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ABSTRACT
Optical systems often largely consist of empty space as diffraction effects that occur through free-space propagation can be crucial for
their function. Contracting these voids offers a path to the miniaturization of a wide range of optical devices. Recently, a new optical
element—coined “spaceplate”—has been proposed, which is capable of emulating the effects of diffraction over a specified propagation dis-
tance using a thinner non-local metamaterial [Reshef et al., Nat. Commun. 12, 3512 (2021)]. The compression factor of such an element is
given by the ratio of the length of free-space that is replaced to the thickness of the spaceplate itself. In this work, we test a prototype space-
plate in the microwave spectral region (20–23 GHz)—the first such demonstration designed to operate in ambient air. Our device consists of
a Fabry–Pérot cavity formed from two reflective metasurfaces with a compression factor that can be tuned by varying the size of perforations
within each layer. Using a pair of directive horn antennas, we measure a space compression factor of up to ∼6 over a numerical aperture (NA)
of 0.34 and a fractional bandwidth of 6%. We also investigate the fundamental trade-offs that exist between the compression factor, trans-
mission efficiency, NA, and bandwidth of this single resonator spaceplate design and highlight that it can reach arbitrarily high compression
factors by restricting its NA and bandwidth.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0095735

INTRODUCTION

Free-space optical devices implicitly rely on the redistribution
of energy that occurs when light diffracts through empty space. For
example, lenses, gratings, and prisms typically modify an incident
wavefront at an interface (or pair of closely spaced interfaces). Yet,
the desired effect of this modification only becomes apparent once
the optical field has propagated some distance beyond the inter-
face, e.g., by focusing a beam or separating it into distinct diffraction
orders. This requirement for free-space propagation places limits on
the minimum operational volume of a wide range of optical ele-
ments and devices, such as cameras, microscopes, telescopes, and
spectrometers. The issue of size becomes even more prominent at
longer wavelengths in so-called quasi-optical systems common to
the terahertz,1,2 millimetre-wave,3 and microwave domains.4 In this
regime, free-space diffraction is fundamental for the operation of

antennas5–8 and beam waveguides,9 and this can lead to very large
optical systems.10

Recently, Reshef et al.11 and Guo et al.12 introduced the intrigu-
ing new concept of a “spaceplate”—an optical element capable
of mimicking the effects of free-space propagation. Crucially, a
spaceplate’s thickness (dSP) is thinner than the free-space distance
it replaces (deff); thus, it can potentially be used to contract the vol-
ume of optical systems, as shown schematically in Fig. 1. The degree
to which space is contracted is captured by the compression factor,
C, given by the ratio of the emulated free-space propagation distance
to the thickness of the spaceplate itself: C = deff/dSP.

The effect of free-space propagation over a distance deff may
be understood by decomposing an incident monochromatic opti-
cal field of wavelength λ into its component plane waves (i.e.,
spatial Fourier components). These plane waves do not couple
to one another during propagation, but each accumulates an
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FIG. 1. The action of a spaceplate: replacement of a volume of free-space of length
deff with an optical element of thickness dSP. In this example, a spaceplate is
shown in conjunction with a lens to move the focus closer without changing the
numerical aperture. The amount of space contracted is L = deff − dSP.

angle-dependent phase shift of ϕ = kzdeff. Here, the wave-vector
k = [kx, ky, kz] describes the direction each plane wave is travel-
ling in Cartesian coordinates, and kz = k cos θ, where wavenumber
k = 2π/λ = ∣k∣ and θ is the polar angle of a plane wave with respect to
the optical axis. Therefore, in order to emulate free-space propaga-
tion, the action of a spaceplate must be “non-local,”13,14 i.e., it must
independently act on the spatial Fourier components of the incident
field, imparting an incident angle-dependent phase shift of

ϕSP(θ) = kdeff cos θ. (1)

Designs fall into two main categories, which we term as
stochastic and deterministic spaceplates. Stochastic spaceplates, first
introduced in Ref. 11, are non-local metamaterials consisting of a
multi-layer stack of homogeneous and isotropic layers distributed
along the optical axis. Structuring in 1D in this way ensures that
there is no coupling between plane waves incident at different angles,
as required. The parameters of individual layers—the thicknesses
and refractive indices—can be algorithmically optimized to approx-
imate a spaceplate with a target set of performance characteristics
within certain constraints (see Sec. 5 of the supplementary material).

Deterministic spaceplates are founded on the understanding
that certain families of structure readily act as space compressing
optics. For instance, the authors of Ref. 11 demonstrated that this is
the case for a slab of material of a lower refractive index than the sur-
rounding medium. Guo et al. showed that the dispersion associated
with a photonic crystal slab can be engineered so that the transmit-
ted field components are imparted non-local phase shifts to mimic
free-space propagation.12,15 Chen and Monticone, meanwhile, high-
lighted that the angular dispersion in a Fabry–Pérot cavity operating
slightly off resonance imparts close to the necessary angle-dependent
phase shifts to transmitted light.16

However, understanding the limitations on achievable space-
plate performance is an open problem. Of the different structures
that have been theoretically shown to operate as spaceplates,11,12,15–17

all exhibit some degree of trade-off between the key parameters
defining performance: the compression factor; the transmission effi-
ciency as a function of incident angle; the numerical aperture (NA)
and bandwidth (δω) over which the spaceplate operates; and the
total space contraction length (L)—see Fig. 1. For example, in all
devices proposed so far, prioritizing a high compression factor tends
to reduce the achievable NA and bandwidth.17 Furthermore, as
the concept of space-compression optics is relatively new, the only
experimental demonstration of a spaceplate to date relied on arti-
ficially increasing the refractive index of the ambient environment
and demonstrated a relatively modest compression factor of C ∼ 1.2
over the visible spectrum.11 As such, it is not clear what maximum
spatial compression is practically feasible in an air environment,
where most envisioned applications lie.

In this work, we design and experimentally test a prototype
deterministic spaceplate operating in ambient air in the microwave
region (20–23 GHz). Our design consists of a two-layered res-
onator based on perforated conductive metasurfaces, which form
a Fabry–Pérot cavity. We study the performance limits of single
resonator-based spaceplates and show that arbitrarily high compres-
sion factors may be reached by tuning the reflectance of the cavity
mirrors. Experimentally, we demonstrate a spaceplate with a peak
compression factor of C = 6. We discuss the advantages and draw-
backs associated with our proof-of-principle prototype and describe
future improvements, which merge the concepts of the determin-
istic and stochastic spaceplate design. While our focus here is on
microwave frequency devices, the scale invariance of Maxwell’s
equations means that our work is also of relevance to other parts
of the electromagnetic spectrum.

SPACE-COMPRESSION USING A FABRY–PÉROT
CAVITY

Resonance features play a significant role in all ambient-air
spaceplate designs proposed so far. Therefore, following Ref. 16,
we examine the potential of a single Fabry–Pérot cavity, operating
slightly off-resonance, to act as a spaceplate. We consider a cavity
composed of two semi-transparent mirrors with equal reflectance R,
separated by a distance dSP, which corresponds to the thickness of
the spaceplate [see Fig. 2(c)]. The complex transmission coefficient,
as a function of plane wave incident angle θ and angular frequency
ω, is the sum of the transmitted field components after successive
passes around the cavity, which converges to

t(θ, ω) =
t1t2 exp(iβ)

1 + r1r2 exp(2iβ)
, (2)

where

β =
ω
c

dSP cos θ. (3)

Here, ti and ri are the fraction of the amplitude of the incident wave
transmitted or reflected at mirror i, respectively. For a single cavity in
air, the Stokes relations connect transmission and reflection accord-
ing to r1 = −r2, r2

1 = r2
2 = r2, and t1t2 = 1 − r2, assuming absorption

is negligible.
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FIG. 2. The operation of a Fabry–Pérot cavity-based spaceplate. In this example,
R ∼ 0.8 and dSP = 7.1 mm, resulting in a first-order resonance at ωr ∼ 1.3 × 1011

rad/s (21 GHz). (a) The resonance line of a Fabry–Pérot cavity shifts approximately
quadratically with incidence angle. (b) The transmittance (left column) and phase
(right column) as a function of incident angle for three different angular frequencies
near resonance (ω1, ω2, and ω3). The maximum NA is achieved when the work-
ing angular frequency corresponds to ω3 = ωr + Δω/2, where ωr and Δω are the
resonance frequency and the half power line width. While this maximizes the NA,
it also introduces a 50% reflective loss at normal incidence. Higher transmittance
at normal incidence can be achieved if the angular frequency is closer to the reso-
nance (e.g., ω2). The maximum transmittance and the lowest NA are achieved for
ω1 = ωr . (c) Schematic view of a general FP cavity formed by mirrors with equal
reflectances R. (d) Schematic view of the spaceplate proposed in this paper—the
FP cavity is formed by two perforated conductive sheets acting as mirrors with
tunable reflectance.

Within a limited angular range, the resonance frequency of a
Fabry–Pérot cavity shifts approximately quadratically as a function
of incidence angle—see Sec. 1 of the supplementary material for
more details. This results in a phase shift in the transmitted field
that also quadratically depends on the incident angle. Figure 2 shows
an example of this effect. Figure 2(a) shows the frequency of the
resonance at three different incident angles. Figure 2(b) shows the
behavior of the transmitted intensity ∣t∣2 and phase ϕ = arg(t) as
a function of incident angle for three different frequencies located
near to resonance. We can see that, as observed in Ref. 16, within
a finite numerical aperture (shaded in gray), the phase change as a

function of the incidence angle mimics that of free-space propaga-
tion over a distance deff that is larger than the spaceplate thickness
dSP (in this case yielding a compression factor of C = deff/dSP ∼ 8 − 9
that is weakly dependent on frequency). The transmitted intensity
is >50% over this angular range although evidently transmission
does vary as a function of incident angle. The largest operating NA
occurs when the illumination frequency is slightly higher than the
resonance frequency at normal incidence.

Assuming high reflectance (so that 1 − R≪ 1), the compression
factor C is related to the quality factor of the resonance (Q) and, thus,
the reflectance R of the cavity mirrors,

C = deff

dSP
≈

Q
2ℓ
≈ −

π
2 ln R

, (4)

where ℓ is the order of the resonance (see Sec. 1.3 of the supple-
mentary material for derivation). Equation (4) demonstrates that
arbitrarily high compression factors may be reached by tuning the
reflectance R of the cavity mirrors alone in a manner that is inde-
pendent of ℓ. For example, a compression factor of C ∼ 3200 can be
reached by restricting the angular operating range to 1○. We note
that this is a factor of ∼10 larger than the compression factor of
C ∼ 340 recently found by stochastic optimization for an equivalent
NA17—a design also sharing a similar amplitude modulation func-
tion to a Fabry–Pérot-based spaceplate. By further restricting the
angular operating range of a Fabry–Pérot cavity to 0.5○, a compres-
sion factor of C ∼ 13 000 can be obtained. We note that this result is
consistent with the analysis in Ref. 16.

In Refs. 12 and 16, the authors studied the trade-off between the
compression factor and NA in resonator-based spaceplate designs.
Here, for the first time, we include the role of spectral bandwidth
while also stipulating the minimum transmission efficiency. The
interplay between these parameters can be encapsulated in a simple
relation linking the NA to C and the desired operating bandwidth
δω, found by considering the Q-factor of the resonance (see Sec. 1.4
of the supplementary material),

NA ∼ [1 − [1 + 1/(2C ℓ) − δω/ωr]
−2
]

1
2 , (5)

where ωr is the angular frequency of the resonance. In deriving
Eq. (5), we define the useable NA as the region over which the space-
plate transmits >50% of incident power, while the desired bandwidth
and compression factor must also satisfy δω ≤ ωr/(2Cℓ) to ensure
the operational frequency range remains close to a resonance. In
this analysis, we have assumed that R is nominally independent of
frequency and incident angle. Rearranging Eq. (5) for the fractional
bandwidth δω/ωr yields the following:

δω/ωr ∼ 1 + (2C ℓ)−1
− (1 −NA2

)
−

1
2 , (6)

where here the choice of NA and compression factor must satisfy the
condition

NA2
≤ 1 − (1 + (2C ℓ)−1

)
−2

(7)

to ensure that the linewidth of the resonator is wide enough to
accommodate the target compression factor over the specified NA.
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FIG. 3. Performance limits of Fabry–Pérot-based spaceplates. (a)–(d) Allowed
combinations of compression factor, NA, and fractional bandwidth, constrained by
ensuring the transmission efficiency of >50%.

Equations (5)–(7) demonstrate the key trade-offs inherent in all
spaceplate designs: higher compression factors are obtained at the
expense of a reduced NA and bandwidth. Figure 3 illustrates these
trade-offs, which will profoundly impact the applicability of high-
compression spaceplates. See Sec. 1.4 of the supplementary material
for more details.

EXPERIMENTAL DEMONSTRATION OF A SPACEPLATE

An important step is to explore the extent to which space-
compression is readily achievable under experimental conditions.
To investigate this, we have built a spaceplate based on two reflec-
tive metasurfaces, which form a Fabry–Pérot cavity. Our prototype
is designed to operate with a compression factor of up to C ∼ 6
over an NA of ∼0.34 in air (i.e., a maximum incident angle ∼20○)
and a frequency range of 20.8–22.1 GHz. We note that although
the optical properties of Fabry–Pérot cavities are well-understood,
here, we experimentally study them from the novel perspective of
space-compression.

The partially reflecting cavity mirrors are implemented with
a simple metamaterial: a conductive sheet perforated with sub-
wavelength sized square holes, as depicted in Fig. 2(d). These per-
forated layers must not couple the spatial Fourier components of
transmitted radiation—a constraint satisfied when the wavelength of
radiation is larger than the period of the structure. Under this condi-
tion, the perforated metal behaves as homogeneous layer: a conduc-
tor with an effective plasma frequency considerably lower than the
constituent metal.18 The effective, frequency-dependent permittivity
of the layer is determined by the size and spacing of holes, allowing
for the creation of mirrors with well-controlled and near-arbitrary
reflectivity. See Sec. 2 of the supplementary material for more
details of this metasurface-based mirror design. Here, we choose

the geometry of the perforations to yield a reflectance of R ∼ 0.8.
The cavity consists of two metasurfaces, each of area 0.3 × 0.3 m2

separated to give an overall spaceplate thickness of dSP ∼ 9.6 mm.
In this case, the first order (ℓ = 1) Fabry–Pérot resonance occurs at
21 GHz (see Sec. 3.2 of the supplementary material).

We first measure the dispersion of our prototype spaceplate,
which is shown in Fig. 4. The spaceplate is illuminated with a source
approximating a plane wave using a horn antenna, and the intensity
and corresponding phase shift of the transmitted field are measured
with a second horn antenna. Measurements are made as a function
of polarization, frequency, and incident angle—adjusted by rotat-
ing the spaceplate with respect to the source and detector, as shown
in Fig. 4(a). The data are collected using a vector network analyzer
(VNA) and normalized to the system response in the absence of the
spaceplate. See Sec. 4 of the supplementary material for more details
of this experiment.

FIG. 4. Spaceplate dispersion measurement. (a) Schematic of the experimental
setup. (b) Transmittance and (c) phase shift imparted by a spaceplate as a func-
tion of incident angle and frequency (TE polarization). (d) and (e) Cross section
cuts through the TE dispersion relations. (e) Best fit free-space propagation phase
function (black line), corresponding to a compression factor of C = 5.5. (f) and (g)
Cross section cuts through the measured TM dispersion relations (see the
supplementary material for full dispersion plots).
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We observe a well-defined resonance band in the dispersion
plots for both the TE and TM incident radiation. Figures 4(b) and
4(c) show the TE case; see Sec. 4 of the supplementary material
for the TM measurement. Figures 4(d) and 4(e) show angular cross
sections through the dispersion maps at a frequency of 21.5 GHz.
We see that the phase shift changes quadratically as a function
of incident angle over the NA of the spaceplate (shaded in gray).
To extract an estimate of the compression factor, we search for
the effective propagation distance deff that has incident-angle-
dependent phase-shifts that best fit our measurements. We find
that the angular phase-shifts corresponding to a propagation dis-
tance of deff = 53 mm closely fit to our experimental data [black line
in Fig. 4(e)], indicating a compression factor of C = deff/dSP = 5.5.
Figures 4(f) and 4(g) show the equivalent result for TM polarization,
yielding C = 5.4.

We also verify the analytical design of our spaceplate with
finite-element simulations incorporating the sub-wavelength scale
features of the metasurface mirrors (performed in Ansys High
Frequency Simulation Software - HFSS). These simulations also
closely match our experimental results, shown as colored lines in
Figs. 4(d)–4(g). See Sec. 3 of the supplementary material for more
details of this numerical model.

Repeating this analysis for different illumination frequencies
enables calculation of the compression factor C( f ) as a function of
illumination frequency f —signifying the bandwidth of our space-
plate. Figure 5(e) shows the result of this calculation for both

TE and TM polarizations. We observe reasonable agreement with
our finite-element model: the slightly lower compression factors
measured experimentally are due to the inhomogeneous broad-
ening of the resonance peak compared with that simulated (see
supplementary material, Sec. 3, Fig. 11). A secondary effect may
be caused by the illumination field only approximating a plane
wave and, in reality, containing a small spread of wavevectors.
This will also act to slightly reduce the measured Q-factor of the
resonance.

When in use, a spaceplate must be able to separately address
the spatial Fourier components of an incident wave without caus-
ing any coupling between them. While our dispersion measurements
demonstrate the key characteristics of space compression when illu-
minated by individual plane waves, it is also instructive to study our
spaceplate’s ability to operate on incident radiation containing many
Fourier components simultaneously. Therefore, we next study the
response of our spaceplate when illuminated by a diverging field and
spatially map the transmitted radiation. This enables direct measure-
ment of the change in wavefront curvature when the spaceplate is
introduced into the beam-path. In contrast to our dispersion mea-
surements, this will be sensitive to any coupling between Fourier
components due to unwanted scattering from defects or the edges
of the spaceplate.

Our experiment is shown schematically in Figs. 5(a) and 5(b).
We position an antenna approximating a point-source ∼150 mm
behind the spaceplate and measure the transmitted field along a

FIG. 5. (a) Schematic of the field scan reference measurement. (b) Schematic of the spaceplate field scan measurement. (c) The change in the wavefront curvature when
the spaceplate is inserted into the measurement system (TE). (d) Equivalent to (c) but for TM polarization. (e) Compression factor as a function of incident frequency,
calculated from the spaceplate dispersion measurement. (f) Compression factor as a function of incident frequency, calculated from the spaceplate field-scan measurement.
The transparency of the points in (e) and (f) has been modulated in proportion to the transmitted intensity.
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horizontal line-scan, parallel to the plane of the spaceplate ∼150 mm
beyond it. The measured wavefronts, when illuminating with TE
and TM polarizations, are shown in Figs. 5(c) and 5(d), without
(black line) and with (colored lines) the spaceplate present in the
beam-path. As expected, we see that the curvature of the wavefronts
decreases when the spaceplate is inserted into the system as the
transmitted field emulates that of a field that has propagated further
from the point source. The smooth variation in the phase of the field
transmitted through the spaceplate indicates that scattering effects
are minimal as interference would appear as oscillations.

The frequency-dependent compression factor C( f ) can also be
calculated from this measured change in wavefront curvature. At
each illumination frequency, we find the apparent distance, δz, from
the measurement plane to an ideal point source that has a phase cur-
vature that best fits the measured phase curvature. We carry out this
procedure on data with the spaceplate present (δzSP) and without
the spaceplate in the system (δzref). The length of space contracted
is L( f ) = δzSP( f ) − δzref( f ), and the compression factor is, then,
inferred via C( f ) = (L( f ) + dSP)/dSP (e.g., see Fig. 1).

Figure 5(f) shows the result of this calculation. Here, the results
follow the expected trend although the data are noisier than the
frequency-dependent compression factor calculated from the dis-
persion measurement, and a small systematic shift in the frequency
of the peak position is observed in both polarizations. There are
two reasons why field-mapping measurements are more subject to
error: they are obtained by scanning the position of the detection
antenna, which can introduce minor systematic or random phase
drifts due to the change in the configuration of the cable, lead-
ing to the VNA during the scan. In addition, in this experiment,
the emitting antenna only approximates a point source, and so the
apparent position of an ideal point source that best fits the data (also
known as the “phase center”) can be subject to systematic errors that
depend on frequency. In both experiments, we expect the error to
be highest in the wings of the curves, where the intensity of the
transmitted field is low, and so any errors in phase measurements
are magnified in these regions when the compression factor is cal-
culated. To indicate this, we have modulated the transparency of
the data points in proportion to the transmitted intensity in the
plots. In the region of high transmission, there is an agreement
between the compression ratios calculated using both measure-
ment approaches, which indicates that our spaceplate is operating as
designed.

DISCUSSION

All of the spaceplate designs proposed thus far11,12,15–17 exhibit
trade-offs between the achievable compression factor, transmission
efficiency, NA, bandwidth, and total space contraction length. Here,
we have focused on the simplest deterministic spaceplate design,
a single Fabry–Pérot cavity, and highlighted that it can achieve a
compression factor of nearly an order-of-magnitude higher than
the largest quoted compression factor recently found by stochastic
optimization over an equivalent NA.17

A single Fabry–Pérot cavity-based spaceplate has two main
drawbacks: there is a weak dependence of the compression factor
on the incident polarization [see Fig. 5(e)], and transmitted inten-
sity is modulated as a function of both frequency and angle [see

Fig. 2(b)]. However, coupling together a series of Fabry–Pérot cav-
ities provides opportunities to overcome these issues. For example,
Chen and Monticone theoretically showed that the transmission effi-
ciency, along with the total space contraction length of a spaceplate,
can be enhanced using coupled Fabry–Pérot cavities while trading a
modest reduction in the compression factor.16

Stochastic optimization schemes also seem to generate space-
plate designs, which are essentially coupled Fabry–Pérot cavities.
For example, in order to overcome the limitations of a single
Fabry–Pérot cavity, we have explored the use of a genetic algorithm
to optimize the layer-spacing of a spaceplate consisting of up to 15
elements. See Sec. 5 of the supplementary material for the details of
our optimization algorithm and results. We give the optimizer free-
dom to merge and, thus, reduce the number of layers when seeking
an optimal solution. Using this method, we find a locally optimal
solution consisting of three Fabry–Pérot cavities separated by two
optimized (∼ λ/6) coupling regions, which is very similar to the
deterministic design presented by Chen and Monticone.16 These
coupled cavity spaceplate designs are able to suppress the polar-
ization dependence exhibited by a single Fabry–Pérot cavity and
generate a roughly constant transmission as a function of incident
angle over the operating NA.

Taken together, the apparent dependence of all spaceplate
designs on Fabry–Pérot resonance effects suggests that the trade-
offs inherent in a single Fabry–Pérot cavity may be close to the
fundamental and technical limits on spaceplate performance. We
speculate that a Fabry–Pérot cavity may be understood as a basic
building block of a spaceplate in the same way as a simple lens
is a basic building block of a multi-element (e.g., objective) lens.
We envisage that the majority of future spaceplate designs will fea-
ture coupled Fabry–Pérot cavities, which will be honed for specific
applications—such as the optimization of performance around three
distinct color channels for color imaging—in a similar manner to the
way compound lenses are designed to suppress the chromatic and
Seidel aberrations present in a single lens.

While in the process of updating our manuscript, a second
study on the fundamental limits of spaceplates was released, making
an elegant link between space compression and slow light research.19

The bounds derived in this work are close to our analysis, while
being marginally less restrictive, and a similar trade-off between
the compression factor, bandwidth, and NA is shown. However,
we note that while our exploration of spaceplate performance con-
strains the transmission efficiency to be greater than 50%, the
approach in Ref. 19 does not constrain transmission efficiency—one
of the key parameters defining spaceplate performance. We would
expect an improvement in performance beyond the limits given
in Eqs. (5) and (6) might be possible by relaxing constraints on
the acceptable level of transmission. As yet there is no concrete
strategy to design spaceplates that can outperform Fabry–Pérot cav-
ities, it will be interesting to see if this becomes possible in the
future.

It is also worth noting that the ability of a Fabry–Pérot cav-
ity to non-locally modify the angular spectrum of electromagnetic
waves is well-known to the antenna and microwave communities.
Fabry–Pérot resonator antennas, first proposed by Trentini et al.
in Ref. 20, increase the directivity of an antenna by coupling it
to a Fabry–Pérot resonator with considerably larger lateral dimen-
sions.21 It is also already understood that wavefronts emanating
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from the structure have traveled a longer path length than the
thickness of the antenna, as theoretically derived by Burghignoli in
Ref. 22, which is consistent with the theoretical behavior of a space-
plate. We emphasize that in these earlier studies, the applications in
mind were very different from the concept of space-compression.

CONCLUSIONS

In summary, we have experimentally demonstrated a determin-
istically tunable space-squeezing optical element in the microwave
spectral region. We observe a maximum space compression factor
of ∼5.5 over an NA of 0.34 at 21.5 GHz. The compression fac-
tor is higher than 4 in the frequency band of 20.8–22.1 GHz. We
believe that this is a significant step toward the introduction of the
spaceplate concept into real-world quasi-optical systems. Our study
hints a Fabry–Pérot cavity may offer a close-to-optimal trade-off in
capabilities, as encompassed by Eq. (5), suggesting that this type of
simple spaceplate should be used as a benchmark for evaluating the
performance of other designs.

SUPPLEMENTARY MATERIAL

See the supplementary material for the derivation of the per-
formance trade-off equations, experimental and numerical methods
and results, and an analysis of a stochastically designed spaceplate.
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