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A B S T R A C T

We measure the impact of a first-order integer auto-regressive, INAR(1), demand process on order-up-to (OUT)
replenishment policy dynamics. We obtain a unique understanding of the bullwhip behaviour for slow moving
integer demand. We forecast the integer demand in two ways; with a conditional mean and a conditional
median. We investigate the impact of the two forecasting methods on the bullwhip effect and inventory
variance generated by the OUT replenishment policy. While the conditional mean forecasts result in the tightest
inventory control, they result in real-valued orders and inventory levels which is inconsistent with the integer
demand. However, the conditional median forecasts are integer-valued and produce logically consistent integer
order and inventory levels. The conditional median forecasts minimise the expected absolute forecasting error,
but it is not possible to obtain closed form variance expressions. Numerical experiments reveal existing results
remain valid with high volume correlated demand. However, for low volume demand, the impact of the
integer demand on the bullwhip effect is often significant. Bullwhip with conditional median forecasts can
be both lower and higher than with conditional mean forecasts; indeed it can even be higher than a known
conditional mean upper bound (that is valid for all lead times under real-valued, first-order auto-regressive,
AR(1), demand), depending on the auto-regressive parameter. Numerical experiments confirm the conditional
mean inventory variance is a lower bound for the conditional median inventory variance.
1. Introduction

The bullwhip effect refers to the tendency for supply chain re-
plenishment decisions to amplify the variability of the demand when
releasing production orders onto the factory shop floor or placing
replenishment orders onto suppliers (Lee et al., 2000). A rich literature
has been developed in the last 25 years on the bullwhip effect since
the seminal work of Lee et al. (1997). Many of the existing studies
on the bullwhip effect (Chen et al., 2000a; Dejonckheere et al., 2003)
have assumed that real-valued demand exists. That is, demand can
take on any number, even fractional values. For some products sold by
volume or weight (for example, powders, granules, or liquids) this may
be appropriate. However, for other products, only integer (or batch)
demand makes sense. For example, you cannot buy half a bicycle or half
a laptop. In these situations, demand and replenishment orders must be
integers. For some situations, with high volume demand, replenishment
calculations can ignore integer effects as rounding becomes negligible.
However, low volume demand settings may be more susceptible to
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integer (rounding) effects. Consider, for example, the daily demand for
a single product in a single grocery store in Fig. 1. These products have
low volume, integer, occasionally zero, demands.

Continuous-valued time series can be modelled using auto-regressive
integrated moving average (ARIMA) type processes (Box et al., 2015).
First order ARIMA demand processes are popular assumptions in bull-
whip studies due to their mathematical simplicity and their relevance
to practical settings. These demand processes are often forecasted with
minimum mean squared error (MMSE) forecasting methods (Graves,
1999; Chen et al., 2000a,b; Hosoda and Disney, 2006; Duc et al.,
2008). However, standard ARIMA techniques are not suitable for mod-
elling non-negative integer-valued series (Silva and Oliveira, 2004).
Therefore, another family of stationary models, integer auto-regressive
moving average processes (INARMA), has been proposed, Al-Osh and
Alzaid (1988).

Wang and Disney (2016) provide a comprehensive review of bull-
whip research categorising it into empirical, experimental, and an-
alytical approaches. They note integer demand processes have not
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Fig. 1. Low volume, occasionally zero, integer demand for two products from a single store of a UK grocery retailer.
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een extensively covered. The bullwhip effect can be measured in
ifferent ways, however it is often convenient to quantify it via the
atio of the variance of orders divided by the variance of demand.
or normally distributed errors in the demand process and when a
inear replenishment system exists, the capacity costs are known to
e a linear function of the standard deviation of the orders, Boute
t al. (2022). The standard deviation of the orders is closely related
o the bullwhip measure. The other side of the bullwhip problem is the
ariance of the inventory levels. In a linear system (where a positive net
tock represents inventory holding and a negative net stock represents
nmet demand, or a backlog) it is convenient to use the term net stock
mplification (NSAmp) as a moniker for the variance of the net stock
ivided by the variance of the demand. NSAmp is an important measure
s it is closely related to the expected, per period, inventory holding
nd backlog costs when normally distributed error terms are present
n the demand process and a linear replenishment system exists. Later
n this paper we will explore the economic consequences of Poisson
istributed errors and non-normal orders and net stock levels.

Our contribution is to investigate the consequences of integer de-
and on the performance of the OUT replenishment policy when two
ifferent forecasting approaches are used. The first forecasting method
s based on the–frequently assumed–conditional mean of future de-
and (Wang and Disney, 2016). While, this forecasting method creates
MMSE forecast of future demands, it results in non-integer, forecasts,
rders, and inventory levels. This is logically inconsistent with the inte-
er demand assumption. The second forecasting method is based on the
onditional median forecast which produces–conceptually consistent–
nteger forecasts, orders, and inventory levels. We find the conditional
ean forecasts for INAR(1) demand results in exactly the same vari-

nce ratios as the conditional mean forecasts under real-valued AR(1)
emand. The conditional median forecasts produce different order and
nventory dynamics. Numerical experiments show existing results for
eal-valued demand can be used with confidence when we have high
olume demand integer demand. However, under low volume, possi-
ly intermittent, integer demand there can be a significant difference
etween the real- and integer-valued Bullwhip and NSAmp predictions.

The structure of the paper is as follows. Section 3 provides back-
round information on the INAR(1) process and the OUT replenishment
olicy. Section 4 is devoted to creating conditional mean forecasts.
ection 5 is devoted to creating conditional median forecasts. Section 6
haracterises the Bullwhip and NSAmp performance of the OUT policy
ith the two different forecasts. We also compare the conditional
ean and median forecasts to two empirical forecasting methods for

ntermittent demand. Integer, independent and identically distributed
i.i.d.) demands are considered in more detail in Section 7. Section 8
ummarises the paper and concludes.

. Literature review

Forecasts are often used as an input to planning, policy, or decision-
aking processes. For instance, in supply chains, a forecast is used to
2

s

etermine inventory replenishment quantities. However, classical time
eries models such as exponential smoothing state–space (ETS), ARIMA,
nd multiple linear regression do not produce integer forecasts required
y the decision-making process and may poorly describe the nature of
ount series (Davis et al., 2021). Count time series can be modelled and
orecasted using classical marginal count distributions (for example,
oisson, negative binomial) that are often described using generalised
inear models (GLM), (Dobson and Barnett, 2018). GLM extends linear
egression and can accommodate both continuous or discrete series. In
ine with the concept of ARIMA for real-valued discrete time series,
everal models are proposed for count series including integer-valued
RMA (INARMA) (Al-Osh and Alzaid, 1988; Silva and Oliveira, 2004),
iscrete ARMA (Biswas and Song, 2009) and generalised ARMA (Zheng
t al., 2015).

If a time series contains many zeros (often called intermittent time
eries), classical count distributions such as Poisson and Negative Bino-
ial may not be able to describe the series. Intermittent demand occurs
hen a product experiences frequent periods of zero demand. Often

n these situations, when demand occurs, it is small and sometimes
ighly variable in size. Various approaches have been proposed to
orecast intermittent demand time series. The first method was pro-
osed by Croston (1972), followed by some refinements known as the
yntetos–Boylan Approximation (SBA), (Syntetos and Boylan, 2005)
nd the Teunter–Syntetos–Babai (TSB) approximation (Teunter et al.,
011). These approaches compensate for the bias present in Croston’s
ethod introduced by exponential smoothing, however they do not

enerate integer forecasts. A different approach to model intermittent
emand time series is to use statistical models such as INARMA, zero-
nflated and hurdle models (Hu et al., 2011). Lolli et al. (2017)
ompares the intermittent demand forecasting performance of single
idden layer neural networks for forecasting intermittent demand,
ne-, three- and five-periods ahead. Two approaches were taken to
rain the neural networks; a slower back-propagation algorithm re-
ulted in a smaller mean average percentage error (MAPE) than a
uicker extreme learning algorithm. The neural networks were also
hown to outperform the popular exponential smoothing models for
redicting intermittent demand: Croston’s Method, (Croston, 1972)
nd the SBA (Syntetos and Boylan, 2005). Other methods to forecast
ntermittent demand have been proposed in the literature, including
emporal aggregation (Rostami-Tabar et al., 2013, 2014, 2019), tem-
oral hierarchies (Nikolopoulos et al., 2011) and bootstrapping (Hasni
t al., 2019).

Goltsos et al. (2022) conduct a literature review of forecasting
or inventory management finding the forecasting literature largely
ssumes the forecast to be an end in itself, without due consideration
f the how those forecasts will be used in business decisions and their
conomic consequences. Conversely, much of the inventory/supply
hain literature assume parameters describing the demand process
re known beforehand. Petropoulos et al. (2019) study the utility of
sing exponential smoothing, ARIMA models, the Theta method of As-

imakopoulos and Nikolopoulos (2000), and forecasting approaches
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Fig. 2. Probability mass function of the demand of an INAR(1) process for different 𝜙 and 𝜆.
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based on multiple temporal aggregation in the OUT policy with differ-
ent lead-times. The monthly demand patterns from the M3 competition
were used in a study by Petropoulos et al. (2019) to evaluate forecasting
performance. They found combinations of forecasts resulted in superior
replenishment performance.

Lee et al. (2000) showed the OUT policy under AR(1) demand
process with positive auto-correlation (𝜙 > 0) induces bullwhip. Lu-
ong (2007) also considered AR(1) demand, deriving important results
including an upper bound for the bullwhip effect that is tight for small
positive 𝜙 and a lower and upper bound for the 𝜙 that produces the
maximum bullwhip. Chen and Lee (2016) show the bullwhip effect is
an increasing function of the lead time under real-valued integrated
moving average, IMA(0,1,1), demand. Gaalman et al. (2022) revealed
when, and when not, the bullwhip effect was always increasing in
the lead time under ARMA(p,q) demand. They showed that higher
order ARMA(p,q) demand has a complex lead time-bullwhip behaviour
and that bullwhip is not always an increasing function in the lead
time. Hosoda and Disney (2009) showed that mis-specifying ARMA
demand did not always increase total supply chain costs when the
forecasts were judged on their utility.

Alwan and Weiß (2017) study integer-valued correlated newsven-
dor models using the INAR(1) process. For a blood supply chain they
show how to estimate the demand model from real data. Moham-
madipour and Boylan (2012) study the conditional mean 𝑘-step ahead
forecast of INARMA demand. Babai et al. (2011) investigated a con-
tinuous time version of the OUT policy reacting to an i.i.d. demand
compound Poisson demand using queuing theory. They find optimal
safety stock targets and order-up-to levels in their model with a stochas-
tic lead time. They note there is a significant difference between their
results and standard newsvendor approaches to setting the order-up-
to levels when the demand is low volume and intermittent. Integer
demand and intermittent demand is rarely discussed in the bullwhip
literature, Wang and Disney (2016). To the best of our knowledge, there
is no prior literature on correlated intermittent demand on the bullwhip
problem apart from early conference versions of this paper.

3. Model development

In this section, we first present the INAR(1) demand process and the
3

OUT policy.
3.1. The INAR(1) demand process

We assume the demand follows a first-order integer auto-regressive
process, INAR(1), where demand 𝑑 in period 𝑡 is given by

𝑑𝑡 = 𝜙 ◦ 𝑑𝑡−1 + 𝑧𝑡. (1)

Here, 𝑑𝑡 is the demand in period 𝑡, 0 ≤ 𝜙 ≤ 1 is the auto-regressive
parameter, and 𝑧𝑡 is a sequence of i.i.d. non-negative integer-valued
oisson distributed random variables, with mean 𝜆 and finite variance
(Silva et al., 2009). Notice, in the INAR(1) model, the auto-regressive
arameter is valid in the range 0 ≤ 𝜙 < 1 rather than the range

−1 < 𝜙 < 1 that is relevant in the real-valued AR(1) process. The atomic
xpression 𝜙 ◦ 𝑑𝑡−1 is the binomial thinning operation,

𝜙 ◦ 𝑑𝑡−1 =
𝑑𝑡−1
∑

𝑖=1
𝑋𝑖. (2)

Here, 𝑋𝑖 is a sequence of i.i.d. Bernoulli indicators with parameter 𝜙
(i.e. with P(𝑋𝑖 = 1) = 𝜙 for 𝑖 = {1, 2,… , 𝑑𝑡−1}). A natural interpretation
of (1) is that 𝑑𝑡 is the total number of guests in a hotel at time 𝑡, 𝑧𝑡 is the
umber of new guests that arrived today, and 𝜙 ◦ 𝑑𝑡−1 is the number of
uests that remained in the hotel from the day before Ristić and Nastić
2012). Silva and Oliveira (2004) provide a number of useful relations
nd properties of the INAR(1) model. Notably, the relations

[𝜙 ◦ 𝑑𝑡] = 𝜙E[𝑑𝑡], (3)

[𝜙 ◦ 𝑑𝑡]2 = 𝜙2E[𝑑2𝑡 ] + 𝜙(1 − 𝜙)E[𝑑𝑡], (4)

nd

[𝜙 ◦ 𝑑𝑡] = E[𝜙 ◦ 𝑑𝑡]2 − (E[𝜙 ◦ 𝑑𝑡])2 = 𝜙V[𝑑𝑡], (5)

re important. Here, E[⋅] is the expectation operator and V[⋅] is the
ariance operator.

emma 1. The INAR(1) demand process has mean 𝜇𝑑 , and an auto-
ovariance with lag 𝑗, 𝛾𝑗 , of

𝑑 = 𝜆
1 − 𝜙

and 𝛾𝑗 =

{ 𝜆
1−𝜙 , 𝑗 = 0,
𝑗

(6)

𝜙 𝛾0, 𝑗 ≥ 1.
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Fig. 3. Demand distribution and time series: Small 𝜆 and small 𝜙 produce intermittent demands. Note, the random seed is identical for all time series (left column). The exact
pmf (right column) is produced from (7).
Proof . The relations in (6) are provided by Al-Osh and Alzaid (1988).
To make our paper self-contained, an alternative proof is provided in
Appendix A. □

The auto-covariance function at lag 𝑗 = 0 gives the demand vari-
ance. Silva et al. (2009) show the INAR(1) demand has a Poisson
distribution with a shape parameter of 𝜆𝑑 = 𝜆∕(1 − 𝜙):

P[𝑑𝑡 = 𝑥] =
𝜆𝑥𝑑𝑒

−𝜆𝑑

𝑥!
. (7)

Fig. 2 illustrates the probability mass function (pmf) of the demand
for different 𝜙 and 𝜆. The probability of a zero demand increases as
𝜙 and 𝜆 get smaller, demonstrating the power of the INAR(1) model
for representing low volume, intermittent, integer demand processes.
Figs. 3 and 4 illustrates example INAR(1) time series with different 𝜙
and 𝜆 in the left column of panels. When 𝜙 and 𝜆 are small, the time
4

series is intermittent; increasing 𝜙 or 𝜆 increases the average demand 𝐿
(see (6)). The right column of panels in Figs. 3 and 4 provides an exact
pmf (from (7)) of the corresponding time series. The probability of zero
demand, 𝑒−𝜆∕(1−𝜙) → 1, when {𝜙, 𝜆} → 0.

3.2. The periodic order-up-to replenishment policy

We assume the OUT policy operates in discrete time and define and
analysis the system via difference equations. At the end of period 𝑡,
the retailer uses the periodic OUT policy to order 𝑞𝑡 items from the
manufacturer:

𝑞𝑡 = 𝑠𝑡 − 𝑠𝑡−1 + 𝑑𝑡. (8)

The order-up-to level, 𝑠𝑡, in time period 𝑡 is determined by

𝑠𝑡 = 𝑑𝑡,𝐿 + 𝑖⋆, (9)

where 𝑑𝑡,𝐿 =
∑𝐿

𝑖=1 𝑑𝑡+𝑖 is the forecast of the demand over the lead-time
⋆
. 𝑖 is a constant target net stock (safety stock) set to achieve a given
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t
a

arget level of inventory availability. Appendix B shows the commonly
ssumed, per period inventory holding (ℎ) and backlog (𝑏) costs,

𝑖,𝑡 = ℎ[𝑖𝑡]+ + 𝑏[−𝑖𝑡]+, (10)

are minimised when 𝑖⋆ is set equal to the smallest 𝑖 that satisfies
𝑖

∑

=−∞
P[−𝑛] ≥ 𝑏

𝑏 + ℎ
, (11)

where P[𝑛] is the probability that the inventory 𝑖𝑡 = 𝑛 when 𝑖 = 0. As the
et stock levels are stationary and 𝑖⋆ is a constant it has no influence on

the order and net stock variances (it does however have an influence
on the economics of the system, a factor we study later in Section 7).
The inventory balance equation is given by

𝑖𝑡 = 𝑖𝑡−1 + 𝑞𝑡−𝐿 − 𝑑𝑡, (12)

where 𝑖𝑡 is the inventory level at time 𝑡, 𝑞𝑡−𝐿 is the replenishment
rder placed in period 𝑡 − 𝐿, and the integer lead-time 𝐿 ≥ 1 includes
sequence of events delay. Note, an order with zero lead time is
5

not deemed to have been received until the next order quantity is
determined. Also note, (12) allows the net stock to become negative.
Positive net stock indicates there is inventory on-hand (at the end of
the period); negative net stock indicates a backlog has occurred (that
is, demand cannot be immediately satisfied from stock and the demand
is backlogged to be satisfied in a later period).

Eq. (12) implies the following sequence of events is present in the
periodic OUT policy: 1) Orders placed in period 𝑡 − 𝐿 are received at
he start of the period 𝑡. 2) Throughout period 𝑡, demand is observed
nd satisfied from inventory. 3) The order-up-to level, 𝑠𝑡, is updated

and 4) inventory levels are observed and replenishment orders placed
at the end of the period. This sequence of events is illustrated in Fig. 5.
The inventory variance calculation requires the determination of: the
variance of demand over the lead time, the variance of forecast, and
the co-variance between demand and its forecast over the lead time.
In the following sections we develop these expressions which depends
upon the forecasting method present. We will consider two forecasting
methods:
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• Real-valued conditional mean forecasts, denoted 𝑑, that originate
from an MMSE forecast.

• Integer-valued conditional median forecasts, denoted 𝑑, that min-
imise the expected absolute forecast error.

In the next section, we define and explore these two approaches for
forecasting INAR(1) demand.

4. Forecasting demand over the lead time with the conditional
mean

Here we assume the demand forecast minimises the mean square
forecast error over the lead-time and review period, conditional upon
𝑑𝑡. That is, 𝑑𝑡+𝑘 = 𝑑𝑡+𝑘 = E[𝑑𝑡+𝑘|𝑑𝑡].

Lemma 2. Under INAR(1) demand, the conditional mean forecast of
demand over the lead time is

𝑑𝑡,𝐿 =
𝜙(1 − 𝜙𝐿)
1 − 𝜙

𝑑𝑡 +
𝐿𝜆(1 + 𝐿)

2
. (13)

Proof. We start by deriving an exact expression of demand 𝑘 periods
ahead, 𝑑𝑡+𝑘. We note

𝑑𝑡+𝑘 = 𝜙 ◦ 𝑑𝑡+𝑘−1 + 𝑧𝑡+𝑘 (14)

and

𝑑𝑡+𝑘−1 = 𝜙 ◦ 𝑑𝑡+𝑘−2 + 𝑧𝑡+𝑘−1. (15)

ubstituting (15) into (14) recursively (for 𝑑𝑡+𝑘−2, 𝑑𝑡+𝑘−3,… ), and col-
lecting 𝜙 terms (3) yields,

𝑑𝑡+𝑘 = 𝜙𝑘◦𝑑𝑡 + 𝑧𝑡+1 + 𝑧𝑡+2 +⋯ + 𝑧𝑡+𝑘. (16)

Replacing the future values of 𝑧𝑡+𝑖 in (16) with their expectation,
E[𝑧𝑡+𝑖] = 𝜆, yields,

𝑑𝑡+𝑘 = E[𝜙𝑘◦𝑑𝑡 + 𝑧𝑡+1 + 𝑧𝑡+2 +⋯ + 𝑧𝑡+𝑘|𝑑𝑡]

= 𝜙𝑘𝑑𝑡 + 𝑘𝜆. (17)

As 𝑑𝑡,𝐿 =
∑𝐿

𝑘=1 𝑑𝑡+𝑘, closing the ∑𝐿
𝑘=1

(

𝜙𝑘𝑑𝑡 + 𝑘𝜆
)

sum provides (13),
the stated relation for 𝑑𝑡,𝐿. □

Note 𝑑𝑡,𝐿 ∈ R is increasing in 𝑑𝑡. The first term is increasing in 𝐿 as
0 ≤ 𝜙 ≤ 1, and is independent of 𝜆. The second term is also a constant
and simplifies out in subsequent analysis.

4.1. Consequences of forecasting INAR(1) demand with the conditional
mean

Under i.i.d. integer demand, the demand forecasts based on the
conditional mean are constant over time, 𝑑𝑡,𝐿 = 𝑑𝑡−1,𝐿 = 𝐿𝜇𝑑 = 𝐿𝜆,
and from (8), orders equal demand, 𝑞𝑡 = 𝑑𝑡. Furthermore, as the
variance of the demand is 𝜆 when 𝜙 = 0, V[𝑞𝑡] = 𝜆, and V[𝑖𝑡] = 𝐿𝜆.
As both the demand and the orders are integer processes, so are the
inventory levels. However, for correlated INAR(1) demand, the forecast
is dynamic (𝑑𝑡,𝐿 ≠ 𝑑𝑡−1,𝐿) and is also real-valued (𝑑𝑡,𝐿 ∈ R). This means
real-valued orders and inventory levels are present under correlated
6

demand. These non-integer orders and inventory levels are inconsistent
with the integer demand assumption. Hence, we now seek integer
forecasts, via conditional median forecasts, which lead to integer orders
and inventory levels.

5. Forecasting INAR(1) demand over the lead time with the con-
ditional median

Let 𝑑𝑡+𝑘|𝑡 be an integer forecast of the demand 𝑘 periods ahead, con-
ditional upon 𝑑𝑡. The median of the pmf provides logically consistent
integer forecasts which Freeland and McCabe (2004) claim minimises
the expected absolute error conditional upon 𝑑𝑡, E[|𝑑𝑡+𝑘−𝑑𝑡+𝑘 ∥ 𝑑𝑡]. The
𝑘 periods ahead median forecast, 𝑑𝑡+𝑘 = 𝑋, where 𝑋 is the smallest 𝑋
such that
𝑋
∑

𝑥=0
P[𝑑𝑡+𝑘 = 𝑥|𝑑𝑡] > 1∕2. (18)

emma 3. The pmf of 𝑑𝑡+𝑘, given 𝑑𝑡 is

[𝑑𝑡+𝑘 = 𝑥|𝑑𝑡]

=
𝜙𝑥𝑘

𝑥!
(

𝜙𝑘 − 1
)−𝑥 (1 − 𝜙𝑘)𝑑𝑡 𝑒−

𝜆(𝜙𝑘−1)
𝜙−1 𝑈

[

−𝑥, 𝑑𝑡 − 𝑥 + 1,
𝜆𝜙−𝑘 (𝜙𝑘 − 1

)2

𝜙 − 1

]

.

(19)

here, 𝑥 is a non-negative integer and 𝑈 [𝑎, 𝑏, 𝑧] is the confluent hypergeo-
etric function, Mathworld (2022).

roof. Given 𝑑𝑡, Freeland and McCabe (2004) and Silva et al. (2009)
rovide the following expression for the pmf of 𝑑𝑡+𝑘,

[𝑑𝑡+𝑘 = 𝑥|𝑑𝑡]

= 𝑒
𝜆(1−𝜙𝑘)

𝜙−1

𝑀𝑘
∑

𝑖=0

1
(𝑥 − 𝑖)!

(

𝑑𝑡
𝑖

)

(

𝜙𝑘)𝑖 (1 − 𝜙𝑘)𝑑𝑡−𝑖
(

𝜆
(

1 − 𝜙𝑘)

1 − 𝜙

)𝑥−𝑖

. (20)

where 𝑀𝑘 = (𝑑𝑡+𝑘 ∧ 𝑑𝑡) is the minimum of 𝑑𝑡+𝑘 and 𝑑𝑡. Algebra allows
ne to close the sum, producing (19). □

Further analytical work with correlated INAR(1) demand cannot be
one with this forecasting technique, but (18) and (19) can be easily
mplemented and studied numerically in software such as Excel, Math-
matica, and R. However, some progress can be made for i.i.d. integer
emand that we explore in the next section.

.1. Forecasting i.i.d. integer demand with the conditional median

An i.i.d. integer demand can be modelled within the INAR(1) frame-
ork by setting 𝜙 = 0. However, the pmf of 𝑑𝑡+𝑘 when 𝜙 = 0 given by

(19) is indeterminate and another approach to determine the median
forecasts must be taken. When 𝜙 = 0, the INAR(1) demand degenerates
into an i.i.d. random variable drawn from a Poisson distribution with
mean and variance 𝜆 those pmf is

P[𝑑 = 𝑥] = 𝜆𝑥𝑒−𝜆 . (21)
𝑡 𝑥!
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Substituting (21) into (18) produces an implicit expression for the
median forecast of the Poisson demand; the median forecasts concur
with the smallest 𝑋 that ensures
𝑋
∑

𝑥=0

𝜆𝑥𝑒−𝜆

𝑥!
= 𝛤 [1 +𝑋, 𝜆]

𝛤 [1 +𝑋]
> 1∕2. (22)

Here 𝛤 [⋅, ⋅] is the incomplete Gamma function. Note, when 𝜆 is a
positive integer, the median of the Poisson demand is equal to its mean
𝜆. When 𝜆 is not an integer, (22) implies 𝑑𝑡+𝑘 = ⌈𝜆⌉ or 𝑑𝑡+𝑘 = ⌊𝜆⌋
depending on the value of 𝜆. Notice, there are no time dependent
variables in (22); the median forecast (and 𝑠𝑡) remains constant over
time. The consequences of this ensure the orders always equal the
demand under i.i.d. Poisson demand (that is, 𝑞𝑡 = 𝑑𝑡). This is exactly
how the order-up-to policy responds to real-valued i.i.d. demands.
Further note, V[𝑞𝑡] = 𝜆 and V[𝑖𝑡] = 𝐿𝜆, concurring with the order and
inventory variances of the OUT policy with conditional mean forecasts.

6. Analysis of the OUT variances with INAR(1) demand

In this section we compare how the OUT policy responds to the
INAR(1) demand with the two different forecasting methods. The anal-
ysis will focus on the Bullwhip and NSAmp ratios as they are often used
to assess dynamic supply chain performance, Wang and Disney (2016):

𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 = V[𝑞𝑡]∕V[𝑑𝑡] and 𝑁𝑆𝐴𝑚𝑝 = V[𝑖𝑡]∕V[𝑑𝑡]. (23)

When 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 > 1 we say a bullwhip effect is present. The demand
variance was given in (6). In Section 6.1, we determine the order
and inventory variance when the conditional mean is used to forecast
demand in order to investigate the 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 and 𝑁𝑆𝐴𝑚𝑝 measures.
Section 6.2 does the same for the OUT policy with conditional median
forecasting.

6.1. Order and inventory variance with conditional mean forecasting

Vassian (1955) shows V[𝑖𝑡] is given by the variance of forecast error
over lead time:

V[𝑖𝑡] = V
[

𝑑𝑡,𝐿 − 𝑑𝑡,𝐿|𝑑𝑡
]

= V[𝑑𝑡,𝐿] + V[𝑑𝑡,𝐿|𝑑𝑡] − 2cov[𝑑𝑡,𝐿, 𝑑𝑡,𝐿|𝑑𝑡]. (24)

We need three components: the variance of the demand over the lead
time V[𝑑𝑡,𝐿], the variance of the forecast of the demand over the lead
time V[𝑑𝑡,𝐿], and the co-variance between the demand over the lead-
time and the forecast of the demand over the lead time cov[𝑑𝑡,𝐿, 𝑑𝑡,𝐿|𝑑𝑡].
These are provided in the following three Lemmas.

Lemma 4 (The Variance of Demand Over Lead Time 𝐿). The variance of
the lead-time demand is

V
[

𝑑𝑡,𝐿
]

=
𝜆
((

𝜙2 − 1
)

𝐿 − 2𝜙
(

𝜙𝐿 − 1
))

(𝜙 − 1)3
. (25)

Proof. The lead time demand is given by

𝑑𝑡,𝐿 =
𝐿
∑

𝑖=1
𝑑𝑡+𝑖 = 𝑑𝑡+1 + 𝑑𝑡+2 +⋯ + 𝑑𝑡+𝐿. (26)

The variance of demand over the lead time is calculated from

V
[

𝑑𝑡,𝐿
]

= V
[

𝑑𝑡+1 + 𝑑𝑡+2 +⋯ + 𝑑𝑡+𝐿
]

=
𝐿
∑

𝑖=1
(V

[

𝑑𝑡+𝑖
]

+ 2cov[𝑑𝑡+1, 𝑑𝑡+2] +⋯ + 2cov[𝑑𝑡+1, 𝑑𝑡+𝐿]

+ 2cov[𝑑𝑡+2, 𝑑𝑡+3] +⋯

+ 2cov[𝑑𝑡+2, 𝑑𝑡+𝐿) +⋯ + 2cov[𝑑𝑡+𝐿−1, 𝑑𝑡+𝐿]). (27)

Using (6) in (27) yields the variance of the demand over the lead time,
[ ] ( ) ( )
7

V 𝑑𝑡,𝐿 = 𝐿𝛾0 + 2 𝛾1 + 𝛾2 +⋯ 𝛾𝐿−1 + 2 𝛾1 + 𝛾2 +⋯ 𝛾𝐿−2 +⋯ + 2𝛾1
= 𝐿𝛾0 + 2
𝐿−1
∑

𝑗=1

𝑗
∑

𝑖=1
𝛾0𝜙

𝑖. (28)

Using (6) and the telescoping method, the nested sum in (28) becomes
the stated relation (25). □

Lemma 5 (Variance of the Forecast Over the Lead Time). The variance of
the forecast over the lead time is

V
[

𝑑𝑡,𝐿|𝑑𝑡
]

= 𝜆
1 − 𝜙

(

𝜙(1 − 𝜙𝐿)
1 − 𝜙

)2

. (29)

Proof. First note, with conditional mean forecasting, 𝑑𝑡,𝐿 = 𝑑𝑡,𝐿. From
(13), the variance of the forecast over the lead time is

V
[

𝑑𝑡,𝐿|𝑑𝑡
]

= V
[

𝑑𝑡
𝜙(1 − 𝜙𝐿)
1 − 𝜙

+
𝐿𝜆(1 + 𝐿)

2

]

. (30)

Note, as 𝐿𝜆(1 + 𝐿)∕2 is a constant it has no impact on the variance,
[

𝑑𝑡,𝐿|𝑑𝑡
]

= V
[

𝑑𝑡
𝜙(1 − 𝜙𝐿)
1 − 𝜙

]

. (31)

As V[𝑑𝑡] = 𝜆∕(1 −𝜙) from (6), the variance operator provides (29). □

emark. The variance of the forecast of demand over the lead time
29), is increasing in 𝐿 as 0 ≤ 𝜙 ≤ 1; it is also increasing in 𝜆.

emma 6 (Covariance of the Demand and Its Forecast Over 𝐿). The
covariance of demand over lead time and its forecast is given by

cov
[

𝑑𝑡,𝐿, 𝑑𝑡,𝐿|𝑑𝑡
]

= 𝛾0

(

𝜙
(

1 − 𝜙𝐿)

1 − 𝜙

)2

. (32)

Proof. The co-variance between the demand over the lead time and it
forecast is calculated as,

cov
[

𝑑𝑡,𝐿, 𝑑𝑡,𝐿|𝑑𝑡
]

= cov
[

𝑑𝑡+1 + 𝑑𝑡+2 +⋯ + 𝑑𝑡+𝐿, 𝑑𝑡,𝐿|𝑑𝑡
]

. (33)

y substituting (13) into (33), using the additive law of covariance (the
ovariance of a random variable with a sum of random variables is the
um of the covariances with each of the random variables) we have:

ov
[

𝑑𝑡,𝐿, 𝑑𝑡,𝐿|𝑑𝑡
]

= cov
[

𝑑𝑡+1 +⋯ + 𝑑𝑡+𝐿, 𝑑𝑡
𝜙(1 − 𝜙𝐿)
1 − 𝜙

+
𝐿𝜆(1 + 𝐿)

2

]

=
𝜙(1 − 𝜙𝐿)
1 − 𝜙

(

𝛾1 + 𝛾2 +⋯ + 𝛾𝐿
)

. (34)

From (6), the sum ∑𝐿
𝑖=1 𝜆𝑖 = 𝜆0

𝜙(1−𝜙𝐿)
1−𝜙 , which when substituted into

(34) produces (32). □

Finally, we can now provide the inventory variance expression in
Proposition 1:

Proposition 1 (Variance of the Inventory Levels). The inventory variance
is given by

V[𝑖𝑡] =
𝜆

1 − 𝜙

(

𝐿 + 2𝜙
(

𝜙𝐿 + 𝐿(1 − 𝜙) − 1
(𝜙 − 1)2

)

−
(

𝜙(1 − 𝜙𝐿)
1 − 𝜙

)2)

. (35)

Proof. Eq. (24) highlighted the variance of the inventory levels is given
by the variance of the forecast error over the lead time. Substituting (6),
(25), (29), and (32) into (24) yields (35). □

Remark. Dividing V[𝑖𝑡] by the V[𝑑𝑡] yields the net stock amplification
atio 𝑁𝑆𝐴𝑚𝑝:

𝑆𝐴𝑚𝑝 =
V[𝑖𝑡]
V[𝑑𝑡]

= 𝐿 + 2𝜙
(

𝜙𝐿 + 𝐿(1 − 𝜙) − 1
(𝜙 − 1)2

)

−
(

𝜙(1 − 𝜙𝐿)
1 − 𝜙

)2

. (36)

Notice, the Poisson parameter 𝜆 has no influence on 𝑁𝑆𝐴𝑚𝑝. The
𝑁𝑆𝐴𝑚𝑝 measure is plotted in Fig. 6. Notice, 𝑁𝑆𝐴𝑚𝑝 under INAR(1)
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Fig. 6. NSAmp maintained by the OUT policy under INAR(1) demand with conditional mean and conditional median forecasting.
demand has exactly the same form as the same as the 𝑁𝑆𝐴𝑚𝑝 measure
under AR(1) demand, Disney and Lambrecht (2008). Also notice, as
𝜙 → 1, the demand variance V[𝑑𝑡] → ∞. Together with a finite
inventory variance, this means 𝑁𝑆𝐴𝑚𝑝 → 0 as 𝜙 → 1. Furthermore,
𝑁𝑆𝐴𝑚𝑝 → 𝐿 as 𝜙 → 0.

Proposition 2 (Variance of the Orders). The variance of the replenishment
orders is given by

V
[

𝑞𝑡
]

= 𝜆
1 − 𝜙

(

1 + 2𝜙
(

1 − 𝜙𝐿)
(

1 +
𝜙
(

1 − 𝜙𝐿)

1 − 𝜙

))

. (37)

Proof. First note, substituting 𝑠𝑡 and 𝑠𝑡−1 from (9) into (8) yields

𝑞𝑡 = 𝑑𝑡,𝐿 − 𝑑𝑡−1,𝐿 + 𝑑𝑡. (38)

Using 𝑑𝑡,𝐿 and 𝑑𝑡−1,𝐿 from (13) in (38) and collecting together like terms
we obtain:

𝑞𝑡 =
𝐿𝜆

1 − 𝜙
+ 𝜙

(

𝑑𝑡 −
𝜆

1 − 𝜙

)(

1 − 𝜙𝐿

1 − 𝜙

)

− 𝐿𝜆
1 − 𝜙

− 𝜙
(

𝑑𝑡−1 −
𝜆

1 − 𝜙

)(

1 − 𝜙𝐿

1 − 𝜙

)

+ 𝑑𝑡

=(𝑑𝑡 − 𝑑𝑡−1)𝜙
(

1 − 𝜙𝐿

1 − 𝜙

)

+ 𝑑𝑡. (39)

The variance of order quantity is calculated as follows:

V
[

𝑞𝑡
]

=V
[

𝜙𝑑𝑡(1 − 𝜙𝐿)
1 − 𝜙

−
𝜙𝑑𝑡−1(1 − 𝜙𝐿)

1 − 𝜙
+ 𝑑𝑡

]

=V
[

𝜙𝑑𝑡(1 − 𝜙𝐿)
]

+ V
[

𝜙𝑑𝑡−1(1 − 𝜙𝐿)
]

8

1 − 𝜙 1 − 𝜙
+ V
[

𝑑𝑡
]

+ 2cov
[

𝜙𝑑𝑡(1 − 𝜙𝐿)
1 − 𝜙

, 𝑑𝑡

]

−

2cov
[

𝜙𝑑𝑡(1 − 𝜙𝐿)
1 − 𝜙

,
𝜙𝑑𝑡−1(1 − 𝜙𝐿)

1 − 𝜙

]

− 2cov
[

𝜙𝑑𝑡−1(1 − 𝜙𝐿)
1 − 𝜙

, 𝑑𝑡

]

.

(40)

As V[𝑑𝑡−𝑘] = 𝛾0 and ∀𝑘 ≥ 1, cov[𝑑𝑡, 𝑑𝑡−𝑘] = 𝛾𝑘, (40) reduces to (37). □

By substituting (6) and (37) into (38) we obtain the following
expression for the bullwhip effect,

𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 = 1 + 2𝜙
(

1 − 𝜙𝐿)
(

1 +
𝜙(1 − 𝜙𝐿)
1 − 𝜙

)

. (41)

Eq. (41) shows the Poisson distribution 𝜆 has no influence on the
bullwhip effect. Also note, (41) has the same structural form as the
Bullwhip generated by the OUT policy with MMSE forecasting under
AR(1) demand, Disney and Lambrecht (2008). That the 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 and
𝑁𝑆𝐴𝑚𝑝 are so similar should not be a surprise; the autocorrelation
function (ACF) of the demand process ACF=𝜙𝑘, given in (6), has exactly
the same form as the ACF for the real-valued AR(1) process. Further-
more, as 0 ≤ 𝜙 ≤ 1, (41) is increasing in 𝐿 and always 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 > 1
indicating bullwhip always exists under an INAR(1) demand process
with conditional mean forecasts, regardless of 𝜙 and 𝐿.

Using the Bullwhip measure in (41) we can investigate the existence
of the bullwhip effect and the impact of 𝜙 and 𝐿 on its magnitude.

Corollary 1. The bullwhip effect exists (that is, 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 > 1) regardless
of the values of the auto-regressive parameter, 𝜙 and the lead time, 𝐿.

Proof. As 0 < 𝜙 < 1, it is clear from (41) that 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 > 1 as the
second addend of (41) is always positive. □
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Fig. 7. The bullwhip effect in the OUT policy under INAR(1) demand with conditional mean and conditional median forecasting.
From the above Corollary 1, we see that always 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 > 1
highlighting that bullwhip always exists under INAR(1) demand. Fig. 7
illustrates the impact of the demand process parameter and lead time
on the bullwhip effect confirming it is always present and increases in
the lead time 𝐿.

Corollary 2. An upper bound for the bullwhip effect, valid for all lead
times, and is given by Bullwhip = (1 + 𝜙)∕(1 − 𝜙).

Proof. The proof of Corollary 2 is provided by Luong (2007). An
alternative proof is given in Appendix C. □

Remark. Luong (2007) also provide an upper and lower bound for
the 𝜙max that corresponds to the maximum bullwhip, between which
a bisection search is efficient for finding the 𝜙 that produces the
maximum bullwhip, 𝜙max:
( 1
𝐿 + 2

)1∕(𝐿+1)
≤ 𝜙max ≤

(

𝐿
2(𝐿 + 1)

)1∕(𝐿+1)
. (42)

Note, 𝜙max tends to unity when 𝐿 → ∞.

Fig. 7 illustrates the impact of the demand process parameter and
lead time on the bullwhip effect confirming it is always present and in-
creases in the lead time 𝐿. The bullwhip upper bound of Luong (2007),
valid for all lead times and real-valued conditional mean forecasts, is
also plotted in Fig. 7. The upper bound is tight when 𝜙 is small.

6.2. Order and inventory variance with conditional median forecasting

As no further analytical work on the conditional median forecasts
is possible, we resort to a numerical investigation of the orders and
9

inventory variance. We built a simulation in the R software that ran
on a HAWK High-Performance Computing Cluster. To generate the de-
mands in each period 𝑡, we first generated random Poisson distributed
error terms, 𝑧𝑡 and constructed demand series using (1). Then, 𝑘-period
ahead conditional median forecasts were generated using (18); these
were summed to create integer forecasts of demand over the lead
time. Following that, inventory levels and orders are calculated using
(8) and (12), respectively. Finally, the Bullwhip and NSAmp ratios are
calculated using (23). The parameter values used in the simulation are
𝜆 = {1, 5, 9}, 𝐿 = {1, 2, 3} and 0 < 𝜙 < 1 in steps of 0.01. For all
combinations of 𝜆 and 𝜙, a time series of one million observations was
generated. We have plotted the results of this exercise in Fig. 6 for the
NSAmp ratio and Fig. 7 for the Bullwhip ratio.

Fig. 6 revealed the 𝑁𝑆𝐴𝑚𝑝 expressions under conditional mean
forecasting is a good predictor of the 𝑁𝑆𝐴𝑚𝑝 measure when con-
ditional median forecasting is present, especially with high volume
integer demand (i.e. when 𝜆 ≫ 1). As the conditional mean forecast
minimises the mean squared error forecasts over the lead-time and
review period, the conditional mean 𝑁𝑆𝐴𝑚𝑝 represents a lower bound
of conditional median 𝑁𝑆𝐴𝑚𝑝; lower demand volumes (small 𝜆 and 𝜙
near 0.5) increase the conditional median 𝑁𝑆𝐴𝑚𝑝.

The conditional median 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 curves in Fig. 7 were somewhat
more complex. When 𝜙 is near zero, the 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 curves remain
unchanged from the i.i.d. case, close to unity, possibly as a result of the
forecast remaining unchanged from the i.i.d. case. In the region 𝜙 ≈ 0.1
to 𝜙 ≈ 0.8 there is a period of seemingly erratic 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 which may be
either above or below the conditional mean 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 curve; it may also
be above the AR(1) bullwhip upper bound from Luong (2007). When
𝜙 is close to unity, above 𝜙 ≈ 0.8, the conditional median 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝
closely resembles the conditional mean 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 curve. We do not
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Fig. 8. Time series of demand and orders. Conditional mean forecasts result in real orders (left column); conditional median forecasts result in integer orders (right column). The
top row contains i.i.d. demand; the bottom row contains correlated demand. Key: Black — demand, blue — orders with conditional mean forecasts, red — orders with condition
median forecasts. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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know whether a conditional median ever produces 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 < 1 (but
we have not found a convincing numerical example when 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 <
1).

Fig. 8 provides example time series of the demand and orders for
both the conditional mean forecasts (left column of panels) and the
conditional median forecasts (right column of panels). The Poisson
noise driving the demand is the same in all panels. The top row
of panels correspond to i.i.d. integer Poisson demand and both the
conditional mean (top left panel) and conditional median (top right
panel) forecasts produce integer orders that equal demand. The bottom
row of panels illustrate correlated INAR(1) demand. The conditional
mean forecasts produce real-valued orders (bottom left panel). The
conditional median forecasts produce integer-valued orders, panel d).
All panels concur with our previous discussions.

6.3. NSAmp and Bullwhip comparison to Croston and SBA forecasts

In this section we will compare the OUT performance of conditional
mean and median forecasts with two empirical forecasting methods:
Croston’s method (Croston, 1972) and the SBA, (Syntetos and Boylan,
2005). Croston’s method and the SBA are compound forecasts based on
exponential smoothing forecasts of levels and intervals. As the forecasts
are only updated when a demand occurs these are essentially non-linear
in nature and are thus difficult to analyse analytically. However, we
have conducted a simulation study to understand their NSAmp and
Bullwhip performance. Table 1 details the NSAmp maintained by the
OUT policy with the four different forecasts; Table 2 details the Bullwhip
generated. The simulation used to create each data point was one
10

million time periods in duration. We have compared the real-valued
Croston, SBA and conditional mean forecasts (which produce real-
valued orders and inventory levels) and the integer-valued conditional
median forecasts (which produce integer-valued orders and inventory
levels). The simulation results confirm the conditional mean forecasts
result in the smallest NSAmp measures. This result is to be expected
as the conditional mean forecasts produce MMSE forecasts of demand
over the lead time—a condition that leads the OUT policy to become
the inventory optimal policy (as the inventory variance is equal to the
variance of the sum of the forecasts errors over the lead-time and re-
view period, Vassian (1955)). The conditional median forecasts come a
close second in terms of NSAmp performance, and also closely track the
Bullwhip performance of the conditional mean forecasts. The Bullwhip
performance of Croston’s method the SBA forecasts is superior to the
conditional mean and median forecasts, with the SBA forecasts gen-
erally besting Croston’s method. However, this Bullwhip performance
comes at the cost of significantly increased inventory variance.

7. Economic performance of the OUT policy under i.i.d. integer
demands

When 𝜙 = 0, we have i.i.d. Poisson distributed demands, and all
uture demand forecasts are a constant. In this case it is easy to verify
he inventory pmf is a simple reflection and translation of the pmf of
he sum of demand over the lead-time:

[𝑖𝑡 = 𝑥] =
(𝐿𝜆)𝐿𝜆+𝑖−𝑥𝑒−𝐿𝜆

(𝐿𝜆 + 𝑖 − 𝑥)!
. (43)

Here, 𝑖 is the target net stock. We can determine the mean and variance
of the inventory levels directly from the mean and variance of the sum
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Table 1
NSAmp generated by the OUT policy under AR(1) with different forecasting methods.

Forecasting method 𝜙 = 0 𝜙 = 0.1 𝜙 = 0.2 𝜙 = 0.3 𝜙 = 0.4 𝜙 = 0.5 𝜙 = 0.6 𝜙 = 0.7 𝜙 = 0.8 𝜙 = 0.9

Conditional mean 1 0.990 0.960 0.911 0.841 0.751 0.642 0.512 0.362 0.192
Conditional median 1 1.000 0.992 0.954 0.883 0.782 0.678 0.536 0.380 0.199
Croston’s method 1.071 1.074 1.183 1.059 1.031 0.982 0.905 0.786 0.630 0.400
SBA 1.057 1.059 1.054 1.041 1.013 0.964 0.889 0.774 0.619 0.599

Note: Always 𝜆 = 1, 𝐿 = 1, and 𝛼 = 𝛽 = 0.2 in Croston’s and SBA forecasts. Bold font indicates minimum NSAmp for a given demand process.
Table 2
Bullwhip generated by the OUT policy under AR(1) with different forecasting methods.

Forecasting method 𝜙 = 0 𝜙 = 0.1 𝜙 = 0.2 𝜙 = 0.3 𝜙 = 0.4 𝜙 = 0.5 𝜙 = 0.6 𝜙 = 0.7 𝜙 = 0.8 𝜙 = 0.9

Conditional mean 1 1.198 1.384 1.547 1.674 1.751 1.771 1.718 1.580 1.345
Conditional median 1 1.002 1.203 1.531 1.717 1.794 1.962 1.737 1.664 1.382
Croston’s method 1.127 1.154 1.183 1.214 1.246 1.273 1.290 1.285 1.246 1.160
SBA 1.112 1.136 1.162 1.190 1.218 1.242 1.258 1.253 1.219 1.142

Note: Always 𝜆 = 1, 𝐿 = 1, and 𝛼 = 𝛽 = 0.2 in Croston’s and SBA forecasts. Bold font indicates minimum Bullwhip for a given demand process.
.
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of 𝐿 Poisson distributed random variables:

E[𝑖𝑡] =
𝐿𝜆+𝑖
∑

𝑥=−∞

(𝐿𝜆)𝐿𝜆+𝑖−𝑥𝑒−𝐿𝜆

(𝐿𝜆 + 𝑖 − 𝑥)!
= 𝑖, and

[𝑖𝑡] =
𝐿𝜆+𝑖
∑

𝑥=−∞

(𝐿𝜆)𝐿𝜆+𝑖−𝑥𝑒−𝐿𝜆

(𝐿𝜆 + 𝑖 − 𝑥)!
(𝑥 − E[𝑖𝑡])2 = 𝐿𝜆. (44)

The expected per period inventory holding and backlog costs (see (B.1))
can be then obtained from (43) as follows:

E[𝐶 𝑖
𝑡 ] =

0
∑

𝑥=−∞

𝑏(−𝑥)
(

𝑒𝐿𝜆(𝐿𝜆)𝑖+𝐿𝜆−𝑥
)

(𝑖 + 𝐿𝜆 − 𝑥)!

+
𝐿𝜆+𝑖−1
∑

𝑥=1

ℎ𝑥
(

𝑒−𝐿𝜆(𝐿𝜆)𝑖+𝐿𝜆−𝑥
)

(𝑖 + 𝐿𝜆 − 𝑥)!
+ ℎ𝑒−𝐿𝜆(𝑖𝑟 + 𝐿𝜆)

=
(𝑏 + ℎ)𝑒−𝐿𝜆

(

(𝐿𝜆)𝑖+𝐿𝜆+1 + 𝑖𝑒𝐿𝜆𝛤 [𝑖 + 𝐿𝜆 + 1, 𝐿𝜆]
)

𝛤 [𝑖 + 𝐿𝜆 + 1]
− 𝑏𝑖. (45)

Appendix B shows the optimal 𝑖⋆, the 𝑖 that minimises the expected
nventory holding and backlog cost (45) can be found as the smallest 𝑖
hat ensures
𝑖

∑

=−∞
P[−𝑛] ≥ 𝑏

𝑏 + ℎ
(46)

here P[𝑛] = P[𝑖𝑡 = 𝑛|𝑖 = 0] = (𝐿𝜆)𝐿𝜆−𝑛𝑒−𝐿𝜆
(𝐿𝜆−𝑛)! . In a like manner, due

o the constant forecasts under i.i.d. INAR(1) demand, (8) shows the
rder pmf is equal to the demand pmf and 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 = 1. The per
eriod production cost 𝐶𝑞

𝑡 , with a nominal hours unit cost of 𝑢 within a
nominal capacity of 𝐾 and flexible per unit overtime cost of 𝑢𝑚, where

is the overtime multiplier, Boute et al. (2022), can be formulated as:

𝑞
𝑡 = 𝑢𝐾 + 𝑢𝑚[𝑞𝑡 −𝐾]+. (47)

Using (21), the expected per period capacity costs are given by

E[𝐶𝑞
𝑡 ] = 𝑢𝐾 +

∞
∑

𝑥=𝑘

𝑚𝑢(𝑥 −𝐾)𝑒−𝜆𝜆𝑥

𝑥!
(48)

= 𝑢

(

𝑒−𝜆𝜆𝑚
(

𝜆𝑘 − 𝑒𝜆𝛤 [𝑘 + 1, 𝜆]
)

𝛤 [𝑘 + 1]
+ 𝑚𝛤 [𝑘 + 1, 𝜆]

𝛤 [𝑘]
+𝐾 + 𝑚(𝜆 −𝐾)

)

(49)

Appendix D shows 𝐾⋆, the minimiser of (49), is the smallest 𝐾 such
that
𝐾
∑

P[𝑛] ≥ 𝑚 − 1 (50)
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𝑛=0 𝑚 t
here P[𝑛] = P[𝑞𝑡 = 𝑛] = P[𝑑𝑡 = 𝑛] = 𝜆𝑛𝑒−𝜆∕(𝑛!). Note, P[𝑞𝑡 = 𝑛] = P[𝑑𝑡 =
] comes from the fact 𝑞𝑡 = 𝑑𝑡 under i.i.d. demand and MMSE forecasts.
he last relation comes from (21).

Fig. 9 (panel b) shows the 𝐾⋆ is both increasing in 𝜆 and 𝑚. Fig. 9
lso illustrates the minimised inventory holding and backlog costs in
anel c and the minimised capacity costs in panel d. Total costs are
qual to the sum of these two costs. The minimised capacity (inventory
olding and backlog) costs are independent of 𝐾⋆ (𝑖⋆) respectively.
inimising 𝜆 or 𝐿 reduces the inventory and backlog related costs;
inimising 𝑚 or 𝐿 reduces the capacity costs.

. Conclusions

We have examined the Bullwhip and NSAmp behaviour of the OUT
olicy under an integer-valued INAR(1) demand series with two differ-
nt forecasting methodologies; one based on the conditional mean, the
ther forecast on the conditional median. The variance ratios derived
or conditional mean forecasts under integer demand were found to
e the same as those for the corresponding real-valued demand. This
hould be expected as the results for the real demand variance are
istribution free. We conjecture the variance ratios maintained by OUT
olicy under INARMA demand with conditional mean forecasts will
emain the same (as those already obtained in the literature) for
RMA demand. The consequences of the conditional median forecasts
f INARMA demand remains unknown; to the best of our knowledge
he conditional median forecasts have not yet been found.

The auto-regressive parameter 𝜙 and the lead time affects the vari-
nce ratios under INAR(1) demand. The Poisson distribution parameter
has no impact on the variance ratios. However, the real order and

nventory levels produced are inconsistent with the integer demand.
he bullwhip effect always exists regardless of the auto-regressive
arameter and the lead time. There exists a lower bound, 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 >
, and an upper bound which is a function of the auto-regressive
arameter, 𝜙. For a given value of 𝜙, the upper bound represents the
aximum value of the bullwhip effect regardless of the lead time 𝐿.
he upper bound is tight when 𝜙 is small. The NSAmp maintained
y the conditional mean forecasts of the INAR(1) demand behaves
xactly as the NSAmp measure for AR(1) demand. For i.i.d. demand
𝑆𝐴𝑚𝑝 = 𝐿; as 𝜙 → 1, 𝑁𝑆𝐴𝑚𝑝 → 0.
When conditional median forecasts are used, Bullwhip is somewhat

ore erratic and can deviate significantly (positively and negatively)
rom both the conditional mean Bullwhip and the upper bound. With
arge 𝜆 (or when both 𝜆 and 𝜙 are large), the demand distribution
ecomes more normal and the existing bullwhip knowledge based on
eal-valued demand becomes more relevant. The 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 and 𝑁𝑆𝐴𝑚𝑝
xpressions can be used with confidence in high volume settings.
owever, low values of 𝜙 and 𝜆 lead to intermittent demand series
hat contain a high proportion of zeros and to time series where the
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Fig. 9. Optimal OUT policy settings. Panel (a) The safety stock, 𝑖⋆, required to minimise the inventory costs when ℎ = 1, 𝑏 = 9 for different demand 𝜆 and lead times 𝐿. Panel (b)
The optimal capacity, 𝐾⋆, required to minimise the capacity costs when 𝑢 = 4 for different demand 𝜆 and over-time multiplier 𝑚. Panel (c) The minimised inventory cost when
𝑖⋆ is present. Panel (d) The minimised capacity cost when 𝐾⋆ is present.
integer effects become more significant. Small 𝜙 and small 𝜆 lead the
demand distribution (which is always non-negative) to become skewed
to the right. In the extreme case, when 𝜙 = 0, the demand is Poisson
distributed. In these cases the existing knowledge will be less valuable.
Bullwhip seems to always exists for INAR(1) demand; the inventory
variance (and the NSAmp measure) for conditional mean forecasts is
a lower bound for the inventory variance under conditional median
forecasts. When the demand is i.i.d., a constant forecast is produced
by both forecasting methods that means 𝑞𝑡 = 𝑑𝑡. For this case we were
able to extend our variance ratio analysis to include an economic study
of the system which searched for the target safety stock to minimise the
expected inventory holding and backlog costs and the target capacity
level to minimise the regular labour and overtime costs. We found
that the optimal capacity requirements, 𝐾⋆, increases in both 𝜆 and
𝑚; Capacity costs are reduced by minimising 𝜆 and 𝑚. Inventory costs
are minimised by decreasing 𝐿 and 𝜆.
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Appendix A. Auto-covariance function of the demand

We can show that the mean of 𝑑𝑡 is given by,

E
[

𝑑𝑡
]

= E
[

𝜙 ◦ 𝑑𝑡−1 + 𝑧𝑡
]

= E
[

𝜙 ◦ 𝑑𝑡−1
]

+ E
[

𝑧𝑡
]

= 𝜙E
[

𝑑𝑡−1
]

+ 𝜆. (A.1)

INAR(1) processes are stationary, E[𝑑𝑡] = E[𝑑𝑡−1] and (A.1) reduces to
E
[

𝑑
]

= 𝜆∕(1 −𝜙). As the variance of a sum is the sum of the variances
𝑡
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of the addends and twice the covariance between the addends, the
variance of demand at period 𝑡 is

V
[

𝑑𝑡
]

= V
[

𝜙 ◦ 𝑑𝑡−1 + 𝑧𝑡
)

= V
[

𝜙 ◦ 𝑑𝑡−1
]

+ V
[

𝑧𝑡
]

+ 2cov
[

𝑑𝑡−1, 𝑧𝑡
]

. (A.2)

Algebra then leads to

V
[

𝑑𝑡
]

= V
[

𝜙 ◦ 𝑑𝑡−1
]

+ 𝜆 (As cov
[

𝑑𝑡−1, 𝑧𝑡
]

= 0)

= 𝜙V
[

𝑑𝑡−1
]

+ 𝜆 (V[𝜙 ◦ 𝑑𝑡−1] = 𝜙V[𝑑𝑡−1])

= 𝜙V
[

𝑑𝑡
]

+ 𝜆 (As demand is stationary, V
[

𝑑𝑡−1
]

= V
[

𝑑𝑡
]

)

= 𝜆∕(1 − 𝜙). (After collecting together terms)

By recursive substitutions of 𝑑𝑡−𝑘 for 𝑘 ≥ 1, (1) can be written as

𝑑𝑡 = 𝜙𝑘 ◦ 𝑑𝑡−𝑘 +
𝑘−1
∑

𝑗=0
𝜙𝑗𝑧𝑡−𝑗 . (A.3)

The auto-covariance of lag 𝑘 ≥ 1 can then be calculated as

𝛾𝑘 = cov
[

𝑑𝑡, 𝑑𝑡−𝑘
]

= cov
[

𝜙𝑘 ◦ 𝑑𝑡−𝑘 +
𝑘−1
∑

𝑗=0
𝜙𝑗 ◦ 𝑧𝑡−𝑗 , 𝑑𝑡−𝑘

]

= 𝜙𝑘cov
[

𝑑𝑡−𝑘, 𝑑𝑡−𝑘
]

+ cov
[𝑘−1
∑

𝑗=0
𝜙𝑗 ◦ 𝑧𝑡−𝑗 , 𝑑𝑡−𝑘

]

. (A.4)

As the correlation between 𝑑𝑡−𝑘 and 𝑧𝑡−𝑗 for all 𝑗 ≤ 𝑘−1 is equal to zero,
the covariance term cov

[

𝑑𝑡−𝑘,
∑𝑘−1

𝑗=0 𝜙
𝑗 ◦ 𝑧𝑡−𝑗

]

= 0. The auto-covariance
function of lag 𝑘 ≥ 1 for INAR(1) demand is

𝛾𝑘 = 𝜙𝑘cov
[

𝑑𝑡−𝑘, 𝑑𝑡−𝑘
]

= 𝜙𝑘𝛾0. (A.5)

Appendix B. Determining the target net stock in the OUT policy
under discrete demand

Hill (2011) outlined a procedure to find the optimal ordering quan-
tity for the discrete newsvendor problem; we adopt his approach for the
target net stock levels in the OUT policy. Let P[𝑛] be the probability
that the net stock level 𝑖𝑡 = 𝑛 when the target net stock 𝑖 is zero
(i.e. P[𝑛] = P[𝑖𝑡 = 𝑛|𝑖 = 0]). When per unit, per period inventory
holding (of ℎ) and backlog (of 𝑏) costs are present the following costs
are incurred in each time period,

𝐶𝑖,𝑡 = ℎ[𝑖𝑡]+ + 𝑏[−𝑖𝑡]+. (B.1)

Taking expectations, the long run average costs per period, with an
arbitrary target net stock can be expressed

E[𝐶𝑖] = ℎ
∞
∑

𝑛=−𝑖
P[𝑛](𝑛 + 𝑖) − 𝑏

−𝑖−1
∑

𝑛=−∞
P[𝑛](𝑛 + 𝑖). (B.2)

To facilitate taking the inverse of the inventory distribution later we
make the 𝑖 in the index of the first sum positive and recast the expected
inventory costs as

E[𝐶𝑖] = ℎ
𝑖

∑

𝑛=−∞
P[−𝑛](𝑖 − 𝑛) − 𝑏

∞
∑

𝑛=𝑖+1
P[−𝑛](𝑖 − 𝑛). (B.3)

Notice the backlog costs are non-increasing in 𝑖 and the holding costs
are non-decreasing in 𝑖. This means there is only one minimum (or
at most two consecutive minimums) in the inventory costs. When the
expected costs with a target net stock of 𝑖 units is approximately the
same as with a target net stock of 𝑖 + 1 units we will be near a cost
minimum. Setting E[𝐶𝑖] = E[𝐶𝑖+1] and noting that ∑𝑖+1

𝑛=−∞ P[−𝑛](𝑖 + 1 −
𝑛) =

∑𝑖
𝑛=−∞ P[−𝑛](𝑖+1−𝑛) and ∑∞

𝑛=𝑖+2 P[−𝑛](𝑖+1−𝑛) =
∑∞

𝑛=𝑖+1 P[−𝑛](𝑖+
1 − 𝑛) leads to

ℎ
𝑖

∑

𝑛=−∞
P[−𝑛](𝑖 − 𝑛) − 𝑏

∞
∑

𝑛=𝑖+1
P[−𝑛](𝑖 − 𝑛)

= ℎ
𝑖

∑

P[−𝑛](𝑖 + 1 − 𝑛) − 𝑏
∞
∑

P[−𝑛](𝑖 + 1 − 𝑛). (B.4)
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𝑛=−∞ 𝑛=𝑖+1
Collecting together both sides yields

ℎ
𝑖

∑

𝑛=−∞
P[−𝑛]

(

(𝑖 + 1 − 𝑛) − (𝑖 − 𝑛)
)

−𝑏
∞
∑

𝑛=𝑖+1
P[−𝑛]

(

(𝑖 + 1 − 𝑛) − (𝑖 − 𝑛)
)

= 0

(B.5)

Simplifying further provides

ℎ
𝑖

∑

𝑛=−∞
P[−𝑛] − 𝑏

∞
∑

𝑛=𝑖+1
P[−𝑛] = 0. (B.6)

Defining ∑𝑖
𝑛=−∞ P[−𝑛] = 𝐹 [𝑖] as the cumulative distribution function of

the net stock levels (with 𝑖 = 0) and simplifying then leads to

ℎ𝐹 [𝑖] − 𝑏(1 − 𝐹 [𝑖]) = 0 (B.7)

𝐹 [𝑖](ℎ − 𝑏) − 𝑏 = 0 (B.8)

𝐹 [𝑖] = 𝑏
𝑏 + ℎ

(B.9)

𝑖⋆ = 𝐹−1
[ 𝑏
𝑏 + ℎ

]

. (B.10)

hus, the optimal target net stock 𝑖⋆ can then be found as the smallest
̄ that ensures

𝑖
∑

=−∞
P[−𝑛] ≥ 𝑏

𝑏 + ℎ
. (B.11)

Note, there are no assumptions made about the distribution, or autocor-
relation of the discrete net stock levels, only that it is stationary (that
is, the net stock level has a finite and constant variance and mean). We
find it interesting that the critical fractile (of the inventory distribution)
for OUT policy’s target net stock has the same form as the critical fractile
(of the demand distribution) for the newsvendor problem.

Appendix C. Bounds on the bullwhip measure

The bullwhip ratio was given in (41). Using the limit function to
avoid the divide by zero issues in the final addend of (41), 0 ≤ 𝜙 ≤ 1
and 𝐿 ≥ 1, implies

0 ≤ 𝜙𝐿 ≤ 1. (C.1)

Multiplying (C.1) by minus one (−1) and adding plus one (+1) to all
sides, we have

0 ≤ 1 − 𝜙𝐿 ≤ 1. (C.2)

Given 𝜙 > 0 and 1 − 𝜙 > 0 are positive, multiplying by 2𝜙 yields

≤ 2𝜙(1 − 𝜙𝐿) ≤ 2𝜙. (C.3)

quaring (C.3) and dividing by 2 leads to

≤ 2 × 2
(

𝜙(1 − 𝜙𝐿)
)2 ≤ 2 × 2𝜙2 = 0 ≤ 2

(

𝜙(1 − 𝜙𝐿)
)2 ≤ 2𝜙2. (C.4)

nowing that 1
1−𝜙 > 1, multiplying by 1

1−𝜙 yields

0 ≤
2
(

𝜙(1 − 𝜙𝐿)
)2

1 − 𝜙
≤ 2𝜙2

1 − 𝜙
. (C.5)

By adding (C.3) to (C.5)

0 ≤ 2𝜙(1 − 𝜙𝐿) +
2
(

𝜙(1 − 𝜙𝐿)
)2

1 − 𝜙
≤ 2𝜙 +

2𝜙2

1 − 𝜙
(C.6)

nd simplifying (C.6)

≤ 2𝜙(1 − 𝜙𝐿) +
2
(

𝜙(1 − 𝜙𝐿)
)2

1 − 𝜙
≤ 2𝜙

1 − 𝜙
. (C.7)

To obtain the bullwhip expression, we add plus one (+1) to (C.7)

1 ≤ 1 +

(

2𝜙(1 − 𝜙𝐿) +
2
(

𝜙(1 − 𝜙𝐿)
)2)

≤ 1 +
2𝜙

. (C.8)

1 − 𝜙 1 − 𝜙
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Therefore, the upper and lower bound of the bullwhip effect measure
of an INAR(1) is

1 ≤ 𝐵𝑢𝑙𝑙𝑤ℎ𝑖𝑝 ≤ 1 + 𝜙
1 − 𝜙

. (C.9)

his means that bullwhip always exists but is less than (1 + 𝜙)∕(1 − 𝜙),
egardless the lead time and the auto-regressive parameter.

ppendix D. Determining the optimal production capacity under
iscrete demand

The per period production cost 𝐶𝑞
𝑡 , with a nominal hours unit cost

of 𝑢 within a nominal capacity of 𝐾 and flexible per unit overtime cost
of 𝑢𝑚, where 𝑚 is the overtime multiplier, Boute et al. (2022), can be
xpressed as:
𝑞
𝑡 = 𝑢𝐾 + 𝑢𝑚[𝑞𝑡 −𝐾]+. (D.1)

The expected capacity costs per period can be found by taking the
expectation of (D.1),

E[𝐶𝑞
𝑡 ] = 𝑢𝐾 + 𝑢𝑚

∞
∑

𝑛=𝐾
(P[𝑛](𝑛 −𝐾)), (D.2)

where P[𝑛] = P[𝑞𝑡 = 𝑛] is the probability of the orders 𝑞𝑡 equalling 𝑛.
Notice, in (48), the first addend 𝑢𝐾 is increasing in 𝐾, and the second
addend, the sum, is decreasing in 𝐾. Thus, there is a unique 𝐾 (or at
most two consecutive 𝐾s) that minimises the expected capacity costs.

At the minimum the expected capacity costs with capacity 𝐾 will be
approximately equal to the expected capacity cost with capacity 𝐾 +1,

𝑢𝐾 + 𝑢𝑚
∞
∑

𝑛=𝑘
(P[𝑛](𝑛 − 𝑘)) = 𝑢(𝐾 + 1) + 𝑢𝑚

∞
∑

𝑛=𝐾+1
(P[𝑛](𝑛 − (𝑘 + 1))). (D.3)

Noting that ∑∞
𝑛=𝑘(P[𝑛](𝑛 − 𝑘)) =

∑∞
𝑛=𝑘+1(P[𝑛](𝑛 − 𝑘)), we can rearrange

the above to yield

𝑢((𝐾 + 1) −𝐾) + 𝑢𝑚
∞
∑

𝑛=𝐾+1
(P[𝑛](𝑛 − (𝑘 + 1)) − (𝑛 − 𝑘)) =0 (D.4)

𝑢 + 𝑢𝑚
∞
∑

𝑛=𝐾+1
(P[𝑛](−1)) =0 (D.5)

1 − 𝑚
∞
∑

𝑛=𝐾+1
P[𝑛] =0 (D.6)

As ∑∞
𝑛=𝐾+1 P[𝑛] = 1 − 𝐹 [𝐾], where 𝐹 [𝐾] is the cumulative distribution

function the order distribution we have

1 − 𝑚(1 − 𝐹 [𝐾]) =0 (D.7)

−𝑚 + 𝑚𝐹 [𝐾] = − 1 (D.8)

𝐹 [𝐾] =𝑚 − 1
𝑚

(D.9)

𝐾⋆ =𝐹−1
[𝑚 − 1

𝑚

]

. (D.10)

The optimal production capacity 𝐾⋆ can then be found as the smallest
𝐾 that ensures
𝐾
∑

𝑛=0
P[𝑛] ≥ 𝑚 − 1

𝑚
. (D.11)

ote, in our derivation, we have not made any assumptions about the
istribution or auto-correlation of the production orders, only that the
rders are stationary (with a finite and constant mean and variance).
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