1	Apparent thermal acclimation of soil heterotrophic respiration
2	mainly mediated by substrate availability
3	Yanghui He ¹ , Xuhui Zhou ^{1,2} *, Zhen Jia ² , Lingyan Zhou ² , Hongyang Chen ¹ , Ruiqiang
4	Liu ¹ , Zhenggang Du ¹ , Guiyao Zhou ² , Junjiong Shao ³ , Junxia Ding ¹ , Kelong Chen ⁴ ,
5	Iain P, Hartley ⁵
6	¹ Northeast Asia ecosystem Carbon sink research Center (NACC), Center for
7	Ecological Research, Key Laboratory of Sustainable Forest Ecosystem
8	Management-Ministry of Education, School of Forestry, Northeast Forestry
9	University, Harbin 150040, China
10	² Center for Global Change and Ecological Forecasting, School of Ecological and
11	Environmental Sciences, East China Normal University, Shanghai 200241, China
12	³ College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300,
13	China
14	⁴ Qinghai Province Key Laboratory of Physical Geography and Environmental
15	Process, College of Geographic Science, Qinghai Normal University, Xining
16	810008, China.
17	⁵ Geography, College of Life and Environmental Sciences, University of Exeter, Exeter,
18	EX4 4RJ, United Kingdom
19	
20	Running title: Substrate availability mediates thermal acclimation of $R_{\rm H}$
21	
22	
23	*For correspondence:
24	Xuhui Zhou
25	School of Forestry, Northeast Forestry University
26	26 Hexing Road, Harbin, 150040, China
27	Email: <u>xhzhou@nefu.edu.cn</u>

28 Abstract

Multiple lines of existing evidence suggest that increasing CO₂ emission from soils in 29 30 response to rising temperature could accelerate global warming. However, in experimental studies, the initial positive response of soil heterotrophic respiration 31 32 $(R_{\rm H})$ to warming often weakens over time (referred to apparent thermal acclimation). 33 If the decreased $R_{\rm H}$ is driven by thermal adaptation of soil microbial community, the potential for soil carbon (C) losses would be reduced substantially. In the meanwhile, 34 the response could equally be caused by substrate depletion, and would then reflect 35 36 the gradual loss of soil C. To address uncertainties regarding the causes of apparent thermal acclimation, we carried out sterilization and inoculation experiments using 37 the soil samples from an alpine meadow with 6-years of warming and nitrogen (N) 38 39 addition. We demonstrate that substrate depletion, rather than microbial adaptation, determined the response of $R_{\rm H}$ to long-term warming. Furthermore, N addition 40 appeared to alleviate the apparent acclimation of $R_{\rm H}$ to warming. Our study provides 41 42 strong empirical support for substrate availability being the cause of the apparent acclimation of soil microbial respiration to temperature. Thus, these mechanistic 43 insights could facilitate efforts of biogeochemical modelling to accurately project soil 44 C stocks in the future climate. 45 46 **Keywords**: heterotrophic respiration, warming, nitrogen addition, microbial 47

48 adaptation, substrate depletion

49 Introduction

Globally, soils up to two-meter depth store about 3 times as much carbon (C, 2200-50 51 2500 Pg) as Earth's atmosphere (Scharlemann et al., 2014; Jackson et al., 2017). The loss of soil organic carbon (SOC) via microbial decomposition, referred to as 52 53 heterotrophic respiration ($R_{\rm H}$), has been increasing in response to climatic warming (Crowther *et al.*, 2016; Bond-Lamberty *et al.*, 2018), representing positive feedback 54 that would further contribute to rising global surface temperatures. The positive 55 warming-C cycle feedback has been embedded in the Earth system models to predict 56 57 C stocks in terrestrial ecosystems (Cox et al., 2000; Wieder et al., 2015; IPCC, 2021). However, a wealth of long-term field manipulative experiments showed that the initial 58 positive response of soil respiration to warming may decline over time (Luo et al., 59 60 2001; Melillo et al., 2002; Hartley et al., 2008; Bradford, 2013; Walker et al., 2018). Thus, when measurements are made at a common temperature, $R_{\rm H}$ rates are lower in 61 previously warmed soils than in soils from control plots. This phenomenon is referred 62 63 to apparent thermal acclimation, indicating that soil C stocks may be less vulnerable to climate change than currently feared. Therefore, a deeper understanding of soil 64 microbial decomposition in response to warming is imperative to improve the 65 accuracy and precision of model projections of terrestrial C-climate feedback in the 66 future (Luo, 2007; García-Palacios et al., 2021). 67 Two main mechanistic explanations have been proposed to interpret the 68 69 decreased trend of soil microbial respiration over time (Fig. 1). Firstly, shifts in microbial community composition, population dynamic, and physiological 70

71	acclimation following warming may attenuate SOC decomposition (Zhang et al.,
72	2005; Allison et al., 2010; Bradford et al., 2019). For example, a decade of soil
73	warming induced a shift of microbial community towards Gram-positive bacteria and
74	decreased the relative abundance of fungi (Frey et al., 2008; Melillo et al., 2017).
75	Meanwhile, the reduction of microbial growth efficiencies and carbon-use efficiency
76	at warmer temperatures could decrease microbial respiration (Crowther & Bradford,
77	2013; Li et al., 2019). Alternatively, substrate (especially the labile soil C pool
78	representing readily bioavailable C components to microbes) depletion caused by
79	enhanced microbial activity may weaken the positive effect of warming on microbial
80	respiration over time (Knorr et al., 2005; Tucker et al., 2013; Pold et al., 2017). While
81	substrate depletion reflects the gradual loss of soil C, and rates of C release would be
82	dependent on the availability of SOM to decomposers, thermal adaptation would
83	imply a reduction in microbial activity prior to C being released. Thus, these two
84	hypotheses have very different implications for feedbacks of C cycle to climate
85	change. For this reason, uncertainties related to the importance of microbial
86	adaptation vs. substrate depletion in regulating the feedbacks of $R_{\rm H}$ to warming limit
87	our confidence in projecting long-term soil C dynamics in response to climate change
88	(Bradford et al., 2016; Ye et al., 2019).
89	Several attempts had been made to clarify the role of microbial adaptation and
90	substrate depletion on $R_{\rm H}$ to climate warming. Laboratory incubation studies with
91	long-term warmed soils, which measured mass-specific respiration rate under
92	saturated substrate condition with sucrose amendment, showed that shifts in microbial

93	physiology and community mediated the response of $R_{\rm H}$ to warming (Bradford <i>et al.</i> ,
94	2008). However, in a 3-year grassland experiment with soil warming and shading
95	treatments, Hartley et al. (2007) found that substrate availability was the key driver
96	involved in apparent thermal acclimation of $R_{\rm H}$; by reducing differences in substrate
97	availability between previously warmed and control soils, the legacy effects were lost
98	In addition, the result of a 26-year soil warming experiment, conducted in a mid-
99	latitude hardwood forest, suggested that the rate of soil C loss was modulated by
100	diverse factors at different warming phases, including depletion of microbial
101	accessible C pools at the early phase, reductions in microbial biomass and shifts in
102	microbial community composition and C use efficiency at the middle phase, and a
103	decrease in the relative abundance of recalcitrant C pool, representing that soil
104	organic matter is not readily available to microbes either because of its intrinsic
105	chemical stability or protected in the soil matrix physically (Dungait et al., 2012), at
106	the late phase (Melillo et al., 2017). However, it is still uncertain whether and how
107	substrate availability and microbial community influence the response of $R_{\rm H}$ to
108	warming.
109	To reduce the uncertainties, we evaluate the roles of microbial community and

substrate depletion in causing apparent thermal acclimation of *R*_H by using a
sterilizing-inoculating method in alpine meadow soils of the northeastern QinghaiTibetan Plateau. Soils in this region have high SOC density but are among the most
vulnerable regions to global warming (Ding *et al.*, 2016; Crowther *et al.*, 2016). Soil
samples were taken from a 6-year experiment with warming and nitrogen (N)

115	addition. N addition can alter plant growth rates, the C:N ratio, and then the amount of
116	new C entering the soils (Vitousek et al., 1997; Xia & Wan, 2008). Therefore, it
117	provided further opportunity to investigate the importance of substrate availability in
118	determining the respiration rates. We tested the following two main hypotheses: (1)
119	previous experience of 6-years of warming would cause apparent thermal acclimation
120	by reducing $R_{\rm H}$ in warmed soils compared with controls when both incubated at a
121	common temperature, and (2) the apparent thermal acclimation was mediated by
122	microbial adaptation and substrate depletion jointly.

123

124 Materials and Methods

125 Site description and sample collection

126 The soil warming and N addition experiment was established in a typical alpine meadow ecosystem (36°42' N, 100°47' E) in the Qinghai Lake basin, northeastern 127 Qinghai-Tibetan Plateau in 2011. The elevation of this experimental site is about 3200 128 m. Mean annual temperature (MAT) and precipitation (MAP) range from -4.6 to 1 °C 129 and 291 to 575 mm, respectively. Soil temperature ranges from 6.3 to 20.5 °C across 130 131 the growing season. Mean annual evaporation is about 800 to 2000 mm in 2011-2017. 132 Both maximum temperature and precipitation were found in July. The dominated vegetation includes Kobresia tibetica, Triglochin maritimum, Blysmus 133 sinocompressus, and Carex heterostachya. 134 The field experiment included 12 plots, each 4 m \times 4 m, that were grouped into 3 135 blocks. The four plots within each block were randomly assigned to one of four 136

137	treatments: (i) control (CK) – no warming and no N addition; (ii) warming (W) –
138	increasing soil temperature by about 1.4 °C using open-top chamber (OTC, 60°
139	inclination of the panels, 0.5-m tall, and 2.08-m basal diameter); (iii) N addition (N) –
140	adding NH_4NO_3 at a rate of 1 g m ⁻² a ⁻¹ twice a year based on the reported atmospheric
141	N deposition rate in the study area (Lü & Tian, 2007); and (iv) the combination of
142	warming and N addition (WN).

Soils were sampled in July 2017 and three soil cores (3 cm in diameter and 15 143 cm in depth) were taken from each plot. The surface soils were used since microbial 144 145 activity and then heterotrophic respiration rate are greatest in this layer (Bradford et al., 2008). All soil samples were transported with dry ice to the laboratory in East 146 China Normal University for analysis. Soil samples were sieved through 2-mm 147 148 screen, and roots, large litter fragments and stones were removed. For each plot, the homogenized soils were divided into three subsamples: (1) one was stored at 4 °C for 149 incubation experiments; (2) another was air-dried to measure soil physical and 150 chemical properties; and (3) the last one was frozen at -20 °C to measure soil 151 microbial properties. 152

153 Soil and microbial analyses

156

154 Soil water holding capacity (WHC) was determined by wetting a subsample for 12 h, and then draining it through filter paper for 12 h. The saturated gravimetric 155 water content (100% WHC) was calculated by drying the subsample at 105 °C for 24

h. The soil total C and N contents were measured using an elemental analyzer 157

(Elementar, Vario Max, Germany). 158

159	Soil microbial community composition was determined by phospholipid fatty
160	acid (PLFA) analysis. Briefly, the PLFAs were extracted from a subsample of 8 g
161	freeze-drying soils following the mild alkaline methyl esterification method (Bossio
162	& Scow, 1998), and identified by gas chromatography and mass spectrometry
163	(Thermo ISQ TRACE GC system Ultra ISQ, Germany). The fatty acids were
164	quantified by the standard of FAME 19:0. Soil bacteria (i15:0, a15:0, i16:0, i17:0,
165	a17:0 16:1w7c, cy17:0, 18:1w7c, cy19:0) and fungi (18:1w9 and 18:2w6,9) were
166	classified as different microbial communities based on the results of the PLFA
167	analysis (Frostegård & Bååth, 1996; Liu et al., 2021).
168	Experimental incubations
169	To investigate variation in soil heterotrophic respiration $(R_{\rm H})$ and its temperature
170	sensitivity (Q_{10}) affected by warming and N addition, 12 wet soil samples (4
171	treatments \times 3 replicates) were set up to measure the $R_{\rm H}$ for 10-day incubation.
172	Specifically, 30 g (dry weight equivalent) of each homogenized subsample were
173	placed in 150 mL polyethylene plastic bottles. All soil samples were adjusted to 60%
174	water-holding capacity (WHC) through adding deionized water, since 50-70% WHC
175	was treated as optimum range for soil incubation (Paul et al., 2001). Soil water
176	content in each bottle was measured and adjusted based on weight at intervals of 2-3
177	days. Before starting the incubations, soils were pre-incubated at 20 °C for 24 hours
178	to activate the microbes and minimize disturbance of microbial activities (Hamdi et
179	al., 2011). After pre-incubations, all soil samples were placed in a varying
180	temperature incubator that automatically regulated temperature to increase from 5 to

25 °C and then decrease from 25 to 5 °C in 24 h. The incubation temperature spanned 181 the full temperature range (6.3 to 20.5 °C) experienced by soils across the growing 182 183 season at our study site. The CO₂ emission rate from soil was measured ranging from 5 to 25 °C using an automatic temperature to control soil flux system (PRI-8800; Pre-184 Eco, Beijing, China). Each soil sample was measured every hour over the measuring 185 period, with a total of about 120 measurements for each treatment. Briefly, sample 186 bottles were placed in a 16-hole water bath and the temperature was controlled 187 automatically. The CO₂ concentration of each bottle was measured by a CO₂ analyzer 188 189 (Li-7000, LI-COR, Lincoln, NE, USA) every second, and the total measuring time for each sample was 180 seconds. The $R_{\rm H}$ was calculated by the following equation (Liu 190 et al., 2018; Wang et al., 2018): 191

192
$$R_H = \frac{C \times V \times \alpha \times \beta}{22.4 \times m} \tag{1}$$

193 where $R_{\rm H}$ is the rate of soil heterotrophic respiration (µg C-CO₂ g⁻¹ d⁻¹); *C* is the slope 194 of CO₂ concentration; *V* is the volume of the gas tube and bottle (mL); *m* is the soil 195 weight (g); α is the conversion coefficient for CO₂ mass (from CO₂ to C); and β is the 196 conversion coefficient for time (from seconds to days).

197 *Q*₁₀ values were calculated using the following exponential equations (Lloyd &
198 Taylor, 1994; Luo & Zhou, 2006):

$$R_H = A \times e^{bT} \tag{2}$$

200 $Q_{10} = e^{10b}$ (3)

201 where T is the incubation temperature (°C), and A and b are the exponential

202 parameters that represent the intercept and slope of the line, respectively.

203	To distinguish the effects of soil substrate and microbial community on $R_{\rm H}$
204	variation, soil sterilization and inoculation experiments were used in the further
205	incubations (Fig. S1). A subset of soil samples from three treatments (CK, W, and
206	WN) were sterilized by γ -irradiation of 25 kGy for about 24 h (Marschner & Bredow,
207	2002; McNamara <i>et al.</i> , 2003). To investigate the effects of soil substrate on $R_{\rm H}$
208	variation, sterilized soils from different treatments were inoculated with the same
209	microbes (Table S1). Specifically, the irradiated soil samples of CK and W were
210	inoculated by replacing 5% of the sterilized soil with non-sterile soil of CK, with
211	these treatments abbreviated to CK-CK(S) and CK-W(S), respectively. Then these
212	soil samples were filled back into bottles after homogenization. Meanwhile, the
213	irradiated soil samples of W and WN treatments were inoculated with non-sterile soil
214	of W, which were termed as W-W(S) and W-WN(S). By contrast, in the experiment
215	investigating the effects of soil microbial community on $R_{\rm H}$ variation, sterilized soils
216	of CK were inoculated with non-sterile soils from CK and W, with these treatments
217	abbreviated to CK(M)-CK and W(M)-CK. The other two treatments: W(M)-W and
218	WN(M)-W were produced by using the similar configuration steps (Table S1). All
219	these samples were adjusted to soil moisture of 60% WHC using sterile deionized
220	water before incubation. We measured the $R_{\rm H}$ using the PRI-8800 system, and
221	calculated the Q_{10} values using equations 1-3. The soil heterotrophic respiration rate
222	at 20 °C (R_{20}) was used as an index of substrate lability (Craine <i>et al.</i> , 2010).
223	Statistical analysis

224 Two-way analysis of variance (ANOVA) was used to test for significant

225	differences in all measured data among different treatments. Differences were
226	assessed by post-hoc tests using Fisher's protected least significant difference (LSD),
227	and the significance level was set at 0.05. Exponential regressions were used to
228	investigate the relationship between $R_{\rm H}$ and incubated temperature for each treatment
229	(SigmaPlot, version 12.5, SysStat Software, Inc.). Using linear regression, we
230	evaluated whether other soil and microbial variables, such as soil C/N ratio and fungi
231	biomass, explained significant variation in R_{20} and Q_{10} . All these statistical analyses
232	were conducted by IBM SPSS Statistics 23 (IBM Crop, Armonk, NY, USA).
233	
234	Results
235	Effects of warming and N addition on $R_{\rm H}$
236	Soil heterotrophic respiration ($R_{\rm H}$) increased exponentially with the incubation
237	temperature in all treatments (Fig. 2). The $R_{\rm H}$ in warming (W), N addition (N) and
238	their combination (WN) was significantly lower than that in the control (CK).
239	Warming decreased the $R_{\rm H}$ in those plots without N addition, but increased it in N
240	addition plots, showing an interaction between warming and N addition ($P < 0.01$,
241	Figs. 2a and b, Table S2). On average, the respiration rates at 20 °C (R_{20}) were 20.2,
242	19.4, and 25.3 μ g C-CO ₂ g ⁻¹ d ⁻¹ under W, N, and WN treatments, respectively,
243	representing decreases of 24.3%, 27.3%, and 5.2% compared with the control.
244	However, the temperature sensitivity (Q_{10}) of $R_{\rm H}$ showed no significant changes
245	among different treatments (Figs. 2c and d).
246	We regressed R_{20} against soil substrates and microbial properties among

treatments, observing a positive relationship between R_{20} and soil C:N ratio ($r^2 = 0.35$,

248 P < 0.05, Fig. 3a) and a negative relationship between R_{20} and fungi biomass ($r^2 =$

249 0.33, *P* < 0.05, Fig. 3b).

250 Soil substrate and microbial community regulating the $R_{\rm H}$

251 To quantify the role of substrate availability on the variation of $R_{\rm H}$, the sterilized

252 soils from CK and W treatments were inoculated with microbes of CK, having two

253 treatments: CK-CK(S) and CK-W(S). The *R*_H and *R*₂₀ of CK-CK(S) were significantly

higher than those in the CK-W(S) (P < 0.05), but Q_{10} showed no significant

differences (P > 0.05, Fig. 4c). When the sterilized soils from W and WN treatments

were inoculated with microbes of W treatment (W-W(S), W-WN(S)), the $R_{\rm H}$ and R_{20}

257 of W-W(S) was significantly lower than those in the W-WN(S) with no significant

difference in Q_{10} (Fig. 4d). The retention of differences between different *in situ*

treatments following sterilization and inoculation showed that soil substrates largely

260 regulated the variation of $R_{\rm H}$.

261 To identify the influence of soil microbial community on the response of $R_{\rm H}$ to

262 warming, we inoculated microbes of CK and W treatments to the sterilized soils of the

263 control, which were named as CK(M)-CK and W(M)-CK, respectively. The R_{20} and

264 Q_{10} showed no significant difference between CK(M)-CK and W(M)-CK (Fig. 5c).

265 When microbes of W and WN treatments were inoculated to the sterilized soils of W

treatment (abbreviated as W(M)-W and WN(M)-W, respectively), the R₂₀ in WN(M)-

267 W was slightly higher than that in the W(M)-W with no significant difference in the

268 Q_{10} (Fig. 5d). Again, these results showed that microbial community had little

269 influence on the response of $R_{\rm H}$ to warming.

Discussion

272	In this study, our results demonstrate that the reduction in soil $R_{\rm H}$ caused by
273	experimental warming in an alpine meadow was largely caused by substrate
274	depletion, rather than microbial thermal adaptation. On average, when measured at a
275	common temperature, the reduction in the $R_{\rm H}$ in the warmed treatments was about
276	32% compared to the control (Fig. 2). This is in broad agreement with previous
277	findings on apparent thermal acclimation (Eliasson et al., 2005; Carey et al., 2016;
278	Chen et al., 2016a). The respiration rate at a common assay temperature (i.e., 20 °C in
279	this study) was significantly correlated with soil C/N ratio and fungi biomass (Fig. 3),
280	suggesting that the warming-induced reduction in $R_{\rm H}$ may be dictated to changes in
281	soil substrate and/or microbial communities (i.e., substrate limitation and microbial
282	adaptation, Hartley et al., 2007; Bradford et al., 2008; Melillo et al., 2017).
283	Taking advantage of the sterilizing-inoculating experiments, we further clarified
284	the effects of microbial community and substrate limitation in determining the
285	apparent thermal acclimation of $R_{\rm H}$. If the adaptation of the microbial community
286	explained the differences in respiration rates across the treatments, inoculation of the
287	sterilized control soil with the warmed community should have reduced respiration
288	rates. However, a non-significant increase in respiration was observed for the
289	sterilized control soils inoculated with warmed microbes. Similarly, inoculation of the
290	warmed soils with microbes from the warmed and N addition treatment should have

increased respiration, but a small statistically significant decrease in respiration was 291 observed (Figs. 4 and 5). Therefore, it does not appear that the adaptation of the 292 293 microbial community controls respiration rates. This empirical investigation suggests that the lower $R_{\rm H}$ from the warmed soils is regulated by substrate depletion, rather 294 295 than the microbial adaptation. N addition also reduced heterotrophic respiration (Fig. 2), likely resulting from 296 the decrease in soil pH, microbial biomass, and extracellular enzyme activity (Zhou et 297 al., 2014; Chen et al., 2018; Xing et al., 2022). Furthermore, our sterilization-298 299 reinoculation experiments suggest that this negative effect was driven by a substrate availability. This could be related to reductions in decomposition rates of more 300 recalcitrant organic matter, which also decreased the availability of labile C (Janssens 301 302 et al., 2010; Tian et al., 2019; Widdig et al., 2020). However, the data also suggest that N addition appeared to alleviate the apparent acclimation of $R_{\rm H}$ to warming. The 303 $R_{\rm H}$ in the warming combined with N addition treatment was higher than that in each 304 305 single factor (Fig. 2), suggesting that there existed significant interaction between warming and N addition that reduced the effects of warming on substrate availability 306 (Zhou et al., 2016; Yue et al., 2017). A field manipulative experiment conducted in 307 Tibetan alpine meadow demonstrated that warming significantly increased N losses 308 via enhanced NO₃⁻ leaching and N₂O emissions (Zhang et al., 2020), alleviating the 309 limiting effect of N addition on microbial activity. Since alpine ecosystems are 310 characterized by limited soil mineral N (Chen et al., 2016b), N addition likely also 311 stimulates plant productivity and C inputs to soil, and then moderates the substrate 312

depletion induced by warming. Therefore, the interactive effects of multiple global 313 change factors on soil microbial respiration should include a more detailed 314 315 understanding of the mechanisms underlying variation in substrates (Zhou et al., 2016; Song et al., 2019), and deserves the further study. 316 317 Experimentally determining the relative importance of microbial community and substrate depletion in regulating apparent thermal acclimation of $R_{\rm H}$ is extremely 318 difficult due to their tight coupling (Walker et al., 2018). Since our sterilization and 319 inoculation experiments were designed to differentiate the effects of microbial 320 321 community and substrate limitation, it should be noted that sterilization and inoculation might alter soil C substrate to some degree (Figs. 2, 4 and 5). However, 322 sterilization and inoculation did not eliminate the impacts of low substrate availability 323 324 induced by 6-year warming, as evidenced by a lower $R_{\rm H}$ in the sterilized soils from warmed treatments inoculated with the control microbes than that in sterilized soils 325 from the control inoculated with the same microbial community (Figs. 4 and 5). Our 326 327 results therefore demonstrate that substrate depletion can explain the reduction in respiration rates. Despite this, no effect was observed on soil C content and 328 components (e.g., labile and recalcitrant C pools). This finding is actually consistent 329 with the results from warming experiments (Lu et al., 2013; Guan et al., 2018; Li et 330 al., 2020) and demonstrates that it is remarkably difficult to measure a "small change 331 in a big number" such as a warming effect on the amount of C stored in soils, likely 332 due to these changes being less than the measurement errors (Smith, 2004; Hartley et 333 al., 2007). Currently, there is large uncertainty in the projected soil C changes under 334

warming, and future research is needed to probe how climate change affects the
measurable and biophysically defined sub-SOM pools using isotopic, biomarker, and
fractionation approaches (Hartley *et al.*, 2021; Lugato *et al.*, 2021; Georgiou *et al.*,
2022).

339 Having eliminated microbial community composition as a key determinant of differences in rates of heterotrophic respiration in these soils, again it indicates that 340 the differences in the R_{20} were caused by the depletion of labile SOC pools in 341 response to sustained warming (Knorr et al., 2005; Hartley et al., 2007). Therefore, 342 343 our data suggest that there remains the potential for C loss in response to warming, and it thus becomes critical to understand the soil properties that regulate how much 344 soil C stocks are vulnerable to being released in the long-term (Crowther et al., 2016; 345 346 Hartley et al., 2021). Most Earth system models (ESMs) are heavily dependent on the short-term temperature responses of soil respiration (Q_{10}) to infer long-term changes 347 in global C stocks (Davidson et al., 2006; Jones et al., 2011; Li et al., 2020). Our 348 349 evidence that microbial adaptation does not cause the apparent thermal acclimation of heterotrophic respiration in soil warming experiments suggests that C stocks will be 350 351 lost as the world warms, and it is critical that soil C vulnerability is reflected in the process-based models that are used in future climate change projections. 352 353

354 Acknowledgements

The authors thank three anonymous reviewers for their insightful comments and
 suggestions. The research was financially supported by the National Natural Science

- Foundation of China (31901200, 31930072, 32271713), Shanghai Sailing Program
- 358 (19YF1413300), and the Fundamental Research Funds for the Central Universities
- 359 (2572022BA04). The authors acknowledge Qing Wang, Huimin Zhou, and Kui Xue
- 360 for laboratory assistance and data collection.

361 **References**

- Allison, S. D., Wallenstein, M. D., & Bradford, M. A. (2010). Soil-carbon response to warming
 dependent on microbial physiology. *Nature Geoscience*, *3*(5), 336–340.
- Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., & Vargas, R. (2018). Globally rising
 soil heterotrophic respiration over recent decades. *Nature*, *560*(7716), 80–83.
- Bossio, D. A., & Scow, K. M. (1998). Impacts of Carbon and Flooding on Soil Microbial
 Communities: Phospholipid Fatty Acid Profiles and Substrate Utilization Patterns. *Microbial*
- 368 *Ecology*, *35*(3), 265–278.
- Bradford, M. A., Davies, C. A., Frey, S. D., Maddox, T. R., Melillo, J. M., Mohan, J. E., Reynolds,
 J. F., Treseder, K. K., & Wallenstein, M. D. (2008). Thermal adaptation of soil microbial
- 371 respiration to elevated temperature. *Ecology Letters*, *11*(12), 1316–1327.
- Bradford, M. A. (2013). Thermal adaptation of decomposer communities in warming soils.
 Frontiers in Microbiology, 4.
- Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A., & Crowther, T. W. (2016).
 Managing uncertainty in soil carbon feedbacks to climate change. *Nature Climate Change*,
 6(8), 751–758.
- Bradford, M. A., McCulley, R. L., Crowther, Thomas. W., Oldfield, E. E., Wood, S. A., & Fierer, N.
 (2019). Cross-biome patterns in soil microbial respiration predictable from evolutionary theory
 on thermal adaptation. *Nature Ecology & Evolution*, *3*(2), 223–231.
- Carey, J. C., Tang, J., Templer, P. H., Kroeger, K. D., Crowther, T. W., Burton, A. J., ... Tietema, A.
 (2016). Temperature response of soil respiration largely unaltered with experimental warming.
 Proceedings of the National Academy of Sciences of the United States of America, 113(48),
 13797–13802.
- Chen, J., Luo, Y., van Groenigen, K. J., Hungate, B. A., Cao, J., Zhou, X., & Wang, R. (2018). A
 keystone microbial enzyme for nitrogen control of soil carbon storage. *Science Advances*, 4(8),
 eaaq1689.
- Chen, J., Luo, Y., Xia, J., Shi, Z., Jiang, L., Niu, S., Zhou, X., & Cao, J. (2016a). Differential
 responses of ecosystem respiration components to experimental warming in a meadow
 grassland on the Tibetan Plateau. *Agricultural and Forest Meteorology*, *220*, 21–29.
- 390 Chen, L.-F., He, Z.-B., Du, J., Yang, J.-J., & Zhu, X. (2016b). Patterns and environmental controls

- 391 of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China. *CATENA*,
 392 *137*, 37–43.
- Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell I. J. (2000). Acceleration of global
 warming due to carbon-cycle feedbacks in a coupled model, *Nature 408*(6813), 184–187.
- Craine, J. M., Fierer, N., & McLauchlan, K. K. (2010). Widespread coupling between the rate and
 temperature sensitivity of organic matter decay. *Nature Geoscience*, *3*(12), 854–857.
- Crowther, T. W., & Bradford, M. A. (2013). Thermal acclimation in widespread heterotrophic soil
 microbes. *Ecology Letters*, *16*(4), 469–477.
- 399 Crowther, T. W., Todd-Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M.
- B., ... Bradford, M. A. (2016). Quantifying global soil carbon losses in response to warming. *Nature*, *540*(7631), 104–108.
- 402 Davidson, E. A., Janssens, I. A., & Luo, Y. (2006). On the variability of respiration in terrestrial
 403 ecosystems: Moving beyond Q₁₀. *Global Change Biology*, *12*(2), 154–164.
- 404 Ding, J., Chen, L., Zhang, B., Liu, L., Yang, G., Fang, K., Chen, Y., Li, F., Kou, D., Ji, C., Luo, Y.,
 405 & Yang, Y. (2016). Linking temperature sensitivity of soil CO₂ release to substrate,
 406 environmental, and microbial properties across alpine ecosystems: Microbial Decomposition

407 in Alpine Soils. *Global Biogeochemical Cycles*, *30*(9), 1310–1323.

- 408 Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., & Whitmore, A. P. (2012). Soil organic matter
 409 turnover is governed by accessibility not recalcitrance. *Global Change Biology*, *18*(6), 1781–
 410 1796.
- Eliasson, P. E., McMurtrie, R. E., Pepper, D. A., Stromgren, M., Linder, S., & Agren, G. I. (2005).
 The response of heterotrophic CO₂ flux to soil warming. *Global Change Biology*, *11*(1), 167–
 181.
- Frey, S. D., Drijber, R., Smith, H., & Melillo, J. (2008). Microbial biomass, functional capacity,
 and community structure after 12 years of soil warming. *Soil Biology and Biochemistry*,
 416 40(11), 2904–2907.
- 417 Frostegård, A. & Bååth, E. (1996). The use of phospholipid fatty acid analysis to estimate bacterial
 418 and fungal biomass in soil. *Biology and Fertility of Soils*, 22(1–2), 59–65.
- 419 García-Palacios, P., Crowther, T. W., Dacal, M., Hartley, I. P., Reinsch, S., Rinnan, R., Rousk, J.,
- 420 van den Hoogen, J., Ye, J.-S., & Bradford, M. A. (2021). Evidence for large microbial-

- 421 mediated losses of soil carbon under anthropogenic warming. *Nature Reviews Earth &*422 *Environment*, 2(7), 507–517.
- 423 Georgiou, K., Jackson, R. B., Vindušková, O., Abramoff, R. Z., Ahlström, A., Feng, W., Harden, J.
- W., Pellegrini, A. F. A., Polley, H. W., Soong, J. L., Riley, W. J., & Torn, M. S. (2022). Global
 stocks and capacity of mineral-associated soil organic carbon. *Nature Communications*, *13*(1),
 3797.
- Guan, S., An, N., Zong, N., He, Y., Shi, P., Zhang, J., & He, N. (2018). Climate warming impacts
 on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow. *Soil Biology and Biochemistry*, *116*, 224–236.
- 430 Hamdi, S., Chevallier, T., Ben Aïssa, N., Ben Hammouda, M., Gallali, T., Chotte, J.-L., & Bernoux,
- M. (2011). Short-term temperature dependence of heterotrophic soil respiration after onemonth of pre-incubation at different temperatures. *Soil Biology and Biochemistry*, 43(9),
 1752–1758.
- Hartley, I. P., Heinemeyer, A., & Ineson, P. (2007). Effects of three years of soil warming and
 shading on the rate of soil respiration: Substrate availability and not thermal acclimation
 mediates observed response. *Global Change Biology*, *13*(8), 1761–1770.
- Hartley, I. P., Hopkins, D. W., Garnett, M. H., Sommerkorn, M., & Wookey, P. A. (2008). Soil
 microbial respiration in arctic soil does not acclimate to temperature. *Ecology Letters*, *11*(10),
 1092–1100.
- Hartley, I. P., Hill, T. C., Chadburn, S. E., & Hugelius, G. (2021). Temperature effects on carbon
 storage are controlled by soil stabilisation capacities. *Nature Communications*, *12*(1), 6713.
- 442 IPCC, 2021: Summary for Policymakers. In: *Climate Change 2021: The Physical Science Basis.*443 *Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental*
- 444 Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S.
- 445 Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R.
- Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge
 University Press. In Press.
- Jackson, R. B., Lajtha, K., Crow, S. E., Hugelius, G., Kramer, M. G., & Piñeiro, G. (2017). The
 Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls. *Annual Review of Ecology, Evolution, and Systematics*, 48(1), 419–445.

- 451 Janssens, I. A., Dieleman, W., Luyssaert, S., Subke, J.-A., Reichstein, M., Ceulemans, R., Ciais, P.,
- 452 Dolman, A. J., Grace, J., Matteucci, G., Papale, D., Piao, S. L., Schulze, E.-D., Tang, J., &
- Law, B. E. (2010). Reduction of forest soil respiration in response to nitrogen deposition. *Nature Geoscience*, 3(5), 315–322.
- 455 Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight, J., ... Zerroukat,
- 456 M. (2011). The HadGEM2-ES implementation of CMIP5 centennial simulations.
 457 *Geoscientific Model Development*, 4(3), 543–570.
- Knorr, W., Prentice, I. C., House, J. I., & Holland, E. A. (2005). Long-term sensitivity of soil carbon
 turnover to warming. *Nature*, *433*(7023), 298–301.
- 460 Li, F., Peng, Y., Chen, L., Yang, G., Abbott, B. W., Zhang, D., Fang, K., Wang, G., Wang, J., Yu, J.,
- Liu, L., Zhang, Q., Chen, K., Mohammat, A., & Yang, Y. (2020). Warming alters surface soil
 organic matter composition despite unchanged carbon stocks in a Tibetan permafrost
 ecosystem. *Functional Ecology*, *34*(4), 911–922.
- Li, J., Wang, G., Mayes, M. A., Allison, S. D., Frey, S. D., Shi, Z., Hu, X., Luo, Y., & Melillo, J.
 M. (2019). Reduced carbon use efficiency and increased microbial turnover with soil warming. *Global Change Biology*, 25(3), 900–910.
- Li, J., Pei, J., Pendall, E., Reich, P. B., Noh, N. J., Li, B., Fang, C., & Nie, M. (2020). Rising
 Temperature May Trigger Deep Soil Carbon Loss Across Forest Ecosystems. *Advanced Science*, 7(19), 2001242.
- 470 Liu, R., He, Y., Zhou, G., Shao, J., Zhou, L., Zhou, H., Li, N., Song, B., Liang, C., Yan, E., Chen,
- X., Wang, X., Wang, M., Bai, S. H., Zhou, X., & Phillips, R. P. (2021). Mycorrhizal effects
 on decomposition and soil CO₂ flux depend on changes in nitrogen availability during forest
 succession. *Journal of Ecology*, *109*(11), 3929–3943.
- Liu, Y., He, N., Wen, X., Xu, L., Sun, X., Yu, G., Liang, L., & Schipper, L. A. (2018). The optimum
 temperature of soil microbial respiration: Patterns and controls. *Soil Biology and Biochemistry*, *121*, 35–42.
- 477 Lü, C., & Tian, H. (2007). Spatial and temporal patterns of nitrogen deposition in China: Synthesis
 478 of observational data. *Journal of Geophysical Research*, *112*(D22), D22S05.
- 479 Lloyd, J. & Taylor, J. A. (1994). On the Temperature Dependence of Soil Respiration. *Functional*480 *Ecology*, 8, 315–323.

- 481 Lu, M., Zhou, X., Yang, Q., Li, H., Luo, Y., Fang, C., Chen, J., Yang, X., & Li, B. (2013). Responses
- 482 of ecosystem carbon cycle to experimental warming: A meta-analysis. *Ecology*, 94(3), 726–
 483 738.
- 484 Lugato, E., Lavallee, J. M., Haddix, M. L., Panagos, P., & Cotrufo, M. F. (2021). Different climate
- 485 sensitivity of particulate and mineral-associated soil organic matter. *Nature Geoscience*, *14*(5),
 486 295–300.
- 487 Luo, Y. (2007). Terrestrial Carbon–Cycle Feedback to Climate Warming. *Annual Review of Ecology,*488 *Evolution, and Systematics*, 38(1), 683–712.
- Luo, Y., Wan, S., Hui, D., & Wallace, L. L. (2001). Acclimatization of soil respiration to warming
 in a tall grass prairie. *Nature*, *413*(6856), 622–625.
- 491 Luo, Y. & Zhou, X. (2006). Soil Respiration and the Environment. Academic Press, San Diego, CA.
- Marschner, B., & Bredow, A. (2002). Temperature effects on release and ecologically relevant
 properties of dissolved organic carbon in sterilised and biologically active soil samples. *Soil Biology and Biochemistry*, *34*(4), 459–466.
- McNamara, N. P., Black, H. I. J., Beresford, N. A., & Parekh, N. R. (2003). Effects of acute gamma
 irradiation on chemical, physical and biological properties of soils. *Applied Soil Ecology*, 24(2),
 117–132.
- Melillo, J. M., Frey, S. D., DeAngelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F. P., Pold, G.,
 Knorr, M. A., & Grandy, A. S. (2017). Long-term pattern and magnitude of soil carbon
- feedback to the climate system in a warming world. *Science*, *358*(6359), 101–105.
- Melillo, J. M., Steudler, P. A., Aber, J. D., Newkirk, K., Lux, H., Bowles, F. P., Catricala, C., Magill,
 A., Ahrens, T., & Morrisseau, S. (2002). Soil Warming and Carbon-Cycle Feedbacks to the
 Climate System. *Science*, *298*(5601), 2173–2176.
- Paul, E.A., Morris. S.J. & Böhm, S. (2001). The determination of soil C pool sizes and turnover
 rates: biophysical fractionation and tracers. In: *Assessment methods of soil carbon* (eds Lal, R.,
- 506 Kimble, J.M., Follett, R.F. & Stewart, B.A.), pp. 193–205. CRC Press, Boca Raton.
- Pold, G., Grandy, A. S., Melillo, J. M., & DeAngelis, K. M. (2017). Changes in substrate availability
 drive carbon cycle response to chronic warming. *Soil Biology and Biochemistry*, *110*, 68–78.
- 509 Scharlemann, J. P., Tanner, E. V., Hiederer, R., & Kapos, V. (2014). Global soil carbon:
- 510 Understanding and managing the largest terrestrial carbon pool. Carbon Management, 5(1),

511 81–91.

- Smith, P. (2004). How long before a change in soil organic carbon can be detected? *Global Change Biology*, *10*(11), 1878–1883.
- Song, J., Wan, S., Piao, S., Knapp, A. K., Classen, A. T., Vicca, S., ... Zheng, M. (2019). A metaanalysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global
 change. *Nature Ecology & Evolution*, 3(9), 1309–1320.
- 517 Tian, J., Dungait, J. A. J., Lu, X., Yang, Y., Hartley, I. P., Zhang, W., Mo, J., Yu, G., Zhou, J., &
- Kuzyakov, Y. (2019). Long-term nitrogen addition modifies microbial composition and
 functions for slow carbon cycling and increased sequestration in tropical forest soil. *Global Change Biology*, 25(10), 3267–3281.
- Tucker, C. L., Bell, J., Pendall, E., & Ogle, K. (2013). Does declining carbon-use efficiency explain
 thermal acclimation of soil respiration with warming? *Global Change Biology*, *19*(1), 252–263.
- 523 Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W.,
- Schlesinger, W. H., & Tilman, D. G. (1997). Human Alteration of the Global Nitrogen Cycle:
 Sources and Consequences. *Ecological Applications*, 7(3), 737–750.
- 526 Walker, T. W. N., Kaiser, C., Strasser, F., Herbold, C. W., Leblans, N. I. W., Woebken, D., Janssens,
- 527 I. A., Sigurdsson, B. D., & Richter, A. (2018). Microbial temperature sensitivity and biomass
 528 change explain soil carbon loss with warming. *Nature Climate Change*, 8(10), 885–889.
- 529 Wang, Q., He, N., Liu, Y., Li, M., Xu, L., & Zhou, X. (2018). Important interaction of chemicals,
- microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic
 respiration. *Plant and Soil*, 428(1–2), 279–290.
- Widdig, M., Schleuss, P.-M., Biederman, L. A., Borer, E. T., Crawley, M. J., Kirkman, K. P.,
 Seabloom, E. W., Wragg, P. D., & Spohn, M. (2020). Microbial carbon use efficiency in
 grassland soils subjected to nitrogen and phosphorus additions. *Soil Biology and Biochemistry*, *146*, 107815.
- Wieder, W. R., Allison, S. D., Davidson, E. A., Georgiou, K., Hararuk, O., He, Y., Hopkins, F., Luo,
 Y., Smith, M. J., Sulman, B., Todd-Brown, K., Wang, Y.-P., Xia, J., & Xu, X. (2015). Explicitly
 representing soil microbial processes in Earth system models: Soil microbes in earth system
- 539 models. *Global Biogeochemical Cycles*, 29(10), 1782–1800.
- 540 Xia, J., & Wan, S. (2008). Global response patterns of terrestrial plant species to nitrogen addition.

- 541 *New Phytologist*, *179*(2), 428–439.
- Xing, A., Du, E., Shen, H., Xu, L., Zhao, M., Liu, X., & Fang, J. (2022). High-level nitrogen
 additions accelerate soil respiration reduction over time in a boreal forest. *Ecology Letters*,
 25(8), 1869–1878.
- Ye, J., Bradford, M. A., Dacal, M., Maestre, F. T., & García-Palacios, P. (2019). Increasing microbial
 carbon use efficiency with warming predicts soil heterotrophic respiration globally. *Global Change Biology*, 25(10), 3354–3364.
- Yue, K., Fornara, D. A., Yang, W., Peng, Y., Peng, C., Liu, Z., & Wu, F. (2017). Influence of multiple
 global change drivers on terrestrial carbon storage: Additive effects are common. *Ecology Letters*, 20(5), 663–672.
- Zhang, W., Parker, K. M., Luo, Y., Wan, S., Wallace, L. L., & Hu, S. (2005). Soil microbial responses
 to experimental warming and clipping in a tallgrass prairie. *Global Change Biology*, *11*(2),
 266–277.
- Zhang, Y., Zhang, N., Yin, J., Zhao, Y., Yang, F., Jiang, Z., Tao, J., Yan, X., Qiu, Y., Guo, H., & Hu,
 S. (2020). Simulated warming enhances the responses of microbial N transformations to
 reactive N input in a Tibetan alpine meadow. *Environment International*, *141*, 105795.
- Zhou, L., Zhou, X., Zhang, B., Lu, M., Luo, Y., Liu, L., & Li, B. (2014). Different responses of soil
 respiration and its components to nitrogen addition among biomes: A meta-analysis. *Global Change Biology*, 20(7), 2332–2343.
- Zhou, L., Zhou, X., Shao, J., Nie, Y., He, Y., Jiang, L., Wu, Z., & Hosseini Bai, S. (2016). Interactive
 effects of global change factors on soil respiration and its components: A meta-analysis. *Global Change Biology*, 22(9), 3157–3169.

563 **Figure legends**

Figure 1 Proposed mechanisms to interpret the thermal acclimation of soil 564 heterotrophic respiration $(R_{\rm H})$. Microbial adaptation (a) results from a shift in soil 565 microbial population, community composition, and physiological activities in 566 response to soil warming, and then attenuates the SOC decomposition rate. 567 Substrate depletion (b) involves a decrease in the soil labile C pool in response to 568 sustained warming, leading to a subsequent reduction in the rate of $R_{\rm H}$. 569 Figure 2 The response of heterotrophic respiration rates $(R_{\rm H})$ to incubated 570 temperature in different treatments (a and b), including control (C), warming (W), 571 N addition (N), and the combination of warming and N addition (WN). This 572 relationship was modeled as an exponential function of soil temperature: $R_{\rm H} = \alpha$ 573 [exp ($\beta \times$ temperature)], where α is respiration rate at 0 °C and β is temperature 574 sensitivity of respiration (Q_{10}) . Effects of warming, nitrogen addition, and their 575 combination on the respiration rate at 20 °C (R_{20} , c) and temperature sensitivities 576 (Q_{10}, d) . Different letters over the bars indicate significant differences among 577 different treatments at P = 0.05 level. 578 Figure 3 Relationships between soil heterotrophic respiration rate at 20 °C (R_{20}) and 579 580 soil C:N ratio (a) and fungi biomass (b). Figure 4 The heterotrophic respiration rates ($R_{\rm H}$, a and b), respiration rate at 20 °C 581 (R_{20}, c) and temperature sensitivities (Q_{10}, d) in different sterilized samples 582 inoculated with the same microbial community. CK-CK(S) and CK-W(S) 583 represents soil microbial community of CK were inoculated to the sterilized soil 584

585	samples of CK and W, respectively (a). W-W(S) and W-WN(S) represents soil
586	microbial community of W were inoculated to the sterilized soil samples of W
587	and WN, respectively (b).
588	Figure 5 The heterotrophic respiration rates ($R_{\rm H}$, a and b), respiration rate at 20 °C
589	(R_{20} , c) and temperature sensitivities (Q_{10} , d) in the same sterilized soil samples
590	inoculated with different soil microbial communities. CK(M)-CK and W(M)-CK
591	represents the sterilized soil samples of CK inoculated with microbial community
592	of CK and W, respectively. W(M)-W and WN(M)-W represents the sterilized soil
593	samples of W inoculated with microbial community of W and WN respectively.
594	

596 Figure 1

595

