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Regulators Pioneer Fund Project - Cornwall Port Health Authority (Cornwall Council)  

Artificial Intelligence approaches for predicting Harmful Algal 

Blooms (HABs) 

Final Report to Department for Business, Energy and Industrial Strategy  
 

“This project was made possible by a grant from the £3.7 million Regulators' Pioneer Fund launched 

by The Department for Business, Energy and Industrial Strategy (BEIS). “The fund enables UK 

regulators and local authorities to help create a UK regulatory environment that unleashes 

innovation and makes the UK the best place to start and grow a business” 

Introduction 
 

In July 2021 Cornwall Port Health Authority (CPHA) with a consortium of partners successfully bid for 

£199,444.00 from the Department for Business, Energy and Industrial Strategy (BEIS) to conduct a 

discrete local study into Algal Blooms (HABs). HABs can produce toxins, which accumulate in filter-

feeding shellfish and intoxicate human consumers. The toxins are heat stable and so can't be 

destroyed by freezing and/or cooking.  

Under current regulations shellfish toxin monitoring is effectively retrospective: regulators sample, 

await results, and if the regulatory threshold is breached there is an investigation into the amount of 

shellfish harvested since the sample was taken, which might then result in a full-scale food chain 

product recall. By gathering high resolution field monitoring data using novel qPCR and lateral-flow 

(LF) techniques, we planned to refine and validate a computer model for predicting HABs caused by 

Dinophysis species. One of the aims of the project was to use the higher resolution data collected as 

part of the project to train the model towards a more accurate forecast in respect of breaches in the 

Dinophysis toxin threshold up to 6-8 weeks ahead. The model would then aid planning decisions for 

harvesting and will save costly recalls and protect human health (in this case from Diarrhetic 

Shellfish Poisoning - DSP).  

The other strands of the project consisted of use of a Novel monitoring tools, a qPCR for quantifying 

HAB cell abundance in seawater, and a Lateral Flow testing for quantifying Dinophysis toxins in 

shellfish, directly in the field. Field data from these novel methods will be validated by an accredited 

light microscopy technique which enables the cell densities to be quantified in water and by liquid 

chromatography with tandem mass spectrometry (LC-MS/MS) for validating the shellfish flesh test 

results from the field.  

CPHA developed a sampling plan and deployed a vessel to sea twice weekly, at two sites to sample 

water and bivalve flesh for in-field LF/qPCR and laboratory analysis.   

Key motivations for the project included:    

• Developing tools that are in early – mid stage development (existing capability) that can be 

used by the industry to make harvesting judgements; and  

• Further developing and training an existing model to forecast breaches in HAB (Dinophysis) 

toxin thresholds in shellfish.  
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Commission Implementing Regulation (EU) 2019/627 stipulates that biotoxin sampling must be 

undertaken weekly, unless there is a formal risk assessment in place. A risk assessment has been 

published by the Food Standards Agency (FSA) it is provided to each Local Authority with shellfish 

official control duties.    

In the case of Cornwall, a HAB hotspot, it has increased the frequency of sampling and hence extra 

pressure on Local Authority staff and budgets. The FSA has determined that the sampling frequency 

at all production areas should ensure that the risk of missing a biotoxin event should be no more 

than 2% in any given month. This whole approach is predicated on the fact that the system of 

sampling is retrospective.  LAs sample, send to the lab, the lab tests and reports the results, and if 

failure occurs there is a necessity to close the shellfish beds, and instigate a full product recall of 

short shelf-life shellfish product, which may have already been consumed in some cases. This is a risk 

for shellfish harvesters, a burden for business, and risks public health and consumer confidence.   

Combining a HAB forecasting model with accurate field testing by harvesters, will allow regulatory 

sampling to focus on critical periods when HAB toxin concentrations in shellfish are indicated to 

increase above and decline below the regulatory threshold.  

This targeted approach could reduce the overall frequency of regulatory sampling, whilst giving the 

industry the tools they require to place food upon the market in a safe manner, without the worry of 

a retrospective recall. 

Project Overview  

Strand 1 – Predictive Modelling (Partners: University of Glasgow and 

University of Exeter) 

Strand Overview 
The ultimate aim of Strand 1 is to develop and apply data-driven models to provide a reliable HAB 

early warning system for shellfish aquaculture sites in SW England. Reliable forecasting of HAB 

events and intoxication of shellfish is important for protecting public (shellfish consumer) health by 

identifying safe harvest periods for shellfish operators and high-risk periods when increased 

regulatory (Official Control) monitoring is required.  

The goal was to create a HAB early warning system (the intended gain) for shellfish businesses and 

regulators, with the capability to forecast breaches of HAB toxin thresholds in shellfish up to 8 weeks 

ahead. 

Coastal waters in SW England to the west of Start Point constitute a known HAB hotspot, particularly 

for dinoflagellate HAB species belonging to the genus Dinophysis, which produce Dinophysis toxins 

that accumulate in shellfish and cause diarrhetic shellfish poisoning in human consumers (Brown et 

al., 2022). Currently HAB monitoring by Cornwall Port Health Authority is conducted on a weekly 

basis throughout the potential HAB season (May to end of September) and reduces to a fortnightly 

or monthly frequency thereafter. Reliable HAB forecasting will enable a more informed risk-based 

approach aiding forward planning of harvesting by shellfish producers and monitoring by regulators. 

For example, monitoring can be ramped up when the risk of HABs is predicted to be high (shellfish 

toxins exceed regulatory action levels) and ramped down when HAB risk is predicted to be low.  

Data-driven forecasting models for Dinophysis toxins in shellfish have previously been based on 

long-term (~10 year) HAB monitoring programmes in SW England, NW Scotland and Northern 
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France. These models incorporate simple statistical and machine learning methods, providing a 

useful starting point for work in Strand 1. To increase forecasting accuracy and forecasting horizon, 

we aim to exploit additional monitoring data gathered during the life of the Project (September 2021 

to end of March 2022) for HAB toxins in shellfish, HAB cell abundance in seawater, and associated 

environmental parameters (e.g. temperature, salinity, wave action). Additional data include more 

frequent (twice weekly) assessments of HAB cell abundance and HAB toxins in shellfish. 

The forecasting model we have developed in this Project focuses on predicting Dinophysis toxins 

(comprising Dinophysis toxins - DTX, Pectenotoxins - PTX and Okadaic Acid – OA) collectively 

expressed as OA equivalents measured in g/kg shellfish flesh. The reason for focusing on toxin 

concentrations is that this is the basis for the regulatory threshold above which shellfish harvesting is 

prohibited (i.e. 160g OA eq./kg shellfish flesh). Thus, we aim to use the model predict when a 

shellfish production area is likely to close and when its likely to reopen for harvesting. Monitoring 

can be intensified during these periods. 

Key elements for refining predictive modelling work in Strand 1 include: 

• Improving the integration of monitoring and modelling approaches for use in HAB early 

warning systems: 

o identifying data bottlenecks and quantifying the extent to which increasing 

monitoring frequency can improve model accuracy (by reducing uncertainty 

around data extrapolation and statistical smoothing); 

o exploring how modelling can be used to inform optimal monitoring schedules and 

frequencies. 

• Quantifying and visualising time lags between changes in Dinophysis spp. cell abundance 

and sea surface temperature and changes in toxin concentrations in shellfish.  

• Evaluating the potential benefits for modelling of in situ monitoring data (Strand 2) 

obtained from novel lateral flow devices for measuring HAB toxins in shellfish and portable 

qPCR devices for measuring HAB cell abundance.  

Methodology for Prediction 

General Approach 
Our goal is to predict the Okadaic Acid (OA) concentration 𝑦𝑖(𝑡, 𝑠) in shellfish sample 𝑖 on a given 

day 𝑡 and from a given harvesting site 𝑠. To achieve this, we assume 𝑦 can be modelled using some 

probability distribution. The concentration level𝑦𝑖(𝑡, 𝑠) is always non-negative and its distribution is 

very heavy tailed, with small values in the winter and measurements exceeding 1000μg/L𝑦𝑖(𝑡, 𝑠) can 

be modelled effectively using the Negative-Binomial family of distributions: 

𝑦𝑖(𝑡, 𝑠) ∼ Negative − Binomial(𝜇(𝑡, 𝑠), 𝜃). 

Here 𝜇(𝑡, 𝑠) is the average (mean) OA level we would expect to measure if many samples were 

taken on day 𝑡 from site 𝑠, and 𝜃 is a parameter which controls the variance of the Negative-

Binomial distribution.  

To develop predictions of future OA levels, we need to estimate the relationship between 𝜇(𝑡, 𝑠) 

and input variables. Here we consider sea surface temperature 𝑡𝑒𝑚𝑝(𝑡, 𝑠) and Dinophysis spp. 

abundance counts 𝑎𝑏𝑢𝑛(𝑡, 𝑠) as potential inputs. However, we might suppose that changes in these 

variables take time to change to change the OA levels in shellfish. Consider that shellfish take time to 

absorb harmful toxins produced by phytoplankton, and that more time still might be needed for 

changes is sea temperatures to influence the phytoplankton population and production of toxins. 
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Therefore, we estimate the impact of past input variable values (e.g. 𝑡𝑒𝑚𝑝(𝑡 − 7, 𝑠)) on current or 

future OA levels, as captured by 𝜇(𝑡, 𝑠). We call these past values the “lagged” values (e.g. 

𝑡𝑒𝑚𝑝(𝑡 − 𝑙, 𝑠)), measured at some lag 𝑙 (days) up to a maximum lag 𝐿. Unfortunately, we often 

don’t know in advance which lags are most important or how the past values measured at different 

lags might work together to achieve a certain OA level. To utilise lagged information effectively, we 

should consider lag models. 

Unconstrained lag models 

An unconstrained lag model includes all lags of input variables and treats them as independent 

variables, e.g.  

log(𝜇(𝑡, 𝑠)) = 𝛽0 + 𝛽1𝑡𝑒𝑚𝑝(𝑡, 𝑠) + 𝛽2𝑡𝑒𝑚𝑝(𝑡 − 1, 𝑠) + ⋯ 𝛽𝐿+1𝑡𝑒𝑚𝑝(𝑡 − 𝐿, 𝑠). 

However, when considering a large number of lags (e.g. every day in the past year), we would very 

likely end up with a very overly complex (over-parametrised) model, which can fit data it has seen 

well, but not unseen future values. At the same time, we might expect the values of input variables 

(e.g. sea surface temperature - SST) at more proximal lag time points to be more highly correlated 

than more distant time points, leading to a loss of precision when treating all timepoints as 

independent.  

Distributed lag models (DLMs) 

Instead, we can impose some sensible constraints of the coefficients (𝛽) of the lagged values. This is 

known as a distributed lag model. For instance, we might suppose that the effect of past values 

might be more similar for nearby lags (e.g. 14 days ago and 15 days ago), than for very different lags 

(e.g. 14 days ago and 70 days ago). One approach to this is to constrain the effect (coefficients) of 

past values to change “smoothly” as the lag increases, by estimating the coefficients as some 

smooth function 𝑓 of lag 𝑓(𝑙), i.e. 

log(𝜇(𝑡, 𝑠)) = 𝛽0 + 𝑓(0)𝑡𝑒𝑚𝑝(𝑡, 𝑠) + 𝑓(1)𝑡𝑒𝑚𝑝(𝑡 − 1, 𝑠) + ⋯ 𝑓(𝐿)𝑡𝑒𝑚𝑝(𝑡 − 𝐿, 𝑠). 

Distributed non-linear lag models (DLNMs) 

We might also want to consider that the effect of lagged input variables on OA concentration might 

be non-linear. For instance, we could capture the effect of sea surface temperature using some 

estimated smooth function 𝑔: 

log(𝜇(𝑡, 𝑠)) = 𝛽0 + 𝑓(0)𝑔(𝑡𝑒𝑚𝑝(𝑡, 𝑠)) + 𝑓(1)𝑔(𝑡𝑒𝑚𝑝(𝑡 − 1, 𝑠)) + ⋯ 𝑓(𝐿)𝑔(𝑡𝑒𝑚𝑝(𝑡 − 𝐿, 𝑠)). 

However, instead of estimating 𝑓 and 𝑔 as independent functions, a more general approach is to 

define some 2-dimensional smooth function ℎ of the input variable and lag, e.g. 

log(𝜇(𝑡, 𝑠)) = 𝛽0 + ℎ(𝑡𝑒𝑚𝑝(𝑡, 𝑠), 0) + ℎ(𝑡𝑒𝑚𝑝(𝑡 − 1, 𝑠), 1) + ⋯ ℎ(𝑡𝑒𝑚𝑝(𝑡 − 𝐿, 𝑠), 𝐿). 

This model, known as a distributed non-linear lag model, allows the non-linear effect of the input 

variable to be different depending on the lag. We can develop and fit Negative-Binomial models 

defined in this way using the mgcv package for the R programming language.  

Model A: using phytoplankton abundance as the main predictor variable 
For this project, we developed two families of models for predicting future OA levels. The first, called 

Model A, uses lagged phytoplankton abundance counts as the main input variable. Denote 𝑑(𝑡) the 

calendar day within the year the toxin sample was collected. Including 𝑑(𝑡) as an additional input to 

𝜇(𝑡, 𝑠) allows the model to estimate seasonal structures in the mean OA levels. In Model A, the 

mean OA level 𝜇(𝑡, 𝑠) is characterised by: 
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log(𝜇(𝑡, 𝑠)) = 𝑎(𝑠𝑖𝑡𝑒(𝑠)) + 𝑓(𝒂𝒃𝒖𝒏(𝑠), 𝑙, 𝑑(𝑡)) + 𝑔(𝑡, 𝑠𝑖𝑡𝑒(𝑠)). 

First, 𝑎(𝑠𝑖𝑡𝑒(𝑠)) is a factor variable for each harvesting site 𝑠, which captures the overall differences 

in average OA levels between the study sites. Then, 𝑓(𝒂𝒃𝒖𝒏(𝑠), 𝑙, 𝑑(𝑡)) is a 3-dimensional smooth 

distributed non-linear lag term. The first two variables 𝒂𝒃𝒖𝒏(𝑠) and 𝑙, capture the effect of past 

abundance values on mean OA levels now. The third dimension, 𝑑(𝑡), allows the structure of the 

lagged abundance effect to vary smoothly depending on the time of year the OA sample is collected. 

For instance, we might imagine the lag between abundance and OA levels might be different 

depending on whether the shellfish are absorbing toxins in the onset of the bloom or depurating 

after Dinophysis spp. populations have diminished in the water. This function (𝑓) also captures the 

average seasonal cycle of blooms across all sites.  

Through 𝑓, the model has great flexibility to make predictions of future OA levels based on lagged 

abundance values and learned seasonal patterns. However, we should always expect some degree 

of error when making predictions. For example, a bloom may be more or less severe than expected. 

The final term 𝑔(𝑡, 𝑠𝑖𝑡𝑒(𝑠)) is an independent spline of time for each site, to learn structured 

variability on this error over time and develop more reliable predictions.  

Lagged abundance values are included up to 90 days in the past, relative to the date the shellfish 

sample is collected. Although through our experimentation it is apparent that the most important 

lags are considerably less than 90 days, we may wish include as many lags as possible and allow the 

model to estimate their importance. However, this comes at the expense of potentially excluding 

data at the beginning of data collection, because abundance is not known far into the past. Some 

sites studied here (e.g. Mevagissey Bay) have relatively short time-series for both Dinophysis spp. 

abundance in water and Dinophysis toxin levels in shellfish, hence why we did not consider lags of 

abundance beyond 90 days. 

Pre-processing of abundance data 

Phytoplankton abundance is not measured at a daily frequency in any of the sites considered here, 

yet our model requires that our lagged variable 𝑎𝑏𝑢𝑛(𝑡 − 𝑙, 𝑠) is observed for all lags 𝑙 = 0,1, … ,90. 

Therefore, we choose to construct a smooth interpolation of the abundance measurements using a 

Generalize Additive Model, consisting of a single flexible regression spline of time. The result of this 

interpolation is illustrated by Figure 1.  

This is not the only method we could have chosen, e.g. we could have used a moving average or a 

linear interpolation, and the choice of method will inevitably introduce some form of bias in the 

predictions. The advantage of using a smooth regression spline is that we can “smooth-out” 

individual noisy measurements, and therefore more robustly capture the “signal”. This comes at the 

expense of smoothing-out some important features, for instance the distinctive “M” shape the 

bloom displayed in 2021, with a dip to low levels of toxicity towards the end of the summer, before a 

second wave of higher toxin levels. The M-shape pattern can be seen in the data points but is not 

captured well by the regression splines.   

We also experimented with linear interpolation. This ensured that all of the “signal” in the 

abundance measurements was captured, at the expense of the result being quite “spiky”, and very 

sensitive individual measurements. As a consequence, we found that the distributed lag term in the 

OA model 𝑓(𝒂𝒃𝒖𝒏(𝑠), 𝑙, 𝑑(𝑡)) had to spread out over a wider range of lags, to “smooth-out” the 

spikes and uncover the signal. Therefore, it was not as precise in identifying the lagged relationship 

between Dinophysis spp. abundance and OA. 



6 
 

 

 



7 
 

Figure 1: Illustration of interpolation method for forming a continuous (daily) time series of Dinophysis abundance 
measurements (black lines). Circles show abundance counts collected through the regulatory control scheme (BTX) and 
triangles show measurements collected through the Regulator’s Pioneer Fund (RPF). 

Model T: using sea surface temperature as the main predictor variable 
Model T is the same as Model, except that past abundance values are replaced with past sea surface 

temperature values 𝒕𝒆𝒎𝒑(𝑠): 

log(𝜇(𝑡, 𝑠)) = 𝑎(𝑠) + 𝑓(𝒕𝒆𝒎𝒑(𝑠), 𝑙, 𝑑(𝑡)) + 𝑔(𝑡, 𝑠𝑖𝑡𝑒(𝑠)). 

We also consider temperature lags up to 365 days in the past. This is important, to ensure that 

longer-term processes determining the relationship between SST and OA levels can be captured. We 

are able to do this as time-series of SST data are available much further into the past than 

abundance and shellfish sample data for these sites. 

Sea surface temperature data 

We downloaded sea surface temperature data from the Copernicus Marine Service. For dates prior 

to 2021, we used hourly mean SST data from the Atlantic-European North West Shelf- Ocean Physics 

Reanalysis product, which has a spatial resolution of 0.111° × 0.067°, and computed daily mean 

values. For dates in 2021 and 2022, we used daily mean values from the European North West 

Shelf/Iberia Biscay Irish Seas – High Resolution ODYSSEA L4 Sea Surface Temperature Analysis 

product, which has a spatial resolution of 0.02° × 0.02°. For each site in this study, we matched both 

sets of SST data by finding the closest grid cell to the harvesting location with a complete time series 

of SST values (meaning no missing values, e.g. due to the grid cell being land instead of water). 

Model B: baseline model with no abundance or sea surface temperature 
To assess the effectiveness of past Dinophysis spp. abundance or past sea surface temperature 

values, models A and T are compared to a “baseline” model, Model B. In this model, we replace the 

3-dimension seasonally varying distributed lag term with two new terms:  

log(𝜇(𝑡, 𝑠)) = 𝑎(𝑠𝑖𝑡𝑒(𝑠)) + 𝑓(𝑑(𝑡)) + 𝑔(𝑡, 𝑠𝑖𝑡𝑒(𝑠)). 

First, the smooth term 𝑓(𝑑(𝑡)) captures the overall seasonal pattern in mean OA levels. Then, 

𝑔(𝑡, 𝑠𝑖𝑡𝑒(𝑠)) remaining temporal structure, including differences in how early or late the bloom 

season is, or how severe or mild the bloom is. With no covariate inputs included, the model must 

rely heavily on 𝑔(𝑡, 𝑠𝑖𝑡𝑒(𝑠)) to learn the characteristics of the new bloom. 

Empirical predictions 
Finally, predictions from all model-based approaches are compared to predictions from a purely 

data-based approach, which we call the “empirical” predictions. For a given site and date, the 

empirical predicted toxin concentration is simply assumed equal to latest available measurement. 

For instance, if we want to predict 4 weeks into the future, we use the latest available shellfish 

sample measurement at that site relative to present day. This approach is equivalent to predicting 

future weather based only on recent conditions, but it nonetheless serves as an additional useful 

baseline against which we can compare the models. 

Prediction Experiment 1 
To compare the forecasting capabilities of Models A, T, and B, we carried out a rolling forecasting 

experiment for 2016-2021 inclusive. This involves predicting mean OA levels (𝜇(𝑡, 𝑠)) for each day 

with data in order. When preparing to forecast 𝜇(𝑡, 𝑠), only shellfish sample data which would 

actually be available in reality when making that forecast is supplied to the models. For example, if 
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forecasting 4-weeks in the future, we don’t supply any data collected in those 4 weeks between the 

pretend present day and the forecasting day. 

At the same time, future values of abundance (and temperature) will be unknown in practice. 

Specifically, values of our predictors for lags less than or equal to the forecasting lead time (defined 

as how far in the future we are forecasting) will be unknown. We therefore fit a distinct model for 

each of the specific lead times, where every model includes only lagged predictors which would be 

observed if the model were realistically used for that lead time. We specified models with a lead 

time of 0 weeks (nowcasting), 1 week, 2 weeks, 4 weeks, 6 weeks, 8 weeks, 10 weeks, 12 weeks, and 

16 weeks. The significance of forecasting with a lead-time of 0 is that all lags are treated as 

observed. This represents how well the model might be able to predict toxin concentrations in 

shellfish if accurate forecasts of abundance and temperature were available. As 12 weeks almost 

exceeds the number of lags available in Model A (90 days), predictions 12 and 16 weeks ahead are 

only generated using Model T and Model B.  

To maintain a consistent level of training data throughout the experiment, we provide all models 

with shellfish toxin sample data starting 365 days in the future, relative to the forecasting day, in 

addition to past data. We argue this does not compromise the validity of forecasting results, since all 

our models treat years as exchangeable, i.e. they do not have any structures which recognise 

adjacent years as being closer to each other in time. 

Prediction Experiment 2 
We also carried out a second experiment, to assess the impact on forecasting performance of the 

increased data frequency enabled by the RPF. The experiment involved repeating the same rolling 

forecasting scenario as Prediction Experiment 1 for 2021 but excluding both abundance counts and 

shellfish samples collected through the RPF. We can then compare the performance of Model A and 

T with and without this additional data, focussing on the period when RPF data were collected. 

Insight and Results from Predictive Modelling 

Insights from Model A 
Key insights can be obtained about the relationship between lagged abundance and OA levels by 

looking at the estimated function 𝑓(𝒂𝒃𝒖𝒏(𝑠), 𝑙, 𝑑(𝑡)) from a fit of Model A that has seen all 

currently available data. 
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Figure 2: Multiplicative effect of past Dinophysis abundance counts on typical toxin concentrations taken at different 
calendar days (220 is early August), from Model A (the model with lagged abundance only). The vertical dashed lines show 
the lag which contributes most to the predicted toxin level at each time of year (the “principal lag”). 

Figure 2 shows the effect of past abundance values for a typical toxin sample taken at three different 

times of the year when blooms might be present (left: mid-June; middle: early-August; right: mid-

September). Here, brighter green-yellow contours boost the summer OA levels if the past 

abundance values fall within those bands, whereas darker blue-purple contours dampen the 

summer toxin concentration. We can also define the “principal lag” as the lag which contributes the 

most overall to predicted OA levels. These are shown as the vertical dashed lines. In early-August 

(centre panel of Figure 2), when OA levels are high on average, the model suggests that higher 

abundance counts impact OA level 2-4 weeks in the future.  

Using the fitted model, we can examine how the importance of different lags changes depending on 

the calendar day a shellfish sample is collected on. Figure 3 show the overall contribution of 

different lags (y-axis) for different calendar days (x-axis). Brighter green-yellow contours show 

important lags and darker blue-purple contours show less important ones. The dashed line tracks 

the trajectory of the “principal lag”. We can characterise the trajectory of the principal lag as three-

states. In the first state, up to about calendar day 230 (August), the principal lag gradually decreases 

from about 4 weeks to about 2 weeks. Beyond about calendar day 280 (October), the principal lag is 

about 10 weeks in the past. However, in between these dates, there is a very rapid shift in the 

principal lag towards higher values (from about 2 weeks to about 10 weeks). This is notable since it is 

during this period that most blooms would typically be decaying. We could speculate then, that this 

shift might be a representation of mussels accumulating toxins more quickly than depurating them. 
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Figure 3: The overall contribution of each lag of Dinyophysis abundance for shellfish samples taken at different calendar 
days. The dashed line shows the trajectory of the "principal lag". 

Figure 4 shows fitted values from Model A for the 3 sites studied in this project, for 2016 to 2022 

(where data are available). The line shows how the model can flexibly capture the different peaks 

and troughs seen in the data (points). Note these are not predictions of unseen values, those will be 

seen in the results from the prediction experiment. 
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Figure 4: Lines show fitted (mean) toxin concentrations from the model with lagged abundance only (Model A). Points show 
observed toxin concentrations. The horizontal dashed lines show the regulatory action level for harvesting closure (160 
micrograms/kg shellfish flesh). BTX is Official Control data, RPF is Regulators Pionner Fund data (from this Project). 

 

Insights from Model T 
Key insights can be obtained about the relationship between lagged sea surface temperature and OA 

levels by looking at the estimated function 𝑓(𝒕𝒆𝒎𝒑(𝑠), 𝑙, 𝑑(𝑡)) from a fit of Model T that has seen 

all currently available data. 
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Figure 5: Multiplicative effect of past sea surface temperature values on typical toxin concentrations in mussels from St 
Austell Bay in early August, from Model T (the model with lagged sea surface temperature only). The lines show sea surface 
temperature values for different years at St Austell Bay.  

Figure 5 shows the effect of past sea surface temperature values for a typical toxin sample taken in 

early August, and sea surface temperature values for St Austell Bay in each year from 2015 to 2018. 

Here, brighter green-yellow contours boost the summer OA levels if the SST trajectory passes 

through them, whereas darker blue-purple contours dampen the summer toxin concentration. The 

plot suggests that late-winter sea surface temperatures have the greatest impact, with colder 

temperatures being associated with higher summer toxin levels. Looking at the actual trajectory of 

sea surface temperatures previous years, there is a clear separation around March. In order of the 

coldest March to the warmest, the order is 2018, 2015, 2016, 2017. This is the same as the order of 

highest summer toxin levels to lowest, and this is the relationship the model is able capture. 

The fact that the estimated summer toxin levels are substantially driven by winter SSTs suggests that 

the model may potentially be able to make credible predictions several months ahead. 
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Figure 6: Lines show fitted (mean) toxin concentrations from the model with lagged abundance only (Model A). Points show 
observed toxin concentrations. The horizontal dashed lines show the regulatory action level for harvesting closure (160 
micrograms/kg shellfish flesh). 

Relative strength of abundance and sea surface temperatures as predictors (Prediction 

Experiment 1) 
The goal of Prediction Experiment 1 was to quantify the relative effectiveness of lagged abundance 

and lagged temperature as predictors of toxin levels in future shellfish samples. To do this, the 

models are deployed in a rolling forecasting experiment, mimicking realistic operational use over a 

long period of time. Figure 7 shows rolling predictions for St Austell Bay, using the various prediction 

approaches and for different lead times (0 weeks, 2 weeks, 4 weeks). Generally, predictions get 

worse the longer the lead-time. Shellfish samples collected through this project are clearly marked 

as triangles (RPF), and it is clear how much denser the data is in the latter part of 2021 when these 

samples were taken. 
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Figure 7: Rolling forecasts for St Austell Bay at different lead times (top: 0 weeks; middle: 2 weeks; bottom: 4 weeks). The 
horizontal black lines show the regulatory action level for harvesting closure (160 micrograms/kg shellfish flesh). 

 

However, it is challenging to determine the overall performance of the different approaches using a 

purely visual approach. To quantify the performance, we computed the prediction errors (at the log-

scale) and then computed two performance metrics for each prediction source (e.g. Model A) and 

forecasting lead time: 

1. Mean absolute error – this represents how wrong the predictions are on average. 

2. Root-mean squared error – how wrong the squared predictions are on average, then take 

the square-root to return the metric to the original scale of the predictions. 

The mean absolute error is most intuitive, but the root-mean squared error is also insightful as it 

exaggerates big errors which may be particularly costly to stakeholders, e.g. by forecasting very 

severe future toxin values that turn out to be mild. 
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Figure 8: Mean absolute error (left) and root-mean squared error (right) of toxin forecasts, from the different prediction 
approaches and for different lead times. Errors were computed at the log-scale. 

Figure 8 shows how these error metrics change with forecasting lead time and vary between the 

prediction approaches. Both metrics tell a consistent story, so we will focus on the root-mean 

squared error (RMSE). When forecasting up to 4 weeks in the future, model with lagged abundance 

(Model A) is the clear winner. The baseline model with no lagged variables (Model B) and the model 

with lagged temperature (Model T) don’t fare noticeably better than the empirical approach 

(predicting the future toxin value as equal to the latest available measurement). Beyond 4 weeks, 

Models B and T do begin to show considerably more skill than the empirical approach, though Model 

A maintains its lead when forecasting up to 8 weeks ahead. Beyond this point, Model A runs out of 

informative abundance lags and effectively turns into Model B, relying exclusively on temporal and 

seasonal structures to make predictions. Finally, when predicting far into the future, Model T does 

outperform the baseline Model B, suggesting there is some information to be exploited in long-past 

sea surface temperature values. 

Impact of increased data collection frequency (Prediction Experiment 2) 
The goal of Prediction Experiment 2 was to quantify the impact of additional data collection – 

enabled through the RPF Project funding – on the ability of our models to forecast toxin levels. This 

involved running the rolling forecasting experiment as in Prediction Experiment 1, first with the 

additional data from the RPF, and second with only the official monitoring data.  

We summarise prediction performance from the two scenarios by computing the root-mean 

squared error values in both cases, for each forecasting lead time. However, we only use prediction 

errors for official monitoring samples (present in both sets of model runs) and consider errors from 

samples taken on or after the 13th September 2021 (until the end of 2021), as this is when the first 

RPF sample was taken. This ensures the results from this experiment focus as much as possible on 

the period of time when data collection was taking place for the RPF.  
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Figure 9: Root-mean squared errors for official monitoring shellfish sample toxin concentrations taken on or after the 13th 
September 2021, until the end of 2021. Green bars show the error value when no RPF abundance or shellfish sample data 
are included in the training data. Orange bars show errors with this data included. 

Figure 9 shows error values with and without the RPF data included, for different forecasting lead 

times. The RMSE values are almost always lower when the RPF data is included, and the reduction in 

the RMSE is very sizeable when forecasting the short-medium term. This clearly demonstrates the 

potency of a higher frequency of data collection, but also hints that model-based prediction 

approaches might perform better still with even higher data collection frequencies, e.g. daily 

Dinophysis spp. abundance measurements. 

Comparison between qPCR and Laboratory Data 
To investigate potential for future integration of qPCR into regulatory monitoring of HABs, we 

carried out a statistical comparison between qPCR and laboratory results (the latter based on 

microscopic analysis) for Dinophysis acuminata.  

The laboratory data had a high proportion of non-detects (74%) over the project time period. To 

enable quantitative comparison with the qPCR results, all non-detects were replaced with the value 

10 cells/L. We could have chosen a different value, meaning all results in this comparison are 

conditional on that choice. 

Figure 10 shows Dinophysis acuminata cell counts from both methodologies over the project 

duration (September 2021 to April 2022), for the three study sites. Across the project duration, the 

qPCR measurements were around one order of magnitude higher than the laboratory 

measurements. Both lab and qPCR measurements capture the decrease in cell abundance in the 

weeks and months following the end of the 2021 bloom season. In Porthallow Cove and St Austell 

Bay, the decrease in abundance appears to be much steeper in the laboratory measurements. 

Towards the end of the project in Mevagissey Bay, there is a noteworthy increase in the qPCR results 

not captured by the non-detects in the laboratory results, which may indicate the very beginnings of 

a bloom in 2022. 
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Figure 10: Comparison of laboratory and qPCR measurements of Dinophysis acuminata cell abundance for September 2021 
– April 2022. Points show measurements and lines are smooth “lines of best fit” with 95% confidence intervals. 

Regression analysis 
We developed a simple regression approach to quantify the difference between lab and qPCR 

measurements more formally. We fitted Generalized Additive Models to data from each site 

independently of other sites. Here we model Dinophysis acuminata cell count 𝑦𝑖  taken on day 𝑡 at 

the log-scale through the combination of smooth functions of time, the effect of the cell count 

methodology used, and a Gaussian (Normal) error term: 

log(𝑦𝑖(𝑡)) =  𝛽0 + 𝑓(𝑡) + 𝑔(𝑡)𝑥𝑖 +  𝜖𝑖; 

𝜖𝑖 ∼ Normal(0, 𝜎2). 

The term 𝑓(𝑡) captures smooth variation over time in the laboratory measurements, tracking 

increases and decreases in cell abundance. The variable 𝑥𝑖 equals 0 if measurement 𝑖 is a laboratory 

result and equals 1 if measurement 𝑖 is a qPCR result. The term 𝑔(𝑡)𝑥𝑖 therefore captures smooth 

variation over time in the difference (at the log-scale) between laboratory measurements and qPCR 

measurements. We call 𝑔(𝑡) the “qPCR coefficient” as for any given 𝑡 it tells you what should divide 

a qPCR result by to obtain a result on the same scale of contemporary laboratory results. 

 

Figure 11: Estimates of the qPCR coefficient 𝑔(𝑡) (the value you should divide a qPCR result by to obtain a result on the 
same scale of contemporary laboratory results), with 95% confidence intervals. 

Figure 11 shows estimates and 95% confidence intervals of the qPCR coefficient over the project 

duration. The coefficient fluctuates considerably over the time period, for instance in Porthallow 
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Cove qPCR measurements were on average over 30x higher than laboratory results in September, 

reducing to under 10x in September. 

Conclusions 
The comparison has two main limitations. The first is the high proportion of non-detects in the 

laboratory data (74%) over the project time period. The second is that the project period mostly 

coincided with periods of low cell abundance. Taken together, these limitations make it challenging 

to draw firm conclusions on the discrepancies seen between laboratory and qPCR results. For 

example, the uptick in cell abundance seen in Mevagissey Bay might suggest increased sensitivity of 

the qPCR methods in detecting the early stages of the bloom, which would significantly improve 

prospects for regulatory monitoring using predictive modelling. This is because there may only be a 

brief time period between cell abundance reaching detection levels for laboratory measurement and 

toxin concentrations in shellfish breaching safe harvesting levels. Meanwhile, qPCR provides 

quantitative measurements even when HAB cell counts are low, potentially providing early warnings. 

An extended time series of both qPCR and laboratory results would help to clarify the validity of the 

uptick. 

Strand Conclusion 
Strand 1 aimed to further refine predictive models for harmful algal blooms to facilitate early 

warnings driven by data and ultimately reduce impacts on shellfish industry and human health. A 

new methodology based on distributed non-linear lag models and advanced Generalized Additive 

Model structures allowed the relationship between past sea surface temperature or Dinophysis spp. 

abundance information and shellfish toxin concentrations to be estimated and visualised. 

Contemporary HAB monitoring data gathered during the Project were supplemented with long-term 

HAB monitoring records obtained from the FSA (Food Standards Agency, 2021). This enabled the 

evaluation of long-term environmental signals for forecasting Dinophysis HAB events, which have 

been recorded repeatedly, with different magnitudes and durations in the St Austell Bay area. 

Analysis of the lagged effect of Dinophysis spp. abundance on shellfish toxin concentrations (Figure 

2) suggest a lag of about 2 weeks for the study area, at the time of year when blooms are usually at 

their peak (during the summer). This lag is beneficial for short-term prediction of HAB impacts, as it 

means the footprint of a severe toxic event can be potentially determined using the cell counts a few 

weeks before it happens. This new knowledge (of the lags) could also be used to inform optimal 

scheduling of abundance measurements, to best predict upcoming shellfish sample results. 

Meanwhile, analysis of the lagged effect of sea surface temperature (Figure 5) suggested colder 

winter temperatures could play a key role in driving higher and more persistent summer toxin 

concentrations in shellfish. This novel insight for Dinophysis spp. matches observations for other 

encysting dinoflagellate HAB species (Fischer et al., 2018) and is very significant for regulators and 

the shellfish industry because it establishes the principle for very long-term predictions of HABs. 

Further study should focus on long-term predictability based on colder winter temperatures, but 

also other environmental variables which may determine the long-term trajectory of phytoplankton 

populations. 

A first forecasting experiment was carried out to evaluate the relative effectiveness of predictive 

models on past Dinophysis spp. abundance, versus predictive models based on past sea surface 

temperature. Models based on abundance (Model A) had the best performance when predicting less 

than 10-weeks ahead, suggesting abundance provides richer contemporary information about HABs 

than sea surface temperature (Figure 8). However, when forecasting beyond 10 weeks into the 
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future, models based on sea surface temperature performed best, highlighting the predictive power 

of winter and spring temperatures. 

A second forecasting experiment sought to quantify the implications for predictive modelling of 

more frequent data measurements of both Dinophysis spp. abundance and shellfish toxin 

concentrations, enabled by the RPF. Increasing the frequency of toxin measurements in shellfish 

from once to twice per week during the Project picked up a previously undetected second peak in 

toxin levels in September 2021, following an earlier (conventional) summer bloom from June to 

August. This unusual bimodal bloom profile helped to highlight the advantages of increasing the 

frequency of HAB cell and toxin monitoring data for use in more accurate HAB forecasting.1 The 

experiment demonstrated consistent improvements in forecasting accuracy attributable to the 

additional data (Figure 9), suggesting frequency of data collection is one major bottleneck for 

reliable monitoring and forecasting of HAB events. Further data bottlenecks include:  

• The low signal-to-noise ratio seen in abundance measurements compared to toxin 

measurements, which mask the trajectory of the bloom from week to week. This suggests 

toxin concentrations provide a more integrative and reliable measure of HAB risk, with one 

explanation being that shellfish integrate HAB cells which are unevenly distributed in the 

water as it circulates around them, producing a moving average. To improve forecasting 

efforts based on abundance, a more reliable signal could be achieved by increased sampling 

frequency or producing repeated measurements on sampling days.  

• The high proportion of non-detects in the Official Monitoring data for both Dinophysis spp. 

abundance and OA concentrations in shellfish samples, which might obscure the early stages 

of a bloom and make forecasting impacts more challenging. For toxin measurements, non-

detects are generally limited to only periods of time when toxin levels are low (e.g. see 

Figure 4). For Dinophysis spp. abundance, however, non-detects are seen amongst periods 

of apparently high levels of abundance (see Figure 1), which is problematic for modelling 

efforts. This problem could be mitigated through the changes in measurement practice, or 

through the use of alternative methods like those based on qPCR. 

The Project period (September 2021 to end of March 2022) was not optimal for testing HAB 

forecasting models as an operational tool for regulatory decision-making, since the majority of this 

period corresponds with a quiescent period for dinoflagellate HAB species, including Dinophysis 

species. Dinophysis spp. cell counts and sea surface temperature (a key environmental predictor of 

Dinophysis spp. cell counts) declined during September/October and subsequently remained low. On 

the other hand, the low phytoplankton population levels provided the opportunity to compare the 

sensitivity of traditional microscopic analysis methods versus modern molecular (qPCR) methods for 

quantifying low levels of HAB cell abundance in seawater. This comparison showed that qPCR 

methods can provide quantitative data below the detection levels of microscopic analysis (Figure 

10). Notably, the qPCR analysis was able to detect increasing Dinophysis spp. abundance during the 

early spring, while microscopic analysis generated non-detects, which offer no indication of a trend. 

 
1 Other notable HAB species that were observed to fluctuate in abundance (cell counts in seawater) 

during the Project period included Pseudo-nitzschia spp., but no associated toxins (Domoic acid) 

were detected in shellfish at any point. Toxin production in Pseudo-nitzschia spp. is often not 

correlated with cell abundance, and is understood to be influenced by variations in environmental 

cues, including temperature, irradiance, nutrient levels, and abundances of predators (Anderson, 

Cembella, & Hallegraeff, 2011; Wells et al., 2015). 
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This suggests that qPCR data could be especially helpful at times of year when Dinophysis spp. 

populations are low, but expected to increase imminently, to support predictive models in 

identifying the early warning signs of a potential HAB event. 

The comparison between qPCR and microscopic data also highlighted that a statistical approach 

could be used to integrate the two types of measurement into a more data-rich time series. In 

practice, qPCR results could be divided by a contemporary estimate of the “qPCR coefficient” (Figure 

11) to indicate what cell abundance might be measured using microscopic methods. Given more 

comparative data (e.g. spanning one or two annual cycles), it may also be possible to back-calculate 

qPCR-equivalent cell counts from historical microscopic analysis data (i.e. Official Control data 

gathered over the last 10 years). However, combining these data types would only make sense if 

non-detects in the microscopic data were handled in a more rigorous way, for instance by treating 

them as left-censored values in a more complex statistical model. 

Strand 2: Nucleic Acid Sequence Amplification-Based Testing 

(Partners: The National Oceanography Centre, Southampton). 

Strand Overview: 

The National Oceanography Centre (NOC) were involved in the project to undertake DNA-

based testing of water samples to detect and enumerate key phytoplankton genera associated with 

the onset of toxic harmful algal blooms (HABs) in UK waters. These were Alexandrium spp., Dinophysis 

spp. and Pseudo-nitzschia spp., of which several species within each genus are known to synthesise 

potent toxins respectively implicated in Paralytic Shellfish Poisoning (PSP), Diarrheic Shellfish 

Poisoning (DSP) and Amnesic Shellfish Poisoning (ASP). The DNA-based testing was carried out using 

established Quantitative Polymerase Chain Reaction (qPCR) assays, including those developed at the 

NOC (Alexandrium spp. and Pseudo-nitzschia spp.) and the University of Exeter (Dinophysis spp. 

including D. acuminata). The qPCR testing was carried out on genetic material recovered from filter 

membranes, which were prepared by Cornwall Port Health Authority during boat-based weekly 

sampling expeditions. The assays were completed using NOC’s bench-top qPCR apparatus and 

optimised workflows. This was the main activity carried out by the NOC during the project.  

Additionally, the project was used to demonstrate a proof of concept for a ruggedised, battery 

powered and field-portable DNA analysis system that could be used to undertake the testing at the 

point of sample, including on-vessel. Portable qPCR technology has been developed by the NOC over 

the last decade, culminating in the current system/concept, which utilises a ‘tape’ featuring spatially 

separated assay ‘pockets’, containing complete, dry preserved DNA amplification reagents. The tape 

is passed over an ‘analytical head’ module, featuring P.I.D.-controlled heaters and specialist optics to 

measure fluorescence from fluorometric DNA probes. This enables DNA- or RNA-sequence 

amplification using qPCR or isothermal assay chemistries. In the current study/project, the prototype 

tape-based analysis system was fabricated within a robust, water-tight housing with a rechargeable 

battery and a power supply unit in order to demonstrate and evaluate how the system might be used 

during the routine monitoring undertaken by CPHA.  The primary goal was to obtain experience and 

feedback from CPHA (as potential end-users of the technology) towards further development and 

refinement of the concept. The system was originally developed with the assistance of NERC funding 

(grant number NE/R013721/1) and with support from BioSystems Assure (BSA) Ltd, a technology start-

up and innovation partner of this initial research. This strand of the project culminated in a field test 
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of the DNA analyser on the Cornwall Fire Service R.I.B. during a visit to a shellfish farming location, just 

off the Cornish coastline.  

Methodology: 

Sampling: 

CPHA were provided with disposable 50mL plastic syringes and Sterivex filtration units 

(Millipore, 0.22-micron pore size), each with a Luer Lock style connector. Sterivex cartridges are made 

from a filter membrane, encased within a polycarbonate housing and are used for a variety of 

microbiological water sampling purposes. They are used as the disposable filtration units on the NOC’s 

Robotic Cartridge Sampling Instrument (RoCSI) which, although not featured in the current project, 

would ultimately provide the ‘front end’ water sampling capability in an integrated DNA-sensor. In the 

current project, water filtration and DNA extraction were done manually. During sampling excursions, 

seawater was collected with the syringe and pushed through the Sterivex filter unit until 

approximately 300-400mL of water had been filtered. The volume of water filtered, together with the 

date, location and water temperature on-site was recorded. The filter units were immediately 

returned to shore and kept frozen at -80oC until later shipping (on dry ice) and processing at the NOC.  

Sample DNA Extraction: 

DNA was recovered from the Sterivex filter units using the Power Water DNA isolation Kit, 

available from Qiagen Ltd. This method has been optimised by the NOC, and is able to recover total 

DNA from the filter membrane without the need to crack-open the filter housing. During this 

procedure, the filter housing was filled with a buffered lysis solution before being mechanically 

agitated and then heated to dislodge and break open biological cells trapped on or within the filter 

membrane. The lysate was recovered to a sterile tube containing sterile micro-beads, and agitated at 

high speed to ensure complete lysis of the recovered cells. DNA was purified using solid phase 

extraction with solvent washes, and finally eluted into Tris-EDTA (pH 8.0) buffer for qPCR analysis. The 

final volume of eluant from each Sterivex unit was 100μL. Prior to analysis, each extracted DNA sample 

was analysed using a Nanodrop spectrophotometer, estimating the concentration of recovered DNA 

and indicating the level of purity. The DNA samples were stored at -20oC until use. 

qPCR: 

Each DNA sample was analysed using 3 different qPCR assays, targeting Alexandrium spp., 

Pseudo-nitzschia spp. or Dinophysis accuminata. Assays were previously optimised by the University 

of Exeter (D. accuminata) and the NOC, and summary information is provided in Table 1 below.  

Table 1. Oligonucleotide Sequences used During the qPCR Testing 

Species Target Forward Primer Reverse Primer 

Alexandrium spp. ITS1-5.8S-ITS2 YGATGAAGAATGCAGCAAMATG CAAGCAHACCTTCAAGMATATCC 

Dinophysis accuminata 5.8S GCATGCTGTATGTATCACA AATGAGGCCATACAGACA 

Pseudo-nitzschia spp. 18S CTGTGTAGTGCTTCTTAGAGG AGGTAGAACTCGTTGAATGC 

 

Each qPCR reaction was prepared in a ‘PCR Hood’ using nuclease- and DNA-free plastic 

consumables and reagents. Each qPCR reaction was set-up to contain 12.5μL of Sso Fast EvaGreen 
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Supermix (Biorad Ltd), 1μL of each primer, and 9μL of PCR-grade water; template DNA (1μL) was added 

to a total, final reaction volume of 25μL. The qPCR reactions underwent thermal cycling using either a 

Stratagene MxPro3005P or Roche LightCycler 96 real-time PCR instrument. Each reaction was run for 

40 cycles, followed by a dissociation (melting) analysis to ensure product specificity. The thermal 

cycling parameters were as follows. For Alexandrium spp. 95oC for 10 min, then 95oC for 15 sec and 

60oC for 60 sec per cycle. For D. accuminata 95oC for 2 min, then 95oC for 15 sec, 57oC for 15 sec and 

72oC for 45 sec per cycle. Finally, for Pseudo-nitzschia spp. 95oC for 2 min, then 95oC for 30 sec, 61oC 

for 30 sec and 72oC for 30 sec per cycle. Each reaction was run in triplicate for 40 cycles, and the mean 

cycle threshold (Ct) value for each replicate was used to estimate cell number as described below. Cell 

number was calculated as cells per 100mL of sampled water after considering the amount of DNA 

sample added to each reaction, and the quantity of water originally passed through the filter unit. 

Quantification of Alexandrium spp. and Dinophysis accuminata was achieved by preparing 

standard curves using a 10-fold dilution series of synthetically produced DNA duplex sequences 

containing the assay target sequence. The DNA standards were synthesised by Integrated DNA 

Technologies Ltd and purified by HPLC, before being diluted to the appropriate concentrations using 

PCR-grade water. The mean Ct value obtained from triplicate qPCR reactions for each standard and 

dilution were used to plot standard curves, from which the number of template sequence copies in 

each analysis was extrapolated using a simple linear regression of the standard curve data points. The 

number of target sequence copies in the genome was considered when estimating the number of cells 

on each filter. 

Quantification of Pseudo-nitzschia spp. was achieved using cell number standards. These were 

prepared from a culture of Pseudo-nitzschia multistriata (SZN-B954, originally recovered from the Gulf 

of Naples, Italy) in f/2 growth medium, maintained at 18oC with a 12-hour photoperiod. An 

exponentially dividing culture was enumerated using a Sedgwick–Rafter cell counting slide (PYSER-

SGI) and a compound light microscope (Carl-Zeiss), and dilutions were prepared in f/2 medium. DNA 

was extracted using the DNeasy Power Water kit and the DNA samples were used as template for a 

series of qPCR reactions, which were used to construct the standard curve.  

Portable DNA Analysis System Field test:  

A prototype DNA analysis system, which is capable of performing qPCR and isothermal DNA 

amplification assays, was installed into a water-tight, robust housing to undertake a field test of the 

instrument. The system was originally developed as part of NERC grant NE/R013721/1, and with 

support from BSA Ltd (www.biosysa.com), and the purpose of the field test was to demonstrate 

potential applications of the system for HAB surveillance on-board a small vessel during a routine 

sampling expedition. The prototype uses a specialised polycarbonate ‘tape’ featuring pre-prepared 

and packaged assay reagents, distributed into discreet ‘pockets’ which can be stored without cold-

chain and activated in a single step by the addition of an aqueous DNA sample. To prepare the system 

for field testing, a 3D-printed assembly was fabricated in ABS using a FDM 3Dprinter, and the assembly 

was bolted onto a 2mm thick steel sheet, secured to a fibreglass housing using Stainless Steel bolts. 

The lid of the housing was secured using plastic locking bolts with a rubber O-ring gasket to make the 

whole assembly water tight. A control panel and power supply unit (PSU) interface (including master 

power switch, fuse and 12V DC Charging Jack) were also 3D printed, and all components and joints 

were assembled and secured with Stainless Steel bolts and a silicone sealant. The mechanical system 

comprised a stepper-motor-driven tape positioning mechanism with a reflective object sensor for 
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alignment. It uses solenoid ‘latches’ to position/hold the tape against aluminium plates, which are 

heated using P.I.D-controlled, ceramic cartridge heaters. The system was controlled using an Arduino 

MEGA2560 microcontroller board, and powered using a 14V Li-ion, rechargeable battery. The outer-

shell of the system can be seen in Figure 12, shown below. Further information on the system can be 

obtained by contacting BSA Ltd (info@biosysa.com). 

 

Figure 12: A photograph of the portable DNA analysis system prototype outer shell, which was used to demonstrate the 
concept of in situ DNA/qPCR analysis. The system was developed by collaboration between the National Oceanography 
Centre and BioSysA Ltd. 

The instrument was transported to CPHA headquarters in Falmouth, Cornwall on 30th March 

2022, and taken on-board a R.I.B. vessel, operated by the Cornwall Fire Service. The boat was used to 

visit a Shellfish farm, close to the coastline, where a demonstration of how the system could operate 

for routine HAB surveillance was undertaken with representatives from the NOC, University of Exeter, 

CPHA and BSA Ltd present.  A water sample was filtered, and used to prepare a crude lysate, which 

could be used for DNA amplification. In this particular demonstration, the lysate was applied directly 

to a pre-prepared assay mixture within the analytical ‘tape’, which was subsequently loaded into the 

instrument for analysis.  

Findings: 

The results of the filter membrane DNA extractions are summarised in Table 2 Below. DNA 

was recovered from all of the filter membranes prepared by CPHA, with a typical yield in the order of 

a few hundred nanograms per filter. Spectrophotometric analysis of the purified DNA samples 

generally showed a single peak absorbance at 280 nm, with A260/280 ratio of >1.7. The measured 

A260/30 values were generally low (below 1.7) consistent with some contamination; this is typical of 

DNA recovered from seawater using the described method and did not inhibit amplification of the 

target DNA sequences by qPCR. 

 
 

mailto:info@biosysa.com
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Table 2: Filtered Seawater DNA Extractions Results 

Sampling Date Sample Location 
Temperature at Site 

(Celcius) 

DNA Concentration 

(ng/uL) 
A260/80 A260/30 

12/09/2021 South Mevagissey (B7OAK) 17.3 3.01 2.31 0.51 

20/09/2021 Porthallow (B34AA) 16.9 3.47 2.18 0.48 

27/09/2021 Porthallow (B34AA) 16.2 2.26 1.7 -12.02 

29/09/2021 Rophaven Outer (B70AE) 16 10.56 2.2 0.2 

04/10/2021 Porthallow (B34AA) 14.8 8.99 2.05 0.44 

05/10/2021 South Mevagissey (B7OAK) 14.8 7.5 1.96 0.91 

11/10/2021 Porthallow (B34AA) 15.1 2.72 1.46 0.61 

18/10/2021 Porthallow (B34AA) 15.3 3.03 13.32 0.21 

21/10/2021 South Mevagissey (B7OAK) 14.9 8.45 1.59 0.11 

25/10/2021 Porthallow (B34AA) 14.7 6.51 1.82 0.2 

27/10/2021 Rophaven Outer (B70AE) 15 3.22 1.24 0.04 

31/10/2021 Rophaven Outer (B70AE) 8 3.97 1.31 0.68 

01/11/2021 Porthallow (B34AA) 14.1 3.51 1.5 0.56 

03/11/2021 Rophaven Outer (B70AE) 13.8 7.98 1.49 1.34 

08/11/2021 Porthallow (B34AA) 13.9 6.13 1.51 1.01 

10/11/2021 Rophaven Outer (B70AE) 14.4 5.6 2.42 0.94 

17/11/2021 South Mevagissey (B7OAK) 12.8 3.43 2.44 0.56 

17/11/2021 Porthallow (B34AA) 13.5 4.04 2.05 0.3 

24/11/2021 Porthallow (B34AA) 12.4 4.45 1.57 1.67 

24/11/2021 Rophaven Outer (B70AE) 12.8 2.01 3.34 2.99 

29/11/2021 Porthallow (B34AA) 10.9 3.4 1.7 0.02 

01/12/2021 South Mevagissey (B7OAK) 12.4 3.21 4.3 0.03 

14/01/2022 Porthallow (B34AA) 10 4.03 1.78 0.71 

18/01/2022 South Mevagissey (B7OAK) 9.7 1.89 2.42 0.33 

24/01/2022 Rophaven Outer (B70AE) 8.9 2.43 2.77 0.25 

26/01/2022 Porthallow (B34AA) 9.7 5.95 1.93 0.68 

31/01/2022 South Mevagissey (B7OAK) 10.2 1.32 2.68 0.42 

02/02/2022 Porthallow (B34AA) 10 2.98 1.44 0.64 

07/02/2022 Porthallow (B34AA) 10.6 3.19 1.24 0.49 

09/02/2022 Rophaven Outer (B70AE) 10.6 4.31 1.34 0.25 

14/02/2022 Porthallow (B34AA) 10.2 2.59 1.42 0.26 

14/02/2022 South Mevagissey (B7OAK) 10.4 2.41 1.62 0.29 
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22/02/2022 Rophaven Outer (B70AE) 10.7 3.39 1.97 0.35 

23/02/2022 Porthallow (B34AA) 10.6 1.88 1.81 0.16 

02/03/2022 South Mevagissey (B7OAK) 10.2 0.66 1.72 1.28 

03/03/2022 Porthallow (B34AA) 10.1 3.54 1.65 1.66 

07/03/2022 Rophaven Outer (B70AE) 10.3 2.72 2.66 0.68 

10/03/2022 Porthallow (B34AA) 10 1.53 1.93 1.21 

17/3/2022 Porthallow (B34AA) 10.2 3.57 1.78 0.36 

17/03/2022 South Mevagissey (B7OAK) 10.8 3.57 1.94 0.24 

24/03/2022 Rophaven Outer (B70AE) 10.9 1.99 1.69 1.02 

24/03/2022 Porthallow (B34AA) 11.5 2.07 1.95 1.03 

29/03/2022 South Mevagissey (B7OAK) 11.3 4.57 1.47 1.41 

30/03/2022 Porthallow (B34AA) 11.5 2.7 1.15 0.47 

The extracted DNA was analysed by qPCR to estimate the number of cells for each target 

species/group on the CPHA-prepared filter samples. The qPCR results were prepared for each 

species/group to show the number of cells per 100mL of water, at each sampling location over the 6-

month time-course. For Alexandrium spp. and D. accuminata, the results were obtained by measuring 

the number of target sequence copies, and from this estimating the number of algal cells based upon 

the number of target sequence copies per genome/cell. These are presented below (Figure 13). 

Figure 13: qPCR Estimation of Alexandrium spp. and D. accuminata 

 

Dashed line represents suggested ‘trigger’ level of 40 Alexandrium cells/Litre in seawater 
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Dashed line represents suggested ‘trigger’ level of 100 Dinophysis cells/Litre in seawater 

 

For Pseudo-nitzschia spp. the results were obtained by comparing the qPCR threshold cycle 

(Ct) value against those obtained from amplifying DNA extracted from ‘cell standards’, which were 

cultured P. multistriata cells, diluted to a known cell concentration. These results are shown below in 

Figure 14.  

Figure 14: qPCR Estimation of Pseudo-nitzschia spp. 

 

Trigger level of 150,000 cells/Litre in seawater (not shown on graph) 
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Portable DNA Analysis Prototype Test: 

A prototype DNA analysis system was built in order to carry out a demonstration to CPHA (and 

the wider project team) of how qPCR results could be generated on-site by minimally trained 

personnel, without the need to send collected filter samples back to an analytical laboratory. A fully-

functional system could not be achieved within the very limited time-frame and budget of this 

particular project, however the primary purpose the test was (i) for the development team to 

experience the conditions, workflow and requirements associated with the routine sampling and 

testing undertaken by the CPHA in order to guide further development of the system, and (ii) for the 

end-user (CPHA) to understand how such as system could be utilised to address the shortfalls of 

current testing methods; ultimately (in further work) the system could be placed with CPHA for a 

longer-term trial.  

Analysis and Conclusion 

The qPCR analysis produced an estimation of the populations of Alexandrium spp. Dinophysis 

spp. and Pseudo-nitzschia spp. in Cornish shellfisheries waters between September 2021 and March 

2022. In general, there were low levels of HAB cells over the duration of the study, which was expected 

due to the season and associated low temperatures. Alexandrium spp. cells exceeded the 40 cell per 

litre ‘trigger’ level only once during mid-November at the Mevagissey site. At this concentration, 

additional sampling is required/enforced to monitor the levels of PSP toxin in shellfish flesh. At around 

the same time of year the other two sampling locations also generated elevated levels of Alexandrium 

spp. cells, albeit this was relatively slight. Towards the end of the project, from late February into 

march, levels of Alexandrium spp. cells increased at each site, which may reflect an early-Spring 

increase in temperature and sunlight, and this again was most pronounced at the Mevagissey 

sampling site. In contrast, D. accuminata cells were, in general, measured at very low levels 

throughout the project at all sites, with the exception that the first few samples, collected in early to 

mid-September. In these samples the levels of D. accuminata were significantly elevated, reaching 

more than 10,000 estimated cells per litre of filtered water at the Porthallow site; the effect was less 

pronounced at the other locations. There was evidence of an increase in D. accuminata populations 

in the early spring (March) at Mevagissey. For Pseudo-nitzschia spp. there was a generally more 

variable trend in the estimated cell numbers over the project duration, with elevated levels detected 

across all the sampling locations during the early and late periods, and minimal levels detected during 

the winter. The estimated levels of Pseudo-nitzschia cells were significantly greater than those for 

Alexandrium spp. and D. accuminata throughout, however did not reach the 150,000 cell/litre ‘trigger’ 

level at which additional shellfish sampling would be enforced.  

The qPCR assays employed for this project have been developed and optimised over many 

years, with well-established and streamlined assay workflows. In work undertaken prior to this 

project, qPCR estimates of various HAB species have been shown to correlate well with direct counting 

methods (microscopy and flow-cytometry). In this work, for D. accuminata, the estimated cell 

numbers as determined by qPCR followed the same trend as those determined by direct counting 

(microscopy), which can be seen in Figure 10. However, the qPCR estimations were consistently 

higher, across all sites, and also identified periods where D. accuminata levels were significantly  

higher than indicated by microscopy, specifically at the Mevagissey site towards the end of the project 

(early spring). The qPCR also indicated that, at all sites, the decline in D. accuminata cell numbers into 

the winter was more gradual than indicated by microscopy. The reason for these differences may 
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reflect that, although qPCR is a particularly sensitive method, this can often lead to an over-estimation 

of cell numbers, particularly where there may be an excess of genetic material that is not associated 

with living, viable cells. Furthermore, whilst the qPCR target sequences were selected based upon 

their inclusivity and selectivity for the target cell type, there is likely to be some co-amplification of 

non-target species, which may also lead to over-estimation. It is important to note, however that other 

techniques such as microscopy suffer from their own unique limitations, for example sub-sampling 

and overlapping morphometric characteristics between different HAB genera can lead to over- or 

under-estimation. The principal advantages of using qPCR are the sensitivity (up to less than single cell 

sensitivity in some cases due to multiple repeats of target sequences in HAB genomes), the speed of 

analysis and the ease with which qPCR can be adapted for portable or deployable field-based analysis 

set-ups. The latter is particularly important because on-site analysis removes the effect of bottling and 

transporting a living sample to a centralised lab, improving accuracy and reducing cost. Accordingly, a 

second objective of this project strand was to demonstrate the potential for an on-site qPCR 

instrument and workflow by conducting a field test of a prototype system during a routine sample 

collection from shellfish waters. 

 The trial of the portable DNA analysis prototype was intended to investigate the concept of 

using an in situ DNA analysis instrument instead of the usual routine of sample collection and analysis 

in a centralised lab. Although the prototype was partially functional (could undertake basic DNA 

analysis, but did not at the time have full real-time PCR capability), the general form and workflow 

could be demonstrated whilst on-board a small vessel at one of the sampling sites. This experience 

has been essential to the scientific and engineering personnel undertaking further development of the 

system, and provided CPHA as a potential end-user of the system to understand the methodology, 

and to contribute to discussions on improvements and additions. During the deployment the 

prototype was subjected to significant vibration/inertial force, etc as we journeyed to the sampling 

site at speed, and also suffered some splashes with seawater, but remained operational throughout 

due to the sturdy construction. In future work (see section on general conclusions at the end of this 

report), this experience will directly contribute to the fabrication of a next generation prototype, 

which will be fully functional and could be placed with CPHA to undergo independent evaluation over 

months/years as a new tool to support routine HAB monitoring. This, unfortunately, was not possible 

within the scope, budget and duration of this particular project. 

Strand 3 – CEFAS validating Labs (Partners: Centre for Environment, 

Fisheries and Aquaculture Science) 

Strand Overview 
Cefas were contracted through this project to undertake the analysis of water for the presence of 

Dinophysis phytoplankton species and shellfish samples for levels of harmful marine biotoxins. The 

geographical area of interest, St. Austell Bay in Cornwall, is monitored on a routine basis as part of 

the official control (OC) monitoring programme on behalf of the Food Standards Agency. However, 

monitoring frequencies are intermittent, particularly during autumn and winter, so in this study 

Cefas laboratories were tasked to undertake additional testing activities to provide additional 

phytoplankton and toxin data to supplement the OC data and increase the data available for 

statistical assessment. The aim of this strand therefore was to conduct testing of both water samples 

and shellfish (mussel) samples for phytoplankton and toxins so as to deliver a set of data with weekly 

testing results. Samples were taken across three different sites in St. Austell Bay, sent to the Cefas 
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laboratories in Lowestoft and Weymouth and processed using validated and UKAS-accredited testing 

methods. Once results were generated, data was shared with all project participants and utilised for 

predictive modelling purposes. 

 

Methodology 

Reagents and chemicals 
Methanol utilised for sample extraction was of HPLC grade. Water and acetonitrile used for LC–
MS/MS mobile phases and instrument wash reagents were of LC–MS grade. Sodium hydroxide (VWR 
International Ltd, UK) and hydrochloric acid (Fisher Scientific UK Ltd) were analytical grade. Mobile 
phase additive, 25–31% ammonium hydroxide, was of LC–MS grade (Sigma-Aldrich, Poole, England). 
Certified reference materials for OA, DTX1, DTX2 and PTX2 were purchased from the Institute of 
Biotoxin Metrology, National Research Council Canada (NRCC, Halifax, Nova Scotia, Canada). Primary 
toxin standards were diluted in 100% methanol to form concentrated stock standard solutions prior 
to further dilution for production of calibration standards. 

 
Sampling and transportation 
Three geographical sampling sites were incorporated into the St. Austell Bay study: 

1. Ropehaven Outer, Bed Id B70AE, Grid ref SX05744972 

2. Porthallow North, Bed Id B34AA, Grid ref SW80212383 

3. South Mevagissey Bottom, Bed Id B70AK, Grid ref SX05214698 

 

Figure 15. Map of SW Cornwall highlighting three shellfish sampling areas 

 

Water samples were taken by Cornwall Port Health officers between 13th September 2021 and 30th 

March 2022. Pole collection was used for the majority of samples, with surface samples taken on 

just two occasions. 500 mL water samples were taken at the representative monitoring points for 

each of the three classified harvesting areas. Once a sample had been taken, it was fixed using 
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Lugol’s iodine solution, before being transported to the Cefas Lowestoft laboratory under 

temperature-controlled conditions. 

Mussel samples were taken from the same monitoring points as the water samples. For each sample 

enough live mussels were taken to provide a minimum of 100g of mussel meat once shucked. The 

mussels chosen for the samples were those representing the entire population in terms of size. Once 

the mussels were removed from their location, they were placed into a polythene sample bag, and 

packed into a cool box containing ice packs and foam protection. These boxes were then shipped to 

the Cefas Weymouth laboratory for toxin testing.  

Water testing 
The 500 mL water sample bottle was slowly and gently inverted 10 times to homogenously mix the 
water containing the phytoplankton cells. Immediately on completion of the 10 inversions, the 
sample was poured into a 25 mL settling chamber until the chamber just begins to overflow. A glass 
chamber cover was immediately slid onto the top of the tower, cutting off the meniscus before it 
had time to contribute significant additional suspended particles. After a few hours, the 25 mL 
chamber was scanned on the microscope to determine if a smaller subsample should be settled. The 
chambers were left to settle as follows: 

• A 5 mL chamber must have settled for a minimum of 4 hours. 

• A 10 mL chamber must have settled for a minimum of 8 hours.  

• A 25 mL chamber must have settled for a minimum of 12 hours. 

The settling chamber was carefully mounted into a Perspex stage holder on a high power, inverted 
microscope. The microscope was focussed, and light level adjusted to ensure maximum resolution 
for resolving morphological features of the phytoplankton cells. This enabled cell identification to 
the lowest taxonomic level. A quick scan of the sample was performed to determine the method of 
analysis to be used. Two enumeration methods were used, depending on the cell density of 
reportable taxa. The first method was employed when the cell concentration of a reportable taxon 
was low (less than approximately 4 cells per field of view (FOV)). This is the preferred method of 
enumeration. In this case the whole base of the chamber was scanned for the presence of these cells 
at a magnification of x200. This allowed a minimum detection level of 40 cells per litre, if a 25 mL 
chamber were used. However, species identification may require higher magnification. The second 
method was used when cells of a reportable taxon were too numerous to ensure accurate counting 
over the whole base of the chamber (greater than approximately 4 cells per FOV). In this case 
random FOV are counted. The whole base plate was systematically viewed to allow the total number 
of Dinophysiceae spp observed to be recorded, speciating each individual as much as possible. Empty 
cells were not included in the analysis. Where a cell could be identified and contained visible cell 
contents (whether a half cell or damaged), it was included in the analysis count. The concentrations 
of algal cells in terms of cells per litre was subsequently calculated by multiplying the cell count by 
the raising factor (1000/subsample size).  

 

Shellfish testing 
Mussel samples were rinsed to remove debris, allowed to drain and the edible flesh removed and 

collected in a pot. Once a minimum of ten animals and 50 g flesh had been collected, the tissue was 

thoroughly homogenised using a high-speed blender, prior to extraction and analysis following the 

EU Reference Laboratory (EURL) reference method (EURLMB, 2015). 2.0 ± 0.01 g of each mussel 

tissue homogenate was then weighed into separate polypropylene 50 mL centrifuge tubes and a 

unique sample id applied to each sample.   
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9 mL methanol was added and vortex mixed for 3 min before centrifuging for 8 min (3500 rpm). 
After the supernatants were collected, the remaining pellets were subjected to a second extraction 
step whereby 9 mL of methanol was added and the content was vortex-mixed 
for a further 3 min before centrifuging again for 8 min (3500 rpm). A final third extraction and 
centrifugation was conducted prior to combining the supernatants from the three extractions in 20 
mL volumetric flasks and diluted to 20 mL with pure methanol prior to filtering with 0.2 µm nylon 
filters (Phenomenex, Manchester, UK). For each batch of samples analysed, a negative control 
procedural blank and positive control laboratory reference material (LRM) was co-extracted for 
quality control assessment. Hydrolysis of methanolic extracts was conducted based on the 
procedure described by Mountfort et al. (2001). 125 µL of 2.5M sodium hydroxide was added to 1 
mL of extract, vortex mixed for 5 s and heated for 40 min at 76 °C using the block heater. Samples 

were cooled to ambient temperature, neutralised using 125 μL 2.5M hydrochloric acid and vortex 
mixed for 5 s. Hydrolysed samples were analysed alongside a crude aliquot of unhydrolysed extract 
using LC–MS/MS.  
 
Two UHPLC systems (Acquity and Acquity I-class) were coupled to a Xevo TQ and Xevo TQ-S triple 
quadrupole mass spectrometer respectively (Waters Ltd., Manchester, UK). The alkaline (pH 11) LC 
method described by Gerssen et al. (2009) was adopted with modifications and subjected to single 
laboratory validation prior to implementation into the routine biotoxin monitoring programmes. 
Mobile phase A comprised of deionised water adjusted to pH 10.7 +/- 0.2 with 0.1% ammonium 
hydroxide. Mobile phase B was 90% acetonitrile with 0.1% ammonium hydroxide. Chromatographic 
and mass spectrometry conditions were as detailed by Dhanji-Rapkova et al., 2018. Instrument data 
were analysed using MassLynxTM v.4.1 (Waters Ltd.). LC-MS/MS performance was checked applying 
quality control (QC) criteria outlined in internal SOPs and the EURLMB SOP (EURLMB, 2015). External 
calibrations generated from analysis of calibrant solutions were used for quantitation of all target 
compounds. Individual OA-group toxin concentrations were calculated with post-hydrolysis 
concentrations equating to concentrations of free toxins and esterified toxins combined. Toxicity 
Equivalent Factors (TEFs) recommended by EFSA (2009b) were applied and toxin concentrations 
were subsequently summed into representative groups as stipulated by EU legislation (Anon, 
2004b). The OA group included OA, DTX1, DTX2, PTX1 and PTX2 and the combined concentration 
was expressed in μg OA eq./kg. Unhydrolysed extracts were used for quantitation of all toxins, 
including OA, DTX1 and DTX2 in their free form. Total (free form plus fatty acid esters) 
concentrations of these toxins were assessed using hydrolysed samples only. 
 

Results 
Phytoplankton analysis of preserved water samples revealed the presence of a range of Dinophysis 

species including most commonly D. acuminata complex, D. ovum, D. fortii, together with lower 

amounts of D. sacculus, D. acuta, D. dens, D. caudata, as well as Phalacroma rotunda and 

Phalacroma nasturtium. Notably, higher cell densities were enumerated in the first month of 

samples, between 13th September 2021 and 17th October 2021.Table 3 summarises the results 

obtained from the samples between these dates.  

Table 4 summarises the DSP toxin concentrations quantified in the mussel samples received 

throughout the project between 20th September 2021 and 30th March 2022. Concentrations are 

tabulated for both freely extractable DSP toxins (OA, DTX1 and DTX2) as well as total DSP toxins 

quantified after alkaline hydrolysis (incorporating both free and esterified toxins). The LC-MS/MS 

method also includes PTX toxins, but none were detected, so are not included in the table. Other 

lipophilic toxins such as Azaspriacids and Yessotoxins were also acquired in the method, but not 

reported here as have no relevance to Dinophysis sp. presence and the predictive modelling being 

developed. However, overall, only low/trace levels of these toxins were occasionally observed. 
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In terms of DSP toxin presence, the dominant toxin detected and quantified in the mussel tissues 

was OA, with only trace levels of DTX2 and very occasionally trace DTX1. On average 97% ± 8% of the 

total DSP toxin concentrations consisted of OA. The results also show the high proportion of OA to 

be present in ester form, with on average only 15% ± 17% freely-extractable. This means that the 

alkaline hydrolysis step is essential to avoid significantly underestimating total OA-group toxicity in 

mussel samples from this region. 
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Table 3. Summary of Dinophysis cell densities (cells/L) enumerated from Cornish water samples during project. ND = not detected. Cells shaded red are 

results where cell densities have exceeded trigger threshold levels. 
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Reference              Sampling Point 
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1 St Austell Bay B70AE SX05744972 Ropehaven Outer POLE 13/09/2021 1080 40 840 80 120 ND ND 

2 St Austell Bay B70AE SX05744972 Ropehaven Outer POLE 15/09/2021 1720 40 1480 120 80 ND ND 

745/21 Porthallow Cove B34AA SW80212383 Porthallow North POLE 15/09/2021 160 ND 160 ND ND ND ND 

3 Porthallow Cove B34AA SW80212383 Porthallow North SURFACE 20/09/2021 920 120 480 160 120 40 ND 

752/21 Mevagissey Bay B70AK SX05214698 South Mevagissey Bottom POLE 20/09/2021 1000 ND 1000 ND ND ND ND 

4 Mevagissey Bay B70AK SX05214698 South Mevagissey Bottom POLE 22/09/2021 800 80 440 200 ND ND ND 

767/21 Porthallow Cove B34AA SW80212383 Porthallow North POLE 22/09/2021 760 80 480 120 ND ND 40 

5 Porthallow Cove B34AA SW80212383 Porthallow North POLE 27/09/2021 80 40 40 ND ND ND ND 

6 St Austell Bay B70AE SX05744972 Ropehaven Outer POLE 27/09/2021 160 40 120 ND ND ND ND 

7 St Austell Bay B70AE SX05744972 Ropehaven Outer POLE 29/09/2021 0 ND ND ND ND ND ND 

790/21 Porthallow Cove B34AA SW80212383 Porthallow North POLE 29/09/2021 0 ND ND ND ND ND ND 

8 Porthallow Cove B34AA SW80212383 Porthallow North POLE 04/10/2021 0 ND ND ND ND ND ND 

9 Mevagissey Bay B70AK SX05214698 South Mevagissey Bottom POLE 06/10/2021 40 ND ND 40 ND ND ND 

814/21 Mevagissey Bay B70AK SX05214698 South Mevagissey Bottom POLE 11/10/2021 40 ND 40 ND ND ND ND 

10 Porthallow Cove B34AA SW80212383 Porthallow North POLE 11/10/2021 120 40 ND ND ND ND 40 

815/21 St Austell Bay B70AE SX05744972 Ropehaven Outer POLE 11/10/2021 80 ND 80 ND ND ND ND 

11 St Austell Bay B70AE SX05744972 Ropehaven Outer POLE 13/10/2021 120 ND 80 ND ND ND 40 
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831/21 Porthallow Cove B34AA SW80212383 Porthallow North POLE 10/13/2021 160 ND 120 ND ND 40 ND 

12 Porthallow Cove B34AA SW80212383 Porthallow North POLE 18/10/2021 0 ND ND ND ND ND ND 

842/21 Mevagissey Bay B70AK SX05214698 South Mevagissey Bottom POLE 17/10/2021 200 40 120 ND ND ND ND 

13 Mevagissey Bay B70AK SX05214698 South Mevagissey Bottom POLE 21/10/2021 40 ND 40 ND ND ND ND 

14 Porthallow Cove B34AA SW80212383 Porthallow North POLE 25/10/2021 0 ND ND ND ND ND ND 

850/21 Porthallow Cove B34AA SW80212383 Porthallow North POLE 10/20/2021 80 ND ND ND ND ND 40 

15 St Austell Bay B70AE SX05744972 Ropehaven Outer POLE 27/10/2021 0 ND ND ND ND ND ND 

16 Porthallow Cove B34AA SW80212383 Porthallow North POLE 02/11/2021 0 ND ND ND ND ND ND 

861/21 St Austell Bay B70AE SX05744972 Ropehaven Outer POLE 02/11/2021 40 ND ND ND ND ND ND 

17 St Austell Bay B70AE SX05744972 Ropehaven Outer POLE 03/11/2021 0 ND ND ND ND ND ND 

18 Porthallow Cove B34AA SW80212383 Porthallow North POLE 08/11/2021 40 ND 40 ND ND ND ND 

19 St Austell Bay B70AE SX05744972 Ropehaven Outer POLE 10/11/2021 0 ND ND ND ND ND ND 

20 Porthallow Cove B34AA SW80212383 Porthallow North POLE 17/11/2021 0 ND ND ND ND ND ND 

21 Mevagissey Bay B70AK SX05214698 South Mevagissey Bottom POLE 17/11/2021 40 ND 40 ND ND ND ND 

911/21 Porthallow Cove B34AA SW80212383 Porthallow North POLE 17/11/2021 0 ND ND ND ND ND ND 

22 St Austell Bay B70AE SX05744972 Ropehaven Outer POLE 24/11/2021 0 ND ND ND ND ND ND 

23 Porthallow Cove B34AA SW80212383 Porthallow North POLE 24/11/2021 0 ND ND ND ND ND ND 

24 Mevagissey Bay B70AK SX05214698 South Mevagissey Bottom POLE 01/12/2021 40 ND ND ND 40 ND ND 

25 Porthallow Cove B34AA SW80212383 Porthallow North POLE 29/11/2021 0 ND ND ND ND ND ND 

923/21 Mevagissey Bay B70AK SX05214698 South Mevagissey Bottom POLE 06/12/2021 0 ND ND ND ND ND ND 

26 Porthallow Cove B34AA SW80212383 Porthallow North POLE 17/01/2022 0 ND ND ND ND ND ND 

27 Mevagissey Bay B70AK SX05214698 South Mevagissey Bottom POLE 18/01/2022 0 ND ND ND ND ND ND 

28 St Austell Bay B70AE SX05744972 Ropehaven Outer POLE 24/01/2022 0 ND ND ND ND ND ND 

29 Porthallow Cove B34AA SW80212383 Porthallow North POLE 26/01/2022 0 ND ND ND ND ND ND 

30 Mevagissey Bay B70AK SX05214698 South Mevagissey Bottom POLE 01/02/2022 0 ND ND ND ND ND ND 

31 Porthallow Cove B34AA SW80212383 Porthallow North POLE 02/02/2022 0 ND ND ND ND ND ND 

32 Porthallow Cove B34AA SW80212383 Porthallow North POLE 02/07/2022 0 ND ND ND ND ND ND 
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33 St Austell Bay B70AE SX05744972 Ropehaven Outer POLE 02/09/2022 0 ND ND ND ND ND ND 

34 Porthallow Cove B34AA SW80212383 Porthallow North POLE 14/02/2022 0 ND ND ND ND ND ND 

35 Mevagissey Bay B70AK SX05214698 South Mevagissey Bottom POLE 14/02/2022 0 ND ND ND ND ND ND 

36 St Austell Bay B70AE SX05744972 Ropehaven Outer POLE 22/02/2022 0 ND ND ND ND ND ND 

37 Porthallow Cove B34AA SW80212383 porthallow North POLE 23/02/2022 0 ND ND ND ND ND ND 

38 South Mevagissey B70AK SX05214698 South Mevagissey Bottom POLE 03/02/2022 0 ND ND ND ND ND ND 

39 Porthallow Cove B34AA SW80212383 Porthallow North POLE 02/03/2022 0 ND ND ND ND ND ND 

40 St Austell Bay B70AE SX05744972 Ropehaven Outer POLE 07/03/2022 0 ND ND ND ND ND ND 

41 Porthallow Cove B34AA SW80212383 Porthallow North SURFACE 10/03/2022 0 ND ND ND ND ND ND 

42 Porthallow Cove B34AA SW80212383 Porthallow North POLE 14/03/2022 0 ND ND ND ND ND ND 

43 Porthallow Cove B34AA SW80212383 Porthallow North   24/03/2022 0 ND ND ND ND ND ND 

44 St Austell Bay B70AE SX05744972 Ropehaven Outer   24/03/2022 0 ND ND ND ND ND ND 

45 South Mevagissey B70AK SX05214698 South Mevagissey Bottom POLE 29/03/2022 0 ND ND ND ND ND ND 

46 Porthallow Cove B34AA SW80212383 Porthallow North POLE 30/03/2022 0 ND ND ND ND ND ND 
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Table 4. Summary of shellfish DSP toxin concentrations (µg/kg) quantified in study samples, highlighting both freely extractable OA-group toxins and total 

OA-group toxins including toxin esters. Total toxicity values for OA/DTXs shown in µg OA eq/kg, giving actual summed values together with low and high 

values calculated from measurement uncertainty (<RL = less than reporting limit of 16 µg OA eq/kg). No PTX toxins were detected in any of the samples.  

Sample Collected Bed ID Sample location 
Free 
OA  

Free 
DTX1 

Free 
DTX2 

OA 
total 

DTX1 
total 

DTX2 
total 

Total 
OA/DTXs/PTXs Low 

value 

Total 
OA/DTXs/PTXs 

Actual value 

Total 
OA/DTXs/PTXs 

High value  

BTX/2021/2493 20/09/2021 B70AE Ropehaven outer 65.5   188.8   107 189 271 

BTX/2021/2494 20/09/2021 B70AK Mevagissey 26.1   77.3   44 77 111 

RPF1 20/09/2021 B34AA Porthallow 2.4   22.8   13 23 33 

BTX/2021/2540 22/09/2021 B34AA Porthallow 18.3  1.9 54  1.9 30 54 78 

RPF2 22/09/2021 B70AK Mevagissey 25.4   83.5   47 84 120 

BTX/2021/2554 27/09/2021 B70AE Ropehaven outer 42.5  1.6 127.7  2.9 72 128 183 

BTX/2021/2555 27/09/2021 B70AK Mevagissey 30.9   99.3  1.2 56 99 143 

RPF3 27/09/2021 B34AA Porthallow 14.4   45.3   26 45 65 

BTX/2021/2610 29/09/2021 B34AA Porthallow North 15   46.1   23 46 69 

RPF4 29/09/2021 B70AE Ropehaven 42.2   121.1   68 121 174 

BTX/2021/2630 04/10/2021 B70AK 
South Mevagissey 
Bottom 26.4  1.4 61  2.5 31 61 91 

BTX/2021/2631 04/10/2021 B70AE Ropehaven Outer 35.5  0.9 85.2  2.2 43 85 127 

RPF5 04/10/2021 B34AA Porthallow 1.4   10.7   <RL <RL <RL 

BTX/2021/2686 06/10/2021 B70AE Ropehaven Outer 39.9 1.8  67.6 1.8 3.6 34 68 101 

BTX/2021/2687 06/10/2021 B34AA Porthallow North 4 2.1  12.5 3.6  <RL <RL <RL 

RPF6 06/10/2021 B70AK Mevagissey 35   68.3   39 68 98 

BTX/2021/2720 11/10/2021 B70AE Ropehaven Outer 22.1   54.3   31 54 78 

RPF7 11/10/2021 B34AA Porthallow    2.9   <RL <RL <RL 

BTX/2021/2776 13/10/2021 B70AK 
South Mevagissey 
Bottom 23.9   58.7   33 59 84 

BTX/2021/2777 13/10/2021 B34AA Porthallow North    5.1   <RL <RL <RL 
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RPF8 13/10/2021 B70AE Ropehaven 8.6   37.6   21 38 54 

BTX/2021/2809 18/10/2021 B70AE Ropehaven Outer 15.2   29.8   17 30 43 

BTX/2021/2810 18/10/2021 B70AK 
South Mevagissey 
Bottom 8.8  0.5 31.3  1.6 18 31 45 

RPF9 18/10/2021 B34AA Porthallow    8.8   <RL <RL <RL 

BTX/2021/2855 20/10/2021 B34AA Porthallow North 2.1   7.9  1.5 <RL <RL <RL 

RPF10 21/10/2021 B70AK Mevagissey 1.7   19.3   11 19 28 

BTX/2021/2876 25/10/2021 B70AE Ropehaven Outer 10.2  2.5 23.2  3.5 13 23 33 

RPF11 25/10/2021 B34AA Porthallow 1.6   9.9   <RL <RL <RL 

RPF12 27/10/2021 B70AE Ropehaven 8  0.7 25.3  1.3 13 25 38 

BTX/2021/2929 01/11/2021 B70AE Ropehaven Outer 7.1  1.1 17.3  2.2 10 17 25 

RPF13 01/11/2021 B34AA Porthallow 1.4   5.1   <RL <RL <RL 

RPF14 03/11/2021 B70AE Ropehaven 10.3  0.8 28.5  0.8 14 29 43 

BTX/2021/2993 08/11/2021 B70AE Ropehaven Outer 15.4   38.7   20 39 58 

RPF15 10/11/2021 B70AE Ropehaven 3.9  0.4 17.3  0.4 9 17 26 

BTX/2021/3080 15/11/2021 B70AK 
South Mevagissey 
Bottom   2.3 7.3  2.3 <RL <RL <RL 

BTX/2021/3082 15/11/2021 B70AE Ropehaven Outer    6.7   <RL <RL <RL 

BTX/2021/3125 17/11/2021 B34AA Porthallow North    3.1   <RL <RL <RL 

RPF16 17/11/2021 B34AA Porthallow 1.8  0.2 7.3  0.2 <RL <RL <RL 

RPF17 17/11/2021 B70AK Mevagissey 2.6  0.5 9.5  1.9 <RL <RL <RL 

BTX/2021/3143 22/11/2021 B70AK Mevagissey Bay       <RL <RL <RL 

BTX/2021/3144 22/11/2021 B70AE St. Austell Bay       <RL <RL <RL 

RPF18 24/11/2021 B70AE Ropehaven 2  0.3 11.5  0.2 <RL <RL <RL 

RPF19 24/11/2021 B34AA Porthallow 1.2   8.3   <RL <RL <RL 

BTX/2021/3186 29/11/2021 B70AE Ropehaven Outer    6.3  4 <RL <RL <RL 

BTX/2021/3187 29/11/2021 B70AK 
South Mevagissey 
Bottom    5  3.8 <RL <RL <RL 

RPF20 29/11/2021 B34AA Porthallow    6.3   <RL <RL <RL 
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RPF21 01/12/2021 B70AK Mevagissey 2.4  0.3 9.2  0.1 <RL <RL <RL 

BTX/2021/3238 06/12/2021 B70AK 
South Mevagissey 
Bottom    5.6   <RL <RL <RL 

BTX/2021/3239 06/12/2021 B70AE Ropehaven Outer    6.1  0.8 <RL <RL <RL 

BTX/2021/3339 14/12/2021 B34AA Porthallow North    4.3   <RL <RL <RL 

BTX/2022/0002 05/01/2022 B70AE Ropehaven Outer 0.9  0.4 8.6  0.4 <RL <RL <RL 

BTX/2022/0003 05/01/2022 B70AK 
South Mevagissey 
Bottom 0.3   4.6   <RL <RL <RL 

BTX/2022/0074 13/01/2022 B34AA Porthallow North    0.1   <RL <RL <RL 

RPF22 17/01/2022 B34AA Porthallow    3.4   <RL <RL <RL 

RPF23 18/01/2022 B70AK Mevagissey    4.9   <RL <RL <RL 

RPF25 22/01/2022 B34AA Porthallow    4.5   <RL <RL <RL 

RPF24 24/01/2022 B70AE Ropehaven    4.8   <RL <RL <RL 

RPF26 31/01/2022 B70AK Mevagissey    5   <RL <RL <RL 

RPF27 02/02/2022 B34AA Porthallow    4.8   <RL <RL <RL 

BTX/2022/0197 07/02/2022 B70AK 
South Mevagissey 
Bottom    8.2   <RL <RL <RL 

BTX/2022/0198 07/02/2022 B70AE Ropehaven Outer    5   <RL <RL <RL 

RPF28 07/02/2022 B34AA Porthallow    4.8   <RL <RL <RL 

RPF29 09/02/2022 B70AE Ropehaven    7   <RL <RL <RL 

RPF30 14/02/2022 B70AK Mevagissey    6.8   <RL <RL <RL 

RPF31 14/02/2022 B34AA Porthallow    4.2   <RL <RL <RL 

RPF32 22/02/2022 B70AE Ropehaven    6.7   <RL <RL <RL 

BTX/2022/0325 23/02/2022 B34AA Porthallow North       <RL <RL <RL 

RPF33 23/02/2022 B34AA Porthallow    6.5   <RL <RL <RL 

RPF34 02/03/2022 B70AK Mevagissey    10.4   <RL <RL <RL 

RPF35 03/03/2022 B34AA Porthallow    4.1   <RL <RL <RL 

RPF36 07/03/2022 B70AE Ropehaven    7   <RL <RL <RL 
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RPF37 10/03/2022 B34AA Porthallow    5.5   <RL <RL <RL 

BTX/2022/0443 11/03/2022 B34AA Porthallow North    0.8   <RL <RL <RL 

RPF38 14/03/2022 B34AA Porthallow    5.4   <RL <RL <RL 

RPF39 17/03/2022 B70AK Mevagissey    6.3   <RL <RL <RL 

BTX/2022/0478 18/03/2022 B70AE Ropehaven Outer    6.7   <RL <RL <RL 

BTX/2022/0479 18/03/2022 B70AK 
South Mevagissey 
Bottom    4   <RL <RL <RL 

RPF40 24/03/2022 B70AE Ropehaven    6.7   <RL <RL <RL 

RPF41 24/03/2022 B34AA Porthallow    6.5   <RL <RL <RL 

RPF42 29/03/2022 B70AK Mevagissey    7   <RL <RL <RL 

RPF43 30/03/2022 B34AA Porthallow    8.8   <RL <RL <RL 
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Strand Conclusion 
Work at Cefas involved both the detection and enumeration of preserved water samples for 

Dinophysis species and the LC-MS/MS analysis of mussel samples for DSP toxins. Validated and 

accredited methods were used for both tests following UKAS-accredited protocols. Results showed 

the highest cell densities of Dinophysis sp. at the beginning of the project, around September 2021. 

This coincided, as would be expected, with the highest concentrations of toxins in the mussel flesh. 

After October, plankton cells and toxin concentrations dropped and remained low or non-detected 

for the rest of the project. 
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Strand 4 – Lateral Flow Testing (Partners: Cornwall Port Health 

Authority)  

Strand Overview 
The main elements of the project were the first and second strands, which were backed up by CEFAS 

validated labs for phytoplankton and Diarrhetic Shellfish Poisoning (DSP) toxin (DTX3 / Free OA) in 

shellfish flesh.  Since the second strand focused on harmful algal cell abundance within the water 

and this was used to predict DSP toxins (a.k.a. Dinophysis toxins) in shellfish, Cornwall Port Health 

Authority (CPHA) proposed to use a commercially available tool which allows food business 

operators to detect DTX3 / Free OA in shellfish flesh on a pass / fail basis (set around the regulatory 

limit).  We wished to compare the results to the validated CEFAS labs and provide some additional 

yet more limited data into the predictive model, if possible.  

Methodology 
Officers at CPHA followed a standard procedure to obtain extracts of okadaic acid group toxins (OA 

and DTXs) both in free and esterified form, from the flesh of the shellfish. The process was such that 

with all the consumables it would be conducted by a person with reasonable knowledge, training 

and access to an appropriate space.  

Unfortunately, the first device supplied had an error which meant that we obtained a series of 

invalid results, the fault possibly being a misaligned camera inside the device which aims to read the 

result from a strip inserted in the rear of the device that the clear liquid tracks up to provide a result.  

All regulatory exceedances for phytoplankton and shellfish toxin were experienced in September 

and October 2021, therefore sample testing focused on those samples obtained from Porthallow 

during those months. Tests for the other sites to the east of the county remain at CEFAS, with the 

intention of testing, as soon as reasonably able to.   

Table 5: Lateral flow test results for Diarrhetic Shellfish Poisoning (DSP) toxin (free and 

esterified OA-group toxins) 

Sample 
Location 

Date of 
Sample Time 

Temp at 
sampling 

Date of 
Analysis DSP Result 

Porthallow 20/09/2021 10.15am 16.9°C 05/01/2022 Negative 

Porthallow 27/09/2021 10.30 am 16.2°C 05/01/2022 Invalid 

Porthallow 04/10/2021 10.20 am 14.2°C 06/01/2022 Invalid 

Porthallow 11/10/2021 10.25am 15.1°C 06/01/2022 Positive 

Porthallow 18/10/2021 08.00am 15.3°C 03/02/2022 Negative 

Porthallow 25/10/2021 09.45am 14.7°C 03/02/2022 Negative 
 

Analysis 
Due to issues in the testing process, CPHA tested a relatively small number of samples within the 

higher risk period.  There was a finite amount of shellfish flesh available, which limited the ability to 

re-test after invalid results were received.   There was one exceedance on the lateral flow method, 

however we have no corresponding official control data, the closest sample due to be obtained was 

unable to be collected due to a missing mooring, otherwise samples were negative or invalid.  
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Further testing of samples is required at the St. Austell Bay sites in the high-risk period using the 

lateral flow test equipment. 

Strand Conclusion 
 

At this stage it has not been possible to comment on the viability of the lateral flow test equipment 

against the Predictive Model and/or the qPCR testing data, for testing shellfish flesh for DTX3/Free 

OA.  

Overall Project Conclusions 
• There is a need for a more proactive regulatory environment, where HAB impacts are 

predicted and mitigated. This can be supported by new technologies and data-driven 

approaches. 

• Strand 1 shows that more frequent data collection improves the accuracy of detecting and 

predicting HABs and harmful toxin levels in shellfish, but this data collection is limited by 

human resource and associated cost:  

o Quantitative PCR (Strand 2) is less human resource demanding than conventional 

microscopic analysis of HAB cell counts and has the potential to be deployed at sea 

and also provide increased sensitivity for detecting increasing trends at low levels of 

abundance (<40 cells per L).  

o Lateral flow devices (Strand 4) are also likely to be less resource demanding than 

conventional LC-MS methods, with the potential for deployment at sea, but their 

sensitivity is lower than LC-MS.  

o In a world of finite data, we need to be able to combine and utilise different sources 

and types of data, taking into account different sampling and analytical methods, 

sampling locations and time points.  

• Strand 2 shows there is considerable scope for using qPCR to quantify HAB cell abundance at 

lower levels than are detectable by conventional microscopic methods. Further work is 

required to cross-validate these different methods and identify factors which contribute 

most to differences in apparent sensitivity (e.g. sampling error, co-amplification of DNA from 

non- viable cells and non-target HAB species during qPCR analysis, and/or failure to detect 

HAB cells at low abundance under a microscope). 

• The inclusion of molecular (e.g. qPCR) and biochemical (e.g. lateral flow) tools and statistical 

models for detecting and forecasting HABs will benefit shellfish businesses and regulators by 

better informing decision making around the scheduling of harvesting and monitoring  

o Monitoring and modelling of contemporary trends in HAB cell abundance and HAB 

toxin levels in shellfish can provide businesses and regulators with up to ~10 weeks 

warning of an impending HAB event.  

o Statistical analysis of the available data from St Austell Bay provides some evidence 

of longer-term predictability of HAB events (i.e. colder winter temperatures are 

associated with more intense blooms of Dinophysis spp. in the following spring and 

summer. 

• Obtaining more frequent higher sensitivity molecular (qPCR) data for Dinophysis toxin 

concentrations in shellfish (as well as Dinophysis cell counts) is likely to bring further benefits 

in terms of improving HAB forecasting and better targeting and reducing monitoring effort.   
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Recommendations for further work  
qPCR as an Alternative ‘Tool’ for HAB Surveillance: 

The inclusion of qPCR-based analysis in this study demonstrated how this ‘molecular’ technique 

could be used to monitor 3 different groups of harmful algae over a 6-month time-course, with 

results generally agreeing with those obtained using the traditional methodology (microscopy). One 

key benefit of qPCR is the very high-sensitivity. This can be both an advantage, where low-level 

fluctuations in HAB populations, including those that may precede a ‘bloom’ may be missed using 

microscopy (e.g. early spring at Mevagissey there is a marked increase in D. accuminata in the qPCR 

data, but this was not detected by microscopy), and also a disadvantage if overestimation of HAB 

cell number leads to unnecessary concern. To address this, it is possible to augment the standard 

qPCR workflow by including sample-pre-treatment processes that effectively eliminate non-cellular 

DNA, and it has been shown in numerous studies that this reduces or removes the ‘over-estimation 

problem’. For the purposes of predicting/modelling HABs, the over-estimation is most significant if 

the degree of error is unstable; in this study the direct comparison between microscopy and qPCR 

indicates this was not the case, and the qPCR estimated cell number increase was more or less 

consistent over the 6-month period.  

The promising correlation between the conventional (microscopy) and new (qPCR) approaches, 

together with feedback provided to the NOC from CPHA on issues with the LF analysis indicates a 

real need/potential/scope for an integrated qPCR analysis platform, but one important 

consideration is cost. In the course of this project samples were collected by hand, requiring vessel 

time, and then delivered to the NOC by cold-chain. At the NOC, samples were processed using a 

state-of-the-art laboratory and by a qPCR specialist. This is laborious and expensive. However, the 

project also considered the potential for adopting an in situ analysis approach using new 

instrumentation. Portable qPCR instruments have been in development in various forms for many 

decades, however the recent global pandemic has seen record investment in biotechnology 

methods and instrumentation, and these systems have become highly disruptive technologies in a 

variety of sectors from healthcare (in vitro diagnostics) to environmental science and public health 

protection. These advances have brought about the expected size and cost reduction that has 

widened the range of potential applications. The NOC recently partnered with a biotechnology start-

up, BioSysA Ltd to capitalise on these recent trends to prepare a low-cost qPCR-based analyser that 

could be operated at the point of sample, and by a non-specialist operator. An early prototype was 

demonstrated to CPHA as part of this study. On-going and future work will continue to refine this 

system, incorporating feedback gained from the project, with the intention of being able to place a 

fully-functional system with CPHA for a long-term trial. In this scenario, CPHA would be able to carry 

the system on-board during regular shellfisheries visits, and make on-site qPCR measurements. This 

would generate the evidence to indicate how qPCR could be adopted by those undertaking routine 

surveillance, and how it could complement those methods already in use. 
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