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ABSTRACT
A new research field is emerging in which ensembles of molecules are collectively
hybridised with light in a process known as strong coupling. This hybridisation leads
to the formation of new states that are part light and part matter, states known as
polaritons. Here we offer an entry point into the field of molecular strong coupling.
We include an overview of the essential phenomena and an introduction to the
conceptual framework - considerable use is made of simple classical physics models
since they are helpful in developing an intuitive understanding. Open questions are
identified and discussed, as well as some of the exciting experimental and theoretical
challenges that lie ahead.
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1. Introduction

The vacuum might not seem like a very promising material, one capable of overthrow-
ing traditional conventions in chemistry and materials science, but that is the claim
made by many who work in the embryonic field of polariton chemistry [1]. The key
concept behind strong coupling is that a material resonance, for example an excitonic
or vibrational transition in a molecule, may be hybridised with an electromagnetic
mode. As a result of this hybridisation the original molecular and electromagnetic
resonances are lost and two new hybrid states called polaritons are produced that are
part light, and part molecule. These new states thus have very different properties
from their constituents, in particular their energy levels may be very different, and
the polaritons may have an extended spatial coherence. What makes molecular
strong coupling remarkable is that the vacuum electromagnetic field is sufficient to
produce polaritons, i.e. no ‘real’ light needs to be supplied. We thus have a situation
where it appears that something old + nothing = something new ; we could call it an
alchemy of the vacuum1. This article is about trying to make sense of this seemingly
paradoxical situation.

A wonderful starting point is to consider the foundational work accomplished
around thirty years ago in the field of atom optics, also known as cavity quantum
electrodynamics (cQED), in which excited atoms were flown under vacuum into
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1The idea of thinking of strong coupling as a kind of alchemy of the vacuum is a lovely play on words and

comes from the pioneer in molecular strong coupling, Thomas Ebbesen.
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Figure 1. Linking molecules with light: Left column shows single atom/molecule cavity interaction, right

column shows ensemble molecule cavity coupling. (a) A schematic of a single two-level system (TLS) in a cavity.
The TLS and the cavity exchange a quantum of energy equivalent to the excited state energy of the TLS. The

rate of exchange of this energy between the TLS and cavity is g. The decay rate of the excited state of the

TLS, γ, and the decay rate of the cavity, κ, both need to be smaller than the interaction (exchange) rate g
if strong coupling is to occur. (b) Strong coupling energy level scheme. The energy of the transition between

ground and excited state of the TLS, ℏω0, and that of the empty cavity, ℏωcav, are degenerate. When the TLS

and the cavity are strongly coupled these degenerate energy levels are lost and are instead replaced by two new
hybrid modes of the coupled system, the upper and lower polaritons, separated by an energy 2ℏg. Panels (c)

and (d) show similar schematics as (a) and (b), but this time for a situation involving a large number (N) of

molecules. The separation between the upper and lower polaritons is now 2ℏ
√
Ng.
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macroscopic optical cavities. A schematic of an atom optics experiment is shown in
Figure 1a, where an atom is located in (more properly it travels through) the field
maximum of a confocal optical cavity, e.g. formed from two highly polished mirrors.

Our analysis employs the simplest of light-matter interactions, the electric dipole in-
teraction, i.e. the interaction between an electric dipole (matter) and an electric field
(light). The electric dipole moment, µ⃗, is that associated with the transition between
the ground and excited state of the two-level system (in general this could be an atom,
molecule, quantum dot etc. Here we refer to an atom - in later sections we will in-
stead refer to ‘the molecule’). This dipole moment interacts with the electric field E⃗
associated with an optical resonance, which could be that of an optical microcavity,
a plasmonic nanoparticle etc.. (in what follows we will refer to this as ‘the cavity
mode’2). To keep things simple we assume that the cavity mode is a single electro-

magnetic mode. Both µ⃗ and E⃗ are vector quantities, and the energy associated with
their interaction is µ⃗ · E⃗. We thus have for the coupling energy, ℏg,

ℏg = µ⃗.E⃗. (1)

We choose to write the coupling energy as ℏg because, in addition to highlighting the
quantum nature of the interaction (we are dealing with atoms etc.) it is helpful to
consider the rate associated with this light matter interaction, which we have written
as g. Note that g is also known as the coupling strength.

When strong coupling conditions prevail, the excitation energy held by the atom can
be lost to the cavity and then re-absorbed back into the atom. This cyclic exchange of
energy is a hallmark of strong coupling, and occurs when the atom-cavity interaction
rate for coupling between the single atom and the cavity mode, g, is such that atom
and cavity have time to exchange energy coherently before, as Kimble phrased it, the
“grim reaper of dissipation” takes over [2]. The cyclic exchange of energy between
atom and cavity mode, known as Rabi oscillations [3] leads to new energy levels
that are different from those of the constituent elements, see Figure 1b. The higher
energy hybridised state is called the upper polariton, the lower energy one the lower
polariton. The hybridised energy levels are each different from the unperturbed level
by ℏg so that the total difference in energy is,

∆E = ℏΩ = 2ℏg, (2)

where Ω is known as the Rabi frequency. The new hybrid states are of mixed
character. Thus the photonic aspect now gains some of the attributes of matter,
e.g. an effective mass, useful for example in Bose-Einstein condensation [4], whilst
the matter aspect now gains some of the attributes of light, e.g. delocalised char-
acter, with great potential for intermolecular energy transfer [5]. Although we have
considered here the fate of the energy held by the atom, the hybrid state is what in
classical physics we refer to as a normal mode, i.e. one of the allowed modes of the
system; its ‘existence’ does not require excitation energy to be pumped into the system.

What conditions does g need to satisfy if we are to ensure the interaction is in the

2Note that in the literature what we refer to here as ‘the cavity mode’ is also often referred to generically as
‘the confined light field’.
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strong coupling regime? There are two processes that compete with (i.e. may spoil)
the exchange of energy between the atom/molecule and the cavity field. The first is
the decay rate of the excited state of the atom, γ. If this decay rate is too fast then
the molecule will lose its energy before there is time for it to be exchanged with the
cavity field; we need γ < g. The second decay rate is that of the cavity mode, κ. Again,
for strong coupling we need κ < g. A simple schematic indicating the different rates,
g, γ, κ is shown in Figure 1a. We can thus write a simple criterion for strong coupling
as,

γ, κ < g. (3)

If this criterion is not satisfied, then the system is in the weak coupling regime, a
regime discussed in Supplementary Information I. We note that we have assumed
here that the cavity does not significantly alter the radiative decay rate, γ. This is
certainly true for the large confocal cavities used in the pioneering cQED experiments
depicted in Figure 1a, and discussed further in Section 6.

As we will see, when multiple atoms are involved (as in Figure 1c) the coupling
strength scales with the number of atoms such that the energy level splitting becomes
2
√
Nℏg (Figure 1d). This scaling with

√
N is central to the polaritonic enterprise and

is something we will discuss later.

At the time of writing the field is at a particularly interesting stage, with many exciting
demonstrations reported, and much theoretical activity, but with many questions still
wide open, and elements of controversy still to be resolved [6,7]. A clear appreciation
of the underlying fundamentals is an invaluable guide in navigating this topical area,
and we hope the present contribution will help in that cause.

2. Ensemble vs. single molecule

2.1. Conceptual perspective

ΩN = 2gN = 2
√
Ng, (4)

where gN is the coupling strength for N molecules. This scaling with N - compare
Equation 4 with Equation 2 - is incredibly important; without it we would have no en-
semble molecular strong coupling. The origin of the

√
N comes from cQED theory [8],

but we can use a classical argument to appreciate the result. The energy stored by a
simple harmonic oscillator is proportional to the square of the oscillation amplitude,
the energy stored by an oscillating electric dipole is thus proportional to its dipole mo-
ment, i.e. ∝ |µ⃗|2, so that the energy stored by N dipole sources oscillating in phase will
be proportional to N |µ⃗|2. We can rewrite this in terms of an effective dipole moment,
µ⃗eff , with the effective dipole moment being given by µ⃗eff =

√
Nµ⃗. It is important to

recognise that the coherent behaviour of the molecules so as to yield a giant effective
dipole moment is not the only way the molecules can be linked, although it is the most
evident one in most strong coupling experiments. Another type of coherent behaviour
is possible, the resulting states are usually referred to as collective dark states. These
dark states, together with other related types of non-interacting molecules, specifically
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Figure 2. Transition from weak to strong coupling: (a) shows a schematic of the system, a metallic

Fabry-Pérot cavity filled with photochromic spiropyran (SPI) molecules. The reflectivity at a fixed angle of
incidence is measured in the experiment. (b) shows an example of the reflectivity data obtained, here the

p-polarised reflectance is shown as a function of both photon energy and the time the sample is exposed to

UV light. As the photochromic SPI molecules are exposed to UV light they undergo photoisomerisation into
merocyanine (MC) molecules. MC molecules have a strong absorption in the visible so that as the number of

MC molecules grows the strength of the merocyanin absorption increases, and the initial cavity mode seen as

a reflection minimum around 2.2 eV evolves into two new hybrid modes. For more details see [9].

uncoupled molecules, will be discussed in Section 4.

2.2. Ensemble strong coupling as seen in experiment

At this point it is instructive to look at some experimental data on molecular
ensemble strong coupling. Figure 2a shows a schematic in which a planar Fabry-Pérot
type cavity with metallic mirrors is filled with a polymer matrix (PMMA) in which
are dispersed spiropyran (SPI) molecules. The experiment takes advantage of the
fact that when the transparent SPI molecules are exposed to UV light they undergo
a photo-chemical change to merocyanine (MC), a strongly absorbing dye molecule
whose absorption is centred around ∼ 2.2 eV. The experiment involves measuring
the reflectance (amplitude and phase) of light incident on this molecule-filled cavity.
Here we show the reflectivity, RP, at a fixed angle of incidence (65◦) as a function
of the time for which the sample is exposed to UV light, see Figure 2b. Initially the
cavity is filled with SPI molecules, which are transparent in the visible part of the
spectrum. A minimum in reflectivity is seen at around 2.25 eV, corresponding to
the position of the lowest order cavity mode at this angle of incidence, achieved by
selecting an appropriate cavity thickness, chosen so as to match the mode with the
absorption of the MC. The sample is then illuminated with UV light, and as the SPI
molecules are converted to MC molecules, the material filling the cavity goes from
being transparent to absorbing. The concentration of MC molecules thus increases
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Figure 3. Coupled mechanical oscillators: (a) System of N classical oscillators with mass m and spring

constant kmol coupled to a single oscillator of mass m, and spring constant kcav via springs with spring

constants Kc. (b) A system of two classical oscillators both of mass m and having spring constants kmol and
kcav respectively, coupled with a spring of spring constant

√
NKc. (c) Dispersion relation for the system given

in (a). Band splitting between the two mixed modes is ∝
√
N , and there are N − 1 degenerate, dispersion-less

modes. The bright modes of this system correspond to the two dispersive modes of system in (b).

with time, and from the data we can see that at an exposure time of ∼ 200 s there
are enough MC molecules in the cavity for strong coupling to occur - the cavity mode
at ∼ 2.2 eV splits, and two new minima in the reflectivity appear. Beyond ∼ 1000 s
of UV exposure (not shown) the SPI to MC conversion begins to saturate, the energy
splitting at this point is ∼ 0.6 eV, i.e. 25% of the unperturbed resonance energy, well
into what is known as the ultra-strong coupling regime (see Section 5).

Having acquainted ourselves with some of the key strong coupling phenomena it is
useful to next look at a simple model.

3. The coupled oscillator model

The value of examining a mechanical model for strong coupling is significant, and
in this section we will use it to highlight some of the features of interest to us for
ensemble strong coupling. Many authors have gone into great depth concerning the
use of coupled mechanical oscillator models [10–12], and one can do the same thing
from the perspective of coupled electronic resonances, the underlying physics is the
same.

We begin by discussing a system of N + 1 oscillators, so as to later compare to an
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ensemble of N molecules coupled to a single cavity mode. Note, where we talk about
N + X oscillators the N refers to the number of molecular oscillators and the X
refers to the number of cavity mode oscillators. The two-oscillator system is most
commonly used to illustrate strong coupling as this is the simplest possible system,
for completeness we include a discussion of this case (i.e. N = 1) in Supplementary
Information II.

Our mechanical oscillators are simple masses on springs. The oscillators all have the
same mass m, but we distinguish between ‘cavity-type’ and ‘molecule-type’ oscillators
- the cavity-type oscillators have spring constant kcav, and the N molecule-type oscil-
lators have spring constant kmol. The N molecule-type oscillators are coupled to the
cavity-type oscillator via springs with stiffness Kc, as illustrated in Figure 3a. In the
absence of coupling (Kc = 0), the equation of motion (given by Newton’s second law)
for the cavity-type oscillator is mẍcav(t) = −kcavxcav(t), and for the N molecule-type
oscillators is mẍmol(t) = −kmolxmol(t), such that their natural frequencies (eigenfre-

quencies) are ω0
cav =

√
kcav/m and ω0

mol =
√

kmol/m respectively. Since the oscillators
are uncoupled, the frequency of oscillation of each mass is independent of the proper-
ties of the other oscillators. When coupling (Kc ̸= 0) is introduced, the equations of
motion are then,

mẍmol,i(t) = −kmolxmol,i(t)−Kc (xmol,i(t)− xcav(t)) i ∈ [1, ..., N ],

mẍcav(t) = −kcavxcav(t) +
∑
i=1,N

Kc (xmol,i(t)− xcav(t)) . (5)

For solutions of the form xi(t) = x0i e
−iωt (i.e. assuming the total system oscillates with

a single frequency), the coupled linear equations for x0mol,i and x0cav can be written in
matrix form,

M


x0mol,1

...

x0mol,N

x0cav

 = 0, (6)

where

M =


−kmol−Kc

m + ω2 0 ... 0 Kc

m
...

...
. . .

...
...

0 0 ... −kmol−Kc

m + ω2 Kc

m

Kc

m
Kc

m ... Kc

m
−kcav−Kc

m + ω2

 . (7)

Non-trivial solutions exist for det(M) = 0, which leads to the condition that

ω2 =
1

2

[
ω2
mol + ω2

cav ±
√(

ω2
mol − ω2

cav

)2
+ 4NΓ2

]
and ω2

mol (N − 1 times), (8)
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where

ωmol =

√
kmol +Kc

m
, ωcav =

√
kcav +Kc

m
, Γ =

Kc

m
. (9)

We find three unique eigenvalues: two describing the mixed states (hybrid states
whose eigenvalues are a superposition of both cavity- and molecule-type oscillators)
and N − 1 degenerate dark states (states whose eigenvalues are a superposition of
only one type of oscillator, in this case molecule-type oscillators). The eigenvalues for
N = 20 are plotted in Figure 3c. A casual glance at the N − 1 degenerate eigenvalues
makes these states seem no different to uncoupled states3. However these N − 1
degenerate eigenvalues, ωmol, are best understood by studying their N − 1 unique
eigenvectors, (xmol,1, xmol,2, ..., xmol,N, xcav)

T , in which xcav = 0 and
∑N

i=1 xmol,i = 0.
The two mixed states demonstrate the behaviour xmol,i = xmol for all i. If we only
wish to study the mixed states, this property gives us a useful shortcut. By only
studying motion in which the displacements of all of the molecule-type oscillators
are the same, xmol,i = xmol, the system then reduces to two distinct equations to solve,

mẍmol(t) = −kmolxmol(t)−Kc (xmol(t)− xcav(t)) (10)

mẍcav(t) = −kcavxcav(t) +NKc (xmol(t)− xcav(t)) , (11)

which, writing in matrix form and solving for ω, we find,

ω2
± =

1

2

[
ω2
mol + ω2

cav ±
√(

ω2
mol − ω2

cav

)2
+ 4NΓ2

]
, (12)

These eigenvalues are the same as those of a two-oscillator system (discussed in
more detail in Supplementary Information II), provided we make the transformation
Kc →

√
NKc. Thus, if we are only interested in the mixed/hybrid states of the

N+1 oscillator system we can use the effective two-oscillator model shown in Figure 3b.

We note that ωmol and ωcav are the frequencies of each oscillator if the position of
the other oscillator were to remain fixed. For ki ≫ Kc, ωi ≈ ω0

i , and the natural
frequencies of the uncoupled oscillators are retained. We see in Figure 3c that the in-
troduction of the third spring results in an avoided crossing at resonance. The splitting
at resonance is given by ω2

+ − ω2
− = 2Kc/m. At resonance, such that ωmol = ωcav, in

the uncoupled system we would see the two masses oscillating with the same frequency
but with arbitrary relative phase. In the coupled system, the two normal modes are
given by: the masses oscillating in phase (lower energy) or out of phase (higher energy).

Our treatment here has assumed that the N oscillators are indistinguishable; in prac-
tice this is unlikely to be the case, but extensions to the approach outlined here can be
can be made, for example to include a distribution of oscillator resonance frequencies
(inhomogeneous broadening). The simplicity of the model employed so far makes this
comparison between classical and quantum pictures relatively straightforward, and is
our next topic.

3See Section 4 for a discussion on the difference between these types of state.
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3.1. Quantum vs classical oscillators

The quantum ‘equivalent’ of Newton’s second law is the Schrödinger equation, where,
instead of thinking of the equations of motion, we think about the evolution of the
quantum state, |Ψ⟩, such that H|Ψ⟩ = iℏ∂t|Ψ⟩. The total system state of N molecules
and one cavity mode can be written as |Ψ⟩ =

∑
i=1,N amol,i(t)|Ψmol,i⟩+ acav(t)|Ψcav⟩,

where amol,i(t) and acav(t) are complex time-dependent coefficients. We can write the
coefficients in vector form, A = [amol,1(t), amol,2(t), ..., amol,N(t), acav(t)]

T . Making an
analogy to the classical system, we can write MA = 0, where M is the quantum
coupling matrix,

M =


ωmol − ω 0 ... 0 g

...
...

. . .
...

...

0 0 ... ωmol − ω g

g g ... g ωcav − ω

 . (13)

which when solved for the system eigenvalues, ω, gives

ω± =
1

2

[
ωmol + ωcav ±

√
(ωmol − ωcav)

2 + 4Ng2
]
, ωmol (N − 1 times), (14)

with splitting between the two mixed modes at resonance given by the Rabi frequency
ΩN = 2

√
Ng = 2gN , in agreement with Section 2. The N − 1 dark modes have fre-

quency ωmol. The molecular mode is defined by the transition dipole moment between
the ground and excited state of a particular molecular resonance. The transition
dipole moment is given by µ⃗(t) = e⟨g|r⃗|e⟩exp(iℏωmolt), where r⃗ is the displacement
vector and ℏωmol is the energy of the transition involved, and e is the electronic charge.

The physical interpretation of the molecular dark states can be understood by com-
parison to the mechanical oscillator example, but instead of the displacement of the
oscillators, the net vector of the individual dipole moments in relation to the polarisa-
tion vector of the light can be considered. We can see how the classical and quantum
coupling matrices are mapped onto to each other by comparing Equation (7) (classical)
with Equation (13) (quantum). We can thus transform the classical into a quantum
coupling matrix, this is done in Supplementary Information III.

4. Bright, dark, and uncoupled states

In most experiments on strong coupling, uncoupled and dark states look very similar,
a dispersion-less resonance centred around the original molecular resonance frequency
ωmol; here we revisit the system of N + 1 coupled mechanical oscillators to examine
the differences between uncoupled and dark states.
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4.1. Uncoupled states

Uncoupled molecular states are perhaps the easiest to interpret; we remove the cou-
pling springs, or mathematically take springs with Kc = 0. Exciting a molecule-type
oscillator will not affect the cavity-type oscillator, and so we can assume xcav(t)=0,
see Figure 4. When energy is supplied to the N molecule-type oscillators, they may
oscillate with arbitrary phase in relation to one another. On average each oscillator
has zero time-average displacement, but at any given moment their collective net dis-
placement may be non-zero. On a dispersion diagram this will be seen as a band of N
degenerate modes of frequency ω0

mol.

4.2. Dark states

Dark states are often described as any non-bright (non-radiative) state. However in
the context of polaritonic systems, it is important to distinguish between uncoupled
states and dark collective states which – from here onwards – we refer to as dark
states. Dark states are collective states of the coupled system (Kc ̸= 0) to which the
cavity-like oscillator has zero contribution. Unlike mixed states (aka bright states),
exciting molecule-type oscillators in a dark state does not impart energy to the
cavity-type oscillator; thus we again take xcav(t) = 0. There are N − 1 dark states

for which
∑N

i=1 xmol,i = 0, with eigenvalue ωmol (≈ ω0
mol for Kc ≪ kmol as described

in Section 3, the equivalence is exact for the quantum mechanical case). The net
displacement of the molecule-type oscillators must be 0 at all times, to maintain
the condition xcav(t) = 0; their collective motion maintains this condition. This
is in contrast to a bright state, in which xcav(t) ̸= 0. A simple example is that of
a three-oscillator system (two molecule-type oscillators coupled to one cavity-type
oscillator) in which xmol,1(t) = −xmol,2(t). One way to formulate the basis of N − 1
dark states is through xmol,1(t) = −xmol,i(t) for i ̸= 1, xmol,j(t) = 0 for i ̸= j. A basis
change can give dark states which are delocalised over many oscillators. We can also
use a basis change such that the greatest displacement is on a single oscillator, and
the negative displacement is evenly distributed over many or all other oscillators.
For large N , this tends to an entirely local basis. So, dark state excitations can
be modelled as delocalised or localised states; the most appropriate basis to use
depends on how the system is initially excited, e.g. if energy enters the system
via a small subset of spatially-close oscillators then a local basis may be the most
appropriate. In molecule-light systems, all molecules are generally excited at the same
time, so the delocalised basis may be employed. However in disordered systems the
dark states can become semi-localised [13]. The time-scales of the system dynamics
are important, as dephasing is likely to be very quick, leading to dark states acting
as uncoupled states.

The reservoir is a term sometimes used to refer to the system of many molecular
dark states (i.e. the very large N as found in most experiments), and can refer to
uncoupled states, collective dark states or a mixture of both. For the reservoir concept
to work, the number of molecules should be large enough that exciting a given state
does not significantly increase the macroscopic temperature of the system, in line with
the thermodynamic definition of a reservoir.
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Figure 4. Uncoupled vs. dark states of mechanical oscillators: Mechanical oscillator model to describe

uncoupled states and dark states. On the left is the situation for uncoupled states – there is no spring connecting
the molecular resonators (purple) to the cavity resonator (green). On the right is the situation for dark states.

Here the molecular resonators are coupled to the cavity resonator, but the net amplitude of the motion of the

molecular resonators remains zero (hence dark).

4.3. Single molecules or collective mode?

In the previous sections we discussed how an effective 1 + 1 model can be used to
calculate the mixed modes of a coupled system, this reduced the computational effort
required to study the full N + 1 system, but at the cost of ignoring the dark states.
For light-molecule systems, this effective theory comes from treating the molecules
via their collective dipole moment such that gN =

√
Ng.

It is interesting to ask whether this method is always successful in capturing the
behaviour of the system, and if not, when should caution be advised. For realistic
planar cavities the dark modes are not present in the dispersion relation due to
absorption, and due to an impedance mismatch preventing a significant amount of
light entering the cavity around the frequency of the molecular/dark mode resonance,
see e.g. [14], Figure 3b. It could thus be argued that a focus on just the mixed modes
gives a reasonable description of the system, at least when calculating the dispersion
relation. In systems with differing confined light modes, for example surface plasmons
on interfaces, then dark states may be seen in the experimentally obtained dispersion
relation, see [15] Figure 1c. As uncoupled molecules and dark states have the same
frequency, one ‘trick’ to recover the full dispersion relation is to include an additional
uncoupled resonance in the system at the molecular frequency [16]. Whilst the
eigenstates of this composite system are not the same as for the full N + 1 system,
many useful observables can nonetheless be calculated.

When more complex systems such as molecules coupled to surface plasmons on gratings
are considered, the 1 +X effective model (i.e. we consider just one molecular mode,
the collective (bright) molecular ‘mode’, and X photonic modes) fails to correctly
reproduce experimental results, even with the addition of an uncoupled molecular
resonance. The full basis of photonic and molecular states must thus be considered to
describe the optical properties of such systems correctly [17]. For a grating supporting
forward and backward propagating SPs (i.e. where X = 2), the final system will be
described by a basis of 4 bright states and N − 2 dark states. One way in which
these states can be calculated is by including the full set of N molecular states in the
single-particle basis, which also has the advantage of allowing one to include molecule-
dependent variations into the model, e.g. inhomogeneous broadening. Whilst a full
analytical solution may be overly cumbersome, numerical solutions should be tractable.

11



5. Choice of strong coupling criterion

In Section 1 we introduced a simple criterion for atom-light strong coupling with,

Strong coupling condition 1 : g > γ, κ, (3 revisited)

where the decay rate of the excited state of the atom is γ, and κ is the decay rate of
the cavity mode. (Strictly speaking κ and γ are dephasing rates, see Supplementary
Information IV.) The cavity losses are due to absorption and the leaking of energy into
the environment, while the atomic losses are due to spontaneous emission as the atom
relaxes from its excited state to the ground state; for more complicated electronic
states such as those involving molecules, energy can also be lost non-radiatively.4

Since both γ and κ represent losses, a system with no losses will be in the strong
coupling regime for an arbitrarily small value of g. When losses are included a variety
of criteria for strong coupling have been discussed, we now look at these alternatives
by making use of the quantum oscillator model for molecules coupled to a cavity as
discussed in Section 3.1.

Losses can be added as imaginary components of frequency, which lead to a decay in
the amplitude of the associated wavefunction such that e−iℏωmolt → e−iℏ(ωmol−iγ)t =
e−iℏωmolt−ℏγt, and similarly e−iℏωcavt → e−iℏωcavt−ℏκt. The mixed states of the molecule-
cavity system will then have modified frequencies, given by an appropriately modified
version of Equation (14), i.e,

ω± =
1

2

[
ωmol − iγ + ωcav − iκ±

√
(ωmol − iγ − ωcav + iκ)2 + 4g2

]
. (15)

This results in modes with finite width, as found in measurements of optical properties
such as reflection, transmission and phase. An effective dispersion plot can be produced
by plotting the lineshape5, see Figure 5a. We have taken the loss rates as ℏκ = 0.01 eV
and ℏγ = 0.001 eV. At resonance, i.e. where ωmol = ωcav, the Rabi splitting, modified
by losses, is given by,

ω+ − ω− =
√

4g2 − (γ − κ)2 = 2g

√
1− (γ − κ)2

4g2
= Ω. (16)

We see that the presence of damping reduces the Rabi splitting. The expected splitting
(namely the real component of Ω) as a function of g is shown in Figure 5b (solid black
line). For γ = κ the contributions from the two decay rates exactly cancel, giving the
lossless case Ω = 2g, (dotted black line). The presence of non-equal loss mechanisms
means that a non-zero value of g is required in order to have a non-zero Rabi splitting.
We can consider the following candidate criteria for strong coupling as [18–20],

Strong coupling condition 2 : g2 > (γ − κ)2/4. (17)

The onset of this condition is given as a solid purple line in Figure 5b. This definition

4For the mechanical oscillator model discussed in this section, losses are usually in the form of friction.
5The lineshape is given by [(ω − ω+)2 + 4(αγ + βκ)2]−1 + [(ω − ω−)2 + 4(αγ + βκ)2]−1, where α and β are

the molecular and photonic weights of each mode respectively, and α+ β = 1. At zero detuning, α = β = 1/2.
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does not take into account the additional need to overcome the linewidths of the new
modes in order to observe the splitting, and so, as seen in the amplitude plotted
in Figure 5c, no splitting is seen at the onset of this condition. We can define a
new condition in which we demand that the splitting is greater than the combined
linewidths of the modes, such that Re(Ω) > (γ + κ). This gives the new condition (or
rather, a rule of thumb), as,

Strong coupling condition 3 : g2 >
γ2 + κ2

2
. (18)

This condition is shown as a solid blue vertical line in Figure 5b. The expected
amplitude of the lineshape on resonance for this system is given for the values of
g required for the onset of strong coupling conditions 2 and 3 in Figures 5c and d
respectively. Whilst the energy level splitting is real at a relatively small value of g
(i.e. condition 2), no splitting is observed. At the onset of condition 3 a very small
local minimum is observed. Far above condition 3, as illustrated in Figure 5e, two
distinct peaks separated by a local minimum can be observed.

The conditions above are different from the more-often expressed condition,

Strong coupling condition 4 : g > (γ + κ)/2, (19)

which is similar in spirit to condition 3, except that it is first assumed that the
splitting is simply 2g, rather than Re(Ω).

In practice the distinction between these different regimes may not always be impor-
tant. In a system which meets the strong coupling regime as measured against one of
the conditions mentioned above, but not against those of another, then the system is
perhaps only marginally in the strong coupling regime; energy may only have been ex-
changed between the two subsystems for a single oscillation. Often experiments easily
reach the strong coupling regime so that the exact point of transition from weak to
strong coupling is not particularly important. See also Supplementary Information IV.

When the coupling strength is much greater than that needed to ensure that the strong
coupling regime is attained then a regime beyond strong coupling may be entered,
called ultrastrong coupling [21,22]. Rather arbitrarily the criterion for being in this
regime is that the splitting is > 10% of the transition energy. As we have seen in
Section 2, this is often easily achieved. Perhaps the most intriguing aspect of this
regime is that the ground state of the molecular system is predicted to be modified,
the interaction with the field is sufficient to (partially) hybridise the vacuum with the
ground state. A system in which the coupling strength (and thus energy level splitting)
exceeds the transition energy is said to have achieved deep strong coupling [23]. While
this has not yet been achieved with the electronic state of a material, success has been
found using metamaterials [24].

6. Quantitative analysis of experiments

We now take a quantitative look at two representative examples of strong coupling
between atoms/molecules and cavity modes; the examples are chosen for their didactic
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value. First we look at atom strong coupling experiments from the era of cavity-QED.
Second we focus on a planar Fabry-Pérot microcavity experiment where the cavity
was filled with molecules, and the strong coupling involved molecular vibrational
resonances.

We want to be able to check whether the strong coupling condition 1 is satisfied,
i.e. whether or not γ, κ < g. In a typical experiment g, γ, κ are experimentally derived
quantities, albeit often indirectly. We would also like to compare the measured value of
g (inferred from the Rabi splitting measured in an experiment) to the value calculated
from the system parameters using Equation (22) below. To predict Ω there are four
quantities that we need to keep track of in each of the experiments we analyse, these
are: the mode volume (and hence vacuum field strength, E); the number of molecules
involved,N ; the cavity quality factor Q of the cavity resonance, and the dipole moment
of the molecular transition, µ⃗. Before we look at our chosen experiments it is useful to
consider some of these parameters in more detail.

6.1. Mode volume and vacuum field strength

For our present analysis we assume that we have just one cavity mode to consider,
for example the lowest order mode of a planar Fabry-Pérot microcavity as shown
in Figure 2a. Fundamental to the idea of using strong coupling to modify physical,
chemical and material properties is that such effects do not rely on us injecting
light (as is the case for example in laser-controlled chemistry [25]). Instead, the
electric field giving rise to strong coupling is the vacuum field. For what we wish
to accomplish here it is convenient to consider this vacuum field as some kind of
electromagnetic noise; the uncertainty principle prohibits space from being quiet!.
Whilst the mean value of this random field is zero, its RMS value is not zero. (It is
this same electromagnetic vacuum noise that helps to drive spontaneous emission.)
Here it is sufficient to know that in quantum mechanics the ground state of each
mode of the vacuum field can be considered to have an energy ℏω/2, where ω is the
(angular) frequency associated with the mode.

Assuming that we can consider our system (a filled cavity) to be spatially homogeneous
and to be filled with empty space (both clearly not true, but..) then the energy density
associated with this EM field is known from classical electromagnetism [26] to be
ε0E

2
RMS, and the energy associated with the cavity mode is thus ε0E

2
RMSV , where V

is the cavity mode volume. Equating this to the vacuum energy of the mode, ℏω/2,
we find the vacuum field strength associated with the cavity mode to be,

ERMS =

√
ℏω

2ε0εbV
, (20)

where now εb is the background permittivity of the cavity-filling material. Combining
Equations (20) and (1) we find the single molecule coupling strength to be,

g = µ

√
ω

2ε0εbℏV
. (21)

For a given molecular transition of dipole moment µ in a cavity of mode volume V ,
Equation (21) allows us to calculate the corresponding coupling strength g. If we find
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that γ < g then single molecule strong coupling is possible, provided κ < g. If γ, κ ≮ g
then it may still be possible to reach the strong coupling regime by increasing the
number of molecules, i.e. making use of the

√
N scaling factor discussed in Section 2.

Let us now look more closely at the N molecule case.

6.2. The number of molecules N and the ensemble perspective

For an ensemble of N molecules, and bearing in mind our earlier discussion about the
effective dipole moment, the coupling strength can be expressed as,

gN =
√
Ng = µ

√
N

V

ω

2ε0εbℏ
. (22)

We see that provided our molecules fill the mode volume, the coupling strength
scales with the square root of the molecular concentration

√
N/V . This scaling is

an oft-used test for the strong coupling regime, where the energy-level splitting is
measured as a function of the molecular concentration [27].

6.3. Cavity decay rate and Q-factor

There is another powerful message we can extract from Equation (22); if we want
to modify material properties, for example by trying to change the relative energy
of singlet and triplet states in a light-emitting material as a result of hybridisation
[28], then the energy shift, ℏgN , needs to be a substantial fraction of the transition
energy, ℏω0. For example, a shift of 0.2 eV for a transition energy of 2.0 eV requires
gN/ω0 ∼ 0.1. Noting that strong coupling requires κ < gN , and that by extension
κ/ω = 1/2Q < gN/ω we see that in the realm of polaritonic chemistry we need
2Q > ω/gN , where Q is the quality factor of the cavity mode. Thus for a 10% change
in energy level, i.e. gN/ω ∼ 0.1, we need our cavity mode to have a quality factor of
only Q ≥ 5! This is in stark contrast to the cQED case of atom optics where a Q of ∼
108 was required to achieve single atom strong coupling (and was a major technical
challenge). The photonic requirements for strong coupling in the ensemble case are in
general not challenging, indeed, Q ∼ 10 − 100 is a typical requirement, and can even
be achieved with lossy plasmonic modes, a wide range of plasmonic materials and
structures may thus be employed. An additional attraction is that plasmonic modes
may be used to help achieve extreme light confinement, thus enabling single molecule
strong coupling to be achieved [29].

We can look at the use of low-Q cavity modes from another perspective. Molecules are
a very different proposition to atoms for strong coupling; atomic transitions are very
narrow (∼ 107 Hz), whilst molecular transitions are typically very broad (∼ 1013−14

Hz). To achieve molecular strong coupling, where linewidths are broad, we need to
use low-Q cavity modes otherwise the full molecular response cannot be encompassed
by the cavity mode. Whilst all of this seems very promising for molecular strong
coupling, the use of low-Q cavity modes comes at a price. The associated high values
of κ correspond to cavity decay times of order 10 fs. It remains an open question
as to what the full implications of this very rapid timescale may be for the kinds of
chemistry that might be modified by strong coupling.
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6.4. Dipole moment

The dipole moment can not usually be determined from measurements carried out
as part of a strong coupling experiment, in atom optics it may be obtained from
other sources, in the ensemble case it can often be obtained from (optical) extinction
measurements. Here we will make the best estimates we can, bearing in mind that our
objective is to establish some order-of-magnitude comparisons between theory and
experiment.

6.5. Strong coupling experiments involving atoms and cavity QED

We begin by looking at single atom strong coupling. Intense activity during the 1980s
and 1990s was expended on reaching the strong coupling regime for just a single atom
in a cavity [30] so as to test many of the foundational aspects of quantum mechan-
ics, the work was rewarded with a Nobel prize in 2012. Our interest in the present
article however lies in the opposite direction, that of embracing a large number of
molecules. For this reason it makes sense here to begin by examining one of these
early ‘multi-atom’ experiments reported by Kaluzny et al. [31], work that involved
cavities containing sodium (Na) atoms. The transition involved was a Rydberg tran-
sition between the 36S1/2 and 35P1/2 states of atomic sodium, corresponding to a

frequency (wavelength) of 82 GHz (24.5µ m), i.e. in the microwave regime6. In this
particular experiment a beam of atoms was prepared in the 36S1/2 state and then
injected into the cavity. When the atoms emerged from the cavity a detector was used
to determine how many of them were in the excited (36S1/2) and ground (35P1/2)
states as a function of the time that they interacted with the cavity. If the coupling
(interaction) rate between the excited atoms and the cavity was greater than the rates
of dissipation of both the cavity mode, κ, and decay of the upper Rydberg state of the
Na atom γ, then, as we noted above, we expect that the energy should oscillate back
and forth between the cavity mode and the atoms, resulting in a periodic modulation
of the fraction of atoms in the excited state.

Data for the evolution of the excited state population in the experiment of Kaluzny
et al. are reproduced in Figure 6 panel (a), for the case of 40,000 atoms in the
cavity. A clear oscillation can be seen in the excited state population as a function
of interaction time, suggesting that the exchange rate dominates over the dissipation
rates. Moreover, we note that the results for other numbers of atoms in the cavity
also exhibited an oscillatory excited state population, the oscillation period becoming
longer as the number of atoms is reduced. Eventually, as the number of atoms is
reduced sufficiently, the oscillations are no longer seen because the cavity damping
rate dominates; this was the case in this particular experiment when there were 4000
atoms in the cavity7. The results from this pioneering experiment beautifully show
the coherent exchange of energy between the atoms and the cavity mode, indicating
that they have indeed formed a new hybrid state that is part light, part matter.

In panel (b) of Figure 6 we show data from the experiment of Thompson et al. [30]
that involved looking at the spectral transmission of a cavity containing just one
caesium (Cs) atom, employing the Cs 6S1/2 and 6P3/2 transition at a wavelength of

6Note that Rydberg states continue to be an important testing ground for strong coupling physics, see [32].
7Note that making a quantitative connection between the oscillations seen in panel (a) and the predicted

Rabi frequency is quite subtle, see [31] for details.
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(a)

(b)

Figure 6. Atom cavity-QED: (a) Kaluzny et al. The measured upper Rydberg-state population of Na
atoms flown through a cavity resonant with the Rydberg transition, as a function of the time the atoms

interacted with the cavity, shown as circles. The associated theoretical model is shown as a line. Data are

adapted from [31]. The oscillation shows the exchange of energy between the atoms and the cavity as a result
of strong coupling. (b) Thompson et al. The measured average photon number n̄ in cavity through which

Cs atoms fly, shown as a function of angular frequency, more particularly in terms of the de-tuning from the
empty cavity resonance frequency. The boxes give an indication of the error bars. The line is a best fit by the
authors using an analytic expression for the cavity transmittance. Data are adapted from [30]. The frequency

splitting of the cavity transmission peak (2g) arising from strong coupling is shown. The inset shows how the

measured splitting varied with the square root of the number of atoms in the cavity.
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852 nm. Here we see that the isolated cavity mode has been split into two as a result of
coupling between the atom and the cavity mode, evidence that here too the exchange
rate is greater than the dissipation rates. These authors also looked at changing the
number of atoms in the cavity, and found that the splitting became greater and better
defined as the number of atoms was increased, this is also shown in panel (b). This
experiment thus nicely shows the change in energy levels of the hybrid atom-cavity
states, complimenting the demonstration of coherence in the work of Kaluzny et al.,
shown in panel (a). Note that the change in energy between the uncoupled atoms and
the newly created hybrid states is very modest, δE/E ∼ 10−8, interesting for atom
optics, but orders of magnitude away from allowing us to contemplate changing the
energy level structure of molecules. However, as with the results on coherent energy
exchange in panel (a), the resolution to this problem is already present in the data
from both Kaluzny et al. and Thompson et al., both the exchange rate and the energy
level changes increase as the number of atoms increases, this is shown in the inset in
panel (b).

Now let us look at the numbers that relate to the splitting seen in Figure 6b. In
atom optics it is usual to work with frequency, so that the Cs transition occurs at
352 THz. Since our formulae, as is common, are in terms of angular frequency, then
we can write the angular frequency as 2π(352) THz. Thompson et al. give the values
of g, γ⊥, κ (see Supplementary Information IV re: γ⊥) as: g = 2π(3.2 ± 0.2)MHz;
γ⊥ = 2π(2.5 ± 0.2)MHz; κ = 2π(0.9 ± 0.1)MHz. Based on these numbers the
strong coupling condition of γ⊥, κ < g is met. A more detailed analysis is given in
Supplementary Information V.

6.6. Strong coupling experiments involving ensembles of molecules

We now focus our attention on experiments involving ensembles of molecules, and
again look at two experiments, one for information about the temporal oscillations,
the other for an example of energy-level splitting.

For the first of these we look at an experiment by Vasa et al. [15], who investigated
the interaction between dye molecules (TDBC aggregates dispersed in a 50 nm film
of PVA) and the surface plasmon mode supported by a gold stripe array (i.e. a
metallic grating). With an appropriate choice of array period they were able to probe
the coupling between the excitonic resonance of the dye molecules at 2.1 eV and
the surface plasmon mode of the gold surface. They probed the optical response of
this system using a pump-probe set-up that had a femtosecond time resolution. In
Figure 7a we reproduce some of their data for the differential reflectance of their
sample as a function of time. They saw clear oscillations, indicating an exchange of
energy between the molecules and the surface plasmon mode with a period of ∼25 fs,
in reasonable agreement with the extent of the energy splitting (110 meV).

For our second example, concerning energy splitting, we change from the excitonic
resonance associated with the TDBC dye molecules investigated by Vasa et al. to a
vibrational resonance, specifically that of the C=O bond. Vibrational resonances are
usually measured in wavenumbers (cm−1), and the C=O stretch has a resonance at
∼ 1730 cm−1. One of the first reports involving strong coupling of this vibrational
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(a)

(b)

Figure 7. Ensembles of molecules: (a) Vasa et al. The differential reflectance is shown as a function

of time. Clear oscillations are seen, with a period of approx. 25 fs. The oscillations for negative time delays
arise due to dynamics induced by the probe beam. Data are adapted from [15]. The oscillation shows the

exchange of energy between the molecules and the surface plasmon mode as a result of strong coupling. (b)
Shalabney et al. The measured transmittance of a Fabry-Perot cavity comprising two 10 nm thick gold
mirrors. The open circles show the (inferred) cavity transmittance in the absence of the molecular vibrational

resonance, the filled squares show the transmittance when the cavity is filled with molecular resonators, in
this case these are associated with the C=O bond. Data are adapted from [14]. The frequency splitting of the

cavity transmission peak arising from strong coupling is clearly seen, although in this case a detailed analysis

(including examination of angle-resolved measurements) is needed to show that the observed splitting is more
than the result of ‘simple’ absorption.
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resonance was that of Shalabney et al. [14] who made use of the large number of
C=O bonds in a polymer (PVAc) film, using the polymer to provide the spacer
layer in a planar Fabry-Perot cavity. With an appropriate choice of cavity thickness
they ensured the lowest order cavity mode matched the frequency of the vibrational
resonance. Further, by making the mirrors of the Fabry-Perot cavity thin enough (10
nm) they were able to measure the transmission, and thus probe the response of the
system. Some of their transmission data are reproduced in Figure 7b. We see that
the (inferred) transmittance of the cavity in the absence of a molecular vibrational
resonance (circles), a single cavity transmission peak develops a split nature when the
molecular resonance is present (squares). We can determine the extent of the splitting
(2g) to find g = 85 cm−1. This compares with the molecular dephasing rate given by
Shalabney et al. as 13 cm−1 and 65 cm−1 respectively; the strong coupling limit has
thus been achieved. A more detailed analysis is given in Supplementary Information V.

7. Discussion

The goal of this paper has been to describe and explain strong coupling at an
introductory level. We have tried to reduce the topic to the simplest systems,
analogies and concepts. In what follows we discuss aspects that need to be considered
if we are to better understand the complexities present in more complete and realistic
investigations [33]. To begin, we can look at what still needs to be done from two
perspectives, that of the electromagnetic mode(s) and of the molecular system(s).

First we focus on the electromagnetic modes. Throughout this article we have
referred to the confined light mode as the cavity mode, and the detailed discussion
of experiments in Section 6 has predominantly focused on strong coupling using
cavities formed of two mirrors. As the topic of strong coupling has developed, new
molecule-light systems have been introduced, each with their own benefits [34]. Envi-
ronments for confined light can now be in the form of cavities, surfaces, nanoparticles,
arrays, nanorods, gratings; often based on plasmonic platforms, but also employing
dielectric systems. Dispersive material properties and complicated geometries lead to
the possibility that molecules may interact with multiple confined light modes, each
with its own Q factor, mode volume, and electric field profile [35].

When an explicit calculation for a system of one molecular resonator coupled to X
photonic modes, which we write as 1 + X, is undertaken, it is common practise to
write down the resulting coupling matrix in (1 +X)× (1 +X) form, as demonstrated
with the example of mechanical oscillators in Section 38. It has been shown that
this description may be lacking in cases where the photonic modes have large spatial
extent or the molecules have a particularly large dipole moment (or equivalently,
large oscillator strength); in these situations, it is necessary to include the interaction
of the molecular mode with each photonic mode separately, resulting in a 2X × 2X
coupling matrix [36,37].

Accurately describing the electric field strength with high spatial resolution may be

8We used the N + 1 model in Section 3 to describe N molecules coupled to a single photonic mode, but the
maths has precisely the same form for multiple photonic modes coupled to a single molecular mode. ωA and
ωB must simply be associated with the appropriate modes
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critical for complex nano-scale photonic environments such as those including very
small metallic nanoparticles. Here non-local effects such as screening and Landau
damping may also need to be considered [38].

Second, the molecular system. The simplification of treating the molecules as
two-level systems is not always sufficient to describe molecular excitations, which
may have multiple energy levels commensurate with the energies associated with
the cavity field (particularly when considering vibrational degrees of freedom), and
multiple mechanisms for loss and energy transfer within the molecular system. This
is particularly important in the burgeoning field of polaritonic chemistry [39–41],
in which it is hoped that the strong coupling of molecules to the vacuum field will
change things such as reaction rates. The ideal scenario would be to treat a large
number of molecules quantum-chemically, solvent included, at finite temperature, in
a multi-modal, inhomogeneous photonic environment. This is computationally very
demanding, but a good start has been made [42].

We should also consider what calculation methods might be best suited to model
molecules strongly coupled to light. When complicated geometries and effects such
as retardation must be taken into account, macroscopic QED offers a powerful
method for describing the confined light modes [43]. A range of methods have been
compared and contrasted elsewhere [33,41,44]. We might also note that although
molecule-molecule interactions are often neglected, since these effects are generally
small in comparison to molecule-light couplings [45], there may be systems in which
they become important.

Finally we would like to mention some of the open challenges in the field of ensemble
strong coupling. First there is the question of the extent to which single molecule
properties are modified when a given molecule is collectively coupled to many others
via strong coupling. An example of this is Raman scattering. Controversy in this
area remains, despite a decade since the first report [46]. Recent results provide a
somewhat mixed message [47,48], more work is clearly needed. Second, the role of
dark states is – at the time of writing – seeing an intensive investigation. It appears as
though dark states may be important in mediating interactions relevant to polaritonic
chemistry [49,50]. Third, although the field was initially dominated by experimental
reports, with little theoretical input, that situation is now changing, indeed, if anything
theory now outstrips experiment! What would be useful is to bring experiment and
theory closer together. As an example, studying how systems evolve as the number
of molecules increases from 1 up to – say – 1000 in both experiment and theory,
and in a controlled way, may offer a route to explore in a deep way the details of the
strong coupling process. Such an approach will be demanding of both experimental and
theoretical/numerical approaches, and may be daunting for systems where changes in
chemistry are to be detected. Finally we note that there is scope to combine ensemble
strong coupling with other recent developments in nanophotonics, for example by
employing topological nanostructures [51]. Whatever the future for linking molecules
with (virtual) light holds, it has already led to intensive experimental and theoretical
activity and has both broadened our outlook and deepened our knowledge of light-
matter interactions.
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Something from nothing: linking molecules with virtual light
Supplementary Information

SI I. Weak coupling

If the strong coupling criterion (Equation (3)) is not met, i.e. if the rate of energy
exchange is not the fastest rate, then the effect of the cavity is to act as a bath into
which the excitation energy of the molecule is lost irreversibly. In this situation we are
in what is known as the weak coupling regime, and the rate at which this spontaneous
emission (SpE) takes place, Γ, is given by Fermi’s golden rule [52].

Γ =
2π

ℏ2
|µ⃗.E⃗|2 = 2πg2. (I1)

This is the spontaneous emission rate, as modified by the presence of the cavity [52].
In free space Γ0 = 2γ, see Supplementary Information IV. The value of E here is that
of the vacuum, as ‘dressed’ by the cavity . For there to be a significant change in
the SpE rate from the free space value, and yet for us not be in the strong coupling
regime, we need,

κ >> g ≳ γ. (I2)

SI II. Two coupled mechanical oscillators

For completion we give the derivation for the coupling matrix of two coupled mechan-
ical oscillators, as it commonly presented in literature. We recover the expected result
for N = 1 when compared to the N + 1 system in Section 3.

mẍA(t) = −kAxA(t)−Kc (xA(t)− xB(t))

mẍB(t) = −kBxB(t) +Kc (xA(t)− xB(t)) .
(II1)

For solutions of the form xi(t) = x0i e
−iωt (i.e. assuming the total system oscillates

with a single frequency), the coupled linear equations for x0A and x0B can be written
in matrix form,

M

x0A

x0B

 = 0, where M =

−kA+Kc

m + ω2 K
m

Kc

m −kB+K
m + ω2

 . (II2)

Non-trivial solutions exist for det(M) = 0, which leads to the condition that

ω2
± =

1

2

[
ω2
A + ω2

B ±
√(

ω2
A − ω2

B

)2
+ 4Γ2

]
, (II3)

where

ωA =

√
kA +Kc

m
, ωB =

√
kB +Kc

m
, Γ =

Kc

m
. (II4)
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We note that ωA and ωB are the frequencies of each oscillator if the position of the
other oscillator were to remain fixed. For ki ≫ Kc, ωi ≈ ω0

i , the natural frequencies of
the uncoupled oscillators. Properties such as the magnitude of the Rabi splitting and
conditions for strong coupling are not affected by this assumption, and the relative
magnitudes of these values are typically what is found in molecule-light interactions,
and so we use this condition for the rest of this section. We see in Figure 3b that the
introduction of the third spring results in an avoided crossing at resonance. The band
gap at resonance is given by ω2

+ − ω2
− = 2Kc/m. The allowed modes can be set by

changing the spring constants of the system. At resonance, such that ωA = ωB, in the
uncoupled system we would see the two masses oscillating with the same frequency
but arbitrary relative phase. In the coupled system, the two normal modes are given
by: the masses oscillating perfectly in phase (lower energy) or out of phase (higher
energy).

SI III. Classical vs quantum coupling matrix

The classical coupling matrix for two coupled oscillators, i.e. N = 1 from Equation (7),
written in terms of frequencies is,

M =

−ω2
A + ω2 Γ

Γ −ω2
B + ω2

 . (III1)

Dividing the first row of the classical coupling matrix by ωA + ω and the second row
by ωB + ω 9,

M =

ω2−ω2
A

ωA+ω
Γ

ωA+ω

Γ
ωB+ω

ω2−ω2
B

ωB+ω

 . (III2)

Factorising, multiplying by −1, and defining g = −Γ/ω̃ where ω̃ = ω+ωA,B, we recover
the quantum coupling matrix of Equation (13),

M =

(
ωA − ω g

g ωB − ω

)
. (III3)

This comparison of classical and quantum coupling matrices may be extended to sys-
tems with losses [53]. As with the classical model, when N oscillators of frequency ωA

are included, an effective coupling constant gN =
√
Ng can be introduced or the full

N + 1 system can be diagonalised so as to include the dark states.

9This ‘trick’ can be undertaken by remembering that this matrix represents a set of simultaneous equations
represented as Mx = 0, as per Equation (6), and so the rows of the matrix can be divided by different
expressions and still describe the correct equations of motion.
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SI IV. Rate definitions

The three rates, the atom-cavity coupling rate g, the atomic decay rate γ and the
cavity decay rate κ are essential in our understanding of molecular strong coupling.
Here we wish to focus on how these rates are defined since different specialist areas,
and indeed different authors within a specialism, sometimes define things differently,
a not uncommon but nonetheless confusing situation.

IV.1. Atomic/Molecular decay rates

Care is needed here when considering which atomic decay rate is appropriate. Strong
coupling involves a coherent exchange of energy between the material (atom) and the
optical field (cavity mode), it is thus the decay rate of the atomic coherence that is
relevant here. As so often in physics, this can lead to an unexpected factor of two
appearing. For a simple atomic two-level system whose linewidth is determined by the
radiative lifetime10 then the decay rate of the atomic coherence (i.e. the transition
dipole moment, an amplitude) is half the spontaneous emission decay rate (an inten-
sity) [54]. In the atomic optics community these rates are referred to respectively as
the transverse and longitudinal rates, γ⊥, γ∥, with γ⊥ = γ∥/2, with the nomenclature
referring to the evolution of a two level system as described using the Bloch-sphere,
originally developed in the context of nuclear magnetic resonance (NMR). For those
readers more familiar with nanophotonics the quantity they will be familiar with is the
spontaneous emission rate Γ0, something that allows the number of photons emitted
per second to be calculated, i.e. an intensity, thus γ = Γ0/2. Note that the FWHM
linewidth for the case of a transition that is well described by the Lorentz oscillator
(LO) model is 2γ where iγω is the damping term in the LO model.

IV.2. Cavity decay rate

A similar confusion is possible regarding the cavity decay rate. As with the atomic
decay rate, in this case it is decay of the field coherence κ that matters, so the relevant
decay rate is half the cavity linewidth [55], i.e. 2κ = K, where K = ωc/Q, ωc being
the resonance frequency of the cavity and Q the quality factor of the cavity resonance.
Confusingly the value of ωc/Q is often assigned to the variable κ.

SI V. Numerical analysis of experiments

V.1. Numerical analysis - Atom Optics

Here we look at the numbers for the atom optics experiment of Kaluzny et al. [31].
First let us check κ. The authors give the cavity finesse as F = 8×104 which, using

Q = πc/λ0κ = 2FL/λ0, where λ0 is the wavelength associated with the transition
(λ0 =852 nm) and L is the cavity length (1.0 mm), gives κ = 2π(0.9 ± 0.1)MHz
as required, and we can also find Q = 1.9 × 108. This compares to the Q of the
transition of 352THz/2.5MHz = 1.4 × 108, achieving such high Q-factors for the
cavity modes was a major challenge in atom optics. The cavity volume for this type

10We also note that there are implications here regarding the effect of inhomogeneous broadening of strongly

coupled transitions.
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of confocal mode is given by V = πw2
0L/4, where w0 is the beam waist, given by

Thompson et al. as 50 µm. The volume is thus V = 1.96 × 10−12m3. Using (20) we
can calculate the associated vacuum field strength as 80 V·m−1. For the dipole moment
we can consult Steck [56] who gives the (effective) dipole moment as 1.7× 10−29C ·m
(≡ 5.2 D (Debye)). Using (22) we thus find g = 2π(2.1)MHz which, given that we
have ignored the variation of the field across the cavity mode etc. is in pretty good
agreement with the measured value of g = 2π(3.2)MHz.

V.2. Numerical analysis - Vibrational Strong Coupling

Here we look at the numbers for the molecular ensemble system of Shalabney et
al. [14]. In the infrared it is common to use wavenumbers (cm−1) for frequencies. In
wavenumbers the C=O vibrational resonance of interest occurs at 1730cm−1.

In the infrared it is usual to work with wavenumbers, so that the C=O transition
occurs at 1734 cm−1. Shalabney et al. give the value of the splitting ΩR = 2gN as 167
cm−1 (equivalent to 20.7 meV). This gives 2gN = 84 cm−1. The cavity and molecule
damping rates can be estimated as follows. For the cavity the FWHM linewidth of the
empty cavity is found from the prediction by Shalbney et al. to be 130 cm−1 giving
a value for the cavity dephasing rate of κ = FMHM/2 = 65 cm−1. The factor of 2
is because κ is a dephasing rate [55], (see also Supplementary Information IV). The
cavity quality factor is thus ∼ 13. For the molecular dephasing rate, an IR spectrum
for the transmission of the C=O transition is also given by Shalabney et al.. Using
a simple Lorentz oscillator model for the associated permittivity we can extract the
value of γ, we find γ = 16 cm−1, in reasonable agreement with the 13 cm−1 found by
Shalabney et al.. Based on these numbers the strong coupling condition of γ, κ < g is
met. The cavity volume for this type of cavity can be estimated from the reflectivity
of the mirrors [57]. We estimated the reflectivity using a Fresnel approach, making use
of reasonable estimates for the material parameters. We find an average reflectivity of
0.8, allowing us to estimate the cavity volume as 300 µm3. The vacuum field strength
is thus 1.7 × 103 V m−1. (This value is higher than that given by Shalabney et al.
(6.3 × 103 V m−1) since those authors assumed the volume to be equal to that of a
diffraction limited cube. The number density of C=O bonds can be estimated from
the density of PVAc (1.18 g/cm3) and the molecular weight of the PVAc repeat unit
(86 g mol−1) giving a number density of 8 × 1027 bonds m−3. In the cavity volume
there are thus ∼ 2 × 1012 C=O bonds. Finally, the dipole moment can be estimated
from the oscillator strength obtained from the same Lorentzian oscillator fit to the
transmittance data we used above to extract the dephasing rate. We find the dipole
moment to be 0.3 D.

Let us use the numbers above to estimate the vale of g and gN . Making use of Equa-
tions (21) and (22) we find; g ≈ 10−4cm−1 and gN = 110cm−1. We note two interesting
points. First, the value of the single bond coupling strength of 1 × 10−4cm−1 is very
small, orders of magnitude less than the dephasing rates. Second, strong coupling is
possible through the collective action of the ∼ 2 × 1012 C=O bonds involved, giving
gN = 140cm−1, which is nearly twice the measured value of 84 cm−1. Given the large
number of estimates we have made this is a good agreement. A much more refined
analysis of a similar and contemporaneous experiment is given by Long et al. [58].
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SI VI. Densities of states, spectral densities, cooperativity, and the
Purcell factor

We have focused our attention on the electric field as a way to characterise the ‘light’
element in strong light-matter coupling. Whilst this seems to us at least to us to
provide the strongest intuitive perspective, many other frameworks for light-matter
coupling are in use and they are discussed and contrasted here.

VI.1. Densities of states (ρP(ω))

The modification of spontaneous emission that occurs when a molecule is placed
inside a cavity is often the domain of nanophotonics, and the modification is usually
discussed in terms of the local density of optical states. In essence, for an excited
molecule to emit a photon there must be at least one mode in the environment of the
molecule into which emission can take place. If the mode is tightly confined g will
be significant and the emission rate will be enhanced (see eqn. (I1)), a useful tactic
in producing single photon sources. If there is no mode then the emission will be
inhibited, as for example inside a photonic band gap. It is the projected (also known
as partial) local density of states that is important [52] since this takes account of
the relative orientation of the dipole moment and the electric field vector (hence
projected), and the position of the dipole within the field (hence local). It is natural to
ask whether the strong coupling condition can be expressed in terms of the projected
local density of optical states (PLDOS).

To make progress here we need to recognise that we have been rather lax about the
coupling constant g. To calculate the interaction strength rigorously we should take
account of the way the vacuum field strength varies with frequency, i.e. g = g(ω)dω =
(µ/ℏ)E(ω)dω . In our expression for the vacuum field strength we already noted that
the mode volume is the volume occupied by our (assumed) single mode. Now, the
(projected) density of optical states, ρP, is the number of states per unit volume, per
unit frequency. Recognising this we can then identify ρPdω as being 1/V because we
know we have just one mode occupying the mode volume (this was the assumption we
made in deriving eqn. (21). With just one mode present it doesn’t really make sense
to write our coupling rate in terms of a density of states, nonetheless we can do so by
making use of eqn. (21) to write,

g = µ

√
ωρP(ω)dω

2ε0ℏ
. (VI1)

Recalling now that for strong coupling we need κ, γ < g we can now see that there
is no special condition on the density of states for strong coupling; yes, the PLDOS
‘determines’ the coupling strength, but whether that coupling strength is sufficient for
strong coupling is dictated by requiring κ, γ < g.

VI.2. Spectral density J(ω)

Another framework, similar in many ways to the density of states, is the spectral
density J(ω)[59–61]. In contrast to the mode density, the spectral density includes the
dipole moment, i.e. in some sense it incorporates the coupling strength. The spectral

30



density, just like the local density of states, is often a convenient framework with which
to describe light-matter interactions. In terms of the notation used here,

J(ω)dω = g(ω)2dω =
µ2ω

2ε0ℏ
ρP(ω)dω. (VI2)

For completeness we note that in the weak coupling regime Fermi’s golden rule can
be written in terms of the spectral density as Γ = 2πJ(ω).

Interlude Our models have all been very simplistic. For example, frequently more
than one electromagnetic mode may be present [35,36], and as another example we
have ignored the spatial variation of the field within the mode volume [62]. In such
cases ρP(ω) and J(ω) may have their advantages. At root however in the physics of
strong coupling phenomena is the role of the electric (vacuum) field and it is to keep
this physical origin prominent that we have chosen to stick with it here. Depending
on the complexity of the situation, ρP(ω) and J(ω) may be calculated using either
a Green function approach or numerically. Perhaps the most complete description
involves what is known as ‘macroscopic QED’ [43]. However, our simple picture is
informative and allows us to quickly build physical intuition of strong coupling physics.

Two other concepts are encountered in light-matter interactions, albeit in very differ-
ent contexts, the Purcell factor, and the cooperativity; they are associated with very
different realms, but turn out to be the same thing. For completeness, and to show
how they relate to the parameters already discussed.

VI.3. Purcell factor (FP)

The Purcell factor is a measure of the extent to which the electromagnetic environment
around an emitter alters the emitter’s spontaneous emission (SpE) rate. It is a conve-
nient measure of the effect of environment on the emission from a source embedded in
a nano-structure, it is in common use in the nanophotonics community. The Purcell
factor is defined as the ratio of the SpE rate in the presence of the cavity, Γcav, to the
SpE rate in the same host material but in the absence of the cavity, Γ0. Assuming for
the moment that the host medium is vacuum, then we have [63],

FP =
Γcav

Γ0
=

6πQc3

ω3V
, (VI3)

where the expression on the r.h.s. is a standard result, and Q and V are the quality
factor of the cavity mode and the mode volume, as before. We can use eqn. (VI1) to
write the Purcell factor in terms of g rather than V . We can then make use of the
standard expression for the free-space decay rate [63],

Γ0 = 2γ =
µ2ω3

3πε0ℏc3
, (VI4)

where the fact that we have used 2γ, rather than γ is discussed in Supplementary
Information section IV. Lastly we need to note that Q = ω/2κ (again, the factor of 2
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is discussed in Supplementary Information section IV). Combining these we find that,

FP =
g2

κγ
= C. (VI5)

The C in this equation is known as the cooperativity.

VI.4. Cooperativity (C)

The concept of cooperativity was it seems was first established in the area of optical
bistability [64], but has since been adopted by the atom optics community [65,66].
Recalling the discussion above about the atom and cavity decay rates, we note that in
terms of the more familiar experimental quantities, Γ0 and K the single and N-atom
cooperativities are,

C =
4g2

Γ0K
, (VI6) C =

4Ng2

Γ0K
. (VI7)

Definitions of the cooperativity in the literature vary, as do the way the cooperativity
relates to the Purcell factor. These variations typically involve factors of two and
originate from the way different authors chose to define and use the decay rates; the
reader is warned! As an example, the oft-quoted Kimble gives C = g2/2γκ, for which
FP = 2C [2]. The choice we make here is the same as that of Tanji-Suzuki et al. [66],
This choice is convenient when considering data from experiments where it is often
the spectral widths that are important.
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