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Reduced injury risk links sociality to survival
in a group-living primate

Melissa A. Pavez-Fox,1,9,* Clare M. Kimock,2,7 Nahiri Rivera-Barreto,3 Josue E. Negron-Del Valle,4

Daniel Phillips,4 Angelina Ruiz-Lambides,3,5 Noah Snyder-Mackler,4,6 James P. Higham,2 Erin R. Siracusa,1,8

and Lauren J.N. Brent1,8,*

SUMMARY

Sociality has been linked to a longer lifespan inmanymammals, including humans.
Yet, how sociality results in survival benefits remains unclear. Using 10 years of
data and over 1,000 recorded injuries in rhesus macaques (Macaca mulatta), we
tested two injury-related mechanisms by which social status and affiliative part-
ners might influence survival. Injuries increased individual risk of death by 3-fold
in this dataset. We found that sociality can affect individuals’ survival by reducing
their risk of injury but had no effect on the probability of injured individuals dying.
Both males and females of high social status (measured as female matrilineal rank
and male group tenure) and females with more affiliative partners (estimated us-
ing the number of female relatives) experienced fewer injuries and thus were less
likely to die. Collectively, our results offer rare insights into one mechanism that
can mediate the well-known benefits of sociality on an individual’s fitness.

INTRODUCTION

Uncovering the means by which sociality influences lifespan is of major interest to evolutionary biologists,

social scientists, and biomedical researchers.1–3 Evidence from humans and other animals has provided

increasing support for the benefits of affiliative social interactions on survival. The strength of social

bonds4–7, the number of weak connections8, the number of associates9–11, the number of relatives in a

group12, and the number of indirect connections11,13 all predict the lifespan of individuals; the general

pattern being that those with more or stronger social relationships are the ones that live longer (however,

see Blumstein et al.14 for the opposite effect in a facultative social mammal). Similarly, socioeconomic sta-

tus in humans and social status in other animals are also robust predictors of mortality risk5,12,15–18, with

lower-status individuals suffering a greater risk of death. But precisely how the social environment affects

survival is less well understood.

One way for sociality to influence survival is by mitigating the costs of competition. Dominance hierarchies,

for instance, are believed to have evolved to reduce direct costs associated with competition for re-

sources19. Nevertheless, social hierarchies still usually entail disparities in resource access, with individuals

higher in the hierarchy having priority access to food andmates at the expense of their subordinates20, who

may still need to compete for resources. Affiliative partners can also help to reduce engagement in

agonistic encounters by providing access to resources via cooperation and social tolerance21. For example,

food sharing, cooperative feeding, and co-feeding have been described in several mammals, including

some species of bats22, cetaceans23–25, monkeys26,27, and apes21. Having affiliative partners in the group

can also be advantageous to deter physical aggression from conspecifics by providing agonistic support.

For instance, affiliative interactions predict the formation of coalitions in male and female African wild dogs

(Lycaon pictus)28, Camargue horses (Equus caballus)29, macaques (Macaca spp.)30,31, and chimpanzees

(Pan troglodytes)32. Agonistic support has been widely documented in female-philopatric primate species

where related females defend one another33–35. If social status or affiliative relationships reduce the chance

of aggressive interactions, these components of sociality may directly enhance survival by allowing individ-

uals to avoid costly outcomes, such as injuries.

In addition to mitigating the immediate costs of aggressive behaviors, sociality may also enhance survival

through buffering mechanisms that influence an individual’s health. Differences in access to resources
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according to social status, for instance, may determine the general body condition and health of individ-

uals. Low social status has been related to higher disease risk16, higher levels of inflammation36,37, reduced

healing capacity38, and overall impaired health in several mammal species, including humans2,39,40. Affili-

ative partners, also, can be valuable resources that can contribute to better health by providing access to

food41,42 and by reducing the burden of infections via hygienic behaviors (i.e., grooming)43,44. Better health

status for high-ranking or socially integrated individuals may translate into higher chances of survival in the

face of adversity, for example, by improving the chances of recovery following an injury.

Yet despite clear hypotheses for the potential mechanisms by which social status and affiliative relation-

ships influence lifespan, there remains a lack of empirical evidence that these mechanisms affect survival.

Several studies have shown associations between individual variation in sociality with markers of health and

immunity36,37,45,46, yet the consequences of such differences on survival are unknown. Similarly, studies

supporting a relationship between sociality and lifespan usually do not have the detailed physiological

or health data required to test potential mechanisms connecting the two1. To fill this gap, we used a

long-term dataset containing both survival data and detailed information on injuries in a free-living popu-

lation of rhesus macaques to test whether sociality mitigates the costs of competition (i.e., injuries) and its

consequences on survival.

We explored two injury-related mechanisms that can link sociality with survival. Specifically, we tested

whether social status and/or affiliative relationships 1) influence the risk of being injured and/or 2) alter

an individual’s survival trajectory after an injury (Figure 1). We did so using 10 years of injury data collected

ad libitum together with demographic information from male and female rhesus macaques aged 4–29

years living on Cayo Santiago Island, Puerto Rico. Previous studies have shown the benefits of affiliative

partners and social status on the survival probability of monkeys in this population8,12,15. Rhesus macaques

live in multi-male multi-female despotic societies, where access to resources is strongly influenced by an

individual’s position in the dominance hierarchy47. Predators are absent from Cayo Santiago, ensuring in-

juries are mostly the result of physical aggression between conspecifics. Rhesus macaques are seasonal

breeders with a mating season that can last from 3 to 6 months. During the mating season, both affiliative

and agonistic interactions are usually heightened48,49, and thus, important trade-offs between health,

reproduction, and survival may occur at this time50,51.

Because our study hinged on the assumption that being injured was detrimental for survival in this popula-

tion, we first tested whether injuries inflicted by conspecifics increased the probability of death in these an-

imals (Figure 1; red arrow). To test if sociality influences the risk of injury (mechanism 1), we asked whether

social status and the number of affiliative partners were associated with an individual’s injury risk (Figure 1;

yellow arrow). Given the protective role of high social status and the importance of affiliative partners in de-

terring aggression19,21,34, we predicted that high-status individuals and those with more affiliative partners

would have a lower risk of injury. To test if sociality can alter the impact of injuries on survival (mechanism 2),

we asked if social status and the number of affiliative partners affected the survival trajectories of injured

Sociality

Social 
status

Affiliative 
partners

Survival
Injury

Figure 1. Injury-related mechanisms by which components of sociality (social status, affiliative partners) can

influence survival

A direct effect of sociality on survival (gray arrow) has been well established in mammals4,5,7,10,11, including studies in the

Cayo Santiago population8,12. We explore mechanisms related to injury by which the relationship between sociality and

survival might come about. According to the first mechanism, sociality influences the risk of injury (yellow arrow) and,

therefore, survival (red arrow). According to the second mechanism (green arrow), sociality affects the survival

trajectories of injured individuals.
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individuals (Figure 1; green arrow). As both social status and social integration can determine differences in

health status thatmay affect recovery time38,39,52, wepredicted that high-status animals and thosewithmore

affiliative partners would have a lower hazard of death froman injury than low-status individuals or thosewith

fewer affiliative partners. Our results demonstrate that sociality plays an important role in mediating the risk

of injury, offering one clear mechanistic link between sociality and survival in a group-living mammal.

RESULTS

Effect of injuries on survival

To quantify the extent to which injuries are associated with an individual’s survival, we used time-dependent

mixed-effects coxmodels53,54. Animals that were injuredwere nearly three timesmore likely to die in the two

months following an injury than animals that were not injured, independent of the reproductive seasonwhen

the injury occurred (Figure 2A; Hazard [Hz] = 1.07G 0.17 [SEM], z = 6.24, p < 0.01, injuries [i] = 1041, deaths

[d] = 443, N injured = 571, N uninjured = 1030; Table S1). The higher hazard of death associated with injuries

was dependent on the severity of the injury and the sex of the animal (Hz severity*sexM = 1.49 G 0.72,

z = 2.06, p = 0.039, i = 398, d = 107, N severely injured = 295; Figure 2B and Table S2). Males with severe

injuries (e.g., broken bones, exposed organs, multiple wounds, or wounds in vital areas, see STARMethods

for details) were more likely to die than males who were uninjured (post hoc test: uninjured vs severely

injuredHz =�1.27G 0.3, p< 0.01), but did not experience higher hazard thanmales with non-severe injuries

(e.g., injuries in back, chest, limbs) (post hoc test: non-severely vs severely injuredHz=�1.06G0.5, p= 0.11).

Males with non-severe injuries also did not experience a highermortality risk than uninjuredmales (post hoc

test: non-severely injured vs uninjuredHz=0.2G0.46, p=0.89). Femaleswith non-severe injuries had higher

mortality risk than uninjured females (post hoc test: non-severely injured vs uninjured Hz = 1.37 G 0.26,

p < 0.01), but did not differ in their hazard of dying when compared to females that were severely injured

(post hoc test: non-severely vs severely injured Hz = 0.4 G 0.5, p = 0.7). Severe injuries in females were

not associated with a higher mortality risk than uninjured individuals (post hoc: uninjured vs severely injured

Hz = �0.97G 0.44, p = 0.06). There were no significant sex differences in the hazard of death for severe in-

juries (females vs males Hz =�0.55G 0.5, p = 0.28) or for non-severe injuries (females vs males Hz = 0.91G

0.5, p = 0.07). In sum, when compared to uninjured animals, the main source of injury-related mortality for

males comes from severe injuries, while in females it was associated with non-severe injuries.

Mechanism #1: Sociality influences the risk of injury

Effect of social status on injury risk

To test if high-status animals were less likely to be injured or severely injured than low-status ones, we quan-

tified the relationship between rank and injury risk separately for males and females using logistic models.
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Figure 2. Effect of injuries on survival

(A) Survival curves adjusted for covariates for injured and uninjured individuals. Injured individuals (red solid line, n = 571,

294 females, 277 males) had a near 3-fold increase in the probability of dying compared to uninjured animals (gray dashed

line, n = 1030, 557 females, 473 males) (Hz = 1.07 G 0.17, z = 6.24, p < 0.01, injuries (i) = 1041, deaths (d) = 443). Curves

represent males during the mating season, but those for females were similar. Shaded areas represent standard errors.

(B) Hazard ratios of death for females and males as a function of the severity of injuries. The main cause of injury-related

death was from severe injuries in males (green circles, n uninjured = 473, n non-severely injured = 189, n severely injured =

251), and non-severe injuries in females (Pink squares, n uninjured = 557, n non-severely injured = 232, n severely injured =

147) (Hz severity*sexM = 1.49 G 0.72, z = 2.06, p = 0.039, i = 398, d = 107). Uninjured females represent the intercept and

vertical bars depict the 95% confidence interval. Statistical significance in a post-hoc analysis is indicated by asterisks

where **p < 0.01. All other pair-wise comparisons within and between sexes were not significant.
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We used proxies for social status as observations of agonistic interactions between pairs of animals (from

which dominance rank is computed) were only available for a subset of subjects (1660 macaque-years). To

maximize our statistical power, we decided to use the complete dataset (8459 macaque-years) and known

proxies of social status instead. Specifically, we used group tenure for males55–57 and matrilineal rank for

females12,15. Male rhesus macaques obtain dominance through queuing, whereby those males that have

been in a group for longer are usually higher ranking58. Female rhesus macaques are philopatric and

formmaternally inherited stable linear dominance hierarchies whereby daughters occupy a rank just below

their mothers59. Members of the same matriline tend to be adjacent to one another in the hierarchy; thus,

the rank of an entire matriline can be used as a proxy for individual rank in social groups containing more

than one matriline15. Both proxies had a strong association with social status obtained from behavioral ob-

servations in this same population (females: ß rankLow =�1.12G 0.085, p < 0.01; males: ß tenure = 0.67G

0.04, p < 0.01; Figure S2, details in STAR Methods).

We found that matrilineal rank in females had a strong effect on the likelihood of being injured, which was

dependent on an individual’s age (log-odds rankLow*age = 0.23 G 0.09, z = 2.43, p = 0.015, i = 448,

N = 817; Table S3). Low-ranking females had a higher probability of being injured than high-ranking fe-

males, but only at older ages (Figure 3A). Matrilineal rank had no relationship with the risk of severe injuries

in females (log-odds rankLow =�0.17G 0.2, z =�0.86, p = 0.39, i = 135, N severely injured = 114; Table S4).

In males, group tenure also had a strong effect on the probability of being injured that was dependent on

age (log-odds tenure*age = 0.1 G 0.03, z = 3.04, p < 0.01, i = 536, N = 748; Table S5). Lower social status

(i.e., shorter tenure) was associated with a higher incidence of injuries, but only at younger ages (Figure 3B).

The same pattern was observed when we focused our analysis on severe injuries only (Figure S3A, log-odds

tenure*age = 0.11 G 0.04, z = 2.54, p = 0.01, i = 245, N severely injured = 168; Table S6). Consistent with

heightened male-male competition over females48 and with male harassment of females during the repro-

ductive season60, we also found that injury risk increased for both males and females during the mating

period compared to outside it, independent of their social status (injury: log-odds females = 0.85 G

0.28, z = 3.03, p < 0.01; log-odds males = 1.21 G 0.26, z = 4.57, p < 0.01; severe injury: log- odds females =

1.03 G 0.26, z = 3.94, p < 0.01; log-odds males = 1.38 G 0.26, z = 5.4, p < 0.01).

We used a post hoc path analysis to further confirm that social status can indirectly affect an individual’s

survival by influencing their injury risk. We found that both matrilineal rank and tenure in a group (in inter-

action with age) can indirectly affect female and male survival by altering injury risk (Figure S4;

females Fisher’s C statistic = 4.61, degrees of freedom [df] = 2, p = 0.329; males Fisher’s C statistic =

5.25, df = 2, p = 0.262; Tables S20–S26. Note that p > 0.05 in a path analysis indicates an acceptable fit
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Figure 3. Effect of social status on injury risk

(A) Injury risk for females as a function of matrilineal rank and age. Females from lower-ranking matrilines (yellow dashed

line, n = 510, 237 injuries) had higher chances of being injured than females from higher-ranking matrilines (purple

solid line, n = 325, 211 injuries), with increasing probabilities for older females (odds rankLow*age = 0.23 G 0.1, z = 2.43,

p < 0.01).

(B) Injury risk for males as a function of tenure length and age. For visualization, tenure length was categorized by selecting

the 20th (273 days of tenure) and 80th (2029 days of tenure) percentiles depicting low status (yellow dashed line) and high

status (purple solid line), respectively (n = 748, 536 injuries). Younger males from low status (shorter tenure) had higher

injury risk than high-status (longer tenure) young males, yet the opposite occurred at later ages (odds tenure*age = 0.1G

0.03, z = 3.04, p < 0.01). In both plots, shaded areas represent standard errors and gray dots the raw data used in the

models (top: injured, bottom: uninjured).
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of the model). In the case of males, an age-dependent direct effect of tenure on survival was also detected,

even when accounting for injury status (Tables S19–S26), suggesting that there are other mechanisms link-

ing tenure and survival independent of injury risk.

Effect of affiliative partners on injury risk

To test whether animals with more affiliative partners were less likely to be injured or severely injured than

those with fewer affiliative partners, we used logistic models. To support robust statistical analyses, we

relied on a proxy for the number of affiliative partners that has been previously shown to influence survival

in this population (i.e., the number of female relatives in the group)12. Female rhesus macaques have a

strong bias toward forming partnerships with their maternal kin61, and the number of female relatives a fe-

male has in her group is positively correlated with network measures of how socially integrated she is62.

Males, on the other hand, are the dispersing sex and have few kin in their new groups and so were excluded

from this analysis. We found that the number of close relatives (relatedness coefficient [r] = 0.5, i.e., mother-

daughters and full siblings) in a female’s group had a weak, but not significant, effect on her probability of

being injured (log-odds = 0.09G 0.05, z =�1.89, p = 0.059, i = 491, N = 851; Table S7). However, the size of

a female’s extended family (r R 0.125, i.e., spanning three generations) was strongly associated with the

likelihood of injury, with females experiencing a 47% reduction in the incidence of injuries for every one-

standard-deviation (� 4 females) increase in their number of relatives (Figure 4A; log odds = �0.13 G

0.05, z = �2.47, p = 0.014, i = 491, N = 851; Table S9). The incidence of severe injuries was not affected

by the number of close relatives (log odds =�0.06G 0.09, z =�0.63, p = 0.53, i = 147, N severely injured =

123; Table S8), but the size of a female’s extended family was weakly associated with a reduced probability

of being severely injured in periods outside the reproductive season (Figure S3B; log odds nkin*season =

0.34 G 0.17, z = 1.954, p = 0.05, i = 147, N severely injured = 123; Table S10).

Similar to the above, we used a post hoc path analysis and found that having more relatives in the group

may indirectly affect a female’s survival by reducing her risk of being injured (Figure S5; Fisher’s C statistic =

5.09, df = 1, p = 0.078). We also found a strong direct effect of the number of relatives on a female’s survival

that was independent of her injury status (Tables S19 and S27–S29). In other words, the survival benefit

associated with having more female relatives in the group is also determined by other mechanisms not

considered in our study.

Mechanism #2: Sociality influences the survival of injured animals

Effect of social status on survival of injured animals

To assess whether social status or affiliative relationships buffer the detrimental effects of injuries on sur-

vival, we used time-dependent mixed-effects cox models. We found no evidence of a buffering effect of
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Figure 4. Effect of affiliative partners on injury risk

The x-axis represents the number of adult female relatives (extended family, r R 0.125) present in a female’s group

(n = 851, injuries (i) = 491). Females with more relatives had lower chances of suffering from an injury than females with

fewer relatives (odds = �0.13 G 0.05, z = �2.5, p = 0.01, i = 491). Shaded areas represent standard errors, and gray dots

the raw data used in the models (top: injured, bottom: uninjured).
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matrilineal rank on the survival of injured females (Hz injured*rankLow = �0.13 G 0.49, z = �0.27, p = 0.78,

i = 448, d = 103, N = 278; Table S11) or group tenure on the survival of injured males (Hz injured*tenure =

0.12G 0.22, z = 0.54, p = 0.59, i = 536, d = 97, N = 272; Table S13). Similarly, no buffering effect of matrilineal

rank or group tenure on survival was observed in severely injured females (Hz injured*rankLow = �0.4 G

0.99, z = �0.41, p = 0.68, i = 135, d = 42, N severely injured = 114; Table S12) or males (Hz injured*tenure =

�0.15 G 0.26, z = �0.57, p = 0.57, i = 245, d = 57, N severely injured = 168; Table S14), respectively.

Effect of affiliative partners on survival of injured animals

We found no evidence for a relationship between survival after an injury and the number of close relatives a

female had available at the time (Hz injured*nkin = �0.17 G 0.21, z = �0.8, p = 0.42, i = 491, d = 114,

N = 294; Table S15) or the current size of her extended family (Hz injured*nkin = 0.11 G 0.19, z = 0.6,

p = 0.54, i = 491, d = 114, N = 294; Table S17). Similarly, the number of affiliative partners did not influence

the survival of severely injured females (Hz close kin =�0.6G 0.5, z =�1.21, p = 0.225; Hz extended family =

�0.04 G 0.37, z = �0.11, p = 0.91; i = 147, d = 45, N severely injured = 123; Tables S16 and S18).

DISCUSSION

Taken together, our results suggest that different components of the social environment can modulate the

risk of suffering an injury and, therefore, the hazard of death. We found that high social status was associ-

ated with a lower injury risk for specific periods of males’ and females’ lives and that a female’s affiliative

partners may help to prevent injuries. In contrast to previous research showing that individuals with higher

social status had faster healing rates38, we found that none of the measures of sociality we analyzed

affected the survival trajectories of injured animals.

Injured individuals were substantively more likely to die than uninjured animals, demonstrating the high

costs of physical aggression for macaques in this population and the relatively short period (i.e., two

months) in which injuries can affect an individual’s fitness. Exactly how injuries affect the health of individ-

uals and lead to death remains an open question. On the one hand, injuries could have a direct effect on

survival as a result of lethal attacks. Lethal attacks seem to be common in great apes63 and, although they

might occur less often, have been documented in other mammals64, including rhesus macaques from the

Cayo Santiago population65. On the other hand, injuries can affect survival indirectly, for example, by im-

pairing locomotion, which may lead to problems in acquiring resources to sustain wound healing or basic

energetic demands, or also by exposing damaged tissue to infectious diseases66,67. But regardless of how

exactly death comes about, our results provide evidence that injuries from conspecifics can be fatal.

Males experienced a greater hazard of death only from severe injuries, which might reflect trade-offs be-

tween the energy allocated for reproduction versus immunity38,66 and/or the areas of the body affected.

During the reproductive season, the probability of being severely injured was substantially higher for

both sexes. During this period, males may particularly be immunocompromised due to the high amount

of energy and resources required to sustain the effort associated with mating50,68 which can impair injury

recovery, especially when suffering multiple injuries at once or injuries in very vulnerable areas, such as the

genitalia (Figure S6). Females, on the other hand, seemed to be more affected by non-severe injuries than

severe ones. Sample size may explain this result as females were less often severely injured than males (n

females = 147, n males = 251), and so, our ability to detect effects of severe injuries in females was more

limited. We also cannot disregard that our definition of severe injuries might not apply equally to males

and females; what constitutes a non-severe injury in males might actually be severe for females or vice

versa. Future studies with a large enough sample size to look at sex differences in the trade-offs between

immunity and reproduction in the context of injury are required to determine how severe injuries affect sur-

vival in this and other populations of group-living animals.

We found support for one of the hypothesized mechanisms linking sociality to survival, whereby sociality

reduces an individual’s risk of injury. High-social-status animals (high matrilineal rank in females and longer

group tenure in males) were less likely to be injured than lower-status animals during specific periods of

their life. Females with more affiliative partners (i.e., more relatives) were less likely to be injured than

less integrated females and, thus, experienced a lower hazard of death.

Our results linking social status to reduced risk of injury are consistent with the skewed access to re-

sources in systems with clear linear dominance hierarchies20. Although we do not have information on
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the context in which injuries occurred, our results suggest that high-status individuals may not need to

engage in costly aggression for food or mates as often, in contrast to low-status animals who must

gain access through contests. Our results suggest that low-status individuals experience a greater hazard

of death than high-status individuals because they have an enhanced injury risk, which was supported by

our path analysis.

Our finding that matrilineal rank influenced the risk of injury in older but not younger females may be

because at younger ages, females’ relative positions in the dominance hierarchy have yet to be fully estab-

lished69. Also, by using matrilineal rank as a proxy, we might not have enough resolution in the dominance

relationships between females within a matriline or even between low-ranking matrilines to be able to cap-

ture rank-based differences in injury risk, especially at younger ages when the occurrence of injuries is

lower. Further, we showed that low-status males were more likely to be injured than high-status males,

but only at younger ages. The only way for a young male to have high status (i.e., long group tenure) is

for him to have not yet dispersed from his natal group. These young, high-status males may get protection

benefits from their maternal relatives, which would not be the case for young males recently joining a new

group. Indeed, rhesus macaque males that delay their dispersal are usually the sons of the high-ranking

female and by extension have the privileges of their mother’s social status70,71, which may help them to

buffer their risk of injury. Finally, the lack of differences in injury risk with social status in prime-age and older

males could be attributed to reduced benefits associated with tenure in the context of mating competi-

tion72, which is expected to be the main driver of contests between males once they reach their peak in

sexual maturity.

Previous studies in matrilineally structured species, where most affiliative relationships are between female

relatives, have shown that females commonly engage in agonistic encounters to support and protect their

kin33–35, even when confronting higher-status individuals73. In line with these findings, our results suggest

that havingmore relatives availablemay provide a numerical advantage to deter physical aggression. Inter-

estingly, we also found that having more female relatives was associated to reduced risk of severe injury

during the non-reproductive season, suggesting that more affiliative partners might be especially advan-

tageous to deter fierce aggression in contexts outside of direct competition for mates. However, other

mechanisms, such as social tolerance when accessing resources21, could also explain fewer injuries in

the presence of more affiliative partners. For instance, females might be less likely to engage in aggressive

interactions when feeding with relatives or be more willing to share a feeding spot with kin than with non-

kin. Finally, our results suggest that both the number of close and extended kin that a female has contribute

to reduce her risk of being injured, even though when looking at the number of close kin alone wemight not

have had enough variation to detect robust effects (Figure S7). A path analysis supported the effect of so-

cial integration on injury risk as an indirect route to female survival. But it is also important to note that the

number of relatives also had a strong, direct effect on survival. Combined, these results suggest that

although social relationships might have evolved to help individuals avoid potentially fatal injuries from

their conspecifics, it is unlikely to be their sole ultimate function. Other mechanisms not included in this

study should be considered as alternative and/or complementary routes between social relationships

and survival. In other words, the ultimate function of within-group social relationships is likely to be multi-

faceted, including—but not limited to—injury prevention.

We found no support for the second hypothesizedmechanism linking sociality to survival. None of themea-

sures of sociality we analyzed were related to an individual’s survival trajectory following injury. Despite a

vast body of literature supporting differences in health and immunity between individuals of different social

status36,39,45, we found no evidence for an effect of social status on the survival trajectories of injured an-

imals. These findings contrast with a previous study on wild baboons where high-status males had faster

healing rates than lower-status males38. Although we did not quantify differences in healing times with so-

cial status, our results suggest that the probability of recovering from an injury was not influenced by an

animal’s position in the dominance hierarchy. These differences might be explained in part by differences

in features of the two study systems. Animals on Cayo Santiago are provisioned with food daily, and access

to the nutrients needed to support immune function might not be as skewed as they are in the wild46.

Notwithstanding, high social status in both systems has been associated with elevated levels of glucocor-

ticoids and androgens50,74,75, which are well-known immune suppressors. Overall, this might suggest that

in the Cayo Santiago population, unlike the baboons, the benefits of being of high status may not outweigh

the costs in terms of helping to promote injury recovery.
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We also found, contrary to our predictions, that the benefits associated with affiliative partners, such as

feeding tolerance76,77 and social hygienic behaviors43,44, seem not to have helped females to cope with

the detrimental effect of injuries on survival. It is possible that social hygienic behavior, such as the removal

of ectoparasites by grooming, has long-term health benefits but does nothing to enhance the short-term

immune response required to heal damaged tissue78. Additionally, grooming wounded areas may, in fact,

be detrimental to the healing process as it could lead to the removal of protective scabs44. This could be

one reason why females with more affiliative partners, who are presumed to receive more grooming and to

have more access to food via social tolerance, did not have improved survival trajectories after an injury.

Previous research on this population has shown that the number of close relatives and the size of a female’s

extended family are associated with increased survival probability8,12. The results of the current study sug-

gest this relationship does not come about because of the reduced risk of death from injury. Further

research is needed to elucidate to what extent other mechanisms involving health differences (e.g., disease

susceptibility) play a role in the benefits of social partners in the survival of females in this population.

In sum, our study provides evidence for a mechanism linking sociality to lifespan. Growing literature has

supported a strong relationship between the social environment and survival in many mammal species2,

but the ultimate function of some components of sociality, such as social relationships, remains unclear79.

Although sociality has been demonstrated to enhance health and immunity36,45,46, here we showed that

these benefits did not translate to an improved ability to cope with the risk of death from injuries. Instead,

we found that sociality plays an important role in preventing individuals from suffering injuries that would

likely lead to death. Given how rare injuries are in this population, we do not expect that this is the only

mechanism linking sociality to survival. Other mechanisms may include sociality-mediated differences in

components of health related to disease susceptibility. In wild animal populations, social partners may

also help with predator detection80, predator mobbing81, finding food sources82, thermoregulation83,

among other possibilities. Nevertheless, here we provide rare empirical evidence for an ultimate function

of social relationships, showing onemechanism by which high status and socially integrated individuals live

longer. Demonstrating the relative importance of different mechanisms linking sociality and survival will be

challenging but a crucial goal of future research. Our study highlights the essential role that long-term da-

tasets that combine both demographic and health data will play in meeting this challenge.

Limitations of the study

This study relied on proxies for sociality instead of direct behavioral observations due to limitations in the

sample size of matching data for injuries and animals with behavioral information. Additionally, we did not

have direct evidence of the contexts in which injuries occurred; thus, the means by which sociality might

reduce injury risk were somewhat speculative. Future studies should build on our findings by using direct

behavioral observations in a large sample of individuals with paired injury data to explore refined ego-net-

works characteristics and to expand these results to affiliative relationships of males and unrelated females.
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10. Nuñez, C.M.V., Adelman, J.S., and
Rubenstein, D.I. (2015). Sociality increases
juvenile survival after a catastrophic event in
the feral horse (Equus caballus). Behav. Ecol.
26, 138–147. https://doi.org/10.1093/
beheco/aru163.

11. Stanton, M.A., and Mann, J. (2012). Early
social networks predict survival in wild
bottlenose dolphins. PLoS One 7, e47508.
https://doi.org/10.1371/journal.pone.
0047508.

12. Brent, L.J.N., Ruiz-Lambides, A., and Platt,
M.L. (2017). Family network size and survival
across the lifespan of female macaques.
Proc. Biol. Sci. 284, 20170515. https://doi.
org/10.1098/rspb.2017.0515.

13. Vander Wal, E., Festa-Bianchet, M., Réale,
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information should be directed to and will be fulfilled by the lead contact, Melissa A. Pavez-Fox

(melissa.pavez.fox@gmail.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Data have been deposited at Mendeley Data and are publicly available as of the date of publication. DOI

is listed in the key resources table.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Cleaned data Mendeley Data https://doi.org/10.17632/95xxf29472.1

Code GitHub https://github.com/MPavFox/Injury-and-

survival

Experimental models: Organisms/strains

Free-ranging rhesus macaques: 851 females

and 750 males

Not Applicable Not Applicable

Software and algorithms

R v4.1.3 R Core Team 2022 https://cran.r-project.org/

R package mice Van Buuren & Groothuis-Oudshoorn 2011 https://cran.r-project.org/web/packages/

mice/index.html

R package survival Therneau 2022 https://cran.r-project.org/web/packages/

survival/index.html

R package coxme Therneau 2018 https://cran.r-project.org/web/packages/

coxme/index.html

R package lme4 Bates et al. 2015 https://cran.r-project.org/web/packages/

lme4/index.html

R package emmeans Lenth et al. 2022 https://cran.r-project.org/web/packages/

emmeans/index.html

R package survminer Kassambara et al. 2021 https://cran.r-project.org/web/packages/

survminer/index.html

R package effects Fox 2003 https://cran.r-project.org/web/packages/

effects/index.html

R package ggplot2 Wickham 2016 https://cran.r-project.org/web/packages/

ggplot2/index.html

R package sjPlot Ludecke 2022 https://cran.r-project.org/web/packages/

sjPlot/index.html

R package car Fox & Weisberg 2019 https://cran.r-project.org/web/packages/car/

index.html

R package ggdag Barret 2022 https://cran.r-project.org/web/packages/

ggdag/index.html

Inkscape v1.0.1 Inkscape project https://inkscape.org
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d All original code has been deposited on GitHub and is publicly available as of the date of publication.

The link is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECTS DETAILS

Subjects

Subjects were 851 female and 750 male free-ranging rhesus macaques (Macaca mulatta) living in the Cayo

Santiago field station, Puerto Rico. Females were between 4 and 28 years of age, andmales were between 4

and 22 years of age.

Ethical guidelines

This research complied with protocols approved by the Institutional Animal Care and Use Committee

(IACUC) of the University of Puerto Rico (protocol no. A6850108) and by the University of Exeter School

of Psychology’s Ethics Committee. The CPRC’s Animal Care and Use Program is evaluated and approved

by the IACUC.

Method details

We studied a population of free-ranging rhesus macaques on the island of Cayo Santiago in Puerto Rico.

The island is home to a population of � 1800 individuals living in 6–10 mixed sex naturally formed social

groups. The field station is managed by the Caribbean Primate Research Center (CPRC), who monitor

the population daily, and maintain the long-term (> 75 years) demographic database including data on

births, deaths, social group membership for all animals and a genetic parentage database for animals

born after 1992.84 Animals have ad-libitum access to food and water, the island is predator-free and there

is no regular medical intervention for sick or wounded individuals. We focused on all subadult and adult

females andmales between 4 and 28 years of age that were alive between the years 2010 and 2020, a period

for which records on injuries exist (see below for details on how injury data was collected). In this study we

included data on 571 injured individuals (294 females, 277 males) and 1030 uninjured individuals (557 fe-

males, 473 males). From these animals, 342 (85 injured, 258 uninjured) were removed from the population

by the CPRC for population control purposes.85 For all individuals, birth dates were known within a few

days. Removal dates were known for all removed individuals. Dispersal from the island almost never occurs,

therefore death dates were also known within a precision of a few days.

Observation of injuries

From 2010 to 2020 CPRC staff collected ad-libitum observations on the incidence and recovery of injuries,

during the daily monitoring of social groups for demographic purposes. Monkeys were individually recog-

nized based on their identity tattoos located on their chest and leg. Whenever a staff member noticed a

wounded animal or an animal displaying signs of injury (e.g., bleeding, limping), they recorded the animal

ID, type of injury and additional details on the general state of the animal (e.g., by evidence of weight loss or

poor physical condition). If there was a visible wound, observers additionally recorded the area of the body

affected, if it was a recent or old wound based on the presence of scars, and whenever possible, an estimate

of its size. Observers updated the records every time they encountered the injured animal during their daily

census routine with an average update time for an injured individual across the 10 years of 42.17 days. In

total, 1137 injury events were observed with an average of 107.6 G 63.5 per year. Here, we included all

the records of injuries that were considered non-ambiguous (i.e., those with visible damage to the skin)

including bites, scratches, cuts and abrasions along with other clearly observable injuries such as fractures

and exposed organs. As there are no predators on the island and no-human intervention during the data

collection, we are confident that most of the injuries included here, if not all, are the result of conspecific

aggression. Our final sample consisted of 1041 injuries collected from September 2010 to April 2020. We

classified these injuries based on their degree of severity, where severe injuries were those involving broken

bones, exposed organs, multiple wounds and any wound in vital areas, including head, neck, abdomen or

genitalia (n = 398). All other injuries were considered non-severe (n = 643) (Figure S6 for details).
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Measures of sociality

Given that observations of social interactions were only available for a subset of our subjects, we used es-

tablished proxies of sociality to maximize our statistical power (n injuries = 292 for animals with behavior vs

1041 for full dataset). As proxy of social status, we used group tenure in males55–57 and matrilineal rank in

females.12,15 We determined tenure length using information onmonthly social groupmembership. Group

tenure length was computed as the time (in days) a male has been observed in his current group at the date

of interest (current date minus date of dispersal). If a male had not yet dispersed and remained in his natal

group, we computed group tenure since their birth date. If a male died or was removed from the popula-

tion before the end of the period of interest, we computed group tenure up to that point. We established

tenure length for all the males in our dataset (n = 750, n injuries = 550). However, 67 of those males had

periods where they were observed living outside a social group (i.e., they were ‘‘extra-group’’). These spe-

cific periods when group tenure could not be computed were dealt differently depending on the analysis in

question and we discuss this on a case-by-case basis below.

We determined matrilineal rank by first identifying the number of matrilines in each of the behavioral

groups with injury records (n = 10 groups). A matriline was defined as all the descendants of a female

founder of the group. Because rank is a relative measure, we disregarded groups with only one founder

female in the group, i.e., one matriline (n = 4 groups disregarded). For all of the groups with 2 or more ma-

trilines, we had behavioral observations for at least one of the ten years of study, allowing us to use data on

dyadic agonistic interactions to identify the alpha female in each group. We identified only one matriline

per group as ‘‘high-ranking’’, the one containing the alpha female, while all the others in the group were

classed as ‘‘low-ranking’’. A female’s matrilineal rank is determined by her family lineage and does not

change across her lifespan unless she changed group membership due to rare fission events. For the small

number of cases where a fission occurred, we determined a female’s new matrilineal rank based on their

relatedness to the alpha female in the newly established group. We established matrilineal rank for 817

unique females (325 classed as high-ranking and 510 as low-ranking, n injuries = 448).

To confirm that group tenure and matrilineal rank were appropriate proxies for social status we tested at

the association between dominance ranks computed from animals with known social status based on

agonistic interactions and our proxies. Social status from behavioral observations was determined as the

number of group members of the same sex that the focal outranked, where 100% represents the highest

ranking individual.86To determine the strength of association between our proxies and social status, we

ran linear regressions where the dependent variable was social status (% outranked) and the predictor,

our proxy (matrilineal rank or tenure in the group) while accounting for repeated measures per individual

for those animals that had a behavioral observation for more than one year. We found that both matrilineal

rank (ß rankLow =�1.12, p < 0.01) and tenure in a group (ß tenure = 0.67, p < 0.01) were strongly associated

to social status in females and males, respectively (Figure S2).

As above, we only had data on affiliative interactions for a subset of our subjects. Therefore, to maximize

our sample size we followed a previous study12 and used the number of female relatives (4 years and older)

that were present in a female’s social group as a proxy for social capital. Female rhesus macaques prefer-

entially interact with their female kin compared to non-kin individuals,59 thus those with greater number of

relatives are expected to have more opportunities for social support. A previous study on this same pop-

ulation has shown that this proxy is positively associated with network measures of social integration.62 We

limited this approach to females as males, being the dispersing sex, often have very few close kin in their

new groups, and might not be able to recognise unfamiliar kin.87 Using the Cayo genetic pedigree data-

base we computed the number of close kin (r = 0.5) and extended family (r R 0.125) for all injured and un-

injured females in our dataset (n = 851, n injuries = 491). We decided to test these two levels of relatedness

as the first represents the strongest kin-bias (i.e., mother-daughter or full sisters) and the second the lowest

threshold for kin bias in affiliative interactions for rhesus macaques.88 To test whether both of our proxies in

females (matrilineal rank and number of relatives in the group) weremeasuring similar biological effects, we

tested for an association between them while controlling for individual ID and group membership (both as

random effects). We found that matrilineal rank did not predict the number of close adult female relatives

(ß rankLow = �0.05, p = 0.324), nor the number of extended adult female family members (ß rankLow =

�0.02, p = 0.738).
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QUANTIFICATION AND STATISTICAL ANALYSIS

For all of the statistical analyses we defined a two-month time window (hereafter, bimonthly interval) as the

period fromwhich the injury status could transition from injured to not injured based on the average update

time for an injured animal (i.e., average time between two consecutive records) and the computed average

healing time (details Data S1). Thus, all variables were evaluated on a bimonthly basis (i.e., each row in the

dataset represents a two-month interval). For each of the questions, we ran two models, one that included

injury status based on all injuries (model 1) and other that included injury status for severe injuries only

(model 2). Statistical significance was based on p-values, where p = 0.05 was considered a weak effect,

p < 0.05 a moderate effect and p < 0.01 a strong effect.89

Effect of injuries on survival

To establish the effect of injuries on survival we used time-dependent Cox proportional hazard (PH)

models.53 For the analyses, we used the whole dataset (n = 1061), including injured and uninjured animals

from both sexes. Animals that were removed from the population or that were still alive at the end of the

study period were censored (Figure S1 for details on sample size). The predictor of interest was the injury

status (i.e., all injuries or severe injuries) along with other relevant variables that may influence survival prob-

ability, such as reproductive season (i.e., mating vs non-mating) and sex. Age was accounted for implicitly in

the models. Additionally, we included random effects for the specific bimonthly interval within the study

period to control for potential mortality sources at the population level, individual identity to account

for repeated measures and social group to account for potential confounders associated with group mem-

bership such as differences in group size (Tables S1 and S2). To determine the bimonthly interval we

divided the whole study period (10 years) into intervals of two months- ranging from 1 to 58 - where 1 rep-

resents the first two months since September 2010. We tested for interaction effects among our predictors

and only retained them if statistically significant to avoid issues of overfitting.

Mechanism #1: Sociality influences the risk of injury

To assess the effect of social status and the number of affiliative partners on the risk of injuries, we used

generalized linear mixed models with binomial distribution (logit models). In all the models we asked

whether our measures of sociality influenced the probability of being injured in a given bimonthly interval.

To test if high status animals were less likely to be injured compared to low status ones, we ran the analyses

separately for each sex (n females = 827, nmales = 750). For males, social status was estimated from group

tenure computed up to the end of each bimonthly interval. Bimonthly intervals where males were extra-

group and so group tenure could not be computed, were excluded. For females, we used matrilineal

rank, which remains constant across the lifespan and, thus, remained the same in every interval unless

they split from a previous group. To test if animals with more affiliative partners were less likely to be injured

compared to animals with social partners we used only females (n= 851), fitting separatemodels for the two

thresholds of relatedness (close kin and extended family). The number of relatives present in a group was

computed for each bimonthly interval. We modeled injury status as a function of social status or number of

affiliative partners, while controlling for age and reproductive season. As group tenure and age could be

correlated, we checked for collinearity between these predictors using the variance inflation factor (VIF),

but no correlation was found (VIF = 1.01). Random effects were included for individual ID to account for

repeated measures, social group and for the specific bimonthly interval within the study period. We

z-scored continuous variables to help convergence and tested interaction terms among all our predictors,

which were retained if significant (Tables S3–S10).

Mechanism #2: Sociality influences the survival of injured animals

To examine the effect of sociality (social status and number of affiliative partners) on the survival of injured

animals we used time-dependent cox PH models. As before, we tested for an effect of social status on sur-

vival in separate models for males and females and examined only females to test the effect of affiliative

partners on survival post-injury. In all the models the predictor of interest was specified by an interaction

term between injury status and the sociality measure. Variables were evaluated on a bimonthly basis

with a time-dependent covariate for reproductive season. Random effects were included for individual

ID, social group and bimonthly interval. As some bimonthly intervals had missing information for group

tenure, we ran two models for males; a complete case analysis and a model using mean-matching multiple

imputation with 20 iterations to fill the missing data,90,91 yet the estimates were identical between both
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procedures. Given that the main predictor was an interaction term, we did not attempt to fit other interac-

tions (Tables S11–S18).

Post-hoc confirmatory path analysis

To further confirm our findings that sociality significantly influences survival by reducing risk of injury we ran

a confirmatory path analyses.92 Briefly, this analysis allow us to test the causal association between multiple

observed variables when the data has a hierarchical structure with different distributions (generalized linear

mixed models) and assuming that the causal explanation does not involve unmeasured variables. Our first

step in path analysis was to establish Directed Acyclic Graphs (DAG) showing the potential causal relation-

ships between the variables in the models (Figures S4 and S5). All the variables not connected by an arrow

in the DAGs are assumed to be independent in the model. Path coefficients were obtained from models

predicting the endogenous variables (i.e., social capital, injury risk and survival). Then, we tested the inde-

pendence of these variables; the estimate for each pairwise comparison is expected to be zero (H0) and

have non-significant probability (details on claims of independence Table S19). We decided to only test

claims of independence that are biologically meaningful. For example, testing if age or rank are indepen-

dent of season does not add useful information to the model and may result in higher rates of type II error.

Given that we had interaction terms, we did not determine the independence between the interaction var-

iable (age x social status) and their main effects as their error terms were correlated. Finally, to determine

goodness of fit we extracted the probabilities from the main predictors in the independence claims, which

were used to compute the Fisher C’statistic. If theC-statistic absolute value is above 1.96 (p> 0.05), then we

fail to reject themodel as the data-generating process or in other words, the observed data does not signif-

icantly differ from the expected causal model.

All statistical analyses were done in R version 4.1.393 using the survival,94 coxme,95 mice,90 emmeans96 and

lme497 packages.We checked for model assumptions using survival and car98 R packages. If models did not

converge, we extended the maximum number of iterations to 200,000. In case of singular fit (i.e., overfitting

issues), we excluded the random effect for group. Plots were done using the survminer,99 effects,100

sjPlot,101 ggdag,102 ggplot2103 R packages. Aesthetics of the plots were adjusted in Inkscape v1.0.1.104
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