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Climate response metrics are used to quantify the
Earth’s climate response to anthropogenic changes
of atmospheric CO2. Equilibrium climate sensitivity
(ECS) is one such metric that measures the equilibrium
response to CO2 doubling. However, both in their
estimation and their usage, such metrics make
assumptions on the linearity of climate response,
although it is known that, especially for larger
forcing levels, response can be nonlinear. Such
nonlinear responses may become visible immediately
in response to a larger perturbation, or may only
become apparent after a long transient period. In
this paper, we illustrate some potential problems
and caveats when estimating ECS from transient
simulations. We highlight ways that very slow time
scales may lead to poor estimation of ECS even if there
is seemingly good fit to linear response over moderate
time scales. Moreover, such slow processes might
lead to late abrupt responses (late tipping points)
associated with a system’s nonlinearities. We illustrate
these ideas using simulations on a global energy
balance model with dynamic albedo. We also discuss
the implications for estimating ECS for global climate
models, highlighting that it is likely to remain difficult
to make definitive statements about the simulation
times needed to reach an equilibrium.
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1. Introduction
The central question as to how the climate is likely to change as a function of anthropogenic CO2
emissions can be posed as ‘How does an observation of the climate system respond to changes in
its radiative forcing induced by changes in atmospheric CO2?’. This question has been studied
in various ways for over a century [1,2], although efforts to answer it became more intense
and in-depth over the last decades. Among early efforts was the pioneering work by Charney
et al. in 1979, who made the first estimates of expected equilibrium warming after doubling of
atmospheric CO2 (while keeping vegetation and land ice fixed at present-day values) using a
numerical global climate model (GCM) [3]. This metric has later been named the equilibrium
climate sensitivity (ECS) and is still widely used. Since then, researchers have developed a
number of different metrics that measure climate response to different scenarios of anthropogenic
change in CO2 and have incorporated information from other sources besides computer
models, including historical observations and data from palaeoclimate records. Recently, these
efforts were summarized in an assessment of the World Climate Research Programme [4] that
synthesized different quantifications of climate response using these different lines of evidence
and led to the headline that the Earth’s ECS is likely between 2.6 K and 3.9 K.

One of the hurdles for this assessment was the variety of definitions of (the quantification
of) climate sensitivity—and ECS especially—in the literature. The root of this problem can be
attributed to the lack of data on equilibrium climate states or detailed long-term transient data.
This can be due to low time resolutions in proxy data, lack of observational data or insufficient
computing power to equilibrate modern GCMs. Consequently, equilibrium properties need to be
estimated from incomplete datasets, leading to many slightly different ways to quantify climate
sensitivity. Common to them all, however, is the need to extrapolate long-term dynamics from
data on shorter time scales. In this paper, we discuss this extrapolation process, focusing on
estimates of ECS using (idealized) experiments in climate models for the sake of mathematical
simplicity. Of particular interest here is the exploration of linear and nonlinear, dynamics that can
emerge in multi-scale dynamical systems, and their problematic effects on extrapolation.

The common way to obtain estimates of ECS in climate models involves the use of
extrapolation and regression methods on non-equilibrated transient simulations—typically of
150-year long runs. Values for ECS obtained in this way are now often referred to as the
effective climate sensitivity [5] signalling that it might not encompass all long-term climate change.
Although there are many different ways to perform such extrapolation, they are usually based on
linear concepts and frameworks. A recent review [6] of climate sensitivity highlighted that it is a
key challenge to study the limits of such linear frameworks. Here, we will investigate these limits
and in the process highlight the trade-offs that need to be made when designing experiments to
quantify ECS: in order to measure a clear signal of warming in relation to the noise of natural
variations, large perturbations are desirable but precisely in the case of larger perturbations the
nonlinear behaviour becomes important and linear frameworks break down.

One of the most important tools to study past and future climate change are the GCMs used
in the Coupled Model Intercomparison Projects (CMIP, e.g. [7]), because they provide a globally
complete and detailed representation of the climate state while (approximately) satisfying the
physical laws. However, specifically for these large models there is no way to determine whether
a model really has arrived in the linear regime near an equilibrium, or even if such an equilibrium
exists. In this paper we explore some simple conceptual examples of the potential nonlinear
dynamics of the climate. We also make a number of observations that we hope illuminate some
of the limitations of linear frameworks:

(i) We highlight cases where there may be strong dependence on the climate background
state and the forcing levels.

(ii) We highlight examples where there may be a good fit to transient data but poor extrapolation
preventing an accurate estimation of the ECS.
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(iii) We show that nonlinear systems can have slow tipping points. When these are crossed
the tipping dynamics play out on slow time scales, and it can take arbitrarily long times
before nonlinear and/or asymptotic behaviour is observed.

(iv) We demonstrate how in the presence of multiple time scales with nonlinear feedbacks
a late tipping can occur in which fast processes suddenly dominate after arbitrarily long
slow transient behaviour. This highlights the potential for slow and/or late tipping points
to be particular obstructions to estimating ECS.

The rest of this paper is organized as follows: in the remainder of this section we discuss in general
the response of a nonlinear system to forcing. In §2, we consider the equilibrium response and
ECS of the climate system in terms of limiting behaviour. Moreover, we point out the challenges
that arise when estimating those from short time series, highlighting the trade-offs that emerge
in terms of perturbation size and required simulation time. In §3, we examine the nonlinear
effects that may appear as a result of climate dynamics on multiple time scales, including slow
tipping which may in turn lead to late but rapid tipping. We illustrate these effects using multi-
scale global energy balance models (GEBMs) with dynamic albedo and/or chaotic variability
and an example from a LongRunMIP abrupt8xCO2 run [8]. Finally, we briefly discuss these
results, and the influence of time-varying forcing on estimation of climate response and sensitivity
in §4.

(a) Response of nonlinear models to forcing
Consider a notional state of the climate system y(t) for t > t0 that evolves in response to various
(unknown) forcings, with a partially known initial state y0 and an input of atmospheric CO2
generating a radiative forcing �F(t) that is specified for t > t0. We write this climate state at time
t as y(t) = Yt(y0, t0, �F), where Yt is an evolution operator that evolves forward the initial state y0
(at time t0) up to time t according to a climate model Y with (possibly time-dependent) radiative
forcing �F.

Given a scalar observable O that maps the full climate state y(t), the response clearly depends
on the choice of observable O, the choice of model Y, the forcing �F experienced by the system,
the initial climate state y0 at time t0 and the time moment t > t0 of interest. At the level of a single
initial state y0 starting at t0 of which we have perfect knowledge and subject to deterministic
forcing �F, the response in observable O at time t > t0 is the difference in its value at times t0 and
t, i.e.

RO,Y(t; t0, y0; �F) =O(Yt(y0, t0, �F)) − O(Yt0 (y0, t0, 0)). (1.1)

This corresponds to a two-point response in the terminology of Ashwin & von der Heydt [9]. As
this is often the easiest response type to think about mathematically (and extensions to other types
are possible albeit more technical), it is this response type we will be referring to throughout this
paper. However, often we are interested not in specific trajectories but rather in the distribution
of possible responses for a probability distribution μ0 of initial states and forcing �F. In this case,
we write the response as

RO,Y(t; t0, μ0; �F) =O(Yt(μ0, t0, �F)) − O(Yt0 (μ0, t0, 0)). (1.2)

This corresponds to a distributional response, namely it is a random variable with some
distribution determined by the ‘pushforward’ of the initial probability distribution μ0 by the
dynamics. Furthermore, there are different interpretations of (1.2), depending on the choice of
probability function. These include:

— A physical measure on a climate attractor [9,10]. This can be an observable measured in a
long palaeoclimate time series, or an observable in a model, where the attractor is (partly)
known from the underlying model equations.

— An ensemble of initial conditions that are thought to sample subgrid processes in a model
(or observational data).
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— An empirical measure for a finite segment of trajectory, i.e. a choice of states on {Yt(y0, t0, 0) :
t ∈ [t0, t1]} over some finite interval with t0 < t1, with equal weight to any given time
instant. Such a measure can be approximated from a finite length time series of a
palaeoclimate record.

We note that in the case that μ0 is a physical measure, the empirical measure as defined above
will converge to that same distribution: for a more precise definition of a physical measure, see
for example [11,12]. If there are multiple attractors then there can be several physical measures,
and typical initial conditions converge to one of these depending which basin of attraction they
are in.

2. Equilibrium response and ECS as limiting behaviour
While the response on any time scale can be relevant, the asymptotic or equilibrium, response
as t → ∞ is a particularly important way of characterizing any model. This response is typically
easy to analyse and understand in simple models. Taking the limit t → ∞ of (1.1), the equilibrium
response is

lim
t→∞

RO,Y(t; t0, y0; �F). (2.1)

Of course, this begs the question of whether the limit exists. In particular, one cannot expect such a
limit to hold for any forcing �F. For instance, if the forcing specifies uninhibited and constant
emission of greenhouse gases, the climate system will not evolve to any equilibrium. Hence it
makes sense to limit ourselves to forcing scenarios that have constant forcing levels as t → ∞
(i.e. �F(t) → �F∗ as t → ∞). In practical model studies of ECS, often the forcing is just taken as a
constant throughout the whole simulation.

Of particular interest is the equilibrium response to an instantaneous and abrupt doubling of
atmospheric CO2, which we indicate by the forcing �Fabrupt2xCO2

. Then, the ECS is defined as the
response of global mean surface temperature (GMST) to such forcing, i.e.

ECS(y0) := lim
t→∞

RGMST,Y(t; t0, y0; �Fabrupt2xCO2
). (2.2)

Even for such idealized forcing, such a limit may not be well-defined. In any but the simplest
models, the asymptotic climate state will have stationary internal variability, for which the limit
of the two-point response is not well-defined without first averaging for long enough that any
internal variability is averaged out. In such cases, a distributional response may have a well-
defined limit, although it can happen that even these do not converge in cases where there is
non-ergodic behaviour [13].

It is difficult to say anything definitive about the convergence of climate response in
state-of-the-art GCMs. These models are numerical representations of the underlying physical
equations, which have been developed to include many physical processes and ever-improving
parametrizations of subgrid scale processes; they are very high-dimensional and complex. We do
not have access to the attractors of these models and so cannot exclude the possibility of poor or no
convergence. These models are roughly calibrated only by assessing how well they can reproduce
the present day climate, including the historical period. However, in practice, reaching the true
equilibrium may also be less relevant with such a model; the physical state of the climate system
after a few centuries or even millennia could be difficult to predict anyway because of incomplete
knowledge of the initial state y0, model details and forcing. For these reasons, a pragmatic effective
climate sensitivity [5,14] is often taken, in which response over a few centuries or millennia is taken,
ignoring dynamics on longer time scales. However, we focus here on cases where the limit in (2.2)
is well-defined.
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(a) Background state, forcing scenario and ECS
In (2.2), it is clear that the ECS depends on the initial condition y0 or background state where the
latter refers to the initial climate attractor. However, often ECS is given without explicitly stating
initial conditions. This can lead to ambiguity about what is meant by ECS when comparing
simulations of current and palaeoclimates. Because of the possibility of multi-stability of the
climate system, there may be multiple climate states possible for the same CO2-level. In physical
terms, the dependence on the background state originates from feedback processes that change
as the forcing is applied [10], necessitating a proper communication of the background state
considered when computing the ECS.

Further, in the definition of ECS (2.2) a doubling of atmospheric CO2 is given as forcing
scenario. However, in practice, ECS is often used as a measure of temperature increase per CO2
doubling. So by assuming linearity of the climate response to forcing levels, ECS is employed
to estimate warming for other CO2 forcing levels. Specifically, for an abrupt 2γ xCO2 forcing, an
assumption of linear response would mean that warming of γ times the ECS is expected:

lim
t→∞

RGMST,Y(t; t0, y0; �Fabrupt2γ xCO2 ) = γ ECS(y0). (2.3)

However, this clearly ignores smooth nonlinear corrections that become significant for γ large
enough. Moreover there may even be discontinuous corrections for large enough γ , if a tipping
point is crossed.

We suggest it would be helpful to have greater clarity on when and how this linearity
assumption breaks down in specific cases. For example, it has been verified that this linearity
assumption does break down in GCMs for large enough perturbations: palaeoclimate simulations
with a wide range of CO2-concentrations suggest such linearity can be broken [15] and
multi-millennial experiments in the model intercomparison project LongRunMIP [8] also show
deviations from linearity; abrupt4xCO2 experiments can lead to more than twice the warming of
an abrupt2xCO2 experiment in the same GCM. Further, abrupt8xCO2 experiments led to less than
twice the warming of an abrupt4xCO2 experiment. Hence, the usage of ECS as a linear predictor
for warming based on CO2 levels can easily lead to over- or underestimations of warming.

(b) Challenges to estimating ECS from time series
It is computationally expensive to run state-of-the-art GCMs and, in principle, millennial length
simulations may be needed to get close to equilibrium (e.g. the LongRunMIP [16]). Because there
exists variability on many time scales and spatial feedback patterns in these models, there is no a
priori method to determine when or indeed whether a nonlinear model has reached equilibrium.
This means that the equilibrium response of a climate model cannot be directly found from time
evolution of the model; instead, one needs to derive and extrapolate the equilibrium properties
of the model from possibly relatively short transient data.

In general, estimation of ECS for a model (such as a GCM) involves four steps:

(i) Design of an experimental protocol (initial conditions, forcing levels, simulation time,
ensemble of runs of the GCM);

(ii) Selection of a time period for fitting;
(iii) Fitting of transient observable data to a less complex model;
(iv) Extrapolation to derive equilibrium properties from the fitted model.

Many different protocols have been used—see e.g. [14, table 2] that lists 11 different
methodologies. However, the most common standard for estimating ECS uses a technique by
Gregory et al. [17]. Typically, a single abrupt CO2-forcing experiment is run (starting from pre-
industrial forcing levels, and it is standard to use an abrupt 4xCO2 forcing) for some years
(150 years is the benchmark for CMIP6 models). The transient data on change in the yearly
and globally averaged observables near-surface-temperature �T and top-of-atmosphere radiative
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imbalance �N is fitted to the linear model �N = λ�T + f . Then, equilibrium warming �T∗ is
estimated setting �N = 0 in this linear model (since, in equilibrium, there should be radiative
balance), yielding �T∗

est = −λ−1f . It is clear that GCMs are not well-approximated by this simple
linear model over all time scales; because climate feedback processes operate at quite different
time scales, �N and �T will have a nonlinear relationship that has non-zero curvature over the
course of a long simulation, and the linear relationship only holds approximately for certain
time intervals [8,18–20]. Better fits to the response over all the time scales can be found by
considering a combination of several linearly decaying modes, i.e. by viewing the climate system
as a combination of linear processes with quite different time scales [18,21–24].

Other protocols use results from the literature of linear response theory directly [25–33]. That is,
in relative generality, the response (of an observable O) in the linear regime of a (nonlinear) system
to a forcing can be characterized via a (causal linear observational) Green’s function G[O](t).
Specifically, the yearly and globally (and ensemble) average near-surface-temperature increase
�T at time t under a certain forcing scenario �F is given by the relation

�T(t) = (G[T] ∗ �F)(t) :=
∫ t

0
G[T](s)�F(t − s) ds.

Using this relationship, transient data can be used to estimate the Green’s function G[T] from
which the equilibrium response can be extrapolated—which can be done through fitting to some
prescribed function (typically a sum of decaying exponential functions) or through a discrete
Fourier transform algorithm.

For all the fitting and extrapolation protocols, the optimal choices in the protocol are not always
obvious as certain trade-offs need to be made:

(i) The simulation time needs to be as long as possible to ensure (a) we are in the linear
response of the final equilibrium state and (b) fluctuations caused by natural variability
can be averaged out. However, long simulations for GCMs are computationally
expensive and even these will not be able to detect slow time scales beyond the length of
simulation time.

(ii) A large ensemble and/or a long time period for fitting needs to be chosen to reduce noise
caused by internal variability. However, each additional ensemble member increases the
simulation effort and still the time period for fitting needs to start as late as possible to
maximize the chance of being in a linear regime.

(iii) The perturbation needs to be as large as possible to maximize the signal-to-noise ratio
for the fitting procedure. However, large perturbations may result in nonlinear effects,
including tipping into different climate states.

Figure 1 illustrates two important trade-offs between perturbation size and integration time.
In particular, the figure highlights the need to find a ‘Goldilocks Zone’ where the perturbation
is neither too small nor too big. Examples of these trade-offs in a nonlinear setting using an
conceptual energy balance model are discussed within §3.

(c) Slow linear responses and ECS
We start by illustrating some challenges that already arise in the linear response regime of a
model. In such settings, extrapolation can be difficult if the time scale of the slowest response
exceeds the length of time series available. To illustrate this, we now consider the evolution
of a linear observable O of a finite M-dimensional linear system. In the absence of repeated
eigenvalues, the Green’s function will be a sum of exponential functions (with exponents being
the eigenvalues) with the following functional form:

G[O](t) =
{∑M

j=1 β
[O]
j eλjt if t ≥ 0

0 if t < 0
, (2.4)
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Figure 1. Schematic diagrams illustrating trade-offs between perturbation amplitude and integration time when computing
ECS on perturbing a linearly stable state of a nonlinear climate model. The light blue regions illustrate the trade-off needed to
give a good signal-to-noise ratio of the estimate of ECS. The pink region illustrates the trade-offneeded to ensure the systemhas
entered the linear regime. The green ‘Goldilocks zone’ shows points where accurate prediction of ECS is possible. (a) illustrates
a case where the state is globally stable while (b) shows a case where a large enough perturbation (above the red bar) pushes
the system out of the linear regime—perturbations above this may in principle give super-long transients and/or convergence
to another stable state. Finally, (c) shows a case where accurate estimation of ECS is not possible—this may be because low
frequency variability is too great and/or attraction to the stable state is too slow.
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Figure 2. Examples of the response of observables�O1 (black),�O2 (blue) and�O3 (red), sums of exponential functions (see
text). Note that the t-axis is given in log-scale to highlight how long these different equations stay almost indistinguishable:
the red case corresponds to a linearly unstable setting, i.e. a ‘run-away’ scenario.

where λj ∈ C represent eigenvalues of the linear system and β
[O]
j ∈ R depends on the

corresponding eigenvector and observable; often λj is restricted to the negative reals but more
generally they may be complex with oscillatory decay (e.g. [34]).

Estimating the Green’s function for high (or infinite) dimensional systems can be extremely
challenging—not least because linear operators in infinite dimensions may have a continuous
(operator) spectrum. Nonetheless, one can assume a functional form for G[O](t), and fit parameters
from transient data. This approach has been applied successfully to many response problems in
the climate system (e.g. [30,33–35]).

Let us now assume that (2.4) holds for the Green’s function, and restrict to λ ∈ R. Even then,
the number of modes M needs to be determined, and that comes with its own problems as shown
in figure 2 which compares responses of �O1(t) = 3 − e−10t − e−t − e−0.1t, �O2(t) = �O1(t) + 1 −
e−0.01t and �O3(t) = �O1(t) + e+0.01t − 1. The first two are bounded but with different asymptotic
values; the third has a ‘run-away’ response. Nonetheless, figure 2 shows that all three observables
are indistinguishable at first; only over longer time scales does the effect of the extra term become
apparent. It is practically impossible to determine which of these functional forms is correct from
short-time transient data only.

In the climate system, the dynamics play out over many different time scales [36,37]. Hence,
this should play an important role in understanding GCM experiments. In particular, it is
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important to try to determine time scales on which the constructed estimations and extrapolations
can be trusted, as there seems to be no way to completely rule out slow warming, or even
slow tipping, on all slow time scales. GCMs very often do not include the very slow climate
components such as land ice sheets dynamically, but still need very long spin-up times and
almost never are integrated to full equilibrium. For example, palaeoclimate experiments with
GCMs typically show considerable drifts in the globally averaged ocean temperature after several
millennia of simulation, while already in good radiative balance (e.g. [38]).

3. Nonlinear response and ECS for climate models
In the previous section, we discussed potential problems associated with time scales that can
affect estimation of ECS even for linear systems. In this section, we turn our attention to issues
related to nonlinear response. Here, a particular challenge are tipping points where fast dynamics
can suddenly take over even after long, very slowly evolving transient periods; this is impossible
in a purely linear system.

To be explicit, we consider a GEBM with dynamics on two time scales and the possibility of
tipping phenomena on a slow or a fast time scale. We introduce the model in §3a. Subsequently,
we consider tipping-related effects due to slow time scales in §3b and due to internal variability
in §3c.

(a) A fast-slow energy balance model
We consider a GEBM of Budyko–Sellers–Ghill type [39–41], which describes the evolution of
GMST T according to the model

C
dT
dt

= Q0(1 − α) − εσT4 + μ + μNV(t), (3.1)

where C is the specific heat capacity, Q0 is the incoming (predominantly short wave) solar
radiation, α is the planetary albedo (so that Q0α is the reflected solar radiation) and εσT4

is the outgoing (predominantly long-wave) Planck radiation (with planetary emissivity ε and
Boltzmann constant σ ). Further, μ represents the mean radiative forcing due to increases in CO2
and μNV(t) models variability in radiative forcing, assumed to have zero mean. We take [42]

μ = μ0 + A0 log
[

ρ(t)
ρ(0)

]
(3.2)

with A0 = 5.35 W m−2, where ρ(t) is the concentration of atmospheric CO2 at time t, and μ0 is a
reference radiative forcing level for a CO2 concentration of ρ(0).

When albedo and/or emissivity are taken to be temperature-dependent, i.e. α = α(T) and/or
ε = ε(T), the model can have multiple stable climate states each with different climate sensitivity.
In this paper, we assume there is relaxation towards a temperature-dependent equilibrium albedo
α0(T) at a rate τα ≥ 0, while we assume the emissivity responds immediately:

τα
dα

dt
= [α0(T) − α],

α0(T) = α1 + (α2 − α1)
1 + tanh(Kα[T − Tα])

2

ε(T) = ε1 + (ε2 − ε1)
1 + tanh(Kε[T − Tε])

2
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.3)

Note that α0 and ε0 change from one constant to another as T moves through a range of
temperatures near Tα,ε [9]; α0(T) models the (relatively slow) lowering of albedo in the presence
of land ice sheets, while ε0(T) models a (relatively fast) transition from a clear to a cloudy planet
with large quantities of low cloud. Each of them on their own can lead to a bistability between
cold and warm climate states but we include both to allow the possibility of independent slow
and fast tipping points. In fact, we believe that both the (slowly settling) temperature-dependent
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Table 1. Values for the GEBM (3.1) with dynamic albedo (3.3) and chaotic variability (3.5) used in the numerical simulations. We
take the standard choice for the Lorenz parameters: σ = 10, ρ = 28 and β = 8/3. For the simulations, time t is rescaled to
years. The equilibriumalbedo and (equilibrium) emissivity are given by (3.3). The forcingμ is given by (3.2) andνNV represents
the amplitude of a chaotic forcing via (3.4). The use of ‘· · · ’ indicates that values of column A are also used in this case.

A B C D units
C 5 × 108 · · · · · · · · · J m−2 K−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q0 341.3 · · · · · · · · · Wm−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 5.67 × 10−8 · · · · · · · · · Wm−2 K−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α1 0.7 · · · · · · · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α2 0.289 · · · · · · · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tα 274.5 · · · · · · · · · K
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kα 0.1 · · · · · · · · · K−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε1 0.5 · · · · · · · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε2 0.41 · · · · · · · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tε 288 · · · · · · · · · K
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kε 0.5 · · · · · · 0.1 K−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A0 5.35 · · · · · · · · · Wm−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τα 0 0 5 × 109 5 × 109 s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τNV 0 6 × 107 6 × 107 6 × 107 s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

νNV 0 5 2 × 10−2 2 × 10−2 W m−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

albedo and emissivity are required to have some of the later illustrated phenomena—late tipping
in particular—that do not present themselves in models with constant albedo or emissivity.

We include natural variability of the energy input at the surface represented by chaotic forcing
through a Lorenz-63 model, i.e. natural variability μNV is given by

μNV = νNV sin
(

πx(t)
20

)
, (3.4)

where x adheres to the Lorenz-63 model, which conceptually represents the chaotic dynamics of
weather processes [43]

τNV
dx
dt

= σ (y − x)

τNV
dy
dt

= x(ρ − z) − y

τNV
dz
dt

= xy − βz

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.5)

so that νNV is a measure for the strength of the variability and τNV is the characteristic time scale
of chaotic variability. Parameter values used in the simulations in this paper are given in table 1,
except where stated otherwise.

There are two special parameter settings that we distinguish. We say there is dynamic albedo
if τα > 0; in the case τα = 0, albedo settles instantaneously so that we can eliminate (3.3) and set
α = α0(T). We say there is chaotic variability if νNV �= 0; in the case νNV = 0, there is no internal
variability and we can eliminate the chaotic Lorenz-63 model (3.5).

It is well known that in the case of no internal variability, equations (3.1) can be bistable [39,41].
Due to the functional forms of temperature-dependent albedo and emissivity, the model (3.1) can
have one, two or three stable equilibria depending on the parameter values. This is organized
by a fifth order ‘butterfly’ singularity [44]: see the electronic supplementary material [45] for
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Figure 3. (a) Bifurcation diagram for (3.1) with parameters A from table 1. The bifurcation parameterμ represents radiative
forcing due to atmospheric CO2. Solid lines correspond to stable equilibria, and dashed lines to unstable equilibria. There are two
different branches of stable equilibria: one that corresponds to a cold climate (blue) and one that corresponds to awarm climate
(red). (b) Equilibrium ‘two-point’ response for different forcing levels corresponding to 2γ × CO2 starting from an initial state
T0 = 293 K corresponding to equilibrium temperature before perturbation. The red part of the figure corresponds to end states
on the warm branch; the blue part to end states on the cold branch. The dashed line indicates the location of a tipping point. (c)
ECS (i.e. equilibrium two-point response to CO2 doubling) as function of the initial temperature T0. Blue lines indicate starting
points on the cold branch; red lines indicate starting points on thewarmbranch; the grey region corresponds to unfeasible initial
temperatures (i.e. they lie on the unstable branch in (a)). The large peak in the blue line corresponds to tipping from the cold
branch to the warm branch; the location of this tipping point is indicated with a dashed line.

a verification and in-depth analysis of the bifurcation structure of this model. Nonetheless, for
the parameter values given in table 1, the model is bistable for a certain range of values of the
parameter μ: in this bistable region, the model supports a stable cold ‘icehouse’ and a warm
‘hothouse’ climate state (see figure 3).

Note that the ECS of both type of states (for the same CO2-level) differs between branches as
albedo and emissivity are different between branches. However, the ECS within a branch is also
not constant: figure 3b shows variation between initial points y0 that lie on the same branch (intra-
branch differences). In the climate literature, these variations are not well-quantified, mainly
because they depend on a multitude of physical feedback processes, which are difficult to observe
and model numerically in full [4,46]. Still, it is good to keep in mind that observed or estimated
ECS might vary as the (initial) climate state changes.

(b) Nonlinear response: slow and/or late tipping and ECS
As discussed in §2, if the transient relaxation dynamics of a climate model is approximated well
by a linear system this can be used to estimate ECS. This thus works for nonlinear systems with
small enough forcings. For example, figure 4a shows a simulation of (3.1) with parameters C in

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 F

eb
ru

ar
y 

20
23

 



11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220483

..........................................................

3

(a)

(b) (c)

2

1

–8

–0.04

0

0

0.5

1.0

R
2

10

20

–0.02

λ 
(W

 m
–2

 K
–1

)
�T

* es
t (

K
)

0

0 500 1000

gregory fit fit to decaying exponential

1500 2000 2500 0 500 1000 1500 2000 2500

0 500 1000 1500 2000 2500

500 1000
t (year)

1500 2000 2500

0

0

0.5

1.0

10

20

0 500 1000 1500 2000 2500

500 1000
t (year)

1500 2000 2500

0.02

–0.04

–0.02

0

0.02

–6

–4

–2

0
�10–3

0 500 1000

t (year)

1500 2000 2500

0 500 1000

t (year)

1500 2000 2500

�T
 (

K
)

�α

–0.25

–0.20 orbit
nullcline alpha
nullcline temperature

–0.15

–0.05

0

0.05
temperature and albedo

–0.10

–5 5 10 15 200

�α

�T (K)

Figure 4. Warming in the fast-slow energy balance model (parameters C in table 1) subjected to an abrupt2xCO2 forcing.
The initial forcing μ0 is chosen such that there is an initial equilibrium at T0 = 255 K. (a) Time series for �T and �α

as well as the trajectory through (projected) phase space (cyan). The red dotted curve in the right panel denotes the
nullcline on which dα/dt = 0 and the blue dotted curve denotes the nullcline on which dT/dt = 0, which also acts as
a slow manifold. (b) Gregory fits on time windows of 150 years, showing the thus estimated feedback parameter λ and
expected equilibrium warming�T∗est over time, together with standard errors and R

2 statistic from the linear regression. (c)
Fit to a decaying exponential on time windows of 150 years, showing the estimated feedback parameter λ and expected
equilibrium warming �T∗est over time, similarly showing upper/lower standard error estimates and R

2 from the nonlinear
regression.

table 1 subjected to an abrupt2xCO2 forcing. The initial forcing μ0 is chosen such that there is
an equilibrium at T0 = 255 K. There is a clear two-stage exponential decay to equilibrium with
�T∗ ≈ 3.1 K: the right panel of figure 4a shows that there is a nearby equilibrium attractor.

Figure 4b shows estimates using the Gregory method on rolling windows of 150 years. Within
a time window, we regress the time series of �T and �N := C(d�T/dt) to the linear model �N =
f + λ�T, which gives estimates for the forcing f and the dominant feedback parameter λ. The
regression is performed using the MATLAB fit to linear model fitlm; standard errors for best fit
are shown, and the bottom panel shows the adjusted R2-statistic for this window, where R2 = 1
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implies all variance in the signal is described by the model within the window ending at that time-
point. Equilibrium warming is derived from these fits by extrapolation of the linear model, giving
�T∗

est = −f/λ. Note that the initial 150-year fit is already good. Indeed, one can see decreasing
signal-to-noise ratio and R2 for fits taken later in the time series, as noise dominates the dynamics
of the state this late in the simulation.

A second equilibrium estimation protocol is shown in figure 4c in which blocks of 150 years
are fitted to a decaying exponential function T(t) = T∞ + b eλt using the MATLAB fit to nonlinear
model fitnlm. This gives an estimate for T∞, b and λ with standard errors and is a direct
approximation of a linear response to a Heaviside input; we show λ and �T∗

est = T∞ − T0.
Observe that, similarly to the Gregory fits, these fits also become degenerate for later time
frames.

To contrast with figure 4, figure 5 shows the case for an abrupt4xCO2 forcing but otherwise
identical parameters and initial condition, in which the transient dynamics are not approximated
well by a linear system, although a long transient period (due to the crossing of a slow tipping
point) conceals the nonlinear dynamics. Figure 5a shows that the run seems to rapidly approach
an equilibrium, but warming then continues slowly as albedo slowly decreases. Then, around
t = 1500 yr, there is a surprising and rapid ‘late tipping’ followed by a relaxation to the final
equilibrium. From the fits in figure 5b,c, approximately linear behaviour can be seen at first;
however, we are near (but beyond) a fold bifurcation on the stable part of the slow manifold
where the blue and red nullclines become tangent (i.e. a slow tipping point), and for this
forcing the nullclines are barely detached. As the state passes this point (sometimes called a
ghost attractor), the dynamics on the slow manifold speed up before tipping over a fold in
the slow manifold, causing a rapid late tipping event to another stable branch of this slow
manifold.

Figure 5b shows estimates using a Gregory fit. It can be seen that a fast decay is picked
up initially, and slower decay dominates from about t = 250 yr. At around t = 500 yr, the fitted
value for λ passes through zero, suggesting a linearly unstable climate, and the estimated
warming becomes unreliable. Only after the late tipping event, from t = 1750 yr onwards, the fits
make sense again, with negative λ and sensible warming estimates corresponding to the actual
equilibrium warming of the simulation. Similarly, for the exponential fit shown in (c), λ ≈ −0.05
corresponding to the initial fast decay but this quickly decays to pick up the slow decay with
λ ≈ −0.001 by about t = 250. The fit remains good up to t ≈ 500 yr but after this the estimated
errors on �Test increase rapidly as the fit attempts to fit a decaying exponential to something that
is actually growing slowly but exponentially. At t ≈ 1500 yr the system passes through the late
rapid tipping before settling to a fit to �T∗

est ≈ 72.
Clearly, in both of these fitting approaches the true equilibrium warming is not estimated

accurately at all until after the late tipping event when the system is again approximately linear.
From the fits up to about t = 500 yr there are no obvious hints that anticipate this late tipping
and the fit results seem to indicate convergence to a noisy equilibrium state (hence for example
the low R2 score for the Gregory method as it is mostly noise at this point). Only after t = 500 yr
there start to be some signs of the passing of a slow tipping point (λ > 0 in the Gregory method
and large uncertainties in the exponential fit method) in this example, as the almost-equilibrium
(ghost attractor) on the slow manifold is passed around this time.

Comparing figures 4 and 5, we see very similar fits and estimates up to t = 500 yr, further
indicating the difficulty of distinguishing scenarios with and without late tipping. Moreover, the
perturbation that exceeds the threshold shown in figure 1b lies somewhere between 2xCO2 and
4xCO2 for this model and parameters.

Figure 6 shows an analogous simulation of (3.1) under abrupt4xCO2 forcing but parameters
D of table 1. Again, the initial forcing μ0 is such that there is an initial equilibrium at T0 = 255 K.
For these parameters there is no fold in the critical manifold meaning that there is not a rapid late
tipping (in the bifurcation sense). However, similarly to figure 5, the initial (linear) warming is
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Figure 5. Warming in the fast-slow energy balance model (parameters C in table 1) subjected to an abrupt4xCO2 forcing. The
initial equilibrium is T0 = 255 K. Here, a late tipping event happens as the dynamics drive the system over a fold point of the
slowmanifold. (a) Time series for�T and�α aswell as a the trajectory throughphase space (cyan). The reddotted curve in the
right panel denotes the nullcline onwhich (dα/dt)= 0 and the blue dotted curve denotes the nullcline onwhich dT/dt = 0,
which also acts as a slowmanifold. Fits (b,c) as in figure 4.

not representative of the equilibrium warming and the transient means one can only see evidence
of the final state after t = 1500 yr.

This indicates that even in the absence of (late) tipping points, an initial good fit cannot exclude
a later rapid warming phase in systems that have dynamics on multiple time scales. For all
three simulations presented in this section, extrapolations from fits to the initial few hundred
years look very similar, although their long-term behaviour is very different, again highlighting
that extrapolations may only be accurate after long transients that bring the system into a linear
regime.

(c) Ensemble variability and ECS
When estimating ECS in models with internal variability, one of the ingredients is the precise
choice of the initial conditions y0. In §2a, we already discussed that the background climate
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Figure 6. (a) Warming in the fast-slow energy balance model (parameters D in table 1) subjected to an abrupt4xCO2 forcing.
The initial equilibrium is T0 = 255 K. The left panel shows time series for�T and�α. The right panel shows the trajectory
through phase space (cyan). The red dotted curve in the right panel denotes the nullcline on which dα/dt = 0 and the blue
dotted curve denotes thenullcline onwhichdT/dt = 0,which also acts as a slowmanifold. Note that for the parameters D there
is no longer a late tipping in T of the speed as seen in figure 5, nonetheless there is amoderately rapid increase in T around 1500
years. Fits in (b,c) as for figure 4.

state (i.e. the initial attractor A0) influences the transient and equilibrium response to forcings.
However, the precise initial state y0 on the initial attractor will also impact the observed transient
dynamics and can potentially change the final equilibrium state. We illustrate such situations in
this subsection.

Figure 7a,b shows an abrupt4xCO2 experiment for an ensemble of different initial states on
the same initial attractor (a warm climate state), for a simulation of (3.1) with parameters B of
table 1—note the presence of chaotic variability. There is potential variation in the warming of the
different ensemble members during the transient, which stems from different realizations of the
natural variability, corresponding to the different initial states. Gregory fits over a time window
starting at time 0 up to time t are shown in figure 8a. The associated regression to individual
ensemble members (black) are poor, but the regression to the ensemble average (red) is much
better as the noise (internal variability) is averaged out.
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Figure 7. Results of a 150 ensemble run of abrupt4xCO2 experiments for the energy balance model with chaotic forcing and
instantaneous albedo relaxation (parameters B of table 1 with initial temperature (a,b) T0 = 293 K (a warm climate) and (c,d)
T0 = 255 K (a cold climate)). Initial conditions for the Lorenz part of themodel are randomly chosen for each ensemblemember
separately. (a,c) Time series of the warming�T over time for a random set of 100 of the ensemble members (black) and the
ensemble average (red). (b,d) Heat maps indicating the number of times a certain warming has been observed per time step
(note that temperature bins are differently sized between (b,d)).

Another example is given in figure 7c,d for a different initial attractor (a cold climate state),
where natural variability pushes the state over a tipping point at different times during the
simulation of each ensemble member. The simulations initially suggest relaxation towards a state
close to the original colder state, but later they consistently exhibit tipping to a different (and
much warmer state). In this example, the colder state is almost at equilibrium. As long as the
natural variation in forcing is small enough, the system remains close to the colder state. For
larger fluctuations the system tips into the warmer state. Figure 8b shows that even the ensemble
average is not adequate to estimate ECS in this case; accurate estimates can only be made if the
model has been run until (almost) all individual ensemble members have tipped. Nevertheless,
the ensemble averaged response is still much better than the other approaches, because data from
tipped and non-tipped ensemble members leads otherwise to very unreliable bimodal estimates
with high variance.

Even worse, the equilibrium response may depend drastically on the precise initial state y0;
some part of the initial attractor A0 can be attracted to a final attractor A1, while the rest is attracted
to a different final attractor Ã1. This effect has been called a partial tipping [9,47,48]. The relative
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simplicity of the chaotic GEBM means we have not been able to find partial tipping behaviour
for constant forcing, but we can illustrate this phenomenon by forcing the model temporarily
with an abrupt4xCO2 forcing, after which the initial CO2-levels are restored at time t = 75 yr.
Figure 9 shows the results of this experiment. One can clearly see that some ensemble members
experience tipping but others do not. In this situation (details not shown), partial tipping means
that none of the ECS estimation techniques will paint a full picture. The ensemble average does
contain some information on the number of tipping and non-tipped states but we suggest more
meaningful estimates would need to be made for the attractors separately, first by categorizing
each individual ensemble member as tipped or not, and using estimation techniques on these
categories separately.

(d) Evidence of late tipping within GCM runs
For GCM runs with conditions corresponding to the relatively stable conditions of the Holocene
pre-industrial climate, the accepted wisdom is that we do not expect to find any major global
tipping effects as extreme as the icehouse to hothouse transitions explored above. Nonetheless
there are hints that we may be close to a variety of regional tipping points [49] such as changes
in the Atlantic meridional overturning circulation (AMOC) or West Antarctic icesheet collapse,
and some emissions scenarios are likely to take us over these tipping points. Crossings of these
regional tipping points can result in a global signal, such as changes in the AMOC leading to
global climatic changes [50,51]. Further, as emission reduction scenarios may take us over tipping
points only temporarily [52], also the possibility of a partial tipping of an attractor may be very
relevant to study in GCMs.

Initial conditions for GCM runs are notoriously difficult to set—they are typically taken as the
end of a spin-up simulation, or as a state at some time during a control experiment (in both of
which atmospheric CO2 is kept fixed at the starting levels). In ensemble runs, variation of initial
states on the initial attractor are sometimes explored either by sightly perturbing an initial state
(called ‘micro-perturbations’), or by taking several states of a control run, typically separated by
a few months up to a few years, depending on the time scale of the internal variability that is
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years after which the initial CO2-levels are restored. The initial temperature is T0 = 255 K (a cold climate). (a) Time series of the
warming�T over time for a random set of 100 of the ensemble members (black) and the ensemble average (red). (b) Heat
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being considered (called ‘macro-perturbations’) [53,54]. Nonetheless, even after substantial spin-
up there may be continued variability that can cause extrapolations such as effective climate
sensitivity to continue varying over centennial time scales [5]. For example, [55,56] find multi-
century changes in an atmosphere-ocean GCM, mostly to do with the strength of the AMOC,
depending on the magnitude of the CO2 perturbation.

The response of GCMs can also include late rapid changes. An example of such a late warming
event is visible around year 2300 of the abrupt8xCO2 run in the model CESM 1.0.4 within
LongRunMIP [8]. Figure 10 shows features of this run, along with associated abrupt2xCO2 and
abrupt4xCO2 runs of the same model for comparison. In figure 10a, the time series for the increase
in (yearly averaged) global mean near-surface temperature is shown. For the abrupt8xCO2
experiment a late and sudden increase can be seen around t = 2300 yr (highlighted in red in
the figure), which is not present in the other experiments. We have analysed this data using the
Gregory method on millennia-long rolling windows (to suppress the natural variability on shorter
time scales) in figure 10c,d. We found an increase in the feedback parameter λ around the same
time, and also an underestimation of the equilibrium warming for t < 2400 yr. This is similar to
our findings in a conceptual energy balance model (figure 5) albeit less distinct. Hence, we suggest
that this late warming event in the abrupt8xCO2 run could be an example of a late tipping event
in a GCM. The electronic supplementary material [45] shows this tipping behaviour is probably
due to a qualitative (regional) transition of the AMOC which appears for the abrupt8xCO2 run,
but is not present in the abrupt2xCO2 or abrupt4xCO2 runs. Unlike in figure 5, the tipping for the
abrupt8xCO2 run is of transient nature: the final state is an ‘AMOC on’ state in all cases. Morover,
AMOC tipping generally has less impact on the global mean surface temperature than ice-albedo
feedback processes that generate the tipping in the GEBM.

4. Conclusion and discussion
Although many authors have pointed out deficiencies with estimating and using ECS, it clearly
remains an important metric for understanding the response of climate models to changes in
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Figure 10. Outcomes of multi-millennial experiments in the GCM ‘CESM 1.0.4.’ for an abrupt2xCO2 (green), an abrupt4xCO2
(magenta) and an abrupt8xCO2 (blue and red) experiment (data from longrunmip [8]). For the abrupt8xCO2 experiment, a
sudden late increase in temperature can be seen around year 2500. (a) Time series of global mean surface temperature.
(b)Gregoryplot. (c) Results for estimated climate feedbackparameterλobtainedviaGregoryfits on timewindowsof 1000 years.
(d) Results of estimated equilibrium temperature �T∗est via Gregory fits on time windows of 1000 years, and estimated
warming from a Gregory fit on years 20–150 (dashed lines). For the abrupt8xCO2 experiment the dark, respectively, light
blue indicates years before, respectively, after the late fast warming. The red data points in (a,b) indicate the time period of
the late warming; in (c,d) the red data points indicate that the regression has used some of the data of this late warming
period.

forcing CO2. In particular, ECS and variants of it are key metrics that find their way into decision
making about climate change and its likely impact on human activities. This happens for instance
via integrated assessment models of the socioeconomic impact of an emissions pathway such as
used in [57–59]. In this paper, we have illustrated how such linear concepts could break down in
many different ways, even after long transient periods in which they seem valid, when nonlinear
dynamics start to play a role. Although we have focused in this paper on climate response to
idealized abruptNxCO2 forcing scenarios, we also want to stress that in multi-stable nonlinear
systems the precise outcome can also depend on the pathway taken—that is, not only the amount
but also the timing of emissions can be important. This further complicates and challenges
simplistic linear frameworks. See for instance [52,60] for examples in conceptual settings and
[61] for a discussion on how this can strongly influence integrated assessments.
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Climate is a multi-scale process that takes place on many fast and slow time scales, so it is
unrealistic to assume that all dynamics can be modelled by a univariate linear model. Moreover,
we also cannot expect to estimate processes that take place over substantially longer time scales
than the simulated duration. As we have illustrated in this paper, even in the case of pure linear
response ECS cannot be accurately estimated unless the simulation times are long enough to
resolve the slow time scales such as those common in large scale ocean dynamics or land ice
sheets. On top of that, with the examples in §3 we have illustrated how nonlinear effects in a
multi-scale climate model can lead to additional warming effects—such as slow and late tipping,
with long transients that give no obvious early hints of these late events. Even if a fit is very good
for a long period of time, there can still be large and abrupt late tipping points. In such cases it is
not sufficient to include a nonlinear correction term (such as a quadratic correction to the Gregory
method [62]) to otherwise linear regression models. This is because a late tipping can lead to a
discontinuous response in the long-term behaviour.

In §2 and in figure 1, we have introduced several trade-offs that need to be made when
estimating ECS for a climate model. It would be of great interest to locate the ‘Goldilocks Zone’
in which reliable and accurate estimates ECS are possible, in order to give suitable protocols for
experiments with GCMs. In particular, it would be good to understand (i) the minimum times
and ensemble sizes needed to reliably estimate ECS and (ii) the thresholds in perturbation size
for general GCMs that lead to tipping behaviour. This will depend not just on the current climate
state but also on the processes that are included in the model and the form of the forcing. We
suggest there is a need to find criteria that imply that an estimation protocol will work—and on
which time scales. For instance, the Gregory method when applied on data from one decade can
typically predict a few decades but is unlikely to be predictive on the scale of centuries; similarly,
if only 150 years of data is available, it is unlikely to obtain an accurate estimation on millennial
time scales.

Although we cannot make general quantitative statements about the ‘Goldilocks Zone’ for
GCMs, we can give some more qualitative suggestions for model experiments included in the
ever-growing CMIP activity, which could help reduce estimation errors for climate sensitivity
and eventually help to better quantify the necessary trade-offs.

First, important practical issues for future climate projections include understanding the trade-
offs made when estimating ECS, as well as determining which tipping points may be crossed
on time scales of centuries. Given the increasing evidence that several climate tipping elements,
in particular those related to ice sheet dynamics, could be triggered already at relatively low
warming [49], we suggest to use abrupt2xCO2 experiments as a standard to estimate ECS, rather
than the currently used abrupt4xCO2 experiments, to prevent the crossing of any tipping point.
The presence of natural variability with this choice may lead to decreased signal-to-noise ratio,
which could be remedied by somewhat longer integration times (see figure 1), or additional
estimates of ECS using exponential fitting techniques involving multiple observables or time
scales [18,33]. The latter can also help to understand the different time scales involved in the
response. Moreover, using GCMs to model and understand past tipping elements can further
help to quantify the necessary trade-offs to be made.

Second, regarding the background state-dependence of ECS, the increasing number of Paleo
model intercomparison projects for periods in the past (e.g. Last Glacial Maximum or Pliocene)
can provide valuable insights. These MIPs typically perform one or more experiments with
CO2-concentrations and boundary conditions of that respective time period in addition to pre-
industrial control simulations. We suggest to add a standard experiment, where at the end of
the palaeo-simulation, the CO2-concentration is abruptly doubled (from its palaeo-value) and the
simulation continued for another 150–200 years. This will allow to estimate ECS in the same way
as is done for the models in present-day or pre-industrial mode, and can be used to map out the
background state-dependence of ECS.

Third, it is known that the response to CO2-forcing in any climate model can depend on the
initial conditions both in the atmosphere and the ocean [53,54]. It is, therefore, desirable to use
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(large) ensembles of simulations for one model with different initial conditions to estimate ECS
in addition to multi-model ensembles with only one to a few realizations each. For example, the
large spread in AMOC response to CO2-increase as observed in the CMIP6 ensemble may be
related to different ocean initial states [63].

The most drastic examples of nonlinear response given in this paper concern tipping
phenomena. This begs the question of how relevant this is for future projections with GCMs.
After all, in these models the GMST response is typically fairly linear to changes in forcing levels,
and the transient response seems linear over quite long time scales. This might suggest that
tipping points for GMST are not very relevant. However, the parameter space of such models
has arguably not been sufficiently explored to capture even known cases of Palaeoclimate tipping
such as [64]. As GCMs for future prediction are usually optimized for stable Holocene pre-
industrial climates, they may operate in a too stable manner [65]. Local or regional tipping has
been observed more frequently in GCMs [66] and can be observed in past climate records [36].
Tipping effects at regional levels may give only a small signal in the global average (although
e.g. the AMOC restoration in the abrupt8xCO2 experiment in figure 10 is visible in GMST). Often
the global redistribution averages out—similar to what is described in [67,68]. However, regional
tipping can cause dramatic local impacts, and cascading effects between regional tipping elements
[69,70] may lead eventually to a global response. Hence, for useful impact projection it also will
be important to go beyond classifying climate response purely via GMST to quantifying spatial
responses of various observables to anthropogenic forcing scenarios.

Data accessibility. Simulation data from models in LongRunMIP data.iac.ethz.ch/longrunmip/, including the
here used model CESM 1.0.4, requests for access can be made to the coordinators of LongRunMIP. More
information and details of the simulations can be found on longrunmip.org and in [8]. The numerical code to
simulate and subsequently analyse the conceptual energy balance model introduced in equations (3.1), (3.3),
(3.4) is available from https://github.com/peterashwin/late-tipping-2022. Further details of the model are
provided in the electronic supplementary material [45].
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