
1 

 

Analysis of the role of discontinuities on 

landslide instability at various scales 

utilising remote sensing data and 

numerical modelling 

 

Submitted by Lingfeng He  

to the University of Exeter as a thesis for the degree of  

Doctor of Philosophy  

in Mining and Minerals Engineering 

August 2022 

 

This thesis is available for Library use on the understanding that it is copyright 

material and that no quotation from the thesis may be published without proper 

acknowledgement. 

 

I certify that all material in this thesis which is not my own work has been identified 

and that any material that has previously been submitted and approved for the award 

of a degree by this or any other University has been acknowledged. 

 



2 

 

Author’s declaration 

I declare that the work in this dissertation titled ‘Analysis of the role of discontinuities 

on landslide instability at various scales utilising remote sensing data and numerical 

modelling’ has been carried out by me at Camborne School of Mines. The 

information derived from the literature has been duly acknowledged in the text and a 

list of references provided. No part of this dissertation was previously presented for 

another degree or diploma at this or any other institute.  

The results obtained during this research have been presented in the following 

publications, corresponding to different chapters of the thesis: 

Chapter 3 

He, L., Coggan, J, Francioni, M, Eyre, M. (2021) Maximizing impacts of remote 

sensing surveys in slope stability—a novel method to incorporate discontinuities into 

machine learning landslide prediction, ISPRS International Journal of Geo-

Information, volume 10, no. 4, pages 232-232, DOI:10.3390/ijgi10040232 

Chapter 4 

He, L., Coggan, J., Stead, D., Francioni, M., Eyre, M. (2021) Modelling discontinuity 

control on the development of Hell’s Mouth landslide, Landslides, volume 19, no. 2, 

pages 277-295, DOI:10.1007/s10346-021-01813-3 

Chapter 5 

He, L., Francioni, M., Coggan, J., Calamita, F., Eyre, M. (2022) Modelling the 

influence of geological structures in paleo rock avalanche failures using field and 

remote sensing data, Remote Sensing, Volume 14, no.16, page 4090, DOI:  

10.3390/rs14164090        

          Lingfeng He 

           30/08/2022 

 

 

http://dx.doi.org/10.3390/ijgi10040232
http://dx.doi.org/10.3390/ijgi10040232
http://dx.doi.org/10.3390/ijgi10040232
http://dx.doi.org/10.1007/s10346-021-01813-3
http://dx.doi.org/10.1007/s10346-021-01813-3


3 

 

Abstract: This research focuses on the influence of discontinuities on the origin and 

development of landslide instability mechanisms at different scales. Various remote 

sensing techniques have been used for data acquisition to characterize discontinuity 

and landslide-related features. The remotely captured data was subsequently 

interrogated using a variety of analytical methods and numerical modelling to 

investigate the role of discontinuities at different scales in the origin and development 

of rock slides through analysis of selected case studies. The investigation has been 

carried out through landslide susceptibility mapping (LSM) with the inclusion of 

discontinuities, the use and application of 3D distinct element method (DEM) 

modelling of the Hell’s Mouth landslide in the UK, 2D DEM modelling of a 

catastrophic rock avalanche in Italy, and the analysis of slope instability in an open 

pit mine (more than 200m height) in South America using both a 2D finite/discrete 

element method (FDEM) approach and a 3D DEM approach. 

The result of LSM demonstrates that integration of discontinuity orientation through 

GIS based kinematic analysis can effectively improve landslide prediction using 

machine learning (ML) modelling. In Hell’s Mouth case study, numerical modelling 

and field observations both suggest that the cliff instability was characterised by a 

combination of planar sliding, wedge sliding, and toppling modes of failure controlled 

by the discrete fracture network geometry. For the Italian pale landslide, it was 

controlled by translational sliding along a folded bedding plane, with toe removal 

induced by river erosion resulting in daylighting of the bedding, creating kinematic 

freedom for the landslide. In addition, due to the presence of an anticline, the 

landslide region was constrained in the middle-lower section of the slope where the 

relatively high inclination of the bedding plane was detected. With respect to the 

inter-ramp deformation in South America, modelling results indicate the potential 

control and influence of a rock bridge, constrained by two faults at the toe of the 

slope. It was also demonstrated that blasting-induced weak zones and sequential 

excavations were potential key triggers of the observed slope deformation. 
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Chapter 1. Introduction 

1.1. Overview 

Landslides are a significant geohazard that can have devastating impacts on human 

safety and infrastructure. It has been reported that the total land area over the world 

subjected to landslides is about 3.7 million square kilometres, affecting a population 

of nearly 300 million (Dilley et al., 2005). The relatively high-risk areas (top three 

deciles) cover about 820,000 square kilometres with an estimated population of 66 

million. Worldwide attention has been drawn into this domain, which is focused on 

landslide analysis for purposes of investigating landslide mechanisms, analysing 

landslide development and following hazardous assessment, and proposing 

remedial measures.  

The term ‘landslide’ describes the downward and outward movement of slope-

forming materials including rock, soil, artificial fill, or a combination of these (USGS, 

2004). Landslides can be classified in different ways, with their primary objectives of 

highlighting associated essential features (Varnes, 1978). One of the principal 

landslide classification methods, introduced by Varnes (1978), is based on the type 

of movement primarily and slope-forming material secondarily. With the type of 

movement, landslides are categorized into 6 groups: falls, topples, slides, lateral 

spreads, flows, and complex movements that include combinations of two or more of 

the above-mentioned five types. In addition, considering that landslides may occur in 

various types of lithological environments (e.g., bedrock or engineering soils), 

landslides can also be classified into rock slides, debris landslides and earth 

landslides, respectively. The classification of landslides, based on the types of 

movement and material, is presented in Table 1-1. 

In multiple landslide cases, geological discontinuities (e.g., joints, joints, cleavages, 

bedding, foliation, faults, and folds) have shown their controls on rock or rock-

involved landslide development/occurrence, which is more notable in some typical 

types of movement, such as slides, topples and falls.  
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Table 1-1. Landslide classification based on types of movement and material (Varnes, 1978) 

Type of movement 

Type of material 

Bedrock 
Engineering soils 

Predominantly course Predominantly fine 

Falls Rockfall Debris fall Earth fall 

Topples Rock topple Debris topple Earth topple 

Slides 
Rotational 

Rock slide Debris slide Earth slide 
Translational 

Lateral spread Rock spread Debris spread Earth spread 

Flows 
Rock flow 
(deep creep) 

Debris flow Earth flow 

(soil creep) 

Complex Combination of two or more principal types of movement 

A slide-type landslide is a downslope movement of material that occurs along a 

distinctive rupture or slip surface. Geological structures can act as slip surfaces for 

failure material sliding downward. When the slip surface is planar, the slide is said to 

be translational (Fig. 1-1a); if the slip surface is listric/curved, the slide is rotational 

(Fig. 1-1b). An example of discontinuity-controlled instability is the Downie Slide 

(British Columbia, Canada) where the failed rock mass was displaced along 

translational structure-related shear zones (Donati et al., 2021b). In addition, the 

earthquake-triggered Maoxian landslide (Sichuan, China) is another case to 

demonstrate the dominant role of discontinuities (i.e., bedding) that provide  the 

basal surface for planar sliding (Shao et al., 2019). Additional examples of 

translational landslides include the Utiku landslide (Massey et al., 2013), the Wolong 

landslide(Sun et al., 2021), and the Qiyangou landslide (Fan et al., 2019), which 

were all influenced by discontinuities. Apart from translational slides, discontinuities 

can also influence large-scale rotational failures. A listric fault with a curved fault 

plane, characterized by a decreasing angle of dip with depth, was observed to 

provide a kinematic condition for the Hell’s Mouth landslide (Cornwall, UK) to move 

downward, with the evidence/presence of an arc-shaped scarp (Francioni et al., 

2018a). Seno and Thüring (2006) noted that five catastrophic landslides at Campo 

Vallemaggia, Cerentino, Peccia, Val Canaria, and Val Colla were predominantly 

rotational and structurally related, being controlled by the superimposition of local 

faults and major joints.  

Topple or toppling is a common mode of instability where rock blocks rotate about 

their toes and overturn (Fig. 1-1c). This type of instability is more frequently observed 

in layered or blocky slopes where geological structures with relatively low strength 
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split rock columns into rock blocks. In accordance with different failure mechanisms 

(brittle or ductile), toppling can be classified as direct/blocky toppling (with the 

presence of basal cutting planes) and flexural toppling (with bending of layered rock 

strata) (Hoek and Bray, 1981). The evidence from some toppling failures has shown 

the control of geological structures and their role in landslide development. The 

analysis of Melbur Pit slope instability from Vanneschi et al. (2019) highlighted that 

the geometry and strength parameters of discontinuities have controlling effects on 

defining the geometry of the observed direct toppling and its subsequent 

development. The studies of the Mystery Creek landslide and Mount Breakenridge 

landslide both demonstate the distribution of discontinuities (local joints and 

schistosity, respectively) in influencing the toppling behaviour of large rock slopes 

(Nichol et al., 2002). More examples of toppling instability that demonstrate 

relationships with geological structures include (without limitation to) the Heather Hill 

landslide (Pritchard and Savigny, 1991), Moosfluh Landslide (Glueer et al., 2019), a 

deep-seated large-scale toppling failure in a section of Lancang Slope in Southwest 

China  (Tu et al., 2020), flexural toppling of slate with high-angle faults in the Abe 

River catchment (Yokoyama, 2020).  

 
Fig. 1-1. Sketch of different modes of landslides, including a) translational slide, b) rotational slide, c) 

topple, and d) rockfall (images from (British Geological Survey, 2018)). 
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Rockfall is the downslope movement of rocks that are detached from steep slopes, 

which occurs by free-fall, bouncing, and rolling (Fig. 1-1d). The detachment of rock 

usually occurs along discontinuities, such as fractures, joints, and bedding, which 

potentially reflects the close relationship between rockfall and geological structures. 

Evaluation of the rockfall at Hongshiyan slope, using field survey and subsequent 

analysis, indicated that scale and structural features of discontinuities can have a 

significant influence on rockfall distribution and associated failure mechanism (Li et 

al., 2019). Other rockfall related case studies have also highlighted the controlling 

effect of structures (Palma et al., 2012; Teza et al., 2015; Robiati et al., 2019).  
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1.2. Thesis structure 

This thesis is composed of eight chapters. A summary of the structure is provided 

below.  

1) Chapter 1 presents an overview of the research topic, problem statement, and 

research objectives. Following these, research methods are provided to 

address the research gap and fulfil the objectives.   

2) Chapter 2 presents a literature review associated with the types and 

properties of discontinuities. In addition, different methods of landslide 

prediction and analysis are summarised and reviewed, concentrating on LSM 

and numerical analysis.  

3) Chapter 3 provides novel research on the incorporation of discontinuity 

information into ML modelling for LSM. The research involves: 1) an 

application of GIS-based kinematic analysis to assess a section of coastline 

kinematically prone to landslides. Results from the kinematic analysis, 

coupled with several landslide influencing factors, were then adopted as input 

variables in ML models to predict landslides. Various ML models, such as 

random forest (RF), support vector machine (SVM), multilayer perceptron 

(MLP) and deep learning neural network (DLNN) models were evaluated. 

Results highlight that inclusion of discontinuities into ML models can improve 

landslide prediction accuracy. 

4) In Chapter 4, the controlling effects of discontinuities on a landslide that 

occurred in blocky rock mass are examined. Several integrated remote 

sensing (RS) techniques have been utilized for data acquisition to 

characterize the slope geometry, landslide features and tension crack extent 

and development. In view of the structurally controlled mechanism of the rock 

slope failures, a 3D DEM code 3DEC incorporating a discrete fracture network 

and rigid blocks, was adopted for the stability analysis. In addition, a 

sensitivity analysis was undertaken to provide further insight into the influence 

of key discontinuity parameters (i.e., dip, dip direction, persistence and friction 

angle) on the stability of the coastline within the chosen case study. 

5) Chapter 5 presents a case study to examine the effect of an anticline on an 

ancient translational landslide in layered rocks. Combined use of RS 
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techniques (i.e., UAV-RS and satellite RS) have been utilized to interpret post-

landslide features at various scales. In addition, a 2D discrete element 

method was used to simulate the development of the landslide under the 

influence of river erosion at the slope toe. The influence of folding of the 

bedding plane on the landslide failure mechanism is also investigated. 

6) Chapter 6 provides analysis and modelling of a landslide or slope instability 

that involves rock fracturing and rock mass deformation. In this section, a 

DFN model has been constructed based on field mapping data to characterize 

the on-site or in-situ discontinuity fracture network within the slope geometry. 

2D FDEM numerical analysis was used to investigate brittle rock fracturing 

and rock mass deformation of the failure within the case study slope. The 

analysis also provides an improved understanding of the impact of blasting 

activities and toe removal induced by excavation on the slope instability. In 

addition, a 3D DEM approach has also been used to model the deformation of 

rock bridges under the influence of sequential excavation and blasting. 

Importantly, the modelling results are verified by field observations from the 

case study site. 

7) Chapter 7 provides a discussion on discontinuity control on landslides at 

different scales based on the findings of the investigations undertaken. In 

addition, precautions for ML-based LSM and numerical modelling for jointed 

rock mass are also provided for readers to avoid pitfalls when executing 

similar research.   

8) Chapter 8 summarizes the main achievements and conclusions from the 

research and presents future research work that can be undertaken in this 

area. 
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1.3. Rationale of the research 

In the above-mentioned case studies, discontinuities have been highlighted as one 

of the critical pre-conditioning factors for landslides, providing kinematic freedom for 

rock blocks. Rock slides preferentially occur in the slope under an unfavourable 

condition associated with the geometric arrangement of on-site discontinuities (Stead 

and Wolter, 2015). Therefore, efficient use of the information on geological structures, 

particularly the use and analysis of remotely captured data, can improve the 

understanding of the nature of rock slides, and the interpretation of landslides. 

Landslide susceptibility mapping (LSM) has been used to predict landslide 

probability of a large-scale region (over hundreds of square kilometres in size). LSM 

is usually carried out by using statistical methods to construct mathematic/statistical 

relationships between landslides and selected influencing factors. Its effectiveness 

has been demonstrated in various cases with different statistical models which 

involve support vector machine (SVM) (Yilmaz, 2010; Xu et al., 2012; Kavzoglu et al., 

2014), decision tree analysis (Dou et al., 2019), random forest (RF) (Behnia and 

Blais-Stevens, 2018; Dou et al., 2019), and logistic regression (Chen et al., 2018; 

Huang et al., 2020a), and more complicated deep learning neural networks (DLNN) 

(Bui et al., 2020; Lucchese et al., 2020; Samien et al., 2020a). To date discontinuities 

have rarely been used for LSM. Given the potentially significant role played by 

discontinuities on rock slide susceptibility, the incorporation of discontinuity 

properties (e.g., orientation, distribution, size, strength) may contribute to building 

more robust statistical models and improving landslide prediction accuracy. A method 

to incorporate discontinuities into statistical modelling is developed within the 

research undertaken described within this thesis. 

The role of discontinuities on landslide development still requires further 

understanding, particularly for landslides in blocky rock masses. For example, 

discontinuities have been found to be related to the preferential propagation of 

tension cracks (Bovis and Evans, 1996; Brideau et al., 2007; Zhang, M. et al., 2018). 
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Further analysis of the development of tension cracks may be beneficial to the 

interpretation of the role of discontinuities as well as further understanding of the 

development of a landslide. However, the onset and opening of tension cracks, has 

to date had limited consideration in the numerical analysis of a landslide.  

In addition, rock deformation and/or internal fracturing or damage may occur in 

cases where high stresses concentrations exceed rock strength, such as instabilities 

in large open pit mine slopes or underground excavations. In jointed rock masses, 

rock deformation and associated rock bridge failure increase complexity of stability 

analysis, which are highly influenced by discontinuities and the discrete fracture 

network. Practically, discontinuities (i.e., joints) exhibit a stochastic characteristic of 

their distribution, such as variations in the geometry of joints (e.g., dip, dip direction 

and size) belonging to the same set (Stead and Wolter, 2015; Elmo et al., 2018; 

Miyoshi et al., 2018; Bastola et al., 2020). In this context, joints identified in the field 

are commonly represented by using a discrete fracture network (DFN) to 

characterize their intrinsic relations and stochastic nature (Miyoshi et al., 2018; Pan 

et al., 2019; Zhang et al., 2021). Mechanical behaviours of the rock mass have been 

frequently investigated through the integration of DFN and numerical modelling. 

However, as the integration of a stochastic DFN into numerical analysis may result in 

excessive modelling computation intensity and memory requirements (Elmo et al., 

2018), further understanding of rock block deformation and mechanically anisotropic 

behaviour of jointed rock mass is still required in large-scale slopes. 

The previous overview suggests that control of discontinuities on landslide 

development needs further in-depth understanding, both for large-scale LSM or for a 

relatively small-scale and slope-specific landslide investigation in a blocky rock mass. 

In this context, this PhD research was conducted to provide comprehensive 

understanding of the importance of discontinuities, at different scales, on rock slides. 

This was undertaken to analyse how discontinuities (e.g., faults, bedding, and joints) 

can influence rock slides, providing a reference and analogue for scientists to 

investigate the mechanism of other rock slides effectively and rapidly.   
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1.4. Research methods 

The primary goal of this research is to effectively use and incorporate geological 

structures for landslide prediction and analysis, establishing a multi-scale 

investigation from a specific slope stability assessment (relatively small-scale) to an 

extensive landslide survey (relatively large-scale investigation). In addition, the 

research will also demonstrate utilisation and use of remote sensing (RS) techniques 

to capture important geospatial information concerning geological structures and 

post-landslide features (e.g., slope topography, landslide scarp, tension cracks) that 

provides critical input data for both LSM analysis and numerical landslide analysis.   

The LSM study explores a novel way to incorporate discontinuities into machine 

learning modelling for landslide prediction. Discontinuities, detected from remote 

sensing mapping, were incorporated into a GIS-based kinematic analysis. Results 

from the kinematic analysis were then taken as additional input variables to improve 

the accuracy of ML landslide prediction algorithms. 

Numerical analysis of a specific blocky rock slope was undertaken during the 

investigation to evaluate the role of discontinuities in the origin and development of 

landslides and slope instability. This part of the study contains 3 main sections (3 

case studies) to highlight different controlling influences of discontinuities at different 

scales.  

The first case study adopts a 3D DEM method to simulate the Hell’s Mouth landslide 

where rigid behaviour of rock mass is assumed. The modelling of the Hell’s Mouth 

landslide is used to evaluate discontinuity control on the formation of a ‘zawn’ or inlet, 

the occurrence of two successive landslides and evidence of ongoing instability 

through the opening of tension cracks behind the cliff top.  

The second case study employs a 2D DEM method to investigate the role of folded 

bedding and river erosion in the development of a historic translational landslide in 

Italy. The effect of discontinuities (i.e., a bedding plane and local joints) is analysed 

to define the extent and geometry of the landslide.  
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The third case study is related to the numerical analysis of an identified slope 

instability in a jointed rock mass with consideration of rock block deformation and 

rock bridge failures. In this case study, a slope instability occurred in an open pit 

mine in South America and was modelled by using a finite/discrete element method 

(FDEM) coupled with a DFN to assess role and impact of discontinuities on the 

modelled slope instability failure mechanism. The modelling provides opportunities to 

analyse the mechanical behaviour of rock bridges in the slope that is more than 200-

metre high. The case study is also analysed using 3D DEM modelling to understand 

the influence of sequential excavation and blasting on the instability mechanism.  
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9)   

 

Chapter 2. Background and literature review 

2.1. Types of geological discontinuity 

Discontinuity is a collective term for most types of faults, joints, weak bedding 

planes, weak schistosity planes, weakness zones (ISRM, 1978),  to describe any 

mechanical weakness in rock masses with zero or low tensile strength.  

Faults 

Faults are a typical type of discontinuities with an observable amount of 

displacement. They are formed in the Earth's crust where the movement of the 

tectonic plates provides excessive stress and brittle fracturing occurs in response to 

the stress. Faults are rarely single planar units; normally they occur as parallel or 

sub-parallel sets of discontinuities. In accordance with different mechanisms and 

types of driving stress, faults can be categorized into 3 classes: dip-slip faults, strike-

slip faults and oblique faults as summarized in Table 2-1 (Haakon Fossen, 2016).  

Table 2-1. Brief description of faults, including their types, causes and motions (Haakon Fossen, 

2016). 

Type Cause Motion 

Dip-slip faults 

Normal faults tension 
Hanging wall slides down relative to 
the footwall 

Thrust faults 

compression 

The hanging wall moves up relative 
to the footwall (less than 45° 
inclination) 

Reverse faults 
The hanging wall moves up relative 
to the footwall (more than 45° 
inclination) 

Strike-slip faults 
Left lateral 

shearing 
The opposite block moves to left 

Right lateral The opposite block moves to right 

   

Left-lateral/normal Shearing and 
tension Combination of dip-slip and strike-

slip motions 

Right-lateral/normal 

Left-lateral/reverse Shearing and 
compression Right-lateral/ reverse 
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Dip-slip faults are fractures where the blocks have moved in the dip direction of fault 

planes. When hanging-wall blocks move down (Fig. 2-3a), faults are termed normal 

faults. Normal faulting occurs when tensional stresses cause the crust to be 

stretched, pulling blocks apart away from each other which is the case of divergent 

plate boundaries. Thrust faults (Fig. 2-3b) and reverse faults (Fig. 2-3c) are 

characterized by convergent plate boundaries where the hanging-wall block moves 

up relative to the footwall block induced by compressional stresses. The difference 

between them is related to the inclination of fault planes where thrust faults are of an 

inclination less than 45° and reverse faults are more than 45°.  

 

Fig. 2-1. a) normal fault, b) reverse fault, c) thrust fault (modified after Haakon Fossen, 2016). 

Strike-slip faults (also called transcurrent faults, wrench faults, or lateral faults) are 

vertical or near-vertical fractures where the blocks have moved in the strike direction 

of the fault plane. Strike-slip faults are left-lateral (Fig. 2-2a) or right-lateral (Fig. 2-

2b), depending on whether the block on the opposite side of the fault from an 

observer has moved to the right or left. A typical example is the transform plate 

boundary of two plates sliding past each other, horizontally, and induced by shear 

stresses dominantly. 
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Fig. 2-2. a) left-lateral strike-slip fault, b) right-lateral strike-slip fault (modified after Haakon Fossen, 

2016). 

 

Oblique faults are controlled by both dip-slip and strike-slip displacements and are 

caused by a combination of shearing and tension/compressional stresses. In 

accordance with their motions, oblique faults can be classified as left-lateral/normal 

faults (Fig. 2-3a), right-lateral/normal faults (Fig. 2-3b), left-lateral/reverse faults (Fig. 

2-3c), right-lateral/reverse faults (Fig. 2-3d). 
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Fig. 2-3., a) left-lateral/normal fault, b) right-lateral/normal fault, c) left-lateral/reverse fault, d) right-

lateral/reverse fault (modified after Haakon Fossen, 2016). 

Joints 

Joints are fractures with no visible displacement. They are formed by brittle rock 

fracturing as a consequence of the contraction of rocks induced by cooling and 

consolidation of rocks, or compression and tension during earth movements. For 

instance, sedimentary rocks observed in outcrops or excavations have undergone 

deposition at the surface and gradual burial to depths of several kilometres with the 

imposition of heat and pressure which can cause brittle fracturing when induced 

stresses in rocks exceed their strength (Hoek and Bray, 1981). In general, rock joints 

appear in a group of a parallel or sub-parallel distribution, called a set, and joint sets 

intersect to form a joint network/system as displayed in Fig. 2-4.  
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Fig. 2-4. The pattern of joints in the rock mass. 

Others 

Other types of geological structures include bedding, foliations, cleavage etc.  

• Bedding is one of the principal features for sedimentary rocks. It is made up of 

strata sediments deposited overlying another. Bedding planes are the 

interface between adjacent layers of stratified sedimentary rock. 

• Foliations are formed from the parallel orientation of platy minerals, or mineral 

banding in metamorphic rocks. 

• Cleavage is a type of planar rock feature that developed as a consequence of 

deformation and metamorphism. 

 

 

 

 

 

2.2. Discontinuity characterization 

Discontinuity geometry is a key factor in rock slope stability analysis. In general, rock 

slopes are prone to instabilities with the presence of unfavourably oriented 
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discontinuities. These unfavourable conditions of discontinuities may be associated 

with relative orientation with the slope, a highly persistent weak plane crossing the 

slope, or a very disadvantageous location. The characterization of discontinuity 

geometry allows investigation of slope stability conditions and provides insight into 

the assessment of mechanical properties of the involved rock mass.   

As aforementioned in section 2.1, discontinuities belonging to an identical set 

normally appear in the form of parallel or sub-parallel lineaments. Depending on 

whether variability is considered or not, two principal methods have been widely 

adopted for the characterization of discontinuity geometry: one represents a uniform 

distribution of discontinuities in the rock mass, and another considers the variation of 

discontinuity geometry.  

2.2.1. Methods used to characterize uniform distribution 

A commonly adopted approach to characterize the geometry of a discontinuity set 

follows a uniform distribution and discontinuities belonging to an identical set are 

represented by a series of parallel lineaments. Major parameters to characterize a 

discontinuity set may include orientations (dip and dip direction), persistence, 

spacing, aperture, and roughness.  

Discontinuity orientation  

The orientation of discontinuities is defined by the dip and dip direction (or strike) of 

the plane surface. The dip of the plane is the maximum angle of the plane to the 

horizontal (angle ψ), while the dip direction is the direction of the horizontal trace of 

the line of dip, measured clockwise from north, angle α (see Fig. 2-5) (Hoek and Bray, 

1981). Discontinuity orientation is one of the basic parameters in geotechnical 

engineering, providing the basis for initial estimation of slope stability (Hoek and Bray, 

1981), and assessing mechanical characteristics of discontinuous rock masses (e.g., 

anisotropy of layered sedimentary rocks) (Wittke, 1990).   
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Fig. 2-5. A discontinuity set in the rock mass, showing its geometry parameters that include dip (ѱ), 

dip direction (α), persistence (I), and spacing (S). 

Persistence  

Discontinuity persistence (I) is an index to characterize continuous length of a 

discontinuity (Fig. 2-5). It is measured as trace length in the dip direction through 

scanline sampling and window sampling. This parameter explicitly defines the size of 

a discontinuity, for example, assigning a diameter value to a disc-shaped joint plane. 

Alternatively, persistence can be expressed as the ratio of the discontinuity size to a 

reference size as the representative of discontinuity persistence as either 1D (linear) 

or 2D (planar) features (Einstein et al., 1983; Elmo et al., 2018). Specifically, as 

presented in Fig. 2-6, it is calculated either as the ratio of the sum of the trace length 

li (diameter) to the length of a collinear scanline L, in which ∑li/L is called linear 

discontinuity persistence in 1D (Itasca Consulting Group, Inc., 2017); or as the ratio 

of the sum of the individual discontinuity areas ai to the area of a coplanar reference 

discontinuity plane A where ∑ai/A is referred to as areal discontinuity persistence in 

2D (Shang et al., 2017, 2018a). The latter definition defines the percentage of 

discontinuity or the content of rock bridges instead (0% persistence infers intact rock; 

100% persistence indicates a persistent discontinuity cutting across rock mass), and 

it has been widely adopted in probabilistic analysis (Einstein et al., 1983; Park, 2005) 

and numerical modelling analysis (Kim et al., 2007; Vanneschi et al., 2019; Sun, 
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2021).  

 
Fig. 2-6. The 3D sketch of discontinuities, showing a statistical concept of persistence. 

Spacing  

Discontinuity spacing (S) is the distance between two adjacent discontinuity planes 

(Fig. 2-5). It represents the reciprocal of discontinuity frequency and indicates the 

number of discontinuities in a unit volume of the rock mass. Therefore, it has been 

widely used as a measure of the quality of a rock mass for classification schemes 

(Priest, 1993), such as the associated Rock Mass Rating (RMR) system (Bieniawski, 

1989) and Q classification (Barton et al., 1974). In addition, discontinuity spacing is 

also one of the critical parameters to define the size and shape of the rock block, 

which provides basis for rock stability analysis, such as the determination of toppling 

and sliding failure by the aspect ratio of the rock block (Goodman and Bray, 1976). 

Aperture  

Discontinuity aperture is the mean thickness of the opening separating the two walls 

of a discontinuity. In the field, it is very seldom that the two surfaces are in complete 

contact. They usually exist in a gap or opening between the two sides. A description 

of discontinuity aperture, suggested by ISRM, has been presented in Table 2-2. The 

aperture usually governs friction of two rock surfaces of a discontinuity. Open 

apertures usually have low friction and low shear strength. In addition, they are more 

likely associated with water flow and permeability enhancement in a rock mass.  In 

the field, discontinuities with the opening can be filled with infill materials that are 

termed infilling (such as sands, clays, crushed rocks, or mixture). Infillings can have 
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impacts on the discontinuity strength, particularly regarding shear strength and 

deformability (Papaliangas et al., 1993; Indraratna et al., 2008, 2010, 2014; Pellet et 

al., 2013; Mokhtarian et al., 2020), depending on their mineralogy, condition of 

consolidation, water content, infilling thickness etc. 

Table 2-2. A description of discontinuity aperture suggested by ISRM (1978). 

Magnitude of aperture Description 

＜ 0.1 mm Very tight 

Closed feature 0.1 – 0.25 mm Tight 

0.25 – 0.5 mm Partly tight 

0.5 - 2.5 mm Open 
Gapped feature 

2.5 – 10 mm Widely open 

1 -10 cm Very widely open 

Open feature 10 -100 cm Extremely widely open 

＞ 1m Cavernous 

Roughness  

The roughness of discontinuity surfaces is one of the critical parameters to estimate 

discontinuity shear strength where the discontinuity is nondisplaced and interlocked. 

Roughness is less important in shear strength estimation where significant apertures 

are observed because of the absence of an interlocking effect between the two 

surfaces of a discontinuity. Joint Roughness Coefficient (JRC) is a widely used index 

for roughness characterization (Barton, 1973). JRC quantifies roughness with 

various values from 0 to 20, to characterize surfaces from a smooth, planar and 

particularly slickenside condition to a rough and undulating condition (Appendix A). 

The index plays an important role in the estimation of discontinuity shear strength 

(e.g., Barton’s empirical criterion (Barton, 1973)) and rock mass classification (such 

as the RMR system and Q classification) etc.   

2.2.1. Methods used to characterize stochastic distribution 

Another method for discontinuity characterization, called DFN, takes into account the 

stochastic nature of the geometry (Miyoshi et al., 2018; Pan et al., 2019; Zhang et al., 

2021). DFN refers to a computational model that explicitly represents the geometrical 

properties of each fracture (e.g., orientation, size, position) and the topological 

relationships between individual fractures (Lei et al., 2017a). Fractures are 

commonly characterized by disc-shaped geometry and configured by specific 
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probability distributions of orientation, size, aperture, and intensity/density.  

In the field, it is rare to identify two discontinuities with an identical geometry, even 

when they belong to the same set. DFN models can fully account for the spatial 

variation of the fractures through different probability distributions. These probability 

distributions include uniform distribution (no geometry variability), power-law 

distribution, lognormal distribution, fisher distribution, normal, gamma distribution etc. 

Table 2-3 summarises previous research and associated publications, showing the 

preferential use of probability distributions for DFN realisation. 

Table 2-3. Different probability distributions for DFN realization and associated case studies. 

 Orientation Size Aperture 

Uniform 
(Lei et al., 2017b) 
(Vanneschi et al., 2019) 

(Zhang, Y. et al., 2018) (R. Liu et al., 2019) 

Normal 

(Zanbak, 1977) 
(Marcotte and Henry, 
2002) 
(Zhang et al., 2021) 

 

(N. Huang et al., 2019) 

Fisher 

(Darcel et al., 2018) 
(Wang, J. et al., 2020) 
(Yin and Chen, 2020) 
(Kong et al., 2021b) 
(Karimzade et al., 2017) 
(L. Li et al., 2019) 
(Zheng et al., 2014) 
(Han et al., 2016) 

 

Exponential 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Call et al., 1978) 
(Cruden, 1977) 
(Priest and Hudson, 
1981) 
(Sturzenegger et al., 
2011) 

 

Lognormal 

(Baecher et al., 1977) 
(Guo et al., 2015) 
(Zhan et al., 2016) 
(Zhang et al., 2021) 

(Snow, 1970) 
(Bonnet et al., 2001) 
(Baghbanan and Jing, 
2007) 
(Zou et al., 2019) 
(Yin and Chen, 2020) 

Power law 

(Painter et al., 1998) 
(Odling, 1997) 
(Davy et al., 2013) 
(Liu et al., 2016) 
(Lei et al., 2017b) 
(Feng et al., 2021) 

(de Dreuzy et al., 2002) 
(Lei et al., 2017a) 
 

Gamma 

(Zhang and Einstein, 
2000) 
(Han et al., 2016) 
(Zhan et al., 2016) 

 

For DFN realisation, the concept of orientation is consistent with the aforementioned 
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definition or representation using dip and dip direction or strike. To the author’s 

knowledge, uniform distribution, normal distribution (including bivariate normal 

distribution) and fisher distribution are preferentially used for orientation 

characterization (Table 2-3). Normally, the uniform distribution is used to reduce 

model complexity, creating a simplified DFN model that consists of a series of 

parallel discontinuity planes.  

The size refers to the diameter of a disc-shaped fracture plane which is measured by 

the maximum trace length of a fracture plane in outcrops or excavation walls. 

However, deviations, between true trace length and measured trace length sampled 

on a finite window, may exist because of orientation bias, size bias, truncation bias, 

and censoring bias (Pahl, 1981; Kulatilake and Wu, 1984; Zhang and Einstein, 1998). 

The biases potentially diminish and neglect when the sampling window is large 

enough (Yin and Chen, 2020), whereas they are inevitable on a finite window. To 

address these biases, some mathematical methods have been proposed to 

determine mean trace length from a finite sampling window (Pahl, 1981; Mauldon, 

1998; Zhang and Einstein, 1998; Song and Lee, 2001; Zhu et al., 2014). The size 

might follow the different probability distributions, and one would be chosen based 

on the best fit with geotechnical mapping data. Previous studies indicate that 

exponential distribution, lognormal distribution, power-law distribution, and gamma 

distribution are preferred options over other distributions (e.g., uniform, normal and 

fisher distributions).   

Aperture is another critical parameter for DFN realization. It refers to the mean width 

of a discontinuity opening, which is vital in assessing the hydraulic properties of rock 

mass (Baghbanan and Jing, 2007; Yao et al., 2019). Whereas it has been 

considered less for estimating rock mass strength or stability analysis. This is due to 

its low magnitude, particularly for discontinuity of closed-feature aperture with 

several millimetres in size (see table 2-1 for aperture description), which may bring 

huge challenges for the precise identification and measurement. Alternatively, linear 

and non-linear aperture-length scaling relationships (Cowie and Scholz, 1992; Clark 

and Cox, 1996; Renshaw and Park, 1997; Olson, 2003; Schultz et al., 2008), 

corresponding to shear strength and elasticity of the rock, potentially provide the 

likelihood to estimate discontinuity aperture.  



40 

 

Intensity is a nondirectional intrinsic index which incorporates both a frequency 

measure and a fracture size component (Rogers et al., 2015). Discontinuity intensity 

can be measured in 1, 2, or 3 dimensions as linear, areal and volumetric fracture 

intensity, respectively (Dershowitz and Herda, 1992). Representative intensity 

indexes include,  

1) P10: the linear fracture intensity, expressed as the number of fractures per unit 

length.  

2) P21: Areal fracture intensity is expressed as the length of fracture traces per 

unit area.  

3) P32: Volumetric fracture density, expressed as the area of fracture planes per 

unit volume.  

Fracture intensity can be measured in 1D from a borehole survey or in 2D from 

window sampling, whist 3D measurement is less possible in practice. However, in 3D 

DFN analysis a volumetric intensity may be required, such as P32 required by the 

embedded DFN generator in 3DEC (Itasca Consulting Group, Inc., 2017). In this 

case, a conversion from a 1D/2D index to a 3D index is a potential and feasible 

option to derive the volumetric intensity practically, which has been applied in many 

studies (Manda and Mabee, 2010; Elmo et al., 2014; Rogers et al., 2015; 

Hekmatnejad et al., 2020).    

To date, tools are readily available for automatic or semi-automatic identification of 

DFN information. These tools include Fracman (Golder Associates Ltd., 2018), the 

Compass plugin in Cloudcompare software (Thiele et al., 2017), the ADFNE software 

(Fadakar Alghalandis, 2017), the FraNEP software (Zeeb et al., 2013), the FracPaQ 

Matlab toolbox (Healy et al., 2017). The variety of DFN tools ensures that data 

acquired from various sources, such as LIDAR data, aerial photographs, and 

borehole televiewers, can be used to identify the characteristics of discontinuities in 

the field.    
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2.3. Discontinuity shear strength 

In stability analysis of a rock slope, a critical aspect is to determine the shear 

strength of a potential failure surface that may be associated with a single 

discontinuity plane or a complex path constrained by multiple discontinuities (Hoek 

and Bray, 1981). This section will give a brief introduction about estimation of 

discontinuity strength with different surface conditions. In addition, the explanation of 

basic parameters associated with discontinuity strength and deformability will be 

provided.   

2.3.1. Shear strength of a planar discontinuity 

For individual planar discontinuities, a stress-strain curve (Fig. 2-7b) can 

conceptually outline the shear stress level at various shear strains, which can be 

obtained from direct shear tests that are carried out under a constant normal stress 

condition (presented in Fig. 2-7a). The stress-strain curve depicted in Fig. 2-7b 

outlines 4 stages involved in the displacement process of the rock mass specimen. 

Stage 1 is characterized by linear elasticity, where the rock mass behaves elastically, 

and shear stress increases linearly with strain. After that, at stage 2, the curve 

becomes non-linear and then reaches a peak at which the shear stress achieves its 

maximum value called the peak shear strength at the specific normal stress level. 

Following this, a rapid drop in the shear stress occurs with during stage 3, 

consequently remaining a constant value (residual shear strength) at stage 4. The 

drop in the shear stress at stage 3 corresponds to the gradual loss of cementation 

(called cohesion, 𝑐) with incremental shear displacement.   
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Fig. 2-7. a) the sketch of a shear test under a constant normal loading condition, b) a conceptual 

stress-strain curve from the shear test, c) a graph plotting peak and residual shear strength obtained 

from tests carried out at different normal stress levels. 

The relationship between the peak shear strength 𝜏𝑝 and the normal stress 𝜎𝑛 (Fig. 

2-7c) can be expressed by the Mohr-Coulomb equation, 

𝜏𝑝  =   𝜎𝑛𝑡𝑎𝑛𝜙𝑝 +  𝑐𝑝                                                         (𝐸𝑞. 2 − 1)                                               

Where, 𝑐𝑝 is the cohesive strength of the cemented surface and 

 𝜙𝑝 is the friction angle at the moment of peak shear strength. 

In the case of residual shear strength, the cementation of a discontinuity vanishes 

and cohesion drops to zero. The relationship between the residual shear strength (𝜏𝑟) 

and 𝜎𝑛 can be expressed as  

𝜏𝑟  =   𝜎𝑛𝑡𝑎𝑛𝜙𝑟                                                              (𝐸𝑞. 2 − 2) 

Where, 𝜙𝑟 is friction angle during the residual shear strength. 
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2.3.2. Shear strength of an undulated discontinuity 

It is very rare in the field that a natural discontinuity surface is planar and smooth. In 

general, it exhibits variously rough surface conditions. Joint roughness can improve 

its shear strength, and shear resisting effect is usually counted as an addition of 

friction angle.  

As suggested by Patton (1966), the inclination of a sawtooth face was taken as an 

addition to friction angle, and the associated shear strength is expressed as   

𝜏 =  𝜎𝑛 𝑡𝑎𝑛( 𝜙𝑏 +  𝑖)                                                      (𝐸𝑞. 2 − 3)   

Where, 𝜙𝑏 is the basic friction angle of the sawtooth face and 

 i is the angle of the sawtooth face.  

Patton’s equation may be applicable to the case of low normal stress loading, in 

which the sawtooth would be not broken. In the case of high or extremely high 

normal stress loading conditions, the sawtooth of the surface will be gradually 

sheared off with ongoing shear displacement, and the friction angle will progressively 

diminish to a minimum value of basic or residual rock friction angle. With the 

consideration of the effect of high normal stress loading, Barton (1973) then 

developed a non-linear strength criterion for rock joints, which is expressed as  

𝜏 =  𝜎𝑛 𝑡𝑎𝑛( 𝜙𝑏 + 𝐽𝑅𝐶𝑙𝑜𝑔10 (
𝐽𝐶𝑆

𝜎𝑛
))                                (𝐸𝑞. 2 − 4)   

Where, JRC is joint roughness coefficient and  

 JCS is joint wall compressive strength.  

In addition, according to the results derived from the direct shear tests of 130 

samples with variably weathered rock joints,  Barton and Choubey (1977) revised Eq. 

2-4 to  

𝜏 =  𝜎𝑛 𝑡𝑎𝑛( 𝜙𝑟 + 𝐽𝑅𝐶𝑙𝑜𝑔10 (
𝐽𝐶𝑆

𝜎𝑛
))                                (𝐸𝑞. 2 − 5)   

Where, 𝜙𝑟 is the residual friction angle of the rock that can be estimated by 
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𝜙𝑟  =  (𝜙𝑏  − 20)  +  20 (𝑟 / 𝑅)                                     (𝐸𝑞. 2 − 6)   

Where, r is the Schmidt rebound number wet and weathered fracture surfaces and  

 R is the Schmidt rebound number on dry unweathered sawn surfaces. 

Barton’s empirical equations (Eq. 2-4 and Eq. 2-5) highlight a dynamic influence of 

normal stresses on the reduction of friction angle. However, these two equations 

haven’t considered a scale effect that JRC and JCS values will reduce with the 

increase in the discontinuity size, which facilitates the proposal of the scale 

corrections for JRC and JCS (Barton and Bandis, 1982).  

2.3.3. Discontinuity deformability parameters 

Apart from strength parameters (e.g., cohesion, friction angle), deformability 

parameters are also vital to characterize the mechanical behaviour of a discontinuity. 

Normal stiffness (Kn) and Shear stiffness (Ks) are two parameters to describe the 

overall stress-deformation characteristic of a discontinuity (Goodman et al., 1968; 

Barton, 1972). It is common that these two parameters are used in the numerical 

modelling of rock mass analysis, and are two important parameters for numerical 

analysis in this thesis.  

Kn is defined as the normal stress per unit closure of the joint, and the Ks is the mean 

gradient of the shear stress-shear displacement curve, taken up to the point of peak 

strength (Barton, 1972). Some attempts have been endeavoured to estimate 

stiffness, such as analytical analysis (Indraratna et al., 2015), and experimental 

studies (Kulatilake et al., 2016; Abolfazli and Fahimifar, 2020; Packulak et al., 2021). 

Alternatively, in a simple way, knowing discontinuity spacing it is possible to estimate 

the Kn of individual bedding joints from the following empirical equation (Barton, 1972) 

𝐾𝑛  =    (
𝐸𝑖 ∙  𝐸𝑚

 𝐿 (𝐸𝑖 − 𝐸𝑚) 
)                                              (𝐸𝑞. 2 − 7) 

Where, Em is the deformation modulus of the rock mass 

 Ei is the deformation modulus of the intact rock 
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 L is the mean joint spacing. 

By analogy, Ks can be derived from the expression 

𝐾𝑠  =    (
𝐺𝑖 ∙  𝐺𝑚

 𝐿 (𝐺𝑖 − 𝐺𝑚) 
)                                            (𝐸𝑞. 2 − 8) 

Where, 𝐺𝑚 is rock mass shear modulus 

 𝐺𝑖 is intact rock shear modulus  

From the definitions, it is known that Kn is dependent on normal stress level, and the 

Ks is both normal stress and size-dependent which has been also demonstrated by 

previous studies (Jing et al., 1994). This characteristic potentially imposes 

unpredictable impacts to a dynamic mechanical analysis in which Kn and Ks may be 

varied with the normal stress level. 
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2.4. Strength of jointed rock mass 

It is common that discontinuities are not persistent in rock masses. The presence of 

rock bridges (intact rocks between adjacent discontinuities) can highly increase rock 

mass strength (Stead and Wolter, 2015), as such the content and strength of rock 

bridges are extra key factors for estimating the rock mass strength. Laboratory tests 

are frequently carried out to estimate strength of jointed rock mass (Shang et al., 

2016, 2018b). Apart from laboratory tests, some alternative methods to date have 

been developed for the estimation of jointed rock mass strength. 

2.4.1. Analytical method 

Jennings (1970) developed an analytical approach, based on the concept of 

continuity (K) along the potential failure plane (Fig. 2-8), to estimate equivalent 

cohesion (𝑐𝑒𝑞) and friction (𝜙𝑒𝑞) of the equivalent discontinuity as follow   

𝑐𝑒𝑞  =  (1 − 𝐾) 𝑐 +  𝐾𝑐𝑗                                                (𝐸𝑞. 2 − 9) 

𝑡𝑎𝑛𝜙𝑒𝑞  =  (1 − 𝐾) 𝑡𝑎𝑛𝜙 +  𝐾𝑡𝑎𝑛𝜙𝑗                                   (𝐸𝑞. 2 − 10) 

Where, c is cohesion of the intact rock 

 𝜙 is friction of the intact rock 

 𝑐𝑗 is cohesion of the joint plane 

 𝜙𝑗 is the friction of the joint plane. 

 
Fig. 2-8. The measurement of continuity (K) along a potential failure plane. 
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An important hypothesis of Eq. 2-9 and Eq. 2-10 is that intermittent joints are co-

planar, which means the method may not be applicable to other cases of more 

complicated discontinuity geometry, such as step-path failures and failures 

characterized by irregular geometry. Another limitation of this method is that tensile 

strength is not considered, as stated by Stead et al. (2006). 

2.4.2. Empirical method 

The generalized Hoek-Brown failure criterion (Hoek, 1994), developed on the original 

version (Hoek and Brown, 1980a), has been widely used to determine rock mass 

strength. The criterion takes into consideration of GSI for estimating the reduction in 

rock mass strength for different geological conditions, and is expressed as 

𝜎1
′  =  𝜎3

′  +  𝜎𝑐𝑖 (𝑚𝑏
𝜎3

′

𝜎𝑐𝑖
+ 𝑠)

𝑎

                                 (𝐸𝑞. 2 − 11)  

Where, 𝜎1
′ and 𝜎3

′ are major and minor effective stress at failure, respectively; 𝜎𝑐𝑖 is 

uniaxial compressive strength of intact rock material; 𝑚𝑏 is a reduced value of 

material constant 𝑚𝑖, which is given by 

𝑚𝑏 =  𝑚𝑖 𝑒𝑥𝑝 [
𝐺𝑆𝐼 − 100

28 − 14𝐷
]                                     (𝐸𝑞. 2 − 12) 

The parameter D, a "disturbance factor", denotes the degree of disturbance to which 

the rock mass has been subjected by blast damage and/or stress relaxation. 

Appendix B provides reference values of 𝑚𝑖  for a wide variety of rock types. s and a 

are constants for rock mass, which are associated with GSI and given by 

𝑠 =  𝑒𝑥𝑝 [
𝐺𝑆𝐼 − 100

9 − 3𝐷
]                                           (𝐸𝑞. 2 − 13) 

𝑎 =  
1

2
+  

1

6
 [𝑒

−𝐺𝑆𝐼
15  −  𝑒

−20
3  ]                                     (𝐸𝑞. 2 − 14) 

The uniaxial compressive strength of the rock mass (𝜎𝑐) is derived by setting 𝜎3
′ = 0 

in Eq. 2-11, giving  

𝜎𝑐 =  𝜎𝑐𝑖 ∙ 𝑠𝑎                                                   (𝐸𝑞. 2 − 15) 
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The equivalent friction angle and cohesive strength are determined by fitting a 

tangent to Mohr’s circles, as presented in Fig. 2-9.  

 
Fig. 2-9. The measurement of rock mass strength from Mohr’s circle. 

From Mohr's circle, 

𝜏 =  𝑠 𝑐𝑜𝑠𝜑                                                           (𝐸𝑞. 2 − 16) 

𝜎𝑛  =  𝜎𝑚  −  𝑠 𝑠𝑖𝑛𝜑                                                   (𝐸𝑞. 2 − 17) 

Substituting for 𝜏 and 𝜎𝑛, the Mohr-Coulomb criterion can be rewritten as, 

𝑠 + 𝜎𝑚 ∙ 𝑠𝑖𝑛𝜑 − 𝑐 ∙ 𝑐𝑜𝑠𝜑 =  0                                           (𝐸𝑞. 2 − 18) 

Where, 

𝑠 =
1

2
(𝜎1 − 𝜎3 )                                                      (𝐸𝑞. 2 − 19) 

𝜎𝑚 =
1

2
 (𝜎1 + 𝜎3 )                                                     (𝐸𝑞. 2 − 20) 

2.4.3. Numerical method 

Due to the advantage of modelling discontinuous rocks, numerical methods, 

especially DEM and FDEM approaches, are an alternative for laboratory tests to 

estimate rock mass strength in a deterministic way. In numerical modelling, joint 

properties are well known and compressive loadings are imposed on surfaces of 
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rock mass. A stress-strain curve can be obtained from the modelling based on the 

modelled stress and displacement.  

Various types of compression tests can be simulated through numerical modelling. 

For example, uniaxial compression tests were carried out with a symmetric constant 

loading velocity (CLV) in the vertical direction, being free of boundary conditions 

(confining stresses) on sidewalls (see Fig. 2-10)  (Cao et al., 2016, 2018; Laghaei et 

al., 2018; Mehranpour et al., 2018; Wang and Cai, 2020). With respect to triaxial 

compression test, a SRM is exposed to a symmetric CLV in the vertical direction and 

confined by lateral stresses (Turichshev and Hadjigeorgiou, 2015; Laghaei et al., 

2018). The tests provide the estimation of the rock mass properties, including UCS 

and deformability modulus (e.g., Young’s modulus and Poisson’s ratio). The reliability 

of numerical tests has been validated by experimental tests that are carried out 

under an identical condition (Turichshev and Hadjigeorgiou, 2015; Cao et al., 2016, 

2018). 

 
Fig. 2-10. Numerical modelling of a) a uniaxial compression test of a SRM that is exposed to a 

symmetric CLV in vertical direction and free of confining stresses, b) a triaxial compression test of a 

SRM that is exposed to a symmetric CLV in and confined by latera. 
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2.5. Review on landslide susceptibility mapping 

Landslide susceptibility mapping (LSM) aims to divide a land surface into zones of 

varying degrees of stability (Anbalagan, 1992). Unlike conventional kinematic or 

mechanical analysis, this approach is statistically based and constructs a 

mathematical relation between landslides (dependent variables) and selected pre-

conditioning factors (independent variables) which is built on GIS data. The 

mathematical relation may be quantitative and explicit, or unclear like a black box, 

depending on the selected method.   

2.5.1. Methods used for LSM 

Aleotti and Chowdhury (1999) classified the LSM methods into two subdivisions: 

qualitative and quantitative approaches. LSM analysis based on qualitative 

approaches is determined directly in the field or by the synthesis of different index 

maps. The result highly depends on the site-specific experience of experts which 

may not be rigorous, and time-consuming, particularly for large-scale investigations.  

Compared with qualitative methods, quantitative methods are preferentially used for 

LSM at present. The classification of quantitative methods, modified after Aleotti and 

Chowdhury (1999),  has been presented in Fig. 2-11. They can be divided into 3 

groups: statistical analysis, ML analysis, and DL analysis. Note that although ML and 

DL models are built upon statistical frameworks, they are considered two individual 

groups in this classification system.  
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Fig. 2-11. Summary of the methods used for LSM which can be categorized into two groups: 

qualitative analysis and quantitative analysis (modified after Aleotti and Chowdhury, 1999). 

Statistical analysis is undertaken to evaluate the relationships between variables 

(specifically, independent and dependent variables). Bivariate analysis is one of the 

fundamental statistical methods for LSM. It involves the analysis of two variables (an 

independent variable – a landslide causative factor, and a dependent variable – 

landslide occurrence), to determine the empirical relationship between them. FR 

analysis is one of the bivariate analysis methods and has been widely used to 

determine the ratio of the landslide area in reference to the total study area, 

considering the probabilistic ratio of the landslide occurrence probability to a non-

occurrence probability for a given factor’s attribute (Lee and Pradhan, 2006; Ozdemir 

and Altural, 2013). Multivariate analysis is another statistical analysis approach 

which can analyse multiple landslide causative factors simultaneously. Multiple 

multivariate methods are readily available and have been successfully applied for 

LSM, including logistic regression (Ayalew and Yamagishi, 2005; Lee, 2005), 

discriminant analysis (Eiras et al., 2021) etc. Other statistical landslide susceptibility 

analysis may involve the use of weights of evidence (Poli and Sterlacchini, 2007; 

Wang et al., 2013; Sujatha et al., 2014) and probabilistic models (Oh and Lee, 2011; 

Sujatha et al., 2013; Dahal et al., 2014).  
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Unlike the aforementioned statistical analysis, ML analysis is designed to make the 

most accurate prediction possible using general-purpose learning algorithms to find 

patterns in often rich and unwieldy data (Bzdok et al., 2017, 2018), without the 

identification of an explicit relationship between variables. In general, ML performs 

better than statistical analysis when dealing with cases of high-dimensional 

prediction problems or big data (Goetz et al., 2015; Merghadi et al., 2020). 

Conventional ML algorithms for LSM involve linear regression (Kayastha et al., 

2013), logistic regression (Colkesen et al., 2016), support vector machine (SVM) 

(Yao et al., 2008; Ballabio and Sterlacchini, 2012; Tehrany et al., 2015; Wang et al., 

2015; Huang and Zhao, 2018), decision trees (Thai Pham et al., 2018; Arabameri et 

al., 2021; Kutlug Sahin and Colkesen, 2021), and random forest (RF) (Catani et al., 

2013; Micheletti et al., 2014; Xie et al., 2015), with high prediction accuracy 

examined. Previous studies analysed landslide predictive performance of these 

algorithms, indicating that in terms of the overall performance, RF shows great 

generalization performance and outperforms the other models (Goetz et al., 2015; 

Pham et al., 2021; Youssef and Pourghasemi, 2021) 

As an important part of ML, artificial neural networks (ANN) were developed to mimic 

the biological neural networks. It normally consists of three or more layers: an input 

layer, one or more than one hidden layers, and an output layer. Each node in the 

hidden layers and the output layer produces output through a nonlinear activation 

function considering weights of all preceding connections. The weights are updated 

through back-propagation that calculates the gradient of the cost function associated 

with a given state with respect to the weights. Shallow neural networks (less than 3 

hidden layers) were initially used for LSM (Lee et al., 2004, 2020; Chauhan et al., 

2010; Choi et al., 2010; Tsangaratos and Benardos, 2014).  

DL is developed upon ANN with multiple hidden layers (more than three). To date, DL 

has been proved to be effective in discovering intricate structures in high-

dimensional data and has been applied into many domains (LeCun et al., 2015). It 

also achieves great success in the field of LSM, which includes the use of deep 

learning neural networks (DLNN) (Bui et al., 2020; Dao et al., 2020; Zhu et al., 2020; 

Hua et al., 2021; Saha et al., 2021), convolutional neural network (CNN) (Wang et al., 

2019; Fang et al., 2020; Yi et al., 2020; Wei et al., 2021), recurrent neural network 
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(RNN) (Mutlu et al., 2019; Zhu et al., 2020; Li et al., 2021). 

2.5.2. Rock slide factors 

Accurate prediction of LSM not only depends on the selection of an appropriate 

model but also on the scientific selection of landslide factors that inherently 

correspond to the occurrence of landslides. This kind of inherent dependency should 

be related to spatial continuity, as well as temporal consistency between landslides 

and selected factors to make sure that LSM is logically plausible. Landsliding is a 

complicated process, and it may be triggered by the superimposition of various 

factors. These factors can be categorized into two groups, predisposing factors and 

triggering factors (Clague and Stead, 2012). 

Predisposing factors can bring a slope from a stable state to a marginally stable 

state. Slope topography is considered one of the most influential factors that provide 

preconditions for a landslide. In general, the topography is characterised by features 

associated with slope gradient, orientation, and curvature. Slope angle and 

orientation/aspect are two key topographic indexes that can indicate the potential of 

a slope for instability through kinematic analysis (Hoek and Bray, 1981). In addition, 

slope orientation can also provide the basis for stability analysis in other respects. 

For example, a coastal slope of an unfavourable orientation preferentially suffers 

from wave attacks and sea erosion, which may result in subsequent slope collapse 

and coastal retreat (Edil and Vallejo, 1980; Lantuit and Pollard, 2008). Further 

examples include slopes susceptible to higher landslide risks caused by synergistic 

effects of wind-driven rainfall and wind toppled trees, inferring an inherent 

interrelationship between landslides, slope aspect and wind direction (Gorokhovich 

and Vustianiuk, 2021). Curvature is another topographic index to characterize the 

degree of concave or convex terrain. Statistics data from previous studies (Dai and 

Lee, 2002; Ohlmacher, 2007) shows that slopes of concave curvature are more 

susceptible to landslides. It is likely caused by the concentration/convergence of 

ground and surface water within a concave slope, resulting in higher pore-water 

pressure in the rock mass (Sharma, 2013). Through slope topography, it is also 

possible to characterise surface drainage and associated indexes, such as drainage 

density, proximity to drainage, and topographic wetness index (TWI), which have 
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been used for LSM (Lee and Pradhan, 2006; Yilmaz, 2009; Kayastha et al., 2013).  

 

In addition, unfavourable geological conditions can also behave as a preconditioning 

factor for landslides. Geological structures are a common type of weakness in rocks, 

and their roles in undermining rock strength and controlling landslides have been 

illustrated above. Their controlling effects on landslides have been widely 

investigated, which can be highlighted by unfavourably orientated joint/fracture 

networks (Bozzano et al., 2011; Cui et al., 2018; Francioni et al., 2018a), fault-related 

shear zones (Alberti et al., 2019; Donati et al., 2021b; Furuki and Chigira, 2019; 

Seguí et al., 2021), bedding (Bromhead and Ibsen, 2004; Duman, 2009; Santangelo 

et al., 2015), foliations (Dunning et al., 2006; Regmi et al., 2013; Zhu et al., 2021), 

providing the kinematic possibility or freedom for the displacement of overlying rocks.  

An interlayer of relatively weak rock may also act as a release surface when a 

driving force exceeds the shear strength of the interlayer (Sun et al., 2019; Liu et al., 

2020; Xu et al., 2020; Ying et al., 2021). Lithology, a description of geological 

engineering characteristics of outcrops, is another geological aspect to be 

considered for landslide prediction. In general, weaker materials are more prone to 

instability under the same external conditions. As such, lithology has been widely 

adopted in LSM as an independent variable  (Kamp et al., 2008; Xu et al., 2013; 

Wang et al., 2015; Chen et al., 2017; Youssef and Pourghasemi, 2021; Yu et al., 

2021).  

Causative factors can directly trigger the occurrence of a landslide from a marginally 

stable state to an unstable state. USGS published a landslide handbook, indicating 4 

major triggering mechanisms: water, seismic activities, volcanic activities, and 

disturbance by human activities (Highland and Bobrowsky, 2008). Water condition, 

associated with pore water pressure in rocks, has profound influences on normal 

stresses acting on discontinuity planes. Therefore, it becomes an essential aspect 

for landslide analysis. The water condition in rock masses can be affected by many 

factors and the most significant one is rainfall. It has been reported in many cases 

heavy or prolonged rainfall led to a significant increase in pore-water pressure, 

consequently triggering landslides (Collins and Znidarcic, 2004; Montrasio et al., 

2009; Li et al., 2016, 2017; Rosi et al., 2016). In addition, surface drainage may 
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affect groundwater by controlling surface runoff, causing high water in the proximity 

of the drainage lines, particularly during heavy rainfall (Neuhäuser et al., 2012). 

Surface drainage networks are usually delineated by using a digital elevation model 

(Liu and Zhang, 2010; Reddy et al., 2018), and as introduced above, represented by 

topographic indexes.  

Seismic activities (otherwise called earthquakes) are another major landslide trigger. 

Seismic wave propagation, including compression waves and shea waves, can lead 

to strains (compression and tensile strains caused by compression waves, and shear 

strain from shear waves) in the ground within a certain distance from the epicentre of 

an earthquake (Huang et al., 2018). In the case of repeated earthquakes or a strong 

earthquake of an excessive magnitude, rocks suffer from significant deformation, 

and slope stability can be largely undermined, consequently forming a landslide 

(Dunning et al., 2007; Changwei et al., 2014; D. Huang et al., 2019). As such, 

landslides are commonly considered a kind of secondary earthquake hazard.  

Although not as common as earthquakes, vibration from volcanic activities (i.e., the 

rise and eruption of molten rock) also imposes risks on slope stability (Ponomareva 

et al., 2006; Tommasi et al., 2005). Compared with seismic activities, volcanic 

activities may only have detrimental impacts on local slopes in the vicinity of the 

volcano.   

From the perspective of human causes, landslides may be triggered by excavation 

and construction through human engineering. Blasting, a source of anthropogenic 

vibration in excavation operations, imposes shocks on local rocks. Under a long-term 

blasting operation, an accumulative effect of high-frequency shocks can result in 

crack propagation in rock masses (Wang, M. et al., 2021). Therefore, in some cases, 

blasting is reported as a trigger of instabilities in mine slopes (Song and Cui, 2016).   

Land cover and land use (LCLU) change mostly caused by deforestation and 

urbanization has detrimental effects on groundwater balance (runoff), subsequently 

influencing the occurrence of rainfall-triggered landslides (Glade 2003). In addition, a 

change in vegetation cover, through deforestation or cultivation, could have impacts 

on slope stability conditions in three potential ways: 1) modifying the soil moisture 

regime via evapotranspiration (Mugagga et al., 2012; Gonzalez-Ollauri and 
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Mickovski, 2017); 2) providing root reinforcement within the soil mantle (Stokes et al., 

2009); and 3) from a negative perspective, the growth of vegetation roots may cause 

the additional opening of rock cracks and thus destabilizing slopes (Tang et al., 

2015). Accordingly, vegetation cover, integrated with other environmental conditions, 

potentially provides an indicator of slope stability. The vegetation cover is usually 

assessed by using the normalized difference vegetation index (NDVI) that is widely 

used in LSM case studies (Bui et al., 2020; Youssef and Pourghasemi, 2021). 

Other triggering factors involve weathering. Weathering is a prolonged process that 

causes the gradual weakness of geological units. Multiple landslide cases have 

evidenced the weathering of rock materials or discontinuities (Pánek et al., 2010; 

Regmi et al., 2017; Abe et al., 2018; Thiery et al., 2019). Rock weathering can 

progress in physical and chemical ways, termed physical weathering and chemical 

weathering. Physical weathering, sometimes called mechanical weathering, is 

caused by the effects of changing temperature on rocks, resulting in rock fatigue and 

a major decrease in rock strength. For example, freeze-thaw cycles are a 

representative form of physical weathering and have been considered a major factor 

that deteriorates rock strength in some landslide cases (Mateos et al., 2012; Zhou et 

al., 2016). Chemical weathering describes the process of chemicals in water making 

changes to the minerals in a rock. Rainfall is a typical source to provide a condition 

of chemical weathering for rocks, causing rock strength decay (Yalcin, 2007; Joshi et 

al., 2018).   

Toe erosions are frequently observed in slopes in proximity of gullies, seepages, 

rivers, reservoirs, lakes, and sea, as a result of interaction with water or glacier in 

physical or chemical ways (Lee et al., 2002; Schulz, 2007; Hsieh et al., 2016; Qi et 

al., 2017; Singh et al., 2012). Although more critical in soil slopes toe erosion can 

also trigger failure of rock slopes through: 

1) Loss of support from the toe to the overlying slope, resulting in the decrease 

in instability resisting force. An excessive driving force from overburden leads 

to the yielding of a rock layer, which is the case of the landslide presented in 

(Gu and Huang, 2016). The associated detrimental effect would be more 

notable in weak rocks.  

2) An increase in the possibility of an unfavourably oriented structure daylighting 
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in the eroded section.  

Table 2-4 summarizes the landslide factors adopted in LSM by using quantitative 

methods. It is found that discontinuities (e.g., fractures, bedding, foliations) are 

simply considered in the manner of ‘the proximity to faults’ in previous studies, while 

the influence of their orientation on slope stability was not included. In this context, a 

novel method incorporating discontinuity orientation into ML models for LSM is 

proposed in order to improve landslide prediction. This research is presented in 

Chapter 3 and has been published by the International Journal of Geo-Information 

(He et al., 2021a). 

Table 2-4. Summary of landslide factors and potential use of quantitative index to characterize the 

corresponding factor. 

 Category Factor 

Predisposing factors 

Topographic factors 

Slope gradient 

Slope orientation (aspect) 

Curvature 

Height 

drainage 

Geological factors 
Fault 

lithology 

Triggering factors 

Earth vibration 

Earthquake 

blasting 

Volcanic activity 

Water Rainfall 

Erosion 
River incision 

Wave attack (sea erosion) 

Anthropogenic factors 
Blasting 

LCLU change 

Others 
Erosion 

Physical and chemical weathering 
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2.6. Review on slope-specific instability analysis 

To perform landslide analysis for a specific slope the general aims are to investigate 

the landslide mechanism, the deformation and/or displacement (i.e., compression, 

tension, shearing) of rock masses, stress redistribution in the slope, and the change 

in the stability condition of the slope alongside the instability. To achieve this, 

analysis is undertaken utilising different methods, including kinematic analysis, limit 

equilibrium analysis, and numerical modelling analysis.   

Kinematic analysis     

Kinematic analysis evaluates the kinematic possibility of a rock slope being 

susceptible to discontinuity-related instabilities (i.e., planar sliding, wedge sliding, 

direct toppling and flexural toppling). The analysis takes discontinuity properties (i.e., 

orientation and friction angle) into consideration for determining the potential failure 

mechanism (Brideau et al., 2012). In general, this is carried out by using a stereonet 

plot in which the orientations of discontinuities identified by field mapping are plotted 

to compare with the analysed slope orientation (Brideau et al., 2012; Budetta and De 

Luca, 2015; Cerri et al., 2018; Francioni et al., 2018a; Kumar et al., 2019). 

In practice, in the absence of the consideration of slope geometry, spatial locations 

of discontinuities, mechanical properties of discontinuities, in-situ stresses of rock 

mass, water conditions in the slope etc, this method can only be considered a 

preliminary investigation of potential landslide or slope instability mechanisms.  

limit equilibrium analysis  
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Limit equilibrium (LE) analysis investigates the force and/or moment equilibrium of a 

soil or rock mass tending to slide down a slope. Compared with kinematic analysis, 

LE can also take into consideration potential external forces (e.g., from pore-water 

pressure, blasting, earthquake, the weight of extra overburden) in the slope, and 

calculates the FoS of the slope with the prior assumption of a failure mode (planar 

sliding, wedge sliding, circular sidling and toppling) (Chen et al., 2016; Friedli et al., 

2017; Hess et al., 2017). In addition, the effect of reinforcements or remediation on 

slope stability can also be estimated by this method (Kul Yahşi and Ersoy, 2018).  

To date, various codes and software are readily available for LE analysis. These 

involve commercial codes developed by Rocscience inc. (e.g., Slide2 for the 2D 

analysis of a sliding, Slide3 for 3D analysis of a sliding, Swedge for wedge analysis, 

and RocTopple for toppling analysis) (Rocscience, 2021), SLOPE/W developed by 

Geoslope inc. (Geoslope, 2021), and open-source codes such as Scoops3D (Reid et 

al., 2015). 

Numerical analysis 

In comparison with kinematic analysis and limit equilibrium, 2D/3D numerical 

analysis can provide an improved and comprehensive understanding of slope 

stability conditions and associated failure mechanisms. It can also simulate 

mechanical behaviour of a slope in response to static or dynamic stress conditions, 

allowing for the simulation of progressive displacement and/or deformation in slopes 

(Jing, 2003; Stead et al., 2006). In addition, another advantage of numerical analysis 

is the improved integration of slope geometry for a more accurate estimation of in-

situ stresses that are dependent on slope topography (Vanneschi et al., 2019).  

Numerical methods can be divided into three categories: continuum methods, 

discontinuum methods and hybrid methods (Stead et al., 2006). Continuum methods 

are appropriate for the analysis of soil slope, intact rock mass and highly jointed rock, 

therefore, they are not explained in detail here. In terms of the rock slope controlled 

by discontinuities, discontinuum methods are more suitable than continuum methods 

for modelling the mechanical behaviour of blocky rock mass and rock masses 

controlled by discontinuities.  
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In discontinuum modelling, the rock mass is considered as an ensemble of distinct 

blocks with mutual interactions. Two principal methods are being widely used, the 

distinct element method (DEM) (Cundall, 1971, 1988; Hart et al., 1988) and 

discontinuous deformation analysis (DDA) (Shi, 1992). Between them, the former 

has found broader applications in slope stability analysis and landslide analysis 

(Stead et al., 2006). The applicability of DEM methods has been demonstrated in the 

analyses of structurally controlled landslides. For example, UDEC from Itasca Inc. is 

capable of dealing with discontinuity-related problems for 2D landslide analysis 

(Itasca Consulting Group, Inc., 2019), and 3DEC is designed for 3D problems. More 

DEM codes involve the PFC (Particle Flow Code) suite (Itasca Consulting Group, 

Inc., 2021), including PFC2D and PFC3D, which are specialised in the analysis of 

rock fracturing and associated slope instability. Although DDA is a type of DEM 

method, particularly accounting for the interaction of independent particles (blocks) 

along discontinuities in fractured and jointed rock masses (Shi, 1992; Cheng, 1998), 

the major theoretical difference is that DDA is a displacement-based method whilst 

DEM is a force-based method.  

However, continuum and discontinuum methods are limited when dealing with the 

cases involving the combination of brittle fracturing and block deformation, which 

facilitates the development of a hybrid finite/discrete element approach, proposed by 

Munjiza et al. (1995). This solution method is particularly suitable for problems in 

which progressive fracturing takes place (Munjiza et al., 1995a). Based on the 

original approach, the open-source Y-2D and Y-3D were developed (Munjiza, 2004a). 

More codes developed upon the concept include Y-Geo (Mahabadi et al., 2012), and 

Irazu 2D and 3D (Lisjak et al., 2018).  

Therefore, discontinuum or hybrid methods are preferred options for modelling 

slope-specific landslides in the jointed rock mass. In this research, three case 

studies have been selected, including a coastal landslide that occurred on a cliff 

slope of approximately 70-metre height, a catastrophic translational landslide sliding 

along a folded bedding plane, and a landslide involving rock fracturing in the large 

open pit mine slope. The selection of an appropriate numerical modelling method is 

dependent on the mechanical behaviour of discontinuities and rock mass on site. In 

the first case study where rock block fracturing is rare or absent, a 3D DEM code, 
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3DEC, has been selected to investigate the displacement of failed rock blocks that 

were constrained by discontinuities. In the second case, that could be represented 

by simple geometry, a 2D DEM code, UDEC, has been used for landslide analysis. 

In the third case, where brittle rock fracturing and associated rock deformation may 

be prevalent, the slope was analysed by using a combination of 3DEC and a 

finite/discrete element code, Irazu 2D.  

 

Chapter 3. A novel method to incorporate discontinuities into ML-based LSM 

(adapted from the paper (He et al., 2021a)) 

3.1. Introduction 

As introduced in Chapter 2.5.1, numerous studies have confirmed the suitability and 

application of ML models for LSM. Encouraging results from these studies confirm 

that ML methods can provide accurate landslide predictions, and have highlighted 

specific influencing factors of landslides developed in natural slopes. However, 

discontinuities (such as joints, fractures, and bedding planes), especially their 

orientations, have been only considered in LSM studies through the metric ‘the 

proximity to faults’, even though many publications have highlighted that 

unfavourable orientations of discontinuities may cause rock slope failures (Stead and 

Wolter, 2015; Ferrero et al., 2016; Francioni et al., 2018a).  

In this context, a novel application of unfavourably orientated discontinuities into ML 

landslide prediction is proposed by using GIS-derived kinematic analysis. 

Discontinuities, detected from remote sensing surveys obtained in areas prone to 

rock slope instability, were incorporated into GIS-based kinematic analysis. Results 

from the kinematic analysis were taken as additional input variables to improve the 

accuracy of ML landslide prediction algorithms. In addition, FR analysis was 

implemented to quantitatively investigate the potential relationship between the 

discontinuity-related variables and landslide occurrence.  

This study highlights the benefit of point clouds in the extraction of geological 

discontinuities, through which GIS-based kinematic analysis is performed to assess 
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the potential of rock slope failures, while also providing a novel application of the 

discontinuities to improve the accuracy of ML-based landslide prediction. 

 

 

 

3.2. Study area description 

This research study is focused on the North Coast of Cornwall, UK. The study area 

is a section of a coastal rock cliff with a minimum height of 40 m between the 

Godrevy Point and Portreath (Fig. 3-1), experiencing a warm temperate climate with 

an average yearly temperature of 10 °C and an average annual rainfall of 1062 mm. 

Almost half the annual rainfall occurs between October and January (approximately 

500 mm), with a marked minimum from April to July. This section of the steep coast 

is known to be prone to landslides of various sizes (Shail et al., 1998), with 

geological structures (such as faults and joints) playing a vital role in their occurrence 

(Francioni et al., 2018a). 

 

Fig. 3-1. The study area, a section of coastal rock cliff located on the north coast of Cornwall, UK, 

highlight the elevation of the analysed cliff. 
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3.3. Data and methods 

3.3.1. Landslide detection and sampling strategy 

Landslides were detected through a widely used method based on elevation change 

during a given time period (Maurer and Rupper, 2015; Turner et al., 2015; Kim et al., 

2020). It was implemented through a comparison of multitemporal LiDAR elevation 

data with 1 m pixel resolution and ± 40 cm positional accuracy (years 2008 and 2014) 

collected from an open-source database (Digimap) (Digimap, 2020). Pixels with 

more than 5 m decreases in elevation from the years 2008 to 2014 were recognized 

as potential landslides, with which the detection accuracy of landslides developed in 

the coastal cliff and the disturbance of noise points from LiDAR data, to some extent, 

could be balanced. Since ground truthing of the detected landslides is difficult to 

conduct in coastal environments, an alternative method using visual interpretation of 

landslide scarps and fresh exposures in Google Earth was adopted to verify the 

detections. In total, 17 landslide sites comprising approximately 10,000 pixels with 1 

m resolution were detected as landslides in the study area (Fig. 3-2). As landslide 

pixels at the same site possessed properties, such as bedrock conditions and 

geometric conditions, in order to reduce sampling bias, 30 pixels were selected from 

each landslide site for further analysis. 
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Fig. 3-2. The boundary of the study area in which landslides occurred in 2008–2014 is identified. 

 

The same amount of landslide absence data (510 pixels) was collected through 

random sampling from stable (non-landslide) ground in the study area (the yellow 

zone in Fig. 3-2) to build robust ML models. From the landslide presence and 

landslide absence data collected, a 70%:30% training and validation split was 

applied to the datasets for training and validation of the ML models. 

3.3.2. Geological structure extraction from RS surveys 

The high risk involved in accessing steep coastal slopes dramatically increases the 

difficulty of undertaking field surveys by means of conventional methods. Therefore, 

it was determined that remote sensing techniques were a more appropriate solution 

to detect geological structures of a representative slope within the study area (at 

Hell’s Mouth). In this study, UAV photogrammetric and aerial LiDAR surveys were 

combined to provide a data basis for geological structure extraction. The 

photogrammetric survey was implemented in an oblique manner to obtain images of 

the steep and high coastal cliff. Due to its high performance in terms of accuracy, 

vegetation penetration and robustness against geometric distortions, aerial LiDAR 

provides appropriate detection of geological structures daylighted on the slope 

surface. 

A Panasonic DMC-GH4 camera on a UAV was used to capture overlapped stereo 
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images (resolution: 4608 x 3456). From the UAV photogrammetric survey, a point 

cloud was constructed using the structure from motion algorithm by using Metashape 

software (Agisoft, 2016), and georeferenced by eight GCPs that were derived from 

180 corrected observations using Trimble R10 RTK GNSS. In addition, another 

LiDAR point cloud with a 1 m grid resolution was collected from the CCO (Channel 

Coastal Observatory, 2020) for complementary use. The software Split FX was 

adopted to load the point cloud, through which fracture ‘patches’ were manually 

identified by fitting collections of triangles that conform to a flatness criterion (Fig. 

3-3). Orientations of the fracture traces derived from patches were then extracted 

(Split Engineering LLC, 2016). The method used has been explained in many case 

studies (Lato et al., 2009; Poluga et al., 2018). A greater number of discontinuities 

could be obtained by defining the discontinuity sets with the combination of features 

identified from the two point clouds. 

 

 
Fig. 3-3. An example of structure extraction using Split FX based on an UAV photogrammetry-derived 

point cloud. a) the point cloud collected from UAV photogrammetry, b) Structures extracted from the 

point cloud. 

Six discontinuity sets were recognized over the study, as presented in Fig. 3-4 and 

Table 3-1. They mainly followed two trends (NW–SE and NE–SW) and have a 

potential contribution to the geological evolution of the area, as the trends of the 

discontinuity sets coincide with the predominant trends of the evolution. Bedding (S0) 

was slightly tilted, with the highest persistence among the identified discontinuity sets. 

The joints in S3 have a dip direction parallel to the bedding, but were highly tilted. 

Joint sets J2 and J5 were sub-vertical and have a dip direction sub-orthogonal to 

each other. Joint set S1, with the lowest persistence, was sub-parallel to J2. It is 
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likely that J4 and J5 are subsets of the same features, but were included separately 

for analysis purposes. 

 
Fig. 3-4. Stereonet representing 589 discontinuities collected during remote sensing surveys of a 

representative section of coast within the study area. 

Table 3-1. Properties of six discontinuity sets identified through remote sensing surveys, including dip 

angle, dip direction, and some descriptions associated with the surface conditions obtained from 

(Francioni et al., 2018a). 

Joint set Dip (°) / Dip direction (°) Description 

S0 26/114 Bedding. Smooth, undulating, planar. 

J1 51/309 Rough, undulating, stepped. 

J2 90/322 Smooth, undulating, planar. 

J3 74/141 Rough, undulating, planar. 

J4 70/264 Smooth, undulating, planar. 

J5 84/242 Smooth, undulating, planar. 

3.3.3. Variables associated with geometric conditions, sea erosion and geological 

conditions 

Given that the case study area was a section of coast, the major influencing factors 

leading to spatial variation of the landslides shown in Table 3-2 were mainly 

concerned with geological conditions, geometric conditions of slopes, and sea 

erosion conditions. 

Aspect, profile and plan curvature, slope, and cliff height, as prominent factors, have 
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frequently been adopted to assess geometric conditions of slopes (Kavzoglu et al., 

2014; Dou et al., 2019; Pham et al., 2019; Shao et al., 2019; Wang et al., 2019); in 

the context of coastal landslides, distance from sea was adopted to assess sea 

erosion conditions (Levin et al., 2006; Abanades et al., 2015); the material of the 

bedrocks has been applied as a representative feature of geological conditions (Bui 

et al., 2020; Chen and Li, 2020; Pourghasemi et al., 2020), since it influences rock 

mass strength with different compressive strength and material constant according to 

the Hoek-Brown criterion (Hoek and Brown, 1980b). Their relationship with 

landslides is illustrated in Table 3-2. These commonly used factors were brought into 

ML models as input variables for landslide prediction. 

 

 

 

 

 

Table 3-2. Selected input variables associated with geometric conditions, sea erosion conditions and 

geological conditions, and the description of their relationship with landslides. 

Category Variable Description 

Geometric conditions 

Aspect 
Aspect is the dip direction of slopes, and used to analyse 
effects of weather/sea conditions (such as wind directions) 
or unfavourable orientations of discontinuities 

Profile curvature Two types of curvatures indicate the amount of 
overburden on a failure plane (convex terrain of slope 
surface could result in more overburden than concave 
terrain 

Plan curvature 

Slope angle 
Slope angle indicates the potential for kinematic failures of 
slopes together with unfavourable orientated 
discontinuities 

Cliff height 
As the slope height increases, the shear stress within the 
toe of the slope increases due to added weight 

Sea erosion conditions 
Distance from 
sea 

Distance from sea partially characterizes the conditions of 
sea erosion, which may cause physical and chemical 
change of coastal slopes, such as the removal of mass on 
the lower part, providing increases in the shear stress of 
the slopes and thus decreases in the factor of safety 

Geological condition 
Material of 
bedrock 

This component influences the shear strength of a rock 
mass 
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The input variables associated with geometric conditions were derived from the 1 m 

LiDAR elevation data; distance from sea was measured through the distance 

between a coastline and slope in a satellite image, which can characterize the sizes 

of the beaches between the sea and the slope. The material of the bedrock was 

obtained from a 1:50,000 scale geological map from the open-source Digimap 

database (Digimap, 2020). The GIS maps shown in Fig. 3-5 present these input 

variables in the study area. Specifically, they are the map of slope aspect, profile 

curvature, plan curvature, slope angle, cliff height, distance from sea, and material of 

bedrock, from Fig. 3-5a to Fig. 3-5g, respectively. Note that the bedrock of the study 

area is dominated by Porthtowan Formation and Mylor Slate Formation over where 

Porthtowan Formation is consisted of mudstone/sandstone, mudstone and 

metamudstone/mudstone, and Mylor Slate Formation is composed of sandstone and 

slate/siltstone, as presented in Fig. 3-5g. 
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Fig. 3-5. GIS maps showing the input variables associated with a) aspect, b) plan curvature, c) profile 

curvature, d) slope angle, e) cliff height, f) distance to sea and g) material of bedrock. 

3.3.4. Variables associated with discontinuities 

To incorporate discontinuities into ML landslide analysis, kinematic analysis was 

applied to estimate places prone to rock slope failures caused by unfavourably 

orientated discontinuities. In conventional kinematic analysis, a specific slope with a 

uniform direction is considered. However, this causes it to be inapplicable for 

characterizing large areas in which the orientations of the slope faces vary 

considerably (Francioni et al., 2018). 

To solve this limitation, GIS-based kinematic analysis similar to that used by Yilmaz 

et al. (2012) and Francioni et al. (2018) was adopted within a GIS framework. In the 
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context of GIS-based kinematic analysis, structures were determined to assess the 

potential of slopes with variable orientations to landslides. Therefore, mathematical 

representations of the criteria of kinematic failures are required to substitute the 

conventional stereonet analysis. The GIS-based kinematic analysis was executed 

within ESRI’s ArcGIS platform and followed rock failure conditions proposed by Hoek 

and Bray (Hoek and Bray, 1981). 

Planar sliding kinematic analysis 

Planar rock slope failure occurs when a mass of rock in a slope slides down and 

along a relatively planar failure surface. In conventional kinematic analysis, the 

criteria for planar instability are: 1) Dip of failure plane must be greater than angle of 

friction, so as to exceed the shear strength of the discontinuity; 2) Dip of failure plane 

must be less than dip of slope face, so as to ‘daylight’ in the slope face; 3) Strike of 

failure plane must strike parallel to slope crest. 

In GIS-based kinematic analysis, a slope prone to planar failure has to meet the 

requirements associated with the strength, daylighting and orientation conditions as 

follows (presented in Fig. 3-6a): 

1) The dip of the major discontinuity is greater than the friction angle (30° was 

assumed for the mixture of sandstone and mudstone (Barton, 1973)). 

2) The apparent dip of a slope as seen from the dip direction of the critical 

discontinuity plane is greater than the dip of the discontinuity plane to allow 

the discontinuity to daylight on the slope face. 

3) The slope must be dipped in the same direction as the critical discontinuity 

plane (a lateral limit of 20° was assumed). 
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Fig. 3-6. Graphic representation of GIS-based kinematic stereonet analysis to evaluate the potential 

of a slope for different modes of instability, including a) planar, b) wedge, c) direct toppling and d) 

flexural toppling failures. 

Wedge Sliding Kinematic Analysis 

Wedge sliding kinematic analysis is a test for the sliding of the wedge formed by the 

intersection of two planes. The wedge block can either slide along the line of 

intersection (LOI) or a single plane, depending on their orientations. This can be 

established by stereonet analysis in which the primary and secondary critical zones 

represent different sliding modes (Fig. 3-6b). The primary critical zone for wedge 

sliding is the crescent-shaped area (red zone), in which a wedge slides along the 
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LOI or a single plane. The secondary critical zone for wedge sliding is the area 

between the slope plane and a plane (great circle) inclined at the friction angle 

(yellow zone), in which LOIs are inclined less than the friction angle, but sliding takes 

place on a single joint plane that has a dip vector greater than the friction angle. 

In GIS-based kinematic analysis, a slope prone to wedge instability in the primary 

critical zone is required to meet the condition that the apparent dip of a slope as 

seen from the dip direction of the critical discontinuity is greater than the LOI plunge, 

which is higher than the friction angle (apparent dip > LOI plunge > friction angle). A 

slope prone to wedge instability in the secondary critical zone should meet the 

requirement that the LOI plunge is located between the apparent dip of a slope plane 

and the apparent dip of the friction angle plane (apparent dip of a slope > LOI 

plunge > apparent dip of friction angle plane). 

Direct Toppling Kinematic Analysis 

Direct toppling is a normal rock instability mechanism in which near vertical 

intersections dip into the slope and near horizontal base planes undercut the blocks 

and form release planes. The key elements of direct toppling analysis are: 

1) Two joint sets intersect such that the intersection lines dip into the slope and 

can form discrete toppling blocks. 

2) A third joint set exists that acts as a release plane or a sliding plane, allowing 

the blocks to topple. 

As graphically illustrated in the stereonet direct toppling analysis presented in Fig. 

3-6c, the pole of the third joint set falls in the red cone whose angle is equal to the 

slope angle, but also the LOI of two joints falls in the red (direct toppling) or yellow 

zone (oblique direct toppling). 

In GIS-based kinematic analysis, a slope prone to direct toppling instability must 

meet the requirements associated with the LOI of two intersecting sets as well as the 

sliding joint set. With respect to the joint set as a sliding plane, the slope should 

satisfy the following conditions: 

1) The dip of the slope is greater than the dip of the discontinuity plane. 
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2) The slope dips in the same direction as the discontinuity plane (a lateral limit 

of 20° was assumed). 

As to the LOI, the conditions for the slope are: The slope dips in the same direction 

as the LOI trend (a lateral limit of 20° was assumed) (primary critical zone for direct 

toppling), or the slope fails to dip in the same direction as the LOI trend, but falls 

within a 90° deviation (secondary critical zone for oblique direct toppling). For oblique 

direct toppling, the LOI must fall within the friction cone, which requires that the LOI 

plunge needs to be greater than the ‘90° — friction angle’. 

Flexural Toppling Kinematic Analysis 

Flexural toppling failure is one of the specific modes of toppling failure that occurs 

due to bending stresses. For flexural toppling, the critical zone for toppling is defined 

by the region (see Fig. 3-6d) that falls outside the slip limit plane and inside the 

lateral limits. The slip limit plane is not an actual physical plane, although it is derived 

from the slope angle and friction angle. The dip angle of the slip limit plane is derived 

from the ‘slope dip - friction angle’. The dip direction of the slip limit plane is equal to 

that of the slope face. 

In the context of GIS-based kinematic analysis, a slope prone to flexural toppling 

instability must meet the following requirements: 

1) The dip of the slope is greater than the friction angle (30° was assumed). 

2) The apparent dip of the slip limit plane as seen from the dip direction of a 

critical discontinuity plane is greater than ‘90°- dip of the critical discontinuity 

plane’. 

3) The slope dips in the opposite direction to the critical discontinuity plane (a 20° 

lateral limit was assumed). 

In GIS-based kinematic analysis, the apparent dip is used to calculate the distance 

of the great circle of the slope plane from the stereonet perimeter in the apparent dip 

direction in the stereonet analysis (see Fig. 3-6). Apparent dip is calculated as 

follows: 

𝛼 =  𝑎𝑟𝑐𝑡𝑎𝑛 (𝑠𝑖𝑛 𝛽 ∙  𝑡𝑎𝑛 𝛿)                                     (𝐸𝑞. 3 − 1) 
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Where, 𝛼 is apparent dip; 𝛿 is the real dip of the slope plane; 𝛽 is the angle between 

the strike direction of the slope plane and the apparent dip direction. 

Mechanisms potentially involved in previous landslides within the study area are 

listed in Table 3-3. It is suggested that failure mechanisms W1/W2/W5, P1/DT1, and 

P2/DT2, respectively, were similar failure criteria, causing close results in the 

kinematic analysis for each group. To reduce complexity, representative mechanisms 

(W1, P1 and P2) were selected from each group, meaning that W2, W5, DT1 and 

DT2 were not included in the kinematic analysis. This means that mechanisms P1 

(planar failure associated with J1), P2 (planar failure associated with J4), W1 (wedge 

failure associated with J1/J4), W3 (wedge failure associated with J2/J4), W4 (wedge 

failure associated with J3/J4), and F1 (flexural toppling failure associated with J3) 

were considered in the GIS-based kinematic analysis for further landslide prediction. 

Table 3-3. Slope failure criteria associated with different rock instability mechanisms, in which a is 

slope apparent dip, d is slope dip direction, 𝛿 is slope real dip, and 𝑎𝑠 is the apparent dip of the slip 

limit plane for flexural toppling analysis. 

Mechanism Joint Set 
Dip/DD 
(Plunge/Trend) 

Failure Criteria 

Planar 
P1 J1 51°/309° a ≥  51°, 𝑑 ∈ (309° ± 20°) 

P2 J4 70°/264° a ≥  70°, 𝑑 ∈ (264° ± 20°) 

Wedge 

W1 J1/J4 49°/329° a ≥  49°, 𝑑 ∈ (329° ± 90°) 

W2 J1/J5 50°/325° a ≥  50°, 𝑑 ∈ (325° ± 90°) 

W3 J2/J4 67°/232° a ≥  67°, d ∈ (232° ± 90°) 

W4 J3/J4 56°/206° a ≥  56°, d ∈ (206° ± 90°) 

W5 J4/J5 54°/324° a ≥  54°, 𝑑 ∈ (324° ± 90°) 

Direct 
toppling 

DT1 
(oblique) 

Sliding: 
J1 

51°/309° 
𝛿 ≥  51°, 𝑑 ∈ (309° ± 20°), 

𝑑 ∈ (351° ± 90°) LOI: 
J3/J5 

72°/171° 

DT2 
(oblique) 

Sliding: 
J4 

70°/264° 
𝛿 ≥  70°, 𝑑 ∈ (264° ± 20°), 

𝑑 ∈ (351° ± 90°) LOI: 
J3/J5 

72°/171° 

Flexural 
toppling 

F1 J3 74°/141° 
a𝑠  ≥  16°, 𝑑 ∈ (321° ± 20°), 

𝛿 ≥  50° 

Kinematic analysis estimated the possibility of each pixel being prone to landslides 

through a binary classification (yes/no), without consideration of their subsequent 
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effects on local slope stability. To consider local effects, the binary results of the 

kinematic analysis were converted into density maps (Fig. 3-7). The density was 

calculated in ArcMap software by counting the number of points (pixels) that were 

prone to instability in a circle with a 50 m radius. The unit was the number of 

points/square meter. The input variables provided by GIS-based kinematic analysis 

were labelled with Planar_J1, Planar_J4, Wedge_J1/J4, Wedge_J2/J4, 

Wedge_J3/J4, and Flexural_J3 to represent associated failure modes. 

 

Fig. 3-7. Discontinuity-related factors, a) planar sliding caused by J1, b) planar sliding caused J4, c) 

wedge sliding caused by J1/J4, d) wedge sliding caused by J2/J4, e) wedge sliding caused by J3/J4 

and f) flexural toppling caused by J3. 

3.3.5. ML analysis 

ML models were used to statistically simulate the relationship of landslides and the 

input variables. Models were constructed and trained using the training set. 

Modelling of each ML algorithm returned results of variable importance. Variable 

importance revealed the significance of each input variable with respect to the 

dependent variables (0/1 for landslide presence/absence). After the models were 

constructed, their learning and predictive ability was assessed through the Confusion 
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Matrix and Receiver Operating Characteristic (ROC) curves. These assessments 

were implemented using the validation set. Two series of ML modelling were carried 

out. The initial series of modelling was based on the seven commonly used input 

variables. In addition, a second series of modelling with the inclusion of the 

discontinuity-related variables was undertaken to make a comparative study. 

The predictive capabilities of the two models were assessed on the basis of the 

confusion matrix and the ROC curve. The confusion matrix was used to assess 

model performance with respect to their binary classification capability (prediction of 

landslide absence/presence, 0/1), and the ROC curve was used to evaluate their 

capability with respect to landslide susceptibility mapping (probability of landslide 

occurrence). 

In this paper, two conventional ML algorithms (RF and SVM) and two neural network 

algorithms (MLP and DLNN) were adopted, and modelling was performed in a 

Python environment. 

Random forest 

RF, an ensemble algorithm, is comprised of decision trees using bootstrap 

aggregating methods. The metric, Gini impurity, was used in decision tree algorithms 

to decide the optimal split from a root node, and subsequent splits. The results from 

the constitutive decision trees in a random forest are aggregated to produce a 

prediction (binary classification). In addition, the class probability was given based on 

the proportion of votes of the trees in the ensemble. The predictive ability of an RF 

model is sensitive to two parameters: the number of tress (ntree) in the RF and the 

number of variables for the selection in each node (mtry) of a decision tree (Genuer 

et al., 2010). Thus, in this research RF modelling was carried out after tuning these 

two parameters. 

Support vector machine 

SVM has been widely used for classification objectives. The algorithm attempts to fit 

a hyperplane in an N-dimensional space (N—the number of variables) that distinctly 

classifies the data points. In this case study, landslide prediction parameter tuning 
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was conducted on the regularization parameter (C) and kernel type used in the 

algorithm. 

 

Multilayer perceptron 

MLP is a class of feedforward ANN. Basically, its architecture consists of at least 

three layers: an input layer, a hidden layer, and an output layer. Each node in the 

hidden and output layer produces an output through a nonlinear activation function 

with updated weights. The update of weight is adjusted through a learning algorithm. 

The performance of the MLP model is sensitive to the activation function applied to 

the nodes that defines their outputs, the number of nodes in the hidden layer, and 

the selection of learning patterns for weight optimization (Bui et al., 2020). Therefore, 

these hyperparameters were tuned to obtain an optimal MLP model. 

Deep learning neural network 

A deep learning neural network is a class of neural network with considerable depth. 

It normally consists of an input layer, several hidden layers, and an output layer. The 

configuration rules of DLNN architectures will not be explained here, as these have 

been repeatedly presented in many papers (Nhu et al., 2020). In this paper, a DLNN 

model was used to implement landslide analysis. In the model, the Rectified Linear 

Unit (ReLU) activation function was applied for nodes in hidden layers to produce 

outputs. As landslide prediction can be a binary classification, the sigmoid transfer 

function was used in the output layer to produce a prediction. The Binary Cross-

Entropy loss function was used to estimate the loss of the model so that the weights 

of nodes could be updated and optimized to obtain an optimal model. 

During the configuration of a DLNN model, some hyperparameters have a significant 

influence on its performance, including 1) the number of hidden layers; 2) the 

number of nodes in each layer; 3) the selection of an optimization algorithm; and 4) 

learning rate. Thus, these hyperparameters were tuned to obtain an optimal DLNN 

model for landslide analysis. 



78 

 

3.3.6. Frequency ratio analysis 

FR analysis was carried out to quantitively explore the relationship between 

landslides and the input variables associated with kinematic analysis by using the 

data acquired from training and validation sets. The analysis assigned a weight 

coefficient to each class of analysed input variables. The weight coefficient 

expresses the probabilistic relationship of the class and landslides. 

To obtain the RF values (weight coefficient) the following equations were used: 

𝐹𝑅𝑖(𝑗) =  
𝑎𝑖(j)

𝑏𝑖(j)
                                                  (𝐸𝑞.  3 − 2) 

𝑎𝑖(j) =
𝐿𝑆𝑖(𝑗)

𝐿𝑆
                                                   (𝐸𝑞.  3 − 3) 

𝑏𝑖(j) =
𝑃𝑖(𝑗)

𝑃
                                                    (𝐸𝑞.  3 − 4) 

where 𝐿𝑆𝑖(𝑗) is the number of pixels containing landslides in a class j of variable i; LS 

is the total number of pixels containing landslides; 𝑃𝑖(𝑗) is the total number of pixels 

of class i of variable j in the whole area; P is the total number of pixels in the whole 

area. In this research, P is 1020 and LS is 510. 
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3.4. Results 

3.4.1. Frequency ratio analysis 

In FR analysis, the analysed variables related to kinematic analysis were categorized 

into three different classes in accordance with their density values. On the basis of 

the results of FR analysis (Table 3-4), a common distribution characteristic for all 

analysed variables was revealed. Good consistency was observed between FR 

values and class values, whereby classes with high values possessed high FR 

values. In addition, quantitatively, most pixels in class 2 and class 3 are landslides 

points, but pixels in class 1 are mostly non-landslides points. Taking Planar_J4 as an 

example, 479 in 721 pixels in class 1 are non-landslide points, while 109 in 123 

pixels and 159 in 176 pixels in class 2 and class 3, respectively, are landslide points. 

Table 3-4. The results of FR analysis of the discontinuity-related factors, including Planar_J1, 

Planar_J4, Wedge_J1/J4, Wedge_J2/J4, Wedge_J3/J4, and Flexural_J3. 

Mechanism Class LSi ai Pi bi FR 

Planar_J1 

Class 1: [0, 0.05] 156 0.31 573 0.56 0.54 

Class 2: (0.05, 0.1] 213 0.42 283 0.28 1.51 

Class 3: (0.1, max] 141 0.28 164 0.16 1.72 

Planar_J4 

Class 1: [0, 0.02] 242 0.47 721 0.71 0.67 

Class 2: (0.02, 0.04] 109 0.21 123 0.12 1.77 

Class 3: (0.04, max] 159 0.31 176 0.17 1.81 

Wedge_J1/J4 

Class 1: [0, 0.1] 69 0.14 359 0.35 0.38 

Class 2: (0.1, 0.2] 208 0.41 364 0.36 1.14 

Class 3: (0.2, max] 233 0.46 297 0.29 1.57 

Wedge_J2/J4 

Class 1: [0, 0.03] 261 0.51 742 0.73 0.70 

Class 2: (0.03, 0.06] 119 0.23 132 0.13 1.80 

Class 3: (0.06, max] 130 0.25 146 0.14 1.78 

Wedge_J3/J4 

Class 1: [0,0.03] 307 0.60 794 0.78 0.77 

Class 2: (0.03, 0.06] 93 0.18 101 0.10 1.84 

Class 3: (0.06, max] 110 0.22 125 0.12 1.76 

Flexural_J3 

Class 1: [0, 0.03] 271 0.53 726 0.71 0.75 

Class 2: (0.03, 0.06] 188 0.37 233 0.23 1.61 

Class 3: (0.06, max] 51 0.10 61 0.06 1.67 

3.4.2. ML analysis 

Parameter tuning was carried out using several trial and error runs to obtain the most 

accurate prediction and to optimize the hyperparameters of the ML models involved 

in the initial (without discontinuity-related variables) and second series (with 
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discontinuity-related variables) of modelling. The parameters in the initial (second) 

modelling were tuned as below: 

1) For the RF model, ntree was assigned as 500 (500), and mtry was 3 (4). 

2) For the SVM model, the kernel was specified as the radial basis function (‘rbf’), 

and the regularization parameter C was assigned as 100 (100). 

3) For the MLP model, the activation function was specified as being ‘logistic’ 

(‘logistic’); the weight optimization algorithm was specified as ‘lbfgs’ (‘lbfgs’); 

the regularization parameter alpha was assigned as 0.1 (0.1); 10 (9) nodes 

were contained in the hidden layer. 

4) For the DLNN model, a Keras sequential model with 3 (3) hidden layers was 

configured. Each layer contained 64 (128) neurons. The optimizer used in this 

model was ‘Adadelta’ for the adaptive learning rate. An EarlyStopping callback 

was used in conjunction with model training to save optimal epoch the batch 

size of 1 to prevent overfitting. 

The assessment results of classification capability using the confusion matrix are 

presented in Fig. 3-8. From the perspective of ‘vertical comparison’, the integration of 

discontinuity-related input variables significantly reduces cases of the 

misclassification of landslide absence (0) as well as landslide presence (1). This is 

also reflected by the increase in overall classification accuracy, from 85% to 93% for 

DLNN modelling, from 87% to 96% for MLP modelling, from 87% to 94% for RF 

modelling, and from 88% to 94% for SVM modelling. 
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Fig. 3-8. Confusion matrices showing the assessment results of binary classification capability of the 

four models involved in the initial (without considering discontinuities) and second (including 

discontinuities) series of ML modelling. 

The assessment results of LSM capability by ROC curves are presented in Fig. 3-9. 

Comparative analysis of the curves from the two modelling series shows that with 

respect to each model, the curve obtained from the second series of modelling 

overrides that from the initial series of modelling. This distribution characteristic is 

confirmed by the higher AUC values obtained for the second series of modelling. 

 

Fig. 3-9. The assessment of the ML model performance by ROC curves with and without the 

involvement of discontinuity-related factors: (a) DLNN models, (b) MLP models, (c) RF models, and 

(d) SVM models. 

The ML analysis provides a variable importance analysis, as shown in Fig. 3-10. The 

importance indicates the importance of each variable to landslide prediction in the 

second series of modelling. For all four of the models selected, the discontinuity-
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related input variable Wedge_J2/J4, obtained from GIS-based kinematic analysis, 

exclusively takes the highest importance among the 13 variables. 

 
 

Fig. 3-10. The results of variable importance, showing the importance of each of the influencing 

factors in landslide prediction. 
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3.5. Discussion and Conclusions 

In this research, discontinuities were introduced into ML-based landslide prediction 

as a controlling factor of rock mass instability by using the method of GIS-based 

kinematic analysis. The analysis assessed the potential of slopes to be prone to 

kinematic instabilities, including planar, wedge, direct toppling, and flexural toppling 

instability modes. GIS-based kinematic analysis is likely to provide effective clues to 

future landslide occurrence. Fig. 3-11 highlights six regions prone to wedge failures 

caused by J2/J4, which coincide with locations of previous landslides occurring in the 

study area. The highlighted landslides have a similar direction, dipping toward W or 

WNW. Some other landslides in slopes dipping towards N or NNW in the middle of 

the study area are proposed to be influenced by planar sliding kinematic analysis 

associated with J1 and wedge sliding kinematic analysis associated with J1/J4 (see 

Fig. 3-7). 

 
Fig. 3-11. The comparison of locations of landslide sites of slope prone to wedge failures caused by 

J2/J4, highlighting the coincidence of the results of the kinematic analysis with real landslide sites. 

In addition, there was a catastrophic landslide in 2011 in the study area with an 

estimated volume of 100,000 m3 (Hell’s Mouth landslide) (Francioni et al., 2018a). By 

using the data in 2008, the GIS-based kinematic analysis effectively indicates the 

risk of possible kinematic failures at this location (Fig. 3-12). The analysis is a result 

of binary classification that indicates the unstable condition of the slope toe and the 
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stable condition of the slope crown. If the binary results (0/1) were to be applied as 

input variables in machine learning models, they would provide misleading 

information at the slope crown, where instability occurred. However, density mapping, 

transformed from binary classification, solved this problem by accounting for the 

unstable points in a 50 m circle range, considering that toe removal may trigger the 

development of instability at the slope crown (namely local effects). 

 
 

Fig. 3-12. Results of GIS-based kinematic analysis and their comparison with the Hell’s Mouth 

landslide, a) the extent of the Hell’s Mouth landslide, b) potential planar sliding caused by J1, c) planar 

sliding caused by J4, d) wedge sliding caused by J1/J4, e) wedge sliding caused by J2/J4, f) wedge 

sliding caused by J3/J4 and g) flexural toppling caused by J3. 

The result of FR analysis provided evidence to support the effects of the GIS-based 

kinematic analysis. The results showed that high FR values only appear in the 

classes with high density (class 2 and 3), with respect to variables obtained from 

kinematic analysis. In addition, quantitively, most pixels in class 2 and 3 are 

landslides points, and most pixels in class 1 are non-landslide points. These 

distribution characteristics indicate that discontinuity-related factors with high density 

are likely to be an indicator of landslide occurrence. 

With the inclusion of discontinuity-related variables, the landslide prediction accuracy 

of the four ML models improved dramatically, which is supported by the results of the 

two validation methods (Fig. 3-8 and Fig. 3-9). The increase in prediction accuracy 

was due to the decrease in the misclassification rate of landslide absence cases as 
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well landslide presence cases. The contrasting predictive capability highlights that 

these discontinuity-related variables are essential for landslide prediction. The 

results of variable importance analysis, showing that the factor Wedge_J2/J4 is the 

most important variable in ML landslide analysis, also supports the above conclusion. 

However, the results of the kinematic analysis cannot be used as a standalone 

criterion for landslide prediction since it only considers the influences of unfavourable 

orientations of discontinuities. Without consideration of some other factors, such as 

rock mass strength and sea erosion conditions, kinematic analysis is likely to 

overestimate the extent of slopes prone to coastal rock slides in this study. This 

overestimation is reflected in Fig. 3-11, where some stable slopes are misclassed as 

unstable ones. From this perspective, in ML modelling, variables associated with 

bedrock, geometric conditions and sea erosion conditions potentially act as limiting 

conditions to refine landslide prediction by kinematic analysis. 

Although less important than discontinuity-related variables in ML modelling, the 

variables related to bedrock, geometric conditions and sea erosion conditions may 

facilitate the occurrence of landslides and contribute to the landslide prediction. For 

example, the distance from the sea shows reasonable importance for landslide 

prediction, potentially indicating that different distances from the sea could result in 

various stability conditions. Slopes with less distance from the sea likely have more 

opportunity to interact with the sea and waves; therefore, they are more likely to be 

prone to sea erosion. It has been evidenced that the formation of a gully at Hell’s 

Mouth was pre-conditioned by erosion-induced sea caves, on which discontinuities 

could be daylighted and stress from overburden concentrated. Finally, a gully formed 

as a result of these conditions. Another important variable is the material of the 

bedrock. The bedrock map shows that the Porthtowan Formation is more prone to 

landslides (Fig. 3-13), potentially due to the conditions of the rocks (metamudstone 

and mudstone/mudstone and sandstone) in the Porthtowan Formation being 

conducive to landslides with respect to the geometrical arrangement of outcrops, 

strength, weathering, grain size, etc. However, individual variables/factors would not 

solely trigger landslides, but rather would interact with each other to reduce the 

strength of rock masses, consequently resulting in instability. 
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Fig. 3-13. The component of bedrock over the study area, which is dominated by the Porthtowan 

Formation, with a small portion of the Mylor Slate Formation in the east. 

This paper provides guidelines for the generalization of the proposed method to 

other regions in order to perform extensive rock slope stability surveys. This can be 

implemented by incorporating local discontinuity information into machine learning 

modelling, including the detection of local discontinuities using remote sensing 

techniques, the processing of the discontinuity data through GIS-based kinematic 

analysis for the assessment of slopes prone to different modes of instability, the 

digitalization of the results of GIS-based kinematic analysis from binary classification 

to continuous values that are more applicable to ML models, and the combined use 

of discontinuity-related variables and other appropriate landslide preconditioning 

factors to train ML models and predict landslides. 

It is noteworthy that even without the involvement of discontinuity-related factors, the 

prediction accuracy of ML models based on the seven common factors was still 

rather high, achieving approximately 87% of ACC and 0.94 of AUC. This is likely 

caused by the high sampling density of 30 pixels being selected from each landslide 

site. The 30 pixels from same site will potentially have had similar characteristics, 

such as similar bedrock material. The 70%:30% strategy for splitting the acquired 

data for model construction and model validation means that the validation data, to 

some extent, will resemble the training data, which could cause the high prediction 

accuracy. However, the involvement of discontinuity-related variables was still able to 

improve the prediction accuracy to a higher level, which demonstrates the reliable 

application of these variables in ML-based landslide prediction. 
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This case study may have limitations induced by landslide detection in the coastal 

cliff. Landslides occurred in the overhanging portion of the cliff are difficult to be 

detected using LiDAR DEM data due to occlusion of overlying slope material. 

Undetected landslide sites were accordingly regarded as stable sites in this case 

study. These misclassifications may produce data bias and provide unpredictable 

impacts on ML modelling and following analysis. In addition, the specific date and 

type of each landslide are not able to be mapped through this landslide detection 

method, these may also increase uncertainties for landslide analysis. 

Discontinuities, and especially their orientations, have rarely been considered in ML 

landslide prediction. In this context, this section of research proposes a novel 

application of unfavourably orientated discontinuities in ML landslide analysis. Six 

discontinuity sets were detected within the study area through photogrammetric and 

aerial LiDAR surveys. These structural features were applied to assess the potential 

of slopes to be prone to different modes of rock instability (planar, wedge, direct 

toppling, and flexural topping) by GIS-based kinematic analysis. In order to consider 

local effects, the binary results of the kinematic analysis were transformed into 

density maps for subsequent FR analysis and ML analysis. Six density maps were 

obtained based on the results of GIS-based kinematic analysis associated with 

different rock instability mechanisms, including planar sliding controlled by J1 and J4, 

wedge sliding controlled by J1/J4, J2/J4 and J3/J4, and flexural topping controlled by 

J3. These density variables, as well as some commonly used landslide influencing 

factors, were then considered as input variables in ML models to predict landslides. 

To validate the results of the GIS-based kinematic analysis, comparisons were made 

with previous landslide sites. The comparison results indicate that the slopes prone 

to kinematic failures presented in Figure 10 and Figure 11 were identified as the sites 

of previous landslides. This highlights the reliable application of GIS-based kinematic 

analysis in landslide prediction. 

Good consistency was observed, through FR analysis, between landslide probability, 

which was characterized by FR values, and discontinuity-related variables, showing 

that classes with higher values possessed higher FR values. The coincidence with 

respect to their distribution characteristics indicates a close correlation between them. 
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The results of model assessment on the basis of confusion matrix and ROC curves 

showed that the inclusion of discontinuity-related input variables significantly 

improved the prediction accuracy of the four ML models. In addition, variable 

importance analysis revealed that discontinuity-related variables took the highest 

importance in landslide prediction in the four ML models. 

The above findings highlight the reliable application of GIS-based kinematic analysis 

for assessing slopes prone to landslides. In addition, the novel application of 

unfavourably orientated discontinuities in ML models improves landslide prediction. 
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Chapter 4. Modelling discontinuity control on the origin and development of 

Hell’s Mouth landslide (adapted from the paper (He et al., 2021b)) 

4.1. Introduction 

Discontinuities (such as joints, cleavages, bedding, foliation, faults, and folds) 

produce weak planes in a rock mass that may contribute to the occurrence of 

landslides under unfavourable conditions associated with orientation, size, intensity, 

and strength of discontinuities (Hutchinson, 1989).  Discontinuities can also behave 

as release surfaces at varying scales, along which failures can occur, allowing for 

sliding/fall from the main slope. There are numerous examples of discontinuity 

control on slope instability at varying scales in the literature. For example, the upper 

part of the La Valette landslide was shown to be structurally controlled at a regional 

scale with an estimated failure volume of 500,000 m3 (Travelletti et al., 2013). 

Weidinger et al. (2014) noted that the occurrence of catastrophic landslides is likely 

related to relatively large-scale structures (e.g., tectonic faults). The gigantic 1999 

Chiu-fen-erh-shan landslide developed along a pre-existing bedding fault that was 

formed during flexural slip folding, and its development was significantly influenced 

by the properties of the discontinuities (Wu et al., 2005). Inherited structures 

associated with slope-scale folding in Eastern Switzerland controlled the extent and 

mechanism of an ongoing deep-seated gravitational slope deformation with a  

volume of 1.85 km3 (Agliardi et al., 2019).  

Further examples of discontinuity-controlled instability include the 2010 Qiyangou 

landslide that involved a wedge-planar failure where the failed rock mass was 

displaced along a basal surface and was bounded by discontinuities (i.e., a thrust 

fault and a series of aligned joints belonging to the same set) (Fan et al., 2019). A 

recent earthquake-induced massive landslide (2017) in China occurred in a complex 

geological environment where two active faults intersected to form a compressive 

stress concentration zone, with the interface between metamorphic sandstone and 

slate allowed sliding of the rock mass (Shao et al., 2019). Donati et al. (2019, 2020, 

2021a, 2021b) used a combined remote sensing (RS) and numerical modelling 

approach to highlight the importance of faults and shear zones in controlling the 

failure mechanisms at the Hope Slide, BC., the Downie Slide BC., and the San Leo 
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Rockslide, Italy. At a smaller scale, toppling failure that occurred in a granite slope of 

the Melbur Pit was shown to be controlled by unfavourably oriented discontinuities 

(Vanneschi et al., 2019). 

Different methods have been used for the analysis of slope instability or landslides in 

jointed rock masses. The kinematic analysis provides a preliminary estimation of the 

kinematic potential of a rock slope prone to different mechanisms of instabilities 

within the rock mass (i.e., planar sliding, wedge sliding and toppling) (Hoek and Bray, 

1981; Stead and Wolter, 2015; Francioni et al., 2018a). For relatively simple 

scenarios, limit equilibrium methods are usually adopted and can consider potential 

influences such as pseudo-static, earthquake acceleration, groundwater conditions 

and anisotropy. They can determine the factor of safety depending on an assumed 

failure mode (Huang and Yamasaki, 1993). In more complicated situations, 2D/3D 

numerical modelling methods can provide a comprehensive understanding of the 

stability conditions and mechanical behaviour of the slope, and allow simulation of 

progressive displacement and/or deformation involving the unstable slope prior to 

collapse (Jing, 2003; Stead et al., 2006). In the context of jointed rock slopes, 

discontinuum modelling methods offer a significant advantage in modelling 

deformable or rigid body movements by treating the rock slope as a discontinuous 

rock mass. The simulated rock mass comprises an assemblage of deformable or 

rigid blocks, with defined structural-related contacts between them. Among 

discontinuum methods, distinct element methods (DEM) (Corkum and Martin, 2004; 

Brideau et al., 2007, 2011; Dong et al., 2018; Agliardi et al., 2019), and discontinuous 

deformation analysis (DDA) (Kveldsvik et al., 2009; Huang et al., 2016; C. Liu et al., 

2019; Xia et al., 2021) are two frequently adopted approaches for the analysis of 

structurally controlled landslides.  

Where landslides have occurred in a rock mass, discontinuities are usually related to 

the propagation of tension cracks (Bovis and Evans, 1996; Brideau et al., 2007; 

Zhang, M. et al., 2018). Brideau et al. (2007) found that the onset of tension cracks 

in the Dawson City Landslide was related to the pre-existing discontinuity sets, 

where the distribution of tension cracks could be used for defining areas of unstable 

ground. Zhang, M. et al. (2018) showed that interpreting tension cracks developed 

along a series of aligned joints contributed to defining the boundary of the landslide. 
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Therefore, the analysis of visible tension cracks may be beneficial to the 

interpretation of discontinuities as well as providing further understanding into the 

development of a landslide. However, the onset and opening of tension cracks, has 

to date had limited consideration in the numerical analysis of a landslide. A virtual 

joint was introduced by Wang, J. et al. (2021) to simulate the propagation of cracks 

in intact rock masses in a 2D DDA (discontinuous deformation analysis). A 2D 

discrete element model was used to understand crack initiation, propagation, and 

coalescence within a rock mass during an earthquake-induced rock avalanche (G. 

Gao et al., 2020). Simplified geometry of joints was used in a 3D distinct element 

simulation using 3DEC (Itasca Consulting Group, Inc., 2017), to investigate the 

displacement of rock masses along the joints forming the tension cracks (Corkum 

and Martin, 2004).  

In this case study, numerical modelling and back analysis of the Hell’s Mouth 

landslide is used to provide an improved understanding of the evolution of a section 

of the North Coast of Cornwall, UK. The modelling uses a 3D distinct element 

approach that includes a representative discrete fracture network. The analysis 

provides further insight into the formation of an inlet and the influence of the 

discontinuities on the landslide and subsequent tension crack formation behind the 

cliff crest. The modelling results have been verified by observations obtained from 

remote sensing (RS) surveys and evidence from analysis of a video taken of the 

initial landslide. A sensitivity analysis has also been undertaken to demonstrate the 

effects of key discontinuity parameters (i.e., dip, dip direction, persistence, and 

friction angle) on the modelled landslide behaviour. This paper provides further 

insight into coastal evolution in blocky rock masses that are susceptible to 

discontinuity-controlled instabilities.  

 

 

 

 

 



92 

 

4.2. Study area description 

The study area is located close to Hell’s Mouth (Fig. 1), on the North Coast of 

Cornwall in the southwest of England, UK. At this location, two successive landslides 

occurred in 2011 within a three-month period. The area experiences a warm and 

temperate climate with average yearly temperature of 10 °C and average annual 

rainfall of 1062 mm. The cliffs in the vicinity of Hell’s Mouth have an average height 

of approximately 70 m. The landslides occurred on the eastern side of a V-shaped 

cove (Hudder Cove which is directly east of Hell’s Mouth). The eastern end of the V-

shaped cove is characterized by a north-south striking near vertical scarp. An east-

west fault-controlled striking ‘zawn’ is present at the northern edge of the cove (it is 

referred as ‘inlet’ in Fig. 4-1). A ‘zawn’ can be described as a deep and narrow sea-

inlet in the British Isles, especially Cornwall and the south-west, cut by erosion into 

sea-cliffs, with steep or near vertical sidewalls. In addition, shallow caves can be 

observed at the toe of the cliff which suggests that the slope is susceptible to sea 

erosion or block removal by wave attack.  

 

Fig. 4-1. 3D Google Earth image in 2001 showing the location of the study area which is close to 

Hell's Mouth on the North Coast of Cornwall, UK. 
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4.2.1. Geological setting 

Geologically, the analysed slope is located in the Gramscatho Basin and dominated 

by the Porthtowan Formation (Gramscatho Group) (see Fig. 3-2). Porthtowan 

formation comprises of alternating beds of strong to moderately strong, medium to 

thinly bedded dark grey mudstone, interbedded with strong to moderately strong, 

thick to thinly bedded pale grey fine sandstone, which may locally have a silt and 

mud component (Hollick et al., 2006; Francioni et al., 2018a). 

Five discontinuity sets have been previously recognized by Francioni et al. (2018a) 

over the study area through interrogation of point cloud data provided by remote 

sensing techniques (Table 4-1). The identified sets mainly follow two trends 

(northwest-southeast and northeast-southwest) and significantly contribute to the 

geological evolution of the area, as the trends of the coastline closely follow these 

directions (Francioni et al., 2018a). Bedding (S0) is slightly inclined and has the 

highest persistence among the identified discontinuity sets. Joints associated with 

set J3 have a dip direction parallel to the bedding but are more steeply inclined. Joint 

sets J2 and J4 are sub-vertical and have a dip direction sub-orthogonal to each 

other. Joint set J1, has the lowest persistence of the mapped discontinuities, and is 

sub-parallel to J2. J1, however, dips towards the north-west and therefore has the 

potential to form a basal surface for planar sliding that daylights in the cliff face. 

Importantly, field mapping and previous analysis of remotely captured point cloud 

data indicates that major fault systems (F1, F2, F3 and F4) are associated with the 

joint sets (as introduced in Table 4-1). The location and presence of these features 

dictate the potential for cliff instability and are directly associated with previous 

landslide activity within the immediate section of coastline (Francioni et al., 2018a). 

The listric fault F1, for example, is frequently associated with major planar and 

wedge failures along the coastline and has formed the basal feature of previous 

coastal landslides. 

Table 4-1. Characteristics of 5 discontinuity sets and faulting identified by Francioni et al. (2018a), 

including dip, dip direction and associated descriptions of surface conditions. 

Discontinuity Dip (°) / Dip Direction (°) Bedding/Joint Description  

S0 18/142 Bedding. Smooth, undulating, planar 

J1/F1 34/320 Rough, undulating, stepped 

J2/F2 87/336 Smooth, undulating, planar 

J3/F3 64/143 Rough, undulating, planar 
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J4/F4 87/069 Smooth, undulating, planar 

A geological section is presented in Fig 4-2 which is created along the profile AB (as 

previously depicted in Fig. 4-1), highlighting the dominant rock component of 

Porthtowan formation and 3 faults (F1, F2 and F3) in the slope. F4 is excluded from 

the geological model as it is sub-parallel to the cross section.  

 

Fig. 4-2. Simplified 2D geological section along the profile AB that is previously depicted in Fig 4-1. 

Fig. 4-3a shows the stereonet representation of discontinuities identified in the slope 

(Francioni et al., 2018a). Using mean values of each identified joint set orientation 

and an initial friction angle of 30°, preliminary kinematic analysis associated with 

planar sliding (Fig. 4-3b), wedge sliding (Fig. 4-3c) and flexural toppling (Fig. 4-3d) 

was undertaken. This analysis indicates that the north-western facing sidewall of the 

‘zawn’ or inlet with an orientation (70°/330°) has the potential to fail through planar 

sliding controlled by J1, wedge sliding dominated by intersections of J1/J4 and J1/J2, 

and flexural toppling associated with J3. An evaluation of the potential variation of 

discontinuity set orientations suggests that direct and oblique toppling may also be 

possible, resulting from basal planes formed by J1 and steeply inclined block edges 
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formed by intersections of J2/J4 or J3/J4.  

 

Fig. 4-3. a) Lower hemisphere stereonet showing contours of joint poles and 5 joint sets identified in 

the study area (Francioni et al., 2018a), b) kinematic overlay for planar sliding in the cliff (70°/330°) 

using the mean sets identified in part (a) and Table 4-1 c) wedge sliding kinematic analysis, d) flexural 

toppling kinematic analysis. 

4.2.2. Inlet formation 

The north-east south-west trending fault (associated with F3) highlighted in Fig. 4-4a 

is identified as a major feature in the local geology of the area (Digimap, 2020). It 

has a critical influence on the cliff orientation and geomorphology of the immediate 

area. Fig. 4-4a and b show resulting stacks created at the northern edge of Hell’s 

Mouth and the influence of the fault on inlet formation in the study area. Preferential 

erosion due to wave action, block release and erosion induced caves can be 
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observed at the toe of the cliff along this section of coastline (Fig. 4-4b). The cliff 

geomorphology prior to and after the two landslide events can be seen in Fig. 4-5 

and Fig. 4-6. Two fault-related surfaces (70°/330° and 75°/160°) associated with F2 

and F3 form the edges of the inlet. The discolouration of the rock within the vicinity of 

the inlet suggests an alteration zone that may be more susceptible to preferential 

erosion.  

 

Fig. 4-4. a) 2001 Google Earth Image showing that F3 (red line) has influenced development of Hell’s 

Mouth landslide and inlet formation in the study area (white rectangle zone), b) image showing the 

geomorphology of the cliff and fault related (F3) scarps highlighted in red. 

4.2.3. Previous landsliding activities   

This section of coast is susceptible to landslides of various sizes (Shail et al., 1998; 

Francioni et al., 2018a; He et al., 2021a). A significant landslide episode was 

videoed by engineers from Cornwall Council on the afternoon of Friday 23 

September 2011 and is part of the British Geology Survey landslide database (British 

Geological Survey, 2020).  

A video-frame analysis of the failure undertaken by Stead (2021) is provided in Fig. 

4-5. Prior to major failure, initial development of wedge fractures, opening of 

fractures and soil flows were evident from the cliff face (Fig. 4-5a). This was followed 

by further fracture propagation, buckling of slabs and formation of an active-passive 

wedge near the toe of the slope (Fig. 4-5b). The fractures appear to propagate along 

pre-existing discontinuity orientations. Further sliding and wedge detachment occurs, 

with subsequent breakup of the rock mass during failure. The video shows the 

potential control of discontinuities on the propagation of the landslide.   
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Fig. 4-5. Preliminary video-frame analysis of the initial landslide at Hell’s Mouth from Stead (2021), 

with images looking towards east. 

Following the first landslide detailed above, in September 2011 a second landslide 

occurred immediately to the south of the first landslide, prior to a visit to the site by 

the second author in October 2011. The slope geometries prior to the two landslide 

episodes, after the first episode, and after the second episode have been presented 

in Fig. 4-6. It can be seen from Fig. 4-6c that the extent of the second slide was 

smaller than the first. 
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Fig. 4-6. Pre-landslide and post-landslide images obtained from (Francioni et al., 2018a), showing the 

geomorphology of the analysed slope looking towards east at different time periods, a) prior to the 

landslide, b) after the first landslide episode, c) after the second landslide episode. 

4.2.4. Post-landslide features 

In view of the lack of safe access, remote sensing techniques were used to detect 

and characterise post-landslide features. Francioni et al. (2018a) reported initial use 

of terrestrial LiDAR and photogrammetry to generate three-dimensional point clouds 

for extraction of discontinuity orientation data and comparison of aerial LiDAR data 

for estimations of slide volumes. More recent analysis in June 2018 used a 

Panasonic DMC-GH4 camera mounted on an DJI M600 UAV to capture overlapping 

stereo photographic images (resolution: 4608 x 3456). These images were 

georeferenced using eight ground control points (GCPs) derived from 180 corrected 

observations using a Trimble R10 RTK GNSS that provided an accurate model to 

detect landslide features, including landslide scars and tension crack development 

behind the crest of the cliff.  
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Fig. 4-7a presents an orthoimage constructed using the Metashape software (Agisoft, 

2016) from a series of overlapped UAV stereo photographic images and shows the 

landslide scarps of the two landslides in plan view. These scarps define the 

boundaries of the two landslide episodes and are denoted by solid-coloured lines 

(red: the first landslide; pink: the second landslide). The scarps of the first and 

second landslides are both sub-vertical, striking northeast-southwest and 

approximately north-south, respectively. The rear and lateral release surfaces for the 

two landslide events are associated with J2/F2 and J4/F4 orientations. 

 

Fig. 4-7. Images of the post-failure slope at Hell’s Mouth: a) An orthoimage showing landslide scars of 

the two failures and tension cracks behind the scars; b) An UAV image presenting tension cracks that 

daylighted at the slope surface looking towards east; c) Tension cracks in slope looking towards 

south. 

Open tension cracks can be observed on slope surfaces (Fig. 4-7) as well as behind 

the crest of the slope. The cracks, developed on and behind the crest of the slope, 

show some regularity in orientation and appear to begin and propagate along pre-
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existing discontinuities. Specifically, tilted cracks T1 (Fig. 4-7b) dipping out the slope 

may be related to discontinuity set J1 (34°/320°); The sub-vertical cracks T2 are likely 

to be associated with discontinuity J2 (87°/336°); Northeast-southwest striking cracks 

T3 that dip into the slope appear to be developed along discontinuity set J3 

(64°/143°); Sub-vertical and north-south striking cracks T4 (Fig. 4-7c) are related to 

set J4 (87°/69°). 

4.2.5. Slope zone subdivision  

The RS survey was used to subdivide the slope into six zones (Fig. 4-8) for 

modelling purposes. Zone A-1 represents currently stable areas, covering most of 

the slope; Zone A-2 represents the triangular rock prism forming the cliff geometry on 

the northern side of the inlet; the first landslide occurred in zone A-3; the second 

landslide occurred in zone A-4; zone A-5 represents the currently unstable blocks in 

which tension cracks are detected and Zone A-6 forms the region associated with 

the formation of the inlet. The formation of the inlet provides the kinematic freedom 

for the first landslide episode in zone A-3. Instability associated with zones A-3 and 

A-4 result in tension crack development in zone A-5. 

 

Fig. 4-8. Plan view showing subdivision of the slope into six zones, including A-1 for currently stable 

area, A-2 for the triangular rock prism, A-3 for the first landslide area, A-4 for the second landslide 
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area, A-5 for the currently unstable area, and A-6 for the inlet. 

4.3. Numerical modelling 

To analyse the slope instability of a jointed rock mass, a 3D DEM method assuming 

elastic-perfectly plastic joints was used for the modelling. Validation of the model was 

undertaken comparing the modelling results (e.g., tension cracks, landslide scars 

and rock mass damage) with corresponding observations from field surveys.  

4.3.1. Model geometry and properties 

The construction of two models 

Three-dimensional models that consist of discrete and interconnected triangular 

meshes were constructed for the numerical modelling analysis by using Rhino 

software (Robert McNeel & Associates, 2012). The construction process for the 

models are presented as follows. 

1) As shown in Fig. 4-9a, a point cloud (year 2008) was acquired from the open-

source Channel Coastal Observatory (CCO) (Channel Coastal Observatory, 

2020) to provide the slope geometry after the inlet formation and prior to the 

Hell’s Mouth landslide.  

2) Fig. 4-9b-d show the construction of a 3D meshed model from a point cloud. 

Fig. 4-9e presents the geometry of the modelled slope formed before the 

occurrence of the Hell’s Mouth landslide and after the formation of the inlet for 

the numerical analysis of two landslide episodes 

3) To assess the evolution of the inlet and its influence on proximal slope stability, 

a second model was constructed. This was performed by manually plotting 

the complementary section in zone A-6 (Fig. 4-9f), to represent the slope prior 

to inlet formation. 

The two generated models (Fig. 4-9e and f) are defined by a global Cartesian 

coordinate system, where the X axis refers to the east, Y axis indicates the north 

direction, and Z axis coincides with the vertical direction. A fixed boundary condition 
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was applied to the base, east wall, west wall, and south wall of the model, whilst the 

north surface was kinematically free to allow simulation of landsliding. Boundaries 

were extended from the zone the of interest to ensure no boundary effects (model 

was 250m * 270m * 70m). During the modelling any detached blocks could freely 

drop so as not to allow accumulation at the base of the slope (to simulate the 

removal of blocks by wave action). 

 

Fig. 4-9. Construction of three-dimensional models of analysed slope, a) the point cloud of the coast 

in year 2008, b) the selection of the analysed slope, c) creation of a mesh box covering the extent of 

the slope, d) splitting the meshed slope model from the entire coast, e) the model for the simulation of 

two episodes of the Hell’s Mouth landslide and f) the model for the simulation of inlet formation. 

Two observed sub-vertical faults (F2 and F3), shown in Fig. 4-4, were plotted 

crossing through the model to act as release surfaces constraining the geometry of 

the inlet. In addition, five previously identified discontinuity sets were also created in 

the model with their retrospective orientations, spacing and persistence.  

Model setting 

As previously indicated, the 3D DEM code 3DEC (Itasca Consulting Group, Inc., 

2017) was used for numerical analysis. The code uses an explicit time-stepping 

system to solve equations of motion, simulating the response of rock mass that is 

subject to either static or dynamic loading (Itasca Consulting Group Inc., 2017). 

Individual blocks can behave as rigid or deformable, depending on specific 

situations. In this paper, rigid blocks were assumed as the analysed slope is 
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representative of a relatively stiff rock mass. The joint constitutive model used for the 

modelling adopted elastic-plastic contact mechanics through the Mohr-Coulomb slip 

failure criterion.  

During application of in-situ stresses in the slope, the model was brought to initial 

equilibrium by applying high friction angle values to discontinuities. Under these 

conditions, the in-situ vertical stress at each point can be calculated from the weight 

of overlying material. The horizontal stresses were proportional to that of the vertical. 

The mechanical behaviour of the slope was simulated following equilibrium by 

reducing the discontinuity friction angle to the values provided in Table 4-2. An 

adaptive global damping strategy was applied at the first stage so that the model 

was able to reach a force equilibrium state as quickly as possible, by adjusting the 

viscosity such that the power absorbed by damping is a constant proportion of the 

rate of change of kinetic energy in the system (Hart et al., 1988). However, global 

damping was not considered appropriate for all localized case studies associated 

with DEM modelling to solve static solutions (Itasca Consulting Group, Inc., 2017). 

Therefore, a local damping mode was adopted after the model was brought to 

equilibrium for the slope failure analysis. 

Table 4-2 provide discontinuity properties assumed for the model. Where possible, 

field data was used to determine the material parameters. This was supported with 

data from related publications and previous work (Hobbs et al., 2002; Vanneschi et 

al., 2019). Note that persistence used in 3DEC refers the probability that any given 

block lying in the path of a joint will be split on average (i.e., if persistence = 50%, 

then 50% of the blocks will be split) (Itasca Consulting Group Inc., 2017). Lower 

shear strength and material properties were assigned to the faults, compared with 

joints, i.e., lower cohesion and friction angle values.  A higher value of cohesion was 

assumed for J1 during inlet formation to ensure the representative cliff geometry was 

established prior to modelling of the landslide. A reduced cohesion (0 MPa) was 

used to simulate strength deterioration potentially caused by weathering (Martin et 

al., 2011; Mousavi et al., 2019), rock bridge failure (Kemeny, 2003) and time-

dependent deterioration (Aydan et al., 2012). 
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Table 4-2. Properties of discontinuities applied in 3DEC modelling, including geometry parameters 

(spacing and persistence) and deformation/strength parameters (normal stiffness, shear stiffness, 

friction angle and cohesion). 

Discontinuity 
Spacing 
(m) 

Persistence 
(%) 

Normal 
stiffness 
(MPa/m) 

Shear 
stiffness 
(MPa/m) 

Friction angle 
(°) 

Cohesion 
(MPa) 

Joint 
sets 

S0 

5 

80 

100  10 

30 

1/0 

J1 50 32 

J2 

80 

30 

J3 32 

J4 30 

Faults 
F2 

(none) 100 20 0 
F3 

4.3.2. Model simulations 

Inlet formation 

The model as previously shown in Fig. 4-9f was used for modelling the inlet 

formation. To simulate the impact of block removal through toe erosion on the inlet 

formation and investigate the influence of the progressive development of the inlet 

on adjacent slope stability, two modelling strategies were implemented. 

1) Method 1: toe erosion characterized by the removal of rock blocks at the toe 

of the slope was carried out to investigate its effect on the stability of overlying 

rock mass. The sequence of the toe removal is presented in Fig. 4-10a. 

2) Method 2: a simplified progression of the inlet, as shown in Fig. 4-10b was 

conducted to investigate its influence on the proximal slope stability. In the 

modelling, the gradual progressive formation of the inlet was simulated by 

sequential removal of rock blocks 1, 2, and 3, respectively.  
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Fig. 4-10. Different strategies for modelling the inlet formation: a) Method 1 for investigating the effect 

of toe erosion on the stability of overlying rock blocks, b) method 2 for investigating the effect of 

sequential removal of inlet blocks on the stability of adjacent zones. 

Landslide development and tension crack formation 

The formation of the inlet provided daylighting conditions for discontinuities exposed 

on the inlet sidewalls. A three-dimensional model generated from LiDAR point cloud 

data (year 2008) was applied (as shown in Fig. 4-9e) to restore the pre-landslide 

geometry of the slope. The two 2011 failure episodes were then modelled in a single 

simulation. The modelling results were then compared with observations of tension 

crack formation and scar location/extent resulting from the two failures. These 

observations were taken from remote sensing survey data and aerial photographs of 

the site location. Cross sections through the 3DEC model were taken to monitor the 

modelled tension crack development, providing a comparison between the simulated 

tension cracks and the observed tension cracks behind the cliff with respect to their 

orientations and locations. The model results were then used to investigate the 

failure mechanism of the two landslides through the evaluation of cross sections 

taken through the 3DEC model in different directions.  

In addition, further insight into the potential opening of a modelled tension crack 

developed upon a J3 plane (64°/143°) is provided by using the differential 

displacement analysis of two adjoining rock blocks. The displacements of two blocks 

in the X, Y, Z direction provides a basis to analyse the movement directions of the 

blocks, characterized by mean plunge and azimuth of block displacements in the 

model every 1000 calculation timesteps.  
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4.3.3. Sensitivity analysis 

Francioni et al. (2018a) identified five discontinuity sets within the rock mass which 

exhibit data dispersion of orientations (Fig. 4-3). A sensitivity analysis was carried out 

to assess the potential impact of variations in orientation of key discontinuities on 

slope behaviour. Considering that the two landslide episodes were principally 

controlled by J1 (Francioni et al., 2018a), this was selected as the critical 

discontinuity for further sensitivity analysis.  

Table 4-3. Variations in dip, dip direction, persistence, friction angle of J1 set that were characterized 

by mean, minimum and maximum values. 

J1 property Mean value  Minimum Maximum 

Dip (°)  34 24 44 

Dip direction (°) 320 300 340 

Persistence (%) 50 30 70 

Friction angle (°) 32 22 42 

The sensitivity analysis concentrated on dip, dip direction, persistence, and friction 

angle of joint set J1. Variations in these parameters were characterized by mean 

value, minimum and maximum, as shown in Table 4-3. A series of models were 

undertaken using a control variate method by which each discontinuity parameter is 

individually and sequentially varied (Vanneschi et al., 2019), to investigate the effects 

of variation of each parameter alone by the comparison of the related modelling 

results. For each analysed parameter, a sensitivity analysis was conducted by 

varying its value from the minimum, the mean, to the maximum and analysing the 

effect of this change. 
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4.4. Results 

4.4.1. Simulation of toe erosion and inlet formation  

With respect to modelling method 1, for investigating the influence of block removal 

and potential wave erosion, the results presented in Fig. 4-11 show that toe removal 

causes the collapse of overlying blocks. This is constrained by the F2, F3 and joints 

in set J4, which act as lateral (F2 and F3) and rear (J4) release surfaces, 

respectively. In addition, minor planar failures are observed in the proximity of the 

inlet in zone A-2, sliding along J1 planes resulting from kinematic release associated 

with the newly formed inlet face and daylighting features.  

 

Fig. 4-11. Results of modelling method 1, showing total displacements developed in the vicinity of the 

inlet caused by wave erosion. 

Regarding modelling method 2, for understanding influences of the progressive inlet 

formation on proximal slopes, the results presented in Fig. 4-12 indicate that the 

removal of the three blocks leads to progressive displacement of the proximal blocks 

in zone A-3, directly adjacent to the inlet sidewalls. Displacements within the 

southern inlet sidewall are greater at the western edge of the inlet than those 

simulated at the eastern edge. This reflects the sequence of block removal and 

progressive formation of the inlet. In addition, minor displacements were also 

detected in the scarp of zone A-4, as well as in the southern scarp of zone A-2. 
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Fig. 4-12. Results of modelling method 2, showing total displacements of blocks occurred in the three 

model stages: a) stage 1; b) stage 2: c) stage 3. 

4.4.2. Simulation of the two landslides 

The results for the modelled landslides at timestep 5000 are presented in Fig. 4-13 

and highlight two regions of increased deformation for both the northern and western 

faces of the cliff. Major displacements occur within zone A-3 and A-4 (representing 

the two landslide episodes) with minor displacements in zone A-5 (the region of 

current tension crack development). The scars for both landslide events and the 

observed field tension crack development are superimposed on the modelling results 

shown in Fig. 4-13a. A good agreement can be observed between the modelled 

results and field observations. Vectors of block resultant displacement are presented 

in Fig. 4-13b, which confirms that displacements in zone A-3 and A-4 are greater 

than that in zone A-5, with all three regions showing a general displacement trend 

towards the northwest.  
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Fig. 4-13. 3DEC modelling results: a) Plan view showing comparison of modelled total displacement 

contours with field observations of landslide scars and tension crack development behind the crest of 

the cliff; b) Plan view of modelled total displacement contours with displacement vectors included. 

In order to provide further understanding of the modelled block interaction and 

landslide development, cross sections were taken through the 3DEC model in 

different directions. For the first landslide location, a north-south and an east-west 

cutting plane were created, as depicted in Fig. 4-14. This shows the total 

displacement of blocks along the selected cross sections. Fig. 4-14a provides a 

north-south cross-section that highlights the controlling influence of discontinuity set 

J1 which dips out of the face and forms a potential basal sliding plane. Increased 

deformation towards the top of the cross-section suggests the potential influence of 

toppling which is controlled by the aspect ratio of rock columns formed by 

discontinuity sets J2, J3 and J4. Fig. 4-14b provides an east-west cross-section and 

shows the development of an active-passive wedge at the base of the slope and 

further potential for toppling. These observations support the findings from the video-

frame analysis described in section 4.2.3. The video was taken from the adjacent cliff 
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looking towards north-east, so Fig. 4-14b and Fig. 4-15a provide the closest 

matching views. Both Figs. 4-14a and b show potential tension crack opening behind 

the modelled slope crest, with the specific discontinuity orientations highlighted. Note 

the label ‘T’ is used to depict a tension crack formed from a particular discontinuity 

orientation (i.e., T1 associated with J1 etc.)  

 

Fig. 4-14. Cross sections of 3DEC analysis for the region of the first landslide episode showing the 

total displacement of blocks: a) north-south, b) east-west. 

Fig. 4-15 shows cross sections taken through the 3DEC model in the area of the 

second landslide. Again, the influence of potential basal features and toppling can be 

observed, particularly in Fig. 4-15a, where the active passive wedge and toppling 

observed in the video-frame analysis is replicated.  
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Fig. 4-15. Cross sections of 3DEC analysis for the region of the second landslide episode showing 

the total displacement of blocks: a) northwest-southeast, b) northeast-southwest. 

4.4.3. Opening of tension cracks 

The opening of internal joints within the model slope has been investigated, by 

identifying joint opening on the north-south cross-section shown in Fig. 4-14a for 

different calculation time steps using the software Fiji (ImageJ based) (Schindelin et 

al., 2012). It can be seen from Fig. 4-16 that opening of joints in the unstable zone 

(A-5) is less noticeable than that in the failure zone (A-3), which is more obvious in 

Fig. 4-16c and d. The analysis allows quantification of opening of modelled joints. 
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Fig. 4-16. Identified joint opening (joint-cracks) on the north-south cross section (shown in Fig. 13a) at 

different timesteps, a) timestep 1000, b) timestep 5000, c) timestep 9000, d) timestep 13000. 

A north-south cross-section (presented in Fig. 4-13a, Fig. 4-14a and Fig. 4-16d) of 

the tension crack, T3, have been recorded at steps 6000, 11000, and 14000 to 

provide the visualization of the tension crack development (Fig. 4-17). In Fig. 4-17b 

ground depression is observed with relatively lowering of block 2.  

 

Fig. 4-17. North-south cross sections through the 3DEC model at different calculation timesteps, 

showing the development of a tension crack associated with opening along a J3 plane and relatively 

lowering of the block 2. 

The lowering of blocks behind the crest of the cliff is also observed in the field, as 

shown in Fig. 4-18, which shows recent photographs taken of the region of tension 

cracks formed behind the crest of the cliff section.   
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Fig. 4-18. Depressions occurred along with the opening of tension cracks in the unstable slope. a) An 

image looking towards west, b) an image looking towards north. 

In order to analyze movement of the modelled joints or cracks, T3 is used to record 

the displacements of the two adjoining rock blocks. A differential displacement 

behavior in X, Y, Z directions can be observed between blocks 1 and 2. Specifically, 

during the development of the joint-controlled tension crack,T3, block 1 is displaced 

preceding block 2 in X and Y directions with gradually increased opening (Figs. 4-

19a and b). However, with respect to the Z direcion, more displacement of block 2 is 

observed (Fig. 4-19c). 

 

Fig. 4-19. Displacement curves of block 1 (orange lines) and 2 (blue lines): a) block displacements in 

X direction, b) block displacements in Y direction, c) block displacements in Z direction. 

Displacement directions of the two blocks can be assessed by mean plunge angles 

and azimuth angles for every 1000 calculation timesteps (Fig. 4-20). The azimuth 

curves fluctuate between 270° and 310° (Fig. 4-20a), lower than the landslide sliding 

direction (320°) controlled by J1, as well as the toppling direction (323°) controlled by 

J3 (as indicated in Fig. 4-2). In general, the plunge of block 2 is greater than that of 

block 1, resulting from significantly more z-direction displacement (Fig. 4-20b). The 
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plunge of block 2 is zero at step 14000, as a result of no displacement of block 2 in 

the Z direction at that time. 

 

Fig. 4-20. Hodographs of mean movement directions of the two blocks with block total displacement 

in each 1000 timesteps: a) the azimuth of the trajectory; b) the plunge of the trajectory. 

4.4.4. Sensitivity analysis for J1 

Fig. 4-21 shows the influence of variation in the dip of J1 on the modelled results in 

plan view. When the dip of J1 is reduced to 24° from its original value (34°), less 

displacement and reduced extent of slope deformation is observed. As expected, 

greater deformation and a larger region of instability is formed when the dip of J1 is 

increased to 44°.  

 

Fig. 4-21. Sensitivity analysis of J1 dip angle by varying from 24° to 44° in plan view, a) 24°, b) 34° 

and c) 44°. 

The results shown in Fig. 4-22 clearly show the influence of dip direction of J1 on the 

slope stability. When the dip direction is reduced to 300°, modelling shows that west-

dipping slopes in zone A-2 and A-3 are more prone to failure. Whereas an increase 

in the dip direction causes more potential for north-dipping slopes, particularly at the 

eastern tip of the inlet to become unstable. This is also reflected in stereonet plots 
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that when the dip direction of J1 varies from 300° to 340°, the displacement 

directions of potential instabilities, caused by J1 set or its interaction with other sets, 

generally change from west to a more northerly direction (as depicted in Fig. 4-23). 

 

Fig. 4-22. Sensitivity analysis of J1 dip direction by varying from 300° to 340° in plan view, a) 300°, b) 

320° and c) 340°. 

 

Fig. 4-23. Stereonet plots showing orientations of joint sets and intersections with variations in J1 dip 

direction from a) 300°, b) 320°, c) 340°. 

The effect of persistence is presented in Fig. 4-24. This indicates that the persistence 

has a critical influence on the extent of potential instability. An increase in 

discontinuity persistence from 30% to 70% results in the enlargement of the failed 

zone, particularly at the eastern end of the north-dipping slope and more 

deformation/influence in the region of the second landslide event on the west-dipping 

slope.  
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Fig. 4-24. Sensitivity analysis of J1 persistence by varying from 30% to 70% in plan view, a) 30%, b) 

50% and c) 70%. 

When evaluating the influence of modelled friction angle, the extent of the first and 

second landslide appear not to be significantly influenced by variations of friction 

angle. However, as would be expected, when the friction angle is decreased from 32° 

to 22°, the total displacement of the unstable rock blocks rises, which is shown in Fig. 

4-25.   

 

Fig. 4-25. Sensitivity analysis of J1 friction angle by varying from 22° to 42° in plan view, a) 22°, b) 32° 

and c) 42°. 
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4.5. Discussion and Conclusions 

This case study presents the results of a back analysis of a landslide that occurred at 

Hell’s Mouth on the north coast of Cornwall, to provide further understanding of the 

coastal cliff erosion processes and the kinematics of the slope failure mechanisms 

involved. The landslide occurred as two separate events over a three-month period. 

In view of the discontinuity-controlled nature of the failures 3DEC modelling was 

undertaken. Modelling included the evolution and formation of an inlet, and the 

influence of discontinuities on potential landslide failure mechanisms and tension 

crack development behind the crest of the slope. A video recording of the initial 

failure was used to constrain the interpretation of the modelled results.  Due to 

potential variations of discontinuity properties associated with the potential basal 

plane associated with planar sliding, wedge sliding and topping failure, a series of 

sensitivity analyses were undertaken to investigate the effects of these uncertainties 

on slope stability analysis. The key conclusions arising from the study are: 

1) The simulation of inlet formation shows that block removal (from wave 

erosion) would result in sequential instability of overlying blocks confined by 

two sub-vertical faults, consequently forming the inlet. During progressive inlet 

formation, modelling shows the potential for daylighting features in the newly 

exposed inlet sides to form, resulting in potential for discontinuity related 

instability from the southern inlet sidewall. 

2) Numerical modelling of the landslide events highlights the controlling influence 

of the potential basal feature (J1), which is also influenced by lateral release 

surfaces associated with J2 and rear release surfaces associated with J4. J3 

may also contribute to toppling failures. 

3) The sequence of events captured in the video taken during the initial failure 

are effectively reproduced by the 3DEC model. This includes the development 

of an active-passive wedge near the base of the slope, together with evidence 

of wedge and toppling failure.     

4) 3DEC modelling was also able to effectively capture the opening of tension 

cracks on pre-existing discontinuities behind the crest of the slope. Modelled 

tension crack formation was detected behind the crest of the landslide zones. 

Cross-sections taken through the 3DEC model strongly suggests that the 
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observed tension cracks formed along pre-existing discontinuities. The 

tension cracks appear to be primarily associated with more steeply inclined 

discontinuities (J2, J3, J4) with visible daylighting on the slope surface.   

5) Sensitivity analysis highlighted the importance of fracture network orientations 

relative to slope geometry on potential landslide failure mechanisms with 

respect to the size and spatial distribution. The sensitivity analysis also 

highlighted the effect of dip, dip direction and persistence of the basal feature 

on the extent and spatial distribution of potential slope instability.   

6) Use of a hodographic interpretation of block displacements in association with 

stereographs can aid in interpreting complex rock slope failure mechanisms. 
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Chapter 5. Modelling the influence of geological structures in paleo rock 

avalanche failures using field and remote sensing data (adapted from the 

paper (He et al., 2022)) 

5.1. Introduction 

Catastrophic rock avalanche can involve rock failures of million cubic meters in size 

(Geertsema et al., 2006; Runqiu, 2009; Singeisen et al., 2020), that lead to high 

velocity flows of fragmented rocks with the release of enormous energy that can be 

highly destructive (Zhuang et al., 2019; Gao et al., 2020). In addition, rock avalanche 

may cause indirect hazards related to their debris flow deposition (e.g., upstream 

flooding induced by river obstruction) (Allen et al., 2016; Pandey et al., 2022). 

Unfavourably oriented discontinuities are deemed to be one of the critical 

preconditioning factors for rock avalanches (Hutchinson, 1989; Nicoletti et al., 1993; 

Agliardi et al., 2001; Bianchi-Fasani et al., 2011; Della Seta et al., 2017). It has been 

found that catastrophic rock avalanches are usually related to the presence of large 

and persistent discontinuities (e.g., faults and bedding), which is emphasized by the 

cases of translational sliding (Borrelli and Gullà, 2017; Mihalić Arbanas et al., 2017), 

wedge sliding (Chigira et al., 2013), and toppling failures (Nichol et al., 2002). The 

influence of the local fracture network has also been observed in catastrophic 

landslides, contributing to the disintegration of the failed rock mass and the formation 

of release surfaces (Fan et al., 2019; Donati et al., 2021a).  

For rock slide analysis, the interpretation of on-site discontinuity orientation and 

persistence is critical as it can provide the basis for rock mass characterization, 

estimation of rock mass properties, and the prediction of possible failure 

mechanisms (Goodman, 1980). Discontinuity characterisation has been 

conventionally performed through traditional manual surveys used to collect 

important information on discontinuity geometry, orientation and strength properties 

(Hoek and Bray, 1981). However, the use of traditional surveys is limited in 

hazardous or inaccessible sites (e.g., coastal cliffs, unstable slopes, and steep 

slopes). Recent advancements in remote sensing (RS) techniques can provide 3D 

topographic mapping of outcrops at these sites, thus allowing remote discontinuity 

detection. These include utilization of aerial/terrestrial light detection and ranging 
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(LiDAR) mapping to directly acquire a 3D point cloud (or TIN mesh) of an 

outcropping rock mass (Jaboyedoff et al., 2012). Digital photogrammetry can also be 

deployed to acquire a series of stereo images to construct 3D topography of 

outcrops by using a structure-from-motion (SfM) algorithm (Martino and Mazzanti, 

2014; Kong et al., 2021a). The application of optical sensors mounted on unmanned 

aerial vehicles (UAV) for digital photogrammetry, termed UAV remote sensing (UAV-

RS), becomes a low-cost, lightweight, time-saving, and user-friendly option to map 

rocky outcrops where discontinuities daylight (Kong et al., 2021a).  

Following the interpretation of on-site discontinuities, stability analysis can then be 

undertaken. Initial evaluation of potential instability is typically undertaken through 

kinematic analysis to predict potential failure modes of discontinuous rock slopes. 

The inclusion of internal (weight) and/or external stresses (e.g., pore-water pressure), 

can be undertaken using 2D and/or 3D limit equilibrium (LE) analysis to evaluate the 

factor of safety (FoS) of a rock block that is constrained by a simple geometrical 

representation of the identified discontinuities (Kumar et al., 2018). Both kinematic 

and LE analysis can provide an initial estimation of the stability condition of a rock 

slope. However, they are not applicable for the analysis of slope displacement and 

other complex situations, e.g., anisotropic rocks, and complicated discontinuity 

networks (Stead and Wolter, 2015). Numerical modelling, especially based on 

discontinuum methods and hybrid methods, can be used to provide further insight 

into landslide failure mechanisms, particularly where the discrete fracture network 

has a controlling influence on potential failure (Kawamoto and Aydan, 1999). For 

example, discontinuum modelling has been preferentially employed to investigate 

the displacement and/or deformation of rock blocks (He et al., 2021b), and used for 

the analysis of rockfalls and the mobility or run-out of landslides as large 

displacements and rotation of blocks are allowed in the modelling (Bao et al., 2020; 

Mao et al., 2021).  

It is therefore clear that rock mass characterization plays a key role in the analysis of 

rock failures. Another crucial aspect in such types of analyses is represented by the 

geological and evolutional model of the area. During numerical simulation the 

geological models are often simplified to facilitate the modelling process. However, 

the structural/geological model can play a key role in understanding of the evolution 
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of the rock avalanche failure mechanism (Hutchinson, 1989; Francioni et al., 2019).  

In this context, this paper presents the representative case study of the Lettopalena 

rock avalanche to examine the influence of an anticline on a catastrophic 

translational landslide in sedimentary rocks. The Lettopalena rock avalanche 

occurred approximately 4.8 kyr BP (Scarascia-Mugnozza et al., 2006) and it is 

located in the Italian Apennines, where the influence of structural/tectonic features 

play a key role in the evolution/triggering of such large phenomena. The rock 

avalanche, which volume was estimated around 30x106 m3 (Bianchi Fasani et al., 

2005), has been studied in the years by several authors who have analysed both the 

ancient rock avalanche mechanisms and evolution (Scarascia-Mugnozza et al., 2006; 

Bianchi Fasani et al., 2011) and the most recent rock fall events. In fact, several 

rockfalls event have been documented in recent decades (Paolucci et al., 2001) with 

the most recent one dated 2005 and estimated around 2000 m3 by Bianchi-Fasani et 

al. (Bianchi Fasani et al., 2005). Such rockfalls events are mainly controlled by the 

unfavourable orientation of structural features (bedding and joints) and by water 

infiltration along discontinuities (Bianchi Fasani et al., 2005). Such minor events has 

to be studied in a more general context which involve the structural-morphotectonic 

evolution of the area which has led to failures varying from a few cubic meters to 

millions of cubic meters (such as the Lettopale rock avalanche (Scarascia-Mugnozza 

et al., 2006; Bianchi Fasani et al., 2011). 

Scarascia-Mugnozza et al. ( 2006) performed a comprehensive study of 

morphological, structural and lithological constraints on the rock avalanche slope. A 

geological and numerical model of the rupture developed by the authors highlighted 

the key role of the pre-existing topography/geomorphic features and the high 

deformability of the out-cropping Mio-Pliocene formation. 

Most recently, further studies in the area have been carried out by Bianchi Fasani et 

al. (2011), who developed a morpho-structural evolution model by the integration of 

detailed geological–structural and geomorphological surveys. Based on this model, 

the authors performed numerical simulations through Finite Difference Method (FEM) 

with the goal of evaluating the effect of the uplift-related morphological changes of 

the valley–slope system and the role of the horizontal/vertical stress ratio variations 

due to geodynamic regime shifts. The results presented by the authors confirmed the 
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presence of stress–strain conditions in the massive rock slope failures. 

In this context, this research aims to integrate the existing studies with a different 

type of numerical simulation/model, carried out using discrete element method to 

highlight the role of the structural setting (bedding inclination) and potential river 

erosion in the Lettopalena rock avalanche. Various RS techniques (i.e., UAV-RS and 

satellite RS) have been combined to detect structural features and post-landslide 

features. Subsequent 2D modelling was employed to simulate, as mentioned above, 

the development of the landslide following river erosion at the toe of slope. The 

remotely captured data was used to constrain and validate the numerical modelling 

undertaken. It will be highlighted how the geological model and the interpretation of 

the geological-geostructural evolution of the area can play a key role in the results of 

rock avalanche numerical back analyses. The use of distinct element analysis, 

combined with previous FEM simulation (Scarascia-Mugnozza et al., 2006; Bianchi 

Fasani et al., 2011), can represent a further tool for landslide interpretation.  
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5.2. Study area description 

The study area is located in the Central Apennines of Italy, at 40°00’35’’N 14°

09’56’’E, on the NW side of Lettopalena in Chieti, at an altitude in the range of 

approximately 500 m a.s.l. to 1200 m a.s.l. (Fig. 5-1). The valley where the rock 

avalanche is sited is the Caramanico Valley, a north–south-oriented tectonic 

depression located on the SE of Monte Amaro and about 40 km west of the Adriatic 

Sea. The area is still monitored for potential instability due to the hazard posed to a 

village built up adjacent to landslide deposits and the section of a state road (SS84) 

constructed along the landslide scar. A recent landslide, which occurred on the 20th 

April 2005, that resulted in a 2000 m3 rock block failure highlights the ongoing risk. 

The run-out from the failure blocked the SS84 state road, destroyed a private house 

along the route, and led to the death of one resident.  

 

Fig. 5-1. Location of the study area, showing the rough boundary of the analysed landslide (in red) 

and the sampling sites (site 1-4) of structural identification through traditional survey and UAV 

mapping, site 5 of structural identification using satellite map. 
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5.2.1. Geological setting 

Geologically, the study area is situated on the southeast side of the Majella anticline 

on a carbonate platform succession (Vecsei et al., 1999). The platform is 

characterized by a N–S oriented anticline with a steeply-dipping forelimb, and a 

thrust fault underlying the Majella unit at the E margin (Vecsei et al., 1999; Aydin et 

al., 2010). The sedimentary record of the platform comprises of a wide time interval 

from the Late Jurassic to the late Miocene (Vecsei et al., 1999). The undeformed 

platform was initially formed transecting approximately 20 km long to the adjacent 

northern basin, which was separated by a 1000-metre-high non-depositional 

escarpment trending E-W (Vecsei et al., 1999). During the Cretaceous period, 

basinal sedimentary rocks buried the escarpment causing the gradual decrease of 

the slope angle (Vecsei et al., 1999). At the end of the Campanian, the basin was 

almost filled, and the Maastrichtian sequences were deposited onto the platform, 

consequently forming a distally steepened ramp (Mutti et al., 1997; Vecsei et al., 

1999; Brandano et al., 2016). A carbonate ramp, consisting of Bolognano formation, 

was subsequently developed overlying the shallow water deposits during the late 

Rupelian to early Messinian interval (Brandano et al., 2016). The schematic platform-

basin cross section has been provided by (Vecsei et al., 1999). 

On a local scale, a primary geological characteristic is the Molise unit overlying the 

younger Majella unit which was caused by overthrust faulting. The major component 

of the Molise unit is the Argille Policrome (APO) that is comprised of the alternation 

of pinkish-reddish to greenish marly claystone, chert, and calcilutite. The Majella unit, 

in the order of the depositional sequence from the bottom to top, is composed of 

Morrone di Pacentro Formation (MOR), Monte Acquaviva Formation (ACQ), Scaglia 

Formation (SCZ), Orfento Formation (OR), Santo Spirito Formation (FFS), 

Bolognano Formation (BOL), Gessoso-Solfifera Formation (GES), and Majella 

Flysch (MAJ) (Festa et al., 2014). The characteristics of these formations has been 

summarized in Table 5-1. In addition, Talus Deposits are distributed in the valleys 

adjacent to the analysed slope, consisting of well-sorted centimetres-to-decimetres 

sized rock fragments that are characterized by openwork to partially openwork 

texture (Festa et al., 2014). Fig. 5-2a shows the geological map of the area after 

Vezzani and Ghisetti (Vezzani and Ghisetti, 1998) and Miccadei et al. (Miccadei et al., 
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2013). The base digital elevation data used in the map is the 10x10 meter resolution 

digital elevation data available from Abruzzo Region GIS portal (Abruzzo council, 

2022). The slope profiles 1-4 in the geological map have been created to highlight 

landslide geometry. Profile 2 has been used to create the 2D geological section of 

Fig. 5-2b. Profiles 1,3 and 4 will be shown and discussed in section 5.4.1. 

 

Fig. 5-2. a) the geological map of the study area after Vezzani and Ghisetti (1998) and Miccadei et al., 

(2013), and b) 2D section (along Profile 2) of the analysed slope, showing the lithology, distribution of 

discontinuity and landslide deposits. 
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In respect of the structural geology, the slope is characterized by the convex relief of 

the bedding as the presence of an anticline, whose bedding inclination undergoes a 

gradual increase from sub-horizontal angles (10° - 20°) on the crest of the slope to 

tilted angles (25° - 30°) in the medium-low part of the slope (Fig. 5-2). There are two 

thrust faults in the analysed slope (Fig. 5-2a), one is dipping towards SE and causing 

the Molise unit overlying the Majella unit (as aforementioned) and the second dipping 

towards NW and resulting in uplift of hanging wall of Majella unit. 

Table 5-1. Characteristics of the formations that constitute the Majella unit (Festa et al., 2014). 

Formation Lithology Thickness 

MAJ 
Yellowish pelite with decimetres-to-metres thick intercalations of 

sandstone 
˃ 900 m 

GES 
Gypsum and gypsumarenite 

deposits intercalated in alternating grayish marl and siltstone 
30 m – 100 m 

BOL 

BOL1 Marly limestone and cherty limestone 0 – 20 m 

BOL2 Bryozoan-rich calcarenite 0 – 70 m 

BOL3 
Massive-bedded whitish limestone with rodolites of coralline 

algae, bryozoan, echinoids, molluscs, macroforaminifera 
30 m – 60 m 

FSS 
FSS1 Whitish calcilutite with chert alternating with calciturbidites 20 m – 50 m 

FSS2 Whitish-to yellowish porous calcarenite with chert 100 m -300 m 

OR Biocalcarenite and whitish porous calcirudite 60 m - 200 m 

SCZ 

White hemipelagic calcilutite, in decimetres thick beds, with red-to 

violet chert, alternating with porous bioclastic calcisiltite and 

calcarenite 

50 m - 400m 

ACQ White fine-grained biocalcarenite and calcirudite rich in Rudists 200 m - 300 m 

MOR Massive micritic limestone and oolitic and oncolitic calcarenite ˃ 400 m 

5.2.2. The Lettopalena Paleolandslide 

The Lettopalena Paleolandslide (sometimes named Taranta-Peligna Paleolandslide) 

is a historic landslide, with the delineated boundary (shown in Fig. 5-3a) which 

probably occurred in the Mid- Holocene (Paolucci et al., 2001). The landslide 

features an elongated headscarp characterised by a ‘Z’ shape on the SW side (Fig. 

5-3d) and a right-angle corner on the NE side (Fig. 5-3e). Landslide deposits, 

composed of scree and talus with various sizes of fragmented rocks (Fig. 5-3b), are 

observed at the toe of the slope and on the opposite side of the valley where the 

village of Lettopalena has been built. Some blocks, tens of metres in size, are still 

visible at the toe slope and along the river, which testify the heterogeneity of the 

paleo-landslide deposits. An example of such blocks is shown in Fig. 5-3c; the planar 

condition of the block surface facing the camera implies the block was detached 
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along a highly persistent geological structure.  

 

Fig. 5-3. Landslide scar and deposits, a) the extent of the ancient landslide and the deposit, b) 

landslide deposits characterized by scree and talus, c) an isolated rock block located by the river, d) 

the SW headscarp of the landslide, e) the NE headscarp of the landslide, e) the NE headscarp of the 

landslide. 

Although there is scarcity of additional detail for the ancient landslide, a recent small-

scale landslide in 2005 (Bianchi Fasani et al., 2005), adjacent to the study site, can 

be a useful indicator of potential triggers for the ancient landslide. The two landslides 

are located in identical geological environments and have a similar mechanism that 

is controlled by the bedding and the lateral and rear release surfaces and were 

defined by the discrete fracture network. For the 2005 landslide, rainfall was 

suggested as a contributing trigger factor (Bianchi Fasani et al., 2005). This may also 

be applicable to the catastrophic landslide, because of the fact that water saturation 

is effective to reduce shear strength of discontinuities (Pellet et al., 2013; Noël et al., 

2021). Paolucci et al. also suggested that the paleolandslide may have been 

triggered by an earthquake (Paolucci et al., 2001), as for other paleolandslide in the 

region (e.g., Scanno Paleolandslide, (Francioni et al., 2019)).The high mobility of the 

landslide is evidenced by the distribution of landslide deposits in proximity to the 

village (see Fig. 5-3a and b), with the presence of talus deposits on the opposite 

flank of the valley that ran out 150 metres away from the toe of the slope. 
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5.3. Material and methods 

5.3.1. Interpretation of geological structures and kinematic analysis 

Geological structures were interpreted through the combination of traditional manual 

surveys and RS mapping to investigate the potential mechanism and kinematics of 

the landslide. More precisely, in relation to the 6 survey sites shown in Fig. 5-1 (site 

1-6), traditional manual surveys and terrestrial photogrammetry have been carried 

out at accessible sites (sites 1-2-3-4 of Fig. 5-1) between 2019 and 2021. In regard 

to the sites 5 and 6, these were investigated using Google Earth satellite imagery 

from 2009 (site 5) and a UAV survey (site 6). This provided a method to gather 

further structural information in the inaccessible upper part of landslide scar and 

therefore verify that main lineaments have a constant orientation along the entire 

slope. 

At sites 1-4 a scanline survey was conducted at each location to detect on-site 

discontinuities with the measurement of their properties, including orientations (dip 

and dip direction), estimated joint wall compressive strength (JCS), spacing, 

persistence, surface weathering condition, surface shape and joint roughness 

coefficient (JRC). Where, persistence is measured by the exposed trace length of a 

discontinuity. 

Additional discontinuity data was collected at sites 1-2-3-4 through terrestrial 

photogrammetric mapping, to complement and verify the results of manual surveys. 

Terrestrial photogrammetry provides a series of stereo images to construct a 3D 

point of rock outcrops by using a SfM technique, which was carried out by using the 

Agisoft Metashape software (Agisoft, 2016). Based on the point cloud, local 

geological structures (joints and fractures) were manually identified by using the 

Compass plugin (Thiele et al., 2017), provided by CloudCompare software 

(CloudCompare, 2017). The plane tool of the Compass plugin was used to measure 

the orientation of an exposed planar structure where its plane was fitted to all points 

sitting within the circle (using least squares). This method provides an orientation 

estimate (dip/dip direction) for the fitted plane. Using this software, it was possible to 

plot the data on a stereonet for comparison with the conventional engineering 

geology data. 
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A 2019 satellite image at site 5 (Fig. 5-1) was obtained from Google Earth, orientated 

towards the north. Using this image, it was possible to determine the strike of 

daylighting discontinuities.  

Site 6 is a representative section of the landslide scarp at the upper right corner of 

the failure zone, this area was surveyed using UAV photogrammetric mapping in 

October 2019. A total of 92 photographs were acquired with a lateral and vertical 

overlap of 70/80%. The aircraft used for the survey was a DJI Mavic 2 Pro and the 

final resolution of the extracted point cloud was between 3 and 4 cm.  

Using the features and discontinuities identified at the 6 sites described above, an 

analysis was undertaken to evaluate the kinematic potential of the slope (dip/dip 

direction: 40°/110°) for planar sliding, wedge sliding and direct toppling.  

Finally, satellite digital elevation data (10x10 metres resolution, provided by Abruzzo 

Region) was used to identify the post-landslide features for the entire slope. Various 

thematic maps have been generated using the DEM data, including a slope map to 

delineate the inclination of the slope, a hillshape map to produce a grayscale 3D 

representation of the terrain surface, and an aspect map to quantify the slope 

direction. A 2022 Google Earth image (0.5x0.5 metres) was used to interpret the 

geometric characteristics of failure scar at the toe of the slope. 

5.3.2. Numerical analysis of the landslide 

In view of the landslide characteristics (i.e., a structurally-controlled mechanism and 

relatively simple geometry) the  2D distinct element code, Universal Distinct Element 

Code (UDEC) (Itasca Consulting Group Inc., 2019), was used to model the  

landslide. The code uses an explicit time-stepping system to solve equations of 

motion, simulating the response of rock mass that is subject to either static or 

dynamic loading. In the model, a rock slope is represented as an assemblage of 

discrete blocks separated by discontinuities which are treated as boundary 

conditions between blocks. In this case study, individual blocks behave as 

deformable and deformation behaviours are defined by the Mohr-Coulomb failure 
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criterion. Typical limestone property values, as provided in Table 5-2, were used for 

landslide modelling (Lama and Vutukuri, 1978).  

Table 5-2. Rock properties associated with Mohr-Coulomb failure criterion. 

Density Shear modulus Bulk modulus Friction angle Cohesion Tensile strength 

2750 
(kg/m3) 

30 
(GPa) 

50 
(GPa) 

40 
(°) 

8 
(MPa) 

2.5 
(MPa) 

5.3.2.1. Landslide back numerical analysis 

Using  the geological section in Fig. 5-2 and post-landslide slope geometry that was 

delineated using satellite DEM data (10 × 10 metres resolution, provided by Abruzzo 

Region), pre-landslide scenarios have been constructed along profile 2 (Fig. 5-4). 

The models highlight how the thrust fault at the toe of the slope generates the 

contact between the BOL and the GES formations. The BOL formation, being made 

of limestone materials, has higher erosion resistance compared with the GES 

formation. Therefore, we have indicated that the Aventino River erodes the GES 

formation at the toe of the slope, daylighting the bedding planes of the BOL formation. 

The erosional evolution (pre-failure) has been illustrated in Fig. 5-4a. Fig. 5-4b 

shows the current slope profile (post-failure) with landslide deposits at the toe of the 

slope and on the opposite side of the valley. 

 

Fig. 5-4. Geological models of the analysed slope with the consideration of the effect of sequential 

river incisions, a) pre-landslide, b) post-landslide. 

Using the assumed pre-landslide slope geometry (as shown in Fig. 5-4a) the 2D 

distinct element model in UDEC (Fig. 5-5) was created. The model incorporates the 

identified discontinuity network (i.e., S0 and J1) with the properties listed in Table 5-3, 

but with sets J2 and J3 excluded from the modelling as they are sub-parallel to the 

cross section. Generic properties of discontinuity and rock were used for numerical 
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modelling. The values of these parameters were determined within reference to 

relevant literature (Antolini et al., 2016), and calibrated through back analysis. The 

thrust fault is considered with the uplift of hanging wall in which a folded bedding 

plane is configured by a curve of 20° inclination at the crest of the slope and 25° 

inclination at the toe of the slope.  

Gradual river erosion is also incorporated into the modelling through the sequential 

removal of rock blocks in three stages. Note that the folded bedding plane at the 

base of the modelled slope does not daylight until the third stage of erosion is 

completed. The modelling sequence took place between 2021 and 2022 and 

consisted of 4 simulation intervals (interval 1-4). Interval 1 simulates the mechanical 

behaviour of the slope before river erosion); Interval 2 models the mechanical 

behaviour of the slope in response to stage 1 of the simulated river erosion; Interval 

3 is associated with the mechanical behaviour of the slope in response to stage 2 of 

the simulated river erosion; Interval 4 models the mechanical behaviour of the slope 

in response to stage 3 of the simulated river erosion.  

Table 5-3. The property of discontinuities used in numerical modelling. 

Normal stiffness Shear stiffness Friction angle Cohesion 

10 (GPa/m) 5 (GPa/m) 22 (°) 25 (KPa) 

A fixed boundary condition was applied to sidewalls and the base of the model. To 

ensure no boundary effects on the zone of interest, boundaries (sidewalls and the 

base) were extended 200 m from the zone of interest. Three representative history 

points (H1, H2 and H3) were placed in BOL rocks within the model to monitor the 

displacement of BOL in the lower, middle, and upper parts (see Fig. 5-5) of the 

modelled slope.  
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Fig. 5-5. Model geometry used for numerical modelling of the landslide, highlighting gradual river 

erosion characterized by sequential removal of rock blocks, thrust faulting of a bedding plane, and the 

location of 3 history points (H1, H2 and H3). 

5.3.2.2. Sensitivity analysis 

In numerical simulations material properties are usually the most difficult parameters 

to determine. In this context, a sensitivity analysis was carried out to assess the 

potential impact of variations in the material properties on the modelling of the 

landslide. Considering that the catastrophic landslide was most likely associated with 

translational sliding along bedding planes, the sensitivity analysis focused on the 

variation of the friction angle and cohesion of S0, as shown in Table 5-4. For each 

parameter, a sensitivity analysis was performed by varying its value from the 

minimum, the mean, to the maximum using a control variate method (He et al., 

2021b), in order to examine the influence of the uncertainties on the slope stability 

analysis. 

Table 5-4. Variations in dip, dip direction, persistence, friction angle of the folded bedding plane were 

characterized by mean, minimum and maximum values. 

J1 Property Mean Value Minimum Maximum 

Friction angle (°) 22 17 27 

Cohesion (Pa) 2.5 × 104 0 5 × 104 
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5.4. Results 

5.4.1. The characteristics of geological structures and result of kinematic analysis 

5.4.1.1. The characteristics of geological structures 

As discussed in section 3, the characteristics of the geological structures have been 

investigated through different survey methods. Traditional manual surveys and 

terrestrial photogrammetry have been performed at sites 1-2-3-4. A total of 79 

discontinuities were measured using the traditional manual approach and further 81 

through photogrammetric analysis. Fig. 5-6a shows a lower hemisphere stereonet 

plot representing the poles of 76 discontinuities (joints and bedding planes) collected 

from traditional manual surveys at sites 1-2-3-4, where 4 main discontinuity sets (S0, 

J1, J2 and J3) were identified. Fig. 5-6b presents a stereonet representation of the 

poles of 81 discontinuities measured from the terrestrial and UAV photogrammetric 

surveys at sites 1-2-3-4-6. Both results are generally consistent, although J3 is less 

pronounced.  

 

Fig. 5-6. Lower hemisphere stereonet plots of discontinuity poles measured from: a) engineering 

geological mapping, b) photogrammetric surveys, c) combination of engineering geological mapping 
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and photogrammetric surveys. 

 

The two datasets were then combined (Fig. 5-6c). The relatively low-angle 

discontinuities dipping towards SE in set S0 is related to bedding of Majella rock 

units, with a mean orientation (35°/099°) and high persistence (more than 20 m); J2 

(81°/257°) and J3 (80°/230°) are sub-parallel with J2 being the predominant one; 

joints in sets J1 (80°/348°) and J2 are sub-vertical and sub-orthogonal to each other. 

J1, J2 and J3 are less persistent compared with S0, whilst they have similar degrees 

of spacing (approximately 0.4 m) throughout the four sampling sites (Table 5-5). The 

spatial relationship between S0, J1 and J2 and their geometric characteristics are 

presented in Fig. 5-7 which shows a terrestrial photogrammetric built 3D model for a 

roadside section of the analysed slope.   

Table 5-5. Discontinuity properties, including the mean orientations obtained from the traditional 

manual survey, mean orientations obtained from photogrammetric surveys, mean orientations 

obtained from the combination of both surveys, mean discontinuity spacing and mean discontinuity 

persistence. 

Set 

Mean orientation (Dip°/Dip Direction°) 

Mean 

spacing 

(m) 

Mean 

persistence 

(m) 

Mean Infilling 

(mm) 

From 

traditional 

manual 

survey 

 From 3D 

model 
Combined  

S0 36/105 33/93 35/99 0.4 > 20 Hard filling < 5 

J1 84/341 74/356 80/348 0.3 1-3  Hard filling < 5 

J2 83/257 78/255 81/257 0.4 1-3 Hard filling < 5 

J3 80/230 (Nah) 80/230 0.4 1-3 Hard filling < 5 



135 

 

 

Fig. 5-7. A terrestrial photogrammetric 3D model of a roadside section of the analysed slope. 

Table 5-6 summarizes geomechanical discontinuity properties (i.e., JCS, weathering 

condition, surface shape condition and JRC) at sites 1-2-3-4 (where traditional 

manual survey was conducted). Discontinuity properties measured at site 2 differ 

from the properties detected at other sites. For example, for the 4 sets, the JCS 

measured at site 2 is lower than the one measured at sites 1, 3 and 4. Less 

weathering and increased undulation of discontinuity surfaces was observed at site 

2.   

Table 5-6. Site-dependent discontinuity properties (site 1/ site 2/ site3/ site 4), including UCS, surface 

weathering condition, surface shape and JRC. 

Set JCS (MPa) Weathering JRC 

S0 50/32/48/44 moderately/slightly/moderately/moderately 3/7/3/1 

J1 44/30/50/48 moderately/slightly/moderately/moderately 3/7/3/3 

J2 50/30/44/50 moderately/slightly/moderately/moderately 3/9/5/3 

J3 48/30/(Nah)/50 moderately/slightly/(Nah)/moderately 3/9/(Nah)/3 

With regards to sites 5 and 6, as mentioned in section 3, they have been 

investigated using Google Earth satellite images (site 5) and UAV survey (site 6). 

This provided a basis to validate the results gathered from the traditional manual 

surveys and terrestrial photogrammetry and, more importantly, to confirm that the 

orientation of major lineaments at the crest of landslide scarp were similar to the 

ones measured along the state road (SS84). Fig. 5-8a shows the strikes of 
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daylighting discontinuities on a Google Earth at site 5, where the observed 

discontinuities are delineated by blue and red lines. From the rosette plot of strikes of 

the features (Fig. 5-8b), the discontinuities highlighted in blue are SSW-NNE 

trending and discontinuities highlighted in red are SSE-NNW trending, implying their 

close relation with J1 and J2/J3, respectively (Fig. 5-6). However, discontinuities 

related to S0 are absent in the image as S0 is parallel to the slope surface and has 

less potential to daylighting in the slope. 

 

Fig. 5-8. a) the detection of strikes of daylighting discontinuities from a 2019 Google Earth image 

high-lighted by red and blue lines, b) a rosette plot showing the strike of detected discontinuities. 

The UAV photogrammetry at site 6, with a flight plan depicted in Fig. 5-9a generated 

a 3D point cloud, consisting of approximately 36 million points with spatial resolution 

between 3 and 4 cm, to delineate the section of the escarpment. Where X indicates 

E direction, Y points towards N direction and Z infers the vertical (Fig. 5-9b). The 

survey was unable to map the entire base of the valley due to occlusion caused by 

vegetation. However, two sections of the escarpment related to the rear and lateral 

release surfaces of the landslide are clearly presented. It shows that two sections of 

escarpment are characterized by near-vertical limestone cliffs of 60-metre height. 

The rear release surface is formed by major features (88°/155°) belonging to J1 

while the lateral release surface by two features (79°/202° and 85°/038°) belonging 

to J2/J3. The bare slope (slip surface) underlying the escarpment also exhibits a low-

angle planar surface related to bedding.  
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Fig. 5-9. UAV photogrammetry, a) UAV flight plan over the upper right corner of the failure zone, b) 

point cloud showing the topography of the upper right escarpment of the landslide zone with 

highlighted 3 discontinuities that define the rear and release surfaces. 

With regards to the 10x10 DEM analysis, the raster data presents a clear 

topographic contrast between the carbonate reliefs of the NW slope, with altitudes 

exceeding 1700 m a.s.l., and the predominantly clayey hilly landscape of the SE 

foothills, with average altitudes of less than 900 m a.s.l. (Fig. 5-10a). The contact 

between the two parts is marked by the deep incision of the NE-SW trending 
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Aventino river valley (Fig. 5-10b). The SE slope underlying the Lettopalena village 

exhibits a flat terrain represented by low slope angles in Fig. 5-10c and a white 

colour on the hillshade map (Fig. 5-10d). Compared with the SE slope, the NW slope 

is relatively steep, characterized by a convex terrain where the inclination, in general, 

increases from the crest to the toe (Fig. 5-10c). In addition, the slope where the 

landslide occurred is constrained by two valleys (the NE-SW trending Aventino river 

valley and an NW-SE trending valley). 

 

Fig. 5-10. Topography of the analysed slope, showing the information on a) elevation, b) aspect c) 

inclination, and d) hillshade. 

The landslide scar is also clearly visible in these maps. For example, the elevation 

map (Fig. 5-10a) and the hillshade map (Fig. 5-10d) identify the landslide zone 

through a sudden colour change. The high slope angle values (approximately 70°) 

highlighted in red along the upper landslide boundary indicate the presence of an 

escarpment, connecting the NW-SE trending valley at the lower sector of the slope 
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(as shown in Fig. 5-10c).  

The landslide extent is depicted in the high-resolution satellite image (Fig. 5-3a) and 

the thematic maps (Fig. 5-10) with a measured area of 0.94 million m2. In addition, 

the thickness of the BOL rock layer (failure body) is approximately 50 m according to 

the height of the escarpment (Fig. 5-9b). It is estimated that the failure volume of the 

catastrophic landslide was approximately 4.7 million m3.  

Using the DEM data, 2D geometric models have been generated along the 4 slope 

profiles of Figure 2a to highlight the terrain change associated with the landslide (Fig. 

5-11). Profile 1 is out of the landslide zone, while profiles 2-4 pass across the 

landslide zone and capture the geometry of the landslide scar. It can also be seen in 

profiles 2-4 that the upper boundary of the landslide is marked by the presence of an 

escarpment and located at approximately 1000 m a.s.l. In addition, the height of the 

escarpment gradually reduces from profile 2 to profile 4 (from NE to SW).  

 

Fig. 5-11. Slope profiles along the four cutting planes highlighted in Figure 2, a) profile 1, b) profile 2, 

c) profile 3 and d) profile 4. 

5.4.1.2. Results of kinematic analysis 

Kinematic analysis highlighted that the slope is prone to planar sliding along a subset 

of the set S0/bedding (Fig. 5-12a). Wedge sliding is also possible, constrained by 

S0/J1 and S0/J2 and slides along S0 (Fig. 5-12b). Concerning potential direct 

toppling, J1 and J2 could intersect to form block edges dipping into the slope and S0 

acts as the potential basal sliding surface (Fig. 5-12c). The results of kinematic 
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analysis highlight the dominant influence of bedding (set S0) on the potential for 

planar sliding, wedge sliding and direct toppling.   

 

 

 

Fig. 5-12. Kinematic analysis of the translational landslide, a) planar sliding, b) wedge sliding, and c) 

direct toppling. 

The topographic mapping highlights that the slope exhibits a convex terrain, with 
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increasing slope angle towards the toe (Fig. 5-10c). Furthermore, at the toe of the 

slope during the phases of river erosion, the slope face alongside the river could 

reach an inclination much higher than 20-25°. In this context, kinematic analysis 

examined the kinematic potential of the slope for planar sliding with different values 

of slope angle (Table 5-7). When the slope angle is 40°, 59% of joints in S0 can 

behave as a slip surface for potential planar sliding. This percentage was calculated 

based on the total number of the surveyed planes of S0. Increasing the slope angle 

allows higher probability of planar sliding. When the slope angle increases above 

50°, the probability of failure achieved a convergence.  

Table 5-7. Probability of planar sliding along S0 with different slope angles. 

Slope angle 40° 50° 60° 

Probability for all joints 10.19% 14.01% 14.01% 

Probability for S0 59.26% 81.48% 81.48% 
 

5.4.2. Landslide numerical modelling and sensitivity analysis 

5.4.2.1. Landslide numerical modelling 

Fig. 5-13 shows a modelling result associated with slope displacement in the X 

direction after river erosion. The modelling successfully simulates the large 

translational sliding along the bedding plane. The result supports field observations 

and the depicted evolution of the area (Fig. 5-11) with the lower and middle section 

of the slope being susceptible to failure. The landslide is characterized by a step-

path slip surface at the toe of the slope, as highlighted in the close-up image 2 in Fig. 

5-13. At the NW tip, the failure terminates in the upper-middle section of the slope, 

and the headscarp is defined by the interaction and connection of S0 and J1, as 

highlighted in the close-up image 1 in Fig. 5-13.  
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Fig. 5-13. The result of numerical stability analysis showing the contour of X displacement with the 

close-up of structurally defined landslide scarp and step-path slip surface at the toe of the slope in the 

modelling. 

The X displacement of the history points has been recorded with the advancement of 

the modelling sequence (Fig. 5-14). The modelled sequence consists of 4 temporal 

intervals of calculation timesteps.   

1) Interval 1 (timestep 0-100,000): The 3 history points all achieve a limit 

equilibrium state, that is characterized by the convergence of X 

displacement. During this interval, H3 experiences more X displacement 

than H2/H1. 

2) Interval 2 (timestep 100,000-180,000): During this interval, H1/H2/H3 are 

stable and experienced a minor increase in X displacement which is caused 

by the debuttressing induced by river erosion. This debuttressing provides a 

gradually attenuated impact on the slope from H1 to H3, showing that H1 

has increased X displacement of 0.3 mm.  

3) Interval 3 (timestep 180,000-260,000): Similar to interval 2, H1/H2/H3 remain 

stable. Additional increases in X displacement of the 3 history points can be 

observed. During interval 3, the debuttressing effect is more noticeable than 

in interval 2, which is reflected by increased X displacement of H1/H2/H3.  



143 

 

4) Interval 4 (timestep 260,000-340,000): When river erosion advances to stage 

3, the displacement of H1/H2 sharply increases, whilst H3 approaches stable 

convergence. This infers that the daylighting of the bedding plane caused by 

river erosion in stage 3 creates kinematic freedom for translational sliding of 

the layered rocks. The contrasting displacement behaviours between H1/H2 

and H3 is potentially caused by the folded bedding plane (associated with 

the anticline) that has an inclination of 20° on the crest of the slope and of 

25° at the toe of the slope (valley). This is consistent with the interpretation 

of field observation and that the translational landslide occurred in the lower 

section of the slope whilst the upper section of the slope remains stable 

(Figure 3a and Figure 11). 

 

Fig. 5-14. X displacement of 3 history points (H1, H2 and H3) against calculation timestep. 

At a local scale, the modelling indicates that the development of river erosion 

promotes rock failures in the vicinity of the valley, as shown in Fig. 5-15a–c. After the 

erosion of stage 1, a planar instability occurs along a single slip surface related to S0 

(Fig. 5-15a). The erosion of stage 2 causes further sliding on a step-path surface 

defined by the connection of S0 and J1 (Fig. 5-15b); and finally, when the erosion 

advances to stage 3, a second step-path surface forms connecting the bedding 

plane in the hanging wall of the thrust fault to generate the entire slip surface of the 

catastrophic landslide (Fig. 5-15c), which is also highlighted in Fig. 5-4. 
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Fig. 5-15. Close-up view of the contour of X displacement in the valley during sequential removal of 

rock blocks caused by the staged river erosion, a) stage 1, b) stage 2 and c) stage 3. 

The same step-path geometry highlighted in the simulation is still visible in the field. 

The Google Earth image shows a step-path failure geometry at the toe of the slope 

(Fig. 5-16). The step-path geometry is mainly constrained by multiple bedding planes 

and joints related to J1.  

 

Fig. 5-16. Topography of the analysed slope at the toe showing the scar of a step-path failure 

constrained by multiple bedding planes and joints related to J1. 
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5.4.2.2. Sensitivity analysis 

A sensitivity analysis of the bedding friction angle was then undertaken. It can be 

seen from Fig. 5-17 that three history points maintain a stable state after the staged 

river erosion when the friction angle increases to 27°. This indicates that when the 

friction angle of S0 is higher than 27°, translational sliding is unlikely to occur. The 

reduction of friction angle to 17° shows that the three modelled history points 

become unstable, implying the translational sliding could impact the lower, middle 

and upper sections of the analysed slope. As would be expected, a reduction in the 

friction angle causes more displacement of failed blocks.  

 

Fig, 5-17. Sensitivity analysis of S0 friction angle by varying from 17° to 27°, showing the 

displacement of history points in X direction (a) H1, (b) H2 and (c) H3. 

The effect of cohesion is presented in Fig. 5-18. A decrease in cohesion from 25 kPa 

to 0 results in further displacement of H3 and demonstrates the development of a 

larger failed zone from the middle section to the upper section of the slope. When 

the cohesion increases to 50 kPa, the X displacement of the three history points 

approaches convergence, indicating a stable condition of the BOL slope. The 

sensitivity analysis demonstrates that slope stability is highly sensitive to the 

modelled friction angle and cohesion of the potential slip surface (bedding).  
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Fig. 5-18. Sensitivity analysis of S0 cohesion by varying from 0 to 50 KPa, showing the displacement 

of history points in X direction (a) H1, (b) H2, and (c) H3. 
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5.5. Discussion and Conclusions 

This research has presented the combined use and application of RS techniques 

(e.g., terrestrial and UAV photogrammetry and satellite RS) and numerical modelling 

for landslide investigation.  

The use of the Google Earth satellite images has demonstrated its effectiveness for 

extraction of large-scale landslide features (e.g., post-landslide slope topography 

and entire landslide boundary) as well as the identification of the strike of daylighting 

discontinuities in this study. Therefore, the combined use of UAV-RS and satellite RS 

can provide data for multi-scale landslide investigation: from large-scale mapping of 

the entire slope to small-scale mapping of the escarpment. 

The data acquired from RS has been combined with the geological interpretation of 

landslide area to develop a basis for landslide numerical modelling. As reported by 

Agliardi et al., (2001), Stead and Wolter (2015), Bianchi Fasani et al., (2011) 

geological structures can control slope instabilities through the interaction with slope 

and discontinuity networks in different ways. In particular, referring to this specific 

case study, Scarascia Mugnozza et al. (Scarascia-Mugnozza et al., 2006) and 

Bianchi Fasani et al. (2011) presented the analysis, modelling and evolutional model 

of the area of the Caramanico Valley. The evolutional model was based on the 

studies from Patacca et al. (Patacca et al., 2008) and has been simulated through 

the use of FEM analysis. These studies demonstrated the role that the tectonic 

activity in producing local stress regimes that lead to large-scale slope instabilities 

and slope movements, especially in case of high-rate tectonic uplift in a short time 

interval and consequent releasing effects.  

In agreement with what showed by these authors, this research attempted to model 

the behaviour of Lettopalena rock avalanche using numerical distinct element 

analysis. Diversely from previous study, in this case the numerical simulation was 

mainly focused on the role of anticline structures, structural setting of the slope 

(bedding variation) and river erosion.  

Although previous studies have investigated the role of anticlines in slope instabilities 

using field investigations (Cui et al., 2018; Nilforoushan et al., 2021), the simulation 

of landslide behaviour in anticline limbs through numerical modelling has not been 
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well documented. Neither has the potential role of river erosion on removal of the toe 

and subsequent development of instability.  

In this context, traditional manual surveys and RS mapping were employed to 

construct pre- and post-landslide geological models of the Lettopalena 

Paleolandslide. The geological models were then used to constrain numerical 

modelling, with the bedding inclination varying within the model in relation to the 

structural evidence extracted from field observations and RS analyses. It is 

highlighted that geological models and the interpretation of the geological-

geostructural evolution of the area under study can play a key role in the rock 

avalanche back analyses, in agreement with what showed by Scarascia-Mugnozza 

et al. (Scarascia-Mugnozza et al., 2006) and Bianchi Fasani et al., (Bianchi Fasani et 

al., 2011). It is also pointed out how the integration of geological models and 

numerical analyses can provide an improved understanding of the landslide 

behaviour and factors controlling landslide triggering, such as the influence of river 

erosion and folded bedding with increasing inclination. Although river erosion may 

have been one of the predisposing factors, the modelling confirms that folded 

bedding (with inclination increasing at the toe of the slope) controlled the geometry of 

the failure, with the upper part of the slope (less inclined) remaining stable (in 

agreement with field observation and current landslide scar).  

In addition, numerical modelling also infers a step-path sliding surface in the 

proximity to the river valley at the toe of the slope, which agrees with the field 

observation depicted in Fig. 5-16.  

This paper presents the results of the back analysis of a catastrophic historic 

landslide that occurred in the province of Chieti, Italy, to provide a further 

understanding of the slope failure mechanisms. Various methods (e.g., UAV-RS, 

satellite RS, and traditional manual surveys) were combined to identify geological 

structures and interpret post-landslide features. Given the structurally controlled 

characteristics of the landslide, UDEC modelling was undertaken to determine the 

role of structural geology (e.g., folded bedding due to the presence of an anticline, 

discrete fracture network, and a thrust fault) and the influence of river erosion on 

slope stability. Due to potential variations in material properties associated with the 

potential basal slip surface, a series of sensitivity analyses were undertaken to 
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investigate the effects of these uncertainties on slope stability analysis.  

The key conclusions arising from the study are: 

1) Satellite images can be useful to improve data acquired from engineering 

geological and photogrammetric surveys.  

2) Lidar data was able to effectively provide information on elevation, slope 

angle, and aspect from the topography of the post-landslide slope. This also 

allowed to depict the variation of the dip of S0 along the slope.  

3) The point cloud generated by a series of UAV stereo images showed that the 

formation of a section of landslide escarpment was controlled by the discrete 

fracture network, where the upper boundary was related to the set J1 and the 

left boundary was related to sets J2/J3. 

4) UDEC modelling was able to recreate the translational landslide failure 

mechanism, highlighting the fundamental role of gradual river erosion, which 

daylighted the bedding planes providing kinematic release for the landslide to 

occur.  

5) The modelling suggests that termination of the landslide rear release surface 

was influenced by the presence of an anticline which provides variation in the 

inclination of folded bedding planes.    

6) The investigation highlights the important role of the geological and 

geostructural model in numerical landslide simulations, both in term of 

predisposing factors and landslide geometry.  

7) The modelling highlights the influence of step-path failure in the vicinity of the 

toe of the slope.  

8) The sensitivity analysis emphasises the influence of discontinuity strength 

properties (i.e., friction angle and cohesion) of the basal slip surface on the 

extent of potential slope instability.   
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Chapter 6. Modelling discontinuity control on slope instability of a large 

open-pit mine in South America 

6.1. Introduction 

Discontinuities are critical to rock stability as they may behave as the plane of 

weakness along which instabilities may occur (Hutchinson, 1989). Under low stress 

environments, slope instability may be controlled by potential failure and movemnet 

along persistent discontinuites or interconnection of the discrete fracture network 

providing kinematic release of rock blocks (He et al., 2021b). However, if potential 

failure occurs in either large-scale slopes or underground excavations it can be more 

complex as rock deformation and fracturing may also occur when the principal 

stresses approach or exceed rock strength. In these cases, the configuration of 

fracture networks and estimation of rock mass strength have to be taken into 

account to perform stability analysis. When estimating rock mass strength, non-

persistent discontinuities are evaluated as rock bridges between adjacent 

discontinuities improve rock mass quality improving stability (Stead and Wolter, 

2015). Therefore, to generate more realistic representations of fracture networks, 

some researchers produce stochastic discrete fracture networks (DFN), whilst this 

increases computational complexity it is considered more robust when assessing 

rock mass strength and deformation properties (Gao et al., 2014; Wang et al., 2017; 

Cui et al., 2021).  

To date, various methods have been developed to investigate the role of structural 

features in controlling rock slope stability and failure modes. At the laboratory level, 

due to the difficulties involved in replicating the rock properties (e.g., structural 

arrangement), rock-like specimens with artificially created fractures were created to 

analyse rock mass behaviour (Cheng et al., 2019; Zhang, Y. et al., 2020). Numerical 

methods upon a continuum, discontinuum and hybrid analysis are another principal 

measure to simulate the mechanical behaviour of rock mass in response to different 

stress conditions (Stead and Wolter, 2015). This allows discontinuity properties to be 

freely assigned accounting for different geological conditions in comparison to 
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laboratory tests. When numerical modelling is undertaken using a  jointed rock mass, 

discontinuum and hybrid analysis are preferentially adopted as they are more 

capable of modelling discontinuous bodies with the inclusion of complex discontinuity 

networks (Stead and Wolter, 2015). A range of methods have been developed and 

are usually grouped as Discrete Element Methods (DEM) in which discontinuities, 

treated as boundary conditions, discretize a model into joint-bounded blocks where 

displacement and/or deformation (depending on intact rock blocks are deformable or 

rigid) of the blocks is allowed (Stead and Coggan, 2012). In addition, grain-based 

DEM methods, such as bonded-particle models (BPM) (Potyondy and Cundall, 2004) 

and Voronoi tessellation based models (Lorig and Cundall, 1989; Gao and Stead, 

2014), are ultlised when modelling brittle rock fracturing. These models are 

composed of an assembly of variably-sized rigid particles and simulate independent 

movement (translation and rotation) and interaction of the particles that occur on 

their contacts. FDEM has been developed to provide reliable investigation of rock 

deformation, displacement, and fracturing, with integrated advantages of continuum 

and disconttinuum analysis (Munjiza et al., 1995b; Munjiza, 2004b).  

In the field, discontinuities generally have geometrical variatiability (e.g., size, 

orientation, position and aperture), influencing the rock mass properties (Meyer and 

Einstein, 2002; Jimenez-Rodriguez et al., 2006). The variability is usually defined by 

the DFN to explicitly depict the geometry of each discontinuity, which is generated 

through different probability distributions (Miyoshi et al., 2018; Pan et al., 2019; 

Zhang et al., 2021). Coupled with numerical modelling, DFNs built upon the field 

mapping data has been used for a small-scale investigation in rock engineering, e.g., 

tunnel stability analysis (Lei et al., 2017c; Vazaios et al., 2019; Wang and Cai, 

2020b). In large-scale slope engineering, such as large open-pit mines, DFN has 

been rarely considered because when complexity of incorporating a DFN into a 

discontinuum or hybrid numerical model, as it can dramatically increase 

computational time and power. Further research is still expected to advance to a 

comprehensive understanding of discontinuity control on large-scale slope instability.  

This study investigates discontinuity control on a large open-pit mine slope instability 

incorporating the use of a DFN built from point cloud data that was acquired using 

remote sensing techniques. A 2D FDEM approach and a 3D DEM approach has 
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been used to provide an improved understanding of the slope instability. Modelling 

results were validated through in person observations and remote sensing surveys.  

6.2. Study area description 

The research study is focused on a large-scale mine slope instability that occurred 

within an open pit in South America. The mine is situated at an altitude in a range of 

4,200 m to 4,600 m asl. The slope is characterized by approximately 30° overall 

slope angle and a 220-metre-high west slope in which a non-daylighting wedge 

deformation and multiple smaller bench failures have been observed and recorded.    

6.2.1. Geological setting  

The mine has a well-developed supergene enrichment profile of oxide copper and 

secondary chalcocite that overlies hypogene sulfide (chalcopyrite-molybdenite) 

mineralization. Geologically, the mine is situated at the southern end of the 

Maricunga mineral belt and originated in a cluster of monzogranites and dacitic 

porphyry intrusions along with associated hydrothermal-contact breccias. The 

lithology of the mine consists of monzogranites, dacite porphyries, breccias, diorites 

and epithermal deposits. The property of rocks associated with the Hoek-Brown 

failure criterion has been listed in Table 6-1 including unit weight (γ), material 

constant (mi), uniaxial compressive strength (σci), Young’s modulus (Ei) and 

Poisson’s ration (vi). 

Table 6-1. Intact rock properties associated with Hoek-Brown criterion. 

Rock γ(t/m3) mi σci (MPa) Ei (GPa) Vi 

Monzogranite 2.56 16.7 85.5 12.56 0.24 

Dacite porphyry 2.5 21.1 66.58 30.86 0.22 

Breccia 2.58 16 98.7 44.73 0.25 

Diorite 2.64 10.4 89.29 46.41 0.18 

Epithermal deposits 2.57 25 60 21.27 0.18 

6.2.2. Landslide events 

Slope instability is a critical safety concern during mining excavation phases 

throughout the pit but of higher risk on the west slope. Previous evidence of 

instability is visible on the west slope, and these have been monitored and recorded. 
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These include a number of closely distributed small-scale bench failures and a larger 

area associated with ongoing inter-ramp deformation. Fig. 6-1 highlights the 

boundary of the inter-ramp deformation by a white dash line and the 4 representative 

bench failures labelled 1-4. 

 
Fig. 6-1. The west slope of the mine with highlighting a rough boundary of the inter-ramp instability in 

white and 4 bench failures for analysis. 

Both Fig. 6-1 and Fig. 6-2 indicate that the bench failures are structurally controlled 

and characterized by planar and/or stepped surface geometry. It can be seen in Fig. 

6-2 a-c, failures are typically constrained by two discontinuity planes. In addition, Fig. 

6-2d shows a stepped failure scar related to damaged bedding planes.  After the 

occurrence of small-scale bench failures, an inter-ramp deformation over 12 benches, 

was detected by an SSR-323XT radar monitoring system, and the monitoring results 

are shown in Fig. 6-3. The first signs of movement were observed on May 29, 2020, 

with a peak velocity of 3.3 mm/h, and occurred after blasting activity on May 28, 

2020. Increased movement was detected on June 6, 2020, with a peak velocity of 4-

5 mm/h, as shown in Fig. 6-4. The deformation rate achieved the highest velocity of 

more than 9.1 mm/h on June 10 at 5:10 p.m. Following this the movement rate was 
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maintained at velocity magnitude of 0.2-0.3 mm/h in a transgressive/ regressive 

trend on the west slope.  

 

Fig. 6-2. The scar of other bench failures in the west slope, showing the geometric characteristic of 

failure planes. 

The inter-ramp deformation is believed to be resulting from a non-daylighting wedge 

instability, contributing to rock bridge damage within the slope, allowing the 

displacement of the block moving inwards to the excavation. A superimposed effect 

of de-buttressing induced by sequential excavations at the bottom of the slope and 

accumulated blast damage may have potentially contributed to rock bridge damage 

and the observed slope deformation. 
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Fig. 6-3. Inter-ramp deformation, a) an image depicts extent (with red) of the instability, b) 

displacement velocity obtained from radar data. 

 

Fig. 6-4. Radar data showing the velocity curve of the west slope in green and the curve of 

accumulated displacement in red. 
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6.3. Methodology 

This aspect of the research contains three sections: discontinuity characterisation 

based on RS data, simulation based on limit equilibrium analysis of bench failures, 

and the numerical modelling of the observed inter-ramp deformation. The primary 

objective of the work is to provide an improved understand of the mechanical 

properties of the rock mass and the underlying instability mechanism. 

6.3.1. Data preparation  

RS mapping was carried out at the west slope to acquire the digital terrain model 

(DTM) comprising of triangular meshes of 0.25-metre resolution. The derived DTM 

was then used to generate a 3D point cloud to provide data basis for identifying 

geological structures (faults and joints) using the Compass plugin (Thiele et al., 

2017), provided by the software CloudCompare (CloudCompare, 2017). This is a 

manual process to determine the orientation of an exposed structure plane on which 

the size of a structure is measured with the maximum length of the plane. In addition, 

an index of a real fracture intensity (P21), expressed as the total length of fracture 

traces per unit area, was used to evaluate the 2D intensity of joints used to generate 

a DFN for the rock mass. 

In total, 923 joints were detected from the RS mapping. Three discontinuity sets (S0, 

J1 and J2) were identified, as shown in the stereonet plot (Fig. 6-5). Joints in set J1 

can be related to bedding, with the mean orientation (50°/124°), and have the 

highest persistence (mean continuity: 2.8 m); Joints in set J2 have a mean 

orientation (51°/066°), being of less continuity and spacing compared with J1; Joints 

in J3 are sub-vertical and have a dip direction parallel to the slope face. 
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Fig. 6-5. Lower hemisphere stereonet showing contours of 923 joint poles and 4 joint sets identified in 

the study area. 

Fig. 6-5 shows the amount of data dispersion of joint orientation that exists within the 

identified sets. In this context, a DFN model was generated in which 3 joint sets are 

defined by separate statistical distributions. The DFN properties (i.e., orientation, 

size and intensity) and their statistical distributions are listed in Table 6-2.  

Table 6-2. Properties of the 3 joint sets in the DFN model, including orientation, size, and intensity. 

Joint set 

Orientation size Intensity 

Normal distribution 
Log-normal distribution constant 

dip Dip direction 

u (°) σ u (°) σ u (m) σ 
P21 
(m/m2) 

J1  50 9 124 12 0.68 0.61 0.36 

J2 51 8 066 12 0.64 0.59 0.2 

J3 80 5 090 70 0.65 0.6 0.16 

In addition, six highly persistent joints/faults have been recognized in the west slope, 

their spatial positions and orientations are highlighted in Fig. 6-6.  It is important to 

note that faults F1_1 and F1_2 are associated with J1 and faults F2_1, F2_2 and 

F2_3 are associated with J2 based on their orientation. The extent of the landslide 

depicted in Fig. 6-1 and Fig. 6-3 indicates that the observed slope deformation is 

likely to be constrained by the interaction of F1-1, F1-2, F2-1 and F2-3. 
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Fig. 6-6. Six faults identified in the slope with their positions and orientations. 

Discontinuity strength (cohesion and friction angle) and elastic (normal stiffness and 

shear stiffness) properties used within the modelling have been provided in Table 6-3. 

Note that discontinuity strength properties were obtained by experiments, provided 

by the mining company, and deformation properties were determined based on field 

data. 

Table 6-3. Discontinuity properties associated with strength (i.e., cohesion and friction angle) and 

deformation (normal stiffness and shear stiffness). 

Type Cohesion (KPa) Friction angle (°) Normal stiffness (Pa/m) Shear stiffness (Pa/m) 

Joint 50 35 2e10 1e10 

Fault 30 25 5e9 2.5e9 

6.3.2. Bench failure analysis 

Four representative bench failures with clearly identified release surfaces were 

selected for kinematic and limit equilibrium analysis (Fig. 6-1). The release surfaces 

defined by joints or faults was measured from the point cloud data to identify their 

orientations and spatial locations. Based on the detected boundary information, 

geometric models of the bench failures were constructed. Limit equilibrium analysis 

was then carried out using discontinuity properties provided in Table 6-3, aiming to: 

1) provide the 3D geometric model of the bench failures for better visualization.  

2) approximate the volume of the bench failures.  

3) Identify the kinematics and movement of these failures. 
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4) assess the factor of safety (FoS) values of the blocks. 

The analysis estimate the FoS of each rock block defined as the ratio of resuting 

stresses to resisting stresses induced by its weight. This would provide a basis to 

determine if external factors were involved to trigger the occurred bench failures, e.g., 

potentially requiring additional external stresses if a calculated FoS＞1. 

6.3.3. Numerical analysis 

Two types of numerical analysis have been carried out, including 2D FDEM 

modelling and 3D DEM modelling, to estimate the mechanical property of rock mass 

and investigate the mechanism and development of the deformation, respectively.  

6.3.3.1. 2D FDEM modelling 

A trial version of the 2D FDEM code, Irazu (Geomechanica Inc., 2021), was used to 

conduct numerical uniaxial compressive tests to assess the rock mass strength and 

elasticity modulus. This methodology permits the dynamic simulation of multiple 

interacting bodies which can deform elastically, translate, rotate, interact, and 

fracture upon satisfying fracture criterion. The theory and principle of the method has 

been explained in previous publications (Munjiza et al., 1995, 2004), therefore it is 

not discussed  in detail in this study.    

The capacity of FDEM for simulation of rock mechanical behaviours associated with 

brittle rock fracturing has been extensively tested and validated, which is supported 

by high consistency between numerical results and corresponding experimental 

results (Rougier et al., 2014; Euser et al., 2019; Chau et al., 2020; Wang, W. et al., 

2020). 

Estimation of rock mass properties 

Assessing rock mass properties promotes the understanding of the mechanical 

behaviour influenecing rock instability. Generalized Hoek-Brown failure criterion has 

been a preferred method to evaluate a rock masses properties, where a disturbance 

factor represents the degree of damage caused by blasting and/or stress relaxation 

(Li et al., 2011; Shen et al., 2013; Yang et al., 2020). Although the geological strength 
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index (GSI) was introduced to link the failure criterion to the geological conditions in 

the field, it is inadequate to account for the anisotropy of strength and deformation of 

rock mass. This is because it regards the rock mass as a homogeneous and 

isotropic material, which is not realistic (Eberhardt, 2012).  

In this study, numerical uniaxial compression tests have been conducted to evaluate 

the rock mass properties (i.e., uniaxial compressive strength and Young’s modulus). 

By varing the size of DFN embedded SRM, compression tests were carried out on it 

to obtain the representative elementary volume (REV) (Lei et al., 2017b; Ma et al., 

2020; Wang and Cai, 2020). Note that the REV describes the minimum volume 

beyond which any submass behaves essentially like the whole rock mass. 

6 models were constructed with the width of 10m, 20m, 30m, 40m, 50m, and 60m, 

respectively, and a height to width ratio of 2.5. For numerical uniaxial compression 

tests, a low constant loading velocity (CLV) was applied on the horizontal boundaries 

of models. The loading velocity was controlled in such a way that models were not 

loaded faster than the velocity with which the stresses can be transferred numerically 

through the entire tested model. In addition, compression was also applied to the 

REV model in other 3 directions (i.e., E-W, NW-SE, and NE-SW) to estimate the 

anisotropy of rock mass properties induced by stochastic joints (Fig. 6-7).   
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Fig. 6-7. Numerical uniaxial compression tests on a DFN embedded SRM with a boundary condition 

of constant loading velocity in different directions, a) E-W, b) NW-SE, c) N-S and d) NE-SW. 

6.3.3.2. 3D DEM modelling 

The 3D DEM code 3DEC (Itasca Consulting Group, Inc., 2017) was used for 

numerically simulating the inter-ramp deformation. For the details associated with 

model setup (such as selection of constitutive models for rocks and discontinuities, 

the damping strategy, and modelling procedures), please refer to the paper (He et al., 

2021b). Unlike the previous case study, In this modelling deformable blocks were 

assumed considering the fact that rock bridge damage has been observed in the 

field.  

A simplified slope geometry was constructed for modelling, with the overall slope 

angle of 30°, the bench angle of 75°, and the bench height of 15 metres (Fig. 6-8). In 
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the modelling, the jointed rock mass was considered equivalent continuum material 

(Wang and Cai, 2020), and only the large critical discontinuities (i.e., F1-1, F1-2, F2-

1 and F2-3) were included in the model to reduce complexity and computational 

efficiency. The properties of the equivalent intact rock were assessed through the 

aforementioned numerical compression tests. A fixed boundary condition was 

applied to the base and sidewalls of the model and boundaries were extended from 

the zone of interest to ensure no boundary effects. 

Table 6-4. Property of blasting-induced weak zones related to the Mohr-Coulomb failure criterion. 

Density Young’s Modulus Cohesion Friction angle Poisson’s ration 

2.58 t/m3 5 GPa 0.3 MPa  20 ° 0.25 

The research aims to understand the influences of sequential excavations and 

blasting on the development of the deformation. In this context, two series of 

modelling have been carried out: modelling 1 incorporating sequential excavations 

from excavation 1 to 3 (shown in Fig. 6-8a) and modelling 2 considering sequential 

excavations and the creation of a blasting-induced weak zone (shown in Fig. 6-8b, c 

and d). The weak zone was extended 15 metres from each excavation to simulate a 

damage zone caused by poor blasting. The property of the weak zone has been 

summarized in Table 6-4 which is associated with the Mohr-Coulomb failure criterion. 

A representative history point was placed on the slope to monitor rock bridge failures 

and record the development of velocity magnitude and total displacement within the 

model. 
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Fig. 6-8. 3DEC modelling strategy, a) method 1 incorporating sequential excavations from excavation 

1 to 3, b) method 2 incorporating sequential excavations and blasting-induced weak zones. 

6.4. Results 

6.4.1. Interpretation of bench failures 

Fig. 6-9 presents a 3D geometric model of failure 1 that is constrained by F1 (45°/70°) 

and a joint in set J2 (83°/135°). The bench was defined by a 75° face inclination and 

15-metre slope height. A failure volume of 423 m3 was estimated, and FoS is 

approximately 0.71 for failure 1. In addition, Table 6-5 summarizes the results of the 

analysis associated with these 4 bench failures, highlighting discontinuities that 

define the boundary, estimated volume, the sliding direction and calculated FoS 

values of failures. It can be seen that failure 3 is in a marginally unstable state and 

failure 4 is in a marginally stable state based on the input geometry and the modelled 

discontinuity shear strength properties.  

 

Fig. 6-9. A representative wedge sliding shows a structural control on constraining the geometry. 

Table 6-5. The result of bench failure analysis including involved structures, estimated volume, sliding 

direction and FoS value. 

Bench 
failure 

Involved structures Volume (m3) Sliding direction FoS 

1 F1(45°/070°) / (83°/135°) 423 45°/70° 0.71 

2 F2-2(38°/056°) / J1(71°/111°) 172 38°/56° 0.61 

3 
J3(81°/78°) / J1(63°/150°)  
Basal: J1 (38°/131°) 

226 38°/131° 0.95 

4 J1(44°/154°)/J2(63°/056°/)  481 39°/121° 1.04 
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6.4.2. Rock mass properties 

Fig. 6-10 presents 6 stress-strain curves derived from numerical uniaxial 

compressive tests implemented on a SRM of different sizes. Size-dependent 

characteristics of rock mass properties are observed when the model is smaller than 

40m * 100m and they become size-independent when the model size is larger than 

40m * 100m. For example, the value of UCS reduces with the increase of the model 

size, achieving a convergence (14 MPa) at the size 40m * 100m. The result indicates 

that the SRM (40m * 100m in size) is more representative of on-site rock mass and 

may be used for estimation of rock mass properties. 

 

Fig. 6-10. representative axial stress-strain curves for a SRM of different sizes (width*length). 

In respect of rock anisotropy, Fig. 6-11a shows axial stress-strain curves derived 

from uniaxial compression tests in response to different loading directions, 

highlighting a direction-dependent characteristic of strength and elastic properties. 

Specifically, UCS of the rock mass has the maximum strength (34 MPa) in the NE-

SW direction and the minimum strength (8 MPa) in the NW-SE direction (Fig. 6-11b). 

Concerning Young’s modulus, it decreases to the minimum (33 GPa) when stress is 

loaded in the NW-SE direction (Fig. 6-11c). 
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Fig. 6-11. A) Axial stress-strain curves of a REV model under different loading directions, b) UCS 

values in different directions c) Young’s modulus values in different directions. 

6.4.3. 3D DEM modelling results 

6.4.4.1. Results of modelling 1 

The results of modelling 1 have been presented in Fig. 6-12 (excavation 1), Fig. 6-13 

(excavation 2) and Fig. 6-14 (excavation 3), showing the total displacement of the 

slope in response to sequential excavations. From excavation 1 to 3, minor 

displacements of rock blocks are observed, and there are limited increases in total 

displacements. This is also reflected in Fig. 6-15 where, the modelled history point 

attains 0.02 m of the maximum total displacement and then equilibrium is achieved. 
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Fig. 6-12. Result of modelling 1 after excavation 1 at timestep 20000, showing the total displacement 

of the slope. 

 

Fig. 6-13. Result of modelling 1 after excavation 1 at timestep 25000, showing the total displacement 

of the slope. 
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Fig. 6-14. Result of modelling 1 after excavation 1 at timestep 35000, showing the total displacement 

of the slope. 

 

Fig. 6-15. Velocity and displacement curves of the history point against timestep from modelling 1. 

6.4.4.2. Results of modelling 2 

The results of modelling 2 are presented in Fig. 6-16, Fig. 6-17 and Fig. 6-18. Few 

total displacements of the slope are observed as a result of excavation 1 (Fig. 6-16). 

However, from excavation 2 (Fig. 6-17) to excavation 3 (Fig. 6-18), differential 

displacements between the main slope and the wedge are distinct and magnified 

(approximately 0.08 m after excavation 2 and 0.3 m after excavation 3). The wedge 

undergoes significant displacement and is indicative of slope instability. 

The modelled displacement of the history point is also recorded in modelling 2, as 

shown in (Fig. 6-19). The displacement involves 5 stages, 
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1) Stage 1 (timestep 0-10000): At this stage, high values of properties are 

assigned to rock mass for the estimation of in-situ stresses and an equilibrium 

state is achieved (velocity approaching 0). 

2) Stage 2 (timestep 10001-15000): The original values of properties are 

assigned to rock masses. It can be seen that at the beginning of this stage a 

sudden increase in velocity and a slight increase in accumulated 

displacement is observed. After this, the velocity decreases to a negligibly 

small value indicating a stable state for the slope.  

3) Stage 3 (timestep 15001-20000): In the beginning, like stage 2 a sudden 

increase in velocity is observed, then this rapidly drops to zero m/s. Although 

there is a slight change in the displacement, the slope is considered stable.  

4) Stage 4 (timestep 20001-25000): Compared with stage 3, more peak velocity 

is achieved immediately after excavation 4. But the velocity drops to zero m/s 

consequently indicating that the slope is under a stable condition. During 

stage 4, the modelled history point has gained approximately 0.05 m of total 

displacement.  

5) Stage 5 (timestep 25001-35000): Excavation 3 is performed at this stage. Like 

stage 4, a sudden increase in velocity is also experienced. The difference is 

that at this stage, the slope is no longer stable, and although the velocity 

drops and fluctuates around 0.025 m/s after timestep 29000, the displacement 

continues to increase which is representative of instability associated with the 

modelled geometry. 
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Fig. 6-16. Result of modelling 2 after excavation 1 at timestep 20000, showing the total displacement 

of the slope. 

 

Fig. 6-17. Result of modelling 2 after excavation 2 at timestep 25000, showing the total displacement 

of the slope. 
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Fig. 6-18. Result of modelling 2 after excavation 3 at timestep 35000, showing the total displacement 

of the slope. 

 

Fig. 6-19. Velocity and displacement curves of the history point against timestep from modelling 2. 
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6.5. Discussion and Conclusions  

The limit equilibrium analysis has confirmed the controlling influences of discontinuity 

orientation and shear strength properties on the bench-related instabilities. However, 

one of the cases simulated had a calculated FoS value marginally greater than 1 

(see Table 6-5). This suggests that additional driving forces may contribute to 

triggering the failures. It has been well recognized that repeated blasting can cause 

the progressive degradation of joint shear strength (e.g., reduction in the cohesion of 

discontinuities) (Kong, 2012; Siamaki et al., 2018), which might be the case in this 

mine, particularly for the ongoing larger-scale deformation and sequential extraction 

of the open pit.  

Unlike some previous numerical tests using the SRM models with less than 1m in 

size (Laghaei et al., 2018; Liu et al., 2021), SRM samples used in the present study 

were tens of metres in size given the potential influence of joints in the west slope. 

Results of REV tests show that rock mass properties (i.e., UCS and Young’s 

modulus) approach scale independence when the width of the SRM model increase 

from 10m to 40m. During this process, UCS decreases and then converges to a 

fixed value, whose trend is consistent with the findings in previous studies (Gao et al., 

2014; Laghaei et al., 2018). The REV size is influenced by the geometry of DFN, and 

determined by the combination of DFN properties (e.g., fracture density, maximum 

trace length, and spacing). This has been investigated and demonstrated by 

previous studies (Pariseau et al., 2008; Schultz, 1996; Zhou et al., 2022), with the 

findings of empirical relationship between maximum trace length/spacing and REV 

size (e.g., REV size is 10 times the maximum joint spacing). Although a uniform 

result associated with the relationship was not obtained, these findings can provide 

critical basis to estimate REV size quickly and roughly from DFN properties.  

The anisotropy of rock mass properties has been tested by a series of numerical 

uniaxial compression tests. The rock mass exhibits the lowest values of UCS and 

Young’s modulus in the NW-SE direction that is approximately parallel to the 

dominant dip direction of joints (presented in Fig. 6-11). The result agrees with the 

findings obtained from previous investigations that UCS falls to a minimum when 

stress loading direction is paralleled to the orientation of geological structures (Hoek 

and Brown, 1980b; Nasseri et al., 2003; Kim et al., 2016; Cui et al., 2021). In addition, 
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it indicates that when the maximum principal stress is oriented in the NW-SE 

direction the rock mass is more prone to failure. In this case study, the maximum 

principal stress caused by topography overburden on the west slope is in such an 

unfavourable orientation, which may promote rock bridge failures.   

Each excavation can cause a sudden increase in velocity magnitude, and this can be 

observed both in modelling 1 and 2. The difference is that in modelling 1 the slope 

remains stable constantly, but the slope becomes unstable in modelling 2. The result 

of modelling 2 is consistent with radar data of the slope deformation as presented in 

Fig. 6-4. The comparative analysis highlights that the weak zone associated with 

excavation 3 is the key aspect of triggering the slope deformation. The modelling 

result also emphasizes the controlling effect of the rock bridge constrained by F1-2 

and F2-1 at the toe of the slope on the slope stability through resisting the stress 

from the overlying rock block. However, mining excavation as the pit deepens 

gradually removes rocks from the rock bridge and poor blasting may cause the 

fracturing and damage of the rock bridge. This superimposed effect may weaken the 

strength of the rock bridge and the induced de-buttressing effect may facilitate the 

observed inter-ramp deformation. 

This research provides the back analysis of observed slope instability at an open pit 

case study in South America that is characterized by an ongoing inter-ramp 

instability and multiple bench failures. A series of 3D geometric models were 

constructed to represent bench failures. Based on these models, limit equilibrium 

analysis was conducted to estimate the FoS of rock blocks. In addition, numerical 

analysis based on a 2D FDEM approach and a 3D DEM approach has been carried 

out to provide an improved insight into potential mechanisms associated with the 

ongoing inter-ramp deformation. The key conclusions arising from the study are: 

1) Limit equilibrium analysis confirms the controlling influence of discontinuity 

orientation and shear strength properties on bench instability and highlights 

that external factors (such as blasting) may also contribute to trigger bench 

failures in the west slope of mine case study.  

2) Numerical compression tests based on 2D FDEM modelling examined the 

anisotropy of rock mass properties showing U-shaped UCS and Young’s 

modulus curves against inclination where the trough was observed when 
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stress loading direction is parallel to the predominant direction of joints. 

3) 3D DEM modelling is able to recreate the observed inter-ramp deformation, 

showing the control of rock bridge, constrained by F1-2 and F2-1 at the toe of 

the slope, on the deformation. 

4) 3D DEM modelling highlights that blasting-induced weak zones and the 

effects of sequential extraction are potentially key triggers for the observed 

slope deformation.  
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Chapter 7. Discussion 

Benefits of RS surveys for landslide analysis 

This research has presented the combined use and application of RS techniques 

(e.g., terrestrial and UAV photogrammetry and satellite RS) for landslide 

investigation.  

Photogrammetry can provide high-resolution stereo images from which a 

representative 3D point cloud can be generated using SfM algorithms. It has been 

demonstrated that the point cloud data acquired from UAV photogrammetry is 

comparable, in density and accuracy, to those generated by terrestrial and airborne 

laser scanning at a lower cost (Cook, 2017; Cooper et al., 2021). In addition, when 

compared with laser scanning, photogrammetric mapping provides better visual 

representation of textures, providing additional clues and insights to interpret the 

relationship between local joints and the formation of the escarpment.  

Laser scanning techniques are also useful for large-scale landslide analysis due to 

their effectiveness of extracting slope elevation information. For example, it is 

possible to delineate the 3D geometry of a large-scale slope and construct a digital 

terrain model (DTM) through airborne laser scanning. The derived DTM then can be 

used for limit equilibrium analysis (Kargar et al., 2021), and numerical analysis (He et 

al., 2021b) of slope stability. In addition, considering that landslides result in mass 

movement and the change of slope topography, it is possible to use multi-temporal 

(pre- and post-landslide) lidar data to detect them (He et al., 2021a), and estimate 

failure volumes (Francioni et al., 2018a). Moreover, with the elevation information 

provided by lidar data, slope topographic features can be interpreted, including the 

interpretation of slope aspect, curvature, angle, and height. The results can provide 

the basis for kinematic analysis of slope stability (Brideau et al., 2012), and LSM (He 

et al., 2021a). 

Although providing a relatively low resolution, satellite RS has demonstrated its 

effectiveness for extraction of large-scale landslide features (e.g., post-landslide 

slope topography and entire landslide boundary) as well as the identification of the 

strike of daylighting discontinuities in the case study of the catastrophic rock 
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avalanche in Italy.  

 

Therefore, the combined use of UAV-RS and satellite RS can provide data for multi-

scale landslide investigation: from large-scale mapping of the entire slope to small-

scale mapping of the escarpment for comprehensive landslide investigations. 

Precautions when conducting LSM 

Machine learning and deep learning modelling are statistically based, and their 

modelling performance highly relies on input data. In landslide case studies, 

prejudging and identifying the fundamental relationships (e.g., logistic relation, 

spatial relation, and temporal relationships) between landslides and their factors (i.e., 

predisposing factors and triggering factors), and the scientific selection and 

deployment of these factors are critical for ML predictions. Therefore, this research 

has demonstrated the incorporation of discontinuities into ML models for landslide 

prediction.  

Apart from the type of input variables, data quality is also critical when implementing 

ML. In some previous studies, temporal matches between landslides and their 

factors have not been analysed in detail. For example, factors associated with slope 

geometric conditions (e.g., slope angle, aspect, and slope height) derived from post-

landslide LiDAR elevation data was used for LSM. Logistically this doesn’t make 

sense because landsliding will alter the slope topography and transform the slope 

from an unstable condition to a stable condition, and the post-landslide features are 

not triggers of the landslide. This misleading information may result in unexpected 

modelling results and significantly reduce prediction accuracy. This is also the case 

associated with other changeable factors during landsliding occurring in a short 

period, such as LULC, NDVI, and rainfall.  

In addition, a clear date of landslide occurrence is also required. In some case 

studies, landslide inventory provides accurate landslide locations, but information the 

events date is ignored, which could also cause uncertainty about the temporal 

match. Landslide detection using multi-temporal elevation data is a potential solution 
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to identify the location and size of landslides (as used in Chapter 3), with which the 

time of landslide occurrence can be interpreted within a timespan. From this point of 

view, it is critical to establish a comprehensive database with inclusion of legacy 

data, which is able to provide baseline information for a temporal analysis and 

opportunities for the understanding of long-term landscape evolution behaviours. 

The benefits from the comprehensive databases (i.e., Digimap and CCO databases) 

available in the UK, LSM for north cliff of SW England was implemented. It is also 

encouraged to establish regional (elsewhere) or global databases for LSM, which 

can include legacy data, current data and even future prediction data.  

Benefits of the multi-level landslide investigation 

Integrating LSM and numerical modelling analysis can establish a system that can 

be used for landslide investigations. In the system, ML-based LSM provides the 

estimation of the landslide probability for an extensive region. As seen from Chapter 

3, information on most independent variables were directly or indirectly obtained 

from open-source databases, enabling ML landslide prediction to be readily carried 

out for regional-scale investigations. Following this, numerical modelling can be used 

to concentrate on specific slopes with high landslide risk, providing a more accurate 

and reliable prediction of slope stability conditions. In addition, more details can be 

obtained from numerical analysis, such as the deformation and displacement of rock 

mass, tension crack development, brittle rock fracturing.  

The integration of manual and RS techniques have been used for landslide 

investigation, providing additional data for analysis. For example, engineering-

geological mapping and RS mapping have been combined for discontinuity 

identification. The combination of them can supplement each other and provide a 

significant number of identified discontinuities.  This provides a basis to more 

efficiently identify the discontinuity sets and characterise the variation of discontinuity 

geometry. In addition, the result of manual mapping and RS mapping can mutually 

be verified. This can largely increase the confidence to ensure the reliability of the 

results if comparable results are obtained from both surveys. However, when results 

are not comparable, the combination of them may cause higher data dispersion 

(e.g., dispersion of discontinuity orientation) and increase uncertainty of discontinuity 
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characterisation. This may require either experience to judge the reliability of each 

result or their combination with the consideration of their variations. 

 

Considerations of 2D and 3D numerical modelling 

This research has presented the use of different numerical methods, both 2D and 

3D, for landslide simulation. The 3D analysis can incorporate additional 

characteristics (e.g., 3D slope geometry and 3D discontinuity characterisation), and 

provides the basis to evaluate additional influences on slope stability. This was 

demonstrated in the Hell’s Mouth landslide case in which the unique slope 

topography and the formation of the inlet contributed to defining the boundary of the 

landslide. Compared with 2D modelling, 3D discontinuity characterisation is more 

able to characterize the geometry of rock mass, rock bridge and discontinuities 

(Elmo et al., 2018).  

However, a major disadvantage of 3D DEM modelling, especially with the integration 

of complicated fracture networks, is excessive computational costs (Elmo et al., 

2018). Some attempts have been proposed to simplify fracture networks and reduce 

computational costs. One representative method is the use of weak equivalent rock 

to characterize the jointed rock mass with the same values of the strength (UCS) and 

elasticity (Young’s modulus and Poisson’s ratio) properties obtained from numerical 

compression tests. Relying upon this, some other methods have been developed by 

eliminating small discontinuities and remaining relatively large discontinuities in 

equivalent rocks (Ma et al., 2019, 2020). However, these methods intrinsically use an 

equivalent continuum rock to replace a jointed rock mass, which may diminish 

mechanical anisotropy of rock mass. To solve this problem, the elastic anisotropy of 

rock masses can be defined by a compliance tensor in 3D dimensions, where 

deformation properties in all directions can be estimated through numerical triaxial 

compression tests (ISRM, 1983; Laghaei et al., 2018). Moreover, the micro and 

macro fracturing process, and the post-failure process cannot be fully characterised 

using these equivalent properties. Therefore, when analysing brittle rock fracturing 

the methods based on equivalent properties must be carefully used. Under high 

stress environments, rock deformation and fracturing may occur when the principal 
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stresses approach or exceed rock strength. 

When deciding which model to use, one of the major considerations is whether a 2D 

model can represent the structural arrangement and the analysed domain (as seen 

in Fig. 7-1), as 2D modelling undoubtfully takes advantage of less computational 

costs. This is the reason for the application of the UDEC code to model the Italian 

landslide due to the simply identified failure geometry which is dominantly 

constrained by bedding as the basal sliding surface. Therefore, 2D modelling can 

effectively investigate the failure mechanism.  

When failure geometry is complicated, 3D modelling is preferred. This is the case of 

Hell’s Mouth landslide analysis and the analysis of the mine slope instability in South 

America, where 3DEC modelling was used to simulate rock mass behaviours. 

However, incorporating 3D modelling with complex fracture networks may result in 

high computational costs. In this context, model simplification is necessary in order 

to reduce computational time and resource. For different scenarios of slope instability, 

various simplification methods are readily available. Under low stress environments, 

slope instability may be controlled by potential failure and movement along persistent 

discontinuities or interconnection of the discrete fracture network. Model 

simplification can be undertaken by considering rocks as rigid materials. The model 

is discretized by discontinuities without meshing to reduce the number of discretized 

rock blocks, significantly minimizing computational costs (such as the one shown in 

Hell’s Mouth case study). Under high stress environments, rock deformation and 

fracturing may also occur when the principal stresses approach or exceed rock 

strength. Model simplification can be carried out by using equivalent properties to 

characterize the rock mass that is composed of short-length fractures and reserving 

large discontinuities (as shown in mine slope instability analysis in South America). 
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Fig. 7-1. Flowchart on the selection of modelling methods for landslide analysis. 

Research limitations 

In LSM analysis, landslides that occurred during the years 2008 to 2014 were 

detected for training and validation of ML models. From the perspective of temporal 

scales, the relatively short period (7 years) for landslide detection may cause 

inaccurate recognition of slopes that may be susceptible to landsliding after 2014, 

while they remained stable during 2008-2014 and were classified as permanently 

stable ground. To reduce or eliminate potential impacts, future research would 

extend the duration of time for as long as possible when detecting landslides. 

In addition, using mean orientation to represent all joints in a set for slope stability 

analysis may produce misleading results due to variations in discontinuity 

orientations (Zheng et al., 2015). The GIS-based kinematic analysis is completed in 

such a way that may underestimate or overestimate landslide probabilities. 

Concerning DFN generation, the variation of discontinuity orientations can be 

characterized by discontinuity clustering that is defined by probability distribution 

laws. Built upon this method, probability analysis permits the estimation of slope 

stability with the consideration of the uncertainty of joint orientation (Song et al., 2001; 
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Zheng et al., 2017). Combining with GIS-based kinematic analysis, this method 

potentially reduces the impact of joint variation on slope stability analysis (Park et al., 

2016). The derived probability index can be incorporated into ML models as an 

independent variable for landslide prediction. 

The Hell’s Mouth case study employs a rigid model to constrain rock mechanical 

behaviours, through which model complexity is significantly reduced. Modelling 

results are generally consistent with data obtained from field observations, 

highlighting kinematic controls of local joints on the landslide. However, the buckling 

of rock slabs (shown in Fig. 4-5b) cannot be recreated in the modelling as the 

deformation and brittle fracturing of intact rock are not permitted in a rigid model.  

When modelling deformation and/or fracturing of rocks, the model must be 

deformable, and meshing is required. Issues related to meshing arise when the 

model changes to be deformable, which are more noticeable in 3D DEM and FDEM 

modelling that incorporate a DFN model and considers the variation of joint geometry. 

In the modelling meshing is used to produce good quality meshes (as seen in Fig. 

7-2), avoiding ‘bad block geometry’ of considerably high aspect ratio (e.g., slender 

blocks) that can cause problems (e.g., ‘negative volume zone’) when deformation 

occurs. However, this is inevitable in the case where two sub-parallel joints intersect, 

and a low intersection angle must result in a bad quality of block geometry that is 

constrained by the two joint planes. In addition, sometimes small meshing sizes are 

required due to the presence of spatially closed joints or small-scale joints, which 

can bring significant computational costs. To solve these problems, methods are 

readily available to simplify fracture networks (Karimi Sharif et al., 2019; Ma et al., 

2020; Wang and Cai, 2020), which are achieved by: 1) removing short-length 

fractures, 2) merging sub-parallel fractures that are spatially close, 3) adjusting the 

intersection angle of fractures, 4) using equivalent properties to characterize the rock 

mass that is composed of short-length fractures with the prerequisite of reserving 

large discontinuities, or 5) the combination of afore-mentioned ways. 
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Fig. 7-2. Block geometry, a) good block geometry, b) bad block geometry. 

The effectiveness of DFN simplification has been validated by the comparable 

properties of simplified rock mass compared with the original one. However, the 

reliability of DFN simplification regarding brittle fracturing patterns has yet to be 

investigated. This may result in uncertainties when dealing with problems related to 

brittle rock fracturing, which is the case of the South American mine instability. More 

attempts would concentrate on testing the reliability of DFN simplification methods 

through comparative studies to investigate the fracturing behaviour of rock mass 

before and after simplification. 
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Chapter 8. Conclusions, major contributions, and future work 

Conclusions 

This research has examined the role of discontinuities, at different scales, on the 

origin and development of rock slides. In the environment where rock strength 

exceeds the in-situ stresses, rock blocks exhibit a rigid characteristic and rock 

displacement along discontinuities is the predominant movement behaviour. With 

respect to large-scale discontinuities, an unfavourably oriented fault sometimes 

behaves as the sidling surface or release surface of a landslide, which is the case of 

Hell’s Mouth landslide where two fault planes constrain the formation of the inlet, 

providing the kinematic freedom for the following landslide, and also the case of 

Italian rock avalanche where the bedding acted as the basal sliding surface.  Small-

scale discontinuities (i.e., joints and fractures) can also forms a release surface. 

However, compared with faults, joints with less persistence/continuity potentially form 

a step-path slip surface, as shown at the toe of the slope in the Italian rock 

avalanche case. 

In the rock slope where stresses exceed rock strength, rock deformation would 

occur. With the presence of discontinuities, stress flow distributed in the slope is 

interrupted, and excessive stress concentration in the proximity to relatively large 

discontinuities can result in rock bridge damage. This has been presented in South 

America cause study in which the deformation of the rock bridge is modelled 

between two faults, which is validated by field and remote sensing data. Concerning 

non-persistent joints, they could weaken rock strength and cause the anisotropy of 

rock mass properties. The numerical compression tests, provided in chapter 6, have 

demonstrated that the presence of joint system causes the reduction of UCS of rocks 

from 98.7 MPa to 14 MPa. In addition, mechanical anisotropy of rock masses is also 

induced by joints. It is found that rock masses exhibits the lowest values of UCS and 

Young’s modulus in the direction that is approximately parallel to the dominant dip 

direction of joints 

In addition, the influence of discontinuity on rock slides is also assessed through 

GIS-based kinematic analysis and statistical analysis. The GIS-based kinematic 

analysis indicates slopes of high landslide risks, which is validated by field 
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observations. Furthermore, incorporating the results of GIS-based kinematic analysis 

effectively is able to improve the landslide prediction accuracy of machine learning 

models for LSM. 

Major contributions 

First, this thesis presents the application of a broad range of RS techniques for 

landslide investigations, which include airborne and spaceborne optical and laser 

scanning mapping. It demonstrates the fundamental role of RS mapping to identify 

features of landslides and slope topography, which can complement and/or replace 

conventional engineering-geological surveys in dangerous and inaccessible areas.    

Second, the research has developed a novel method to incorporate discontinuity 

orientation for LSM, which was carried out through GIS-based kinematic analysis. 

The LSM analysis using data collected from the North cliffs of Cornwall, UK has 

demonstrated the improved landslide prediction accuracy due to the inclusion of 

discontinuity orientation. The analysis can provide a guideline for researchers to 

include discontinuities into ML modelling for LSM and might be applicable to other 

places for landslide prediction.  

Third, the research presents a comprehensive understanding of the role of different-

sized discontinuities (e.g., joints and faults) on rock slide development through 3 

representative landslide case studies. The mechanical behaviour of individual 

discontinuities or multiple interacted discontinuities has been analysed. The 

associated work may provide a reference and analogue for scientists to investigate 

the mechanism of other rock slides effectively and rapidly.   

Fourth, the role of folded bedding induced by the presence of an anticline has been 

investigated from the Lettopalena Paleolandslide case study. The work bridges a gap 

in simulation of landslide behaviour in anticline limbs through numerical modelling. 

Fifth, the Lettopalena Paleolandslide case study also presents a representative 

example of using the integration of geological models and numerical modelling for 

landslide analysis, showing the benefit that can provide an improved understanding 

of the landslide behaviour and factors controlling landslide triggering. 
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Sixth, the influence of sea erosion on rock coast evolution has been investigated 

from the Hell’s Mouth case study. The investigation shows that sea erosion behaves 

as one of primary triggers for coastal slope instability and accounts for coastal retreat 

and evolution. In addition, this research has also examined the effect of river erosion 

on slope stability from Lettopalena Paleolandslide case study. Both results highlight 

that toe removal has detrimental impacts on slope stability conditions. 

Seventh, the research provides a typical example of modelling the opening of 

tension cracks on pre-existing discontinuities behind the crest of the slope, with the 

result being consistent with field observations. 

Eighth, the deformation behaviour of a rock bridge in response to sequential 

excavations and blasting has been analysed in the South America case study, 

providing improved understanding of inter-ramp, non-daylighting wedge instability in 

the open pit mine.  

Future work 

Some adaptions, experiments, and tests have been left for future due to the lack of 

critical data and resources. Future works concern new proposals to try different 

methods and further investigation of particular mechanisms.  

Chapter 4 highlights ongoing instability through opening of tension cracks on pre-

existing discontinuities behind the crest of the slope. Tension cracks are a visible 

landslide precursor. The detection of tension cracks and identification of their 

distribution can promote the understanding of landslide development and the role of 

discontinuities in the process. In addition, the detection is also important for landslide 

early warning and risk reduction. In this context, future efforts will be endeavoured 

for the identification of tension cracks, which can be carried out using ML and RS 

techniques. With obtaining an adequate number of tension crack images (e.g., 

satellite images, UAV images, and other RS images), it is possible to train a robust 

ML/DL model (e.g., convolutional neural network) to detect cracks in a new image.  

Brittle rock fracturing which occurred during the Hell’s Mouth landslide (Chapter 4), 

and was related to the mine slope instability in South America (Chapter 6). Due to 
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the complex failure geometry of these two landslide cases, 2D FDEM method was 

not used for landslide analysis. Future works can involve the use of 3D FDEM 

methods and/or 3D grain-based DEM methods, incorporating complex DFNs and 

large-scale discontinuities (e.g., faults and bedding), to analyse mechanical 

behaviours of rock mass in a slope. The improved understanding of rock brittle 

fracturing in the slope promotes investigation of mechanism and development of 

large-scale landslides.  
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