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Abstract

We consider the convergence theory for dyadic approximation in the middle-third Cantor set, K , for
pproximation functions of the form ψτ (n) = n−τ (τ ⩾ 0). In particular, we show that for values of τ
eyond a certain threshold we have that almost no point in K is dyadically ψτ -well approximable with

respect to the natural probability measure on K . This refines a previous result in this direction obtained
by the first, third, and fourth named authors.
© 2022 The Authors. Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Throughout this note, we write K to denote the middle-third Cantor set and denote by µ
he natural probability measure on K . We recall that K consists of the real numbers x ∈ [0, 1]

which have a ternary expansion consisting only of 0’s and 2’s, and that its Hausdorff dimension
is

dimH K =
log 2
log 3

=: γ.
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The natural measure µ on K is the Hausdorff γ -measure restricted to K , which is a probability
easure as Hγ (K ) = 1. For more information on Hausdorff dimension and Hausdorff
easures, we refer the reader to [5].
The study of Diophantine approximation in the Cantor set was suggested by Mahler [13],

nd has since been an active subject of research — see, for example, [3,4,10,12,14–17]. In [1],
he first, third and fourth named authors discussed the problem of approximating elements
f K by rationals with denominators that are a power of two: that is, dyadic rationals. Our
ethods realised the dyadic approximation problem as a manifestation of Furstenberg’s “times

wo, times three” phenomenon [6,7].
For ψ : R → [0,∞) and y ∈ R, define

W2(ψ, y) = {x ∈ R : ∥2n x − y∥ < ψ(n) for infinitely many n ∈ N}.

ere, for x ∈ R, we write ∥x∥ to denote the Euclidean distance from x to the nearest integer.
n analogy with Khintchine’s theorem [11], Velani conjectured that if ψ is monotonic then

µ(W2(ψ, 0)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if
∞∑

n=1

ψ(n) < ∞,

1, if
∞∑

n=1

ψ(n) = ∞,

ee [1, Conjecture 1.2]. The two parts of such a dichotomy are commonly referred to as the
onvergence and divergence theories of metric Diophantine approximation, respectively. The
econd named author [2] stated the following natural generalisation of Velani’s conjecture,
ropping the monotonicity condition and introducing an inhomogeneous shift. The latter relates
he problem to distribution modulo 1, and also enables one to recast it in terms of shrinking
argets [9].

onjecture 1 ([2, Conjecture 1.2]). If y ∈ R, then

µ(W2(ψ, y)) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if
∞∑

n=1

ψ(n) < ∞,

1, if
∞∑

n=1

ψ(n) = ∞.

Let us now consider the problem at the level of the exponent. For τ ⩾ 0 and n ∈ N, define
τ (n) = n−τ . Plainly µ(W2(ψ0, y)) = 1 for any y. By [1, Theorem 1.5], we have

µ(W2(ψτ , 0)) = 0 (τ ⩾ 1/γ ). (1)

t follows from the recent work of the second named author [2] that if y ∈ R then

µ(W2(ψτ , y)) = 1 (τ ⩽ 0.01),

efining the progress on the divergence side made in [1]. The purpose of this note is to establish

he following sharpening and generalisation of (1).
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Theorem 2. Let

τ >
0.922(1 − γ ) + 1

γ (2 − γ )
,

nd let y ∈ R. Then µ(W2(ψτ , y)) = 0.

One computes that τ > 1/γ − 0.03 is sufficient. This makes progress towards the
onvergence part of Velani’s conjecture. In [1], it was shown conditionally that

µ(W2(ψτ , 0)) =

{
0, if τ > 1,
1, if τ ⩽ 1,

(2)

hich constitutes a conditional solution to Velani’s conjecture at the level of the exponent.
pecifically, the appendix of [1] contains empirical data supporting the assertion that

D2(y) + D3(y) ≫ log y (y ∈ N),

where Db(y) denotes the number of digit changes of y in base b, and (2) was established
ubject to this hypothesis. We refer the reader to [1, Section 5] for further results of a similar
avour. Theorem 2 is unconditional.

We finish this section by briefly discussing the significance of the exponent 1/γ . By a
omparatively simple argument, one can see that if τ > 1/γ and y ∈ R then µ(W2(ψτ , y)) = 0,

see the proof of [1, Proposition 1.4]. In [1], we attained the exponent 1/γ in establishing
(1). Thus, as explained in the introduction of that article, dyadic approximation in K behaves
very differently to triadic approximation in K , the latter having been thoroughly investigated
by Levesley, Salp and Velani [12]. Theorem 2 extends the admissible range for the exponent
beyond this threshold.

Notation

For complex-valued functions f and g, we write f ≪ g or f = O(g) if | f | ⩽ C |g|

pointwise, for some constant C > 0.

2. Preliminaries

During our proof of Theorem 2 we will make use of a number of technical results
from [1,2,17]. These are detailed below. To this end, let us first recall the following constructive
definition of K : let K0 := [0, 1] and let K1 :=

[
0, 1

3

]
∪

[ 2
3 , 1

]
be the set obtained by removing

he open middle third from K0. Next, suppose the set Kn−1 has been defined. Let Kn be the
et obtained upon removing the open middle thirds from all the component intervals of Kn−1.

ith the sets Kn constructed in this way, we have

K =

∞⋂
n=0

Kn.

ote that for each n ∈ N, the set Kn consists of 2n closed intervals, each of length 3−n . Let
N denote the set of all (left and right) endpoints of the intervals comprising KN .

The result we use from [1] estimates the µ-measure of a union of balls by counting nearby
triadic rationals in CN for a sufficiently large N ∈ N. For n ∈ N, σ > 0 and y ∈ R, denote

Ay(σ ) = {x ∈ R : ∥2n x − y∥ < σ }.
n
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Lemma 3 ([1, Lemma 2.1], Special Case). Let n, N ∈ N and σ ∈ (0, 1) with 3−N ⩽ σ
5·2n , and

et y ∈ R. Then

2−(N+1)#(CN ∩ Ay
n(σ/5)) ⩽ µ(Ay

n(σ )) ⩽ 2−(N−1)#(CN ∩ Ay
n(5σ )).

The results we use from [2,17] are formulated in terms of the Fourier transform of a measure.
Recall that this quantity is defined as follows: given a Borel probability measure ν supported

n [0, 1], let

ν̂(ξ ) =

∫
e−2π iξ x dν(x).

Lemma 4 ([2, Lemma 2.2]). Let N ∈ N, and let t ∈ Z \ {0}. Then there exist constants
1,C2 > 0 independent of N and t such that

#
{
0 ⩽ n < N :

⏐⏐µ̂(t2n)
⏐⏐ > C1 N−0.078} ⩽ C2 N 0.922.

Lemma 5 ([17, Theorem 4.1]). Let ν be a Borel probability measure on [0, 1]. Let δ ∈ (0, 1),
let Q ∈ N, and let y ∈ [0, 1]. Then

ν({x ∈ [0, 1] : ∥Qx − y∥ ⩽ δ}) ≪ δ

(
1 +

∑
0<|ξ |⩽2Q/δ

Q|ξ

|ν̂(ξ )|
)
.

The statement given in [17, Theorem 4.1] also provides a lower bound for ν({x ∈ [0, 1] :

∥Qx−y∥ ⩽ δ}) and applies in arbitrary dimensions, but we will only use this simpler statement.

3. Proof of Theorem 2

Set C > 0 to be the constant C1 arising from Lemma 4. Define

β1 = 0.078, β2 = 0.922, α =
1 − β2

2 − γ
.

bserve that the assumption of the theorem can be rewritten as

τγ > β2 + α = 1 − α(1 − γ ), (3)

nd that τ > α. Let N ∈ N be sufficiently large so that N τ−α ⩾ 150. For n ∈ [N , 2N ] ∩ Z,
ut

σn = n−τ , δn = n−α.

Write G N for the set of integers n ∈ [N , 2N ] such that

max{|µ̂(t2n)| : t ∈ Z, 1 ⩽ |t | ⩽ 2/δ2N } ⩽ C N−β1 ,

nd let BN be its complement in [N , 2N ] ∩ Z. Applying the union bound, and then Lemma 4
ith 2N + 1 in place of N , we have

#BN ⩽
∑

1⩽|t |⩽2/δ2N

#{n ∈ [N , 2N ] ∩ Z : |µ̂(t2n)| > C N−β1}

⩽
∑

1⩽|t |⩽2/δ2N

#{n ∈ [0, 2N + 1) ∩ Z : |µ̂(t2n)| > C(2N + 1)−β1}

≪

∑
1⩽|t |⩽2/δ2N

(2N + 1)β2

β2+α

≪ N .
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Observe that

W2(ψτ , y) = lim sup
n→∞

Ay
n(σn).

By the first Borel–Cantelli lemma [8, Lemma 1.2], it suffices to prove that
∞∑

n=1

µ(Ay
n(σn)) < ∞. (4)

or n ∈ BN , we use the following estimate, the proof of which follows straightforwardly from
he argument in [1, §2.1].

emma 6. Let y ∈ R. Then

µ(Ay
n(σn)) ≪ σ γn (n ∈ N).

In the case that n ∈ G N , we are able to obtain a stronger estimate by transferring data from
the coarse scale δn to the fine scale σn . By Lemma 5, we have

µ(Ay
n(δn)) ≪ δn

⎛⎝1 +

∑
1⩽|t |⩽2/δn

|µ̂(t2n)|

⎞⎠ (n ∈ N).

As α < β1, we find that if n ∈ G N , then

µ(Ay
n(δn)) ≪ δn. (5)

To pass between the two scales δn and σn , we require an inhomogeneous analogue of
[1, Lemma 2.2]. Its statement and proof are based upon the iterative construction of K , which
we now briefly recall, see [1, §2] for further details. For N ∈ N, recall that the N th level in the
construction of the Cantor set, which we denote by KN , comprises 2N intervals of length 3−N .
The left endpoints of these intervals form the set LN of rationals a/3N such that a ∈ [0, 3N ]
is an integer whose ternary expansion contains only the digits 0 and 2, and the right endpoints
form the set RN = {1 − x : x ∈ LN }. Note that CN = LN ∪ RN . The following is an
inhomogeneous analogue of [1, Lemma 2.2].

Lemma 7. Fix an absolute constant c > 0. Let n,N ,M ∈ N and σ, δ ∈ R be such that
N ⩾ M and

0 < σ < δ ⩽ 1, 3−N ⩾
cσ
2n
,

σ

2n
⩽ 3−M ⩽

δ

2n
,

nd let y ∈ R. Then

#(CN ∩ Ay
n(σ )) ≪ #(CM ∩ Ay

n(2δ)).

roof. We imitate the proof of [1, Lemma 2.2]. By symmetry, it suffices to prove that

#(LN ∩ Ay
n(σ )) ≪ #(LM ∩ Ay

n(2δ)). (6)

uppose x ∈ LN ∩ Ay
n(σ ). Then x = a/3N for some integer a ∈ [0, 3N ) whose ternary

xpansion contains only the digits 0 and 2. Further, there exists an integer b ∈ [0, 2n] such that⏐⏐⏐⏐x −
b + y

n

⏐⏐⏐⏐ < σ

n
.

2 2
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Therefore #(LN ∩ Ay
n(σ )) is bounded above by the number of integer solutions (a, b) to the

nequality⏐⏐⏐⏐ a
3N

−
b + y

2n

⏐⏐⏐⏐ < σ

2n

such that a ∈ [0, 3N ), b ∈ [0, 2n], and each ternary digit of a is 0 or 2.
We write

a = 3N−Ma1 + a2, a1, a2 ∈ Z, 0 ⩽ a1 < 3M, 0 ⩽ a2 < 3N−M.

his reveals that #(LN ∩ Ay
n(σ )) is bounded above by the number of integer solutions (a1, a2, b)

o ⏐⏐⏐⏐3N−Ma1 + a2

3N −
b + y

2n

⏐⏐⏐⏐ < σ

2n
(7)

uch that

0 ⩽ a1 < 3M, 0 ⩽ a2 < 3N−M, 0 ⩽ b ⩽ 2n,

nd the ternary digits of a1, a2 are all 0 or 2. As⏐⏐⏐⏐ a1

3M
−

b + y
2n

⏐⏐⏐⏐ ⩽ ⏐⏐⏐⏐ a1

3M
+

a2

3N
−

b + y
2n

⏐⏐⏐⏐ +
a2

3N <
σ

2n
+

1
3M

⩽
2

3M
, (8)

e must have a1/3M
∈ Ay

n(2δ) for any such solution.
Given a1, the inequality (8) forces b/2n to lie in an interval of length 4/3M, and so there are

t most O(1) possibilities for b. Next, suppose we are given a1 and b. Then, by (7), the integer
2 is forced to lie in the interval of length 3Nσ21−n centred at 3N (b + y)2−n

− 3N−Ma1.
onsequently, as 3−N ⩾ cσ/2n , there are at most O(1) solutions a2 to (7). Finally, since
1/3M ∈ LM ∩ Ay

n(2δ), we conclude that there are O(#(LM ∩ Ay
n(2δ))) solutions in total. This

onfirms (6) and completes the proof of the lemma. □

Let n ∈ [N , 2N ] ∩ Z. Let N ,M be positive integers such that
σn

15 · 2n
< 3−N ⩽

σn

5 · 2n
and

δn

30 · 2n
< 3−M ⩽

δn

10 · 2n
.

e apply Lemma 3 with σ = σn and N in place of N therein, giving

µ(Ay
n(σn)) ≪ 2−N #(CN ∩ Ay

n(5σn)).

s δn/σn = nτ−α ⩾ N τ−α ⩾ 150, we may apply Lemma 7 with σ = 5σn and δ = δn/10,
iving

#(CN ∩ Ay
n(5σn)) ≪ #(CM ∩ Ay

n(δn/5)).

ext we apply Lemma 3 again, now with σ = δn and M in place of N therein, giving

#(CM ∩ Ay
n(δn/5)) ≪ 2Mµ(Ay

n(δn)).

ote that we have

2−N
≪ (σn/2n)γ and 2−M

≫ (δn/2n)γ ,

nd that, combined with the above, these inequalities furnish

µ(Ay
n(σn)) ≪

(σn/2n)γ
µ(Ay

n(δn)).

(δn/2n)γ
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Thus, by (5), for n ∈ G N we have

µ(Ay
n(σn)) ≪ δ1−γ

n σ γn .

Hence, by Lemma 6 and our earlier observation that #BN ≪ Nβ2+α , we have
2N∑

n=N

µ(Ay
n(σn)) ≪

2N∑
n=N

δ1−γ
n σ γn +

∑
n∈BN

σ γn

≪

2N∑
n=N

1
nτγ+α(1−γ ) + Nβ2+α−τγ .

n view of (3), and noting that we can write

∞∑
n=1

µ(Ay
n(σn)) ⩽

∞∑
k=0

2k+1∑
n=2k

µ(Ay
n(σn))

≪

∞∑
k=0

⎛⎝2k+1∑
n=2k

1
nτγ+α(1−γ ) + 2k(β2+α−τγ )

⎞⎠,
we finally have (4), which completes the proof of Theorem 2.
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