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ABSTRACT: The safe and successful operation of offshore infrastructure relies on a detailed awareness of ocean wave
conditions. Ongoing growth in offshore wind energy is focused on very large-scale projects, deployed in ever more chal-
lenging environments. This inherently increases both cost and complexity and therefore the requirement for efficient oper-
ational planning. To support this, we propose a new machine learning framework for the short-term forecasting of ocean
wave conditions to support critical decision-making associated with marine operations. Here, an attention-based long
short-term memory (LSTM) neural network approach is used to learn the short-term temporal patterns from in situ obser-
vations. This is then integrated with an existing, low computational cost spatial nowcasting model to develop a complete
framework for spatiotemporal forecasting. The framework addresses the challenge of filling gaps in the in situ observations
and undertakes feature selection, with seasonal training datasets embedded. The full spatiotemporal forecasting system is
demonstrated using a case study based on independent observation locations near the southwest coast of the United
Kingdom. Results are validated against in situ data from two wave buoy locations within the domain and compared to op-
erational physics-based wave forecasts from the Met Office (the United Kingdom’s national weather service). For these
two example locations, the spatiotemporal forecast is found to have an accuracy of R2 5 0.9083 and 0.7409 in forecasting
1-h-ahead significant wave height and R2 5 0.8581 and 0.6978 in 12-h-ahead forecasts, respectively. Importantly, this repre-
sents respectable levels of accuracy, comparable to traditional physics-based forecast products, but requires only a fraction
of the computational resources.

SIGNIFICANCE STATEMENT: Spectral wave models, based on modeling the underlying physics and physical pro-
cesses, are traditionally used to generate wave forecasts but require significant computational cost. In this study, we pro-
pose a machine learning forecasting framework developed using both in situ buoy observations and a surrogate regional
numerical wave model. The proposed framework is validated against in situ measurements at two renewable energy sites
and found to have very similar 12-h forecasting errors when benchmarked against the Met Office’s physics-based fore-
casting model but requires far less computational power. The proposed framework is highly flexible and has the potential
for offering a low-cost, low computational resource approach for the provision of short-term forecasts and can operate
with other types of observations and other machine learning algorithms to improve the availability and accuracy of the
prediction.
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1. Introduction

A growing international focus on the “blue economy” rep-
resents a changing industrial landscape for our seas, which is
exemplified by the rapid growth of offshore wind throughout
the world (Global Wind Energy Council 2020; Musial et al.
2021). Forecasting of ocean wave conditions is a fundamental
requirement for the operation and maintenance of offshore
and coastal infrastructure. As the industry increases, both the
scale of projects and the complexity of the environments in
which they operate, the accurate prediction of wave condi-
tions can significantly reduce the cost, time, and technological
requirements in relation to the operation and maintenance of
offshore assets (James 1957; Johnston and Poole 2017; Ren
et al. 2021). In the context of more extreme weather related

to climate change (Stott 2016) and sea level rise, offshore and
coastal locations are likely to be increasingly affected by
ocean waves (Moon 2005). As such, improving the accuracy
with which ocean wave conditions can be estimated is ac-
knowledged as an important component of risk mitigation
and highlighted in offshore warranty standards (Ardente et al.
2008; Balog et al. 2016; DNVGL 2018; Gentry et al. 2017;
Gus,atu et al. 2021; Reikard et al. 2017).

Presently, most wave forecasts rely on computing time se-
ries estimates of spatial wave conditions using phase-averaging
physics-based numerical models. A series of third-generation
wave models such as the Wave Model (WAM; Günther et al.
1992; Komen et al. 1996; The Swamp Group 2013; WAMDI
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Group 1988), WAVEWATCH III (WWIII; Tolman 2009;
Tolman et al. 2002), and Simulating Waves Nearshore (SWAN;
Booij et al. 1999; Ris et al. 1999) have become universal numer-
ical approaches. These models mathematically represent the
physical processes governing the generation, propagation, and
dissipation of wind-generated waves: accurately providing wave
data at a range of scales, from global models to higher-resolution
(regional) studies and applied to characterizing the long-term
wave climate and the production of real-time operational fore-
casts of wave conditions alike. However, due to the complexity
of the calculations, these demand significant computational re-
sources, inherently linked with both the level of detail at which
physical processes are represented within the model as well as
the associated temporal and spatial resolution considered. In an
operational context, this constrains the viability of these ap-
proaches to only those organizations with sufficient resources to
run them, with the incorporation of direct observational data
assimilation schemes for the improvement of nowcast/very short-
range forecast applications (e.g., Saulter et al. 2020) also poten-
tially adding to this overhead.

In addition to the developments in numerical modeling sys-
tems, the availability of wave data from monitoring systems has
also improved over time. In situ wave buoys provide high-accu-
racy, real-time data. Satellite-derived remote sensing offers reli-
able global coverage with increasing resolution (Boy et al. 2017;
Perotto et al. 2020) and the potential for spatial imagery (Bondur
et al. 2016). Conversely, observations of wave conditions obtained
from buoys (Centurioni 2018) and in situ or remote-sensing devi-
ces (Bailey et al. 2019) only provide data at limited locations
within a region. Due to the high cost associated with their deploy-
ment and maintenance, it is prohibitively expensive to deploy
wave observation networks throughout a region. Similarly, satel-
lite remote sensing suffers from poor temporal resolution, which
particularly limits suitability for short-term forecasting.

In recent years, machine learning (ML) methods and neural
networks have been widely employed to forecast environmen-
tal variables given limited data inputs (Schultz et al. 2021). In
contrast to traditional approaches, these rely on modeling the
empirical relationship between inputs and outputs, rather
than any physical relationship. For the case of ocean waves,
this is an area of emerging interest with research being con-
ducted into the capabilities of data-driven wave forecasting
that combines observations with numerical model data to de-
rive reliable, accurate, and low-cost wave data with both high
temporal and spatial resolution.

Generally, thesemethods can be classified into three categories:

1) data-driven model based on observations only (Desouky
and Abdelkhalik 2019; Pirhooshyaran et al. 2020; Sadeghifar
et al. 2017);

2) surrogate numerical models (James et al. 2018; O’Donncha
et al. 2018; Oh and Suh 2018); and

3) hybrid models considering both numerical modeling data
and observations (Serras et al. 2019).

However, despite the significant opportunity for empirical
forecasts and spatial correlation methods to provide a step
change in marine data provision, the specific methods to

achieve this potential have not been recognized. The present
paper proposes and benchmarks a new ML framework to
combine a spatial model with a temporal forecasting model to
provide real-time, short-term forecasts covering the domain
of a previously computed hindcast model. The work builds di-
rectly on a recent ML surrogate (spatial nowcasting) model
trained on an available spectral wave model that has been
previously described and validated in Chen et al. (2021). In
that work, wave observations were combined with numerical
modeling data to provide a low computational cost, high-
accuracy nowcast of spatially distributed wave parameters. In
this paper, we focus on the temporal model development and
the application of the combined spatiotemporal model to dem-
onstrate the complete framework for the prediction of the wave
field in the southwest of the United Kingdom. This is validated
against independent buoy observations at two potential renew-
able energy sites to test the accuracy and stability of the spatial
forecasting model. The outputs of the proposed ML framework
are also compared against an independent traditional physics-
based forecast output from the Met Office (UKMO).

This paper is organized as follows: section 2 introduces the com-
ponents of the proposed model framework, including the basic
principles of LSTM networks, the approach used for temporal
forecasting at a fixed location, and the integration with the (exist-
ing) spatial extrapolation method. Section 3 introduces a case
study experiment run with the complete framework. This com-
pares different model configurations for temporal forecasting, in-
cluding the presentation of the data preprocessing and model
configuration implemented. It also presents the results of the ex-
periments, including validation and benchmarking of the pro-
posed model framework. The results are discussed in detail in
section 4, and the final conclusions of the work are presented in
section 5. A list of terms and definitions used in this paper can be
found in appendixA.

2. Design and methodology of the proposed
modeling framework

a. Problem formulation and framework overview

The complete framework outlined in this paper is made up
of four principal steps that are outlined in Fig. 1:

1) data preprocessing of the in situ buoy data;
2) a temporal forecasting model used to forecast the condi-

tions at these buoy locations;
3) a spatial nowcasting model driven by the conditions at

these discrete locations (Chen et al. 2021); and
4) data postprocessing and visualization.

By using the output of the temporal forecasting model to drive
the spatial nowcasting model, the proposed model framework
describes a spatiotemporal modeling approach providing a short-
term forecast across the entire model domain.

b. Data preprocessing

1) GAP FILLING

Initial preprocessing is used to prepare the in situ datasets
for the temporal model. The proposed methodology uses
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three wave buoys as input, as described in section 3, and the
training procedure for the neural networks therefore requires
concurrent data for all input buoys. Ignoring discontinuities in
any datasets will limit the quantity of data and potentially, if
malfunctions occur during similar environmental conditions,
skew the statistics of the observations. At the same time, im-
proper methods for filling these gaps would not maintain the
time dependency of the series.

In this study, data were preprocessed to fill gaps in the time
series buoy data considering all the variables measured. This
is important for the model framework, both when training the
temporal model and when running the model for real-time
predictions.

In this model framework, a low-rank tensor completion
model with a truncated nuclear norm (LRTC-TNN) proposed
by Chen et al. (2020) is used for gap filling the missing records
in the wave observation data. This model includes the following
five steps:

1) combining the observations from different buoys together
as a data matrix, utilizing the same time index as rows and
features as columns, and filling the blanks and replacing
invalid values with zero;

2) adapting the observation matrix to a tensor structure with
three dimensions}parameters 3 number of days in total 3
time steps over one day;

3) manually “masking” missing entries with certain missing
data type to replace the original observations in the train-
ing and validation dataset;

4) training incomplete tensor data using the LRTC-TNN
model; and

5) filling in actual missing entries with imputed values.

After training, a new augmented dataset containing the
same number of samples is generated with no missing values.

2) DEFINING TRAINING DATASETS

Experimental datasets are commonly split by retaining the
first 80% for training validation and the last 20% for testing (Du
et al. 2020). However, as wave parameters are known to exhibit
seasonal behavior and interannual trends, it is not always appro-
priate to simply rely on the observed temporal pattern to predict
the future behavior. Therefore, to generalize the temporal fore-
casting model, the seasonal trends must be considered when se-
lecting the training data. For wave data, wave conditions in each
month will show a similar pattern across different years and will
be highly correlated both with the preceding and succeeding
months. To account for this and capture the seasonality, test
datasets can be constructed for each month, using a training da-
taset made up of the month itself, the preceding month, and the
subsequent month (as shown in Table 1).

FIG. 1. Spatiotemporal wave prediction model flowchart. Orange boxes highlight the temporal and spatial model that are the subject of this paper.
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3) DATA NORMALIZATION

In multivariate problems, the scale and distribution of the
data may be different for each of the variables. For deep neu-
ral network (DNN) models, large input values can result in a
model that learns large weight values, which may then make
the model unstable and suffer from poor performance and
sensitivity to input values. LSTM models, specifically, may ex-
perience gradient explosion during training, causing the learn-
ing process to fail by repeatedly multiplying gradients through
the network layers if the values are larger than 1.0. Linear re-
scaling of the input (feature) values before they are presented
to a network can help avoid this problem (Bishop 1995).
Therefore, in the proposed model framework, all features in
the dataset are normalized to the interval [0, 1], using a mini-
mum–maximum normalization process:

x′t 5
xt 2 min(x)

max(x) 2 min(x) , (1)

where x′t is the normalized feature value at time step t, xt is the
measured feature value at time step t, and min(x) and max(x) are
the minimum and maximum feature value, respectively, within
the target periods of the dataset. This normalization is per-
formed to prevent high-magnitude variables (such as wave
direction) from overwhelming variables of lower magnitudes
(such as significant wave height) during cell activation.

When used in the forecasting model, output predictions are
also normalized between 0 and 1. The outputs of the networks
must therefore be postprocessed with the linear rescaling to
transform back to absolute values by

ot 5 {o′t 3 [max(x) 2 min(x)]} 1 min(x), (2)

where o′t represents the normalized model output at time step
t, and ot refers to the prediction output in the absolute scale.

4) TRAINING DATASET TRUNCATION

The temporal model uses a multistep lookback, multistep
forecast, where the previous nb steps (from t 2 nb 1 1 to t)
are considered as the input, and the subsequent nf steps (from

t 1 1 to t 1 nf) are considered as the output. Pirhooshyaran
et al. (2020) had previously found that a lookback period
twice the length of the forecast horizon is optimal with respect
to the forecast accuracy. Therefore, in the present implemen-
tation, forecasts are generated up to 12 h ahead at a half-
hourly interval (i.e., 24 time steps; nf 5 24), considering the
previous 24 h (i.e., 48 time steps; nb 5 48) of observations as
the input to the model. Therefore, we truncate the sequences
into smaller slices using a sliding window with nb 5 48 steps
and an output window with nf 5 24 steps, as illustrated in Fig. 2.
To generalize the model for different output features, both the
training input and output matrices are prepared to include the
set of all feature dimensions DTotal, i.e., the input array has
the dimension of (ns 3 nb 3 DTotal) and the output array has
the dimension of (ns 3 nf 3 DTotal) in which ns means the
number of samples considered. Before training, feature selec-
tion is undertaken on the input array to reduce the input di-
mensions from DTotal to Di, and the target output feature will
be selected fromDTotal to have output dimensionDo.

5) FEATURE SELECTION

Although some domain knowledge is required to select the
most important input variables, these data are still often char-
acterized by either insufficient information or providing an
excess that can result in overfitting. Using the best candidate
features for prediction and classification of environmental pa-
rameters can save training time and yield better prediction re-
sults (Effrosynidis and Arampatzis 2021). Within renewable
energy forecasting applications, it has been shown that a re-
duced number of features can improve the prediction accu-
racy by 5%–40% (Salcedo-Sanz et al. 2018).

Effrosynidis and Arampatzis (2021) compared different
feature selection methods in environmental models and found
that so-called “embedded methods” and “ensemble methods”
are better options with respect to performance, stability, and
computational time. Pirhooshyaran and Snyder (2020) used
an embedded elastic net algorithm for the feature selection
when forecasting ocean waves along the East Coast of the
United States. Their work highlighted the benefit of using
the elastic net. Furthermore, Meyer et al. (2018) emphasized

TABLE 1. Temporal model input/output data.

Model

Training and validation (2010–19) Test (2020)

Input: selected input features Output: target feature Input: selected input features Output: target feature

Jan Dec, Jan, Feb Dec, Jan, Feb Jan Jan
Feb Jan, Feb, Mar Jan, Feb, Mar Feb Feb
Mar Feb, Mar, Apr Feb, Mar, Apr Mar Mar
Apr Mar, Apr, May Mar, Apr, May Apr Apr
May Apr, May, Jun Apr, May, Jun May May
Jun May, Jun, Jul May, Jun, Jul Jun Jun
Jul Jun, Jul, Aug Jun, Jul, Aug Jul Jul
Aug Jul, Aug, Sep Jul, Aug, Sep Aug Aug
Sep Aug, Sep, Oct Aug, Sep, Oct Sep Sep
Oct Sep, Oct, Nov Sep, Oct, Nov Oct Oct
Nov Oct, Nov, Dec Oct, Nov, Dec Nov Nov
Dec Nov, Dec, Jan Nov, Dec, Jan Dec Dec
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the importance of cross validation (CV) and that feature selec-
tion in conjunction with target-oriented CV can reduce overfit-
ting. In the present work, we have therefore implemented the
elastic net algorithm in conjunction with CV to select the best
features for training the temporal model. The elastic net (Zou
and Hastie 2005) regression loss function includes two regular-
izers, ‘1 norm and ‘2 norm, which correspond to the penalties
of the least absolute shrinkage and selection operator
(LASSO) method (Tibshirani 1996) and the Ridge method
(Hoerl and Kennard 1970). The elastic net algorithm loss func-
tion is shown in Eq. (3):

fv(x) 5
1
n
∑
n

i51
[yi 2 N(xi;v)]2 1 l2v

2
2 1 l1v1, (3)

where the ‘1 norm is v1 5∑
p
j51|vj|, the ‘2 norm is

v2
2 5∑

p
j51 |vj|2, and l1 and l2 are their ratios, respectively.

The target of this feature selection is to find the most relevant
features for the target feature prediction. For normal cases,
the longer the target forecast, the less accurate we expect this
forecast to be. Therefore, as the target forecast time step in
this paper is nf, this feature selection is designed to achieve
the best regression performance from the input features at
step t to the target output features at step t1 nf.

c. Temporal model using LSTM neural networks

In recent years, multivariate time series forecasting models
have attracted significant research interest: the main objective
being the analysis of multidimensional time series data from
past observations to develop a statistical model that can cap-
ture the basic pattern of the relationships to enable the pre-
diction of future values. DNNs (LeCun et al. 2015) have been
frequently studied and practically deployed to solve highly com-
plex problems. A special type of DNN, known as a recurrent
neural network (RNN), is designed for sequence-dependent
modeling that can learn and retain information over long time
periods and tackle arbitrarily sized inputs.

In this study, a variation of the canonical RNN, referred to
as long short-term memory (Hochreiter and Schmidhuber
1997) is used to deal with the long sequence data forecast
problem (Greff et al. 2017). The LSTM introduces a “gate”
concept that can record and transmit information across
multiple time steps. This enables processing of the sequence
relationship of the time series data and makes both the net-
work predictions and the characteristics of input data highly
correlated temporally. The standard LSTM equations and
description are provided in appendix B. Different archi-
tectures of LSTM networks are implemented including the
following:

1) a simple “vanilla” single hidden layer LSTM;
2) an encoder–decoder LSTM; and
3) an attention-based encoder–decoder LSTM.

The above LSTM architectures are implemented and
compared to identify the best performing architecture for
implementation in the temporal component of the model
framework.

1) VANILLA LSTM MODEL

In the proposed model framework, we apply a simple,
vanilla LSTM model composed of a single LSTM layer and a
single full connection (FC) layer as the benchmark LSTM
structure for the forecasts (Fig. 3). The output of this vanilla
LSTM model is not a sequence but rather a one-dimensional
vector wherein each time step corresponds to an individual
value in the vector. The vanilla LSTM can be extended to a
model with multiple LSTM layers, which are connected by re-
turning sequences from the previous LSTM layers to the for-
ward LSTM layers via a so-called stacked LSTM. Increasing
the complexity in this manner can also make use of more fully
connected layers or higher dimensionality of the LSTM out-
put space to increase the depth and complexity of the neural
networks (Hochreiter and Schmidhuber 1997).

FIG. 2. Data truncation. The lookback (input) time steps nb (48) and forecast horizon (output) time steps nf (24).
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2) ENCODER–DECODER LSTM MODEL

The main application considered in this paper is a sequence-
to-sequence time series model to forecast results over multiple
future time steps, relying on a knowledge of the past condi-
tions over multiple past time steps. An encoder–decoder
model, a common type of sequence-to-sequence model, is an
extension of an LSTM model that aims to transform an input
sequence to an output sequence, both with arbitrary lengths. It
was originally conceived in the field of language modeling but
has now found wider applications (Sutskever et al. 2014). For
a given data series, an encoder–decoder LSTM is configured to
read the input sequence, encode it, decode it, and transfer it to
further layers. The performance of the whole model is evaluated
based on the model’s ability to regress the output sequence.

The first element of an encoder–decoder LSTM, the en-
coder, is usually a single LSTM or a chain of LSTM cells that
read (i.e., encode) the input of an arbitrary length and map
this to a fixed-sized output, while the second element, the de-
coder, receives the output vector from encoder and maps (i.e.,

decodes) it to a target sequence with the same length as the
forecast prediction. Compared to the vanilla LSTM model,
which generates two-dimensional outputs in which each time
step corresponds to an individual vector, the encoder–decoder
LSTM model output is a three-dimensional matrix that also
takes the output feature dimension into consideration (see
Fig. 4). In our implementation, a time-distributed dense layer
between the encoder–decoder layer and this output is added,
further increasing the complexity and potentially increasing
the accuracy of the network.

3) ATTENTION ENCODER–DECODER LSTM

A limitation of this simple encoder–decoder model is that
only the last state of the encoder is compressed into a fixed-
length vector and used as an input to the decoder. Therefore,
when the sequence is very long, the encoder would have
much weaker memory of earlier time steps, and the prediction
ability would gradually decrease as the forecast horizon increases
(Du et al. 2020). The attention mechanism solves this problem

FIG. 4. Encoder–decoder sequence-to-sequence network. This is implemented as a two-layer network with an encoder–decoder layer
followed by a dense layer. For training and testing the model, the input XTe (ns 3 nb 3 Di) is input to the encoder LSTM layer similar to
the vanilla LSTM model. The hidden state and cell state at the last time step are treated as the initial state for the decoder layer, and the
last hidden state of encoder layer is repeated forecast time steps nf times, as inputs to the decoder LSTM layer. The hidden states of de-
coder LSTM at all nf steps are then transferred to individual fully connected dense layers, called the time-distributed dense layers, to pro-
vide the outputs. The output yTe is a three-dimension array (ns 3 nf 3Do).

FIG. 3. Vanilla LSTM architecture. In this work the vanilla LSTM is a two-layer network com-
posed of an LSTM layer as the first layer and a full connection as the second. For training and
testing the model, input XTe is a three-dimensional array (ns 3 nb 3 Di). The input XTe is sup-
plied to a single LSTM layer; the output vector of this LSTM layer hn,b then goes through a sin-
gle fully connected layer to output yTe, a two-dimensional matrix (ns 3 nf).

AR T I F I C I AL I N TELL IGENCE FOR THE EARTH SY S TEMS VOLUME 26

Brought to you by UNIVERSITY OF EXETER | Unauthenticated | Downloaded 03/22/23 02:55 PM UTC



by helping a neural network identify which parts of the input are
more correlated with the target elements in a prediction task
(Fig. 5). The mechanism (commonly referred to as “additive
attention”) was initially proposed by Bahadori et al. (2014) for
sequence-to-sequence machine translation models and then
extended by Luong et al. (2015; commonly referred to as
“multiplicative attention”). The multiplicative attention in-
cludes three approaches to calculate an alignment score in
which the dot product alignment score function was observed
to perform well for the global attention. Since the inputs of
the Luong et al. (2015) algorithm are single-variate sequen-
ces of sentences, this attention mechanism is basically a tem-
poral attention.

Compared to the encoder–decoder model, which only out-
puts the hidden state of the last time step from the encoder,
the attention model requires access to the outputs from both
the encoder and decoder at each input time step. All encoder
hidden states Hencoder and all decoder hidden states Hdecoder

can be regarded as the probability of the target sequence,
computed as a conditional distribution [given in Eqs. (4) and
(5)]. Then, the alignment score Sa is calculated by the dot
product [Eq. (6)] of Hencoder and Hdecoder and is normalized
by a softmax function before generating the context vector Cy

[Eq. (7)]. After that a combined vector Comby is generated
by concatenating Hdecoder and Cy. This combined vector is
then input to the time-distributed dense layer to get the target
outputs [Eq. (8)]:

Hencoder 5 p(h1, h2, …, hnb |X1, X2, …, Xnb
), (4)

Hdecoder 5 p(h′1, h′2, …, h′nf |X1, X2, …, Xnb
)

5 p(cnb, hnb|X1, X2,…,Xnb
) ?p(h′1, h′2, …, h′nf |cnb, hnb),

(5)

Sa 5 Hencoder ?Hdecoder, (6)

Cy 5 softmax(scorealignment) 3 Hencoder, (7)

Comby 5 concatenate(Hdecoder, Cy ), (8)

where (X1, X2, …, Xnb
) denotes the input observation array

for lookback time steps nb, and (h1, h2, …, hnb) and
(h′1, h′2, …, h′nf) are the output hidden state of encoder LSTM
cells and decoder LSTM cells, respectively, in which nb can
differ from the forecast time steps nf.

d. Integration with the spatial model

The temporal forecasting problem at discrete point loca-
tions can be regarded as a sequence-to-sequence wave pre-
diction problem. In this study, we apply a multi-input and
multioutput strategy, which generates multistep outputs in a
single integrated model without requiring a recursive pro-
cess. This output yTe is therefore a multidimensional vector
(rather than single values), which contains the wave param-
eter(s) of interest up to 12 h ahead. For each time sample t,
the temporal model results are the forecast values of four
wave parameters Hs, Dir, Tm, and Tp at the three buoy loca-
tions. The term yTe is therefore a time series with dimen-
sions of 24 forecast steps 3 12 features.

Executing the spatial nowcasting model using the temporal
forecasts at the input locations provides outputs as a series of
parameter distributions maps at the different time steps. As a
result, the forecasts of the wave climate at arbitrary positions
within the domain can be extracted.

3. Case study: Model development

To demonstrate the proposed ML framework, a case study
in the water off the southwest coast of the United Kingdom,

FIG. 5. Luong attention-based LSTM structure. The encoder–decoder and time-distributed dense layers in this architecture are similar
to those previously described (Fig. 4). An attention layer is added following the encoder–decoder layer, which takes the hidden states at
all time steps in both the encoder and decoder LSTM cells into consideration and generates a combined vector Comby through calculating
the alignment score and then vector concatenation. The Comby is then transferred to the time-distributed dense layer to get the outputs.
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surrounding Cornwall, is considered. The western boundary
of the model domain faces the North Atlantic, which allows
significant fetch into this active, highly seasonal shelf sea. As
such, the wave climate is a mix of locally generated wind wave
and incoming swell, which is dominated by storms that form
in the North Atlantic and pass through the region.

This section describes an implementation of the proposed
model framework and details how the specific spatiotemporal
model for this region was developed using the techniques de-
scribed in section 2 and combined with the spatial wave now-
casting model described in section 3a(2) and by Chen et al.
(2021). This makes use of data from in situ wave measure-
ment buoys [section 3a(1)] and a regional numerical hindcast
wave model from 1989 to 2009 [section 3a(2)] that were also
used in the present case study.

a. Data description

1) IN SITU BUOY OBSERVATIONS

Along the southwest coast of the United Kingdom, in situ
wave measurements are routinely collected from Datawell
Directional Wave Rider Mk III buoys, operated as part of re-
gional coastal monitoring programs collated by the Channel
Coastal Observatory (Channel Coastal Observatory 2021).
Here, data from three buoys within the region were used, as
deployed at Looe Bay, Penzance, and Perranporth (Fig. 6).

The Perranporth buoy was deployed in December 2006,
while the Penzance and Looe Bay buoys only started collect-
ing data in April 2007 and June 2009, respectively. From
these, an 11-yr dataset from 2010 to 2020 was extracted during
which data from all three buoys is available. Each dataset
provides observations of seven parameters: significant wave
height Hs, maximum observed wave height Hmax, spectrally
derived zero-crossing wave period Tz, peak wave period Tp,
peak wave direction Dirp, wave directional spread Dirsp, and
sea surface temperature (SST) at a frequency of 30 min. To
be more specific, the Tp in the buoy observation is the inverse

of the frequency at which the wave energy spectrum reaches
its maximum, and the Dirp is the direction corresponding to
the Tp.

None of the wave buoys used in this study were assimilated
by either of the two physics-based numerical models de-
scribed in the following sections.

2) SPATIAL NOWCASTING MODEL

The specific spatial nowcasting model used is that devel-
oped by the authors and previously described by Chen et al.
(2021). The model has been trained using the previously vali-
dated outputs from a regional nearshore wave hindcast model
(SWAN) that covers the period 1989–2009, as described in
van Nieuwkoop et al. (2013), to define the correlation be-
tween the discrete buoy locations used in this paper and the
rest of the model domain. The SWAN model spatially ranges
from 48 to 78W and from 498 to 518N (see Fig. 6a) with a grid
resolution of 1 km 3 1 km, which results in 219 3 223 grid
points in the model domain. The wave and wind input for the
regional SWAN model was provided by the European Centre
for Medium-Range Weather Forecasts (ECMWF) interim re-
analysis (ERA-Interim) dataset with a grid resolution of
1.58 3 1.58, the global wave component of which utilizes the
WAM model. The SWAN model results have been validated
by measurement data including the four buoys used in our
proposed model with the relative bias of Hs and wave energy
period Tm21,0 ranging 1%–15% and 7%–20%, respectively,
and the absolute difference of mean direction ranging 58–238
(van Nieuwkoop et al. 2013). To be consistent with the obser-
vations, Hs, Tz, Tp, and wave direction can be extracted from
the SWANmodel outputs. This wave direction available from
the SWAN model is a mean wave direction Dirm calculated
in degrees over all frequencies and directions of the two-
dimensional wave spectrum. In this paper, we regarded the
Dirp (as provided by the buoys) and Dirm (from the SWAN

FIG. 6. (a) The case study considers the waters around Cornwall in the United Kingdom ranging from 48 to 78W in
longitude and from 498 to 518N in latitude. (b) Five wave buoys are used in this study in which the three red points
(Penzance, Looe Bay, and Perranporth) represent buoys used as inputs for the spatiotemporal model, and the two or-
ange points (WaveHub and FabTest) represent the buoys used for validating the model outputs and benchmarking
the proposed model framework.
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model) as equivalent in representing the wave direction, al-
though this will introduce some discrepancy.

3) PHYSICS-BASED FORECAST

Using the proposed model framework, forecasts can be ob-
tained at any arbitrary location within the model domain.
However, for the present work, we focus on the results for
WaveHub and FabTest sites, two locations where buoys were
also deployed (see Fig. 6). Being independent of those used
for the training, these allow the framework to be validated with
in situ observations and compared with traditional physics-
based wave forecasts from the UKMO for the same site, to con-
textualize the performance of the proposed model framework
with existing forecast data.

In contrast to provenance of the wave hindcast (SWAN;
van Nieuwkoop et al. 2013) used for the training of the spa-
tial nowcasting model, the UKMO regional wave forecast is
an instance of the WAVEWATCH III model, whose do-
main covers the seas on the northwest European continental
shelf, forced by 10-m winds from the UKMO global atmo-
spheric Unified Model (Walters et al. 2011), with lateral
wave boundary conditions and surface current inputs from
the UKMO global wave forecast (Saulter et al. 2016) and
UKMO Atlantic Margin Model ocean physics forecast
(Tonani et al. 2019), respectively. The UKMO operational
model is under constant development and improvement,
and therefore the archived forecasts used are the model out-
puts at the time that they were originally run and issued.
The results for 2016, therefore, represent the UKMO fore-
cast model configuration in 2016, while the results from
2020 represent the UKMO forecast model configuration in
2020. Between 2016 and 2020, the system was substantially
improved, most notably moving from a regular 4-km grid to
a two-tiered spherical multicell grid (where the open water
cells are resolved at ;3 km and the coastal cells with a
water depth less than 40 m are resolved at ;1.5 km), and

accompanied by an improvement to the source term physics
scheme (that represents wave growth and dissipation pro-
cesses in the model). This model is run on eight nodes of the
UKMO Cray XC40 supercomputer, where each node com-
prises 36 Intel Haswell CPUs (at 2.1 GHz) and 128-GB RAM,
corresponding to an execution time of ;5 min for a 12-h
forecast.

In the present work, the proposed model framework produ-
ces forecasts (of 30-min output frequency) up to 12 h ahead,
issued every 30 min, that can assimilate wave observations,
while the UKMO operational wave model produces forecasts
(of hourly output frequency) up to 2.5 days ahead, issued ev-
ery 6 h. However, for the purpose of this comparison, only
data that were issued at the same point in time with the same
forecast horizon are used. The proposed model framework
therefore has access to more recent in situ data than the
UKMO forecast. The comparison was therefore made every
6 h to align the physics-based and ML-based models
(Table 2). In addition, the T1 0-h-ahead result represents the
nowcast result obtained from using the spatial ML model only
and compared against the UKMO T 1 0-h forecast (where T
is the analysis time).

4) PERFORMANCE EVALUATION

To assess the performance of the proposed model frame-
work, five error metrics are considered for the subsequent
analysis: root-mean-square error (RMSE), mean absolute er-
ror (MAE), mean absolute error percentage (MAPE), mean
arctangent absolute percentage error (MAAPE), and the co-
efficient of determination R2. Several metrics must be used as
each capture different elements of the model accuracy. RMSE
and MAE are scale dependent, while MAPE, MAAPE, and
R2 are dimensionless and scale independent. MAAPE has
more intuitive meaning compared with MAPE and can
overcome problematic cases when the true values yi are
zero. These five error metrics (Wilks 2019) are calculated by
Eqs. (9)–(13), respectively:

TABLE 2. Overview of data used in the present study.

Name Lon (8W) Lat (8N)

Distance to
nearest

SWAN grid
point (km)

Water
depth (m)

Observation
availability

Present
framework
outputs

Met Office
forecast outputs

Comparison
period

Penzance 5.5032 50.114 0.2835 8.84 2010–20, 0.5-h
interval

} } }

Looe Bay 4.4110 50.339 0.3133 10.32 2010–20, 0.5-h
interval

} } }

Perranporth 5.1756 50.353 0.5330 19.97 2010–20, 0.5-h
interval

} } }

WaveHub 5.6143 50.347 0.2334 35.85 2016, 0.5-h
interval

2016; issued
every 0.5 h,
12-h horizon

2016; issued
every 6 h,
2.5-day
horizon

2016; 0-, 1-, 6-,
and 12-h
horizon

FabTest 4.9807 50.109 0.3906 29.94 2020, 0.5-h
interval

2020; issued
every 0.5 h,
12-h horizon

2020; issued
every 6 h,
2.5-day
horizon

2020; 0-, 1-, 6-,
and 12-h
horizon
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ŷi 2 yi
∣∣ ∣∣, (10)

MAPE 5
1
N
∑
N

i51
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(ŷi 2 yi)2

∑
N
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, (13)

where N denotes the number of predicted samples, and ŷ, y,
and y represent the predicted value from the neural network,
the true value, and the mean of true values, respectively.

As wave direction is a circular parameter, the results near
08 and 3608 are equivalent but may have large absolute differ-
ences. To account for this, the computation of the wave direc-
tion bias is therefore limited to be within 08 and 1808 using a
circular bias transformation. This circular bias term is then
used in place of the traditional bias ŷi 2 yi in the error metrics
(RMSE, MAE, MAPE, and MAAPE). The R2 is, however,
not considered in the assessment of wave direction. The ob-
served statistical wave direction parameters Dirm and Dirp
fluctuate frequently over a wide range, while our model target
is to have prediction with constant and stable accuracy; a di-
rectional bias within 208 may therefore be considered satisfac-
tory, but its corresponding R2 may be a negative value.

b. Data preprocessing

Within the data used, the variables correspond to different
observed wave parameters at the three buoy locations, result-
ing in a total of 21 features; the number of days correspond
to the period between 0000:00 UTC 1 January 2010 and
2330:00 UTC 31 December 2020, i.e., 4018 days with 48 time
steps (half-hourly interval) in each day, resulting in 192 864 time
samples. The observations contain both missing and invalid val-
ues (the number of records and missing ratios from the three
buoys are shown in Table 3). The situations where missing val-
ues occur in any single parameter or in any buoy account for
5.17% of the total dataset. The LRTC-TNN algorithm de-
scribed in section 2b(1) was therefore used for gap filling the
data (for all three buoys) over the 11-yr period.

To evaluate the performance of the gap-filling method, ad-
ditional gaps were artificially introduced. The training sought
to minimize the normalized RMSE between the last two ma-
trices, terminating either when the tolerance reaches 1024 or
the number of iterations reaches 150. The other details of the
algorithm, as well as the results and discussion of the algo-
rithm performance in relation to the present wave dataset, are

discussed in Chen et al. (2022). Here, the gap-filling results
were obtained by training on a portion of the raw data by ran-
domly replacing 20% of valid values with gaps. The RMSE,
MAPE, and R2 between the filled gaps and raw observations
at artificial missing entries were compared (Table 4). Here, it
is seen that R2 exceeded 0.93 for equivalent mean parameters,
such as Hs and Tz, and exceeded 0.998 for SST from three
buoys, with MAPE below 10%. Direction-related parameters
and extreme or peak parameters such as Hmax and Tp gener-
ally had larger errors but were still generally within 20%
MAPE.

After the gap-filling process, the entire 11-yr reconstructed
multivariate observations matrix (192816 time samples 3 21
features) was then used to train and test the temporal fore-
casting neural networks. Separate test datasets were con-
structed for each month of 2020, each relying on a training
dataset made up of the month itself, the preceding month,
and the subsequent month for each of the years from 2010 to
2019. For example, for the case where October 2020 is the test
dataset, the corresponding model would be trained using data
from the months of September, October, and November from
the previous 10 years of available data.

The ElasticNetCV algorithm (Zou and Hastie 2005) was
applied to the complete reconstructed observation matrix to
find the optimal input features Di against each individual
target output feature. The input features selected for single-
variate output can be seen in Table 5 for Hs and Tz. The im-
pacts of this feature selection are explored in appendix C.

Following the feature selection process, it was found that the
12-h predictions ofHs for the Penzance buoy only requires con-
sideration of Hs and Hmax at Penzance, while the predictions
for other parameters not only make use of the wave parameters
at the buoy location but also consider the parameters from the
other buoy locations. This highlights the ability for the pro-
posed model framework to make use of sensor networks that
can capture spatial correlations within the study area, which is
potentially at play in the region studied here. Other parameters
such as SST, though available at the buoy locations, were iden-
tified through the feature selection process as unnecessary at
this stage.

c. Temporal model development

1) MODEL DESCRIPTION

The models were constructed and executed on a laptop
with an Intel(R) Core (TM) i7-8550U CPU at 1.80 GHz and
16.0-GB RAM. The open-source ML library scikit-learn

TABLE 3. The number of records and their missing ratios
against total samples (192 864) from each of the three input
buoys, and the combined buoy means and number of records
with all three buoys available concurrently.

Buoy Recorded Missing proportion

Penzance 189 459 1.77%
Looe Bay 189 542 1.72%
Perranporth 188 983 2.01%
Combined 182 887 5.17%
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(Pedregosa et al. 2011) and deep learning framework Tensor-
Flow (Abadi et al. 2016) in Python were used to implement
the models.

Hyperparameter tuning is not the principal focus of this pa-
per, and a specific learning rate and network size are picked
for all LSTM architectures rather than iteratively optimized
through the training process. It is therefore noted that each of
these architectures could be further improved given further
tuning.

For initial comparison, the vanilla encoder–decoder and
attention-based encoder–decoder LSTM were compared
against one another to identify the best-performing LSTM
architecture. For each LSTM architecture, the weight matri-
ces were initialized with a truncated normal distribution
called a “Glorot normal” (Glorot and Bengio 2010). This
distribution is centered on 0 with a standard deviation
s 5

�����������������������
2/(fanin 1 fanout)

√
, where fanin is the number of input

units in the weight tensor, and fanout is the number of out-
put units in the weight tensor. Further, initial states h0 and c0
are initialized by zero vectors. For each model, the batch size
is set to 16, and the number of epochs is set to 25 as default,
consistent with recommendations made by Pirhooshyaran and
Snyder (2020). Other model parameters settings can be found
in Table 6.

We used the mean-square error (MSE) as the loss function
for training the neural network structures and the Adam

optimization algorithm to minimize the loss function due to
its strengths with respect to stability and speed of convergence
(Pirhooshyaran et al. 2020).

2) MODEL COMPARISON

The four proposed LSTM architectures are the vanilla LSTM
model, the stacked LSTM model, the encoder–decoder LSTM
model, and the attention-based encoder–decoder LSTM model
(as described in Table 6). These were compared against a base-
line naïve persistence model, which takes the initial value as the
prediction for all steps (i.e., the forecast assumes the conditions
do not change).

As a result of our training strategy [see section 2b(2)], the
predictions for each month required separate training models.
The model performance in different months exhibits a similar
trend, but in this section, only the results for May 2020 are
presented as an illustrative comparison.

Table 7 shows the overall (24 time step) error comparison
for each of the three buoys, in terms of Hs and Tz prediction
using the four LSTM network models. It is seen that all
LSTM structures outperform the baseline persistence model
with respect to RMSE, MAE, and R2. Here, the stacked
LSTM (model 2) performs better than the vanilla LSTM
model (model 1) due to the addition of an LSTM layer. The
encoder–decoder LSTM model with (model 4) or without
(model 3) attention generally has the higher accuracy in most
cases for all three error metrics. For example, the proposed
attention encoder–decoder LSTM model (model 4) shows an
improvement in R2 from 0.7795 to 0.8512 over the baseline
approach with respect to Hs over 24 forecast time steps at
Perranporth.

Figure 7 presents the R2 variations as a function of forecast
time steps. Not surprisingly, for all models the R2 values from
the sequence prediction models decreases as the forecast hori-
zon increases, although this happens more slowly in the
LSTM-based models than in the baseline model, and it is par-
ticularly shown that model 4, the attention-based LSTM, gen-
erally obtains the highest R2 values across the full forecast

TABLE 4. Statistics comparing the data for complete in situ wave parameter datasets to those that have artificially had gaps inserted
and then filled using the LRTC-TNN model.

Hs Hmax Tp Tz Dirp Spd SST

Penzance
RMSE 0.0719 0.2949 1.9484 0.2630 16.6057 4.6092 0.1003
MAPE 0.0983 0.1680 0.2088 0.0437 0.0806 0.1591 0.0059
R2 0.9815 0.8867 0.7323 0.9398 0.5824 0.6613 0.9987

Looe bay
RMSE 0.0762 0.4840 2.0458 0.2490 16.8883 4.6418 0.1202
MAPE 0.0844 0.1407 0.2142 0.0396 0.0716 0.1609 0.0061
R2 0.9860 0.8086 0.6978 0.9447 0.7434 0.5793 0.9982

Perranporth
RMSE 0.1131 0.7889 1.3778 0.2450 13.5401 6.4509 0.1023
MAPE 0.0585 0.1474 0.1088 0.0315 0.0642 0.1701 0.0052
R2 0.9861 0.7805 0.7982 0.9676 0.5507 0.6434 0.9987

TABLE 5. Feature selection results (Hs, Tz). The correlation
time horizon is 24 steps. Subscript indices indicate different buoy
locations where 1 corresponds to Penzance, 2 corresponds to
Looe Bay, and 3 corresponds to Perranporth.

Buoy Input features Output feature

Penzance Hs_1, Hmax_1 Hs_1

Hs_1, Tz_1, Hs_2, Tz_2 Tz_1

Looe Bay Hs_1, Hmax_1, Tz_1, Hs_2, Hmax_2 Hs_2

Hs_2, Hmax_2, Tz_2 Tz_2

Perranporth Hs_1, Hmax_2, Hs_3, Hmax_3, Tz_3 Hs_3

Hs_1, Tp_3, Tz_3 Tz_3

C H E N E T AL . 11JANUARY 2023

Brought to you by UNIVERSITY OF EXETER | Unauthenticated | Downloaded 03/22/23 02:55 PM UTC



horizon. The relative time complexity of the four models is
397, 826, 567, and 592 s, respectively, when training 6000 sam-
ples only. Though model 1 has the shortest training time, it is
not resilient, and the performance is significantly worse when
compared to the others (Table 7). Models 3 and 4 consistently
performed the best and had similar computational times. On
this basis, and since it benefits from more flexibility and
potential for further extension, model 4 was selected for
implementation.

d. Combined spatiotemporal model performance

To validate the proposed spatiotemporal model framework,
its performance was assessed by comparing the results with
both wave buoy observations and model outputs from the
UKMO operational forecast model at two potential renew-
able energy sites (WaveHub and FabTest) located off the
southwest coast of the United Kingdom. As discussed in
section 3c, the proposed model framework implements
LSTM model 4 (see Table 4) for the temporal forecast
model at the buoy locations, and the outputs from this are
used as inputs to the surrogate-SWAN spatial nowcasting
model to produce the resulting spatiotemporal forecast. The
proposed model framework can output continuous 12-h spatial
wave parameter forecasts at 30-min intervals in a single
model. The predictions for the two validation locations are

then extracted from outputs of this coupled spatiotemporal
model.

1) MODEL PERFORMANCE AT WAVEHUB SITE

A qualitative comparison of time series data from the
test dataset (January–December 2016) is presented in
Fig. 8. Both the proposed model framework and UKMO
model show consistency with the buoy observations, albeit
with the largest errors occurring when the actual values are
very low (i.e., ,0.5 m). Quantitatively, the proposed model
framework exhibits a comparable level of accuracy to the
UKMO physics-based model across all the wave para-
meters (Table 8). With respect to Hs, the UKMO model
performed better against measured data, with R2 values
exceeding 0.92 at all forecast horizons. In contrast, with
respect to Tz, the proposed model framework achieves a
higher level of accuracy than the UKMO model in nowcast
and short-term (i.e., less than 6 h) forecast horizons, but
this accuracy decreases as the forecast lead time increases.
For Dirm, with the circular scale metrics transformation,
the UKMO model performs better with MAAPE smaller
than 9%, while the MAAPE of the proposed model frame-
work is 13%.

In terms of stability, the UKMO model results indicate
a consistent performance in forecasting up to 12 h ahead,

TABLE 6. Experiment LSTM model structures parameter setup. For encoder–decoder models, a slash represents encoder/decoder
layers.

Model
No. Model architecture

LSTM
layers

Units in
LSTM layers

FC
layers

Units in FC
layer 1

Units in FC
output layer

FC layer
output

dimension

1 Vanilla LSTM 1 200 1 } nf ns 3 nf
2 Stacked LSTM 2 200 1 } nf ns 3 nf
3 Encoder–decoder LSTM 1/1 200/200 2 100 Do ns 3 nf 3 Do

4 Attention encoder–decoder LSTM 1/1 200/200 2 100 Do ns 3 nf 3 Do

TABLE 7. Model structure evaluation metrics comparison. Training data: April, May, and June of 2010–19. Test data: May 2020.
Historical time steps 5 48 and forecast time steps 5 24. Feature selection applied before training.

Buoy Model No.

Hs Tz

Overall RMSE (m) Overall MAE (m) Overall R2 Overall RMSE (s) Overall MAE (s) Overall R2

Penzance Baseline 0.1606 0.0983 0.7008 0.9148 0.6449 0.0521
1 0.1492 0.0938 0.7418 0.7535 0.5844 0.3569
2 0.1489 0.0937 0.7428 0.7514 0.5820 0.3605
3 0.1487 0.0931 0.7434 0.7519 0.5787 0.3597
4 0.1488 0.0935 0.7429 0.7466 0.5735 0.3687

Looe Bay Baseline 0.1894 0.1256 0.7176 0.8378 0.5627 0.1822
1 0.1553 0.1085 0.8101 0.6983 0.5164 0.4318
2 0.1541 0.1071 0.8130 0.6834 0.5032 0.4559
3 0.1529 0.1059 0.8158 0.6754 0.4975 0.4685
4 0.1530 0.1073 0.8156 0.6794 0.5015 0.4622

Perranporth Baseline 0.3346 0.1898 0.7795 1.1046 0.7317 0.4654
1 0.2892 0.1818 0.8352 0.9839 0.7060 0.5759
2 0.2814 0.1776 0.8440 0.9790 0.7017 0.5800
3 0.2768 0.1725 0.8491 0.9841 0.7029 0.5757
4 0.2749 0.1731 0.8512 0.9771 0.6942 0.5817
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whereas the accuracy of the proposed model framework de-
creased (i.e., errors increase) with increased forecast lead
time (see Table 8; Fig. 9) as shown in scatterplots of the pro-
posed model (Figs. 10, 11, top row) that exhibit increased
spread with increased forecast lead time, though this is not ap-
parent for the UKMO model (Figs. 10, 11, bottom row). For
both Hs and Tz, the UKMO model appears to slightly over-
predict large values while the proposed model framework
underpredicts. However, the shape of scatterplots does not
change significantly with respect to the forecast horizon for ei-
ther model. Focusing on storm events shows the proposed
method performs inconsistently with some large Hs events
well estimated, while the largest peak is significantly underes-
timated (Fig. 12).

2) MODEL PERFORMANCE AT FABTEST SITE

A qualitative comparison of the FabTest site time series
data (January–August 2020) is presented in Fig. 13. When
compared to wave buoy observations, both the proposed
model framework and the UKMO model are less accurate at
FabTest than at WaveHub. However, the proposed model
framework is consistently less accurate (i.e., higher errors)
and the UKMO model is more accurate in all statistics for Hs,
Tz, and Dirm over the forecast time horizon (Table 9; Fig. 14).

As with WaveHub, the UKMO model results indicated
more stable accuracy, while the accuracy of the proposed
model framework again reduces with forecast lead time
(Fig. 15). However, in this case, the proposed model framework
shows a group of results with consistent underprediction of Hs.

FIG. 7. LSTMmodel comparison of 24-step forecasting results in terms of R2 over test data. Training data: April, May, and June of 2010–19,
and test data: May 2020. Recurrent time steps5 48, forecast time steps5 24, and feature selection applied before training.

FIG. 8. OverallHs 12-h forecasting and relative errors for WaveHub in 2016.
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Filtering the results to highlight values with a proportional dif-
ference between observations and model prediction greater than
30% shows that these underpredictions most commonly occur
when the mean wave direction was approximately 1008 (Fig. 16).
The errors associated with wave direction were only evident in
the Hs values, and errors in Tz were not limited to this subset of
conditions. Table 9 and Fig. 17 show consistent differences be-
tween observations and the proposed model framework. Focus-
ing on the storms again shows inconsistent results, with some
peaks well forecast while others are underpredicted (Fig. 18).

4. Discussion

The results presented in this paper demonstrate the capacity
for an ML-based wave forecasting framework. The proposed
model framework is based on coupling forecast parameters at
discrete locations using an LSTM neural network to a spatial
nowcasting model. It is shown to provide reliable short-term
forecasts for wave parameters (e.g., Hs, Tz) across a spatial do-
main. The work presented has highlighted that this approach
can achieve results similar to a physics-based forecast for
short-range prediction, with low computational cost.

This framework is able to produce spatiotemporal forecasts
through a data-driven approach relying on in situ sensor net-
works without any requirement for measurements at the

target output locations and instead relying on a previously ex-
ecuted hindcast model. Compared to traditional wave fore-
casting methods, this is therefore able to run in a fraction of
the time with reduced computational requirements. Accord-
ing to Hu et al. (2021), for a 2-yr run on their computation do-
main (with an area similar to our model), WWIII needed 24 h
with 60 CPUs. In contrast, the trained LSTM for temporal
model together with the random forest for the spatial model
needed less than 30 s on one CPU to get 12-h spatial wave
prediction with a half-hour interval over 2 years, and most of
this time is spent for data loading and transfer rather than for
computing the forecasts. This framework takes advantage of
both in situ observations, which enable the model to issue
more frequent forecasts, and of regional hindcast models,
which enable the model to achieve higher spatial resolution.
Therefore, this work has the potential to support decision-
making and reduce costs for maritime-related applications
such as offshore renewable energy and also represent a step
change in how environmental forecasts can be done using lim-
ited but real-time onboard observation data such as operating
unmanned vessels.

It is noted that the observations have been gap filled from
the raw data prior to being used as inputs for the spatiotem-
poral model. Using the raw data with gaps reduces the train-
ing dataset by 5.17%. This is larger than the proportion of

TABLE 8. Validation and benchmarking of proposed model framework with Met Office forecast and in situ measurements at
WaveHub.

WaveHub 2016 Proposed model framework Met Office forecast

Parameter Horizon RMSE MAE MAAPE R2 RMSE MAE MAAPE R2

Hs 0 h 0.3331 0.2537 0.1456 0.9156 0.3024 0.2138 0.1176 0.9324
1 h 0.3469 0.2648 0.1516 0.9083 0.3335 0.2170 0.1169 0.9210
6 h 0.3882 0.2936 0.1741 0.8852 0.3045 0.2139 0.1175 0.9315
12 h 0.4317 0.3203 0.1888 0.8581 0.3169 0.2170 0.1185 0.9258

Tz 0 h 0.7553 0.5831 0.0995 0.7017 0.8380 0.6356 0.1032 0.6401
1 h 0.7297 0.5652 0.0949 0.7210 0.8415 0.6415 0.1046 0.6331
6 h 0.7957 0.6171 0.1028 0.6682 0.8423 0.6416 0.1041 0.6365
12 h 0.8731 0.6740 0.1119 0.6006 0.8486 0.6490 0.1055 0.6307

Dir 0 h 37.448 26.068 0.1228 20.142 27.752 17.94 0.0886 0.502
1 h 35.772 25.387 0.1254 20.393 27.982 17.837 0.090 0.504
6 h 36.168 26.212 0.1303 20.700 28.137 17.867 0.0884 0.493
12 h 36.007 26.468 0.1320 21.352 29.115 18.175 0.0892 0.467

FIG. 9. Accuracy against forecast horizon of present framework and Met Office operational forecasting model compared at WaveHub
buoy location for 2016.
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missing data for any individual parameter as if any one pa-
rameter is missing, then there are no inputs for that time step.
While gap filling does not provide a perfect reconstruction of
the time series (Chen et al. 2022), the reduction in training
data would be more detrimental to the accuracy of the trained
model than the uncertainties resulting from the gap-filled
data. This also alleviates any bias in the data with gaps, where
certain conditions are more likely to result in missing data
and therefore are consistently omitted from the training data.
Finally, gaps are frequently only for a single parameter in a
time step with the others being the original raw data, which
further reduces the impact of uncertainties resulting from the
gap-filled data.

The results have highlighted that the proposed model
framework is able to achieve estimates of Hs and Tz at a simi-
lar level of accuracy to the physics-based numerical model.
The assessment of the direction is more limited than that of
wave height or period in the present work. This is in part due
to the differences in wave direction data between the models
and the in situ measurements. In the SWAN model, the wave
direction refers to the mean wave direction across all frequen-
cies and directions of a two-dimensional wave spectrum. The
in situ buoy data from the Channel Coastal Observatory,
however, report the peak wave direction, which represents
the wave direction at the frequency with the greatest energy

in the wave spectrum. The proposed model framework is sen-
sitive to various factors, including how the training set is se-
lected, what wave parameters are used to train the model, and
the overarching architecture of the neural networks. The fac-
tor study found that considering seasonality in the training da-
taset using the best candidate features as inputs and using an
attention mechanism-based temporal model that considers
the correlation among the input multivariate time series can
all help capture the temporal patterns in the wave conditions
and thus improve the temporal forecast accuracy.

The proposed model framework performs better at the
WaveHub location compared with the FabTest location. Pre-
vious examination of numerical model performance found
that the regional numerical wave model (SWAN) failed to
represent wave systems arriving from the east (i.e., mean di-
rection around 1008) when forced by ECMWF boundary con-
ditions (Ashton and Johanning 2014). This will severely limit
the surrogate spatial nowcasting model’s ability to accurately
learn the relative conditions across the domain. In contrast,
boundary conditions in the northwest of the domain are bet-
ter defined by the global models used to drive the SWAN
training dataset.

Results from FabTest showed consistent errors in the pre-
diction of Tz, which were greater than results from the other
sites. These were not limited to wave systems approaching

FIG. 10. Scatterplots of model (y) vs observed (x) Hs using buoy observations at WaveHub site: (a) proposed model framework at
0-h horizon, (b) proposed model framework at 6-h horizon, (c) proposed model framework at 12-h horizon, (d) Met Office model at
0-h horizon, (e) Met Office model at 6-h horizon, and (f) Met Office model at 12-h horizon.
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from the east. Van-Nieuwkoop et al. (2013) attributed differ-
ences between the SWAN model and observations to low-
frequency energy in the wave spectra, which is underestimated
in the ECMWF boundary input. This has the potential to
cause in-model errors of processes related to the wave period
such as refraction. Where these errors are included in the
training dataset, they will be propagated to the surrogate
model. The geographic location of FabTest means that inci-
dent waves from the predominant west-southwest directions
will be more affected by refraction than the other sites. As

such, this could explain the increased errors in Tz at FabTest.
However, continued development of the proposed model
with different hindcast/reanalysis systems will help to estab-
lish the relative contribution of in-model and boundary data
errors for future applications.

Ashton and Johanning (2014) and Van-Nieuwkoop et al.
(2013) identified that using a UKMO wave model product at
the boundaries reduced observed errors, although this was
not available at the time to produce the full dataset. This out-
come suggests that the surrogate model procedure, while

FIG. 11. Scatterplots of model (y) vs observed (x) Tz buoy observations at WaveHub site: (a) proposed model framework at 0-h horizon,
(b) proposed model framework at 6-h horizon, (c) proposed model framework at 12-h horizon, (d) Met Office model at 0-h horizon,
(e) Met Office model at 6-h horizon, and (f) Met Office model at 12-h horizon.

FIG. 12. Example 12-h forecasts ofHs during storm event for WaveHub.
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capable of reducing errors caused by uncertainty in the
boundary datasets (Chen et al. 2021), cannot overcome cons-
tant errors caused by numerical model settings and inputs,
which would limit the range of conditions used during training
the ML model. Here, two examples of such errors are seen to
transfer into the surrogate model and the resultant spatiotem-
poral model framework. In addition, diffraction of wave sys-
tems arriving from the North Atlantic and resolution of the
wave systems in the English Channel reduce the accuracy of
physics-based models when estimating wave conditions at
FabTest. This is present both in the physics-based model and
the trained model, which relies on an accurate representation
of the physics to predict wave conditions.

These results highlight the benefit of using an accurate and
reliable hindcast model and the increased potential of the pro-
posed model framework to achieve high-accuracy predictions
when trained on best-in-class hindcast datasets. The proposed
model also raises the possibility of using simulated data to en-
sure the full range of conditions are met, including defining
spectral shapes and considering local wind conditions to

represent key physical processes accurately. Though the ML
model is a tool for using existing computational model setups in
a novel way, there is also potential for reviewing the physical
processes in the wave model such as white-capping parameter-
izations, air–sea temperature difference, accuracy of bathymetry,
etc., in the context of both training and operation of the machine
learning models. Importantly, however, this framework is able
to be reconfigured to use an alternative spatial nowcast model
such as that based on hindcast data provided by global national
weather centers.

5. Conclusions

The paper proposes an ML framework for multivariate multi-
step and multioutput spatiotemporal forecasting for nearshore
ocean wave characteristics relying on buoy observations and a
regional numerical hindcast model. This framework is shown to
offer half-hourly forecasts of wave parameters across a spatial
domain for up to 12 h ahead with an equivalent level of accuracy
with the numerical model.

TABLE 9. Validation and benchmarking of proposed model framework with Met Office forecast and in situ measurements at
FabTest.

FabTest 2020 Proposed model framework Met Office forecast

Parameter Horizon RMSE MAE MAAPE R2 RMSE MAE MAAPE R2

Hs 0 h 0.3204 0.2313 0.3142 0.7702 0.2853 0.2137 0.2784 0.8134
1 h 0.3406 0.2437 0.3234 0.7409 0.2829 0.2100 0.2711 0.8163
6 h 0.3558 0.2563 0.3486 0.7172 0.2842 0.2111 0.2747 0.8150
12 h 0.3678 0.2599 0.3540 0.6978 0.2871 0.2144 0.2791 0.8114

Tz 0 h 1.2680 1.1192 0.2433 21.023 0.7441 0.5334 0.1228 0.3189
1 h 1.2189 1.0604 0.2293 20.866 0.7374 0.5276 0.1220 0.2895
6 h 1.2092 1.0164 0.2157 20.836 0.7708 0.5478 0.1258 0.2692
12 h 1.2129 1.0065 0.2119 20.847 0.7952 0.5678 0.1302 0.2229

Dir 0 h 38.624 24.951 0.1619 0.1149 35.0475 20.7617 0.1288 0.5502
1 h 37.663 23.761 0.1576 20.065 34.1053 20.8190 0.13335 0.5746
6 h 39.516 25.969 0.1734 20.461 35.3537 20.8904 0.1303 0.5494
12 h 40.356 26.858 0.1797 20.743 35.9345 21.5279 0.1350 0.5370

FIG. 13. OverallHs 12-h forecasting and relative errors for FabTest site in 2020.

C H E N E T AL . 17JANUARY 2023

Brought to you by UNIVERSITY OF EXETER | Unauthenticated | Downloaded 03/22/23 02:55 PM UTC



The proposed model framework was validated against
wave buoy measurements and benchmarked against the Met
Office operational forecasting model at two potential renew-
able energy sites in the southwest United Kingdom: Wave-
Hub and FabTest. Results were found to have very similar
errors with respect to RMSE, MAE, and MAAPE when bench-
marked against a physics-based forecast. However, the proposed
model framework was able to achieve this using significantly less
computational power and required less than 30 s to generate
half-hourly, 12-h spatial forecasts over 2 years.

The results presented highlighted the sensitivity of the pro-
posed model framework to the underlying physics-based hind-
cast used to train the ML approach. In particular, errors in the
initial hindcast model setup were seen to transfer to the surro-
gate spatial model, indicating that the ML incorporated these er-
rors. This reduced accuracy when compared to the UKMO
model and the observations. Future work will explore further
development of the model architecture considering further input
features from other sensors (i.e., other met–ocean-related pa-
rameters such as wind) or other measurement resources (e.g.,

FIG. 14. Accuracy vs forecast horizon of proposed model framework and Met Office operational forecasting model compared at FabTest
buoy location in 2020.

FIG. 15. Scatterplots of model (y) vs observed (x) Hs using buoy observations at FabTest site: (a) proposed model framework at
0-h horizon, (b) proposed model framework at 6-h horizon, (c) proposed model framework at 12-h horizon, (d) Met Office model at
0-h horizon, (e) Met Office model at 6-h horizon, and (f) Met Office model at 12-h horizon.
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satellite data and mobile autonomous systems) to mitigate these
errors in order to demonstrate its robustness and generic appli-
cation to a full range of physics-based wave models. Further
work is also necessary to ensure the generalizability of the pro-
posed methodology to other sites, to global scales, and to extend
beyond bulk wave parameters to consider spectral parameters.
Performance under extreme and storm-event conditions must
also be explored.

The proposed model framework is highly flexible and has po-
tential for offering a low-cost, low computational resource ap-
proach for the provision of short-term forecasts and can operate
with existing, widely used methodologies. The fact that the cur-
rent application of the framework can achieve respectable levels

of accuracy compared to a leading physics-based numerical
weather prediction suggests that these ideas have significant po-
tential for providing a new class of rapidly updating met–ocean
capability.
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FIG. 18. The 12-h forecasts ofHs during storm events for FabTest.
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the WAVEWATCH III model, whose domain covers the
seas on the northwest European continental shelf, forced by
10-m winds from the UKMO atmospheric global Unified Model
(Walters et al. 2011), with lateral wave boundary conditions and
surface current inputs from the UKMO global wave forecast
(Saulter et al. 2016) and UKMO Atlantic Margin Model ocean
physics forecast (Tonani et al. 2019), respectively. The open-

source ML library scikit-learn (Pedregosa et al. 2011) and deep
learning framework TensorFlow (Abadi et al. 2016) in Python
were used to implement the models.

APPENDIX A

Nomenclature

Table A1 lists definitions of the terms used in this paper.

APPENDIX B

LSTM Network

The key feature in an LSTM network is the memory cell.
These memory cells are connected along the entire chain and
enable the addition or removal of information through their
implementation of structures called “gates.” The gates are com-
posed of a sigmoid neural net layer and a pointwise multiplica-
tion operation (see Fig. B1). Due to the use of the gates in
each cell, data can be disposed, filtered, or added for the next
cells, which can therefore ensure the long-term dependency.
The standard LSTM equations (Hochreiter and Schmidhuber
1997; Lipton et al. 2015) for time step t are as follows:

Forget gate : ft 5 s(Wfxxt 1 Wfhht21), (B1)

Input gate : it 5 s(Wixxt 1 Wihht21), (B2)

Output gate : ot 5 s(Woxxt 1 Wohht21), (B3)

Cell memory state : ct 5 ft � ct21

1 it � tanh(Wcxxt 1 Wchht21), (B4)

Hidden state : ht 5 ot � tanh(ct), (B5)

where xt 2Rd, ft 2Rd, it 2Rd, ot 2Rd, ct 2Rd, and ht 2Rd

for all t 5 1, 2, 3, … , T are the input vector, forget gate, in-
put gate, output gate, cell memory state, and hidden state
for the LSTM network, respectively, while t represents the
time step and Wij is the weight matrix corresponding to the
dimensions of the gate vectors i and j.

TABLE A1. Nomenclature.

Acronym Full form

BPTT Back propagation through time
Cy Context vector
Di Input feature dimension
Dir Wave direction
Dirm Mean wave direction
Dirp Peak wave direction
DLNN Deep learning neural network
Do Output feature dimension
DTotal All feature dimension
ElasticNetCV Elastic net algorithm with cross validation
Hmax Maximum observed wave height
Hs Significant wave height
LRTC-TNN Low-rank tensor completion model with a

truncated nuclear norm
LSTM Long short-term memory neural network
ML Machine learning
nb Lookback time steps
nf Forecast time steps
ns Number of samples
NWP Numerical weather prediction
RNN Recurrent neural network
Sa Alignment score
seq2seq Sequence to sequence
Spd Wave direction spread
SST Sea surface temperature
SWAN Simulating Waves Nearshore
Tp Peak wave period
Tz Spectrally derived mean zero-crossing

wave period
XSp Spatial model input data array
XTe Temporal model input data array
ySp Spatial model output data array
yTe Temporal model output data array

FIG. B1. Three sequential LSTM cells for time steps t 2 1, t, and t 1 1. The terms s and tanh are the sigmoid and tangent hyperbolic
activation functions, respectively; the 3 operators indicate elementwise (Hadamard) matrix multiplication; ft, it, and ot are forget, input,
and output gates at time step t, respectively; and hidden and state cells propagate through the network.
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The sigmoid function s is given by s(x)5 1/(11 e2x),
∀x 2 R, which returns the value in the open interval of [0, 1].
The return values represent the amount of data allowed to
pass through the cell, i.e., a value of zero implies that
“nothing passes through,” and a value of one implies that
“everything passes through.” The notation � represents ele-
mentwise (Hadamard) matrix multiplication, which only exists
if the matrices are of the same dimensions. The internal gates
allow the model to be trained using backpropagation through
time (BPTT) and avoid the vanishing gradients problem.

APPENDIX C

Impact of Feature Selection on Temporal Model

Feature selection has been explored using the Elastic-
NetCV for the single-parameter prediction. In this section,
five input feature cases representing the range of possible
input features are compared:

1) all available features across all buoys (i.e., no feature se-
lection): All;

2) all available features from a single buoy (i.e., no feature
selection for the single buoy): Single_buoy;

3) univariate feature, i.e., the target feature itself:
Univariate;

4) feature selection from a single buoy’s features: FS_single_
buoy; and

5) feature selection from all available features across all
available buoys: FS.

Due to the computational complexity, a shorter dataset
from 0000:00 UTC 2 January 2010 to 2330:00 UTC 7 June
2010, corresponding to 7500 samples, was used to explore
the impact of feature selection. In this case, the first 6000
samples are treated as the training dataset, and the later
1500 samples are treated as the test dataset. RMSE for Hs

and Tz from the three buoys is used in evaluating the value
of feature selection.

In all cases, the RMSE values increase with forecast lead
time. Using all available features from all three buoys or
using all features from each individual buoy generally per-
forms worse than using fewer features strategically selected
via the feature selection process (see Fig. C1). The best per-
formance is obtained when using features selected from all
the available features across all the buoys (purple lines in
Fig. C1).
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