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Use of Clinical Pathway Simulation and Machine 
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the Benefit of Intravenous Thrombolysis in Acute 
Stroke
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Thomas  Monks , PhD; Richard Everson , PhD; Ken Stein , MD; Martin James , MD

BACKGROUND: Expert opinion is that about 20% of emergency stroke patients should receive thrombolysis. Currently, 11% 
to 12% of patients in England and Wales receive thrombolysis, ranging from 2% to 24% between hospitals. The aim of this 
study was to assess how much variation is due to differences in local patient populations, and how much is due to differences 
in clinical decision-making and stroke pathway performance, while estimating a realistic target thrombolysis use.

METHODS: Anonymised data for 246 676 emergency stroke admissions to 132 acute hospitals in England and Wales 
between 2016 and 2018 was obtained from the Sentinel Stroke National Audit Programme data. We used machine 
learning to learn decisions on who to give thrombolysis to at each hospital. We used clinical pathway simulation to model 
effects of changing pathway performance. Qualitative research was used to assess clinician attitudes to these methods. 
Three changes were modeled: (1) arrival-to-treatment in 30 minutes, (2) proportion of patients with determined stroke 
onset times set to at least the national upper quartile, (3) thrombolysis decisions made based on majority vote of a 
benchmark set of hospitals.

RESULTS: Of the modeled changes, any single change was predicted to increase national thrombolysis use from 11.6% to 
between 12.3% to 14.5% (clinical decision-making having the most effect). Combined, these changes would be expected 
to increase thrombolysis to 18.3%, but there would still be significant variation between hospitals depending on local patient 
population. Clinicians engaged well with the modeling, but those from hospitals with lower thrombolysis use were most 
cautious about the methods.

CONCLUSIONS: Machine learning and clinical pathway simulation may be applied at scale to national stroke audit data, allowing 
extended use and analysis of audit data. Stroke thrombolysis rates of at least 18% look achievable in England and Wales, 
but each hospital should have its own target.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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For ischemic strokes, thrombolysis is an effective treat-
ment for the management of acute stroke if given 
soon after stroke onset1 and is recommended for use 

in many parts of the world including the United States 
and Europe. In the 2019 to 2020 stroke national audit of 

England and Wales,2 thrombolysis use was 11.7% over-
all, with use by individual hospitals ranging from 4.3 to 
28.1%. Similar overall rates are observed in the United 
States. Between 2012 and 2018, thrombolysis use in the 
United States increased from 6.3% to 11.8%,3 and rates 
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of about 11.5% have been maintained since, including 
through to June 2020 during the COVID pandemic.4

See related article, p XXX

The use of targets for thrombolysis varies across the 
world. The European Stroke Organisation has prepared a 
European Stroke Action Plan5 and has suggested a Euro-
pean target of at least 15% thrombolysis, with median 
onset-to-needle (also known as onset-to-treatment) times 
of <120 minutes, noting that evidence suggests that 
achieving these targets may be aided by centralization 
of stroke services.6,7 In the United Kingdom, the National 
Health Service (NHS) long-term plan includes a target of 
20% of emergency stroke admissions being treated with 
thrombolysis,8 and this is reflected by the NHS Sentinel 
Stroke National Audit Programme (SSNAP) which moni-
tors stroke care in the United Kingdom (excluding Scot-
land).9 There are no overall targets for thrombolysis use 
in the United States but the Get With The Guidelines–
stroke’ programme10 from the American Heart Associa-
tion provides a quality improvement tool for hospitals which 
includes monitoring tools for thrombolysis use and targets 
such as door-to-needle in 60 minutes. Although there 
are no specific targets for thrombolysis use in the United 
States, there have been considerable efforts to improve 
use and speed of thrombolysis, such as combining expert 
telemedicine consultation with the use of the Helsinki 
model for streaming the thrombolysis pathway.11

An analysis of the IST-3 trial (The Third International 
Stroke Trial) for thrombolysis concluded that 60% of 
ischemic stroke patients arriving within 4 hours of known 
stroke onset were suitable for thrombolysis.12 Assuming 
40% of patients arrive within 4 hours of known stroke 
onset, and assuming 85% of stroke is ischemic, this 
gives a potential target of 20% thrombolysis (in 2016–
2018 in England and Wales, 37% of emergency stroke 
patients arrived within 4 hours of known stroke onset; 
see results section of this report).

There is, therefore, still a gap between clinical expert 
opinion and analysis on target use of thrombolysis, and 
actual use of thrombolysis.

In work described here, we use machine learning and 
clinical pathway simulation to ask a series of “what if?” 
questions about the thrombolysis pathway at each hospi-
tal—examining the effect of changing pathway speed or 
adopting the clinical decision-making of other hospitals. 
By examining these scenarios, we can produce a realistic 

target thrombolysis use, and resulting clinical benefit, for 
each hospital based on the hospital’s own emergency 
stroke admissions population. We also used qualitative 
research to understand the potential influence these 
modeling outputs can have on clinicians, with the aim to 
best support the maximal appropriate use of thromboly-
sis and reduce unnecessary variation. Although this work 
focuses on England and Wales, the methodology should 
be applicable to other geographies.

METHODS
Original data for this project cannot be shared, but all analy-
sis code and results may be found in an accompanying online 
book https://samuel-book.github.io/samuel-1 (doi: 10.5281/
zenodo.5078131).

The Supplemental Material contains more detail on data 
access (section 1), data fields (section 2), machine learning 
(section 3), and clinical pathway simulation (section 4). We 
followed the Turing Way13 for this work‚ and have made avail-
able all of the detailed methodology‚ code‚ and results (see 
the accompanying online book). The Supplemental Material 
and accompanying online book adhere to the STRESS guide-
lines (Strengthening the Reporting of Empirical Simulation 
Studies) for reporting simulation studies14 and reporting of 
the machine learning models followed the TRIPOD guide-
lines (Transparent Reporting of a Multivariable Prediction Model 
for Individual Prognosis or Diagnosis).15

Data
Data were obtained from the SSNAP‚ managed through the 
Healthcare Quality Improvement Partnership. SSNAP has 
near-complete coverage of all acute stroke admissions in the 
United Kingdom (outside Scotland). All hospitals admitting 
acute stroke participate in the audit, and year-on-year com-
parison with Hospital Episode Statistics confirms estimated 
case ascertainment of 95% of coded cases of acute stroke. 
The NHS Health Research Authority decision tool was used 
to confirm that ethical approval was not required to access the 
data. Data access was authorized by the UK Healthcare Quality 
Improvement Partnership (reference HQIP303).

Data were retrieved for 246 676 emergency stroke admis-
sions to acute hospitals in England and Wales between 2016 
and 2018 (3 full years). The 62 features retrieved for each 
patient are given in the Supplemental Material.

Analysis Environment
All analysis code was written in Python 3.8. Data manipula-
tion, simulation, and general mathematical modeling were done 
using NumPy16 v1.19 and Pandas17 v1.2.0. Machine learning 
libraries used were Tensorflow18 v2.2.6, Scikit-Learn19 v0.23.2, 
Seriate v.1.1.2. All charts were produced with MatPlotLib20 
v3.3.2. All analyses were conducted in Jupyter-Lab21 v 2.2.6.

Machine Learning
Machine learning models were trained to predict whether 
a patient would receive thrombolysis or not at each hospital. 
Patients for machine learning prediction were restricted to 

Nonstandard Abbreviations and Acronyms

SSNAP  Sentinel Stroke National Audit 
Programme
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those arriving within 4 hours of known stroke onset. Machine 
learning models were built either for individual hospitals or 
were built to model all hospitals simultaneously with hospitals 
as a feature. Accuracy was measured using stratified k-fold 
cross-validation. Two main accuracy measures are reported: % 
accuracy (the percentage of predictions that were correct) and 
receiver operator characteristic area under the curve. We also 
report the highest value of sensitivity and specificity that may 
be achieved together (the point where sensitivity and specificity 
curves cross each other as classification threshold is adjusted).

A total of 51 features for pseudonymized patients were 
extracted from SSNAP for the machine learning. These cov-
ered a pseudonymized hospital ID‚ patient characteristics (eg, 
age band, gender ethnicity); pathway information (eg, onset 
to arrival minutes, onset known or unknown, mode of arrival, 
door-to-needle time); patient comorbidities (eg, hypertension, 
prestroke diabetes, anticoagulant history); National Institutes 
of Health Stroke Scale; other clinical features (eg, stroke type, 
transient ischemic attack in the last month); if thrombolysis was 
given; and reasons for not giving thrombolysis (eg, age, comor-
bidity, time, onset time unknown). No feature directly informing 
whether thrombolysis was given (such as reasons for not giving 
thrombolysis) was used. The full list of features and descrip-
tions can be found in the Supplemental Material.

We report on logistic regression, random forest, and 
neural network models, as described in more detail in the 
Supplemental Material. Subsequent work uses hospital-based 
random forest models. We chose these models due to their 
good performance, easier explainability to clinicians, and strong 
hospital independence.

A benchmark set of hospitals was identified by passing the 
same cohort of 10k patients through all hospital models (this 
cohort was not used in training of the hospital models). The 30 
hospitals with the highest predicted thrombolysis use in this 
cohort of patients were identified as benchmark hospitals. All 
hospitals’ patients were passed through this cohort of 30 hos-
pitals to predict thrombolysis use (yes or no) at each bench-
mark hospital. A majority vote was used to classify a patient as 
“would receive thrombolysis.”

Clinical Pathway Simulation
Hyperacute stroke pathways are subject to variation in onset to 
arrival times, scanning, clinical decision-making, and other fac-
tors. We captured this variation using a Monte Carlo simulation 
model of the clinical pathway. The clinical pathway simulation 
is based on passing individual virtual patients through a stroke 
pathway. Each scenario passes ≈8 million patients through the 
model (100 years of patients through each hospital). To attain 

the required speed, the pathway simulation was coded using 
NumPy arrays in Python. Baseline process times (onset to 
arrival, time to scan, time from scan to treatment) and whether 
stroke onset time is determined were based on distributions 
fitted to each hospital’s data. The proportion of patients with 
known stroke onset was taken from the hospital’s own data. 
Likelihood to receive thrombolysis if scanned with time to treat 
in the baseline model was taken from the proportion of patients 
who were scanned within 4 hours of known stroke onset at 
each hospital.

Key process steps in the pathway are shown in Figure 1. 
Patients could leave the pathway at each step if their pathway 
durations exceed the permitted time limits or they become ineli-
gible for treatment. Only patients that satisfied all restrictions 
continued along the full length of the pathway and received 
thrombolysis. The outcome was then calculated as a prob-
ability of having a good outcome of modified Rankin Scale 
(mRS) score of 0 to 1. If the patient did not receive throm-
bolysis the probability of a good outcome was the baseline  
nonthrombolysed probability of a good outcome in the popula-
tion age group (aged under 80 years or aged 80+ years). If the 
patient received thrombolysis‚ then the probability of a good 
outcome was based on age group and time to treatment using 
our previously published method.22

Three alternative “what if?” scenarios were investigated for 
each hospital:

1. Base: Uses the hospitals’ recorded pathway statistics in 
SSNAP.

2. Speed: Sets 95% of patients having a scan within 4 hours 
of arrival, and all patients have 15 minutes arrival-to-scan 
time and 15 minutes scan-to-needle time.

3. Onset-known: Sets the proportion of patients with a 
known stroke onset time to the national upper quartile 
if currently less than the national upper quartile (leave 
any greater than the upper national quartile at their cur-
rent level).

4. Benchmark: The benchmark thrombolysis rate takes 
the likelihood to give thrombolysis for patients scanned 
within 4 hours of onset from the majority vote of the 30 
hospitals with the highest predicted thrombolysis use in 
a standard 10k cohort set of patients. These are from 
hospital-based random forest models.

Qualitative Research
The overall objective of the qualitative research was to under-
stand influence of modeling, including the use of machine learn-
ing techniques, in the context of the national audit, to support 
efforts to maximize the appropriate use of thrombolysis and 

Figure 1. Schematic representation of the stroke pathway as simplified for the simulation.
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reduce unwarranted variation. This was performed by a mixture 
of face-to-face or remote semi-structured interviews with 19 
clinicians (18 medics and one specialist stroke nurse) either in 
groups or individually. Participants were chosen from hospitals 
with a range in current thrombolysis use (we sampled equally 
from tertiles of thrombolysis use: <9.0%, 9.0 to 13.9%, and 
14% and above). All data were anonymized. Ethical approval 
was provided by the UK Health Research Authority and Health 
and Care Research Wales 19/HRA/5796. A framework analy-
sis of the transcripts was performed with 4 broad objectives:

1. Explore current understanding and rationale for the use 
of thrombolysis for ischemic stroke, to establish reasons 
for the variance in the use and speed of thrombolysis.

2. Understand physician perspectives on simulation and 
machine learning feedback, to influence how simulation 
can be incorporated into the SSNAP to have a positive 
impact on practice.

3. Identify potential routes for the implementation of 
machine learning feedback, to inform and improve future 
stroke management.

4. Explore how physicians interpret the potential conse-
quences of following changes in pathway suggested by 
simulation.

(See Supplemental Material section 5 for further methodologi-
cal details).

RESULTS
Machine Learning
The Table shows the accuracy of machine learning 
models. Models ranged from 81% to 86% accuracy 
depending on model type. The model with the highest 
accuracy, by a small margin, was a neural network using 
embedding layers for hospital ID, clinical features of the 
patients, and pathway timings. For the remaining experi-
ments‚ we used hospital-level random forest models 
(with 84.3% accuracy). These models have slightly lower 
accuracy than other models but have easier explainabil-
ity and strong hospital independence. Learning curves 
suggested that the accuracy of the hospital-level ran-
dom forest models was limited a little by the data size 
available for each hospital. Although overall accuracy 
was 84.3%, accuracy reached about 83% with a training 

set size of at least 500 cases per hospital and dropped 
below 80% with a training set size of fewer than 125 
cases per hospital. Forty-eight percent of hospitals had 
a training set size of at least 500, and 97% had a train-
ing set size of at least 125.

The predicted thrombolysis use at each hospital 
according to the majority vote of 30 benchmark hospi-
tal clinical decision models is shown in Figure 2. When 
results are weighted by the number of patients attending 
each hospital, using the benchmark hospital models to 
decide if a patient would receive thrombolysis, national 
thrombolysis use would increase from 29.5% to 36.9% 
of patients arriving within 4 hours of known stroke onset.

When comparing decisions for the 10k cohort pre-
dicted by the model, we found that overall, 78% of 
patients would have a treatment decision agreed by 80% 
of hospitals. However, there was more agreement around 
those not to give thrombolysis than those who received 
thrombolysis: of those who were not given thrombolysis, 
85% had agreement by 80% of hospitals, whereas of 
those who were given thrombolysis, 60% had agreement 
by 80% hospitals.

Clinical Pathway Simulation
The pathway model reliably replicated the thrombolysis 
use in hospitals (Figure 3). Predicted thrombolysis use 
correlated with actual thrombolysis use with an R-squared 
of 0.979. The mean thrombolysis use (averaged at hos-
pital level, weighting all hospitals equally) was 11.45% 
in the observed data, and 11.23% in the pathway model 
output. The mean difference in thrombolysis use between 
predicted and actual was 0.22 percentage points. The 
mean absolute difference in thrombolysis use between 
predicted and actual was 0.52 percentage points.

Figure 4 shows the overall net effect of separate 
and combined changes to the stroke pathway. The 
pathway simulation suggests that thrombolysis use 
could potentially be increased from 11.6% to 18.3% 
of all emergency admissions, and the clinical benefit 
increased from 9.4 to 17.6 additional good outcomes 
per 1k admissions. The main drivers in improvement 

Table. Machine Learning Accuracy

Model Accuracy % (95% CI) ROC-AUC (95% CI) Max Sens=Spec, %* 

Logistic regression single model 83.2 (0.2) 0.904 (0.001) 82.0

Logistic regression hospital-level models 80.6 (0.2) 0.870 (0.001) 78.9

Random forest single model 84.6 (0.2) 0.914 (0.001) 83.7

Random forest hospital-level models 84.3 (0.2) 0.906 (0.001) 83.2

Fully-connected neural net single model 84.4 (0.2) 0.913 (0.001) 83.3

1-dimensional Embedding neural net single model 85.5 (0.2) 0.921 (0.001) 84.5

Accuracy was assessed using stratified 5-fold stratified cross-validation. Single model fits encode hospital ID as one hot feature. Hospi-
tal-level models fitted a model to each hospital independently. Embedding neural nets encoded hospital id, pathway data, and clinical data 
into a single value vector each. Accuracy and ROC-AUC show mean results and 95% confidence limits. AUC indicates area under the curve; 
and ROC, receiver operator characteristic.

*The maximum value of sensitivity and specificity that may be attained simultaneously.
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in thrombolysis use are benchmark decisions > deter-
mining stroke onset > speed, whereas the main drivers 
in improvement in outcomes are speed > benchmark 
decisions > determining stroke onset.

Figure 5 shows the distribution of use of, and ben-
efit from, thrombolysis before and after all the modeled 
changes. It is noteworthy that there is still significant vari-
ation between hospitals but that the distributions have 
been shifted to the right.

Qualitative Research
Key findings from the qualitative research were

1. Broadly, those hospitals with higher thrombolysis 
use engaged more positively with the research, 
and those with lower thrombolysis use were 
more cautious.

2. Clinicians from lower thrombolysing hospitals 
tended to emphasize differences in their patients 
as the reason for lower thrombolysis. Those in 
midrate thrombolysis hospitals tended to empha-
size access to specialist resources as being key 
in being able to deliver thrombolysis well. Those in 
higher thrombolysing hospitals tended to empha-
size the work and investment that had gone into 
establishing a good thrombolysis pathway.

3. Clinicians wanted to see the machine learning 
models expanded to predict probability of good 
outcome and adverse effects of thrombolysis.

4. Despite this being a small study, physicians 
engaged with the machine learning process and 
outcomes, suggesting ways in which the outputs 
could be modified for feedback to hospitals and 
utilized to inform thrombolytic decision-making. 
(See Supplemental Material section 5 for detailed 
qualitative research results).

DISCUSSION
This work represents a novel approach to understand-
ing the persisting variation that still exists in thrombol-
ysis practice in England and Wales, and to developing 
new ways of supporting efforts to reduce that variation, 
and in so doing increase the clinical benefit to people 
with acute ischemic stroke from thrombolysis. Although 
our study focuses on England and Wales, the approach 
should be applicable to other geographies. Not all coun-
tries currently collect the level of data that is collected in 
England and Wales, but we hope that by demonstrating 
how comprehensive national registry data may be put to 
use we may help encourage the broader collection of 
comprehensive clinical registry data sets.

Thrombolysis using alteplase was recommended in 
the United Kingdom in 2008 for acute ischemic stroke 
within 4.5 hours of known onset and, initially, usage 
increased rapidly to over 10% on average nationally.23 
However since 2013, thrombolysis use has remained 

Figure 2. A comparison of actual 
thrombolysis rate at each hospital 
and the predicted thrombolysis rate 
if decisions were made according 
to the majority vote of the 30 
benchmark hospitals. 
Thrombolysis rate is predicted for patients 
arriving within 4 h of known stroke 
onset. The solid circle shows the current 
thrombolysis use, and the open circle 
shows the thrombolysis use predicted by a 
majority vote of the benchmark hospitals. 
The red points are those hospitals that are 
in the top 30 thrombolysing hospitals (the 
benchmark set) when cohort thrombolysis 
use is predicted, with all other hospitals 
colored blue.
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static at 11% to 12%.24 Furthermore, that national 
average conceals substantial variation in alteplase use 
between UK hospitals—as reported here, a 5-fold varia-
tion in the overall thrombolysis rate.

Our aim was to use a national stroke clinical registry 
and state-of-the-art tools of machine learning and clini-
cal pathway simulation to gain a better understanding of 
what variation is due to processes and decision-making, 
and what a realistic target of thrombolysis use may be in 
England and Wales. One of our principal objectives was 
to develop, through the combination of pathway model-
ing and machine learning, bespoke outputs for individual 
hospitals that could be incorporated into routine report-
ing through national audit, moving away from a single 
identical target for thrombolysis use for all hospitals. 
We identified several clear and readily implementable 
changes to processes and decision-making in hyper-
acute stroke that together could achieve a 58% increase 
in the number of patients treated with thrombolysis in 
the United Kingdom and result in a near-doubling of the 
clinical benefit from thrombolysis. Full implementation 
of the pathway changes identified in this study would 
go a long way towards achieving the stated ambition of 
the long-term plan for the NHS of bringing the United 
Kingdom up to among the best in Europe for reperfusion 
treatment for acute stroke.8

Among the changes tested, clinical decision-making 
had the greatest single effect. Our work, therefore, con-
firms, and adds to, previous work from discrete choice 
experiments which showed that clinicians vary in their 

attitudes, regarding thrombolysis, to individual clinical 
features of patients.25

Despite this, these machine learning techniques could 
not purport to replace clinical judgment in the decision 
about treating any individual patient and could not be used 
to provide a definitive predictive model. The highest per-
forming model, embedding neural networks, achieved 84% 
sensitivity and specificity simultaneously. The hospital-level 
random forest model, which had 81% accuracy for the 
decision to thrombolyse (and could attain 78% sensitiv-
ity and specificity simultaneously), identifies agreement 
among 80% of hospitals in the decision to treat a patient in 
60% of cases, and for the decision not to treat, agreement 
among a similar proportion of hospitals in the decision not 
to treat in 85% of cases. Apart from anything else, these 
observations confirm that unanimity in the decision to treat 
across all 132 hospitals contributing data is highly unusual, 
although it is easier to find agreement on who not to treat 
than who to treat. So the outputs from the machine learn-
ing can only ever be used probabilistically and to look for 
general patterns in thrombolysis use that may be used as 
a stimulus to scrutinize decision-making in audits at a local 
level. In this respect, it is more useful for the benchmark-
ing process, in which the willingness to thrombolyse in an 
individual hospital is compared to other hospitals.

Pathway changes have been previously shown to 
have a significant effect on thrombolysis rates and door-
to-needle time, for example, by Meretoja et al26 in sev-
eral different settings.27 These projects would indicate 
that the 30-minute door-to-needle time proposed in our 
model is not an unrealistic or unachievable target.

A familiar pitfall when addressing clinical variation is 
that the phrase “if only all sites were as good as the best” 
is, by definition, an oxymoron and lacks credibility with 
clinical teams who are far short of the best and/or strug-
gling to improve. We have, therefore, sought to neutralize 
this pitfall through the use of a much more conservative 
approach—modeling based either on the typical clinical 
behavior of just the top 30 hospitals or the top-quartile 
performance for the acquisition of a known onset time. 
This presents poorly-performing hospitals with a much 
more credible and achievable objective—you do not need 
to be as good as the best, often regarded as unachiev-
able but merely match the performance of a better-than-
average site, of which there are many.

Our method also addresses another familiar objec-
tion regarding high-performing hospitals that such sites 
are needlessly thrombolysing mild strokes or even stroke 
mimics, although the latter are excluded from the SSNAP 
data used in this study. This issue arose in our linked 
qualitative work with low thrombolysing hospitals. In our 
cohort of 10k standardized stroke patients presenting 
within 4 hours, half of the top 30 thrombolysing hospitals 
would have a lower thrombolysis rate after benchmarking. 
The moderating effect of a broad-based machine learn-
ing method removes extremes at both ends of the scale 

Figure 3. Validation of the stroke thrombolysis pathway 
model.
The x axis shows the actual thrombolysis use in each hospital (for 
patients with an out-of-hospital onset stroke), and the y axis shows the 
thrombolysis use predicted from the pathway model. Model parameters 
were based on pathway statistics for each hospital. The dotted line 
shows a 1:1 correlation between actual and predicted values.
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but still contributes to a substantial increase in the overall 
thrombolysis rate for nearly all sites and a correspond-
ingly greater population benefit. It would seem not unrea-
sonable, therefore, to anticipate an achievable national 
thrombolysis rate for patients presenting within 4 hours 
to be 36.9% compared to the current figure of 29.5%.

Limitations
A limitation of the study is the amount of data available per 
individual. Although the current data are sufficient to pre-
dict the use of thrombolysis with 85% accuracy, there are 
sure to be factors influencing decision-making that are not 
included in the data set. This limitation does not negate the 
use of these models to explore patterns of thrombolysis 
use but underly the importance that these tools should not 
be used for individual case decision-making.

Our predictions about differences in clinical decision-
making are necessarily at hospital level. We pick up on 
general differences in attitude to thrombolysis between 
hospitals‚ but we cannot detect differences that exist 
between individual clinicians (as decision-making is the 

end result of a process, and maybe collective, it may be 
that decisions can never be fully assigned to an individ-
ual). For this work, we were not able to identify the hos-
pital and so could not look at relationships with factors, 
such as rurality, or organization factors, such as whether 
a hospital employs a specialist stroke nurse to facilitate 
the emergency stroke pathway.

The machine learning model described only predicts 
use of thrombolysis and does not predict outcomes 
directly. In future work, we plan to use machine learn-
ing also to predict outcomes (such as death, mRS on 
discharge, and thrombolysis-induced hemorrhage; such 
quality outcomes will also help assess the risk of treat-
ment worsening outcomes in individual patients). We pre-
dict likelihood of a good outcome based on clinical trial 
meta-analysis on the relationship between time to throm-
bolysis (if given) and the probability of a good outcome, 
measured as having an mRS of 0-1 at 3 to 6 months. It 
should be noted that this reflects an excellent disability-
free outcome and does not incorporate all the benefit of 
thrombolysis (such as if a patient were improved from an 
mRS of 5 to an mRS of 4).

Figure 4. The effect of changing aspects of the stroke pathway (speed of stroke pathway, determining stroke onset time, and 
using benchmark decisions) on predicted use of thrombolysis and resulting clinical benefit.
Left, Predicted thrombolysis use (% all of all emergency stroke admissions). Right, Clinical benefit (number of additional good outcomes, 
modified Rankin Scale score of 0–1 at 3–6 mo, per 1000 emergency stroke admissions. Results show effects across all 132 English hospitals, 
with averages weighted by admission numbers.

D
ow

nloaded from
 http://ahajournals.org by on July 15, 2022



OR
IG

IN
AL

 C
ON

TR
IB

UT
IO

N
Allen et al Why Do Thrombolysis Use Rates Vary So Much?

8  September 2022 Stroke. 2022;53:00–00. DOI: 10.1161/STROKEAHA.121.038454

The remaining limitations relate to the potential for 
implementation. Our qualitative substudy identified the 
paradox that it was the confident thrombolysing physi-
cians who were most open to the influence of machine 
learning and other methods of quality improvement but 
who also needed it the least. Successfully engaging with 
a large and disparate group of middling-to-low thrombo-
lysing hospitals and clinicians less open to these meth-
ods for improvement presents significant challenges and 
could blunt the impact and resultant benefits. Further 
research is likely to help address how the concerns of the 
lower thrombolysing hospitals may be best addressed.

Implications for Healthcare
Overall, our results suggest that England and Wales can 
get close to the target of 20% of emergency stroke admis-
sions receiving thrombolysis, but this should not be seen 
as a single target for all hospitals. Realistically achievable 
thrombolysis use depends on local patient populations, 
so a universal target of 20% across all hospitals may 
overestimate what is achievable at some hospitals while 

underestimating what is achievable at other hospitals. 
Local agreed targets may be more appropriate.

The tools developed here have the potential to add 
further depth of analysis to the national stroke audit out-
puts, providing each hospital with more in-depth analysis 
of what an achievable use of thrombolysis may be in their 
hospital, and what changes to pathway or decision-mak-
ing would help drive most improvement.

Conclusions
Machine learning and clinical pathway simulation may be 
applied at scale to national audit data, allowing extended 
use and analysis of audit data. These models may help 
hospitals identify what would most improve benefit from 
thrombolysis use (if improvement is needed) and iden-
tify realistic targets for hospitals given their own patient 
populations. We can identify patterns of differences in 
clinical decision-making between hospitals.

Our models have good accuracy. Decision-making 
can be predicted with 85% accuracy for those patients 
with a chance of receiving thrombolysis (arriving within 4 

Figure 5. The effect of combined improvements on predicted thrombolysis use and resulting clinical benefit.
The combined changes were changes to speed (95% of patients have 15 min arrival-to-scan and 15-min scan-to-treatment, with other patients 
not being scanned within 4 h of arrival), determining stroke onset time (to the national upper quartile if currently lower), and using benchmark 
decisions. Left, Predicted thrombolysis use (% all of all emergency stroke admissions). Right, Clinical benefit (number of additional good 
outcomes, modified Rankin Scale score of 0–1 at 3–6 mo, per 1000 emergency stroke admissions. The unshaded histogram shows the current 
base-case use of, and benefit from, thrombolysis, and the gray shaded histogram shows the predictions with all 3 changes.
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hours of stroke onset). This accuracy enables us to look 
for patterns in clinical decision-making in and between 
hospitals. Clinical pathway simulation predicts hospital 
thrombolysis use with an average absolute error of 0.5 
percentage points.

Stroke thrombolysis rates of at least 18% look achiev-
able in England and Wales, but each hospital should have 
its own target.
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