Kong, all cases
other than those listed as ‘‘imported case confirmed’’ were treated as
local.

The proportion of cases whose local or imported status is unknown
varies substantially by region. For the time periods we considered, 57%
of cases in Victoria, 8% of cases in Queensland, and 20% of cases
in Hong Kong were not confirmed as either local or imported in the
datasets, and we treated them as local. This assumption, if incorrect,
would lead to upwards bias in our estimates for the reproduction
number.

We assumed 𝜖 = 1 in Eq. (9) for Victoria and Queensland; however,
or Hong Kong, transmission networks suggest that imported cases were
ignificantly less infective than local cases, so we set 𝜖 = 0.2 (Liu

et al., 2021; Creswell et al., 2022). In all three instances, we as-
sumed that under-reporting and delays were negligible given the strong
surveillance in these countries.

Generally, the relative transmissibility of imported versus domestic
cases is unknown, although methods exist for estimating this (Creswell
et al., 2022). And different assumptions made about 𝜖 affect the inferred
𝑅𝑡 series: if 𝜖 is smaller, then a higher level of local transmission
is necessary to sustain an epidemic (Creswell et al., 2022), typically
shifting the inferred 𝑅𝑡 series upwards. Since different assumptions
for 𝜖 tend to shift rather than warp the inferred 𝑅𝑡 series, we do not
consider these here, since they are unlikely to affect the position of
changepoints.

3. Results

3.1. EpiCluster reliably estimates sudden changes in 𝑅𝑡 in retrospective
analyses

To evaluate the performance of our model, we generated synthetic
incidence data using Eq. (1) where the 𝑅𝑡 profile was known (see
Fig. 2). We considered three 𝑅𝑡 profiles: one with a precipitous decline
in 𝑅𝑡 (‘‘fast drop off’’); another, with a decline in 𝑅𝑡 followed by
a later resurgence (‘‘fast resurgence’’; we included this profile since
resurgences are harder to infer than declines in transmission strength;
Parag and Donnelly, 2022); and another with a more gradual decline
in 𝑅𝑡 (‘‘slow drop off’’). The fast drop off and slow drop off time
series were initialized with 5 cases on each of three days preceding the
beginning of simulation, while the fast resurgence was initialized with
5 cases on each of fifty days preceding the beginning of simulation.
Simulations for fast drop off and slow drop off used the COVID-
19 serial interval (Nishiura et al., 2020), while the fast resurgence
used the Ebola serial interval as estimated for the 2014 West African
Outbreak (Van Kerkhove et al., 2015).

In Fig. 2, we compare 𝑅𝑡 estimates from our method with those from
two comparator methods: the sliding window method (Thompson et al.,
2019) with two different choices of the sliding window width (7 days
and 28 days), and the EpiFilter method (Parag, 2021).

Across the three 𝑅𝑡 profiles considered, the estimates from the
sliding window method lag behind the true values (Fig. 2B), since
the windows are inherently backward-looking—the longer the window
width, the longer the moving average and the slower it is to respond
to changes in 𝑅𝑡; the estimates are also very variable. The EpiFilter
method fares better and is able to reliably infer downward shifts in 𝑅𝑡
(Fig. 2C), corresponding to suppression; this method overly smooths

over the upward tick in transmission in the fast resurgence example.

https://github.com/SABS-R3-Epidemiology/epicluster
https://github.com/SABS-R3-Epidemiology/epicluster
https://github.com/SABS-R3-Epidemiology/epicluster
https://github.com/SABS-R3-Epidemiology/epicluster-results
https://github.com/SABS-R3-Epidemiology/epicluster-results
https://github.com/SABS-R3-Epidemiology/epicluster-results
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Fig. 2. Recovering synthetic 𝑅𝑡 profiles in retrospective analyses. We generated synthetic case data (panel A) using the Poisson renewal model (Eq. (1)) with three prespecified
profiles for 𝑅𝑡 (dashed red lines in panels B/C/D). In panel B, we show the inferred 𝑅𝑡 profile using a sliding window method (Thompson et al., 2019) for two different choices
of the sliding window size (𝜏 = 7 and 28 days). In panel C, we show the inferred 𝑅𝑡 profile using the EpiFilter method (Parag, 2021). In panel D, we show the inference results
when using EpiCluster to recover 𝑅𝑡. In panels B, C and D, shaded regions indicate the central 90% of the posterior distribution of 𝑅𝑡, while the central line indicates the posterior

ean, and the background grey line indicates 𝑅𝑡 = 1.
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ur method performs favourably in the two ‘‘fast’’ examples (Fig. 2D).
ike the EpiFilter method, our approach is less able to infer resurgence
han suppression (Parag and Donnelly, 2022). In the slow drop off ex-
mple, our piecewise-constant method approximates the linear decline
n 𝑅𝑡 with a staircase-like profile, which is better estimated by EpiFilter.
n Figure S2, we show the effect of changing the hyperparameters of our
ethod on inference for the slow drop off example on the number and

ocation of the regimes which are learned. As the two hyperparameters,
and 𝜎 increase, more weight is given to a partitioning consisting of
ore regimes (see also Figure S1), and the staircase steps become finer.

To account for stochastic variation in the synthetic data generation,
e repeated inference for the fast resurgence example 10 times (Fig.
3). For the three methods, the posterior means are qualitatively sim-
lar across all runs, suggesting that these results are consistent across
ifferent realizations of the renewal process.

In the fast drop off and fast resurgence examples, EpiCluster esti-
ates 𝑅𝑡 with low bias and high precision. This is because the 𝑅𝑡 pro-

iles in the simulated examples align well with the assumptions made
6

n our modelling: namely, that the 𝑅𝑡 profile is piecewise-constant. We
ow consider 𝑅𝑡 profiles with notable deviations from this assumption.
n Fig. 3, we compare the same methods on both noisy (left and
iddle columns) and oscillatory 𝑅𝑡 profiles. When the magnitude of the
oise is low (left column), the results mirror those from the previous
xample. When the noise level increases (middle column), all methods
re late to predict the precipitous decline in 𝑅𝑡, and EpiFilter provides
better quantification of uncertainty than the nonparametric model.

or the sinusoid example (right column), EpiFilter performs best, since
he assumptions underpinning that method—that 𝑅𝑡 follows a random
alk—are closer to the reality of the generated data.

To evaluate the comparative inference performance of the methods
uantitatively, for each 𝑅𝑡 profile studied in Figs. 2 and 3, we repeated

the generation of synthetic data 100 times and studied the distributions
of mean squared error (MSE) between the inferred posterior mean
of 𝑅𝑡 and the true 𝑅𝑡 profile for each method. These distributions
of MSE values, estimated via kernel density estimation, are shown
in Figure S7. For the majority of the examples, EpiCluster tended to
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Fig. 3. Recovering noisy and oscillatory 𝑅𝑡 profiles in retrospective analyses. We generated synthetic case data (panel A) using the Poisson renewal model with three prespecified
rofiles for 𝑅𝑡 (dashed red lines in panels B/C/D). The 𝑅𝑡 profiles were calculated using step functions with additive i.i.d. Gaussian noise of standard deviation 0.025 (left) and
.1 (middle). In the right column, we show results when 𝑅𝑡 follows a sine wave. In panel B, we show the inferred 𝑅𝑡 profile using a sliding window method (Thompson et al.,
019) for two different choices of the sliding window size (𝜏 = 7 and 28 days). In panel C, we show the inferred 𝑅𝑡 profile using the EpiFilter method (Parag, 2021). In panel D,
e show the inference results when using EpiCluster to recover 𝑅𝑡. In panels B, C and D, shaded regions indicate the central 90% of the posterior distribution of 𝑅𝑡, while the
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roduce 𝑅𝑡 estimates with the lowest MSE values followed by EpiFilter,
ith the sliding window methods performing worse. On the sinusoid
xample (Fig. 3, right column), EpiFilter achieves lower MSE values
han EpiCluster, presumably because the changes in 𝑅𝑡 were more
radual in this case.

.2. EpiCluster is effective at detecting sharp changes in transmission in
eal-time

The results thus far have considered retrospective analysis of out-
reaks; these analyses are important for understanding the timing and
mpact of interventions following their imposition (e.g. Flaxman et al.
2020) and Brauner et al. (2021)). But, in unfolding epidemics of novel
athogens, it is crucial to know in as close to real time as data allows
7

u

hether transmission changes rapidly either after an intervention is in-
tituted or after it is discontinued. In this section, we compare how the
hree 𝑅𝑡 estimation methods fared in inferring an epidemic resurgence
n real-time: as new case data becomes available subsequent to a jump
pwards in transmission. We used the same fast resurgence data as in
ig. 2 and fit each method for a series of datasets of different lengths.
ach of these datasets began at the same point (at 𝑡 = 0); the datasets
nded at different points. The endpoints ranged from 5 days to 35 days
ost-resurgence with gaps of 5 days between them.

The posterior means of the inferred 𝑅𝑡 series are shown in Fig. 4,
hile the full posteriors are shown in Fig. S4. The results illustrate that
ll three methods needed considerable data post resurgence to infer
hanges in transmission. For each series, EpiCluster generally fared best
n inferring the timing and magnitude of resurgence, with the posterior
ncertainty interval reliably including the true 𝑅 profile.
𝑡
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Fig. 4. Real-time estimation of a resurgence in 𝑅𝑡. We used the same fast resurgence synthetic data from Fig. 2 and performed inference for 𝑅𝑡 based only on the time series up
till the number of days after the resurgence indicated in the legend. In the left panel, we show the mean inferred 𝑅𝑡 profile using the EpiFilter method (Parag, 2021). In the right
panel, we show the results when using EpiCluster to recover the mean of 𝑅𝑡. The background grey line indicates 𝑅𝑡 = 1.
.3. Data generating processes with greater variability pose issues for all
ethods and EpiFilter generally performs best

Variation in transmissibility across different individuals within a
opulation can lead to greater variation in cases than is accounted for
y a Poisson renewal model, and each pathogen exists on a spectrum
f dictating the degree of overdisperseness (Lloyd-Smith et al., 2005):
ARS, for example, is prone to many superspreading events (Shen et al.,
004); whereas pneumonic plague exhibits less variation in offspring
ases (Lloyd-Smith et al., 2005).

To study the robustness of EpiCluster under more variable data
enerating processes, we generated data using the fast drop off 𝑅𝑡

profile and a negative binomial (NB) renewal model with inverse-
dispersion parameter 𝜅 > 0: as 𝜅 → ∞, the NB model approaches
the Poisson. So low values of 𝜅 correspond to more overdispersed
data. Using the fast drop off 𝑅𝑡 profile, we generated case data under
different values of 𝜅, and, for each series, we fit the sliding window,
EpiFilter and EpiCluster methods.

The results are shown in Fig. S5. When 𝜅 is large (i.e. the data are
effectively generated from a Poisson distribution), the results match
those observed in Fig. 3. As the data generating process exhibits more
variation, all methods perform worse: generally failing to correctly
identify the change in 𝑅𝑡 and inferring a highly noisy 𝑅𝑡 profile with
many spurious fluctuations. However, the sliding window and EpiFilter
8

methods generally produced more robust estimates in the presence of
strong overdispersion.

3.4. EpiCluster estimates sharp changes in 𝑅𝑡 for real COVID-19 incidence
curves

Next, we performed retrospective inference of 𝑅𝑡 for the early
COVID-19 outbreaks in three selected regions: Victoria and Queens-
land, Australia, and Hong Kong (see 2.8), which were selected for
the variety of transmission profiles they encompass. The 𝑅𝑡 estimates
for these regions are shown in Fig. 5, again comparing the sliding
window approach (panel B) with the EpiFilter approach (panel C) and
EpiCluster (panel D).

The first case of COVID-19 in Australia was reported in Victoria
state on 25th January 2020 (Storen and Corrigan, 2020). Subsequently,
Victoria quickly became a hub of transmission and declared a state of
emergency on 16th March, including a ban on non-essential gatherings
of over 500 people (Storen and Corrigan, 2020). On 18th March, more
restrictions on movement followed with indoor public gatherings of
more than 100 people banned and restrictions in aged care facilities
introduced across Australia (Storen and Corrigan, 2020). On the 22nd
March, the state Premier announced that Victoria would implement
a shutdown of all non-essential activity across the state (Storen and
Corrigan, 2020). The sliding window approach (Fig. 5B) and EpiFilter
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(Fig. 5C) both estimated declines in transmission starting around 22nd
March; EpiCluster infers a sharper decline around 25th March. All
methods inferred that transmission subsequently remained below the
level for sustained transmission, apart from an uptick in transmission
estimated from EpiCluster coinciding with a burst of cases around 10th
April, which likely reflects a violation of the assumptions of the model.

The first case of COVID-19 in Queensland, Australia occurred on
29th January 2020 (Storen and Corrigan, 2020), and the first wave
began in early March. All three estimation methods inferred that,
since imported cases were the dominant cause of the wave, there
was relatively low community transmission, and the bulk of local 𝑅𝑡
estimates were below 1 (Fig. 5). All methods inferred a decline in
transmission beginning around the 16th March—the date when Victoria
declared a state of emergency, and Australia introduced a self-isolation
requirement for all international arrivals—and EpiCluster estimated a
rapid decline on 17th March. To combat the insurgence of imported
cases, the Queensland Premier announced that the state would restrict
access to the border on 24th March: this included termination of all
rail services and border road closures (Storen and Corrigan, 2020), and
EpiCluster inferred a small decline occurring on this date.

Hong Kong, like Singapore and Taiwan, was quick to act on learning
of the outbreak of COVID-19 in Wuhan, China, and the government
enacted intensive surveillance campaigns and declared a state of emer-
gency on 25th January, 2020 (Cowling et al., 2020, Fig. 1). On the
7th February 2020, Hong Kong introduced prison sentences for anyone
breaching quarantine rules (OT&P Healthcare, 2022). This date broadly
coincides with the decline in 𝑅𝑡 detected across all three methods, and
he decline detected by EpiCluster is especially rapid.

Hong Kong’s second wave of COVID-19 began in March 2020 driven
y imported cases from North America and Europe (Parag et al., 2021),
nd all three methods detect an increase in the local 𝑅𝑡 shortly after
5th March. Policy responses to this wave by the Hong Kong gov-
rnment included a quarantine requirement on international arrivals
effective 19th March; Xinhua News Agency, 2020) a ban on foreign
ravellers (effective 25th March; OT&P Healthcare, 2022) and a ban
n gatherings of more than four people (effective 27th March; OT&P
ealthcare, 2022); a significant decrease in 𝑅𝑡 is detected by all three
ethods around the times when these interventions were imposed.
he EpiCluster results mirror the timing of this intervention most
losely, suggesting that there was a short time lag between when the
nterventions were imposed and their effect.

To explore the sensitivity of our estimates for Hong Kong to the
yperparameters of the method, we performed a series of sensitivity
nalyses where these parameters were fixed at different values and
nference was performed (Fig. S6). These experiments illustrate that, as
ither of the hyperparameters are increased, the 𝑅𝑡 profile comprises
greater number of regimes, and there is greater uncertainty in the
𝑡 estimates. The qualitative behaviour of the majority of estimates,
owever, remains the same, with a large decline in transmission around
th February 2020 and a resurgence in mid March.

.5. EpiCluster estimates sharp changes in 𝑅𝑡 for other disease outbreaks

To study the applicability of EpiCluster to infectious diseases other
han COVID-19, we applied the method to several outbreaks: the 1972
mallpox outbreak in Yugoslavia, the 1861 Measles outbreak in Hag-
lloch, Germany, and the 2003 SARS outbreak; these datasets were
btained from the EpiEstim package (Cori et al., 2013). These results
re shown in Fig. 6 and show 𝑅𝑡 estimates excluding an initial pe-
iod when cases are low, since these early data are more likely to
e unreliable due to data limitations (the full inference results for
hese outbreaks, including time periods of very low incidence where
piCluster learns 𝑅𝑡 posteriors with high variance, are shown in Figure
8). In all three outbreaks, EpiFilter learns the smoothest 𝑅𝑡 profile,
hile EpiCluster infers a more jagged 𝑅𝑡 series with high uncertainty
9

nd larger, rapid fluctuations in the value of the effective reproduction l
umber. For SARS, the large variation in 𝑅𝑡 inferred by EpiCluster is
lmost certainly due to the model’s assumptions being violated, and we
eturn to this point in the discussion. For these outbreaks, the sliding
indow method (Thompson et al., 2019) learns an 𝑅𝑡 which resembles

the results from EpiCluster but typically with smaller and smoother
fluctuations in the value of 𝑅𝑡.

4. Discussion

The time-varying reproduction number, 𝑅𝑡, is a threshold metric for
acilitating decision making during epidemics. But, there is also value
n using 𝑅𝑡 estimates to retrospectively assess whether the imposition
f interventions caused substantive and rapid reductions in transmis-
ion (e.g. Dehning et al., 2020; Flaxman et al., 2020). It is especially key
o determine the timing of these reductions, since delays in imposition
f interventions can substantially worsen outcomes, particularly during
he growth of an epidemic (Pei et al., 2020). Here, we present a
eneral Bayesian inference method using Pitman–Yor process priors
hich allows any feasible number of changepoints in transmission, and
e provide a choice of hyperparameters (see Section 2.2.3), such that,
priori, 𝑅𝑡 is assumed to remain relatively stable. Through simulated

ata examples, we show that the method is adept at estimating sharp
hanges in transmission: in both retrospective and real-time analyses.
y fitting the model to real data from COVID-19 outbreaks, we infer
iscontinuous declines in transmission at times which broadly coincide
ith the imposition of interventions. The method allows effectively
utomated detection of changepoints in transmission and could be
dapted to handle different types of models in epidemiology and, more
enerally, provides a framework for handling time-varying parameters.

The information available to estimate 𝑅𝑡 changes throughout an
pidemic: at the start, there is scant information, and estimates have
igh uncertainty; when an epidemic is brought under control, cases are
nitially higher, providing more information of changes in transmission;
nd resurgences qualitatively mirror the conditions at the start of an
pidemic meaning 𝑅𝑡 has greater uncertainty (Parag and Donnelly,
022). Priors thus affect estimates differently at different stages dur-
ng an epidemic and, by extension, variously for different types of
pidemic. The fits of our model and the two comparator methods to
OVID-19 case data demonstrate the strong information introduced
y the priors. This makes sensitivity analyses particularly important,
ince no one prior choice satisfies all parties for all situations, and we
ecommend that, when using EpiCluster in practice, results from it be
resented alongside those from existing approaches. We assume that 𝑅𝑡
s piecewise-constant with transmission changing discontinuously with
he number of pieces and location of breakpoints controlled through a
itman–Yor process. If transmission changes more gradually, such as
ay occur during incremental relaxation of NPIs, these assumptions

re inappropriate, and a model which allows a more gradual change
n 𝑅𝑡 will perform better (e.g. EpiFilter; Parag, 2021). Similarly, if the
odel mischaracterizes the data generating process, for example, by

ssuming that there are no substantial differences in transmissibility
cross individuals, estimates will also be poor (Fig. S5). Because of
his, it is possible that the sharp changes in COVID-19 transmission
dentified by EpiCluster for the three locations considered (Fig. 5)
eflected violations in the model’s assumptions, and future work is to
dapt our framework to handle such processes. The rapid fluctuations
n 𝑅𝑡 learned by EpiCluster for the non-COVID outbreaks (Fig. 6)
imilarly may reflect the inaccuracy of the Poisson distribution under-
ying our renewal model, rather than genuine changes in the value of
𝑡. Smallpox, measles, and SARS are all characterized by significant
ariation in the reproductive number from individual to individual,
nd this effect is most pronounced for SARS (Lloyd-Smith et al., 2005),
hich may partly explain why EpiCluster estimated particularly jagged
𝑡 profiles for this disease outbreak.

Thus, an important extension to our framework would be to al-

ow an overdispersed renewal model, such as that given by using
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Fig. 5. Learning 𝑅𝑡 from early COVID-19 epidemic incidence curves in three locations. Data on local and imported cases from the early COVID-19 pandemic in three selected
egions is shown in panel A. In panel B, we show the inferred 𝑅𝑡 profile using a sliding window method (Thompson et al., 2019) for two different choices of the sliding window
ize (𝜏 = 7 and 28 days). In panel C, we show the inferred 𝑅𝑡 profile using the EpiFilter method (Parag, 2021). In panel D, we show the inference results when using EpiCluster to
ecover 𝑅𝑡. In panels B, C and D, shaded regions indicate the central 90% of the posterior distribution of 𝑅𝑡, while the central line indicates the posterior mean, and the background
rey line indicates 𝑅𝑡 = 1. Vertical dotted lines indicate policy-relevant dates. For Victoria: 1: ban on non-essential gatherings of over 500 people; 2: movement restrictions and
an on indoor gatherings of over 100 people; 3: shutdown of all non-essential activity. Queensland: 1: border restrictions and termination of rail services. Hong Kong: 1: state of
mergency declared; 2: prison sentences introduced for those breaking quarantine; 3: compulsory quarantine of all arrivals; 4: ban on foreign travellers; 5: ban on gatherings over
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negative binomial distribution in place of the Poisson. However,
uch an extension would make inference for our framework slower
nd more challenging, as the analytical integrability of the marginal
ikelihood, which enables fast collapsed Gibbs sampling for the cluster
onfigurations (Section 2.3), depends on the Poisson likelihood. We
id not consider reporting issues here, and these would likely also
ntroduce biases (Gostic et al., 2020; Pitzer et al., 2021). In particular,
he available incidence data indicates when cases were reported, but
his is likely to be several days after the actual transmission event due to
elays in symptom onset and reporting. Various techniques can be used
o attempt to correct 𝑅𝑡 estimates for these factors (Gostic et al., 2020),
nd these could be incorporated into our framework for 𝑅𝑡 inference.
ithout such corrections, it is possible that our estimated changepoints

n COVID-19 transmission may deviate by several days from the true
ates when changes occurred.

The Pitman–Yor process is an example from a broad class of models
rom Bayesian nonparametrics where the complexity of the models
rows along with the volume and complexity of the data (Ghahramani,
013). Gaussian processes belong also to this class (Rasmussen, 2003)
nd have found wide application across epidemiology, notably for
roducing geostatistical maps of disease prevalence for illnesses such
s malaria (Bhatt et al., 2015). More data and data of greater variety
10
nd complexity are being routinely collected in epidemiological surveil-
ance, and there is a host of Bayesian nonparametric models (e.g. those
escribed in Griffiths and Ghahramani, 2011; Ghahramani, 2013),
hich are well-placed for their analysis.

Across epidemiology, discretely sampled data are used to infer
ontinuous-time parameters, such as the time-varying reproduction
umber, 𝑅𝑡 in outbreak analysis, the effective population size in phy-
ogenetic Skyline models (Pybus et al., 2000) and the historical force
f infection in catalytic models (Muench, 2013). In any of these cases,
ransmission can change abruptly, and a model such as ours could be
sed to identify periods of rapid change.
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