

Wholescape Assessment of Water Quality Status, drivers and impacts in the Exe Estuary Catchment and implications for ecosystem health and services, including Shellfish Aquaculture.

APPENDICES TO THE REPORT

http://hdl.handle.net/10871/131805 Published 2022

A. Ross Brown^a; Donna Carless^a; Ben Jackson^a Ian Townsend^b; Nick Paling^b; Charles R. Tyler^a

a. University of Exeter, College of Life and Environmental Sciences, Stocker Road, Exeter, Devon, EX44QD.

b. Westcountry Rivers Trust, Rain-Charm House, Kyl Cober Parc, Stoke Climsland, Callington, Cornwall, PL17 8PH.

Contents

1	Legal framework for the protection of water quality in the UK2
2	Wetland types and areas in the Exe Estuary11
3	WFD operational catchments and water bodies in the Exe Estuary catchment12
4	Water courses entering the Exe Estuary and Lyme Bay West13
5	WFD classification
6 (GES	Marine Strategy Framework Directive qualitative descriptors of Good Environmental Status
7	Assessment criteria for PAHs, PCBs and trace metals in mussels and oysters
8	Pesticides highlighted to present a risk to the Exe catchment Surface Water Safeguard Zone19
9 Pyne	South West Water monitoring data indicating the quality of raw water taken in at Allers and es Water Treatment Works (2010-2020)
10	The use of bivalve shellfish to bio-remediate water quality in the Exe Estuary23
11 Estu	Consented continuous sewage discharges contained within the Exe Estuary catchment, Exe ary and Lyme Bay West
12 Estu	Consented intermittent sewage discharges contained within the Exe Estuary catchment, Exe ary and Lyme Bay West
13 Wes	Spill frequencies and durations for intermittent discharges into the Exe Estuary and Lyme Bay t in 2020
14	Estimated mean levels of pathogens in fresh farmyard manure and slurry
15	The Storm Overflow Assessment Framework (SOAF)
16	Catchment Sensitive Farming (CSF) Priority Catchments in SW England
17	Twenty most heavily applied pesticides in the South West Water Ltd. region in 201140
18	Dissolved oxygen standards required by the EC Shellfish and Bathing Water Directives41
19 Irela	Guidance: Sewage sludge in agriculture: code of practice for England, Wales and Northern nd 42
<i>20</i> 2010	Pharmaceutical concentrations in effluent from Countess Weir Sewage Treatment Works in 0/1144
21 and	Pharmaceutical, veterinary medicine (and other contaminant) concentrations in the River Exe Exe Estuary in June 202045
22 for e	Prioritisation of veterinary medicines – compounds considered to have the greatest potential environmental impact (Group 1)

NOTE: Section numbering refers to that in the accompanying full report.

1 Legal framework for the protection of water quality in the UK

1.1: Water Framework Directive

The Water Framework Directive (WFD) interlinks or subsumes several 'daughter' Directives and Regulations. These include the Drinking Water Directive (98/83/EC), Groundwater Directive (2006/118/EC), Urban Waste Water Treatment Directive (91/271/EEC), Sewage Sludge (use in agriculture) Directive (86/278/EEC), Bathing Water Directive (2006/7/EC), Ecological Quality Standards Directive (2008/105/EC), Freshwater Fish Directive (78/659/EEC) and the Shellfish Waters Directive (79/923/EEC).

The objective of the WFD is to achieve by 2027 at least 'Good' ecological status for all surface waters, freshwater rivers and lakes, transitional waters (estuaries), coastal waters up to 1 nautical mile offshore, or 'High' ecological status for internationally important protected conservation areas such as the Exe Estuary (Section 3.2). Assessment of ecological status is based on a number of biological quality elements supported by physical and chemical quality elements (outlined in more detail in Section 4). Under the WFD, chemical status is assessed up to 12 nautical miles offshore (overlapping with the Marine Strategy Framework Directive (see below).

Measures for improving water quality are designed and implemented via regional River Basin Management Plans (RBMPs). The South West RBMP covers the South West River Basin District, which extends from Lands End to the Isle of Wight and to Weston-super-Mare (Environment Agency, 2020). RBMPs focus in particular on water bodies that need special protection from potentially harmful activities (e.g. municipal, agricultural and industrial activities) due to their specific designated uses, including nature conservation, drinking water abstraction, bathing, fisheries and shellfish production (see **below**).

1.2: Marine Strategy Framework Directive

The Marine Strategy Framework Directive (MSFD - 2008/56/EC) assesses and protects the environmental status of marine waters from the high water spring tide mark up to the outer limit of the UK's Exclusive Economic Zone (EEZ). The Directive requires that Good Environmental Status (GES) is achieved in marine waters by 2020 and sets out eleven qualitative descriptors which describe what the environment will look like when GES has been achieved (**Appendix 1**). Descriptor 5 requires nutrient pollution and excess algal growth (eutrophication) to be minimised, while Descriptors 8 and 9 refer to ensuring that concentrations of contaminants cause no adverse effects in marine organisms or in humans who consume seafood.

The MSFD is enacted in the UK by the Marine and Coastal Access Act (2009) and in Lyme Bay by the South Marine Plan. This Marine Plan has the prime objective (1) "To encourage effective use of space to support existing, and future sustainable economic activity through co-existence, mitigation of conflicts and minimisation of development footprints." Objective (11) is "To complement and contribute to the achievement or maintenance of Good Ecological Status or Potential under the Water Framework Directive and Good Environmental Status under the Marine Strategy Framework Directive." (HM Government, 2018a).

1.3: Shellfish water protected areas

There are 96 designated shellfish water protected areas in England and 32 (on third) of these are located within the South West River Basin District (Environment Agency, 2020), including five in the Exe estuary and three in adjoining coastal waters in Lyme Bay (West) (Section 4.4). Shellfish Water Protected Areas (England and Wales) Directions 2016 require that 75% of shellfish samples taken within any 12 month period from all UK shellfish waters should contain \leq 300 *E. coli* /100 mL in shellfish flesh and intravalvular fluid (HM Government, 2016). However, the classification of shellfish waters is ultimately determined by EU food hygiene regulation (EC) No. 854/2004 (European Council, 2004a) requiring Official Control monitoring of *E. coli* in shellfish against a series of classification limits (A, B and C – Appendix 1 Table 1). Classifications determine whether or not shellfish are safe to eat, or if they require purging (depuration) before consumption (and EU export) (Section 4.4).

Appendix 1 Table 1: Classification of shellfish waters based on faecal indicator organism (FIO) counts
in bivalve shellfish (minimum of 10 samples required per year for Class A; 8 samples for Class B & C)

Class	<i>E. coli</i> mean probable number /100g shellfish flesh	Treatment required
A	\leq 230 (80% of sample results) < 700 (100% of sample results)	May go direct for human consumption
В	\leq 4600 (90% of sample results) < 46000 (100% of sample results)	Must be depurated, heat treated or relaid to meet Class A
С	\leq 46000 (100% of sample results)	Must be laid for at least 2 months, followed where necessary by treatment in a Purification Centre to meet Class A requirements
Р	> 46000	Prohibited from production or collection

Food Hygiene Regulation (EC) No 1881/2006 also sets maximum permitted levels of chemical contaminants in bivalve shellfish to safeguard human consumers (**Section 4.3**).

1.4: Freshwater fish protected areas

There are 954 Freshwater Fish Waters in the SW River Basin District (Environment Agency, 2009). The objective for freshwater fish waters designated under the Freshwater Fish Directive (78/659/EEC), prior to the Water Framework Directive, is to protect or improve the quality of running or standing freshwaters to enable them to support indigenous fish species or species which are desirable for water management purposes. Water quality standards for freshwater fish (including sensitive salmonid fish and less sensitive cyprinid fish) are laid out in the Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015 (HM Government, 2015). Standards representing 'Good' water quality for salmonid fish include: dissolved oxygen (≥75%); Biochemical Oxygen Demand (≤4 mg/L); acid neutralising capacity (≥75); total ammonia as nitrogen (0.2 mg/L).

1.5: Bathing water protected areas

Bathing water protected areas are those in which a large number of people (~100 people) are expected to bathe at any one time. There are 194 designated coastal bathing waters (and zero freshwater bathing waters) in the SW River Basin District. There are 29 bathing water areas in Lyme Bay West (between Dartmouth and Beer); 18 are located between Hopes Nose (Torquay) and Beer and 2 of these are located at the mouth of the Exe Estuary (**Section 4.5**). Under the UK Bathing

Water Regulations 2013 (SI:1675, enacting the EU Bathing Water Directive 2006/7/EC), waters must be tested for faecal indicator organisms (FIOs – *E. coli* and/or intestinal enterococci) at weekly intervals between 1 May and 30 September, with a minimum of 20 samples tested annually. There are three measurement criteria for each FIO, including a minimum standard, which must be met in order for a bathing area to pass and standards of Good and Excellent water quality (**Appendix 1 Table 2**). In addition to these criteria, bathing water quality is assessed based on: blue-green algal (cyanobacterial) concentrations; proliferations of macro-algae (seaweed) or marine phytoplankton; the presence of waste or any other incident that may pose a risk to bathing water quality and bathers' health.

Appendix 1 Table 2: Standards for coastal and transitional waters

Faecal Indicator Organism	Classifications based on number of colony forming units per 100 mL of water		
	"Excellent"	"Good"	"Sufficient"
Intestinal enterococci	100 ^(A)	200 ^(A)	185 ^(B)
Escherichia coli	250 ^(A)	500 ^(A)	500 ^(в)

^(A)Based upon a 95-percentile evaluation; ^(B)Based upon a 90-percentile evaluation.

1.6: Drinking water protected areas

Drinking Water Protected Areas (Surface Water) are areas in which raw water is abstracted for drinking water supplies from rivers and reservoirs. Water quality monitoring and environmental standards are set out in the Water Supply (Water Quality) Regulations 2016 (SI:2016/614, enacting the EU Drinking Water Directive). There are 120 Drinking Water Protected Areas (DrWPAs) in the SW River Basin District, including three in the Exe Estuary catchment, which cover a total area of 113.6 km² (17.3% of the Exe Estuary catchment – 655 km²) (Section 4.6). Drinking water protected areas: Exe (Barle to Culm - GB108045015050) 103.2 km²; Exe (Haddeo to Barle - GB108045015060) 3.7 km² ha; Exe (Culm to Creedy - GB108045009060) 6.9 km²; plus Budleigh Book, Dawlish Water, West Lyn River and the Bray. Drinking water from these areas is abstracted from the River Exe and treated at two water treatment works; Allers WTW located upstream of Tiverton and Pynes WTW located upstream of Exeter (SWW, 2019). Potential drinking water pollutants requiring monitoring, management/treatment are listed in **Appendix 1 Table 3** and include a wide range of agents including faecal bacteria (*E. coli* and Enterococci), nitrate, heavy metals, pesticides and aromatic hydrocarbons.

An additional area of 402 km² (61.4%) of the Exe Estuary catchment is covered by a Surface Water Safeguard Zone (SWSGZ5012) (DEFRA, 2021a). Safeguard zones are non-statutory areas identified for safeguarding 'at risk' abstractions where land use management practices and other activities can affect the quality of the untreated water. There are also a number of Ground Water Safeguard Zones in the catchment (Environment Agency, 2021c).

1.7: Nutrient sensitive areas (Nitrate Vulnerable Zones)

Nitrate Vulnerable Zones (NVZs) are defined within the Nitrates Directive (91 / 676 /EEC) and Nitrate Pollution Prevention Regulations 2015 (SI: 2015/668) as areas of land that drain into nitrate polluted waters and contributes to the pollution of those waters. Such waters i) Contain or could contain, if preventative action is not taken, nitrate concentrations > 50 mg/l; ii) are eutrophic, or become eutrophic, if preventative action is not taken. NVZs are designated by the Secretary of State under the Nitrate Regulations (England) and maps indicating the extent of these zones are compiled by the Environment Agency (2021b). There are four Nitrate Vulnerable Zones (NVZs) in the Exe main catchment, which are highlighted as being at risk from agricultural nitrate pollution: Aylesbeare stream NVZ (S535); Clyst NVZ (S536); River Weaver NVZ (S537); Mid Devon NVZ including Yeo/Creedy (S538) (**Section 4.7**).

1.8: Nature conservation protected areas

The Exe Estuary and Lyme Bay contain a number of designated shellfish production sites and European Marine Sites/ Natura 2000 Sites recognised as having international conservation importance under the Conservation of Habitats and Species (Amendment) (EU Exit) Regulations 2019 and international Conventions such as the Ramsar Convention on wetlands. These sites, collectively known as Marine Protected Areas (MPAs), have the objectives of achieving 'Maximum ecological potential (in the case of the Exe Estuary, which is heavily modified) and 'High' ecological potential (in the case of unmodified water bodies, including Lyme Bay). Currently the Exe Estuary and Lyme Bay (West) are classified as having only 'Moderate' ecological potential and 'Moderate' ecological status, respectively (**Sections 4.1 and 4.2**).

Appendix 1 Table 3: Drinking Water Protected Area water quality standards

Table A

Microbiological parameters

Part I: Directive requirements

(1)	(2)	(3)	(4)	(5)
Item	Parameters	Concentration or value (maximum)	Units of measurement	Point of compliance
1.	Enterococci	0	number/100ml	Consumers' taps
2.	Escherichia coli (E. coli)	0	number/100ml	Consumers' taps

Part II: National requirements

(1)	(2)	(3)	(4)	(5)
Item	Parameters	Concentration or value (maximum)	Units of measurement	Point of compliance
1.	Coliform bacteria	0	number/100ml	Service reservoirs ^(*) and water treatment works
2.	Escherichia coli (E. coli)	0	number/100ml	Service reservoirs and water treatment works

(*) Compliance required as to 95% of samples from each service reservoir (regulation 4(6)).

Table B

Chemical parameters

Part I: Directive requirements

(1)	(2)	(3)	(4)	(5)
Item	Parameters	Concentration or value (maximum)	Units of measurement	Point of compliance
1.	Acrylamide	0.10	μg/1	(i)
2.	Antimony	5.0	µgSb/1	Consumers' taps
3.	Arsenic	10	µgAs/1	Consumers' taps
4.	Benzene	1.0	μg/1	Consumers' taps
5.	Benzo(a)pyrene	0.010	μg/1	Consumers' taps
6.	Boron	1.0	mgB/1	Consumers' taps
7.	Bromate	10	µgBrO3/1	Consumers' taps
8.	Cadmium	5.0	µgCd/1	Consumers' taps
9.	Chromium	50	µgCr/1	Consumers' taps
10.	Copper	2.0	mgCu/1	Consumers' taps

11.	Cyanide	50	μgCN/1	Consumers' taps
12.	1, 2 dichloroethane	3.0	μg/1	Consumers' taps
13.	Epichlorohydrin	0.10	μg/1	(i)
14.	Fluoride	1.5	mgF/1	Consumers' taps
15.	Lead	10	μgPb/1	Consumers' taps
16.	Mercury	1.0	µgHg/1	Consumers' taps
17.	Nickel	20	µgNi/1	Consumers' taps
18.	Nitrate ⁽ⁱⁱ⁾	50	mgNO3/1	Consumers' taps
19.	Nitrite ⁽ⁱⁱ⁾	0.50	mgNO2/1	Consumers' taps
		0.10		Treatment works
20.	Pesticides(iii) (iv)	0.030	μg/1	Consumers' taps
	Aldrin			
	Dieldrin	0.030	µg1	Consumer's taps
	Heptachlor			
	Heptachlor epoxide			
	Other pesticides	0.10	μg/l	Consumers' taps
21.	Pesticides: total ^(v)	0.50	μg/1	Consumers' taps
22.	Polycyclic aromatic	0.10	μg/1	Consumers' taps
	hydrocarbon ^(vi)			
23.	Selenium	10	μgSe/1	Consumers' taps
24.	Tetrachloroethene and	10	μg/l	Consumers' taps
	Trichloroethene ^(vii)			
25.	Trihalomethanes:	100	μg/1	Consumers' taps
	Total ^(viii)			(2)
26.	Vinyl chloride	0.50	_μg/1	(i)

⁽ⁱ⁾ The parametric value refers to the residual monomer concentration in the water as calculated according to specifications of the maximum release from the corresponding polymer in contact with the water. This is controlled by product specification.

(ii) See also regulation 4(2)(d).

(iii) See the definition of "pesticides and related products" in regulation 2.

^(iv) The parametric value applies to each individual pesticide.

 $^{(v)}$ "Pesticides: total" means the sum of the concentrations of the individual pesticides detected and quantified in the monitoring procedure.

(vi) The specified compounds are-

- benzo(b)fluoranthene;
- benzo(k)fluoranthene;
- benzo(ghi)perylene;
- indeno(1,2,3-cd)pyrene.

The parametric value applies to the sum of the concentrations of the individual compounds detected and quantified in the monitoring process.

^(vii) The parametric value applies to the sum of the concentrations of the individual compounds detected and quantified in the monitoring process.

(viii) The specified compounds are-

- chloroform;
- bromoform;
- dibromochloromethane;
- bromodichloromethane

(1)	(2)	(3)	(4)	(5)
Item	Parameters	Concentration or value (maximum)	Units of measurement	Point of compliance
1.	Aluminium	200	μgA1/1	Consumers' taps
2.	Colour	20	mg/1 Pt/Co	Consumers' taps
3.	Iron	200	µgFe/1	Consumers' taps
4.	Manganese	50	µgMn/1	Consumers' taps
5.	Odour	Acceptable to consumers and no abnormal change		Consumers' taps
6.	Sodium	200	mgNa/1	Consumers' taps
7.	Taste	Acceptable to consumers and no abnormal change	-	Consumers' taps
8.	Tetrachloromethane	3	μg/1	Consumers' taps
9.	Turbidity	4	NTU	Consumers' taps

Part II: National requirements

SCHEDULE 2

Regulation 2

Indicator parameters

(1)	(2)	(3)	(4)	(5)
Item	Parameters	Specification concentration or value (maximum unless otherwise stated) or state	Units of measurement	Point of compliance
1.	Ammonium	0.50	mgNH4/1	Consumers' taps
2.	Chloride ⁽ⁱ⁾	250	mgC1/	Supply point(*)
3.	Clostridium Perfringens (including spores)	0	Number/100ml	Supply point ^(*)
4.	Coliform bacteria	0	Number/100ml	Consumers' taps
5.	Colony counts	No abnormal change	Number/1ml at 22°C	Consumers' taps, service reservoirs and treatment works
6.	Conductivity ⁽ⁱ⁾	2500	μS/cm at 20°C	Supply point(*)
7.	Hydrogen ion	9.5 (maximum) 6.5 (minimum)	pH value	Consumers' taps
8.	Indicative dose ⁽ⁱⁱ⁾ (a) gross alpha	0.10 0.1	mSv Bq/1	Supply point ^(*) Supply point ^(*)
	(b) gross beta	1	Bq/1	Supply point(*)
9.	Radon ⁽ⁱⁱⁱ⁾	100	Bq/1	Supply point

11.	Total organic carbon (TOC)	No abnormal change	mgC/l	Supply point
12.	Tritium (for radioactivity) ^(iv)	100	Bq/l	Supply point ^(*)
13.	Turbidity	1	NTU	Treatment works
⁽ⁱ⁾ The w	ater should not be agores	sive		

⁽¹⁾ The water should not be aggressive.

⁽ⁱⁱ⁾ Where treatment to reduce the level of radionuclides in water intended for human consumption has been taken, monitoring must be carried out to ensure the continued efficacy of the treatment.

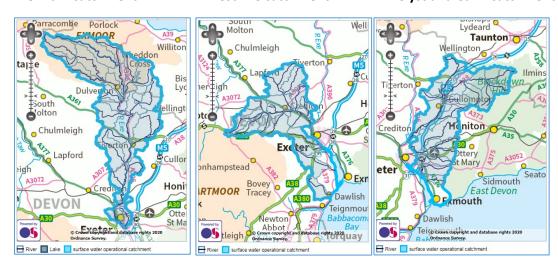
⁽ⁱⁱⁱ⁾ Remedial action may be taken by the Secretary of State on radiological protection grounds without further consideration and deemed to be justified where radon concentrates exceed 1,000 Bq/1.

^(iv) If tritium concentration exceeds its parametric value, an investigation (which may include analysis) of the presence of artificial radionuclides is required.

^(*) May be monitored from samples of water leaving treatment works or other supply point, as no significant change during distribution.

2 Wetland types and areas in the Exe Estuary

Data from JNCC (2008).


Code	Wetland	Area (%)	Area (km2)
F	Estuary water (low tide)	32.5	7.62
G	Intertidal sand/mudflats	32.5	7.62
Тр	Freshwater marsh/pools	10	2.35
E	Sand/shingle shores/dunes	10	2.35
9	Canals and drainage channels	5	1.17
Н	Saltmarsh	5	1.17
В	Intertidal seagrass	5	1.17

3 WFD operational catchments and water bodies in the Exe Estuary catchment

Exe Main catchment

West Exe catchment

Clyst and Culm catchment

Waterbodies

Exe Main	Creedy and West Exe	Clyst and Culm
Ben Brook	Alphin Brook	Aylesbeare Stream
Brockey River	Colebrook	Bolham River
Burn (Exe)	Culvery River	Ford Stream (EXE)
Calverleigh Stream	Dawlish Water	Fulford Water
Danes Brook	Ford Brook (EXE)	Grindle Brook
Dart (Exe)	Holly Water	Halberton Stream
Exe (Barle to Culm)	Jackmoor Brook	Ken Stream
Exe (Creedy to Estuary)	Kenn	Lower Clyst
Exe (Culm to Creedy)	Lower Creedy	Lower Cranny Brook
Exe (Haddeo to Barle)	Lower Yeo (Creedy)	Lower Culm
Exe (Quarme to Haddeo)	Matford Brook	Madford River
Exe (Source to Quarme)	Middle Creedy	Middle Culm
Iron Mill Stream	Shobrooke Lake	Polly Brook
Lower Barle	Troney	Sheldon Stream
Lower Batherm	Upper Creedy	Spratford Stream
Lower River Haddeo	Upper Yeo (Creedy)	Upper Clyst
Lowman		Upper Cranny Brook
Middle Barle		Upper Culm
North Brook (East Devon)		Weaver
Pinkery Pond		
Pulham		
Quarme		
Sherdon Water		
Upper Barle		
Upper Batherm		
Upper River Haddeo		
Wimbleball Lake		

4 Water courses entering the Exe Estuary and Lyme Bay West

Unconstrained confluences with the Exe Estuary

• Withycombe Brook (Exe (tidal) GB108045008950) – terminating in a heavily engineered open-topped concrete culvert structure located in Exmouth.

• Polly Brook (GB108045008980) - Confluence is at Exton, where the river passes in two channels, one through a bridge structure and one through a culvert.

• Grindle Brook (GB108045008710) – Confluence with the Clyst in Clyst St Mary.

• North Brook (GB108045009050) – Confluence with the Exe at Countess Wear.

Tidally regulated confluences with the Exe Estuary

• River Exe – confluence at Tews Weir.

• Wotton Brook (Exe (tidal) GB108045008960) – Confluence with the Exe Estuary at Lympstone.

• Exe (GB108045009040) – Flows over St James Weir between Countess Wear and Exminster Marshes and Powderham Banks.

• Alphin Brook (GB108045009020) - Enters the Exe Estuary between Exminster Marshes and

Powderham Banks via a siphon under the Exeter Ship Canal which takes all flow under nonflood conditions. Under flood flows, an overflow weir spills into a flood storage area associated with Exminster Marshes.

• Exeter Ship Canal (GB70810015) – Connects with the Exe Estuary at Turf locks between Exminster Marshes and Powderham Bank. The canal is part of the Exe Estuary SSSI designation, including habitats within and outwith the embankments.

• Berry Brook and Main Drain drainage system (GB108045008990) - Enters the Exe Estuary at Turf locks between Exminster Marshes and Powderham Banks, via an undershot sluice adjacent to the entrance to the ship canal.

• River Kenn ((Exe (tidal) - rises in the Haldon Hills and enters the estuary through a tidal gate between Starcross and Powderham.

• Staplake Brook (Exe (tidal) GB108045008930) - Enters the Exe Estuary at Starcross via a flapped outfall on a culvert under the coast road and railway.

• Cockwood Marsh (Exe (tidal) GB108045008920) – Enters the Exe Estuary at Starcross.

The river water body is regulated by a tidal flap under Church Lane on the western side of the harbour. • Shutterton Brook (Exe (tidal) GB108045008900) – Confluence is with the Exe Estuary at Dawlish Warren.

5 WFD classification

5.1: Classification of surface water bodies in the South West River Basin District (14 September 2021)

https://environment.data.gov.uk/catchment-planning/RiverBasinDistrict/8/objectives Results for WFD tranche 3 (2027) are not yet available, data in grey are predicted data.

WFD tranches	Ecological status/potential of water bodies (WBs)					
	Bad	<mark>Poor</mark>	<mark>Moderate</mark>	Good	High	Total WBs
1) WBs by 2015	5	8	62	160	2	237
2) WBs by 2021	0	0	10	44	0	54
3) WBs by 2027	0	1	13	392	0	406
Total WBs	5	9	85	596	2	697

5.2: Classification of ecological status of surface water bodies in operational catchments (associated with the Exe Estuary) in the East Devon Management Catchment (14 September 2021) https://environment.data.gov.uk/catchment-planning/ManagementCatchment/3033

Note *Exe main operational catchment includes 26 river reaches and Wimbleball Lake.

Several water bodies in the Exe Estuary catchment, are heavily modified (hyro-morphologically) and must fulfil 'Good ecological potential'. The Exe Estuary is also heavily modified, and as a European Marine Site/ Natura 2000 Site of conservation importance, it must achieve 'Maximum ecological potential'

Operational	Ecologica	Ecological status/potential of water bodies (WBs)				
catchment	Bad	Poor	<mark>Moderate</mark>	Good	High	Total WBs
Clyst & Culm	1	6	12	0	0	19
Creedy & West Exe	1	5	8	2	0	16
Exe main*	0	1	16	10	0	27
Exe Estuary	0	0	1	0	0	1
Lyme Bay (West)	0	0	1	0	0	1

5.3) Classification of chemical quality status of surface water bodies in operational catchments (associated with the Exe Estuary) in the East Devon Management Catchment (14 September 2021) https://environment.data.gov.uk/catchment-planning/ManagementCatchment/3033

Onemational	Chemical s	Chemical status of water bodies (WBs)					
Operational catchment	Fail	Good	Common RNAG	Additional RNAG	Total WBs		
Clyst & Culm	19	0	a, b		19		
Creedy & West Exe	16	0	a, b		16		
Exe main	27	0	a, b	С	27		
Exe Estuary	1	0	a, b	С	1		
Lyme Bay (West)	1	0	a, b		1		

Reasons for not achieving good (RNAG) chemical status include: exceedance of Environmental Quality Standards (EQS_{biota}) for: a) poly-brominated diphenyl ethers (PBDEs) EQS_{biota} = $0.0085 \mu g/kg$; b)

mercury and its compounds $EQS_{biota} = 20 \ \mu g/kg$. Chemicals a) and b) have recently been detected up to $2500 \times$ the EQS_{biota} for PBDEs and up to $10 \times$ the EQS_{biota} in signal crayfish (*Pacifastacus leniusculus*) in freshwaters and/or blue mussels (*Mytilus edulis*) in transitional and coastal waters in the UK (Environment Agency, 2019a; 2019b; 2021a). Sources of these chemicals are largely atmospheric pollution. Additional reasons for not achieving good (RNAG) chemical status, for named water bodies in the Exe Estuary catchment include: c) Benzo(g-h-i)perylene (in Lower Batherm in Exe Main catchment and Exe Estuary). These chemicals a, b and c are priority hazardous substances listed under the WFD (Environment Agency, 2021b).

6 Marine Strategy Framework Directive qualitative descriptors of Good Environmental Status (GES)

Descriptors (water quality related descriptors are underlined)

Descriptor 1. Biodiversity is maintained

Descriptor 2. Non-indigenous species do not adversely alter the ecosystem

Descriptor 3. The population of commercial fish species is healthy

Descriptor 4. Elements of food webs ensure long-term abundance and reproduction

Descriptor 5. Eutrophication is minimised

Descriptor 6. The sea floor integrity ensures functioning of the ecosystem

Descriptor 7. Permanent alteration of hydrographical conditions does not adversely affect the ecosystem

Descriptor 8. Concentrations of contaminants give no effects

Descriptor 9. Contaminants in seafood are below safe levels

Descriptor 10. Marine litter does not cause harm

Descriptor 11. Introduction of energy (including underwater noise) does not adversely affect the ecosystem

Contaminant concentrations:

Environmental Assessment Criteria are stipulated by the Oslo Paris Commission (OSPAR); Maximum Permitted Levels of specified contaminants in fish and other seafood caught or harvested for human consumption are stipulated by Regulation (EC) No 1881/2006.

- Metals in biota
- Metals in sediment
- Poly Chlorinated Biphenyls (PCBs) in biota
- PCBs in Sediment
- Poly Aromatic Hydrocarbons (PAH) in biota
- PAH in sediment
- Poly Brominated Diphenyl Ethers (PBDEs) in biota
- PBDEs in sediment
- Radionuclides
- Metals from water and air
- contaminants in coastal waters
- specific pollutants

Biological effects

- Imposex in dogwhelks
- Micronucleus test
- EROD activity
- Bile metabolites
- Liver neoplasm
- Fish disease

7 Assessment criteria for PAHs, PCBs and trace metals in mussels and oysters

From OSPAR (2009):

For poly- chlorinated biphenyls (poly- CBs), OSPAR Environmental Assessment Criteria (EACs - intended to provide the green/red transition point) were estimated from sediment EACs and biota sediment accumulation factors (BSAF). Purple shaded cell are where EACs were not recommended for use by ICES (CBs) or are below the Low Concentration (LC). EC - Commission Regulation No 1881/2006 sets maximum concentration for contaminants in foodstuffs to protect public health. EACpassive - calculated on the basis of BSAFs and sediment EACs.

Compound	LC	BAC	EAC	EC	EACpassive	
	(unline day	(united and	((unline day	(under des	
	(µg/kg dry	(µg/kg dry	(µg/kg	(µg/kg dry	(µg/kg dry	
	weight)	weight) (T ₀)	dry weight)	weight) (T1)	weight) (T1)	
		(10)	(T ₁)	(1)	(1)	
PAHs						
Naphthalene		81.2 ^b	340			
Phenanthrene	4.0 ^a	12.6 ^b	1700			
Anthracene		2.7 ^b	290			
Fluoranthene	5.5 [*]	11.2 ^b	110			
Pyrene	4.0ª	10.1 ^b	100			
Benzo[bj]fluoranthene	3.0*	ь				
Benzo[k]fluoranthene	1.0*	ь	260			
Benzo[a]anthracene	1.0 ^a	3.6 ^b	80			
Chrysene	4.0ª	21.8 ^b				
Benzo[e]pyrene	2.5 [*]	ь				
Benzo[a]pyrene	0.5*	2.1 ^b	600	50 (10 ww ^h X 5)		
Benzo[ghi]perylene	1.5*	7.2 ^b	110			
Indeno[1,2,3-	1.0ª	5.5 ^b				
cd]pyrene						
C1-Phenanthrene/	7.0 [*]	ь				
Anthracene						
C2-Phenanthrene/	7.0ª	ь				
Anthracene						
C3-Phenanthrene/	6.5*	ь				
Anthracene						
C1-DBT	1.0ª	ь				
C2-DBT	3.5*	ь				
C3-DBT	3.5*	ь				
Total PAH	28.0°	ь				
(11 Parent PAH)						
Total PAH	56.5 ^d	ь				
(11 Parent + alkylated						
PAH with LCs)						

		CBs	;	_	
Compound	LC (µg/kg dry	BAC (µg/kg dry	EAC (µg/kg	EC (µg/kg dry	EAC ^{passive} (µg/kg dry
	weight)	weight)	dry	weight)	weight)
		(T ₀)	weight)	(T ₁)	(T ₁)
CB28	0.25*	ь	13.5		3.2
CB52	0.25°	ь	80		5.4
CB101	0.25*	ь	5.0		6.0
CB118	0.25*	ь	1.0		1.2
CB138	0.25*	ь	100		15.8
CB153	0.25*	1.1 ^b	1790		80
CB180	0.25*	ь	26.5		24
ΣICE\$7CBs	1.0'	4.6 ^b			
	Trace me	etals (µg/kg dry	y weight) – n	nussels	
Determinand	LC	BAC	EAC	EC	EAC ^{passive}
	(µg/kg dry	(µg/kg dry	(µg/kg	(µg/kg dry	(µg/kg dry
	weight)	weight)	dry	weight)	weight)
		(T₀)	weight)	(T ₁)	(T1)
Hg	50 ⁴	140 ^h	10	2,500	
				(500 ww ⁱ x 5)	
Cd	600 ⁹	1,940 ^h	280	5000	
				(1,000 ww ¹ x 5)	
Pb	800 ^o	1,520 ^h	8,500	7,500	
	-			(1,500 ww ¹ x 5)	
		etals (µg/kg dr	y weight) – o		
Hg	100 ¹			2,500	
Cd	1,800	k		5,000	-
PB	800 ⁱ	•		7,500	

alow concentrations (LC) proposed at MCWG 2008 from the 10th percentile of datasets (Scotland, Spain and France)

bBackground Assessment Concentrations (BACs) used in the 2005/6 MON assessment to be defined/re-defined for updated BCs or LCs

cincludes 8 of the 9 parent CEMP PAHs, benzo[*bj*]fluoranthene, benzo[*k*]fluoranthene and benzo[*e*]pyrene.

dincludes 11 parent PAHs and selected alkylated PAHs. LCs were not proposed for anthracene or naphthalene nor for the alkylated naphthalenes due to a high proportion of samples in the datasets for which the values were below the limits of quantification for these PAHs

eLC = 2 x QUASIMEME constant error

fLC = 8 x QUASIMEME constant error

 $_{\rm g} {\rm low}$ concentrations (LC) proposed at ICES MCWG 2008, median of regional medians

hBACs used in 2006/7 MON assessment to be redefined for new LCs

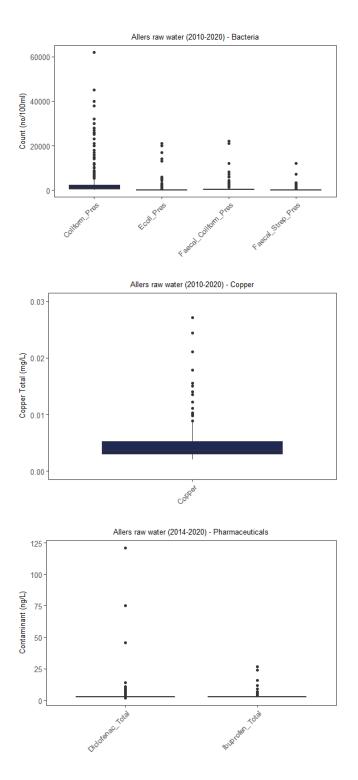
ww, wet weight

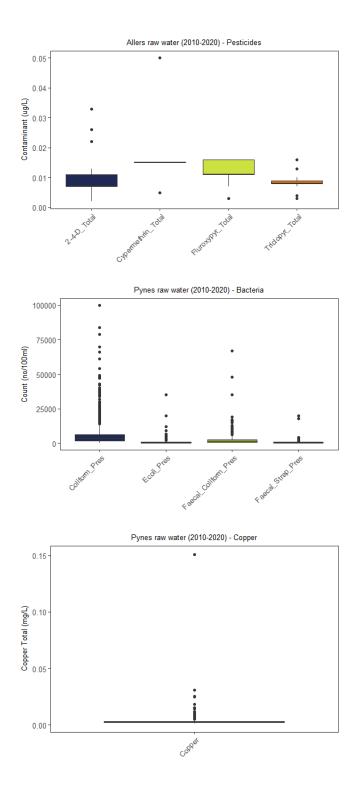
 $_{\rm j}$ calculated using conversion factors proposed at ASMO 08 by France(3) $_{\rm k}$ To be calculated

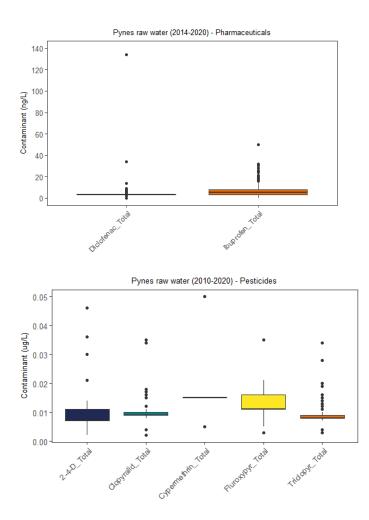
8 Pesticides highlighted to present a risk to the Exe catchment Surface Water Safeguard Zone

and physical-chemical properties underlying their potential to leach from agricultural land

Soil adsorption coefficient (K_f) is the ratio between the amount of pesticide which is adsorbed (bound) to soil particles divided by the amount which is dissolved and mobile in soil pore water.


EC50 is effective concentration causing 50% reduction in growth of freshwater algae (sensitive species) * EC50 for invertebrates for the slug killer metaldehyde is >78.4 μ g/L

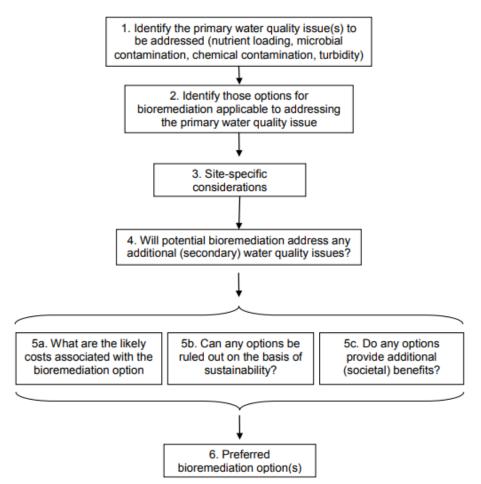

The maximum allowable concentration for Mecoprop in saltwater is 1.7 μ g/L (Environmental Quality Standard based on saltwater algae).


LC50 is lethal concentration (oral dose) causing 50% mortality in mammals (indication of human toxicity)

Pesticide	Туре	Water	Soil	Degradability	Toxicity to	Toxicity to
		solubility	adsorption	(half-life in	freshwater	mammals
		@ 20 °C	coefficient	field soil in	algae (EC50 in	(LC50 in
		(mg/L)	(K _f)	days)	μg/L)	μg/L)
Chlorotoluron	Herbicide	76	1.3	12.5	82	>10000
MCPA	Herbicide	29390	0.94	25	79.8	962
Mecoprop	Herbicide	250000	1.54	21	16.2	431
Triclopyr	Herbicide	8100	1.02	30	181	630
Metaldehyde	Molluscicide	188	0.69	5.1	75.9*	283

South West Water monitoring data indicating the quality of raw water taken in at Allers and Pynes Water Treatment Works (2010-2020)

10 The use of bivalve shellfish to bio-remediate water quality in the


Exe Estuary

– worked example from MMO Project No: 1105 on Environmental remediation in South Marine Plan Areas (MMO, 2016)

The Exe Estuary has multiple water quality issues:

- The Exe estuary has a well-documented problem with microbial contamination of shellfish.
- The estuary also fails to meet Water Framework Directive standards based on chemical status.
- The catchment area is a Nitrate Vulnerable Zone, and although not a designated eutrophication sensitive area, inorganic nutrient concentrations are too high at present to allow a good status classification under the WFD. A rapidly increasing human population in the catchment could further increase nutrient inputs in the next 20 years.
- High turbidity (as well as nutrient concentrations) is also a potential threat to health of existing intertidal and subtidal seagrass populations. However, it is of note that turbidity may be a limiting factor on the use of the nutrients by the phytoplankton and reducing it may increase the sensitivity of the waters to further eutrophic symptoms.
- Water quality managers have to be aware of potentially conflicting issues, so that solving one problem does not increase another.

The process of selecting the most suitable bioremediation option for a given site follows the steps outlined in the figure below.

Step 1: The Exe requires bioremediation for all of the main water quality issues highlighted (bulleted) above, but the primary issue of concern is judged to be microbial contamination due to the economic value of the shellfish industry at this location. Limiting factors in the Exe estuary for remediation techniques are the lack of available space (< 20 km2) and multiple uses by other sectors such as recreation (Exe Estuary Management Partnership, 2014b). However, paradoxically the remediation of the microbial contamination would increase that recreation use. Identification of microbial contamination input sources followed by hydrodynamic modelling would be necessary to identify the best possible locations for a bioremediation facility to be installed.

Step 2: South marine plan policies give clear guidance that proposals or activities which can deliver an improvement to estuarine water quality (policy S-WQ3b) will be supported by marine planning. Policy S-BIO-7c is more specific and indicates that water filtration, nutrient reduction and chemical sequestration ecosystem service will be supported. Following this direction, the Exe Estuary Management Partnership and all relevant agencies would review the most suitable bioremediation technology. <u>The most effective reduction in microbial loading is via bio-filtration, with rope-grown</u> <u>mussels (*Mytilus edulis*) having the highest efficiency (and therefore requiring least area).</u>

Step 3: Rope-grown mussels would also have the secondary effect of reducing the nutrient load of the Exe Estuary and surrounding waters (noting that locally, in the vicinity of the farm, that metabolically-released ammonia may cause seawater concentrations to be elevated to levels above ambient). It is possible that the chemicals in breach of Environmental Quality Standards may also be removed by bioaccumulation in mussel tissue; this would require further research and modelling of contaminant sources with respect to water flows. Turbidity would probably be reduced in the vicinity of the farm due to phytoplankton consumption and trapping of sediment particles in pseudofaeces. However, rope-grown systems require a water depth of more than 10 m, and this condition severely limits the number of suitable locations in the Exe itself. The next most suitable bioremediation option could be the bottom culture of mussels or oysters (*Ostrea edulis* or *Magallana gigas*, which although less efficient than a rope-grown system, would still have significant biofiltration capacity.

Step 4: The suitability of establishing bottom cultures of bivalves can then be compared with the other drivers: cost, sustainability, societal benefits and conflicts with other marine policies. Draft marine policies have been proposed to regulate the interaction of static objects in the water with recreational boating (S-TR-2c), and to avoid adversely influencing tourism or recreational activities (S-TR-2d). The relative weighting of each driver would become apparent during, for example, stakeholder consultation meetings. Bottom cultivation of all three species is rated as low-to-moderately expensive, with native oyster (*Ostrea edulis*) cultivation scoring high for sustainability, and equal with mussels for additional societal benefits. In this case, the selection of a bioremediation option which, after GIS mapping of constraints in the estuary, could offer a sustainable solution and a wide range of additional benefits to society (e.g. reef-forming habitat, fish nursery function and waste burial).

11 Consented continuous sewage discharges contained within the Exe Estuary catchment, Exe Estuary and Lyme Bay West

			Dry weather flow
Treatment works	NGR	Treatment	(m3 day-1)
ALLER GROVE STW	SY0529096950	BIOLOGICAL FILTRATION	9
ASHILL STW	ST0860011900	Unspecified	Unspecified
AYLESBEARE STW	SY0358091860	BIOLOGICAL FILTRATION	103
BAMPTON WWTW	SS9541021790	BIOLOGICAL FILTRATION	230
BICKLEIGH STW	SS9385007300	Unspecified	Unspecified
BRAMPFORD SPEKE STW	SX9314097070	BIOLOGICAL FILTRATION	104.54
BRIDGETOWN WWTW	SS9230033230	BIOLOGICAL FILTRATION	Unspecified
BROMPTON REGIS STW	SS9553031200	Unspecified	Unspecified
BRUSHFORD WWTW	SS9267025860	BIOLOGICAL FILTRATION	124
BUCKLAND STW	SX9606071430	BIOLOGICAL FILTRATION	21818
BURLESCOMBE WWTW	ST0653016970	BIOLOGICAL FILTRATION	155
BUTTERLEIGH STW	SS9740007750	Unspecified	Unspecified
CADBURY CROSS STW	SS9065005050	Unspecified	Unspecified
CADELEIGH STW	SS9153008120	Unspecified	Unspecified
CHERITON BISHOP STW	SX7757093550	BIOLOGICAL FILTRATION	144
CHERITON FITZPAINE WWTW	SS8576006130	BIOLOGICAL FILTRATION	115
CLYST HYDON STW	ST0367001620	BIOLOGICAL FILTRATION	7.13
COWLEY BRIDGE STW	SX9064095420	Unspecified	Unspecified
CULLOMPTON WWTW	ST0216006080	BIOLOGICAL FILTRATION	2955
CULMSTOCK STW	ST0992013680	BIOLOGICAL FILTRATION	118
DAWLISH STW	SX9742076470	UV DISINFECTION	4856
DULFORD STW	ST0685005950	Unspecified	Unspecified
DULVERTON SEPTIC TANK	SS9133027640	SEPTIC TANK	Unspecified
DULVERTON WWTW	SS9172027190	BIOLOGICAL FILTRATION	468
DUNKESWELL STW	ST1519008580	BIOLOGICAL FILTRATION/ REED BED	314
EXETER COUNTESS WEIR STW	SX9497089050	UV DISINFECTION	40486
EXFORD STW	SS8567038160	BIOLOGICAL FILTRATION	120
EXMOUTH STW	SY0379079190	UV DISINFECTION	11825
FORETOWN STW	ST0315000010	BIOLOGICAL FILTRATION	4.8
HALBERTON STW	ST0113012320	BIOLOGICAL FILTRATION	208
HELE WHITEWAYS STW	SS9955002050	Unspecified	Unspecified
HELE VILLAGE STW	SS9935002350	Unspecified	Unspecified
HEMYOCK WWTW	ST1339013880	ACTIVATED SLUDGE	446
HOCKWORTHY STW	ST0290020270	BIOLOGICAL FILTRATION	Unspecified
HOLCOMBE ROGUS WWTW	ST0639017980	BIOLOGICAL FILTRATION	119
HUNTSHAM STW	ST0045020350	50 Unspecified Un	
KENN & KENNFORD STW	SX9276085270	BIOLOGICAL FILTRATION	262
KENTON & STARCROSS	SX9748283180	UV DISINFECTION	1750
KERSWELL STW	ST0782006330	BIOLOGICAL FILTRATION	Unspecified

Treatment works	NGR	Treatment	Dry weather flow (m3 day-1)	
KNOWLE STW	SS7831001590	Unspecified	Unspecified	
LORDS MEADOW WWTW	SX8572099120	CHEMICAL-PHOSPHATE STRIPPING	4100	
MAMHEAD STW	SX9340080350	Unspecified	Unspecified	
MARSH GREEN WWTW	SY0419093810	REEDBED	28	
MOREBATH STW	SS9535024770	Unspecified	Unspecified	
NEWBUILDINGS STW	SS7950003500	Unspecified	Unspecified	
NEWTON ST CYRES STW	SX8885098140	ACTIVATED SLUDGE	300	
NORTH BOVEY STW	SX7452093750	Unspecified	Unspecified	
OAKFORD STW	SS9113021420	Unspecified	Unspecified	
OAKLEIGH WWTW	ST1209008480	BIOLOGICAL FILTRATION	Unspecified	
OLDWAY END STW	SS8690024950	Unspecified	Unspecified	
OTTERTON STW	SY0923084090	UV DISINFECTION	1643	
PENNYMOOR STW	SS8646011670	BIOLOGICAL FILTRATION	34	
PLYMTREE STW	ST0406003960	BIOLOGICAL FILTRATION	96.8	
PORT ROAD WWTW	SX9486079650	BIOLOGICAL FILTRATION	3.6	
POUGHILL STW	SS8653008290	PACKAGE TREATMENT PLANT	Unspecified	
PUDDINGTON STW	SS8360010730	Unspecified	Unspecified	
REWE WWTW	SX9455098840	TREATMENT	429	
SAMPFORD PEVERELL WWTW	ST0387013360	WWTW	296	
SANDFORD WWTW	SS8339002240	TREATMENT	118	
SHILLINGFORD ABBOT STW	SX9135088650	Unspecified	Unspecified	
SHILLINGFORD ST GEORGE	SX9075088050	Unspecified	Unspecified	
SHILLINGFORD STW	SS9794023780	Unspecified	Unspecified	
SHUTE WWTW	SS8954000080	BIOLOGICAL FILTRATION	12.3	
SIDELING CLOSE STW	SX8823087870	PACKAGE TREATMENT PLANT	13.5	
SILVERTON WWTW	SS9712001420	ACTIVATED SLUDGE	563.64	
SPREYTON STW	SX6987097530	BIOLOGICAL FILTRATION	34	
STOODLEIGH STW	SS9250019000	Unspecified	Unspecified	
TEDBURN ST MARY STW	SX8248093950	BIOLOGICAL FILTRATION	383	
THORVERTON WWTW	SS9359001680	BIOLOGICAL FILTRATION	309	
TIVERTON STW	SS9530010300	BIO-FILTRATION & CHEMICAL- PHOSPHATE STRIPPING	6900	
UFFCULME WWTW	ST0622011860	BIOLOGICAL FILTRATION	564	
UPLOWMAN STW	ST0132015270	BIOLOGICAL FILTRATION	42	
WASHFIELD STW	SS9360015300	Unspecified	Unspecified	
WHIDDON DOWN STW	SX6929092440	BIOLOGICAL FILTRATION	41	
WILLAND WWTW	ST0420010160	TREATMENT	613	
WIMBLEBALL RESERVOIR WWTW	SS9640031000	SEPTIC TANK	6.3	
WINSFORD STW	SS9110034630	BIOLOGICAL FILTRATION	84	
WOODBURY WWTW	SX9979086780	BIOLOGICAL FILTRATION	408	
BRADNINCH WWTW	ST0057003310	PRIMARY SETTLEMENT	404	
YEOFORD WWTW	SX7894098740	BIOLOGICAL FILTRATION	493	
OLD WOODBURY SALTERTON STW	SY0128089340	BIOLOGICAL FILTRATION	201	

12 Consented intermittent sewage discharges contained within the Exe Estuary catchment, Exe Estuary and Lyme Bay West

Name	Receiving Environment	NGR	Treatment (if applicable)
121A ST. KATHERINES ROAD CSO	MINCINGLAKE STREAM	SX9419093870	SCREENING
14 CLIFTON ROAD CSO	RIVER EXE VIA SWS	SX9223091880	NONE
15 HAMLIN LANE CSO	NORTH BROOK	SX9417093410	NONE
19 HEAVITREE ROAD CSO	RIVER EXE VIA SWS	SX9223091880	NONE
2 DRYDEN ROAD CSO	NORTH BROOK VIA SWS	SX9430091240	NONE
21 LOWER TOWN CSO	TRIBUTARY OF SPRATFORD STREAM	ST0328014230	NONE
21 WONFORD STREET CSO	NORTHBROOK VIA SWS	SX9429091240	NONE
23 KING EDWARD STREET CSO	RIVER EXE VIA SWS	SX9109093800	NONE
28 CLIFTON ROAD CSO	RIVER EXE VIA SWS	SX9224091880	NONE
34 CLIFTON ROAD CSO	RIVER EXE VIA SWS	SX9224091890	NONE
49 EXETER ROAD CSO	ENGLISH CHANNEL VIA SWS	SX9679077050	SCREENING
50 CASTLE PARK CSO	STREAM (S)	ST1361413585	NONE
ARGYLL ROAD PUMPING STATION	TRIBUTARY OF DURYARD STREAM	SX9212094980	FLOTATION
ASH GROVE CSO	A TRIBUTARY OF THE EXE ESTUARY	SY0003083070	NONE
AYLESBEARE STW	AYLESBEARE BROOK	SY0358091860	SCREENING
BAMPTON STREET CSO	RIVER EXE	SS9535012800	NONE
BAMPTON WWTW	RIVER BATHERM	SS9541021790	SCREENING
BARNHILL PUMPING STATION	GROUNDWATE R VIA INFILT SYSTEM	SX9273098460	NONE
BARRINGTON STREET CSO	RIVER LOWMAN	SS9577012580	SCREENING
BARTON HILL/BRUNSWICK CSO	DAWLISH WATER (S)	SX9591076670	SCREENING
BATHILL PSEO	STREAM (S)	ST0361107084	NONE
BELLE PARADE CSO	STREAM (S)	SS8448600412	NONE
BESSOM BRIDGE PUMPING STATION	WIMBLEBALL LAKE	SS9740031871	NO TREATMENT REQUIRED - GOOD ENGINEERING DESIGN

Name	Receiving	NGR	Treatment (if applicable)
	Environment		
BICKLEIGH STW	TRIB OF RIVER EXE	SS9401007000	NONE
BLUE BALL PUMPING STATION	TRIB OF RIVER	SX9686090930	NO TREATMENT REQUIRED -
	CLYST		GOOD ENGINEERING DESIGN
BONHAY PARK CSO	RIVER EXE	SX9140092310	SCREENING
BONHAY ROAD CSO	TIDAL RIVER EXE(E)	SX9783081900	SCREENING
BOOBERY ROAD COMBINED	TRIB OF	ST0303014370	NONE
SEWER OVERFLO	SPRATFORD		
	STREAM		
BRAMPFORD SPEKE LAKE	STREAM (S)	SX9275097812	NONE
BRIDGE PSEO			
BRIDGE HOUSE CSO	RIVER EXE	SS9532012540	NONE
BRIDGETOWN WWTW PS	RIVER EXE	SS9233033200	UNSPECIFIED
BRITTON STREET PSEO	RIVER BATHERN	SS9593022131	UNSPECIFIED
BROADCLYST (SIDE) PUMPING	RIVER CLYST	SX9851097400	NO TREATMENT REQUIRED -
STATION	VALLEY VIA SWS		GOOD ENGINEERING DESIGN
BROMPTON REGIS STW	PULHAM RIVER(S)	SS9553031200	UNSPECIFIED
BROOK COTTAGE PUMPING	NADDER BROOK	SX8911093440	SCREENING
STATION			
BROOK HOUSE SSO	DAWLISH WATER	SX9544076790	SCREENING
	(S)		
BRUSHFORD WWTW	RIVER BARLE	SS9264025890	SCREENING
BUCKLAND WASTEWATER	ENGLISH CHANNEL	SX9606071430	SCREENING
TREATMENT WORKS	(COASTAL)		
BUDDLE LANE CSO	RIVER EXE VIA SWS	SX9300090670	NONE
BULLEN STREET COMBINED	TRIB OF THE RIVER	SS9259002110	NONE
SEWER OF	EXE VIA SWS		
BULLER ROAD CSO	STREAM (S)	SS8448600412	NONE
BURLESCOMBE WWTW	FENACRE WATER	ST0653016980	SCREENING
BURNTHOUSE LANE CSO	NORTHBROOK VIA SWS	SX9429091240	SCREENING
CADELEIGH STW	UNNAMED	SS9153008120	UNSPECIFIED
	WATERCOURSE(S)		
CENTRAL STATION YARD CSO	HIGHER LEAT VIA	SX9147092500	SCREENING
	SWS		
CHERITON BISHOP PSCSO/EO	FORD BROOK (S)	SX7730093000	NONE
CHERITON BISHOP STW	FORD BROOK(S)	SX7757093550	SCREENING
CHERITON FITZPAINE WWTW	TRIBUTARY OF	SS8580006150	SCREENING
	HOLLY WATER		
CHURCH LANE COMBINED	TRIB OF RIVER	SS8448000410	NONE
SEWER OVERFLOW	CREEDY VIA SWS		
CHURCH ROAD CSO	ALPHIN BROOK	SX9176090270	SCREENING
CHURCH ROAD CSO	COFTON	SX9718280629	SCREENING
	STREAM(S)		
CHURCH ROAD CSO	CRANNY BROOK	SY0416097130	SCREENING
CHURCH ROAD JCT OF CECIL	RIVER EXE VIA SWS	SX9299090670	NONE
ROAD CSO			
CHURCH STREET COMBINED	TRIB OF RIVER	SS8448000410	NONE
SEWER OVERFLOW	CREEDY (SWS)		

Name	Receiving	NGR	Treatment (if applicable)
	Environment	62000000000	NONE
CHUTE STREET CSO	RIVER EXE VIA SWS	SX9223091890	NONE
CLIFTON ROAD/JCT ALBERT ROAD CSO	RIVER EXE VIA SWS	SX9223091880	NONE
CLYST HONITON PUMPING	RIVER CLYST	SX9865093690	SCREENING
STATION	KIVER CEISI	3X3803033030	SCREENING
COACH ROAD CSO	STREAM (S)	SS9586402917	NONE
COCKWOOD PSEO	COFTON	SX9756680731	SCREENING
	STREAM(S)	5,137 5 6 6 6 6 7 5 1	
COFTON PSCSO/EO	COFTON	SX9711880605	SCREENING
	STREAM(S)		
COLLETON GROVE CSO	RIVER EXE VIA SWS	SX9223091890	NONE
CORNER LANE PUMPING	TRIBUTARY OF	ST0074012820	SCREENING
STATION	SPRATFORD		
	STREAM		
COUNCIL YARD PSCSO/EO	TRIB RIVER CREEDY	SS8447000390	NONE
	(S)		
COWLEYMOOR ESTATE CSO	TRIB OF RIVER	SS9610012990	NONE
	LOWMAN VIA SWS		
CULMSTOCK SEWAGE	RIVER CULM	ST0992013680	SCREENING
TREATMENT WORKS			
DAWLISH (ROYAL HOTEL) PS	DAWLISH	SX9636076620	NONE
	WATER(C)		
DAWLISH BREAKWATER SSO	LYME BAY (C)	SX9648076510	SCREENING
DAWLISH SSO (BROOK STREET)	DAWLISH WATER(S)	SX9567076740	SCREENING
DAWLISH WARREN ROAD PS	SHUTTERTON	SX9760478924	SCREENING
	BROOK(S)		
DAWLISH WARREN ROAD PS	SHUTTERTON	SX9760678925	SCREENING
	BROOK(S)	CV0224004880	NONE
DIX'S FIELD CSO	RIVER EXE VIA SW SEWER	SX9224091880	NONE
DUKE STREET PUMPING	CULLOMPTON MILL	ST0238006730	SCREENING
STATION	LEAT	310238000730	SCREENING
DULFORD PSCSO/EO	WEAVER (S)	ST0697005960	NONE
DULVERTON WWTW	RIVER BARLE	SS9158027280	SCREENING
DUNKESWELL PS	DUNKESWELL	ST1426007700	SCREENING
	STREAM(S)		
DUNKESWELL STW	RIVER MADFORD	ST1519008580	SCREENING
	(S)		
DUNSFORD ROAD CSO	RIVER EXE VIA SWS	SX9299090670	NONE
EBFORD PUMPING STATION	RIVER CLYST	SX9758087940	SCREENING
	(ESTUARINE)		
ELM GROVE CSO	LYME BAY (C)	SX9679077050	SCREENING
EXE BRIDGE PS	RIVER EXE(S)	SS9296024420	NONE
EXE STREET CSO	HIGHER LEAT	SX9146092510	SCREENING
EXELEIGH PSEO	RIVER EXE (E)	SX9756082430	NONE
EXETER (COUNTESS WEAR) SSO	RIVER EXE	SX9479089240	SCREENING
	ESTUARY(E)		
EXETER (COUNTESS WEAR) SSO	RIVER EXE	SX9497089050	SCREENING
	ESTUARY(E)		
EXETER BOWLING CLUB CSO	RIVER EXE VIA SWS	SX9223091890	NONE
EXETER COLLEGE CSO	HIGHER LEAT VIA	SX9147092500	SCREENING
	SW SEWER		
EXETER ROAD CSO - EXMOUTH	WITHYCOMBE	SX9997082010	SCREENING
	BROOK		

Name Receiving		NGR	Treatment (if applicable)	
	Environment	550402044.640		
EXETER ROAD PUMPING	COTTEY BROOK	SS9492011640	NO TREATMENT REQUIRED - GOOD ENGINEERING DESIGN	
STATION EXFORD STW	RIVER EXE	SS8567038160	GOOD ENGINEERING DESIGN	
EXFORD STW PSEO		SS8567038160	NONE	
EXPORD STW PSED	RIVER EXE (S) LYME BAY(C)	SY0379079190	SCREENING	
TREATMENT WORKS	LTIVIE BAT(C)	3103/90/9190	SCREENING	
EXTON NORTH PS	RIVER CLYST (ESTUARINE)	SX9769086890	SCREENING	
EXTON SOUTH PUMPING	WOODBURY	SX9809086240	SCREENING	
STATION	BROOK (ESTUARINE)			
FERRY ROAD PUMPING STATION	RIVER EXE	SX9623088140	NO TREATMENT REQUIRED - GOOD ENGINEERING DESIGN	
FIRST AVENUE SERVICE LANE CSO	NORTH BROOK VIA SWS	SX9480092300	NONE	
FOLLET ROAD CSO	RIVER EXE (E)	SX9622088140	SCREENING	
FORD BARTON PSEO	STREAM (S)	SS9132318219	NONE	
FORE STREET CSO	KNOWLE STREAM	SY0649081880	NONE	
FORGE WAY CAR PARK CSO	MILL STREAM (S)	ST0227907436	NONE	
GENERALS LANE PUMPING	S/WATER SYSTEM	SX9766081850	SCREENING	
STATION	TO EXE ESTUARY			
GOLD STREET CSO	RIVER LOWMAN	SS9576012560	NONE	
GRANARY LANE (NORTH) CSO	KERSBROOK CHANNEL	SY0711082740	SCREENING	
GRANARY LANE CSO	TRIB OF RIVER OTTER (S)	SY0718082270	NONE	
HAM LANE CSO	WOODBURY BROOK	SY0074086930	SCREENING	
HAREWOOD PSEO	SURFACE (S)	SS9680030120	NONE	
HARTOPP ROAD CSO	EXE ESTUARY	SX9996081460	SCREENING	
HAWKINGS WAY CREDITION CSO	TRIB OF RIVER CREEDY VIA SWS	SS8448000410	NONE	
HEATH CROSS PUMPING STATION	TRIB OF RIVER CLYST	SX9882096880	NO TREATMENT REQUIRED - GOOD ENGINEERING DESIGN	
HEAVITREE PLEASURE GROUND CSO	NORTH BROOK VIA SWS	SX9479092290	NONE	
HEMYOCK PSCSO/EO	RIVER CULM (S)	ST1384013930	NONE	
HEMYOCK STW PSEO	RIVER CULM (S)	ST1384013940	NONE	
HEMYOCK WASTEWATER TREATMENT WORKS	RIVER CULM	ST1339013880	SCREENING	
HESCANE PARK CSO	YEO(S)	SX7742493169	NONE	
HIGH MARSH PSEO (HALF MOON VILLAGE)	RIVER CREEDY(S)	SX8967097460	SCREENING	
HOLCOMBE PUMPING STATION	SHELL COVE, LYME BAY(C)	SX9608075340	40 SCREENING	
OLCOMBE ROGUS WWTW	TRIB OF RIVER	ST0580018240	PRIMARY SETTLEMENT	
HOLLOWAY STREET	RIVER EXE VIA SWS	SX9223091880	NONE	
HOWELL ROAD CSO	HIGHER LEAT VIA SWS	SX9146092500	SCREENING	
HUNTSHAM STW	TRIBUTARY OF RIVER LOWMAN(S)	ST0052020230	UNSPECIFIED	

Name	Receiving Environment	NGR	Treatment (if applicable)	
IMPERIAL ROAD TANK CSO	EXE ESTUARY	SX9986081110	SCREENING	
IN FIELD R/0 11 GRANTLANDS	MILL BROOK (S)	ST0653212323	NONE	
JEWSONS YARD CSO	RIVER YEO (S)	SX8474699207	NONE	
JOCKEY HILL CSO	TRIBUTARY OF IVER CREEDY	SS8448000410	NONE	
KENN AND KENNFORD PUMPING STATION	RIVER KENN	SX9275085270	SCREENING	
LANGATON LANE CSO	PIN BROOK	SX9731094130	NONE	
LARKBEARE HOUSE CSO	RIVER EXE VIA SWS	SX9223091890	NONE	
LIME KILN PSEO	KERSBROOK CHANNEL	SY0722082100	SCREENING	
LIME KILN TANK CSO	ENGLISH CHANNEL	SY0794081920	SCREENING	
LITTLE KNOWLE CSO	KNOWLE STREAM	SY0535082260	NONE	
LITTLE SILVER PUMPING STATION	RIVER LOWMAN	SS9534011980	SCREENING	
LITTLE SILVER PUMPING STATION	RIVER LOWMAN	SS9544012080	SCREENING	
LORDS MEADOW WWTW	RIVER YEO/RIVER CREEDY	SS8488000620	SCREENING	
LORDS MEADOW WWTW	RIVER YEO	SX8475099210		
LOWER AVENUE CSO	NORTH BROOK VIA SWS	SX9479092290	NONE	
LOWER MILL COMBINED SEWER OVERFLOW	RIVER BARLE	SS9125027720	NONE	
LOWER NORTH STREET CSO	HIGHER LEAT VIA SW SEWER	SX9147092500	SCREENING	
LYMPSTONE OUTFALL PUMPING STATION	RIVER EXE ESTUARY	SX9874083860	SCREENING	
MAER PUMPING STATION & TANK CSO	ENGLISH CHANNEL	SY0111079660	SCREENING	
MAER ROAD CSO EXMOUTH	LITTLEHAM BROOK	SY0107080060	SCREENING	
MAGDALEN ROAD CSO	RIVER EXE VIA SWS	SX9223091880	NONE	
MAGELAKE PS	RIVER CULM(S)	ST0703812505	NONE	
MAIN ROAD CSO	BERRY BROOK	SX9456087320	NONE	
MARINA PSEO	DAWLISH (C)	SX9712277366	NONE	
MARINE PARADE CSO	KNOWLE STREAM	SY0664081860	SCREENING	
MARSH GREEN WASTEWATER TRTMNT WORKS	FORD STREAM (S)	SY0419093810		
MEADOW ROAD TANK CSO	KNOWLE STREAM	SY0597082060	SCREENING	
MIDDLE MILL LANE CSO	MILL LEAT	ST0228007350	SCREENING	
MILBURY LANE PUMPING STATION	TRIB OF THE BERRY BROOK	SX9483087970	SCREENING	
MILBURY LANE PUMPING STATION	TRIB OF THE BERRY BROOK	2 SX9500088340 SCREENING		
MILL RACE COMBINED SEWER OVERFLOW	MILL RACE, RIVER	SX9341090620	NONE	
MILL ROAD PUMPING STATION	RIVER EXE (ESTUARINE)	SX9397090120 NO TREATMENT REQUIRE GOOD ENGINEERING DES		
MILL STREET COMBINED SEWER OVERFLOW	TRIB RIVER CREEDY (S)	SS8418900304	NONE	
MILL STREET COMBINED SEWER OVERFLOW	TRIB OF RIVER CREEDY VIA SWS	SS8419000300	NONE	

Name	Receiving	NGR	Treatment (if applicable)	
	Environment	674007540766		
MILLMOOR CSO	RIVER CULM(S)	ST1007513766		
MONKERTON PUMPING	PIN BROOK	SX9671093970	NO TREATMENT REQUIRED -	
STATION		SV0C450070C2	GOOD ENGINEERING DESIGN	
MOOR LANE PSCSO/EO	STREAM (S)	SX9645097062	NONE	
MOREBATH STW	SHUTTERN BROOK (S)	SS9535024770	UNSPECIFIED	
NEWPORT PARK PUMPING	TRIB OF RIVER EXE	SX9541088990	NO TREATMENT REQUIRED -	
STATION	(ESTUARINE)		GOOD ENGINEERING DESIGN	
NEWTON ST CYRES STW	(S) RIVER CREEDY	SX8885098140	SCREENING	
NORTH LAWN COURT CSO	NORTH BROOK VIA SWS	SX9479092300	NONE	
NORTH STREET CAR PARK CSO	TRIB OF RIVER CREEDY VIA SWS	SS8448600412	NONE	
NORTHBROOK GOLF COURSE	NORTHBROOK	SX9382090390	SCREENING	
NORTHBROOK PARK GOLF CRSE UPPER CSO	NORTHBROOK	SX9383090400	SCREENING	
O/S 25 OAK CRESCENT PSEO	TRIB OF CULM (S)	ST0310010480	NONE	
O/S HONITON INN	RIVER EXE (S)	SX9254792833	NONE	
OAKFORD STW	TRIB OF IRON MILL STREAM (S)	SS9115021420	UNSPECIFIED	
OAKLANDS PSEO	COASTAL (C)	SX9610475854	NONE	
OKEHAMPTON ROAD CSO	RIVER EXE VIA SWS	SX9299090670	NONE	
OLD TIVERTON ROAD CSO	STREAM(S)	SS8448600412	NONE	
OLD WOODBURY SALTERTON	TRIB OF GRINDLE	SY0128089340	SCREENING	
STW CSO	BROOK VIA SWS			
PARKLAND DRIVE PUMPING STATION	NORTHBROOK VIA SWS	SX9430091240	NONE	
PATHFINDER TERMINAL PS	LILLY BROOK(S)	SX8248093950	SCREENING	
PENCEPOOL FARM PUMPING	TRIBUTARY OF	ST0522003090	SCREENING	
STATION	RIVER CLYST (S)			
PENNSYLVANIA ROAD CSO	HIGHER LEAST VIA SW SEWER	SX9147092500	SCREENING	
PENNYMOOR SEWAGE	A TRIBUTARY OF	SS8645011630	SCREENING	
TREATMENT WORKS	BINNEFORD WATER			
PHEAR PARK PSEO/CSO	EXE ESTUARY	SX9996081460	SCREENING	
PLYMTREE STW	RIVER WEAVER	ST0406003960	PRIMARY SETTLEMENT	
PLYMTREE STW	AN UNNAMED TRIB-RIVER CLYST	ST0491002790	SCREENING	
POUNDSHILL PSCO/EO	STREAM	ST0606418853	NONE	
PUDDINGTON STW	RIVER CREEDY	SS8360010730	NONE	
QUAY HILL COMBINED SEWER OVERFLOW	HIGHER LEAT	SX9192092170	NONE	
QUAY HILL CSO	HIGHER LEAT VIA SW SEWER	SX9194092150 SCREENING		
R/O 13 WEST STREET CSO	RIVER BATHERN (S)	SS9546622016	NONE	
R/O IMPERIAL HOTEL CSO	TADDIFORDE BROOK	SX9141093490	NONE	
RAGSFIELD PSEO	TRIB OF R. CREEDY	SS8442300595	NONE	
REWE WASTEWATER TREATMENT WORKS	RIVER CULM	SX9455098840	SCREENING	
ROSE COTTAGE CSO	LILLY BROOK (S)	SX8228894125	NONE	

Name	Receiving	NGR	Treatment (if applicable)	
	Environment			
SAMPFORD PEVERELL WWTW	SPRATFORD	ST0387013360	SCREENING	
	STREAM			
SANDFORD PUMPING STATION	THE SANDFORD	SS8309502203	NONE	
	STREAM (S)			
SANDFORD ROSE & CROWN	THE SANDFORD	SS8275102304	SCREENING	
CSO	STREAM (S)			
SANDFORD WASTEWATER	TRIBUTARY OF	SS8339002240	SCREENING	
TREATMENT WORKS	RIVER CREEDY			
SANDY BAY HOLIDAY PARK	STRAIGHT POINT	SY0398079190	NONE	
PSEO	(C)			
SANDY LANE PUMPING	LYME BAY	SX9736076490	SCREENING	
STATION	(COASTAL)			
SANDY LANE PUMPING	LYME BAY (C)	SX9742076470	SCREENING	
STATION				
SEA LAWNS OUTFALL CSO, DAWLISH	LYME BAY(C)	SX9679077050	NONE	
SEA LAWNS PUMPING STATION	LYME BAY	SX9679077050	NO TREATMENT REQUIRED -	
			GOOD ENGINEERING DESIGN	
SEARLE STREET CSO	STREAM (S)	SS8448600412	NONE	
SHILLINGFORD ST GEORGE	ALPHIN BROOK	SX9073087980		
WWTW CSO				
SHIP INN CSO	COFTON	SX9752580690	SCREENING	
	STREAM(S)			
SHOBROOKE PS	SHOBROOKE LAKE	SS8712001320	SCREENING	
SHUTE WWTW	TRIB OF RIVER	SS8954000080	SCREENING	
	CREEDY			
SHUTTERTON BRIDGE PS	SHUTTERTON	SX9658078540	SCREENING	
	BROOK(S)			
SILVERTON PUMPING STATION	SILVERTON	SS9527003010	SCREENING	
	STREAM VIA SWS			
SILVERTON WWTW	HEAL-EYE STREAM	SS9712001420	SCREENING	
SLITTERCOMBE LANE	RIVER KENN(S)	SX9613083470	SCREENING	
PSCSO/EO				
SMUGGLERS LANE PSEO	BABBACOMBE	SX9568074640	SCREENING	
	BAY(C)			
SOWDEN LANE PUMPING	TRIBUTARY OF EXE	SX9912083670	SCREENING	
STATION	ESTUARY (S)			
SPREYTON STW	COOMBE	SX6985097520	SCREENING	
	STREAM(S)			
ST MARTINS LANE CSO	STREAM (S)	SS8448500412	NONE	
ST NICHOLAS CHURCH PSEO	BROCKERY RIVER	SS9189725652	NONE	
	(S)			
ST SIDWELLS SCHOOL CSO	HIGHER LEAT VIA	SX9147092500	SCREENING	
	SW SEWER			
STATION ROAD PSCSO/EO	SPRATFORD	ST0332111417		
WILLAND	STREAM			
STATION ROAD PSEO	RIVER CREEDY(S)	SX8810098560	SCREENING	
STOKE CANON PSEO	R CULM (S)	SX9371097598	SCREENING	
STOKE MEADOW CLOSE	MINCINGLAKE	SX9330094620	NO TREATMENT REQUIRED -	
PUMPING STATION	STREAM VIA SWS	67020702455	GOOD ENGINEERING DESIGN	
STONEYFORD PSCSO/EO	RIVER CULM (S)	ST0287607453	SCREENING	
STOODLEIGH STW	STOODLEIGH	SS9243018980		
	STREAM			

Name	Receiving	NGR	Treatment (if applicable)	
	Environment			
SWEETBRIER LANE CSO	NORTHBROOK	SX9481092600	SCREENING	
SWEETHAM SEWAGE PUMPING	RIVER CREEDY(S)	SX8813098580	SCREENING	
STATION				
TALATON PSCSO/EO	STREAM (S)	SY0685699822	NONE	
TAN LANE PUMPING STATION	TRIB OF THE	SX9204091350	NO TREATMENT REQUIRED -	
	ALPHIN BROOK		GOOD ENGINEERING DESIGN	
TEDBURN ST MARY STW	LILLY BROOK(S)	SX8248093950	SCREENING	
TEDBURN ST MARY STW	LILLY BROOK(S)	SX8250093940	SCREENING	
TEMPLE ROAD CSO	RIVER EXE VIA SWS	SX9223091880	NONE	
THE COLLEGE IDE CSO	FORDLAND BROOK	SX9001090600	SCREENING	
THE GREEN TANK CSO	KNOWLE STREAM	SY0617081990	SCREENING	
THE WALRONDS CSO	RIVER EXE	SS9526011910	NONE	
THORNTON HILL CSO	HIGHER LEAT VIA SWS	SX9147092500	NONE	
THORVERTON WWTW	(S) RIVER EXE	SS9359001680	SCREENING	
TIVERTON STW	RIVER EXE	SS9530010300	SCREENING	
TOPSHAM ROAD JCT ROBERS ROAD CSO	RIVER EXE VIA SWS	SX9223091890	NONE	
TURLAKE SPS	TRIB OF R EXE	SX9049296109		
UFFCULME PUMPING STATION	RIVER CULM	ST0632011960	SCREENING	
UFFCULME WWTW	RIVER CULM	ST0622011860	SCREENING	
UPLOWMAN STW	UPLOWMAN	ST0132015270	SCREENING	
	STREAM	0.010101010		
VIADUCT HIGH LEVEL STORM	DAWLISH	SX9630076660	SCREENING	
TANK CSO	WATER(C)			
WAR MEMORIAL CSO	RIVER CULM (S)	ST0973713696	NONE	
WASHFIELD STW	TRIBUTARY OF	SS9353015050	UNSPECIFIED	
	RIVER EXE(S)			
WEAVER CRESCENT CSO	RIVER EXE	SS9481013410	SCREENING	
WELL STREET CSO	HIGHER LEAT VIA	SX9147092500	SCREENING	
	SW SEWER			
WEST CLIFF COMBINED SEWER OVERFLOW	DAWLISH WATER	SX9569076710	SCREENING	
WESTEXE PUMPING STATION	RIVER EXE	SS9532012010	SCREENING	
WESTWOOD PSEO	TRIB RIVER YEO (S)	SS8225800129	NONE	
WHIDDON DOWN STW	FINGLE BROOK(S)	SX6929092440	SCREENING	
WILLAND WASTEWATER	TRIB OF RIVER	ST0419010600	SCREENING	
TREATMENT WORKS	CULM			
WILLAND WASTEWATER	TRIB OF RIVER	ST0420010160	SCREENING	
TREATMENT WORKS	CULM			
WINSFORD PSCSO/EO	RIVER EXE(S)	SS9072034830 SCREENING		
WITHYBRIDGE PUMPING	RIVER CLYST	SX9747095730	NO TREATMENT REQUIRED -	
STATION		GOOD ENGINEERING DES		
WOODBURY WWTW	WOODBURY BROOK	SX9979086780	SCREENING	
WOODLAND AVE CSO	STREAM DIS TO LYME BAY (S)	SX9509074280	074280 SCREENING	
WWTW AT BRADNINCH	RIVER CULM	ST0057003310	SCREENING	
YEOFORD WASTEWATER	RIVER YEO	SX7894098740	SCREENING	
TREATMENT WORKS				

13 Spill frequencies and durations for intermittent discharges into the Exe Estuary and Lyme Bay West in 2020

Intermittent discharge	Permit Number	Spill Frequency Threshold	Spill Frequency (>threshold)	Total spill duration (hrs)	Action
Sandy Lane Lf			·		SOAF investigation
Spst_pscsoeo_dawlish	201966	5	56	63	in 2023
Viaduct					
Sps_pscsoeo_dawlish	200824/PC/01	5	<u>20</u>	38	-
Cofton					SOAF investigation
Sps_pscsoeo_dawlish	202627	14	<u>45</u>	384	in 2023
Ship Inn cso cockwood	202630	14	11	1	-
Warren Road					SOAF investigation
Sps_pscsoeo_dawlish	202631	14	<u>54</u>	71	in 2022
Bonhay Rd_cso_starcross	202625	14	20	129	-
Slittercombe					
Spst_pscsoeo_kenton	202626	14	11	55	-
Exminster					
Spst_pscsoeo_exminster	201580	40	<u>47</u>	155	-
Church					
Road_cso_alphington	201933	40	23	6	-
Holloway St_cso_exeter	201925	40	<u>74</u>	127	-
Lwr North St I_cso_exeter	201373	40	70	141	-
Dunsford Rd cso exeter	201932	40	32	43	-
Mill Race/river					
Exe_cso_exeter	201896	40	33	85	-
Northbrook Golf Course					
Upper_cso_exeter	201914	40	20	23	-
Countess Wear					
Stw_so_exeter	202475	40	23	66	-
Countess Wear					UV treatment in
Stw_sso_exeter	202475	40	<u>65</u>	202	2018
Follet Rd_cso_exeter	201636/CS/01	40	28	14	-
Odams Wharf					SOAF investigation
Sps_pscsoeo_ebford	202365	40	<u>164</u>	404	in 2021
Exton North					SOAF investigation
Sps_pscsoeo_exmouth	203229	40	<u>146</u>	2003	in 2022
					SOAF investigation
Ham Ln_cso_woodbury	201815	40	<u>53</u>	97	in 2021
Exton South					SOAF investigation
Sps_pscsoeo_exmouth	203230	40	<u>47</u>	451	in 2022
Lympstone Outfall	202105	14	24	22	SOAF investigation
Sps_pscso_lympstone	202165	14	<u>24</u>	22	in 2021 SOAF investigation
Exeter Rd_cso_exmouth	200128/CS/01	14	66	56	in 2023
Hartop	200128/03/01	14	00	50	SOAF investigation
Road_pscsoeo_exmouth	200122/CS/01	14	<u>38</u>	81	in 2023

Spill frequency (SF) trigger permit (spills per year as 10 year averages: 40 spills for water bodies; 14 spills for shellfish waters; 5 spills for bathing waters - per bathing season) (SWW, 2021a).

		Spill	Spill	Total spill	
	Permit	Frequency	Frequency	duration	
Intermittent discharge	Number	Threshold	(<u>>threshold</u>)	(hrs)	Action
Imperial Rd -					
Tank_cso_exmouth	200123/CS/01	5	<u>14</u>	103	-
					Investigation in
Maer Rd					2021 for amp7
Sps_cso_exmouth	200125/CS/01	5	<u>62</u>	858	improvements
Royal Hotel					
Sps_pseo_dawlish	201450	5	1	1	-
Piermont Pl/jubilee					
Bridge_cso_dawlish	201449	5	<u>7</u>	3	-
Barton Hill/brunswick					SOAF investigation
Pl_cso_dawlish	200823/CS/01	5	<u>25</u>	14	in 2023
					AMP7 -reduction to
Brook St Manor					2 significant spills
Gardens_cso_dawlish	200821/CS/01	5	<u>33</u>	11	scheme in 2021
Brook House_cso_dawlish	200820/CS/01	5	1	2	-
Teignmouth					NOT designed to
Road_pscsoeo_holcombe	202110	5	<u>56</u>	703	meet bw Directive.
Smugglers Lane					SOAF investigation
Sps_pscsoeo_dawlish	203688	5	<u>57</u>	200	in 2023
Woodland					
Av_cso_holcombe	202488	5	<u>33</u>	54	-
Railway Station Car					
Park_cso_teignmouth	203349	5	<u>8</u>	13	-
Ilsham Valley					SOAF investigation
Spst_pscsoeo_torquay	200977	5	<u>123</u>	1706	in 2022 Hopes Nose

Spill frequency (SF) trigger permit (spills per year as 10 year averages: 40 spills for water bodies; 14 spills for shellfish waters; 5 spills for bathing waters - per bathing season) (SWW, 2021a).

14 Estimated mean levels of pathogens in fresh farmyard manure and slurry

Pathogen name	Maximum	Levels of pathog FYM&S	ens in fresh	Unitª	Country	Reference
	Cattle	Pig	Sheep	_		
Cryptosporidium parvum	2.7×10^2 to 3.5×10^3			(<u>Hutchison et al.,</u> 2004) ^b		
Mycobacterium bovis	6.5 × 10 ³			CFU ml ⁻¹	Ireland	(<u>Scanlon and</u> <u>Quinn, 2000</u>)
МАР	3 × 10 ⁵			CFU g ⁻¹	USA	(<u>Bonhotal et al.,</u> <u>2011</u>)
Salmonella spp.	3.9×10^4 to 5.8×10^5	9.6×10^{3} to 7.8 × 10 ⁴	1.1×10^{3} to 2×10^{3}	CFU g ⁻¹	UK	(<u>Hutchison et al.,</u> <u>2004)^b</u>
Listeria monocytogenes	1.5×10^4 to 4.2×10^5	4.6×10^4 to 9.7 × 10 ⁵	4.5×10^2 to 1.7 × 10 ³	CFU g ^{−1}	UK	(<u>Hutchison et al.,</u> <u>2004</u>) ^b
	10 ^{4.95}	10 ^{5.28}		CFU g ⁻¹	Italy	(<u>Costa et al.,</u> <u>2017</u>)
Clostridium spp.		1.0 × 10 ⁵ to 1.0 × 10 ^{5.5}		CFU g ⁻¹	Ireland	(<u>Mccarthy et al.,</u> <u>2013</u>)
	1.0×10^4 to $1.0 \times 10^{4.6}$			CFU g ⁻¹	Sweden	(<u>Bagge et al.,</u> <u>2005</u>)
<i>Clostridium</i> spp. (combined)	1.0×10^4 to $1.0 \times 10^{4.95}$	1.0 × 10 ⁵ to 1.0 × 10 ^{5.5}		CFU g ⁻¹		
E. coli	$5.1 \times 10^4 \pm 4.5 \times 10^4$	$3 \times 10^4 \pm 7.1 \times 10^3$		CFU g ⁻¹	France	(<u>Jaffrezic et al.,</u> <u>2011</u>)
E. COII		1.0 × 10 ^{3.8} to 1.0 × 10 ^{5.5}		CFU g ⁻¹	Ireland	(<u>Mccarthy et al.,</u> <u>2013</u>)
<i>E. coli</i> (combined)	0.6×10^4 to 9.6 × 10 ⁴	1.0 × 10 ^{3.8} to 1.0 × 10 ^{5.5}		CFU g ⁻¹		
E. coli 0157	2.9×10^{6} to 2.6 × 10 ⁸	6.9 × 10 ⁴ to 7.5 × 10 ⁵	1.1×10^4 to 4.9×10^4	CFU g ⁻¹	υк	(<u>Hutchison et al.,</u> 2004) ^b

Pathogen name	Maximum L	evels of pathogo FYM&S	ens in fresh	Unit ^a	Country	Reference		
	Cattle	Pig	Sheep					
Campylobacter spp.	7.6×10^3 to 1.5×10^5	1.9 × 10 ³ to 1.5 × 10 ⁴	8.6×10^2 to 2.1 × 10 ³	CFU g ⁻¹	UK	(<u>Hutchison et al.,</u> <u>2004</u>) ^b		

15 The Storm Overflow Assessment Framework (SOAF)

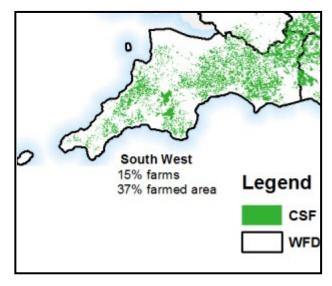
Stage 1 – Spills are counted using Event Duration Monitoring (EDM) and above a threshold spill number (e.g. 60 per year) an outfall is highlighted as needing investigation. If the reporting period included exceptional rainfall, then data from more typical years are sought. Subsequent investigations check for possible blockages or leaks and whether the hydraulic capacity of the system is sufficient for heavy (storm-related) rainfall.

Stage 2 – The environmental and aesthetic impact of the outfall is determined. The aesthetic assessment covers visibility and prevalence of sewage litter and sewage fungus. The environmental assessment compares the classification of aquatic invertebrates gathered upstream and downstream from the outfall (classification is performed using the River Invertebrate Classification Tool) (WFD UKTAG, 2008). If no invertebrate monitoring data are available, water quality modelling is used for environmental assessment.

Stage 3 – Assess improvement options including a cost benefit analysis. If any of the methods applied in Stage 2 show an environmental impact, or if the outfall is situated in an urban area, then an economic assessment is made of overflow improvement.

Stage 4 – A decision is made based on the cost benefit results, with no further action being taken if the cost is disproportionate compared to the environmental benefits.

Stage 5 – The most cost beneficial solution is delivered to reduce environmental impact and/or reduce the frequency of discharges.


16 Catchment Sensitive Farming (CSF) Priority Catchments in SW

England

Appendix 11.1: Extent of Countryside Stewardship High and Medium Priority Areas for Water and former CSF Priority Catchments in SW England

Appendix 11.2: Extent of CSF engagement across WFD River Basin Districts, expressed in terms of total farm numbers and total farmed area in SW England

17 Twenty most heavily applied pesticides in the South West Water Ltd. region in 2011

(from Townsend et al., 2018)

Ranking	Pesticide	Category	Tonnes applied
1	Glyphosate	Herbicide	66.7
2	МСРА	Herbicide	59.3
3	Chlormequat	Crop growth promotor	47.7
4	Mecoprop/Mecoprop-P	Herbicide	29.2
5	Chlorothalonil	Fungicide	27.5
6	Pendimethalin	Herbicide	26.9
7	Prosulfocarb	Herbicide	23.4
8	Triclopyr	Herbicide	17.2
9	МСРВ	Herbicide	14.9
10	Chlorotoluron	Herbicide	12.6
11	Prothioconazole	Fungicide	10.1
12	Asulam	Herbicide	9.4
13	2,4-D	Herbicide	8.3
14	Fluroxypyr	Herbicide	7.1
	Propamocarb	Fungicide	7.1
15	Hydrochloride		
16	Clopyralid	Propamocarb	5.7
17	Mancozeb	Fungicide	5.5
18	Spiroxamine	Fungicide	5.0
19	Epoxyconazole	Fungicide	4.4
20	Flufenacet	Herbicide	4.4

18 Dissolved oxygen standards required by the EC Shellfish and Bathing Water Directives

EC Directive	DO Standard	Compliance statistic					
Shellfish Waters	70%	Mean, Imperative (I) standard					
Directive	60%	Minimum, Imperative (I) standard					
	80%	5%ile, Guide (G) value					
Bathing Water Directive	80–120%	10%ile, Guide (G) value					
Urban Waste Water Treatment Directive (CSTT guidelines)	7.0 mg l ⁻¹	Median (in coastal waters a change of <0.5 mg l^{-1} assumed to have no adverse effect. In estuaries a change of <1.0 mg l^{-1} assumed to have no adverse effect					

19 Guidance: Sewage sludge in agriculture: code of practice for England, Wales and Northern Ireland

Guidance on Potentially Toxic Elements (PTE) in arable soil

	Max pe	rmissible	conc. in	soil	Max permissible annual rate of PTE addition
	at set p	H (mg/kg	dry solid	s)	over 10 years (kg/ha)
рН	5<5.5	5.5<6.0	6.0-7.0	>7.0	
Zinc	200	200	200	300	15
Copper	80	100	135	200	7.5
Nickel	50	60	75	110	3

	Max permissible conc. in soil at set pH (mg/kg dry solids)	Max permissible annual rate of PTE addition over 10 years (kg/ha)
рН	≥5	
Cadmium	3	0.15
Lead	300	15
Mercury	1	0.1
Chromium	400	15
Molybdenum	4	0.2
Selenium	3	0.15
Arsenic	50	0.7
Fluoride	500	20

Guidance on Potentially Toxic Elements (PTE) limits in soil used as grassland

	Maxim	um permi	ssible co	ncentration of PTE in soil (mg/kg dry solids)
рН	5<5.5	5.5<6.0	6.0-7.0	>7.0
Zinc	200	200	200	300
Copper	130	170	225	330
Nickel	80	100	125	180
	Maxim	um permi	ssible co	ncentration of PTE in soil (mg/kg dry solids)
рН	≥5			
Cadmium	3			
Lead 300				
Mercury 1.5				
Chromium	600			
Molybdenum	4			
Selenium	5			
Arsenic 50				
Fluoride 500				

For lead, cadmium and fluoride, you can apply no more than 3 times the average annual limit of PTE in a single year. This is to control how much of these elements your livestock can ingest.

Guidance on when you can use treated sludge:

Or	growing crops	Restrictions
•	Cereals, oil seed rape	No restrictions
٠	Grass	No grazing or harvesting within 3 weeks of use
٠	Turf	Not less than 3 months before harvest
٠	Fruit trees	Not less than 10 months before harvest

Before planting crops Restrictions

•	Cereals, grass, fodder, sugar beet, oilseed rape, fruit trees	No restrictions
•	Soft fruit and vegetables	Not less than 10 months before harvest
•	Potatoes	Not less than 10 months before harvest.
•	Nursery stock	Not on land that's used for a cropping rotation

Guidance on protecting water

- Prevent run off if the soil is dry, or if clay soils are at, or close to field capacity.
- Prevent liquid sludge from leaching through permeable soils and polluting groundwater and land drains.
- Don't store or apply sludge close to water supply sources.
- Use good farming practices to reduce the risks of water pollution. For example, you can reduce the risk of nitrogen getting into water supplies by adjusting the timing and rates of application according to the demands of the crop.

20 Pharmaceutical concentrations in μg/L in effluent from Countess Weir Sewage Treatment Works in 2010/11

Pharmaceutical	01/06/2010	07/07/2010	12/08/2010	28/09/2010	17/10/2010	24/11/2010	09/12/2010	25/01/2011	04/02/2011	17/03/2011	27/04/2011	18/05/2011	20/06/2011	13/07/20
Non Steroidal Anti-						- 1, 11, 2010			- ,, 02, 2011		-//04/2011			_0,0,720
Ibuprofen	0.0770	0.0270	0.0180	0.0100	0.0650	0.1750	0.2010	0.1770	0.1150	0.2530	0.0100	0.0100	0.0170	0.0100
Diclofenac												0.1300	0.0640	
Antibiotics														
Erythromycin	0.9150	0.7790	0.1510	0.4270	0.4810	0.2170	1.0700	0.6240	0.4790	0.2490	0.1700	0.4400	0.2100	0.1300
Ofloxacin	0.0600	0.1080	0.0800	0.0440	0.0370	0.0150	0.0950	0.0490	0.0340	0.0430	0.0510	0.1200	0.0510	0.0340
Oxytetracycline	0.5360	6.0000	0.4660	0.3150	0.2630	0.1750	0.5350	0.4560	0.3350	0.5760	0.3000	0.2200	0.2700	0.2700
Anti-Tension/Depre	ession													
Propranolol	0.1140	0.1860	0.1990	0.1090	0.1270	0.0350	0.1350	0.0750	0.0750	0.1570	0.0800	0.1200	0.0720	0.2000
Fluoxetine	0.0640	0.0470	0.0510	0.0100	0.0240	0.0160	0.0300	0.0180	0.0280	0.0350	0.0210	0.0360	0.0330	0.0370
Hormones							-		-	-				
Salicylic Acid	0.4300	0.2770	0.2310	0.2410	0.4790	0.2120	0.3540	0.7300	0.1190	0.5800	0.0690	0.2100		0.2200
Estrone	0.002	0.002	0.002	0.0057	0.0046	0.0034	0.0045	0.0051	0.0022	0.0055	0.0004	0.0016	0.0064	0.0020
Estradiol		0.000	0.002	0.0026	0.0003	0.0011	0.0008	0.0013	0.0005	0.0007	0.0002	0.0007	0.0008	0.0002
Ethynylestradiol	0.001	0.001	0.001	0.0004	0.0002	0.0012	0.0014	0.0018	0.0018	0.0008	0.0005	0.0037	0.0014	0.0001

21 Pharmaceutical, veterinary medicine (and other contaminant) concentrations in ng/L in the River Exe and Exe Estuary in June 2020

Mean river flow upstream of Station 7 Trews Weir (taken from Thorverton Weir Station 3) = 16.125 m³/sec; Mean river flow downstream of Trews Weir = 25 m³/sec. River flow was normal in the Exe despite heavy rainfall in the previous week

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/895422/Rainfall_and_river_flow_summary_17_to_23_June_2020.pdf Tidal stations 8 to 10 were sampled on the ebb tide i.e. 2 to 3 hours after high water.#

Site	Site description	17a-Ethinylestradiol	Amitriptyline	Atenolol	Azlocillin	Bentazone	Bis (2-ethylhexyl) phthalate (DEHP)	Bisphenol-S	Butyl Phthalate (DBP)	Carbamazepine	Caffeine	Cefazolin	Ceterizine	Cimetidine	Ciprofloxacin	Citalopram	Clarithromycin
1	100 m upstream of Tiverton WWTP	ND	ND	21.08	ND	ND	ND	ND	ND	51.15	404.1	ND	70.5	ND	ND	5.416	5.416
2	100 m downstream of Tiverton WWTP	ND	1.56	23	ND	ND	ND	ND	ND	55.43	271	ND	79.44	ND	ND	7.912	7.912
3	Upstream of Thorverton Weir	ND	ND	6.271	ND	ND	ND	ND	ND	15.38	132.2	ND	18.69	ND	ND	2.59	ND
4	Furze Park, upstream of Culm confluence	ND	ND	23.46	ND	ND	ND	ND	ND	55.37	376.6	ND	79.73	ND	ND	2.53	2.53
5	Furze Park, downstream of Culm confluence	ND	ND	36.56	ND	ND	ND	ND	ND	64.45	428.9	ND	88.49	ND	ND	14.98	14.98
6	Cowley Bridge	ND	ND	ND	ND	ND	ND	ND	ND	ND	277.6	ND	ND	ND	ND	ND	ND
7	Trews Weir	ND	ND	ND	ND	ND	ND	ND	ND	5.426	420	ND	2.593	ND	ND	1.316	ND
8	Countess Weir upstream of WWTP	ND	ND	17.96	ND	ND	ND	ND	ND	11.32	956.3	ND	6.593	ND	ND	5.402	ND
9	Countess Weir downstream of WWTP	ND	ND	5.02	ND	ND	ND	ND	ND	11.83	205.9	ND	5.993	ND	ND	3.274	ND
10	Starcross	ND	2.81	21.56	ND	ND	ND	ND	ND	59.95	457.4	ND	94.6	ND	ND	7.124	7.124

Site	Site description	Cotinine	Desvenlafaxine	Diazepam	Diclofenac	Diltiazem	Enrofloxacin	Erythromycin	Fexofenadine	Fluoxetine	Gabapentin	Hydrocodone	Imazalil	Ketoconazole	Ketotifen	Lidocaine	Lincomyacin
1	100 m upstream of Tiverton WWTP	48.42	97.04	ND	ND	2.788	ND	22.67	199.2	ND	998.4	4.605	ND	ND	ND	15.48	ND
2	100 m downstream of Tiverton WWTP	40.42	99.21	ND	ND	3.29	ND	21.49	199.2	ND	864.4	ND	ND	ND	ND	15.28	ND
3	Upstream of Thorverton Weir	14.98	29.7	ND	ND	1.749	ND	12.53	34.75	ND	190.6	ND	ND	ND	ND	4.2	ND
4	Furze Park, upstream of Culm confluence	41.24	114.2	ND	ND	3.385	ND	27.99	194.2	ND	1045	9.567	ND	ND	ND	14.9	ND
5	Furze Park, downstream of Culm confluence	47.42	131.5	ND	ND	5.461	ND	35.9	246.7	ND	1317	11.05	ND	ND	ND	19.7	ND
6	Cowley Bridge	13.35	ND	ND	ND	2.127	ND	ND	5.37	ND	ND	ND	ND	ND	ND	ND	ND
7	Trews Weir	25.42	ND	ND	ND	ND	ND	ND	6.146	ND	31.29	8.511	ND	ND	ND	ND	ND
8	Countess Weir upstream of WWTP	38.93	13.37	ND	ND	ND	ND	ND	27.75	ND	245.5	6.935	ND	ND	ND	ND	ND
9	Countess Weir downstream of WWTP	7.238	16.45	ND	ND	ND	ND	ND	17.11	ND	126.2	5.301	ND	ND	ND	5.117	ND
10	Starcross	50.51	109.2	ND	ND	3.484	ND	27.15	220.5	ND	1779	6.458	ND	ND	ND	17.25	ND

22 Prioritisation of veterinary medicines – compounds considered to have the greatest potential for environmental impact (Group 1)

Table adapted from Boxall et al. (2002)

Priority class abbreviations: HP-CIA = Highest Priority Critically Important Antibiotics (VMD, 2020); PS = Priority Substance (2008/105/EC).

Target group abbreviations: H = herd animals; I = individual food production animals; A = aquaculture; C = companion animals; n/a = not applicable.

Rank	Veterinary medicine	Category	Priority	Target	Data gap - further data required			
(use)	-		class	animals	Use	Metabol	Aquatic	Terrestrial
1	Oxytetracycline	Antibiotic		Н, А				✓
2	Chlortetracycline	Antibiotic		Н			✓	✓
3	Tetracycline	Antibiotic		Н			✓	✓
4	Sulphadiazine	Antibiotic		А			✓	✓
5	Trimethoprim	Antibiotic		А			✓	✓
6	Baquiloprim	Antibiotic		Н		✓	✓	\checkmark
7	Amprolium	Coccidiostat		Н	✓		✓	✓
8	Clopidol	Coccidiostat		Н	✓	✓	✓	✓
9	Lasalocid Sodium	Antibiotic		Н	✓	✓	✓	✓
10	Maduramicin	Antibiotic	HP-CIA	Н	✓		✓	✓
11	Nicarbazin	Coccidiostat		Н	✓	\checkmark	✓	✓
12	Robenidine	Coccidiostat		Н	✓	\checkmark	✓	✓
	Hydrochloride							
13	Amoxicillin	Antibiotic		Н		✓	✓	✓
14	Procaine Penicillin	Antibiotic		Н		✓	✓	✓
15	Procaine	Antibiotic		Н		✓	✓	✓
	Benzylpenicillin							
16	Clavulanic Acid	Antibiotic		Н		\checkmark	\checkmark	\checkmark
17	Diazinon	Insecticide	Banned	Н		n/a	\checkmark	\checkmark
18	Tylosin	Antibiotic		Н			\checkmark	\checkmark
19	Monensin	Antibiotic		Н	✓	\checkmark	✓	\checkmark
20	Salinomycin Sodium	Coccidiostat		Н	✓		✓	\checkmark
21	Flavophospolipol	Antibiotic		Н	✓	✓	✓	\checkmark
22	Dihydrostreptomycin	Antibiotic		Н			✓	\checkmark
23	Neomycin	Antibiotic	HP-CIA	Н, С			✓	\checkmark
24	Apramycin	Antibiotic	HP-CIA	Н			✓	\checkmark
25	Flavomycin	Antibiotic	HP-CIA	Н		✓	✓	✓
26	Morantel	Anthelmintic		Н	✓		\checkmark	\checkmark
27	Cypermethrin	Insecticide	PS	Н		n/a	\checkmark	\checkmark
28	Flumethrin	Insecticide		Н		n/a	\checkmark	\checkmark
29	Triclabendazole	Fungicide		Н	✓		\checkmark	\checkmark
30	Fenbendazole	Fungicide		Н	~	\checkmark	\checkmark	\checkmark
31	Levamisole	Anthelmintic		Н	✓	✓	\checkmark	✓
32	Ivermectin	Insecticide		Н	✓	✓		\checkmark
33	Cephalexin	Antibiotic		Н	✓	✓	\checkmark	✓
34	Florfenicol	Antibiotic		А	✓	n/a	\checkmark	
35	Tilmicosin	Antibiotic		Н	✓		\checkmark	✓
36	Oxolinic Acid	Antibiotic		Н	✓	n/a	\checkmark	\checkmark
37	Lido/Lignocaine Hydrochloride	Anaesthetic		Н	~	✓	~	~
38	Tiamulin	Antibiotic		Н	✓	✓		✓

			1	1	1			
39	Lincomycin	Antibiotic	HP-CIA	Н			\checkmark	\checkmark
40	Clindamycin	Antibiotic	HP-CIA	Н			\checkmark	\checkmark
41	Nitroxynil	Anthelmintic		Н	\checkmark	\checkmark	\checkmark	\checkmark
42	Enrofloxacin	Antibiotic	HP-CIA	Н			\checkmark	\checkmark
43	Sarafloxacin	Antibiotic	HP-CIA	А		n/a	✓	
44	Dimethicone	Skin barrier		Н	\checkmark	✓	✓	\checkmark
45	Poloxalene	Anti-bloat		Н	\checkmark	✓	✓	\checkmark
46	Toltrazuril	Coccidiostat		Н	✓	\checkmark	✓	\checkmark
47	Decoquinate	Coccidiostat		Н	✓	✓	✓	\checkmark
48	Diclazuril	Coccidiostat		Н	✓	✓	✓	\checkmark
49	Phosmet	Insecticide		Н	✓	n/a	✓	✓
50	Piperonyl Butoxide	Anti-fly		С	✓	n/a	✓	✓
51	Amitraz	Acaricide and		Н	✓	n/a		✓
		Insecticide						
52	Deltamethrin	Insecticide		Н	~	n/a	✓	\checkmark
53	Cypromazine	Insecticide		Н	✓	n/a	✓	\checkmark
54	Emamectin Benzoate	Insecticide		А	✓	n/a	✓	√?
55	Antiseptics	Antiseptics		C, I	~	✓	✓	\checkmark
56	Immunological	Immuno-logical		С, Н	\checkmark	✓	✓	\checkmark
	products							