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This supplementary document provides further, in-depth information on the theory, various trade-offs and design of
the Fabry-Pérot cavity based spaceplate. The experimental setup and methods used to characterise the spaceplate are
explained here. In the last section we include information on the design and performance of a stochastic spaceplate
consisting of three coupled resonators.

§1 A Fabry-Pérot resonator as a spaceplate
It has been shown that the angular dispersion in a Fabry-Pérot cavity can be used to design a spaceplate [1]. Here,
we analyze such a solution from a general point of view and find the trade-off between the compression ratio (C),
numerical aperture (NA) and bandwidth (δω) of the spaceplate. In addition we show how the compression ratio can
be obtained from the Q factor of the resonator or reflectances of its mirrors.

The transmission coefficient of a Fabry-Pérot cavity made of two semitransparent mirrors with equal reflectance
(R1 = R2 = R) separated by a distance dSP is

t(θ, ω) =
t1t2 exp (iβ)

1 + r1r2 exp (2iβ)
, (1)

with

β =
2π

λ
dSP cos θ =

ω

c
dSP cos θ, (2)

where R = r2 and r1, r2, t1 ,t2 are the reflection and transmission coefficients of the mirrors (Stokes relations r1 = −r2,
t1t2 = 1− r2), λ is the free space wavelength, θ is the incidence angle and ω is the angular frequency. We assume all
the regions are free space (see Fig. 1).
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FIG. 1. Fabry-Pérot cavity formed by two mirrors with equal reflectances R.

1.1 Even Fabry-Pérot resonances
The interesting behavior for a single FP resonator spaceplate occurs near the transmission peaks where the condi-
tions for constructive interference are met. The relative phase shift between two successive reflections defining the
constructive interference is 2β = 2πℓ, where ℓ is the order of the resonance (ℓ = 1, 2, 3...). If we consider a cavity
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with thickness dSP = λr1/2, where λr1 = 2πc/ωr1 is the resonant wavelength of the first interference peak at normal
incidence (i.e. θ = 0 ◦), we can tie the resonance of the structure to the interference condition as follows:

2β = 2πℓ → 2
2π

λr(ℓ, θ)
dSP cos θ = 2πℓ → ωr(ℓ, θ)

c

2πc

ωr1
cos(θ) = 2πℓ. (3)

The dispersion equation relating the resonant frequency ωr(ℓ, θ) corresponding to the angle θ and resonance order ℓ
with respect to the normal incidence (and ℓ = 1) resonance ωr1:

ωr(ℓ, θ) =
ℓ

cos θ
ωr1. (4)

The resonant frequency of the FP cavity thus shifts with 1/ cos θ. However, for small angles in can be approximated
by the first two terms of its Taylor expansion:

1/ cos θ ∼ 1 +
1

2
θ2. (5)

Equation 4 tells us that the higher order (even) resonant modes (ℓ > 1) are more sensitive to the incidence angle by a
factor ℓ (see Fig. 2). This suggests that they provide a limited NA compared to the first one (ℓ = 1), however as we
show later, the compression ratio C remains the same. Effectively, this means that a resonator operating in its higher
resonance can substitute a thicker slab of air but over a reduced angular range.
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FIG. 2. First three even resonances and their shift with incidence angle - magnitude (left) and phase (right) of the transmission
coefficient. The shift of ℓth order with angle θ is given by ℓ/ cos θ

Now, we evaluate the phase of the transfer function of the spaceplate given by the dispersion according to eq. (4).
To do this, we use a group delay (GD) concept described in section 1.2. We linearize the phase of the spaceplate
about the resonance and the slope of the linear portion of the phase is considered to be the approximate GD.

Figure 3 shows that the resonance of the spaceplate shifts with the incidence angle as ℓ/ cos θ. The phase ϕSP(θ)
is the phase difference (over the length of the SP) between θ = 0 ◦ and θ > 0 ◦ angles. This phase can be found from
the triangle in Fig. 3 and is given as:

ϕSP(θ) = −ℓ
GD

cos θ
. (6)

1.2 Compression factor of the spaceplate, C, and the properties of the FP resonator
The transmission curve of a resonator based spaceplate is fully given by its quality factor (Q-factor) and the order
of the resonance ℓ. The compression factor C can be determined from the fundamental properties of the resonator
(under certain assumptions) as follows.

If we consider an FP cavity formed by 2 mirrors with identical reflectance R and assuming:
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FIG. 3. Phase profile of the SP as a function of normalized angular frequency close to the 1st resonance. Blue curve represents
normal incidence - the phase profile of the resonance is shifted by ℓ/ cos θ (where ℓ = 1) for incidence angle θ > 0 ◦, plotted in
red. The change in phase (arg {t}) related to the change of incidence angle 0 → θ at operating frequency ω/ωr1 = 1 is ϕSP(θ).

• R does not depend on the angle of incidence θ, and

• the phase of the transmission coefficient is linear about the resonance (see Fig. 4),

then the slope of the linearised phase determines the group delay of the structure

GDSP =
dϕ

dω
≈ ∆ϕ

∆ω
=

π/2

2π∆f
=

1

4∆f
=

Q

4fr
=

πQ

2ωr
, (7)

which must not change with the incidence angle and ∆f = ∆ω/2π is the line width of the resonator under normal
incidence, fr = ωr/2π is the resonant frequency and the Q-factor is defined by Q = fr/∆f = ωr/∆ω.

The group delay in free space of effective thickness deff which the spaceplate is to substitute is:

GDFS =
dϕ

dω
=

d

dω

(ω
c
deff

)
=

deff
c

. (8)

Thus, by assuming GDSP = GDFS we obtain the equivalent thickness of free space, deff , our resonator can substitute:
deff = c · πQ/(2ωr) = λrQ/4 .

If we operate the spaceplate of thickness dSP = ℓλr/2 at a frequency that matches the resonant frequency of the
resonator f = fr the transmission for the normal incidence is 1 and it slowly tapers off with incidence angle. The
compression factor C in this case is given as:

C =
deff
dSP

=
λrQ
4

ℓλr

2

=
Q

2ℓ
. (9)

Assuming a high reflectance (R) of the mirrors that form the cavity (such as 1−R << 1) we can tie the Q-factor
to the reflectance as [2]

Q = − πℓ

lnR
, (10)

which combined with eq. 9 leads to the to the compression factor as a function of the reflectance of the mirrors:

C = − π

2 lnR
. (11)

Under the assumptions given above, we can see that the compression factor C of the FP resonator spaceplate does
not depend on the order of the resonance ℓ. However, we should keep in mind that the higher resonances will offer a
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FIG. 4. Resonance line of a cavity with half wavelength thickness. The frequency bandwidth (full width at half maximum) is
shown in the figures.

reduced NA (see eq. (4)).

1.3 Numerical aperture and bandwidth of the FP resonator spaceplate
As shown below, there is a fundamental trade-off between the compression ratio, the numerical aperture of the
spaceplate, and the frequency bandwidth it can operate over.

Starting with monochromatic waves, if we allow the transmittance of the spaceplate at normal incidence to be half
of the maximum, the NA is maximized. The angles θ1 and θ2 describe the angles where the transmittance is increased
to 1 (angle θ1) and where it drops to 0.5 again (angle θ2). In this case, the angle θ2 defines the NA = sin θ2. The
operating angular frequency is ωwork = ωr +∆ω/2 (see Fig. 5).
If we wish to have the transmittance at normal incidence equal to 1, the numerical aperture is given by the θ1

angle, NA = sin θ1 (operating frequency ωwork = ωr).
The angles θ1 and θ2 are given as follows:

θ1 = cos−1 ωr

ωr +∆ω/2
= cos−1 1

1 + 1/2Q
= cos−1 1

1 + 1/4Cℓ
, (12)

θ2 = cos−1 ωr

ωr +∆ω
= cos−1 1

1 + 1/Q
= cos−1 1

1 + 1/2Cℓ
. (13)

The numerical aperture for the case with transmittance at normal incidence equal to 0.5 can be written using the
trigonometric identity sin(cos−1(x)) =

√
1− x2

NA = sin θ2 =

√
1−

(
1

1 + 1/Q

)2

=

√
1−

(
1

1 + 1/2Cℓ

)2

, (14)

and it can be easily modified for the case with unity transmittance at 0 ◦, NA = sin θ1.
Now, we turn our attention from monochromatic waves and introduce a signal with a certain angular frequency

bandwidth δω = ωmax − ωmin and due to the nature of the spaceplate we must assume δω < ∆ω (if we do not want
to compromise on the performance even more than shown in Fig. 5). This effectively means that the maximum
acceptable frequency shift of the resonance, which is ∆ω for monochromatic waves will be reduced to ∆ω− δω. Using
the dispersion equation (eq. (4)) the maximum angle θ2 is

θ2 = cos−1 ωr

ωr +∆ω − δω
= cos−1 1

1 + 1/Q− δω/ωr
= cos−1 1

1 + 1/2Cℓ− δω/ωr
, (15)

and the NA of the spaceplate with given guaranteed frequency bandwidth δω is

NA = sin θ2 =

√
1−

(
1

1 + 1/Q− δω/ωr

)2

=

√
1−

(
1

1 + 1/2Cℓ− δω/ωr

)2

. (16)
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The equation 16 can be rearranged for the approximate fractional bandwidth:

δω/ωr = 1 +
1

2Cℓ
− 1√

−NA2 + 1
, (17)

where 0 ≤ δω/ωr ≤ 1/2Cℓ interval bounds the feasible solutions. It enforces that the bandwidth is a positive
quantity 0 ≤ δω/ωr and that we work sufficiently close to the resonance δω/ωr ≤ 1/2Cℓ to cap the maximum allowed
transmission loss at 0.5. We call the δω/ωr quantity an ”approximate” fractional bandwidth as the ωr frequency is
not at the centre of the band δω. The equations are very accurate for high Q cavities, but still work well for lower Q
cases (R ≈ 0.5).
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FIG. 5. Operation of the spaceplate explained using how the amplitude (a) and phase (b) of the transfer function depend on the
resonance shift of the FP cavity with the incidence angle. This case corresponds to the maximum NA, where the transmittance
at normal incidence is reduced to 0.5. The operating angular frequency in is ωwork = ωr + ∆ω/2, where ωr is the resonant
frequency at normal incidence. The important angles θ1 and θ2 are shown here.

1.4 Interesting trade-offs
Equations (9), (11), (14) and (16) are useful for studying the performance trade-offs and the limits of FP resonator
spaceplates. To do so, we sweep the reflectance of the mirrors R in the range 0.5 to 0.99 and plot the compression
factor as a function of R (see Fig. 6a) and as a function of the Q-factor of the cavity (see Fig. 6b). The insets show
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the compression factor C for even higher reflectances ranging from 0.99 up to 0.9999. In limiting case, for Q → ∞
(also R → ∞), the compression ratio will tend to infinity (see eq. (9)) as the NA will be approaching 0 (eq. (14)):

lim
Q→+∞

C = ∞ lim
Q→+∞

NA = 0 (18)

An important trade-off for a resonant spaceplate is that between the numerical aperture (or maximum incidence
angle θmax), the compression factor and the bandwidth (δω). In Fig. 6c we can see the maximum acceptance
angle (transmittance = 0.5 at normal incidence) as a function of the compression factor with the bandwidth as a
parameter. The bandwith is expressed as a fraction of the spectral linewidth of the resonator ∆ω. The blue curve
(δω = 0) represents a monochromatic wave and thus sets the upper bound on achievable numerical aperture. As
the bandwidth increases the NA goes down. The maximum theoretical bandwidth (i.e. δω = ∆ω) does not allow
for any shift of the resonance and thus results in NA = 0. The inset in Fig. 6c shows that a compression factor of
C = 3282 can be achieved with FP resonator spaceplate within NA corresponding to θmax = 1◦, and C = 13130 within
θmax = 0.5◦.

It has been mentioned that the spaceplate trades off its numerical aperture for the transmittance at normal incidence
(Fig. 5a). Figure 2 of the main paper shows that this depends on the selection of the operating frequency ωwork.
If we choose to operate at resonance frequency ωwork = ωr we achieve maximum transmittance |t|2=1 at normal
incidence, which tapers off to |t|2 = 0.5 at incidence angle θ1. On the other hand, if we pick ωwork = ωr +∆ω/2, the
transmittance at normal incidence is |t|2 = 0.5, increases to |t|2=1 (at θ1), and again drops to |t|2 = 0.5 at incidence
angle θ2. In Fig. 6d we can see the drop in normal incidence transmittance as a function of maximum incidence angle
θmax. The red axis demonstrates a real world scenario of a resonant spaceplate based on mirrors with R = 0.9 and a
compression factor C = 14.9 - here we can see that by allowing |t|2 = 0.5 at normal incidence we can increase the NA
angle from θmax = 10.5 ◦ to θmax = 14.8 ◦. Finally, the blue axis in Fig. 6d relates the range of maximum angles to
the selection of operating frequency ωwork.
Even though the resonance order ℓ does not influence the maximum compression ratio of a spaceplate, it has a

negative effect on its achievable numerical aperture (see eq. (4)). In Fig. 7 we examine this effect for ℓ = 1 to ℓ = 5.
The main benefit of operating the spaceplate at a higher order resonance is the increase in effective thickness deff
since the length of the resonator is increased dSP = ℓ ·λ/2 and the compression factor remains the same, deff = C ·dSP.
The second benefit is the mechanical simplicity with low weight and costs. The spaceplate consists of only three
components - two dichroic mirrors separated by free space.

§2 Metamaterial properties of perforated metal layers
The electromagnetic interaction between light and the metal is driven by the free electrons of the metal, which give
rise to a negative permittivity for frequencies below their plasma frequencies. It has been shown that one can mimic
the negative permittivity of a metal near its plasma frequency by structuring the surface of a (near) perfect conductor
by introducing periodic arrays of subwavelength holes. Such a structured layer of highly conducting material can
support surface plasmon-like surface modes at frequencies well below the plasma frequency of the conductor [3–6],
and also have the property of partial reflectance, similar to that of thin (less than the skin depth) metal films [7].

In this paper, we use highly conducting sheets with two-dimensional arrays of subwavelength, open holes to mimic
the partially reflecting mirrors of a Fabry Pérot cavity. It is important that perforated layers are non diffracting,
which is the case when the wavelength of radiation is larger than the period of the structure. Under this condition,
the perforated metal behaves as homogeneous layer, and propagating plane waves are expected to be de-coupled [5],
a necessary condition for a space plate. The effective, frequency dependent permittivity of such a layer is determined
by the size and spacing of holes, allowing the creation of mirrors with well-controlled and near-arbitrary reflectivity.
When both the perforation holes and the period of the array is significantly less than the wavelength of incident
radiation, one expects a large negative effective permittivity at low frequencies, similar to that seen for homogeneous
metals at frequencies well below the plasma frequency [5].

§3 Design of a resonant spaceplate
A Fabry-Pérot resonator spaceplate can be built similarly as shown in section §5 of SI as an air (free-space)
cavity surrounded by high index dielectric sheets. Indeed, this approach was proposed in [1], where the authors
suggested using thin sheets of material with εr = 15 operating near the quarter wavelength resonance to maximize
the reflectance of the sheets. Here, we use metallic hole arrays (described in the previous section) made of thin
copper sheets to design the mirrors of the FP cavity. This approach has several practical advantages such as its
low cost, reduced thickness and, most importantly, the tunability. By adjusting the filling ratio one can design a
dichroic mirror with arbitrary reflectance. This in turn gives direct and continuous control over the Q-factor of the
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FIG. 7. Numerical aperture as a function of compression ratio for the 5 lowest order resonances, assuming monochromatic
operation. The drop in NA with increasing ℓ is obvious.

cavity, thus defining the compression ratio of the spaceplate. The analytical model of the hole arrays that we use to
determine their reflectance was described in the previous section. The model allows us to include the angle dependent
reflectance of the mirrors in eq. (1). We verify the analytical design of the spaceplate with numerical simulations in
a commercial finite element software, Ansys HFSS.

3.1 Analysis and design of dichroic mirrors
The mirrors are implemented by etching a periodic square hole motive on a copper cladding (35 µm thick) of a
dielectric microwave substrate Rogers R4350B with thickness 1.524 mm, dielectric constant εr = 3.66 and loss tangent
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tanδ = 0.0037 (10 GHz). To achieve a reasonable trade-off among bandwidth, compression factor and NA we target
a reflectance of the mirrors close to 0.8 (C = 7). The final dimensions of the fabricated hole array sheets can be found
in Fig. 8a.

We numerically analyze the hole array as a periodic structure with a unit cell shown in Fig. 8a using Ansys HFSS.
First, we sweep the frequency in the range 10-40 GHz and observe the reflectance (see Fig. 8c) of one sheet. From
these values, using eq. (11), we can predict the compression ratio of a single FP resonator spaceplate made of two
sheets, as a function of frequency.

At operating frequency 21 GHz and normal incidence, the reflectance of the mirrors is about 0.82 which corresponds
to the maximum theoretical compression factor of C = 7.9. Due to the final thickness of our dichroic mirrors deposited
on dielectric substrates, the achievable compression is to be appreciably lower than the theoretical limit.

Unfortunately, the reflectance of the mirrors changes with the incidence angle in a way that differs for the two
polarisation states (TE and TM). We plot this in Fig. 8d, where we sweep the incidence angle in the range of
θ = 0 to 30 deg. It is obvious that the discrepancy in reflectance between the two polarisations increases with
increasing incidence angle - as we show later this directly influences the performance of the SP operating with the
two polarisations by slighlty increasing the theoretical compression factor for TE waves while reducing it for the TM
waves (see Fig. 5 of the main paper).
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faces are set up as periodic boundaries. The inset shows a detail of the unit cell with dimensions. b) The photograph of the
dichroic mirror used to build the spaceplate with a detail of the square unit cell c) Reflectance of the mirror and theoretically
achievable compression ratio of a spaceplate based on the mirror as a function of frequency. d) Reflectance of the mirrors as a
function of incidence angle for the TE and TM polarisation at 21 GHz.

3.2 Analysis and design of the experimental spaceplate
The experimental spaceplate is formed from a pair of dichroic mirrors described in the previous section. The lateral
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size of the spaceplate is 300x300 mm2 The mirror sheets are kept apart at constant distance by 6.56 mm thick spacers
resulting in resonant frequency at normal incidence of 21 GHz.

The structure is again analysed as a periodic structure with a unit cell given in Fig. 9. The simulated spectral line
is compared to the measured one in Fig. 9. The experiment is described in the following section.

The simulated transmittance and the phase of the transmission coefficient are shown in Fig. 11 at five frequency
points 21, 21.2, 21.4, 21.6, 21.8GHz with fr = 21GHz. Both polarisations are shown in the figures together with
a free-space fit. As a result of the unequal reflectances of the mirrors for the two polarisations, the phase of TE
polarisation is slightly steeper than the TM polarisation. This corresponds to a slightly higher compression ratio
and a smaller NA for the TE polarisation compared to the TM case. For convenience the measurement results
are also included in these plots. The measurement setup and processing are described in detail in the following section.
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FIG. 9. a) Unit cell of the resonant spaceplate. The distance between the mirrors d = 6.56 mm and the thickness of the
spaceplate dSP=9.618 mm b) Two lowest simulated resonance lines of the FP resonator spaceplate. Measured data for the ℓ =
1 line is included for comparison.
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§4 Experimental setup and results

Here, we describe the two experiments we performed to validate the performance of the spaceplate. First, a
dispersion measurement where we measured a plane wave response of the spaceplate under varying angle and angular
frequency. Second, a field mapping, where we directly measured the effect the spaceplate has on the radius of
curvature of wavefronts radiated by a point source-like antenna.

4.1 Dispersion measurement
The normalised transmissivity, and corresponding phase change upon transmission, of 18 to 26 GHz radiation through
the spaceplate were measured as a function of the angle of incidence using a pair of Flann 810 series lens horn antennas,
which have a 150 mm diameter and produce a beam with a nominal 3dB beamwidth of 5.7 and 6.6 degrees in the E- and
H-planes respectively with a mid-band gain of 29.7 dBi. These were placed 1.2 m apart, with a Thorlabs HDR50/M
computer controlled rotation stage placed midway between them. ABS-ASF-12 partially absorbing foam layers from
ABS-Technics were placed in front of each antenna in order to reduce the influence of standing waves resulting
from reflections from the front faces of the antennas (and the sample when in place). The antennas were connected
to an Anritsu Vectorstar MS4647B Vector Network Analyser, and the magnitude and phase of the transmitted
signal between the horn antennas was measured as a function of incident angle with the spaceplate placed upon the
rotation stage. These measurements were subsequently normalised to data obtained with no sample in place, with the
normalised magnitude data squared to give the transmitted intensity, and the normalised phase data giving the phase
change upon transmission through the thickness of the spaceplate with respect to a slab of air with thickness equal
to the spaceplate. The phase in Fig. 12, 13 and Fig. 4 of the main paper is thus calibrated to show the transmission
phase of the spaceplate compared to zero thickness of air [8] - the same definition as we use in our analytical and
numerical models.
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FIG. 10. Dispersion plot for TM polarisation. TE polarisaton can be found in Fig. 3 of the main paper.

4.2 Spatial mapping of transmitted fields
To directly characterise the wavefronts, a Narda 638 standard gain horn antenna (3dB beam width of between 34 and
23 degrees across the 18 to 26 GHz band) was connected to one of the ports of an Anritsu MS4644A vector network
analyser (VNA), and placed 150 mm from the front face of the spaceplate such that the radiated field impinged upon
the centre of the spaceplate at (and around) normal incidence. A stripped coaxial antenna with 4 mm of protruding
central conductor was connected to the 2nd port of the VNA, and mounted on a computer controlled linear translation
stage at a distance of 150 mm from the back face of the spaceplate such that the protruding end of the antenna could
be translated through the mid-point of the beam. The overall length of the stripped coaxial antenna and mount was
sufficient that the translation stage was outside of the beam area, with microwave absorber being distributed around
the volume of the beam to ensure that the measurement ensemble was minimally perturbing to the beam. The
magnitude |t| and phase ϕe of the transmission between the emitting and detecting antennas was measured across a
300 mm line through the beam centre for both TE and TM polarisations with and without the spaceplate in place.
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FIG. 11. Transmission phase ϕ and transmittance as a function of plane wave incidence angle θ and frequency for TE and TM
polarisation. The plots compare HFSS simulation results (solid lines) with dispersion measurement results (markers) and also
show a free space fit to the experimental data (dashed lines). The gray box represents the NA of the spaceplate - it is slightly
smaller for the TE polarisation due to higher reflectance of the mirrors
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This enabled a direct measure of the influence of the spaceplate on the wavefronts of the beam to be made (see Fig. 14).
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FIG. 12. Schematic view of the experimental setup for electric field scanning. Fig. a) represents the reference measurement,
where the field radiated by the source antenna is measured on a plane by the detector (in fact we measure transmission
coefficient S21 which is proportional to the electric field). In b) the spaceplate is introduced in between the source antenna and
the detection plane. The radiation from the source passing through the spaceplate is measured on two orthogonal cuts x = 0
and y = 0. All the dimensions are in millimeters and also relative to the free space wavelength at 21 GHz (λ = 14.3 mm).

4.3 Phase centre of an antenna and its determination
The phase centre (PC) of an antenna is the key concept in our experimental demonstration of a spaceplate and
is thus described in more detail here. The phase centre can be defined as an imaginary point associated with an
antenna which appears as the origin of spherical wavefronts emanating from the antenna. We present raw measured
data as well as extracted positions of phase centres in a setup with and without the spaceplate - the difference is
directly related to the compression factor.

Here, we briefly review how the phase centre of an antenna can be determined from the measured phase profile ϕe

(i.e. arg{S21}). We demonstrate the process on phase measured along the x-axis ϕe(x) which corresponds to the TM
polarisation cut. The task can be simply defined as a search for an optimum distance d between a theoretical point
source and the centre of the xy-plane where the field is sampled that minimizes the root mean square error between
the theoretical ϕt(x) and experimental phase profiles ϕe(x).

min
d

√√√√ 1

Nx

Nx∑
xi=1

[(ϕe − ϕt)−mean(ϕe − ϕt)]
2
, (19)

where Nx is the number of measurement points, xi are their locations and the distance d is a function of angular
frequency d = d(ω) as a result of frequency dependent properties of both the microwave antenna as well as of the
spaceplate. The theoretical phase as a function of position x is given as

ϕt(x) = arg{E(x)} = arg

{
1

r(x)
exp(ikr(x))

}
= kr(x) = k

√
d2 + x2, (20)

where E(x) is the electric field distribution along the x-direction, r = |−→r | is the distance between the phase centre
and a point on the detection plane and k = 2π/λ is the free space wave number (see Fig. 12).

4.4 Results of E-field spatial mapping
We present here the measured transmission phase ϕe and normalised magnitude |t|/|tmax| which are proportional to
the magnitude and phase of the electric field on the measurement plane in a setup with and without the spaceplate
(see Fig. 12). The phase patterns show the unwrapped phase as a function of transverse position x or y for the
measurement without the spaceplate (black curves) and with the spaceplate (red/blue curves). The measurements
shown in Fig. 14 correspond to two orthogonal planes where the polarisation of the wave is either TM (red) or TE
(blue) with respect to the surface of the spaceplate, respectively. As a result of the apparent shift of the phase centre
away from the measurement plane, we measure a shallower phase profile when the SP is introduced and a broader
beam.
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The plots in Fig. 13 include the information about the apparent position of the phase centre zS calculated from
the measured phase profiles using the method described in the previous section across the frequency range of 20 to
23 GHz. A more negative coordinate zS corresponds to the source position apparently being farther away from the
measurement plane.
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FIG. 13. Phase centre position as a function of frequency for TE (left) and TM (right) polarisation. The apparent added path
length L is introduced by the spaceplate (see Fig. 1 of the main paper). The compression factor corresponding to the length L
is given in Fig. 5 of the main paper.
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FIG. 14. Phase ϕe and normalized magnitude |t|/|tmax| of measured transmission coefficient (i.e. t ≡ S21) between an
illuminating antenna and an electrically small probe on a 1D grid according to Fig. 12. The coefficient t thus corresponds to
E-field on two orthogonal cuts, for TE and TM polarisation. The effect of the spaceplate on the detected phase is clear, the
shallower phase profile is a direct result of spherical wavefronts with larger radius of curvature compared to the measurement
without the spaceplate (black curves).

§5 Evolutionary optimization of a stochastic spaceplate
A non-local metamaterial spaceplate can also be realised as a multilayer stack of homogeneous and isotropic layers
distributed along the optical axis [9]. The parameters of individual layers – the thicknesses and refractive indices –
are then optimised by a stochastic optimisation algorithm. Such a design strategy does not inherently rely on any
knowledge about the behavior of the elements. Theoretically (if the search space allows it), it can take advantage of
e.g. higher order modes within layers, creating multiple resonant cavities coupled by arbitrary coefficients (unlike the
design in [3]) etc. However, the results of this approach presented in [9] tell us that finding a feasible solution can be
quite challenging (for example in [9], with 21 layers and C = 4.9, a spaceplate with an angular range of about 12-15
deg showed transmittance below ∼1.5% for normal incidence). The other disadvantage is the non-scalability of the
solution. Designing the spaceplate for other effective thicknesses requires, in general, starting the optimization from
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a scratch. A suitable optimisation strategy could be the combination of the global search with a local gradient-based
optimization method.

The problem can be formulated as either a single- or multi-objective. In our experience, the single-objective
formulation with three discernable sub-objectives (amplitude, phase, compression factor C) led to a feasible solution
more quickly. Generally, the objective is defined as the minimisation of the error between the desired transmission
coefficient of the free space t0 and a transmission coefficient of a spaceplate tSP, while the compression factor C should
be maximized. If we break the transmission coefficient into the amplitude and the phase derivative criterion and we
sum through a finite number of incidence angles we can write for both polarisations (superscripts TE, TM)

OBJ =
1

N

N∑
θi

c1 · (|tTM
SP (θi)| − |t0(θi)|)2 + c2

(
darg(tTM

SP (θi))

dθ
− darg(t0(θi))

dθ

)2

+

1

N

N∑
θi

c3 · (|tTE
SP (θi)| − |t0(θi)|)2 + c4

(
darg(tTE

SP (θi))

dθ
− darg(t0(θi))

dθ

)2

+

c5 · dSP/deff

Here, the derivatives are used to remove any constraints on the global phase of the transmitted field, which is
irrelevant for most of the spaceplate applications. The five weighing coefficients c1 - c5 allow us to tune the importance
of the amplitude (c1, c3) and phase (c2, c4) errors and the maximum achieved compression factor (1/c5). The inputs
of the algorithm are the maximum number or the layers and the effective thickness deff which we are trying to squeeze.
During the optimisation, the transmission coefficient of the free-space is pre-calculated (as it does not change during
the optimisation) and the transmission coefficient of the SP is evaluated by a transfer (characteristic) matrix method
[10], which gives a full-wave field solution for a multilayer stack.

In our design, we tried to reduce the search space as much as possible while still producing a solution with relatively
high C (in this case we set C > 3). With the experimental demonstration in mind, we opted for a two material
combination with alternating high/low refractive index medium – as the low n medium, we selected air and for the
high n medium a commercially available microwave substrate from Rogers (εr = 10.2). We fixed the thicknesses of
the high n dielectric layers to 1.52mm (thickness of the substrate). Thus, the optimization parameters are only the
thicknesses of the air gaps and the total number of the layers. By allowing the thicknesses of the layers to go to
zero (skipping the layer), the optimiser can effectively double the maximum thickness limitations defined during the
initialisation.

In the optimisation results below, we set the frequency of operation to f = 15GHz, maximum number of layers
(NLmax) to 15, the effective thickness to be substituted by SP to deff = 250mm. An evolutionary optimization
strategy based on a genetic algorithm in Matlab was used to search for feasible solutions. With maximum of 15 layers
(8 layers of microwave substrate of fixed thickness, separated by 7 layers of air), we are optimizing only 7 parameters
at most. Thus, the population does not have to be very large - we usually worked with about 100 individuals per
population. On a laptop with Intel i7-7500, 2.7GHz processor the evaluation of the forward model took on average
5ms for both polarisations, 15 layers and a single frequency point. Evaluating the whole population thus took only
about 0.5 s.

One of the optimised structures is shown in Fig. 15. We can see that the first, third and fifth gaps have lengths
very close to the even FP resonances whereas the second and the fourth are relatively small. The resemblance of this
stochastically optimised structure to the empirical multi-cavity design proposed in [1] is clear.

Figure 16 gives the transmittance |t|2 and the phase of the transmission coefficient for the two polarisations and
compares them to the free-space fit. In Fig. 17 and 18 we can see the transmittance and the transmission phase as
functions of the frequency and the incidence angle.
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FIG. 15. Spaceplate designed by a genetic algorithm with total thickness of dSP = 67.44 mm substitutes a slab of air with
equivalent thickness deff = 250 mm corresponding to a compression factor C ≈ 3.7.
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FIG. 16. Transmittance and the transmission phase of the spaceplate as a function of incidence angle at 15 GHz. The free
space fit corresponds to a distance deff = 250 mm.
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FIG. 17. Transmittance and the phase of the spaceplate as a function of incidence angle and frequency for TE polarisation.
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FIG. 18. Transmittance and the phase of the spaceplate as a function of incidence angle and frequency for TM polarisation.
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