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Electron resonant interactions with electromagnetic whistler-mode waves play an impor-
tant role in electron flux dynamics in various space plasma systems: planetary radiation
belts, bow shocks, solar wind, and magnetic reconnection regions. Two key wave char-
acteristics determining the regime of wave-particle interactions are the wave intensity
and the wave coherency. The classical quasi-linear diffusion approach describes well
the electron diffusion by incoherent and low-amplitude waves, whereas the nonlinear
resonant models describe electron phase bunching and trapping by highly coherent
intense waves. This study is devoted to the investigation of the regime of electron resonant
interactions with incoherent but intense waves. Although this regime is characterized by
electron diffusion, we show that diffusion rates scale linearly with the wave amplitude,
D ∝ Bw, in contrast to the quasi-linear diffusion scaling DQL ∝ B2

w. Using observed
wave amplitude distributions, we demonstrate that the quasi-linear diffusion model
significantly overestimates electron scattering by incoherent, but intense whistler-mode
waves. We discuss obtained results in context of simulations of long-term electron flux
dynamics in the space plasma systems.

1. Introduction

Resonant electron interactions with whistler-mode waves are one of the main drivers
of electron pitch-angle scattering and acceleration in various space plasma systems, e.g.
solar flares (Bespalov et al. 1991; Filatov & Melnikov 2017; Melnikov & Filatov 2020),
solar wind (Tong et al. 2019; Cattell et al. 2020, 2021; Mozer et al. 2021), shock waves
(Hull et al. 2012; Wilson et al. 2013; Oka et al. 2017; Page et al. 2021), planetary
radiation belts (Menietti et al. 2021; Li et al. 2021; Thorne et al. 2021), and magnetic
reconnection regions (Le Contel et al. 2009; Breuillard et al. 2016; Zhang et al. 2018a).
The basic theoretical framework for description of such interactions is the quasi-linear
model (Vedenov et al. 1962; Drummond & Pines 1962; Andronov & Trakhtengerts 1964;
Kennel & Engelmann 1966) that is based on the assumption of weak perturbation of
particle dynamics by each single resonance. This assumption reduces the Vlasov equation
to the Fokker-Plank diffusion equation (Vedenov et al. 1962; Drummond & Pines 1962)
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where the main characteristics of wave-particle resonant interactions are diffusion rates.
The requirement of a weak perturbation of particle trajectories for a single resonance is
equivalent to the requirement that each individual wave-particle resonant interaction
should not last for a long time (so particle energy/pitch-angle change for a single
resonance is sufficiently small), and there are several mechanisms responsible for particle
escape from the resonance.
The original quasi-linear diffusion model assumes the broad spectrum of waves resonat-

ing with charged particles (Vedenov et al. 1962; Drummond & Pines 1962), when the
resonance width in velocity space ∆vR is equal to the difference of resonance vR velocity
(determined for the cyclotron resonant conditions) and wave group velocity vg = ∂ω/∂k
(where ω and k are wave frequency and wavenumber). The estimate for the resonance
width can be derived from the condition that a change of the resonant particle velocity,
∆vR ∼ |vR − vg|∆k/k, will remove the particle from the cyclotron resonance (Karpman
1974). The small factor ∆k/k is determined by the wave spectrum width in wavenumber
space, ∆k. This mechanism determines the shortness of an individual resonance and
justifies the applicability of the diffusion approximation for modeling the dynamics of the
charged particle ensemble (Karpman 1974; Le Queau & Roux 1987; Shapiro & Sagdeev
1997). This description works well for low-amplitude whistler-mode waves resonating with
electrons in homogeneous systems (without spatial gradients of the background plasma
and magnetic field), e.g. in the solar wind (see review by Verscharen et al. 2022, and
references therein).
The assumption of the background magnetic field homogeneity, however, does not work

for many space plasma systems. Resonant electron scattering by whistler-mode waves is
often observed in magnetic field traps, regions with a spatially localized minimum of
the magnetic field magnitude, where charged particles can be trapped and bouncing.
Important examples of such traps are the radiation belt dipole field (Lyons & Williams
1984; Schulz & Lanzerotti 1974) and magnetic holes generated by compressional pertur-
bations on the bow shock (Hull et al. 2020; Yao et al. 2021; Oka et al. 2019). Bouncing
within magnetic traps, electrons periodically resonate with whistler-mode waves, and the
resonance width for cyclotron resonance in the inhomogeneous field is determined from
the condition that a change of the resonant particle velocity (due to the field spatial
gradient) ∆vR ∼ |∂vR/∂s|/k will remove the particle from the cyclotron resonance
(Trakhtengerts & Rycroft 2008). If ∆vR is finite, the quasi-linear diffusion model works
even for monochromatic waves (∆k → 0) resonating with electrons in magnetic traps
(Karpman & Shklyar 1977; Shklyar 2021; Albert 2001, 2010). Thus, the only condition
required for the application of quasi-linear diffusion model is that the mirror force due
to the background magnetic field gradient should be stronger than the Lorentz force of
the wave field (Karpman 1974).
The small wave intensity approximation, however, is often violated for whistler-mode

waves observed in the highly unstable plasma of shock waves (Zhang et al. 1999; Artemyev
et al. 2022) and plasma injections (Zhang et al. 2018b, 2019). Such intense waves may
resonate with electrons in a nonlinear regime, including effects of phase trapping and
phase bunching (e.g., Nunn 1971, 1974; Karpman et al. 1974; Inan et al. 1978). Although
phase bunching is the strongly nonlinear effect (Albert 1993; Bortnik et al. 2008), due to
the smallness of the electron energy and pitch-angle changes in a single resonant phase
bunching, it can be incorporated as a drift term into the Fokker Plank equation (see
discussion in Artemyev et al. 2014; Allanson et al. 2021; Gan et al. 2020). Changes of
electron energy and pitch-angle due to the phase trapping are comparable to the initial
energies/pitch-angles (Omura et al. 2007; Summers & Omura 2007), and thus it is not
clear how to include this effect into the Fokker-Plank equation. Several approaches with
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Figure 1. Examples of typical wave-packets of whistler-mode waves captured by THEMIS
spacecraft Angelopoulos (2008) in the Earth bow shock (a), foreshock transient (b), outer
radiation belt (c), plasma injection region (d). These events are picked up from statistics
published in (Artemyev et al. 2022; Shi et al. 2020; Zhang et al. 2018b,a).

different integral operators describing the phase trapping contribution to the electron flux
dynamics have been proposed (e.g., Omura et al. 2015; Artemyev et al. 2018b; Vainchtein
et al. 2018; Hsieh et al. 2020), but the evaluation of such operators is computationally
expensive and significantly changes the Fokker-Plank equation. Thus, it’s important and
practically useful to propose an approach for incorporation of nonlinear effects without
significant altering models based on the Fokker-Plank equation.
The principal possibility for such an approach has been proposed in Solovev & Shkliar

(1986): namely, the total contribution of trapping and bunching may compensate each
other. This idea has been reinvestigated in Mourenas et al. (2018), where effects of wave
modulations were taken into account. Spacecraft observations (e.g., Zhang et al. 2019,
2020b; Foster et al. 2021; Oka et al. 2019; Artemyev et al. 2022) and numerical simulations
(e.g., Nunn & Omura 2012; Katoh & Omura 2016; Demekhov et al. 2017; Tao et al. 2020;
Zhang et al. 2021) show that intense whistler-mode waves mostly propagate in a form of
short modulated wave-packets. Typical wave-packets include only few wave periods (see
Fig. 1), that can be an effect of sideband instability of wave generation (Nunn 1986) or
overlapping of several waves with close wave frequencies (Zhang et al. 2020b; Nunn et al.
2021). Such modulation reduces the efficiency of phase trapping (Tao et al. 2012b, 2013),
and can make the net effect of electron resonant interactions with waves more diffusive
(Zhang et al. 2020a; Allanson et al. 2020, 2021; Gan et al. 2020; An et al. 2022; Mourenas
et al. 2022). Thus, the derivation of diffusion rates is the main question for theoretical
description of such regime of wave-particle interaction.
In this paper, we propose an approach for the evaluation of diffusion rates including

nonlinear effects for intense, but strongly modulated waves. First, in Section 2 we describe
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the concept of the diffusion coefficient model. Then, in Section 3 we provide the basic
model equations for the diffusion rate and evaluate diffusion rates for arbitrary wave
intensity. Finally, in Section 4 we show the contribution of nonlinear effects on diffusion
rates averaged over wave intensity distributions and discuss the obtained results.

2. Basic concept

To propose the approach for the evaluation of such diffusion rate, let us illustrate the
wave modulation effect on nonlinear wave-particle interactions. We consider electrons
bouncing in a magnetic trap modelled by a curvature-free dipole field (Bell 1984) and
their resonant interaction with a monochromatic and intense whistler-mode wave. To
evaluate a set of test particle trajectories resonating once with whistler-mode waves, we
use the approximation of a monochromatic field-aligned wave. The wave field distribution
along the magnetic field lines and the concept of description of wave packets are taken
from Mourenas et al. (2022). We start with the Hamiltonian of a relativistic electron
(rest mass is me and charge is −e) bouncing in the magnetic trap and interacting with
a field-aligned whistler-mode wave:

H =

√(
p+

e

c
A
)2
c2 +m2c4 (2.1)

where p is a canonical momentum and A is a vector potential that can be derived from
B = ∇×A withB = B0+Bw. HereB0 is the background magnetic field of Earth’s dipole
and Bw describes the wave field. As the electron gyroradius is significantly smaller than
the dipole magnetic field line curvature, ∼ LRE where RE is Earth’s radius and L-shell,
we consider a curvature-free magnetic field with the pair (z, pz) of Cartesian coordinate
and momentum playing a role of field-aligned coordinate and momentum (s, p∥), see Bell
(1984). The equatorial magnetic field is determined by a dipole model, B0(0) ∝ L−3. To
define a B0(z) function, we introduce a geomagnetic latitude λ:

dz

dλ
=
√
1 + 3 sin2 λ cosλ,

B0(λ)

B0(0)
=

√
1 + 3 sin2 λ

cos6 λ
(2.2)

The smallness of electron gyroradius allows us to write A0 = xB̃0(z)ey (B0 = ∇×A0)
where eri is the unit vector along the ri-axis, ri = (x, y, z), and x is the cross-field
coordinate. As the magnetic field B0 is mainly oriented along the z-axis, we use the
approximation B̃0(z) ≈ B0(z). To derive the equation for the wave vector potential
Aw, we introduce the wave phase ϕ and define the magnetic vector Bw as Bwex cosϕ−
Bwey sinϕ. Note Bw may be a function of z (or/and ϕ), but for following derivations
we assume that |dBw/dz| ≪ |(∂ϕ/∂z) ·Bw|. The wave frequency ω and the wave vector
k are defined by equations ω = −∂ϕ/∂t and k = ∇ϕ ≈ (∂ϕ/∂z)ez for field-aligned
waves. We consider ω = const and determine k from a cold plasma dispersion: kc/Ωpe =

(Ωce/ω − 1)−
1
2 where Ωpe =

√
4πnee2/me is the plasma frequency and Ωce = eB0/mec

is the cyclotron frequency (Stix 1962). Therefore, Aw ≈ Bwex cosϕ/k − Bwey sinϕ/k
and Hamiltonian Eq. 2.1 can be presented as:

H = mec
2

√
1 +

(
pz
mec

)2

+

(
px
mec

+
Ωce
kc

Bw
B0

cosϕ

)2

+

(
py
mec

+
xΩce
c

− Ωce
kc

Bw
B0

sinϕ

)2

This Hamiltonian does not depend on y, and thus canonical momentum py is a constant:
ṗy = −∂H/∂y = 0. Without loss of generality, we can set py = 0.
In the absence of a wave, this Hamiltonian describes fast (x, px) oscillations and slow
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(z, pz) oscillations. Thus, we can introduce an adiabatic invariant Ix = (2π)−1
∮
dx px as

an area surrounded by a closed trajectory in (x, px) plane (Landau & Lifshitz 1988):

Ix =
1

2π

∮
dx px =

mec
2

2Ωce

(
H2

m2
ec

4
− 1−

(
pz
mec

)2
)

with

H = mec
2

√
1 +

(
pz
mec

)2

+
2IxΩce
mec2

,
2IxΩce
mec2

=

(
px
mec

)2

+

(
xΩce
c

)2

We consider the canonical transformation (x, px) → (ψ, Ix) given by a generating function
F2(x, Ix) = (2π)−1

∫
dx px (Landau & Lifshitz 1988):

F2(x, Ix) = ±me

2π

∫
dx

√
2IxΩce
me

− x2Ω2
ce = ±Ix

[√
meΩce
2Ix

x

√
1− meΩce

2Ix
x2+

+ arcsin

(√
meΩce
2Ix

x

)]

The corresponding variable transformations are

px = ±me

√
2IxΩce
me

− x2Ω2
ce, ψ = ±arcsin

(√
meΩce
2Ix

x

)
Thus, equations for x and px are

x =
c

Ωce

√
2IxΩce
mec2

sinψ, px = mec

√
2IxΩce
mec2

cosψ

A new equation for Γ = H/mec
2 in terms of variables (z, pz) and (ψ, Ix) can be written

as:

Γ =

√
1 +

(
pz
mec

)2

+
2IxΩce
mec2

+ 2

√
2IxΩce
mec2

Ωce
kc

Bw
B0

cos(ϕ+ ψ) +

(
Ωce
kc

Bw
B0

)2

(2.3)

The HamiltonianH = mec
2Γ describes the dynamics of two pairs of conjugated variables,

(z, pz) and (ψ, Ix). The system of Hamiltonian equations can be solved with respect to
these variables and time t. The general approach consists of expanding H over Bw/B0,
keeping only the linear ∼ Bw/B0 term:

H = mec
2γ +mec

2

√
2IxΩce
mec2

Ωce
γkc

Bw
B0

cos(ϕ+ ψ), γ =

√
1 +

(
pz
mec

)2

+
2IxΩce
mec2

(2.4)

We introduce the wave modulation through the Bw dependence on the wave phase ϕ
(Bw(ϕ) periodicity mimics effect if multiple wave packets):

Bw = Bm
1− e−h sin2(ϕ/2l)

1− e−h
, (2.5)

where Bm is the peak wave amplitude, l defines the number of wave oscillations (periods)
within one wave packet, and h controls the intensity of modulations. The effective wave
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Figure 2. A set of trajectories obtained by the numerical integration of Hamiltonian equations
for a system (2.4). Results are shown for (a) low amplitude wave with diffusive scattering, for
(b) coherent high-amplitude wave with trapping and bunching, (c) modulated high-amplitude
wave with diffusive-like scattering. System parameters are: electron energy E0 = 100 keV,
equatorial pitch-angle α0 = 40◦, number of particles N = 100, wave amplitude Bw = 5 pT
(a), Bw = 500 pT (b,c). System parameters correspond to L-shell = 6, whistler-mode waves
with the frequency equal to 0.35 of the electron cyclotron frequency at the equator, and the
constant plasma frequency equal to 10 of the electron cyclotron frequency at the equator.

amplitude Beff can be determined by averaging Bw over the period of modulations:

Beff =
√

⟨B2
w⟩ϕ∈[0,2πl] = Bm

√
1− 2I0 (h/2) e−h/2 + I0 (h) e−h

1− e−h

where In(z) is the modified Bessel function of the first kind. The average intensity of
the plane wave with Bw = Beff = const equals to the intensity of the modulated
wave with Bw given by Eq. (2.5). Thus, to describe the electron diffusion theoretically,
the approximation Bw ≈ Beff = const can be used. However, this assumption neglects
nonlinear effects and, therefore, to determine whether the theory is applicable, we perform
numerical simulations modulated waves. Parameter h in Eq. (2.5) determines the deep of
the modulation: at h → ∞ and l → ∞ wave packet reduces to plane wave. Parameter l
determines the wave packet size with the typical values l ∈ [10, 30] (see Zhang et al. 2019,
2021). For numerical simulations we use h = 1 and l = 20. Note these parameters well
satisfy the condition |dBw/dz| ≪ |(∂ϕ/∂z) ·Bw|, because dBw/dz = (∂ϕ/∂z) · (dBw/dϕ)
and (dBw/dϕ)B

−1
w ∼ h/l ≪ 1.

We consider particles having the same initial energy E0 and pitch-angle α0, but
random wave phase ϕ and gyrophase ψ. Figure 2 shows typical examples of electron
resonance interactions with whistler-mode waves obtained by a numerical integration of
Hamiltonian equations: (a) diffusive electron scattering by the low amplitude wave, (b)
nonlinear resonant interactions with the intense coherent wave, and (c) nonlinear resonant
interactions with the well modulated intense wave. The resonant interaction occurs once
per simulation interval (half of the bounce period), i.e. there is only one point along
unperturbed particle trajectory where there resonant condition ϕ̇ + ψ̇ = 0 is satisfied.
The diffusive scattering is characterized by a symmetric (relative to zero) distribution of
energy changes, and thus this process should be described by a diffusion rate ∼ ⟨(∆E)2⟩.
The nonlinear resonances with an intense coherent wave are characterized by a small
population changing the energy significantly (∆E > 0, the phase trapping effect) and

Page 6 of 24

Cambridge University Press

Journal of Plasma Physics



For Peer Review

Electron diffusion by intense whistler-mode waves 7
(a)

10-2

100

"
E

;
ke

V

10-4

10-3

10-2

10-1

P
ro

b
a
b
il
it
y

d
en

si
ty

10-5 10-4 10-3

" = Beff=B0(0)

100

!
"

E
;
k
eV

(b)

10-2

100

"
E

;
ke

V

10-4

10-3

10-2

10-1

P
ro

b
a
b
il
it
y

d
en

si
ty

10-5 10-4 10-3

" = Beff=B0(0)

100

!
"

E
;
k
eV

(c)

10-2

100

102

"
E

;
ke

V

10-4

10-3

10-2

10-1

P
ro

b
a
b
il
it
y

d
en

si
ty

10-5 10-4 10-3

" = Beff=B0(0)

100

102!
"

E
;
k
eV

(d)

10-2

100

102

"
E

;
ke

V

10-4

10-3

10-2

10-1
P
ro

b
ab

il
it
y

d
en

si
ty

10-5 10-4 10-3 10-2

" = Beff=B0(0)

100

102

!
"

E
;
ke

V

(e)

10-2

100
"

E
;
ke

V

10-4

10-3

10-2

10-1

P
ro

b
ab

il
it
y

d
en

si
ty

10-5 10-4 10-3 10-2

" = Beff=B0(0)

100

!
"

E
;
ke

V

(f)

10-2

100

102

"
E

;
ke

V

10-4

10-3

10-2

10-1

P
ro

b
ab

il
it
y

d
en

si
ty

10-5 10-4 10-3 10-2

" = Beff=B0(0)

100

102!
"

E
;
ke

V

Figure 3. Distributions of the energy change ∆E for different Beff with h = 1 and l = 20
for coherent (top) and modulated (bottom) waves with ∆E ∝ Bw fitting (black dashed lines)

and with ⟨(∆E)2⟩1/2 profiles (black dots): (a,d) E0 = 100 keV, α0 = 40◦, (b,e) E0 = 100 keV,
α0 = 60◦, (a,f) E0 = 300 keV, α0 = 60◦. For each Bw we use 104 trajectories to evaluate
the ∆E distribution, each particle resonates with the wave only once and ∆E is the energy
change for a single resonance, initial particle phases and wave phases are random and thus for
a modulated case the actual wave amplitude is different for different particles having the same
energy/pitch-angle. For each Beff the ∆E distribution is normalized to one. System parameters
correspond to L-shell = 6, whistler-mode waves with the frequency equal to 0.35 of the electron
cyclotron frequency at the equator, and the constant plasma frequency equal to 10 of the electron
cyclotron frequency at the equator.

a large population with a small, but almost identical for all particles’ energy change
(∆E < 0, the phase bunching effect). Thus, nonlinear resonances with a coherent wave
should be described separately for trapped and bunched particle populations, and due
to the large energy change of the trapped population it is not thought to be possible
to include this into the Fokker-Planck equation (see Hsieh & Omura 2017b,a; Artemyev
et al. 2021b; Zhang et al. 2022). The nonlinear resonances with modulated waves are
characterized by: (i) an increase of probability for the ∆E > 0 changes; (ii) but also
with a decrease in size of |∆E| itself; (iii) and further a randomization of energy change
for this population. Thus, for modulated waves, the resonant wave-particle interaction
is closer to the diffusive scattering (Tao et al. 2013; Zhang et al. 2020a; An et al. 2022;
Mourenas et al. 2022).

In Fig. 3 we show how wave intensity and wave modulation control the efficiency
of the nonlinear interactions. The top panels show distributions of energy changes ∆E
depending on the normalized wave amplitude ε = Bw/B0(0). Below ε ∼ 10−4 − 10−3

the resonant interaction is diffusive with a symmetrical ∆E distribution and ⟨(∆E)2⟩1/2
linearly growing with ε. This dependence ⟨(∆E)2⟩1/2 ∝ ε demonstrates the applicability
of the unperturbed trajectory approximation, a core assumption of the quasi-linear
diffusion theory Tao et al. (2011, 2012a); Allanson et al. (2020). After the wave amplitude
reaches a certain threshold (depending on the electron energy, pitch-angle and on system
characteristics, see Shklyar & Matsumoto (2009); Omura et al. (1991)), the resonant
interaction becomes nonlinear with a clear formation of a population of trapped electrons
(a separate group of large positive ∆E in the top panels of Fig. 3) and a highly
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asymmetrical ∆E distribution (most of the electrons experience the phase bunching and
form a large maximum at ∆E < 0). For such nonlinear resonant interactions the ∆E
distribution with phase trapped and phase bunched populations cannot be characterized
by a diffusion ⟨(∆E)2⟩ only, and thus it is not known how to include this regime of
resonant interactions into the Fokker-Planck equation.
The bottom panels of Fig. 3 show ∆E distributions as a function of wave amplitude

for strongly modulated waves. For small wave intensity, ε < 10−4, there is the same
diffusive regime of wave-particle resonant interactions as for non-modulated waves: a
symmetrical ∆E distribution with ⟨(∆E)2⟩1/2 ∝ ε. With the amplitude increase, the
regime of wave-particle resonant interaction changes. However, the wave modulation does
not allow strong trapping acceleration (there is no population with large positive ∆E),
but increases the number of trapped particles (the populations of particles with ∆E > 0
and with ∆E < 0 are comparable even for ε > 10−3). Thus, for intense modulated
waves, the ∆E distribution remains almost symmetrical and can be characterized by
⟨(∆E)2⟩. Despite such a symmetrical ∆E distribution, the resonant interaction for large
ε is nonlinear, and the wave field alters electron dynamics in the resonance. This results in
inapplicability of the unperturbed trajectory approximation, and thus ⟨(∆E)2⟩1/2 ∝ εA

with A < 1. Therefore, for intense modulated waves we deal with diffusion of resonant
electrons, but it is not a quasi-linear diffusion. In this study, we aim to derive the diffusion
coefficient ∼ ⟨(∆E)2⟩ as a function of ε for a wide ε range. The bottom panels of Fig. 3
show that ⟨(∆E)2⟩ for small ε should be similar to the quasi-linear diffusion (see also
Albert 2010), whereas for large ε the dispersion ⟨(∆E)2⟩ should be about ⟨∆E⟩2 of
phase bunched particle population. We have checked this assumption with an analytical
approach, which we further introduce.

3. The diffusion coefficient model for an arbitrary wave intensity

The HamiltonianH = mec
2γ with γ given by Eq. 2.3 determines the electron dynamics.

For this Hamiltonian system, we shall derive an analytical approximation for the energy
change ∆E = mec

2∆γ due to a single resonant interaction. Such change depends on the
initial electron energy and pitch-angle, and on the initial phase ϕ + ψ. Thus, we finally
aim to find a mean value Vγ = ⟨∆γ⟩ and variance Dγγ = ⟨(∆γ)2⟩ with the averaging
over initial phases.
To derive the ∆γ equation for H = mec

2γ, we follow the approach from Neishtadt
& Vasiliev (2006); Artemyev et al. (2018a) for the perturbation theory application to
the resonant system containing a phase and a small wave amplitude, Bw/B0 ≪ 1 (more
precisely, ε = Bw/B0(0) ≪ 1). For analytical consideration we assume that Bw is a
constant or a function of the magnetic latitude with the spatial gradient much weaker
than wave phase gradients ∂ϕ/∂s = k.

The Hamiltonian from Eq. 2.4 is time-dependent as ϕ = ϕ(t). To find the invari-
ant equation, we define a generation function of the second kind F2(s, ψ, Pz, I) for
(s, pz, ψ, Ix) → (z̃, Pz, ζ, I):

F2(s, ψ, Pz, I) = (ϕ+ ψ)I + Pzz



pz =
∂F2

∂z = Pz + kI

Ix = ∂F2

∂ψ = I

z̃ = ∂F2

∂Pz
= z

ζ = ∂F2

∂I = ϕ+ ψ

H−H = ∂F2

∂t = −ωI
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As a result, a modified Hamiltonian H is:

H = mec
2γ − ωI +mec

2

√
2IΩce
mec2

Ωce
γkc

Bw
B0

cos ζ (3.1)

γ =

√
1 +

(
Pz + kI

mec

)2

+
2IΩce
mec2

Note that ∂tH = 0. Thus, in the zeroth-order of ε the first invariant of this system can
be written as:

mec
2γ − ωI = const (3.2)

Without a wave perturbation, I is invariant (I = const) by its definition, and γ has
a constant value, considering Eq. 3.2. Thus, all derivatives of those variables are first-
order terms of ε or higher. Resonant wave-particle interactions change the particle energy
E = mec

2γ: γ0 → γ0+∆γ where γ0 is the initial Lorentz factor (at t = 0). The resonance
equation can be written as ζ̇ = ∂H/∂I = 0. This equation characterizes the dynamics
of the system near the resonance point and, considering Eq. 3.1, can be written down as
(subindex R means that the function is evaluated at the resonance):

mec
2 ∂γ

∂I

∣∣∣∣
R

− ω = 0, γR =
kRc

ω

Pz + kRIR
mec

+
Ωce,R
ω

(3.3)

The Hamiltonian H has to be expanded near the resonance point ζ̇ = 0 with values
γR = γ0 +O(ε), IR = I0 +O(ε):

H ≈ HR +
mec

2

2

∂2γ

∂I2

∣∣∣∣
R

(I − IR)
2 +mec

2

√
2IRΩce,R
mec2

Ωce,R
γRkRc

Bw
B0,R

cos ζ (3.4)

HR = mec
2γR − ωIR

where

∂2γ

∂I2

∣∣∣∣
R

=
k2Rc

2 − ω2

m2
ec

4γR

Thus, the final form of H is

H = HR +
(I − IR)

2

2g
+mec

2

√
2IRΩce,R
mec2

Ωce,R
γRkR

Bw
B0,R

cos ζ (3.5)

g−1 ≡ mec
2 ∂

2γ

∂I2

∣∣∣∣
R

=
k2Rc

2 − ω2

mec2γR

The second term of H from Eq. 3.5 is an analog of the kinetic energy of the particle
motion near the resonance, with I − IR being the canonical momentum and g playing
the role of mass. Thus, we introduce a generating function of the third kind F3(z̃, ζ̃, Pz, I)
for (z, Pz, ζ, I) → (z̃, P̃z, ζ̃, Pζ):

F3(z̃, ζ̃, Pz, I) = −(I − IR)ζ̃ − Pz z̃


z = − ∂F3

∂Pz
= z̃ − ∂IR

∂Pz
ζ̃

ζ = −∂F3

∂I = ζ̃

P̃z = −∂F3

∂z̃ = Pz − ∂IR
∂z̃ ζ̃

Pζ = −∂F3

∂ζ̃
= I − IR

As I is an invariant in the unperturbed system, ∂PzIR ∼ ε and ∂z̃IR ∼ ε. This means
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that the first term of the Hamiltonian H can be expanded with respect to ε:

HR = HR (z, Pz) = HR

(
z̃ − ∂IR

∂Pz
ζ, P̃z +

∂IR
∂z̃

ζ

)
≈

≈ HR

(
z̃, P̃z

)
− ∂HR

∂z̃

∂IR

∂P̃z
ζ +

∂HR

∂P̃z

∂IR
∂z̃

ζ =

= HR

(
z̃, P̃z

)
+ {HR, IR}z̃,P̃z

ζ

Substituting the expanded form of HR into Eq. 3.5, we obtain two separate parts of the
Hamiltonian H = HR+Hζ , HR = mec

2γR−ωIR with canonical variables (z̃, P̃z, ζ, Pζ):

Hζ =
P 2
ζ

2g
+ {HR, IR}z̃,P̃z

ζ +mec
2

√
2IRΩce,R
mec2

Ωce,R
γRkRc

Bw
B0,R

cos ζ (3.6)

Hamiltonian HR describes (z̃, P̃z) ≈ (z, Pz) dynamics in the resonance, and this
Hamiltonian does not depend on the fast phase ζ. Hamiltonian Hζ is a ζ-dependent
pendulum Hamiltonian, that describes fast phase and conjugated momentum dynamics
around the resonance. Coefficients of Hζ Hamiltonian depend on (z̃, P̃z) and slowly
change along the resonant trajectory.
In the Hamiltonian Hζ , an effective potential energy, Hζ −P 2

ζ /2g, contains two terms:
the first term ∼ {HR, IR}z̃,P̃z

describes the impact of the background magnetic field
gradient and the second term ∼ Bw describes the effect of the wave’s field. The important
system parameter is the ratio of magnitudes of these two terms:

a = mec
2

√
2IRΩce,R
mec2

Ωce,R
γRkRc

Bw
B0,R

{HR, IR}−1

z̃,P̃z
(3.7)

Taking into account HR = mec
2γR − ωIR, we can rewrite the Poisson bracket:

{HR, IR}z̃,P̃z
= mec

2 {γR, IR}z̃,P̃z
≈ mec

2 {γR, IR}z,Pz

where γR and IR are given by Eqs. 3.1, 3.3. Combining these equations, we obtain
(subindex R is omitted in equations below):

γ =
kc

ω

Pz + kI

mec
+
Ωce
ω
, I =

mec
2

2Ωce

[
γ2 −

( ω
kc

)2(
γ − Ωce

ω

)2

− 1

]
Therefore, the Poisson bracket {...} = {...}s,P∥ can be rewritten as:

{γ, I} = IΩce

{
γ,

1

Ωce

}
− mec

2

2Ωce

{
γ,
( ω
kc

)2(
γ − Ωce

ω

)2
}

= −I ∂γ
∂Pz

∂z [ln Ωce]−

− mec
2

Ωce

ω

kc

(
γ − Ωce

ω

){
γ,

ω

kc

(
γ − Ωce

ω

)}
= −I ∂γ

∂Pz
∂z [ln Ωce]−

− mec
2

Ωce

ω

kc

(
γ − Ωce

ω

)[(
γ − Ωce

ω

)
∂γ

∂Pz
∂z

[ ω
kc

]
− ω

kc

Ωce
ω

∂γ

∂Pz
∂z [ln Ωce]

]
=

=
mec

2

ω

∂γ

∂Pz

[(( ω
kc

)2(
γ − Ωce

ω

)
− ωI

mec2

)
∂z [ln Ωce]−

ω

Ωce

( ω
kc

)2
×

×
(
γ − Ωce

ω

)2

∂z

[
ln

ω

kc

]]
To determine ∂z

[
ln ω

kc

]
we use the cold plasma approximation, kc/ω = (Ωpe/ω)·(Ωce/ω−
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1)−
1
2 , with constant plasma frequency Ωpe. Therefore, for partial derivatives in {γ, I}

we can write:

∂γ

∂Pz
=

1

mec

kc

ω

(
1 + k

∂I

∂Pz

)
,

∂I

∂Pz
=
mec

2

Ωce

∂γ

∂Pz

[
γ −

( ω
kc

)2(
γ − Ωce

ω

)]
∂γ

∂Pz
= − 1

γmec

Ωce
ω

kc

ω

[(
kc

ω

)2

− 1

]−1

,
∂

∂s

[
ln

ω

kc

]
=

1

2

∂z [ln Ωce]

1− ω/Ωce

and

{γ, I} =
∂z [ln Ωce]

γk

[
(γ −Ωce/ω)

2

2 (1− ω/Ωce)
−Ωce/ω

(
γ − Ωce

ω
− ωI

mec2

(
kc

ω

)2
)]

×

×

[(
kc

ω

)2

− 1

]−1

Having {γ, I} we can determine a from Eq. 3.7 at the resonance. As we will show, this
is the main parameter controlling the energy change due to the resonant wave-particle
interaction.
To write an equation for the resonant energy change, ∆γ, we use the invariant from

Eq. 3.2:

∆γ =
ω

mec2
∆I =

2ω

mec2

tR∫
−∞

dt İ = − 2ω

mec2

tR∫
−∞

dt
∂H
∂ζ

≈

≈ 2ω

√
2IRΩce,R
mec2

Ωce,R
γRkRc

Bw
B0,R

ζR∫
−∞

dζ
sin ζ

ζ̇
(3.8)

where Ωce,R = eB0,R/mec and B0,R is defined at the resonant z = z(tR) for given initial

energy and pitch-angle. For ζ̇ we use the Hamiltonian equation ζ̇ = ∂Hζ/∂Pζ . The

resonance is defined by ζ̇ = Pζ/g = 0 with the solution ζR according to ζR+a cos ζR = ξ
with the resonant energy ξ = Hζ/ {HR, IR}. Thus, Eq. 3.8 can be written as:

∆γ = 2ω

√
gIRΩce,R
mec2

Ωce,R
γRkRc

Bw
B0,R

{HR, IR}−1/2

z̃,P̃z

ζR∫
−∞

dζ
sin ζ√

ξ − ζ − a cos ζ
=

=

(
2IRΩce,R
mec2

) 1
4

√
2Ωce,R/kRc

k2Rc
2/ω2 − 1

Bw
B0,R

f(a, ξ)

f(a, ξ) =

ζR∫
−∞

dζ

√
a sin ζ√

ξ − ζ − a cos ζ

Figure 4(a) shows the f(a, ξ) function. This function is periodic with 2π period for ξ
(this can be shown analytically, see Appendix A).
The value of ξ varies with the initial conditions, i.e. with wave phase ϕ, gyrophase ψ

and electron position on the trajectory in (s, P∥) plane far from the resonance. Assuming
a uniform distribution of these parameters, we numerically integrated an ensemble of
trajectories as determined by Eqs. 2.4, and so determine the probability function for ξ.
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Figure 4. Panel (a) show profiles of f(a, ξ) for three a values, and panel (b) shows ⟨f(a, ξ)⟩ξ
and ⟨(f(a, ξ))2⟩ξ profiles.

Figure 5 shows such distributions of ξ for three sets of the system parameters. These
distributions are very close to the uniform distributions with ξ ∈ [0, 2π], which suggests
that averaging over initial parameters ϕ, ψ and s can be substituted with the averaging
over ξ with constant weights (see also discussion in Itin et al. 2000; Albert et al. 2022):∫∫∫

Π

dϕ dψ dλ→
ξ0+2π∫
ξ0

dξ,

{
ξ0 − ζ0 − a cos ζ0 = 0

1 = a sin ζ0

where Π is the parametric range (3D uniform distribution) and ξ0 = ξ0(a) determines
the case when the integral diverges near the resonance point (see Appendix A). Thus,
the equation for the variance Dγγ can be written as:

Dγγ = ⟨(∆γ)2⟩ξ =
2Ωce,R/kRc

k2Rc
2/ω2 − 1

Bw
B0,R

√
2IRΩce,R
mec2

⟨f2(a, ξ)⟩ξ

where Dγγ can be considered as a diffusion rate for a unit time interval between two
resonant interactions (the actual diffusion rate is the ratio of ⟨Dγγ⟩ and a fraction of
electron bounce period).
The function f(a, ξ) determines the difference of the diffusion coefficient ∼ Dγγ and

the quasi-linear model. The case of a≪ 1, Dγγ asymptotically tends to the quasi-linear
equation Dγγ = ⟨(∆γ)2⟩ ∼ (Bw/B0)

2 (Albert 2010). To verify that, we have to expand
f(a, ξ) in Taylor series:

lim
a→0

f(a, ξ)√
a

=

ξ∫
−∞

dζ
sin ζ√
ξ − ζ

=
√
π sin(ξ − π/4)

lim
a→0

⟨f(a, ξ)⟩ξ = 0, lim
a→0

⟨f2(a, ξ)⟩ξ
a

=
π

2

and thus Dγγ ∝ (Bw/B0)⟨f2(a, ξ)⟩ξ ∝ (Bw/B0)
2, because a ∝ Bw/B0, see Eq. 3.7.

Figure 4(b) shows that there are two a-ranges with the different wave-particle resonant
effects: for a < 1 the mean value of ⟨f(a, ξ)⟩ξ equals zero and there is only a particle
diffusion ∝ a⟨f2(a, ξ)⟩ξ, whereas for a > 1 there is a nonzero negative ⟨f(a, ξ)⟩ξ. The
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Figure 5. Probability distributions of ξ for 105 trajectories and (a) E0 = 100 keV, α0 = 40◦,
Bw = 50 pT, (b) E0 = 100 keV, α0 = 40◦, Bw = 500 pT, (c) E0 = 300 keV, α0 = 60◦, Bw = 500
pT.

diffusion ∝ a⟨f2(a, ξ)⟩ξ has a local maximum at a ≈ 1.0392, a local minimum at a ≈
1.5923, and then increases with a as ∝ a. The mean value ⟨f(a, ξ)⟩ξ has an asymptotic
4
√
2/π for a≫ 1. There is an important property of f(a, ξ): ⟨f2(a, ξ)⟩ξ − ⟨f(a, ξ)⟩2ξ → 0

for a → ∞ (see Appendix A for details). This property defines the behavior of the
diffusion rate ∝ a⟨f2(a, ξ)⟩ξ for a≫ 1.
As shown in Fig. 3, the strong wave modulation should result in a symmetric distribu-

tion of ∆γ with a zero mean value and with the dispersion ⟨(∆γ)2⟩ about ⟨(∆γ)2⟩ξ where
ξ averaging is performed for population of phase bunched particles (i.e., particles with
∆γ < 0). Therefore, for such strongly modulated waves, we shall consider ⟨(∆γ)2⟩ξ
as a diffusion rate for both a < 1 and a > 1 parametric ranges. Figure 6 shows
⟨(∆γ)2⟩ξ distributions in energy, pitch-angle space for three typical wave intensities.
Lower energies/higher pitch-angle electrons resonate with waves closer to the equatorial
plane, where a is large because {γR, IR}s,P∥

∝ ∂Ωce/∂s and tends to zero around the
equator.

4. Discussion and conclusions

In this study, we derive the diffusion rate for electrons resonantly interacting with
intense whistler-mode waves. Although such intense waves may resonate with electrons
nonlinearly, an efficiency of this interaction would be significantly reduced by the wave
modulation (Zhang et al. 2020a; Tao et al. 2012b; Allanson et al. 2021; An et al. 2022;
Gan et al. 2020, 2022). Indeed, most of the intense whistler-mode waves that are observed
in space plasma systems (like Earth’s radiation belts, bow shock, foreshock transients,
and plasma injections) are presented in the form of short well-modulated wave packets
(see examples in Fig. 1 and references in the figure caption).

Using test particle simulations, we show that such modulation will reduce the dif-
ference between energy changes of phase trapping and phase bunching electrons, and
make the energy change distribution more symmetric (see Fig. 3). In the limit of total
symmetrization of energy change distribution (extremely modulated wave packets), the
main (and the only one) characteristic of electron resonant scattering will be the diffusion
rate describing the dispersion of this distribution. Such a diffusion rate can be evaluated
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Figure 6. 2D energy/pitch-angle maps of (E0, α0) for (a) Bw = 100 pT, (b) Bw = 500 pT,
and (c) Bw = 1000 pT. Black curve shows a = 1.

analytically: the dispersion of the energy changes ⟨(∆γ)2⟩ξ tends to ⟨∆γ⟩2ξ for large wave
amplitudes. That is to say, ⟨(∆γ)2⟩ξ → ⟨∆γ⟩2ξ ∝ Bw for a≫ 1 (i.e., when wave amplitude
is sufficiently large).
Using this theoretical result, we can calculate the ratio of such a nonlinear diffusion

rate and the quasi-linear rate, ⟨(∆γ)2⟩QLξ ∼ B2
w. We can extrapolate to the large wave

amplitude limit using a renormalization

⟨(∆γ)2⟩QLξ (Bw) = ⟨(∆γ)2⟩QLξ (Bw,min) · (Bw/Bw,min)2

where Bw,min corresponds to the a ≪ 1 limit. The ratio ⟨(∆γ)2⟩ξ/⟨(∆γ)2⟩QLξ should
show how quasi-linear diffusion models overestimate the diffusion rates for intense waves,
because such models scale ⟨(∆γ)2⟩QLξ with wave intensity B2

w. Both the numerator and
the denominator of this ratio should be weighted with the actual distribution of observed
wave intensities, F(Bw/B0), and we use two distributions of whistler-mode wave packets
collected in the inner magnetosphere.
Figure 7(a) shows two examples of F(Bw/B0): the main difference between these

distributions is in the definition of wave packets used in the two statistics (see
details in Zhang et al. (2019, 2020b)). Using these distributions, we plot the ratio〈
⟨(∆γ)2⟩ξ/⟨(∆γ)2⟩QLξ

〉
ε
as a function of energy and pitch-angle in Fig. 7(b,c). The

region with
〈
⟨(∆γ)2⟩ξ/⟨(∆γ)2⟩QLξ

〉
ε
≈ 1 corresponds to the dominant contribution of

waves with insufficiently large wave amplitude, where a < 1 for most part of ε, and

the diffusion rate is ⟨(∆γ)2⟩ξ ∝ B2
w. The region with

〈
⟨(∆γ)2⟩ξ/⟨(∆γ)2⟩QLξ

〉
ε
< 1

corresponds to the dominant contribution of high-intensity waves, where a > 1 for a
significant fraction of the F(Bw/B0) distribution, and the diffusion rate ⟨(∆γ)2⟩ξ ∝ Bw.
Note that smaller energy/larger pitch-angle electrons resonate with waves closer to the
equator, where a < 1 for the larger part of F(Bw/B0) distribution.
Figure 7(b,c) demonstrates clearly that the quasi-linear diffusion model significantly

overestimates the real diffusion of smaller energy/larger pitch-angle electrons. Note a
similar effect of diffusion rate reduction relative to the quasi-linear theory predictions
have been obtained for broadband waves (see Tao et al. 2011, 2012a). This overestimation
will be stronger for active geomagnetic conditions with higher wave intensity (Meredith

et al. 2003, 2012; Agapitov et al. 2013, 2018), because ⟨(∆γ)2⟩ξ/⟨(∆γ)2⟩QLξ ∝ 1/Bw.
Figures 7(b,c) are plotted under the assumption that there is no net contribution of
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Figure 7. (a) Probability distribution functions F(Bw/B0) of whistler-mode wave intensities
from (Zhang et al. 2019) (blue) and (Zhang et al. 2020b) (red). (b, c) 2D distributions of〈
⟨(∆γ)2⟩ξ/⟨(∆γ)2⟩QL

ξ

〉
ε
in (E0, α0) space for two F(Bw/B0) distributions from (a).

nonlinear resonant phase bunching and phase trapping effects, and that all wave-particle
interactions can be solely described by diffusion because the wave field is dominated
by well-modulated short wave packets. The opposite assumption consists of a dominant
role of phase trapping and phase bunching effects of electron resonant interactions with
coherent long wave packets. For long-term electron dynamics, such effects also can be
fitted by diffusion, but the diffusion rate will be much larger than the quasi-linear one
(Artemyev et al. 2021a).
The schematic Figure 8 generalizes both regimes of wave-particle resonant interactions

for large-amplitude waves: ⟨(∆γ)2⟩ξ ∝ Bw for well-modulated short wave packets and

⟨(∆γ)2⟩ξ ∝ B
1/2
w for highly coherent long wave packets. For Earth’s radiation belts, the

quasi-linear simulations of long-term electron flux dynamics generally describe observed
electron fluxes with a reasonable tuning of the averaged wave intensity (e.g., Thorne et al.
2013; Li et al. 2014; Drozdov et al. 2015; Ma et al. 2018; Allison et al. 2021). This will
not be possible if any of two limiting cases shown in Fig. 8 would work. Therefore, we
shall conclude that wave-particle resonant interactions includes both diffusion by short
wave-packets and nonlinear phase trapping/bunching by rare long wave-packets, and
a fine balance of these two regimes results in electron diffusion that can be mimicked
by the quasi-linear diffusion models. However, for each specific event, such mimicking
would require a proper tuning of wave intensity. This underlines the importance of
investigations of nonlinear resonant interactions for accurate inclusion of the net effects
of phase trapping and phase bunching into wave-particle interaction models.

5. Summary

We have derived the diffusion rate for relativistic electron scattering by intense
whistler-mode waves of arbitrary amplitude. This diffusion rate repeats the D ∝ B2

w

scaling of the quasi-linear diffusion rate DQL for small amplitudes, and tends to
D ∝ Bw scaling for amplitudes exceeding the threshold of nonlinear wave-particle
interactions. Therefore, under the assumption of the absence of main nonlinear resonant
effects (phase trapping and phase bunching) due to low wave coherence, the quasi-
linear diffusion model will overestimate the diffusion rate for large amplitude, because
D/DQL ∝ B−1

w . This result demonstrates that the extrapolation of quasi-linear diffusion
model should not work for high wave amplitudes, whereas the approximation of the
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Figure 8. A schematic view of diffusion rate scaling with wave amplitude normalized to the
amplitude threshold for the nonlinear resonant interactions, B∗

w. Quasi-linear diffusion rate
DQL ∝ B2

w works only for Bw/B
∗
w < 1. For Bw/B

∗
w > 1 and incoherent waves should work

D ∝ Bw, whereas for coherent waves should work DNL ∝
√
Bw, see Artemyev et al. (2021a).

total destruction of nonlinear resonant effects (phase trapping and phase bunching) due
to low wave coherence/strong wave modulation will underestimate the rates of electron
flux dynamics. Thus, for accurate inclusion of statistics of high wave amplitudes into
electron flux models, we must account for the contribution of nonlinear resonant effects.
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Appendix A.

This Appendix is devoted to the investigation of the properties of f(a, ξ):

f(a, ξ) =

ζR∫
−∞

dζ

√
a sin ζ√

ξ − ζ − a cos ζ

Considering that ξ is a uniformly distributed random variable (see Figure 5), we deter-
mine the mean value ⟨f(a, ξ)⟩ξ and the mean square value ⟨f2(a, ξ)⟩ξ.

First, let us discuss the convergence of f(a, ξ) integral. At ζ → −∞, the function
sin ζ/

√
ξ − ζ − a cos ζ tends to sin ζ/

√
|ζ|, corresponding to the Fresnel integral, and

therefore the integral converges. At ζ → ζR the convergence depends on the behavior of
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ξ − ζ − a cos ζ. We introduce ζ = ζR − δζ and consider δζ to be sufficiently small:

ξ − ζ − a cos ζ = ξ − ζR + δζ − a cos(ζR − δζ) ≈
≈ ξ − ζR + δζ − a cos ζR − a δζ sin ζR =

= (1− a sin ζR)δζ

If 1− a sin ζR ̸= 0, the integral converges near ζR as δζ−1/2. The equation 1− a sin ζR =
0 determines cases when f(a, ξ) has an infinite value. Thus, these points have to be
excluded from the averaging procedure. By the definition, ζR has to be the only solution
of ξ−ζ−a cos ζ = 0 on the interval of integration. Therefore, we expect ζR to satisfy the
equation ζR = arcsin( 1a )+2πn, where n ∈ Z. Values of ξ, corresponding to the diverging
cases, (noted as ξ0) can be simply determined from the system of equations:{

ξ0 = ζ0 + a cos ζ0

1 = a sin ζ0

In the case of a < 1, there is no solution and the interval of integration for ξ can
be performed, i.e. ξ ∈ (π/2, 5π/2) (we take ξ0(a < 1) ≡ lima→1+ ξ0(a) = π/2). For
a ⩾ 1, this system has infinitely many solutions, separated by 2π. The function f(a, ξ)
is periodic with 2π period for ξ:

f(a, ξ + 2π) =

ζR∫
−∞

dζ

√
a sin ζ√

ξ + 2π − ζ − a cos ζ
=

ζR−2π∫
−∞

dζ̃

√
a sin ζ̃√

ξ − ζ̃ − a cos ζ̃
=

=

ζ̃R∫
−∞

dζ̃

√
a sin ζ̃√

ξ − ζ̃ − a cos ζ̃
= f(a, ξ) (A 1)

Thus, without a loss of generality, we consider only one value of ξ0 and the corresponding
phase ζ0. As a result, the mean value ⟨f(a, ξ)⟩ξ and the mean square value ⟨f2(a, ξ)⟩ξ
can be defined as:

⟨f(a, ξ)⟩ξ =
1

2π

ξ0+2π∫
ξ0

dξ

ζR∫
−∞

dζ

√
a sin ζ√

ξ − ζ − a cos ζ
(A 2)

⟨f2(a, ξ)⟩ξ =
1

2π

ξ0+2π∫
ξ0

dξ

 ζR∫
−∞

dζ

√
a sin ζ√

ξ − ζ − a cos ζ

2

(A 3)

To proceed, it is necessary to determine ζR as a function of ξ on the interval (ξ0, ξ0+2π):

ξ = ζR + a cos ζR ⇒ 1 = (1− a sin ζR) ∂ξζR ⇒ ∂ξζR =
1

1− a cos ζR

lim
ξ→ξ+0

ζR(a, ξ) = ζm, lim
ξ→(ξ0+2π)−

ζR(a, ξ) = ζ0 + 2π

Thus, ζR is bounded on the interval (ζm, ζ0+2π) and is monotonic on it, considering the
equation for ∂ξζR. This implies that the integral interval can be expanded (Neishtadt
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Figure 9. Comparison between ⟨f2(a, ξ)⟩ξ and ⟨f(a, ξ)⟩2ξ as functions of a

1999; Artemyev et al. 2018a; Albert et al. 2022):

⟨f(a, ξ)⟩ξ =
1

2π

ξ0+2π∫
ξ0

dξ

ζ0+2π∫
−∞

dζ

√
a sin ζ√

ξ − ζ − a cos ζ
θ(ξ − ζ − a cos ζ) =

=
1

2π

ξ0+2π∫
ξ0

dξ

 ζm∫
−∞

dζ

√
a sin ζ√

ξ − ζ − a cos ζ
θ(ξ − ζ − a cos ζ)+

+

ζ0+2π∫
ζm

dζ

√
a sin ζ√

ξ − ζ − a cos ζ
θ(ξ − ζ − a cos ζ)

 =

=
1

2π

ζm∫
−∞

dζ

ξ0+2π∫
ξ0

dξ

√
a sin ζ√

ξ − ζ − a cos ζ
+

1

2π

ζ0+2π∫
ζm

dζ

ξ0+2π∫
ζ+a cos ζ

dξ

√
a sin ζ√

ξ − ζ − a cos ζ
=

=

√
a

π

− ζm∫
ζm−2π

dζ sin ζ
√
ξ0 − ζ − a cos ζ +

ζ0+2π∫
ζm

dζ sin ζ
√
ξ0 + 2π − ζ − a cos ζ

 =

= −
√
a

π

ζm∫
ζ0

dζ sin ζ
√
ξ0 − ζ − a cos ζ = − 1

π
√
a

ζm∫
ζ0

dζ
√
ξ0 − ζ − a cos ζ =

= − 1

π
√
a

ζm∫
ζ0

dζ
√
ζ0 − ζ + a(cos ζ0 − cos ζ) (A 4)

The integral from Eq. A 4 doesn’t have any singularities on the interval of integration
and, thus, can be easily computed. To neglect the dependency on ζm, an integral in a
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complex plane can be introduced:

⟨f(a, ξ)⟩ξ = − 1

π
√
a
ℜ

 ζ0+2π∫
ζ0

dζ
√
ζ0 − ζ + a(cos ζ0 − cos ζ)


Additionally, Eq. A 4 determines ⟨f(a, ξ)⟩ξ for a < 1: ⟨f(a, ξ)⟩ξ = 0 as ζm = ζ0. For
a→ ∞ we get:

ζ0 = arcsin

(
1

a

)
⇒ lim

a→∞
ζ0 = 0, lim

a→∞
ζm = 2π

lim
a→∞

⟨f(a, ξ)⟩ξ = − 1

π

2π∫
0

dζ
√
1− cos ζ = −4

√
2

π
(A 5)

Figure 9 shows that the asymptote a ≫ 1 is the same for ⟨f2(a, ξ)⟩ξ and ⟨f(a, ξ)⟩2ξ
functions and, considering Eq. (A 5), lima→∞⟨f2(a, ξ)⟩ξ = 32

π2 .
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