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Concentration and distribution
of phytoplankton nitrogen and
carbon in the Northwest
Atlantic and Indian Ocean: A
simple model with applications
in satellite remote sensing

Giuseppe Maniaci1, Robert J. W. Brewin1*

and Shubha Sathyendranath2

1College of Life and Environment Sciences, University of Exeter, Penryn, United Kingdom, 2National
Centre for Earth Observation, Plymouth Marine Laboratory, Plymouth, United Kingdom
Despite the critical role phytoplankton play in marine biogeochemical cycles,

direct methods for determining the content of two key elements in natural

phytoplankton samples, nitrogen (N) and carbon (C), remain difficult, and such

observations are sparse. Here, we extend an existing approach to derive

phytoplankton N and C indirectly from a large dataset of in-situ particulate N

and C, and Turner fluorometric chlorophyll-a (Chl-a), gathered in the off-shore

waters of the Northwest Atlantic and the Arabian Sea. This method uses

quantile regression (QR) to partition particulate C and N into autotrophic and

non-autotrophic fractions. Both the phytoplankton C and N estimates were

combined to compute the C:N ratio. The algal contributions to total N and C

increased with increasing Chl-a, whilst the C:N ratio decreased with increasing

Chl-a. However, the C:N ratio remained close to the Redfield ratio over the

entire Chl-a range. Five different phytoplankton taxa within the samples were

identified using data from high-performance liquid chromatography pigment

analysis. All algal groups had a C:N ratio higher than Redfield, but for diatoms,

the ratio was closer to the Redfield ratio, whereas for Prochlorococcus, other

cyanobacteria and green algae, the ratio was significantly higher. The model

was applied to remotely-sensed estimates of Chl-a to map the geographical

distribution of phytoplankton C, N, and C:N in the two regions from where the

data were acquired. Estimates of phytoplankton C and N were found to be

consistent with literature values, indirectly validating the approach. The work

illustrates how a simple model can be used to derive information on the

phytoplankton elemental composition, and be applied to remote sensing

data, to map pools of elements like nitrogen, not currently provided by

satellite services.
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Introduction

In recent years, growing attention has been drawn to unicellular

phytoplankton owing to the significant role they play in global

biogeochemical cycles and climate change (Falkowski, 1994;

Falkowski et al., 2003; Litchman et al., 2015). By means of their

photosynthetic activity, these photoautotrophic organisms produce

new biomass at a faster rate than terrestrial plants. Global ocean

carbon and oxygen production are largely influenced by

phytoplankton metabolic processes. These efficient primary

producers are not only responsible for the dynamics of food

webs, but they also modulate the cycling of the most dominant

biogenic elements, like carbon and nitrogen. Thus, the elemental

composition of marine photoautotrophic phytoplankton has

significant implications for ecosystems worldwide, as well as for

the Earth’s climate (Falkowski, 2012; Schoo et al., 2013;

Kwiatkowski et al., 2018). Recent advances in our understanding

of phytoplankton have suggested their stoichiometry is related to

their spatiotemporal structure, diversity and composition, and is

indicative of the quality of food availability and pathways of tropic

energy transfer (Sardans et al., 2021).

The chlorophyll-a (Chl-a) concentration is widely used as a

measure of the standing stock (biomass) of phytoplankton, since

it is present (in one form or another) in all phytoplankton

species. Chl-a can also be measured easily in the laboratory, the

field, and through the remote sensing of ocean color, an efficient

monitoring tool to observe synoptically surface phytoplankton

distributions (Yentsch and Menzel, 1963; Phinney and Yentsch,

1985; Platt and Sathyendranath, 1988). However, there are

limitations to using Chl-a as a measure of phytoplankton

biomass. For example, the Chl-a concentration in

phytoplankton can change independently of phytoplankton

carbon biomass, through photo-acclimation (Behrenfeld et al.,

2002; Jackson et al., 2017; Sathyendranath et al., 2020). Other

metrics of phytoplankton biomass have been considered and

used. The nitrogen (N) content in phytoplankton is often used

by ecosystem modelers as a metric for phytoplankton biomass,

owing to the limiting characteristic of nutrients for algal growth

(Doney et al., 1996; Chai et al., 2002; Goebel et al., 2010).

Alternatively, the algal content of carbon (C) is also

considered a useful metric for measuring phytoplankton

biomass, owing to its usually high concentration (relative to

other elements) and direct links to the wider carbon cycle

(Furuya, 1990; Li et al., 1993; Graff et al., 2012). However,

unlike Chl-a, the phytoplankton C and N contents are

notoriously challenging to measure directly in the field.

Considering that various metrics can be used for

phytoplankton biomass, much effort has been invested on

methods to convert among them, i.e., quantifying the C:Chl-a,

N:Chl-a, and C:N ratios of phytoplankton. For field-based

studies, quantifying these ratios and distinguishing between

the contributions of autotrophic and non-autotrophic material

(including heterotrophic and detrital contributions) to
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particulate organic carbon (POC) and nitrogen (PON) have

been a major challenge (Eppley et al., 1992; Lü et al., 2009). As a

result, available conversion factors between phytoplankton C, N

and Chl-a are still imprecise and subject to significant

uncertainty (Strickland, 1960; Lefèvre et al. , 2003).

Unavoidably, this also poses serious constraints to our

understanding of the elemental stoichiometry of primary

producers. The C and N cycles are, to a first order, coupled to

each other at sea over large scales, as defined by the canonical

Redfield ratio (Redfield, 1934). Constant ratios between

phytoplankton carbon, nitrogen and Chl-a, are commonly

employed in ecosystem modelling for simplicity (Karl et al.,

2001; Geider and La Roche, 2002; Flynn, 2003). However,

deviations in the Redfield ratio of up to 40% have been

observed, with implications for model simulations of carbon

and nutrient fluxes worldwide (Banse, 1977; Körtzinger et al.,

2001; Moore et al., 2013). These variations highlight limits in

using Redfieldian models, making it clear that better

formulations are required to refine ecological models and

Earth system studies (Sciandra, 1991; Dearman et al., 2003;

Klausmeier et al., 2004a; Klausmeier et al., 2004b; Flynn, 2010).

Multiple methods have been proposed to distinguish and

quantify the algal fractions of C and N from bulk properties in

the ocean, including microscopic cell counting, flow cytometry,

and x-ray microanalysis (Heldal et al., 2003; Olson et al., 2003;

Llewellyn, 2004; Graff et al., 2015; Brewin et al., 2021). However,

each method presents some disadvantages, and no standard

approach has been established. Sathyendranath et al. (2009)

developed a method of estimating the algal composition of C

based on quantile regression analysis of C and Chl-a data.

Building on this empirical approach, the present study infers

the N:Chl-a and C:Chl-a ratios, and C:N stoichiometry of

unicellular photoautotrophs in the ocean from total particulate

carbon (PC), nitrogen (PN) and Chl-a field measurements,

across a range of offshore environments. We use the approach

to investigate the C:N ratio of multiple phytoplankton taxa and

explore its applicability to satellite remote sensing, for mapping

phytoplankton C, N and C:N over large spatial scales.
Material and methods

Data and study site

The dataset analyzed in this study builds on that used

previously in Sathyendranath et al. (2009) to study the

relationship between total PC and Chl-a. Here we extend the

work to total PN and analyze its relationship with PC and Chl-a.

In-situ total PC, PN and photosynthetic pigment data were

collected on 17 cruises over a 13-year period across a variety

of offshore environments in the NW Atlantic and the Arabian

Sea, as shown in Figure 1. This dataset spanned a range of

environmental condition, from oligotrophic to eutrophic waters
frontiersin.org
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(Chl-a ranged from 0.07 - 14.8 mg m −3 ). For further details on

the different locations and times of the cruises, the reader is

referred to Table 1 of Sathyendranath et al. (2009).

Water samples were collected with Niskin bottles from the

euphotic zones (depth at which 99% of the surface light is

absorbed) of the study sites. Over 90% of the samples were

collected from <40 m below the water surface, whilst the

remaining samples were from 40-80 m depth. Seawater (0.5-

1.5 L) was filtered through a 25 mm GF/F filter prior to storage

in liquid nitrogen at − 80 ∘ C (Stuart and Head, 2005). A Carbon,

Hydrogen and Nitrogen (CHN) analyser was employed to derive

the total PC and PN contents within the samples (Collos, 2002).

These samples are expected to be composed predominantly of

the particulate organic forms of C and N (i.e., POC and PON).

Concentrations of Chl-a were measured using a Turner Designs

fluorometer (Holm-Hansen et al., 1965) and high-performance

liquid chromatography (HPLC) was adopted to derive accessory
Frontiers in Marine Science 03
pigment compositions in addition to Chl-a. The total PC and PN

compositions and Turner fluorometric Chl-a concentrations

were used to compute the relationships between particulate

carbon and Chl-a and particulate nitrogen and Chl-a. The

elemental stoichiometry of bulk properties (e.g., PC:PN) was

also estimated. The HPLC dataset was utilized as an independent

set of measurements to distinguish phytoplankton functional

groups dominating the samples. A fixed set of HPLC

pigment criteria (as defined in Table 2 of Sathyendranath)

allowed to discriminate the phytoplankton taxa present in

each sample.
Statistical analysis

As evidenced above, measurements of total PC and PN can

be straightforward to quantify. However, it is less practical to
FIGURE 1

Maps of the sample collection sites for both the northwest Atlantic and the Arabian sea. Red dots indicate where the carbon and nitrogen data
were located.
TABLE 1 Parameters of the power law relationship of carbon (C) and nitrogen (N) fitted against chlorophyll-a.

Location Yphy m p N Source

Offshore N 11.6 0.60 771 This Study

Offshore C 83.7 0.57 773 This study

Offshore C 64.6 0.63 831 Sathyendranath et al. (2009)*,$

North Atlantic C 83.2 0.69 12 Buck et al. (1996)

Various locations C 61.7 0.89 72 Marañón et al. (2014)

Global C 72.4 0.91 451 Loisel et al. (2018)*

Southern Ocean C 120 0.55 521 Thomalla et al. (2017)

Southern Ocean C 42.7 0.86 521 Thomalla et al. (2017)*,$
*Values from other studies based on the QR method.
$Studies based on the QR method with samples > 500, and follow the q > 5/N criterion.
Phytoplankton estimates were produced by 1% quantile regression (QR) analyses based on in-situ bulk measurements (PC, PN and Chl-a). Parameters from Buck et al. (1996);
Sathyendranath et al. (2009); Marañón et al. (2014); Loisel et al. (2018) and Thomalla et al. (2017) are also displayed, along with the number of data points used (N ). Yi=miB

pi is the fitted
relationship. Yphy is the phytoplankton N or C, m, and p are the parameters of the model.
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derive corresponding estimates of algal and non-algal fractions

from bulk measures. The approach utilized in this study, first

developed by Sathyendranath et al. (2009) for use in quantifying

phytoplankton C, overcomes this challenge by attempting to

derive information on the elemental composition of autotrophic

plankton from total particulate C and N pools over a range of

Chl-a concentrations. This method builds on the notion that

changes in the non-autotrophic component of suspended

materials alter the elemental content of a given observation

without affecting its chlorophyll levels; hence, the lowest

estimate of total PC or PN of any given Chl-a observation

corresponds to the phytoplanktonic contribution to that

element. Specifically, the phytoplankton C and N so obtained

are the upper bound, in the sense that there would always be

some non-autotrophic component present in the samples, which

would bias the phytoplankton C and N upwards.

Prior to analysis, the PC, PN and Turner Chl-a sets of

measurements were log-transformed to linearize the

relationships observed and decrease the influence of samples

with high values of different C, N and Chl-a in the regressions

(see also Legendre and Michaud, 1999). PC and PN were treated

as dependent variables and were first analyzed by a simple least-

squares regression against Turner Chl-a, following standard

practice (see Buck et al., 1996; Sathyendranath et al., 2009;

Marañón et al., 2014; Thomalla et al., 2017). The fitted

equations for total C and N are expressed as

Yi = miB
pi , (1)

where, Y is the predicted variable, B is Chl-a, and m and p are

parameters of the power law model, and the subscript i denotes

that the predicted variable (and parameters values for m and p )

are either with reference to total PC or PN. The equation can be

expressed in linear format in log 10 space, as log 10 (Yi) = log 10

(mi) + pi log10(B), with log 10 (mi) and pi representing the

intercept and slope of the linear regression, respectively.

Equation 1 was fitted using a quantile regression (QR)

between the total Yi and Chl-a (B ), for both i = PC and PN.

This allows the computation of a lower bound predominantly

associated with the phytoplankton contribution to the element

(either C or N), for a given Chl-a concentration. A 1% QR

(q=0.01) was identified as the most appropriate quantile to

define the lowest possible range of observations for
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phytoplanktonic contribution, following the q > 5/N criterion

(N being the number of total observations), as suggested by Rogers

(1993), and consideringN = 773 for C and 771 for N. This method

provides an upper limit of the phytoplankton contribution to the

total particulate C and N pools. The results from QR analyses for

both C and N were then combined to compute changes in the C:N

ratio of phytoplankton as a function of Chl-a. Uncertainties in C:

N were computed by running an ensemble of simulations over the

Chl-a range, varying the four parameters (slope and intercept of

the C and of N equations) between their confidence intervals in

every permutation, and taking the minimum and maximum

values. As described above, HPLC pigment composition data

were used to examine the phytoplankton types present in the

samples. Thus, taxonomic groups were further exploited to

compute the stoichiometry of different algal groups using the

parameterized model and HPLC Chl-a as inputs.

Following an initial inspection of log 10 scatter plots of PN

and Chl-a, and PC and Chl-a, we observed that some unusual

outliers in the data with surprisingly low PC and PN values for a

given Chl-a concentration, relative to the entire dataset. The

outliers were traced to three cruises. To avoid the influence of

these discrepancies between the detected data points and the

parent distribution on the subsequent investigations, samples

from these three cruises were excluded from further analyses. All

analyses for this study were carried out in Python and the

quantile regressions were performed using the QuantReg

package. This package estimates a QR model as a standard

regression using iterative reweighted least squares. The

uncertainties in the regression are also provided by default as

an output from the analyses. An example Jupyter Notebook

Python Script, processing the in-situ data and tuning the

models is provided on this GitHub page (https://github.com/

rjbrewin/POC-PON-Tchl-analysis).
Remote sensing data

The European Space Agency’s Ocean Colour Climate Change

Initiative (ESA OC-CCI, Version 5.0) data were used in this study

(Sathyendranath et al., 2019). This consists of a time-series of

processed (bias-corrected and merged) ocean-colour data (for

more information see https://climate.esa.int). Datasets from

satellite observations of ocean colour are publicly accessible from

https://www.oceancolour.org. Two 8-day composite maps of Chl-a

with a 4 km by 4 km spatial resolution were generated for the

Northwest Atlantic and the Arabian Sea study sites, corresponding

to the 10-17 June 2006 and the 22-29 March 2005, respectively.

These periods were selected as relatively cloud-free (<20% cover).

Satellite outputs and results from this study were combined to

produce a map of Chl-a, phytoplankton C, N and C:N ratio, for the

two sampling sites within the selected periods. This further

application illustrates how in-situ data can be exploited to derive

simple methods for estimations of the distribution of
TABLE 2 Mean with standard deviation (St. Dev.) and range of POC:
PON, phytoplankton N:Chl-a, C:Chl-a, and C:N, for concurrent data
on POC, PON and Chl-a.

Ratio Mean ± St. Dev. Range

POC:PON 7.5 ± 1.9 4.6 - 16.9

N:Chl-a 12.7 ± 4.8 4.0 - 33.3

C:Chl-a 92.9 ± 38.1 26.2 - 263.0

C:N 7.2 ± 0.3 6.6 - 7.9
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phytoplankton elemental content and stoichiometry using remote

sensing technology.
Results

Quantile regression

Upon regressing PC against Chl-a and PN against Chl-a from

all data (see Figures 2A, D, 50% black lines), the overall

correlations appeared highly significant (68% of the variation in

PC was explained by Chl-a, with a P-value<0.001; 76% of the

variation in PN was explained by Chl-a (P-value<0.001), and

resulted in a mean conversion ratio of 211 for PC:Chl-a and 27.6

for PN:Chl-a. Slopes and intercepts between the 1% and 50%

regressions were significantly different for PC (Figure 2A), with

the 1% slope being steeper than the 50% slope (Figure 2C). The

intercepts of the lower bound, 1%, and the upper bound, 50%,

were significantly different for both PC and PN (Figures 2B, E),

while a small overlap exists between the slopes of the PN

regression (Figure 2F), related to larger uncertainties in the

slope of the 1% quantile. The change in the slopes is such that
Frontiers in Marine Science 05
the blue lines (1%) for both PC and PN converge towards the 50%

percentile as the pigments reach higher concentrations. The slope

of the 1% quantile regression for PN (0.60) was greater than that

of C (0.57). The interpretation of the 1% quantile regression as

being determined largely by phytoplankton C and N is consistent

with the contributions of autotrophic C and N to total PC and PN

increasing with Chl-a concentration, with highest contributions

potentially during algal blooms conditions.

Our premise is that the 1% quantile regressions can be used to

estimate phytoplankton C and N from Chl-a, using Eq. 1 and the

parametersm and p (Table 1, top two entries). For phytoplankton

C, the parameters (Cphyto = 83.7B0.57, where B is Chl-a, Table 1)

sit within the range of values reported in the literature. Notably,

the intercept (m) matches the value presented in Buck et al.

(1996). For the parameters produced in the phytoplankton N

analysis (Nphyto = 11.6B0.6) there are no prior results in the

literature to compare with. However, estimates obtained here for

the N:Chl-a ratio (Table 2) are consistent with the range of values

in the literature (Yentsch and Vaccaro, 1958; Manny, 1969; Verity,

1981; Staehr et al., 2002). Therefore, confidence that this model

yields reasonable estimates of phytoplankton C and N from Chl-a

can be gained, considering the good agreement between model
A B

D E F

C

FIGURE 2

In-situ particulate carbon (top row) and nitrogen (bottom row), each plotted as a function of Turner chlorophyll-a from in-situ measurements.
Least-squares fits to log 10 -transformed data, along with minimum carbon (Cphyto) and nitrogen (Nphyto) estimates by quantile regression
(QR, q = 0.01) (A, D). Quantile regression lines (from 1 to 99%) are plotted in grey dotted lines. The 1% percentile is highlighted in blue and the
50th percentile in black. Intercepts (B, E) and slopes (C, F) for the different quantile fits, including error margins for each regression line. 1% QRs
and uncertainties (upper bounds, ub and lower bounds, lb) are shown by the continuous, dashed and dash-dotted lines in blue, (middle and
right panels), while Sathyendranath et al. (2009) carbon parameter values are also displayed (triangle, panels B, C).
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parameters (m and p) for C derived here and those from other

studies, and the broad agreement of N:Chl-a ratio values between

this and earlier observations.
Stoichiometry and phytoplankton groups

The 1% quantile regression models of phytoplankton C and

N were used to estimate the C:N ratio as a function of Chl-a

(Figure 3). Results suggest that the elemental stoichiometry of

phytoplankton varies across the Chl-a range with the C:N ratio

decreasing with increasing phytoplankton biomass, from around

8 at very low chlorophyll to 6 at high chlorophyll, intersecting

the Redfield ratio towards higher phytoplankton biomass

concentrations. This progression in the C:N ratio is consistent

with the phytoplankton under oligotrophic conditions (low

chlorophyll) being nitrogen limited, and those in eutrophic

(high chlorophyll) conditions being nitrogen replete. However,

the lower and upper bounds on the parameter estimates lead to

considerable uncertainty margins (Figure 3), and suggest that

results are not significantly different from Redfield over the Chl-

a range studied. The C:N values are more robust over the

intermediate concentrations along the chlorophyll range

(where the majority of the Chl-a data is distributed), and the

uncertainties are higher at the extremes where there is a smaller

number of observations (Figure 3). Averages and ranges from

the analysis, for all ratios, are provided in Table 2.

Amongst the six distinct phytoplankton types examined, the

diagnostic pigment analysis revealed some samples were

dominated by diatoms, prymnesiophytes, Prochlorococcus,
Frontiers in Marine Science 06
other picocyanobacteria (e.g. Synechococcus) or green algae.

Dinoflagellates did not emerge as dominating any of the

samples, according to the criteria applied. Differences were

observed in the stoichiometry of the five phytoplankton

groups that were identified (Figure 4; Table 3). The C:N ratios

estimated were higher than the Redfield ratio. Diatoms were the

closest group to the standard 6.6 Redfield ratio. Green algae and

smaller phytoplankton types, on the other hand, displayed the

highest stoichiometric values among all groups observed.
Distribution of phytoplankton properties

Using remotely-sensed Chl-a as input to our models (Eq. 1),

the distributions of phytoplankton C, N, and C:N were computed

for the NW Atlantic and the Arabian Sea study sites (Figure 5).

The maps generated highlight the different biogeochemical areas

within the NWAtlantic and the Arabian Sea during early summer

2006 and early spring 2005, respectively for the two sites.

Observations for the Atlantic area coincided with the spring

bloom season characterized by considerable variability in

phytoplankton biomass, ranging from oligotrophic to eutrophic

conditions. In contrast, the Arabian Sea biome has more stable

and lower levels of Chl-a during the early spring. High

concentrations of phytoplankton C and N only covered a small

proportion of the areas shown, with the majority of the regions

being low in phytoplankton biomass. Applying the model to

satellite data allows the production of maps at a variety of

scales, in time and space, to study the phytoplanktonic biomass

and stoichiometry. However, one needs to be cautious interpreting
FIGURE 3

POC:PON against Chl-a showing the Redfield ratio (6.625, dotted red line), the phytoplankton C:N established by 1% QR regression analysis
(blue line), and the relative uncertainties (upper bound, ub, dashedline line, and lower bound, lb, dot-dashedline).
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the maps in conditions outside the range of data for which the

model was parameterized, for example, in oligotrophic waters

<0.07 mg m −3 Chl-a.
Discussion

Bulk properties and correlations

Good linear correlations were found between the observed

log10-transformed PON and Chl-a, and POC and Chl-a

concentrations (Figures 2A, D). Expectedly, the parameters of

the fit in the relationship between POC and Chl-a are in good

agreement with those presented in Sathyendranath et al. (2009)

considering similar data were used. Estimates of the POC:Chl-a

ratio in this study (mean 211, range 33-1286) are broadly

consistent with the literature (e.g., 100-1000; Legendre and

Michaud, 1999; Stramski et al., 2008; Rasse et al., 2017).

However, published analyses of particulate nitrogen, and how

this varies with Chl-a, are generally less abundant and, thus,

harder to compare against. Stoichiometric observations with a

mean POC:PON ratio of 7.5 (Table 2) are also in agreement with

Redfield’s findings (Tanoue and Handa, 1979; Sharp et al., 1980;
TABLE 3 Taxon-specific mean and range of phytoplankton C:N.

Phytoplankton Group Mean C:N (g/g) Range C:N (g/g)

Prymnesiophytes 7.21 6.96 - 7.44

Prochlorococcus 7.88 7.26 - 8.92

Diatoms 6.99 6.42 - 7.62

Cyanobacteria 7.55 7.30 - 7.96

Green Algae 7.45 7.27 - 7.86
Frontiers in Marine Science
FIGURE 4

Boxplot of C:N ratios specific to the five phytoplankton taxa identified through HPLC analysis. Redfield ratio is highlighted by the dotted red line.
See Table 3 for the mean and range of taxon-specific ratio.
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FIGURE 5

Satellite estimates of chlorophyll-a (A, B), quantile regression-derived
autotrophic carbon (C, D) and nitrogen (E, F), and phytoplankton C:
N ratio (G, H). Maps were generated based on remotely sensed OC-
CCI chlorophyll data for an 8 day relatively clear sky composite of
the Northwest Atlantic [10-17/06/2006, left-hand side panels (A, C,
E, G)] and the Arabian Sea [22-29/03/2005, right-hand side panels
(B, D, F, H)] with a 4 km spatial resolution.
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Sterner et al., 2008; Frigstad et al., 2011; Frigstad et al., 2014).

This value may appear high compared to previous observations,

but differences can be attributed to the different statistical

approaches used and lack of sampling replications that results

in varying levels of total POC.

The overall values produced fit within traditional ranges and

indirectly validate the model used; hence, this approach

represents a simple and efficient solution for quantifying

estimates of phytoplankton C and N at sea, as well as the ratio

between the two, using remotely sensed Chl-a. The satellite data

represent an opportunity to extrapolate these relationships over

large spatial and temporal scales. Such relationships can also be

useful for testing complex marine ecosystem models.

Nonetheless, regional differences in model parameters are

likely present, and one should be cautious about applying

these models to satellite data in different regions and ranges of

Chl-a outside those used to tune the models (Redfield et al.,

1963; Körtzinger et al., 2001; Sterner et al., 2008; Martiny

et al., 2013).
Dynamic relationships of phytoplankton
and non-autotrophic particles

Autotrophic standing stock, primary production, export

production and sequestration can be quantified by studying

various metrics, such as phytoplankton carbon content,

nitrogen content and chlorophyll concentration. Conversion

factors are often adopted to evoke the measures desired and

can be derived using controlled phytoplankton cultures.

However, these experiments are unlikely to represent natural

conditions (Flynn, 2003; Franks, 2009; Anderson et al., 2010). In

field studies, bulk measures of C and N are generally easy to

measure but distinguishing between the algal and non-algal

contributions to these bulk elements is challenging due to

operational constraints. Whereas phytoplankton C and N are

often used as measures of phytoplankton biomass, standardized

protocols of their direct measurement at sea have not been

established yet; for this reason, indirect means are often invoked.

Several studies have explored the use of a linear regression

models of the POC and Chl-a relationship, to discriminate

algal composition from that of non-autotrophic and detrital

particles (Steele and Baird, 1961; Tett et al., 1975; Eppley et al.,

1992; Behrenfeld et al., 2005; Frigstad et al., 2011), though they

do not account for the nonlinearity of the Chl-a and

POC relationship.

Other methods have been employed with various degrees of

success, but none are reported to perform without limitations.

The detection of phytoplankton C fractions from satellite

imagery has been proposed as another approach for making

indirect estimations. Behrenfeld et al. (2005) used a linear

approach to derive the algal contribution to backscattering, by

first subtracting a fixed value related to non-algal particles. Later
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studies refined this method to account for the variability of non-

algal particles, but these either rely on several assumptions or

cannot efficiently remove the impact of non-algal particles at

higher algal concentrations, including bacteria, bubbles, and

other particles (e.g. plastics). These models are difficult to

cross-validate due to the paucity of in-situ phytoplankton C

data (Dall’Olmo et al., 2009; Bellacicco et al., 2019). Poorly

known distribution and physical characteristics of smaller

particles further constrain the reliability of any modelling and

contribute to the natural limitations inherent to the use of

backscattering (Stramski et al., 2004; Organelli et al., 2018).

Martıńez-Vicente et al. (2013) and Graff et al. (2015) derived

phytoplankton C directly from flow cytometry, the former using

phytoplankton abundances, cellular carbon per unit volume and

mean cell volume. However, these models either rely on

estimations from lab-based studies or are time-consuming and

limited to samples analyzed by flow cytometry. A cell volume

model has also served for conversions to retrieve phytoplankton

N (Montagnes et al., 1994; Sun and Liu, 2003). An earlier

investigation used the chlorosis levels in phytoplankton cells to

obtain indirect estimates on their organic N concentration at sea

based on the inverse relationship between the nitrogen:

chlorophyll and the carotenoid:chlorophyll ratios (Yentsch and

Vaccaro, 1958) using estimates from controlled experiments.

Alternatively, the quantile regression approach used here and

adopted from Sathyendranath et al. (2009) applies a nonlinear

regression to the particulate N or C compositions fitted against

Chl-a concentrations to account for the varying relationships

between variables. Fixed ratios are frequently invoked in many

global-scale studies (Aumont and Bopp, 2006; Follows et al.,

2007; Dutkiewicz et al., 2009) even though deviations are well

documented in the elemental composition of phytoplankton

(Droop, 1983). The extent to which these ratios diverge from

standard proportions have significant implications for the

parametrization of these models and, consequently, for

simulations of the N and C cycles, C-transfer efficiency up the

food web, and air-sea gas exchange (Sterner and Elser, 2002;

Ayata et al., 2013). The approach presented here, represents a

simple avenue to estimating elemental ratios and stoichiometry

in phytoplankton.

The variability in the phytoplankton C:Chl-a and N:Chl-a

ratios can be explained as a direct result of changes in the

physiological status of autotrophs. Algal organisms are not

strictly homeostatic, and ambient conditions (e.g., availability

of nutrients, light, and depth levels) can stimulate the regulation

of their metabolism (i.e., respiration, exudation and storage),

resulting in the acclimation of the photosynthetic apparatus –

alteration of nutrient use efficiency and adjustment of Chl-a

content. The net difference between acquisition and losses can

lead to the consequent decoupling of cellular C, N and pigment

contents in seemingly adaptive ways (Berman-Frank and

Dubinsky, 1999). Environmental conditions also impact the

phytoplankton community composition, representing an
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additional factor determining stoichiometry (Clark et al., 2013;

Talmy et al., 2014). Alternatively, the rationale of the QR

approach develops on the notion that variability in total PC

and PN within any given concentration of Chl-a is primarily

associated with the variability of non-autotrophic particles.

Ultimately, the relationship between phytoplankton C and N

fitted against the Chl-a concentration range can be used to

explore the stoichiometry of natural autotrophic composition in

the sea utilizing a simple method that exploits straightforward

concepts. Furthermore, the empirical models developed here

(Table 1) can be of use to verify results from more complex

marine ecosystem models where the phytoplankton C:chl-a and

N:chl-a ratios are emergent properties of the simulations (de

Mora et al., 2016). Data used were derived from up to 40 m

below the water surface and spanned a range of trophic

conditions across different biomes. Outputs should therefore

be interpreted as representative of the surface mixed layer.
Elemental ratios of phytoplankton and
their variability

The mean C:Chl-a and N:Chl-a ratios derived using the QR

model are consistent with previous observations, for C (Verity,

2002; Lefèvre et al., 2003; Lü et al., 2009; Xiu and Chai, 2012;

Jakobsen andMarkager, 2016; Martıńez-Vicente et al., 2017) and

for N (Yentsch and Vaccaro, 1958; Manny, 1969; Verity, 1981;

Staehr et al., 2002). Both the phytoplankton C and N to Chl-a fits

display steeper slopes than their corresponding particulate

regression (50% QR), suggesting an increasing contribution to

PC and PN can be associated with phytoplankton at higher Chl-

a concentrations. Thomalla et al. (2017) attempted to retrieve

phytoplankton C adopting different methods including the QR,

using the same dataset in some instances. They find that the

range and distributions from the QR approach compare

remarkably well with those generated using backscattering

techniques based on both Stramski (1999) and Behrenfeld

et al. (2005) approaches, reconciling the two techniques and

supporting the use of the QR approach.

The phytoplankton C:N trend decreases from low to high

chlorophyll waters, a direct result of the steeper slope in the

relationship between phytoplankton N and Chl-a than

phytoplankton C and Chl-a (0.60 > 0.57). Considerable

uncertainties were observed over the extreme ends of the

chlorophyll axis in this fit, challenging the accuracy of

estimates and their applicability to real world scenarios

(Figure 3). Nonetheless, the mean and range values are in

broad agreement with earlier investigations (Körtzinger et al.,

2001; Geider and La Roche, 2002; Staehr et al., 2002; Frigstad

et al., 2011; Frigstad et al., 2014; Wagner et al., 2019).

Stoichiometry estimates yielded are above the canonical 6.625

for most of the chlorophyll range, before approaching Redfield

ratio and dropping below it at higher Chl-a. This inclination
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further emphasizes the argument that adopting a constant ratio

to estimate elemental compositions of autotrophic cells are likely

to lead to erroneous outcomes. Thus, we can speculate that the

C:N ratio of phytoplankton in the surface mixed layer is highest

when the algal biomass is lowest and it decreases as bloom

conditions are approached, while its range remains close to

Redfield across most of the chlorophyll axis.

The results from this study also show variations in C:N

amongst phytoplankton groups. The taxon-specific ratios that

emerge from these analyses were predominantly above or close to

the Redfield ratio. This variance in the elemental composition

between phytoplankton types may be associated with a difference

in cell size (Morel and Bricaud, 1981; Grover, 1991; Tozzi et al.,

2004; Griffiths and Harrison, 2009; Talmy et al., 2014), their

nutritional status and cell activity (Klausmeier et al., 2004b; Halsey

and Jones, 2015). The nutrient storage capacity of autotrophic

cells is known to be size dependent. For example, diatoms can

store large nutrient concentrations contributing to lower C:N ratio

than small celled autotrophs in a nutrient replete environment as

supported by wider phytoplankton culture studies (Lomas and

Gilbert, 2000; Bertilsson et al., 2003; Heldal et al., 2003; Martiny

et al., 2013). Thus, variations in stoichiometry with phytoplankton

community composition can also play an important role in

determining the bulk stoichiometry of phytoplankton. It could

be speculated that a higher mean ratio could be induced by a

possible dominance of small-celled autotrophs over diatoms. It is

reasonable to assume that our results are subject to variation based

on the dominant phytoplankton species within each community.

However, for the same species, links between the cellular C and N

content can be further modulated by metabolic functions (e.g.,

diverging rates of carbon fixation and nutrient acquisition), as

previously mentioned.

This uncoupling can manifest in a response to factors not

accounted for in this method, including alterations of nutrient and

light availability and temperature (vertically and horizontally)

(Verity, 1981; Behrenfeld et al., 2002; Staehr et al., 2002; Frigstad

et al., 2011; Jackson et al., 2017). Environment conditions can

influence metabolic functions in algal organisms encouraging

adaptive mechanisms (acclimation), which may lead to bias in

estimations if not accounted for. A change in the ratio can also be

expected below the euphotic region (Schneider et al., 2003; Martiny

et al., 2013). Phytoplankton estimates from remotely sensed

chlorophyll will also benefit from incorporating per-pixel

uncertainties, included in the satellite data, by propagating errors

and producing supplementarymaps reporting the quality of satellite

products (Brewin et al., 2017; Martıńez-Vicente et al., 2017;

Sathyendranath et al., 2017). The QR method could also be

applied to other limiting nutrients and elements, such as

phosphorus and iron. Finally, considering the influence of

stoichiometric variations on the dynamics of food webs, global

nutrient and carbon cycling, and the Earth’s climate, it is critical that

we improve our understanding of phytoplankton C andN, and how

these metrics vary in the ocean.
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Conclusions

Despite the progress made and the new technologies

developed in recent years, our understanding of the

phytoplankton elemental composition at sea is still

unsatisfactory. The ability to produce accurate measures of

algal contribution to particulate N and C in the sea from bulk

properties measured directly in the field is challenging, for both

traditional and modern methods. Considering the global oceans

and the atmosphere are expected to be increasingly affected by

anthropogenic influences, better understanding of the elemental

composition of phytoplankton is needed.

In this study, we analyzed a large dataset of the total

particulate C and N and Chl-a in the NW Atlantic and the

Indian Ocean to compute the phytoplankton N:Chl-a, C:Chl-a

and C:N ratios, and their variations over the observed Chl-a range

through the use of a simple and straightforward method. Results

suggest that phytoplankton contribution to PC and PN increases

with an increase in its biomass. Conversely, the phytoplankton C:

N ratio decreases with increases in biomass. Stoichiometry of

phytoplankton was further observed to follow taxon-specific

variations, as demonstrated in the wider literature. Estimates

generated here agree with the range of values from previous

laboratory and field studies, and earlier applications of this

method on different datasets have generated comparable results.

Therefore, it can be deduced that the simple approach adopted

here can be used to achieve reasonable results, and the estimates it

produces could serve to test complex ecosystem models. The

established ratios, combined with satellite-derived Chl-a can be

used to estimate the phytoplankton C, N, C:N and their spatial

distributions, demonstrating an immediate application of the

model. Future replications of this method will benefit from the

inclusion of additional elements, such as the particulate organic

phosphorous or iron. Observations over a wider geographical

scale could further assess the broad applicability of this method.
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Martıńez-Vicente, V., Dall’Olmo, G., Tarran, G., Boss, E., and Sathyendranath,
S. (2013). Optical backscattering is correlated with phytoplankton carbon
across the Atlantic Ocean. Geophysical Res. Lett. 40, 1154–1158. doi: 10.1002/
grl.50252
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