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RESEARCH PAPER

Uncertainty quantification of reference-based cellular deconvolution algorithms
Dorothea Seiler Vellame a, Gemma Shireby a, Ailsa MacCalmana, Emma L Dempster a, Joe Burragea, 
Tyler Gorrie-Stone b, Leonard S Schalkwyk b, Jonathan Mill a, and Eilis Hannon a

aUniversity of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK; bSchool of Biological Sciences, University of Essex, Colchester 
CO4 3SQ, UK

ABSTRACT
The majority of epigenetic epidemiology studies to date have generated genome-wide profiles 
from bulk tissues (e.g., whole blood) however these are vulnerable to confounding from variation 
in cellular composition. Proxies for cellular composition can be mathematically derived from the 
bulk tissue profiles using a deconvolution algorithm; however, there is no method to assess the 
validity of these estimates for a dataset where the true cellular proportions are unknown. In this 
study, we describe, validate and characterize a sample level accuracy metric for derived cellular 
heterogeneity variables. The CETYGO score captures the deviation between a sample’s DNA 
methylation profile and its expected profile given the estimated cellular proportions and cell 
type reference profiles. We demonstrate that the CETYGO score consistently distinguishes inaccu
rate and incomplete deconvolutions when applied to reconstructed whole blood profiles. By 
applying our novel metric to >6,300 empirical whole blood profiles, we find that estimating 
accurate cellular composition is influenced by both technical and biological variation. In particular, 
we show that when using a common reference panel for whole blood, less accurate estimates are 
generated for females, neonates, older individuals and smokers. Our results highlight the utility of 
a metric to assess the accuracy of cellular deconvolution, and describe how it can enhance studies 
of DNA methylation that are reliant on statistical proxies for cellular heterogeneity. To facilitate 
incorporating our methodology into existing pipelines, we have made it freely available as an 
R package (https://github.com/ds420/CETYGO).
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Introduction

Due to the dynamic nature of the epigenome and 
its plasticity in response to environmental expo
sures [1–4], there is increasing interest in the role 
it plays in the aetiology of disease [5]. However, 
this very facet of the epigenome makes epigenetic 
epidemiology studies inherently more complex to 
design and liable to confounding compared to 
studies of DNA sequence variation [6,7]. One 
major difference is that an individual’s genetic 
sequence is identical in all cells, and therefore it 
does not matter from which tissue DNA is isolated 
prior to genotyping. In contrast, the epigenome 
orchestrates gene expression changes that under
pin cellular differentiation; consequently, cell types 
can be defined by their epigenetic profiles [8]. It 
has previously been shown that variation between 
cell types is greater than inter-individual variation 
within a cell type [9,10].

The majority of studies to date have focused on 
a single epigenetic modification, DNA methylation 
(DNAm), and generated genome-wide profiles 
from bulk tissues (e.g., whole blood) using high 
throughput microarrays [11]. A critical challenge 
in these studies is that bulk tissue is 
a heterogeneous mix of different cell types. The 
epigenetic profile of a bulk tissue is the average 
across the profiles of the constituent cell types. If 
the composition of these cell types, specifically the 
proportions of each cell type, varies across the 
population under study, and varies in a manner 
that correlates with the outcome of interest, this 
will lead to false positive associations at sites in the 
genome that differ between cell types [12,13]. As 
a result, epigenome-wide association analyses rou
tinely include quantitative covariates that capture 
the heterogeneity in cellular composition across 
a dataset. As experimentally derived cell counts 
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are often unavailable, proxies for cellular composi
tion can be derived from the bulk tissue profile 
using a deconvolution algorithm. The goal of these 
statistical methodologies is to generate a series of 
continuous variables that reflect the underlying 
cellular heterogeneity of each sample. 
Deconvolution algorithms can be separated into 
two classes. Firstly, supervised methods that incor
porate reference profiles for relevant cell types – 
generated from purified cell populations – and 
estimate proportions for this specified set of cell 
types (known as reference-based algorithms) [14– 
20]. Secondly, those that do not use any reference 
data and generate an unlimited set of variables that 
are not directly attributed to any particular cell 
type (known as reference-free algorithms) [21–24].

In tissues for which reference profiles are avail
able, reference-based deconvolution algorithms are 
most commonly used, likely due to the ease of 
interpretation. Specifically the constrained projec
tion methodology proposed by Houseman, often 
referred to as ‘Houseman’s method,’ is normally 
used. There have been a number of studies that 
have aimed to validate the application of these 
methods by testing their performance against 
experimentally or computationally derived ‘bulk’ 
profiles of fixed cellular compositions [18,25,26]. 
These have primarily focused on the prediction of 
the major blood cell types from whole blood. 
Typically, accuracy is reported at the group level, 
i.e., a single correlation or error statistic across 
a number of samples, which is then assumed to 
be representative for all future applications. In 
prediction modelling, great attention is paid to 
ensuring that the training data is representative 
of the testing data so that the predictions are 
valid. The vast majority of whole blood epigenetic 
studies use the same reference dataset generated 
from six adult males [27] to determine cellular 
composition, regardless of the age, sex, ethnicity, 
or disease status characteristics, with little consid
eration given to whether it is representative of the 
cohort being tested. Mathematically, there is noth
ing to prevent a deconvolution algorithm, based 
on any reference panel of cell types, from being 
applied to a profile generated from any bulk tissue. 
As an extreme example, we could input data 
derived from brain tissue to a model that outputs 
estimates of the composition of blood cell types 

and obtain values, due to the mathematical con
straints that are plausible (i.e., between 0 and 1). In 
a less extreme example, it is unknown how impor
tant demographic features (e.g., age, sex, or ethni
city) of the samples in the reference panel affect 
prediction in samples characterized by different 
demographics. Currently, there is no method to 
assess the validity of cellular composition estimates 
for a single sample, or indeed, a dataset where the 
true cellular proportions are unknown. If the qual
ity of the deconvolution varies either, across stu
dies or within a study, then the utility of these 
variables as confounders needs to be reconsidered. 
This could be especially problematic if the accu
racy of the deconvolution is systematically biased 
and is related to any other confounders such as age 
or sex. Understanding how reliable a set of cellular 
heterogeneity variables are for any individual sam
ple is of increasing importance, as the interest in 
quantifying cellular composition has moved 
beyond just adjusting for it in epigenome-wide 
association studies, with these estimates also 
being analysed as variables of interest in their 
own right [28, 29, 30].

In this study, we propose an accuracy metric 
that quantifies the CEll TYpe deconvolution 
GOodness (CETYGO) score of a set of cellular 
heterogeneity variables derived from a genome- 
wide DNAm profile for an individual sample. 
While our method is applicable to any reference- 
based deconvolution algorithm, and any reference 
panel of cell types, to demonstrate the utility of 
our approach we limit our characterization to the 
Houseman algorithm and two common panels of 
blood cell types, which represents the majority of 
applications. We demonstrate that CETYGO 
indexes the accuracy of the prediction of cellular 
composition with simulations in which we 
manipulated the performance of the deconvolu
tion. We then profile the statistical properties of 
the CETYGO score by applying it to a number of 
empirical datasets, to provide guidance on how it 
can be incorporated into whole blood DNAm stu
dies. Finally, we use the CETYGO score to deter
mine if they are any biases in the effectiveness of 
existing blood cell type reference panels. To enable 
the wider research community to incorporate our 
proposed error metric into their analyses, we have 
provided our methodology in an R package, 
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CETYGO, as well as adding functions to the 
wateRmelon package [31].

Materials and methods

Mathematical derivation of the CETYGO score

The DNAm profile of a bulk tissue can be defined 
as the sum of DNAm levels measured in the con
stituent cell types weighted by the proportion of 
total cells represented by that cell type. 
Mathematically we can represent this as

Bi;j ¼
XN

k¼1
pi;kCi;j;k (1) 

where

● Bi,j represents the DNAm level in the bulk 
tissue for sample i at site j

● pi,k represents the proportion of cell type k in 
sample i

● Ci,j,k represents the DNAm level for sample 
i at site j in cell type k, for N different cell 
types.

Typically in an epidemiological study, only the 
bulk tissue DNAm profile (Bi,j) is measured. 
However, as cellular composition is an important 
confounder, it is desirable to know or estimate pi,k 
for all (major) cell types. Methods for this purpose, 
such as Houseman’s constraint projection 
approach, have been proposed that take advantage 
of reference profiles (i.e., Ci,j,k) available to the 
research community to enable them solve for the 
unknown pi,k. This is achieved by selecting 
M DNAm sites that are highly discriminative of 
the cell types we want to estimate the proportions 
of. By definition, these sites exhibit low variation 
across individuals, and therefore it does not theo
retically matter that we have not measured them in 
the same samples that we have bulk profiles from. 
If the estimated cell proportions (denoted cpi;k) are 
accurate then the expected bulk tissue profile given 
this composition of cell types should closely 
resemble the observed data. We can substitute 
our estimated cell proportions, cpi;k, back into 
Equation 1, to calculate the expected profile of 
DNAm values (Equation 2) using the reference 

data to provide values for the cell-specific DNAm 
levels.

cBi;j ¼
XN

k¼1

cpi;kCi;j;k (2) 

We define our error metric, CETYGO, as the root 
mean square error (RMSE) between the observed 
bulk DNAm profile and the expected profile across 
the M cell type specific DNAm sites used to per
form the deconvolution, calculated from the esti
mated proportions for the N cell types 
(Equation 3). By definition, 0 is the lowest value 
the CETYGO score can take and would indicate 
a perfect estimate. Higher values of the CETGYO 
score are indicative of larger errors and therefore 
a less accurate estimation of cellular composition.

CETYGOi ¼ RMSE Bi; bBi

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PM

1 Bi;j � cBi;j

� �2
� �

M

v
u
u
u
t

(3) 

Purified blood cell type reference panels

Genome-wide DNAm profiles for purified blood 
cell types generated using the Illumina 450 K and 
EPIC microarray were obtained via the 
FlowSorted.Blood.450k and FlowSorted.Blood.EPIC 
R packages and formatted into matrices of beta 
values using commands from the minfi [32] 
R package. From the 450 K reference panel, we 
selected the six blood cell types that are mostly 
commonly used (B-cells, CD4+ T-cells, CD8 
+ T-cells, granulocytes, monocytes and natural 
killer cells) which were purified from whole 
blood from 6 Swedish male individuals using 
flow cytometry [27]. The mean purity of these 
samples was 92% (range 72–99%). The EPIC refer
ence panel contains profiles from antibody bead 
sorted neutrophils (n = 6), B-cells (n = 6), mono
cytes (n = 6), natural killer cells (n = 6), CD4 
+ T-cells (n = 7), and CD8+ T-cells (n = 6) [26] 
from male and female donors from a broad range 
of ethnicities (African-American, East-Asian, 
Indo-European, multiple/admixed). The average 
purity of these samples was 95% (range 88%- 
99%). Prior to training any deconvolution models, 
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both reference datasets were filtered to only 
include autosomal DNAm sites.

Generation of deconvolution models and 
simulated whole blood profiles

To test the performance of CETYGO against 
a known truth, we trained a series of Houseman 
constraint projection deconvolution models using 
reference data for different combinations of pur
ified blood cell types (Supplementary Figure 1). 
These were then tested against reconstructed 
whole blood DNAm profiles where we combined 
cell-specific profiles in a weighted linear sum of 
pre-specified proportions of each cell type. Note 
that when we refer to different models, these differ 
by way of the cell types included in the reference 
panel and the datasets from which the samples 
were taken rather than different algorithms. 
Depending on the specific testing framework, the 
training data comprised of all available samples 
that matched the relevant criteria and were not 
selected to be part of the testing data, such that 
the train and test data consisted of distinct sets of 
samples. It should be noted though that in some 
scenarios they were from the sample experimental 
batch, and plausibly share technical, batch-specific 
effects. We modified the minfi approach for imple
menting Houseman’s constrained projection 
methodology to omit the step within 
estimateCellCounts() where the training and test 
data are normalized together, in order to explore 
the effect of normalization. This adaptation means 
that the cellular deconvolution and CETYGO cal
culation can be applied directly to a matrix of beta 
values, rather than requiring the raw data stored in 
an RGSet object. This makes it straightforward and 
computationally efficient to apply new reference 
panel (or include a new error metric) to an exist
ing dataset. After selecting the training data, the 
deconvolution model was formulated as follows. 
An ANOVA was performed across all samples in 
the training data to identify sites that are signifi
cantly different (p value < 1 × 10−8) between the 
blood cell types, selecting 100 sites per cell type (50 
hypermethylated and 50 hypomethylated). These 
sites are then used to solve Equation 1 using quad
ratic programming, in essence a least squares 

minimization, with the constraint that the propor
tions are greater than or equal to 0.

In the first simulation analysis, we had six differ
ent combinations of training and testing data using 
the two reference panels. Within each reference 
panel (450 K and EPIC), across reference panels 
without normalization (450 K to EPIC and EPIC to 
450 K) and across reference panels after stratified 
quantile normalization as implemented in minfi of 
the combined training and test dataset (450 K to 
EPIC and EPIC to 450 K). To construct whole 
blood profiles for testing we isolated one sample of 
each cell type. When testing samples were selected 
from the 450 K reference data, we selected a single 
individual as the test case and took all their purified 
samples, with all the samples from the other five 
individuals used for the training data. This meant 
there were a maximum of 6 testing iterations (as 
there are 6 individuals). When testing samples were 
selected from the EPIC reference data, we randomly 
selected a test sample for each cell type (as they do 
not come from the same set of individuals), and 
repeated this process 10 times to get multiple sets 
of test data. We constructed whole blood profiles 
(i.e., the test data) as a linear sum of these cell- 
specific profiles in a fixed ratio and a defined propor
tion of noise. Specifically the test profiles where 
generated using the equation,

Bj ¼
XN

k¼1
pkCj;k þ ρεj (4) 

Where
Bj represents the simulated DNAm level in the 

bulk tissue at site j.
pk represents the proportion of cell type k which 

were standardized for these series of simulations to 
the mean proportions reported in Reinius et al. 
[27] (Supplementary Table 1).

Cj,k represents the DNAm level from the test 
sample for in cell type k at site j.

ρ is the proportion of ‘noise’ and took the values 
0, 0.01, 0.02, . . ., 0.1, 0.12, 0.14, . . . 0.5.

εj is a random variable taken from a uniform 
distribution bounded by 0 and 1.

In total 31 simulated ‘noisy’ blood profiles were 
tested for each iteration of each deconvolution 
model.
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In the second simulation analysis, we focused 
on a single reference panel, the 450 K reference 
panel. Here we tested a series of deconvolution 
models, where each cell type was omitted in turn 
from the reference panel, prior to training the 
model. Each of these leave one out models, was 
then tested against simulated whole blood profiles 
constructed from all six cell types. The five cell 
types included in the training data were combined 
for the test data in fixed ratios calculated from the 
mean proportions reported by Reinius et al. 
(Supplementary Table 1), with the omitted cell 
type included at increasing proportions (0.1, 
0.2, . . ., 0.9). We used the same process to select 
testing samples as described before, meaning that 
each of the leave one out models was tested against 
9 simulated whole blood profiles in 6 different 
train test permutations.

In the third simulation analysis, we again 
focused on a single reference panel, the 450 K 
reference panel. Here, we tested all possible decon
volution models, containing between 3 and 5 of 
the 6 blood cell types, a total of 41 combinations. 
This time we tested the full spectrum of whole 
blood profiles in 0.1 units, where each cell type 
represented at least 0.1, up to a maximum of 0.5. 
In total 126 possible profiles were generated, 
where every combination of blood cell types was 
considered.

Profiling the performance of CETYGO in 
empirical datasets

A summary of the 17 datasets used to profile 
CETYGO is provided in Supplementary Table 2. 
Datasets 2–9, 14, and 15 were generated by our 
group at the University of Exeter (www.epigen 
omicslab.com) and have been previously pub
lished. The pre-processing and normalization of 
these datasets is as described in the corresponding 
manuscripts. Datasets 1 and 16 were also gener
ated by our group and are currently unpublished. 
They followed a standard QC pipeline and were 
normalized using dasen() in the wateRmelon pack
age [31]. Datasets 10–13 and 17 are publically 
available datasets obtained from GEO (https:// 
www.ncbi.nlm.nih.gov/geo/). These data were put 
through a quality control pipeline which included 
checking the quality of the DNAm data (signal 

intensity, bisulphite conversion and detection 
p-values) prior to normalization using dasen() in 
the wateRmelon package [31]. For all datasets cel
lular deconvolution and the calculation of 
CETYGO was applied using a model trained with 
all samples for 6 cell types from the 450 K refer
ence panel.

To characterize the relationship between data 
quality metrics and CETYGO, we used an 
expanded version of Dataset 3 which retained the 
samples that failed quality control for either 
a technical or biological reason (n = 725). For 
this data we imported the raw signal intensities 
from the idat files for all samples using the 
wateRmelon package [31]. Signal intensities for 
each sample were summarized as the median 
methylated (M) and unmethylated (U) intensity 
across all sites. Bisulfite conversion efficiency was 
calculated as the median beta value across 10 fully 
methylated control probes and converted to 
a percentage. Samples were then processed 
through pfilter() using the default settings. 
A sample was classed as a technical failure if either 
median signal intensity metric was less than 500, 
the bisulfite conversion statistic was less than 80% 
or it failed pfilter(). In total 62 samples were 
classed as technical failures. Note these thresholds 
may not match up with the thresholds implemen
ted in the quality control pipeline described in the 
original manuscript. All 725 samples were then 
normalized using dasen and cellular deconvolution 
and their CETYGO score estimated.

In order to test the effect of normalizing the 
reference panel DNAm dataset (i.e., training 
data) with the bulk tissue dataset (i.e., the test 
data) we imported the raw signal intensities for 
Dataset 1. We the re-normalized these data in 
conjunction with the reference panel prior to per
forming cellular deconvolution and the calculation 
of CETYGO. To facilitate this we have adapted the 
estimateCellCounts() function in minfi [32] to 
a new function estimateCellCountsWithError() 
which additionally calculates CETYGO alongside 
performing the reference-based deconvolution. 
We made no other edits to the function and as 
such the data pre-processing is unchanged from 
the original function. This means that in these 
analyses the sex chromosomes were retained for 
both normalization and the selection of cell- 
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specific sites for estimated cellular composition. 
These values of CETYGO were compared to 
CETYGO calculated as described above using the 
dasen normalized betas that were not normalized 
with the reference panel.

To compare the error associated with cellular 
deconvolution and the error associated with esti
mated age using an epigenetic clock, we imple
mented a robust regression model using the rlm 
package in R. A p-value for the co-efficient to test 
if it was non-zero was calculated using a Wald test 
as implemented in the sfsmisc R package.

Ethical approval

The study was approved by the University of 
Exeter Medical School Research Ethics 
Committee (reference number 13/02/009).

Data and code availability

The DNAm data used in this study are available as 
R packages or via GEO (see Supplementary 
Table 2 for details). We have provided the code 
for calculating the CETYGO score as an R package 
available via GitHub (https://github.com/ds420/ 
CETYGO). The code to reproduce the analyses in 
this manuscript using our R package are also avail
able via GitHub (https://github.com/ejh243/ 
CETYGOAnalyses).

Results

CETYGO indexes the accuracy of cellular 
composition estimates in whole blood

The objective of this study was to define, validate 
and characterize a novel metric that can be used to 
assess the accuracy of DNAm-based cellular 
deconvolution in an individual sample. The 
CETYGO score captures the deviation between 
the observed DNAm profile and the expected pro
file for the given set of estimated cell type propor
tions, where values close to 0 indicate accurate 
estimates of cellular composition.

In order to test whether our proposed error 
metric CETYGO successfully captures inaccurate 
cellular heterogeneity estimates, we manufactured 
a series of bulk whole blood profiles where the 

cellular composition was known and could be 
estimated with varying degrees of accuracy. This 
was achieved by standardizing the ratios of the 
constituent blood cell types and adding an increas
ing proportion of random ‘noise,’ which could 
reflect either biological variation, technical arte
facts or imprecision in the assay. These simula
tions were run separately for a reference panel of 
blood cell types profiled with the 450K array [27] 
and one profiled with the EPIC array [26] (see 
Materials and Methods). The hypothesis is that 
as the proportion of noise increases, the estimation 
of cellular composition will be less accurate and 
the CETYGO score should correlate with the pro
portion of noise in the whole blood sample. To 
confirm that our simulation framework was fit for 
purpose, we calculated the RMSE between the 
fixed cell type proportions used to construct the 
whole blood profiles and the predicted values, 
observing that profiles with a higher proportion 
of noise were characterized by larger deviations 
from the truth (Figure 1(a)). Having manufactured 
a spectrum of inaccurate deconvolutions, we were 
able to determine whether the CETYGO score 
changed as a function of noise, finding that it 
successfully indexed accuracy with a monotonic 
relationship between the proportion of noise in 
a bulk sample and the CETYGO score (Figure 1 
(b)). We observed that for small proportions of 
noise (between 0 and 0.05) the accuracy estimates 
don’t vary very much, but once the proportion of 
noise goes above 0.05, the effect of additional noise 
on accuracy starts to accumulate. We also found 
that when the predictions were less accurate, the 
total sum of all estimated cell types for a sample 
was less than one and decreased as noise increased 
(Figure 1(c)).

In our simulation framework, we tested two 
independent reference datasets [26,27], generated 
using different versions of the Illumina BeadChip 
array and incorporating subtly different panels of 
cell types, either granulocytes or neutrophils, with 
the granulocytes fraction being 90% neutrophils. 
We subsequently repeated the simulation frame
work, but this time training the model using one 
reference panel (either 450K or EPIC) and testing 
it in simulations formulated from the other refer
ence panel, limiting these analyses to the five cell 
types shared between the two reference panels. 
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This would allow us to explore how batch and 
normalization strategy influences the accuracy of 
cellular deconvolution. These results showed the 
same general pattern across the different train-test 
pairings, where the CETYGO score captured 
decreasing accuracy in estimates of cellular com
position (Supplementary Figure 2). Differences 
between datasets did lead to slightly increased 
imprecision at lower proportions of noise, but 
this scenario is arguably more representative of 
the typical application of cellular deconvolution 
algorithms, where the reference panel and bulk 
tissue test data are generated in different labora
tories. Interestingly, we observed that when the 
training data was generated with the 450K array 
and applied to simulated bulk data generated from 
the EPIC array, the deconvolution was marginally 
more accurate potentially indicative of reduced 
signal-to-noise. This could be due to improved 
technical performance with the newer EPIC array 
or due to the fact that the reference samples had 
higher purity statistics. In general, whether the two 
batches of data were normalized together or 
not, there was no clear bias on deconvolution 
accuracy. When the EPIC array training data 
was used there was a minimal difference in decon
volution accuracy, measured by either RMSE 
(Supplementary Figure 2A), or the CETYGO 
score (Supplementary Figure 2B). Of interest, 

though, if the 450K training panel was used there 
was a moderate effect on RMSE with the direction 
of effect dependent on the proportion of noise. 
When noise is low (<0.1) normalizing the data 
together was associated with a smaller error, 
when noise was high (>0.1) normalizing the data 
separately was associated with a smaller error. This 
complex behaviour suggests technical characteris
tics of the reference panel itself (e.g., technology, 
data quality or cell purity) are more important 
than normalization strategy. Given the slightly 
more accurate performance, all subsequent ana
lyses were performed with the 450K reference 
panel only.

CETYGO is inflated when applied to incomplete 
cellular reference panels

Another scenario where inaccurate deconvolutions 
are likely to occur is when the reference panel of cell 
types for deconvolution is incomplete. When imple
menting Houseman’s method to solve for cellular 
composition proportions, there is an option to 
enforce a constraint such that the sum of the propor
tions of the cell types in the panel ≤1. In other words, 
all the cells present in the bulk tissue are (virtually) 
completely represented by the cell types in the refer
ence panel. When an abundant cell type is missing 
due to lack of reference data, theoretically, this may 

Figure 1. CETYGO captures variation in accuracy of cellular deconvolution in whole blood. Line graphs plotting the error associated 
with estimating the cellular proportions of reconstructed whole blood profiles with increasing proportion of noise (x-axis). Where the 
y-axis presents A) the root mean square error (RMSE) between the fixed cellular proportions used to construct the whole blood 
profiles and the estimated proportions generated with Houseman’s method, B) the error metric CETYGO and C) the sum of all 
proportions estimated. The points represent the mean value and the dashed lines the 95% confidence intervals calculated across 
multiple simulations. The two lines represent simulations constructed from reference data generated from two different platforms, 
the Illumina 450K and EPIC BeadChip microarrays.
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lead to errors, as the unrepresented proportion of the 
bulk tissue will need to be (incorrectly) assigned to an 
alternative cell type. To explore this, we dropped each 
cell type in turn from the reference panel, and recal
culated the cellular proportion estimates for recon
structed whole blood profiles that included the 
missing cell type, in increasing proportions. We 
found that the CETYGO score had a monotonically 
increasing relationship with the true proportion of the 
missing cell type (Figure 2). Of note, the magnitude of 
the CETYGO score in blood data depended on which 
blood cell type was missing, with the omission of 
B-cells, leading to the largest errors and the omission 
of CD8+ T-cells the smallest effect. This is likely due 
to the methylomic similarity of the two sets of T-cells, 
whereby CD4+ T-cells are a good alternative to CD8 
+ T-cells, and suggests that at sites included on the 
450K array, B-cells, followed by monocytes have the 
most distinct profile compared to the average profile 
of the other cell types. We expanded this framework 
further to omit up to 3 cell types from the training 
model, finding that the CETYGO score generally 
decreases as both the number of cell types in the 

model increases and the proportion of cells repre
sented in the model increases (Figure 3). However, 
the distributions of the CETYGO score across differ
ent panels of cell types applied to different composi
tions of whole blood are overlapping and have long 
tails, highlighting that there are some scenarios where 
a model with 3 cell types, outperforms a model with 4 
or 5 cell types dependent on the abundance of each 
cell type in the bulk tissue. Exploring the outlier 
CETYGO scores further, defined as more than 5 
standard deviations from the mean (Supplementary 
Table 3), we noted that the worst performing decon
volutions happened when the reference panel 
included CD4+ T-cells, CD8+ T-cells and NK cells, 
with up to one other cell type. These three cell types 
are the most similar in terms of their DNAm profile, 
and these results suggest that it is challenging to 
segregate their proportions accurately.

CETYGO distinguishes nonsense applications

Having demonstrated the sensitivity of the CETYGO 
score to detect noisy and incomplete estimates of 

Figure 2. Cell type dependent effects on accuracy when omitted from reference based cellular deconvolution algorithms. Line graph 
of the error associated with estimating the cellular proportions of reconstructed whole blood profiles where the reference panel is 
missing one of six cell types. Each coloured line represents a different cell type being omitted from the reference panel, but included 
in the reconstructed whole blood profiles used for testing. Plotted is the proportion in the testing profile that the missing cell type is 
set to occupy (x-axis) against the error, measured using the CETYGO score, of the deconvolution (y-axis). The points represent the 
mean value and the dashed lines the 95% confidence intervals calculated across multiple simulations.
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cellular heterogeneity, we next tested its behaviour 
when applied to real data in order to provide gui
dance to the wider research community about how it 
can be interpreted in the context of epidemiological 
studies. To this end, we estimated the cellular pro
portion of six blood cell types and the CETYGO 
score associated with the estimation for 10,447 
DNAm profiles, across 17 different datasets and 17 
different sample types (Supplementary Table 2). 
7,184 (68.8%) of these represent realistic applications 
as the profiles were derived from blood tissue types 
and can be used to infer the expected distribution of 
CETGYO scores across a range of experimental and 
biological sources. The remaining 3,263 (31.2%) 
represented ‘nonsense’ applications as these profiles 
were generated from non-blood samples and can be 
used to highlight whether the CETYGO score can 
distinguish sensible deconvolutions. In general, there 
was a clear dichotomy between the output for these 
two types of sample; CETYGO scores for blood 
samples were typically <0.1 and CETYGO scores 
for non-blood tissues were >0.1 (Figure 4). The 
median CETYGO score across all whole blood sam
ples was 0.0524 (inter-quartile range = 0.0455– 
0.0581). Within the whole blood samples there was 
a bimodal distribution, which on closer inspection 
appears to be determined by platform, with datasets 
generated with the 450K array associated with lower 
CETYGO scores than those generated using the 
EPIC array (mean difference = −9.11x10−3, 
P = 2.72x10−223, Supplementary Figure 3). 

However, it could be that are other technical reasons 
(e.g. data quality) that underlie this difference. 
Limiting our comparison to Dataset 8 where we 
had matched whole blood and purified blood cell 
types from the same individuals [9], we observed 
that purified blood cell types were predicted with 
higher error than whole blood (Supplementary 
Figure 4), with significant differences for all cell 
types, bar granulocytes (Supplementary Table 4). 
This suggests that it is more challenging accurately 
to determine when a cell type is pure, than to decon
volute a mixture of cell types. We also noted that the 
CETYGO score was significantly higher for both 
cord blood (mean difference = 0.0207; T-test p– 
value <3.42 × 10−363) and neonatal blood spots 
(mean difference = 0.0307; T-test p–value = 9.19x10
−62) compared to whole blood. This is in agreement 
with previous studies suggesting that the standard 
panel of major blood cell types is not the most 
appropriate for the assessment of cellular heteroge
neity in blood samples obtained for neonatal epige
netic studies [33].

Cellular heterogeneity estimates are biased by 
technical factors

While the distribution of CETYGO score across 
whole blood samples was fairly narrow, we wanted 
to explore whether CETYGO scores could be used to 
detect biases in the estimation of cellular composi
tion from whole blood DNAm profiles. In the simu
lation study we showed that noisy DNAm profiles 
lead to less accurate estimates of cellular composi
tion. In real data, technically noisy signals should be 
excluded as part of the pre-processing pipeline in 
order to improve the power to detect differences 
between groups. We hypothesized that samples 
excluded based on technical quality metrics are likely 
to have higher deconvolution errors as measured by 
the CETYGO score. Comparing CETYGO scores 
against standard quality control metrics we found 
that higher values of the CETYGO score were asso
ciated with lower median signal intensities and lower 
bisulfite conversion statistics (Figure 5), consistent 
with our hypothesis.

The vast majority of DNAm studies perform nor
malization to align the distributions across samples, 
and ultimately make the data more comparable, par
ticularly where data have been generated across 

Figure 3. The accuracy of cellular heterogeneity estimation 
increases as the reference panel becomes more representative. 
Violin plots of the error associated with estimating the cellular 
proportions of reconstructed whole blood profiles where the 
reference panel is missing between one and three cell types. 
Each violin plot shows the distribution of the error, measured 
using CETYGO, of the deconvolution (y-axis) grouped by A) the 
number of cell types included in the reference panel and B) the 
proportion of cells in the reconstructed whole blood profile that 
are from cell types included in the reference panel.
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multiple batches. We hypothesized that normalizing 
reference data and test data together to make the 
genome-wide profiles more similar would attenuate 
the discriminative signals between cell types and nega
tively affect the performance of cellular deconvolu
tion. We therefore compared the CETYGO scores 
calculated with and without normalization of the 
test data with the reference panel for Dataset 1. In 
general, the overall distribution of values did not differ 
dramatically between normalization strategies. 
However, we did observe that when the reference 
panel (which is all male) was normalized with the 
test data, there was a clear bias towards females having 
higher error (Supplementary Figure 5), consistent 
with analyses showing that normalization can intro
duce sex effects [34]. In contrast, our adapted method, 
where we normalized the data separately, was char
acterized by a dramatically reduced sex difference.

Cellular heterogeneity estimates are biased by 
age, sex and smoking status

Across the 6,351 whole blood samples included in our 
analysis we fitted a linear regression model to test the 
influence of additional factors on CETYGO scores 
(Supplementary Table 5). As well as the platform 
effects we described earlier (p-value = 2.72x10−223) 
there were further significant differences between 
datasets (p-value = 1.75x10−222) even after controlling 
for platform. We also found that every biological 
factor we tested had a significant association with 
CETYGO (Supplementary Figure 6). This included 
a negative association with age (coefficient = 
−7.1x10−5, p-value = 0.00215), a positive association 
with age squared (coefficient = 8.8x10−7, p-value = 
0.000189), sex (mean difference in males = 9.6x10−4, 
p-value = 4.03x10−12) and a positive association with 

Figure 4. The CETYGO score captures the tissue specificity of deconvolution reference panels. Violin plots of the error associated 
with estimating the cellular proportions where a reference panel consisting of six blood cell types was applied to 10,447 DNA 
methylation profiles, across 18 different datasets and 20 different sample types. Each violin plot shows the distribution of the error, 
measured using the CETYGO score, of the deconvolution (y-axis) grouped by the tissue/cell-type, where the violins are coloured to 
highlight which samples are derived from blood, which are human derived non-blood bulk tissue, and which are human derived cell- 
lines.
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smoking score (coefficient = 6.7x10−5, p-value = 
1.84x10−6).

Inaccuracies in DNAm prediction algorithms are 
concordant across predictors for different 
phenotypes

Finally, we were interested in whether inaccuracy 
in cellular deconvolution was mirrored by inac
curacies in other epigenetic predictors. Comparing 
the CETYGO score against the deviation between 

chronological age and epigenetic age predicted 
with the Horvath multi-tissue clock [35], we 
found a nominally significant positive relationship 
(coefficient = 23.5, p-value = 0.0129) highlighting 
that samples with inaccurate cellular deconvolu
tion have a larger differences between epigenetic 
age and chronological age (Figure 6). This suggests 
that studies which use the residual between epige
netic age and chronological age as a proxy for 
accelerated ageing may be partly explained by 
measurement error.

Figure 5. The CETYGO score correlates with metrics of data quality. Summaries of the error associated with estimating the cellular 
proportions as a function of quantitative metrics of DNA methylation array signal for 725 samples from Dataset 3. A) Violin plot of 
the distribution of the CETYGO score, grouped by whether the sample is of sufficient quality to pass the quality control pipeline. 
Scatterplots of the error, measured using the CETYGO score (y-axis) for each sample against, B) the median methylated (m) intensity 
across all sites on the microarray, C) the median unmethylated (u) intensity across all sites on the microarray, D) the bisulpfhite 
conversion % calculated as the mean across 10 fully methylated control probes. In panels, B, C and D, the points are coloured by 
whether the sample passed quality control in panel A or not.
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Discussion

The estimation of cellular composition is vital in 
epigenetic epidemiology, with these variables being 
included as co-variates in analyses to minimize the 
effect of confounding. To compliment these ana
lyses, we have described and validated a novel 
error metric – CETYGO – that enables the accu
racy of the deconvolution to be quantified at an 
individual sample level. Our results demonstrate 
that the CETYGO score consistently distinguishes 
inaccurate and incomplete deconvolutions when 
applied to reconstructed whole blood profiles and 
support its inclusion in future DNAm association 
studies to identify scenarios, or individual cases, 
when cell composition estimates are unreliable. 
We have applied it to several existing datasets to 
further characterize the performance of the pre
dominant application with a reference panel of 
blood cell types. These analyses provided 
a number of insights. First, our results indicate 
that cell types are not equal when it comes to 
deconvolution accuracy. For example, the omis
sion of B-cells from the standard blood reference 
panel had the most dramatic effect on their accu
racy, while the omission of one of the two types of 

T-cells had the smallest effect. Furthermore, the 
model struggled to accurately allocate the abun
dance of T-cells to the correct subcategory. This is 
consistent with previous reports that the DNAm 
profile of B-cells is relatively distinct to that of 
other blood cell-types, with the profiles of the 
two classes of T-cells being most similar [9,36]. 
Second, we highlighted that the estimation of cel
lular deconvolution using the default 450K refer
ence panel is biased. Specifically, it is less accurate 
in females, neonates, older individuals and smo
kers (Figure 4, Supplementary Table 5). This has 
important consequences for epigenome-wide asso
ciation studies, as it may indicate that existing 
efforts to adjust for cellular heterogeneity may be 
less effective in some sets of samples. To minimize 
this effect, it may be preferable to exclude any sites 
where either biological (e.g., sex-chromosome 
linked sites) or technical variation (e.g., cross- 
hybridizing sites) might be associated with these 
traits, prior to estimating cellular composition. 
Previous work has also shown that some of the 
additional content present on the EPIC array and 
not present on the older 450K array can be har
nessed to improve the accuracy of cellular decon
volution estimation [26]. This would suggest that 
more recently generated reference panels might be 
preferable, such as the recent expanded blood 
panel consisting of 12 leukocyte subtypes [37]. It 
is unsurprising that the CETYGO scores for neo
nates were higher, indicative that common blood 
reference panels derived from adults are not 
appropriate consistent with previous reported 
findings [33,36,38]. It is possible this is due to 
differences in the epigenetic profiles of blood cell 
types between young and old, or the challenges of 
extracting DNA from these sample types, leading 
to increased technical noise. We believe the most 
pertinent reason, however, is that neonates have 
blood cells not included in these reference panels, 
reflecting a situation where an incomplete refer
ence panel was used. Indeed, there are specific 
reference panels available that include a more 
appropriate set of cell types for deconvolution of 
cord blood [33,39,40], and we would hypothesize 
that the CETYGO score would be lower if these 
reference panels were used. Altogether, this 
emphasizes the need to thoroughly benchmark all 

Figure 6. Error in estimation of cellular heterogeneity from DNA 
methylation data correlates with error from epigenetic clock 
algorithms. Heatscatterplot of the error measured using the 
CETYGO score (y-axis), associated with estimating the cellular 
proportions across 6,351 whole blood profiles against the dif
ference between the sample’s chronological age and age pre
dicted using Horvaths pan-tissue algorithm from the DNA 
methylation data (delta age; x-axis). The colour of the points 
represents the density of points at that location.
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reference panels and characterize which scenarios 
they are appropriate for whilst also increasing the 
diversity of available reference panels.

Our primary motivation was to develop a metric 
that could be used to assess for an individual sample, 
how reliable derived estimates of cellular heteroge
neity are. To facilitate this we have calculated the 
CETYGO score in >6,300 whole blood profiles, and 
provided some guidance about how to interpret the 
metric. Our data suggest that a CETYGO score >0.1 
is consistent with the reference panel not being rele
vant for the specific tissue being profiled (Figure 4). 
Although incorrect tissue, had the most dramatic 
effect, we also found that an elevated CETYGO 
score can be induced by poor quality DNAm data, 
where the noise to signal ratio is elevated, generating 
less sensitive DNAm profiles to the extent that it 
interferes with the accuracy of the deconvolution 
model. This can be mitigated by implementing strin
gent pre-processing pipelines to remove poor quality 
data. In particular, the principle behind our metric is 
comparable to the quality control metric DMRSE, 
which contrasts raw DNAm levels with normalized 
DNAm levels rationalizing that outlier profiles will 
require more dramatic transformations to align the 
data distributions, available in the wateRmelon 
R package [31]. However, even within the pre- 
processed datasets used in our study there were 
a handful of samples with outlier CETYGO values. 
For this reason, we suggest that CETYGO should be 
added to existing pipelines to provide confidence in 
analyses that incorporate cellular composition vari
ables. To facilitate this, we have made our method 
available as a standard alone R package – CETYGO – 
available via GitHub which adapts the existing work
flow within minfi [32] to simultaneously calculating 
the CETYGO score alongside the estimation of cel
lular composition variables using Houseman’s algo
rithm. In this way it can easily be adapted for use with 
other available reference panels, both now and in the 
future. We have also integrated the CETYGO score 
into the wateRmelon function EstimateCellCounts. 
wmln(), used to predict cell type composition, pro
viding users with their deconvolution accuracy esti
mate when they predict composition.

As well as being able to computationally derive 
the cellular proportions of the constituent cell- 
types from a bulk tissue profile, there are now 
also methods to deconvolute bulk tissue profiles 

into cell-specific profiles genome-wide [23,41]. 
These methods are dependent on knowing the 
cellular proportions of the bulk samples, and if 
these are derived computationally, we believe it 
would be prudent to use the CETYGO score to 
evaluate the accuracy of these prior to deriving the 
cell-specific profiles. It also plausible that the fra
mework of CETYGO could be adapted to assess 
the accuracy of the cell-specific DNA methylation 
profiles. However, given that accuracy is likely to 
be variable across DNAm sites, it is questionable 
how valuable a sample-level accuracy score would 
be in this context, unless it was conditioned on the 
subset of sites which are predetermined to be 
associated with highly accurate estimates.

Our findings should be considered in the light 
of a number of limitations. First, for the purpose 
of validation, we limited our analyses to the most 
commonly used deconvolution algorithm, 
Houseman’s constrained projection approach 
[17], and the most commonly used bulk tissue, 
whole blood, for which previously validated refer
ence panels exist [14,25]. Comparisons of the dif
ferent methodologies for inferring cellular 
heterogeneity estimates from bulk tissue have 
concluded that no single method is superior 
across all test scenarios [20]. Theoretically, 
though, the concept behind the CETYGO score 
should be extendable to any reference based 
deconvolution algorithm or reference panel of 
cell types and therefore applicable to any tissue, 
organism, or DNAm profiling technique and 
could be used to compare the performance of 
difference algorithms within a single dataset 
where true cellular heterogeneity is unknown. 
Second, our method assumes that the cell- 
specific sites used to estimate cellular composition 
are not dramatically influenced by any exposure. 
If differences were induced at these sites, this 
would cause the error to be overestimated. This 
assumption is also made by most deconvolution 
algorithms, and it has been suggested that it is 
unlikely to be a major concern [42]. Third, we 
limited the majority of analyses to a reference 
panel generated with the 450K array and there
fore, the conclusions regarding the effect of the 
specific blood cell types on accuracy may be influ
enced by the subset of genomic loci included on 
that technology.
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In summary, we have proposed a new metric, 
CETYGO, to evaluate the accuracy of reference 
based cellular deconvolution algorithms at an indi
vidual sample level. We believe, this tool will be 
asset in studies of DNAm and have demonstrated 
how it can be used to assess bias in reference 
panels, and to identify unreliable estimates of cel
lular composition.
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