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Abstract: The increased accessibility of drone technology and structure from motion 3D scene
reconstruction have transformed the approach for mapping inaccessible slopes undergoing active
rockfalls and generating virtual outcrop models (VOM). The Poggio Baldi landslide (Central Italy) and
its natural laboratory offers the possibility to monitor and characterise the slope to define a workflow
for rockfall hazard analysis. In this study, the analysis of multitemporal VOM (2016–2019) informed a
rockfall trajectory analysis that was carried out with a physical-characteristic-based GIS model. The
rockfall scenarios were reconstructed and then tested based on the remote sensing observations of
the rock mass characteristics of both the main scarp and the rockfall fragment inventory deposited on
the slope. The highest concentration of trajectory endpoints occurred at the very top of the debris
talus, which was constrained by a narrow channel, while longer horizontal travel distances were
allowed on the lower portion of the slope. To further improve the understanding of the Poggio
Baldi landslide, a time-independent rockfall hazard analysis aiming to define the potential runout
associated with several rock block volumetric classes is a critical component to any subsequent
risk analysis in similar mountainous settings featuring marly–arenaceous multilayer sedimentary
successions and reactivated main landslide scarps.

Keywords: rockfall hazard; remote sensing; 3D modelling

1. Introduction

Rockfall hazard is a well-known mass wasting phenomenon in mountainous regions.
Notably, rockfalls have unusual properties, such as extreme velocity and a catastrophic
nature, posing a very complex condition to act against. Due to this, in recent years new
software and techniques for the study and simulation of this phenomenon have been
developed. Some examples are provided in [1–3], which showed the use of UAVs and
GIS-based codes for runout simulations in the Central Apennines of Italy and East Spain,
respectively. In [4], the authors developed a new method to extract vegetation during
simulations, while [5] highlighted the identification of rockfall source areas at the regional
scale through probabilistic analyses.

During a rockfall event, potential damages are associated with rocks reaching vulnera-
ble elements during their descent down the slope [6–8]. The volumes involved in a rockfall
as well as its velocity and trajectories are the parameters that are directly related to the
severity of the consequences of the event. The trajectories of the rock fragments depend
on the slope geometry and the characteristics of the propagation zone, local asperities
(i.e., jump features), and the mechanical characteristics of the exposed bedrock and soil
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cover. The quality of the results of rockfall analysis/simulations is directly related to the
input parameters used. In particular, the geometry of the propagation area, the volume
of the potential failing blocks, and the coefficient of restitution are key parameters during
simulations [9]. The geometry of the propagation area and the coefficient of restitution
can be interpreted using virtual outcrop models (VOMs) and field observations [10–16],
while the volume of blocks can be defined using geomechanical data or through the anal-
ysis and interrogation of past failures, when available [17,18]. In this context, one of the
problems that often arises in rockfall simulations is the definition of rock block volumes
when the structural condition varies within the slope [2,19]. In this study, we present a
new approach to overcome this problem. A multitemporal remote sensing analysis of the
slope was carried out to highlight different rockfall source sectors within the study area. In
these sectors, we surveyed the discontinuity sets and their characteristics, such as spacing
and persistence. These data were then used to calculate the volume of the potential rock
blocks characterizing each area. Through this approach, it was possible to perform detailed
rockfall simulations for each source area using specific structural/geomechanical data.
The case example used for this purpose was the Poggio Baldi (PB) landslide in the Italian
northern Apennines.

2. Study Area

The Poggio Baldi landslide (Figure 1) is in the Appennino Forlivese (Northern Apen-
nines), in the vicinity of Poggio Baldi village. Poggio Baldi falls within the Foreste Casen-
tinesi National Park in the Santa Sofia municipality (Forlì-Cesena FC, Emilia-Romagna).
The landslide spans from 845 m asl at its main scarp to 467 m asl where the Bidente river
cuts across the landslide body’s toe, and the road SS310 runs parallel to it. The Appennino
Forlivese belongs to the Tosco-Emiliano sector of the Northern Apennines, a trust and
fold orogenic belt verging N–E and oriented approximately WNW–ESE [20]. The Bidente
river valley cuts into the Marnoso-Arenacea Formation (FMA). It is from the Miocene
age [21], and it is involved in a series of NW–SE oriented thrusts. The thrust front is cut
by a series of high-angle direct faults nearly orthogonal to it. The FMA is composed of an
alternation of sandstones and mudstones [22,23] showing well-defined and regular Bouma
sequences, as described in [24]. The geomorphological setting is strongly controlled by
the FMA lithologies combined with the geostructural evolution of the region. Along the
Bidente river valley, the slope’s geometry is influenced by the juxtaposition of marl and
sandstones. In the thrust back limb, strata are organized approximately in a monoclinal,
gentle dipping structure (circa 30◦) perpendicular to the main NW–SE thrust [25].

The PB landslide is one of the largest slope instabilities of this Apennine sector. It
mobilised nearly 4 × 106 m3 of rock, and it is still considered to be active, with a reactivation
frequency of 100 years. Its main catastrophic events occurred in March 1914 and March 2010.
The landslide’s initial activation is considered a large-scale wedge failure mechanism, which
was inferred by the scarp geometry [26]. The latest reactivation occurred between 18 and 19
March 2010, when approximately 4 million cubic meters of material was mobilized, creating
severe damage to several buildings and to the road SS310 [27,28]. After the development of
tension cracks, the landslide body began to slowly move downward, reaching the Bidente
river in 3 h, engulfing circa 16 × 104 m2 and damming the river, creating an ephemeral lake
extending for 35 × 103 m2. The pluviometric archives report an unusual amount of rain
and snow in the winter season before the reactivation; for this reason, it is considered to
be one of the main triggers, in addition to the continuous ravelling of material from the
summit of the scarp. The overload caused by the fallen blocks could have played a role
in destabilizing the landslide body; some research estimated the increase in the material
resting below the main 40 m scarp [27].

According to [29], this landslide can be classified as complex, a roto-translational slide
evolved into an earthflow, with rockfall associated with the upper portion of the subvertical
rock wall. The main scarp extends linearly for about 300 m, and its subvertical rock wall
measures more than 100 m (Figure 2), with many suspended water conduits that seep
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through the rock mass and emerge within the rock wall. This is a highly unstable condition,
leading to continuous rockfalls that have led to the deployment of several protection
structures: three sand berms positioned at the toe of the debris body. In this study, we focus
on the rockfall hazard posed by the continuous ravelling of rock blocks and its potential
impact on human activities in the area affected by the rockfalls.
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Figure 2. Front view of the main Poggio Baldi landslide scarp. The three different members of
the Marnoso-Arenacea Formation are distinguished by the different content ratios of marly and
arenaceous strata.

In October 2021, the Poggio Baldi landslide became a permanent natural monitor-
ing laboratory managed by the Department of Earth Sciences of Sapienza University of
Rome. The lab employs the most advanced remote sensing tools to monitor the activity
of the main rock scarp and the related debris talus at its toe. Over the years, many sur-
veys and investigations have been carried out using modern remote sensing techniques
(e.g., terrestrial laser scanning, drone photogrammetry, terrestrial InSAR, gigapixel imag-
ing, and PhotoMonitoringTM) to acquire as much information as possible about active
gravitational processes [28,30,31].
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3. Material and Methods

This paper aims to present a new method to study potential rockfall trajectories based
on the identification of different source areas through the use of multitemporal remote
sensing data and detailed structural analysis. Drone-based digital photogrammetry (DP)
with structure from motion (SfM) techniques was exploited for the creation of slope VOMs.
The geostructural characteristics of both the slope and the rock mass were extracted from
both the generated point cloud and the orthomosaic. These were successively used to
compute mean spacings and rock block volumes. Rock mass characterization and the rock
block volumes were identified for each source sector to simulate the trajectories of falling
blocks and define hazard zones. The results gathered by the presented approach were
validated against past rockfall events recorded by different instruments over the years.

3.1. Virtual Outcrop Models

This section presents the VOMs that were built and exploited to detect rockfall and
accumulation areas and derive the geostructural model. Digital photogrammetry (DP)
from multitemporal drone surveys was implemented to derive three-dimensional point
clouds and a high-resolution orthomosaic of the main rock scarp. The resulting point clouds
were managed and processed within the software Cloud Compare [32]. The integration
of information obtained from point clouds and the orthomosaic served the purpose of
obtaining a reliable geostructural dataset (i.e., the discontinuity sets, their spacing, and
the distribution of in situ rock blocks). Multitemporal surveys allowed us to identify and
quantify rockfalls and subsequent debris accumulation.

Structure from motion (SfM) is a technique that is capable of reconstructing a high-
resolution VOM of the object under investigation. It was developed during the 1990s [33–35]
based on the same stereoscopic principles of digital photogrammetry (DP), whereas the com-
puter vision scientific community implemented most of the algorithms we use today [36–38].
The SfM technique exploits the detection of homologous key points over large photographic
datasets obtained with a large amount of redundancy and partial overlap among the pictures.
This enables the reconstruction of sparse and dense point clouds and finally the 3D object [39].
This technique has made the use of DP easier and more attractive. In this study, a DJI Phantom
4 drone equipped with GPS, an IMU apparatus, and a 12.4 MPx onboard camera with a
1/2.32-inch sensor size and a 20 mm lens was used for the survey of the study area. The
drone flights were made between 1:00 p.m. and 3:30 p.m. CET in April 2016 and May 2019. A
total of 950 photographs were collected from different lines of sight, maintaining a constant
distance from the outcrop. An overlap of about 70–80% was preserved between the frames.
Both the reconstructed point clouds were georeferenced in the WGS84 UTM 32T coordinate
system using a GNSS survey conducted during the April 2016 landslide survey, as described
by [30]. Two dense point clouds (shown in Figure 3) were generated using the structure from
motion (SfM) workflow implemented in the Agisoft LLC Metashape software [33–35,39–42].

The photogrammetric point clouds (PCs) had totals of 26.6 × 106 and 73 × 106 points,
respectively. Both point clouds were manually cleaned of vegetation points around the
rocky scarp and the debris talus. The actual resolutions were established after cropping the
rocky scarp, which were 220 pt/m2 and 657 pt/m2 for the 2016 and 2019 PCs, respectively.
A preprocessing stage was carried out to standardise the PCs and make them comparable
(i.e., a minimum distance between the nearest points at 0.1 m). The PCs were analysed
and compared via CloudComapre® v.2.10.2 [32]. The pair of multitemporal point clouds
were compared by taking advantage of the M3C2 algorithm [43], taking care to account for
the registration error, which had an RMSE equal to 0.2 m. This algorithm does not require
interpolation but estimates the normal to the surface and the distance directly from the point
cloud [43,44]. The three-dimensional comparison enabled us to identify specific sectors of
the Poggio Baldi landslide reporting significant changes caused by rockfalls or deposition
phenomena. In addition to the geometric localisation of these sectors, volume changes
were measured with the 2.5D volume calculation algorithm embedded in CloudCompare®

v. 2.10.2, which relies on the rasterization of clouds.
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Figure 3. SfM-based point clouds derived from the drone photogrammetric surveys. Campaigns
were carried out in April 2016 (left) and May 2019 (right).

Following the point cloud reconstruction, an orthomosaic image of the rock scarp
was computed from a set of overlapping drone images with the corresponding referencing
information (Figure 4). It was derived from a process where several overlapping photos
were stitched together with distortions removed to create a complete and continuous
image representation of the rock scarp. An algorithm known as orthorectification was used
to modify the photos based on the DSM information so that features were in their true
locations. Finally, the orthorectified images were merged into a single orthomosaic, which
was used to accurately measure distances and investigate fracture patterns.
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The Poggio Baldi orthomosaic was derived from the drone images acquired during
the May 2019 survey. After constructing the point cloud and the related DSM, a bounding
box delimiting the rock scarp was defined before performing the orthorectification process.
The final product covered a total area of about 40 × 103 m2 with a pixel size of 2.1 cm.

3.2. Slope Analysis

This section describes the remote-sensing-based approach that was used to characterize
the rock-mass geostructural properties.

With the goal of extracting the main discontinuity features, we utilized the 3D discon-
tinuity set extractor tool. As described in [45,46], the discontinuity set extractor (DSE) is a
MATLABTM-based algorithm designed to extract a discontinuity’s geometrical properties
from a laser or photogrammetric point cloud. The distinctive feature of DSE is its ability to
exploit the real 3D information contained in each point and its corresponding neighbours
to identify local differences in the geometry of the slope with no need to generate a mesh.
The algorithm considers the points within a neighbouring space to compute best-fitting
planes and attribute values directly to each point rather than the fitting patches. By using
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the raw data, the spatial orientation of each point is calculated only if it is coplanar with the
adjacent points. This allows relative measurements to be obtained for each point rather than
a single measurement for each surface identified in a 2.5D mesh. When the slope surface
is primarily defined by discontinuity faces, the points in the cloud can be appropriately
grouped into sets that define the predominant orientations and thus the discontinuity
systems. Therefore, the joint sets are extracted in three main steps: (i) a local curvature
computation using knn search [47] and a PCA algorithm; (ii) a statical analysis using the
2D kernel density estimation function (kde2d) [48] to define the main joint sets; and (iii) a
cluster analysis through the DBSCAN algorithm [49], which allows establishing points
close enough to be considered a single surface.

Since point clouds are intrinsically non-uniform in terms of point density, a subsam-
pling process was required. The selected minimum spatial distance between two adjacent
points was set to 0.1 m. Therefore, this preprocessing step allowed uniform point densities
throughout the rock scarp, thus reducing the problem of under- and over-represented
surfaces (i.e., fewer points per area and more points per area, respectively) that would have
biased the discontinuity extraction process. The discontinuity extraction was performed on
the 2019 rock scarp point cloud following the modified approach implemented by [50,51].
Dominant densities were identified and removed, together with debris accumulations
along the slope. The removal of the dominant joint set allowed the identification of the
least represented surfaces. The value of the knn parameter was set to be equal to the
mode of the k-nearest neighbours within an area of 1 m2. This value reflected the scale
of the investigation and the need to overcome the complex local geological conditions
(i.e., sandstone and marl–clay alternations), which determined the strong variations in
the roughness of the exposed surfaces. Once the joint sets were extracted, the normal 3D
spacing of each joint set was computed by analysing the relative position of each joint
(considered to be nonpersistent) and measuring the orthogonal distances between them [52].
The mean normal spacing values were then exploited to compute the mean block volumes
in each selected sector of interest [53]. Discontinuity systems that were only kinematically
compatible with any type of failure were factors constraining the block volumes.

In addition to the three-dimensional analysis carried out by DSE, the orthomosaic
was exploited by manually tracing the discontinuity planes in four selected representative
areas of 400 m2 (20 × 20 m square) along the rock scarp. The vectorized fracture traces
were subsequently analysed with the FracPaQ toolbox [54] to quantify fracture patterns
and spacings. FracPaQ is an open-source, cross-platform toolbox with a collection of
MATLABTM programs designed to quantify fracture patterns in two dimensions from
digital data, with user control over the output. Quantitative estimates for the attributes
of individual fractures are returned as outputs. Since FracPaQ assumes that the input
traces lie on a statistically flat surface, the investigated areas were adequately chosen within
the source zones. Finally, to better constrain the bedding geometrical features, manual
measurements of the orthomosaic were carried out. As a result, bedding spacings were
integrated with the information derived from the 3D point cloud, thus constricting the
mean block volumes.

Rockfall Hazard Analysis and Numerical Modelling

The volumes, trajectories, and velocities of rock fragments represent the main parame-
ters that directly determine rockfall hazard [55]. From the different methods available to
assess susceptibility and hazard for rockfall events [55–57] and characterise the 3D rockfall
events [58], we selected a well-established strategy to quantify the probability for a rockfall
to reach vulnerable elements and generate negative consequences. Probabilistic rockfall
trajectory analysis tries to minimise both ontic and epistemic uncertainty by introducing a
certain degree of variability in the inputs [59]. As described in [60], the geometry of a slope
plays a critical role in guiding a rockfall path down the slope. A digital elevation model of
this geometry is the fundamental dataset that numerical simulations rely upon. Defining
the characteristics in terms of the elasticity of the slope was of critical importance [61,62],
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and to achieve this the slope was divided into homogeneous areas exhibiting similar me-
chanical characteristics. The rockfall model was implemented using Rockyfor3D, and the
outcomes of the simulation runs were postprocessed in GIS to be further investigated. The
physical characteristics of the slope were assigned through the digital mapping of the slope
domains, such as the average scree diameter, the outcropping bedrock, and the thickness
of the debris cover; the mapping was validated through both the photointerpretation of
the high-resolution images from the drone survey and the field observations. The values
in terms of Rn were assigned following the guidelines given by [59,63], and the MOH
values were modified according to expert judgement and the availability of the direct
measurement of the scree geometry on the point cloud (2019).

The fundamental information needed to generate accurate rockfall models is the
topographical representation of the slope. In the case of GIS-based methods, DEM provides
the virtual surface from which to compute the types of motion (freefall, bounce, roll, or
drag) of the falling rock blocks.

Rockyfor3D uses a three-dimensional rigid-body impact model that allows the calcu-
lation of the trajectories of single individually falling rocks with discrete geometry. This
software can be used for regional, local, and slope-scale rockfall simulations [63]. The input
parameters that define rock blocks are the release cell location, rock density, shape, volume,
and initial vertical velocity. The local slope surface roughness is represented by a parameter
defined as the height of a representative obstacle (MOH), expressed in m. Typical MOH
values, as suggested by [63], are represented by three statistical classes, rg70%, rg20%, and
rg10%. During each rebound calculation, the MOH value in a cell is randomly chosen from
the three representative values according to their probabilities of occurrence. Finally, the
soil type is defined through a raster map identifying the type of bedrock exposed.

Rt =
1

1 + (MOH+Dp)
R

(1)

where MOH (mean obstacle height) or rg values are estimated, Dp is the penetration depth
of the block, and R is the radius of the computed block. In RF3D the maximum penetration
depth equals the radius of the falling block. In this study, we used a 3 × 3 m resolution
DEM extracted from the 2019 SfM point cloud. The locations of the release points were
selected based on 3D change detection. Field inspection and a geomorphological analysis
of high-resolution aerial images were undertaken to define the slope roughness (MOH
values) and soil type (Rn). The tangential coefficient of restitution (Rt) was automatically
calculated by Rockyfor3D through the composition and size of the material covering the
surface and the radius of the falling block [63]. The rock density, shape, and volume were
defined by combining field and remote-sensed geostructural data. For modelling the upper
scarp’s rockfalls in Poggio Baldi, we relied on a variety of remote sensing techniques,
each contributing to constrain the numerical modelling. The positions of the source and
deposition areas were extracted from the M3C2 analysis. The modelled scenarios were
defined a priori based on the slope geomechanical analysis and the distribution of rockfall
fragments along the slope. The M3C2 change detection was critical to select the objective
source areas on the slope; the volumetric classes were chosen as the most representative for
the analysis to be carried out. Although we consider this analysis to be time-independent,
some considerations about the magnitude of the rockfall were simulated.

4. Results

In this section, the results obtained from the SfM-based point cloud, as well as from the
orthomosaic processing, are presented with respect to three-dimensional changes and rock
mass characterization. Furthermore, block volume estimations were exploited as inputs to
model the rockfall-associated hazard.
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4.1. Three-Dimensional Change Detection

The 3D change detection led us to identify geometrical differences that were repre-
sentative of three years of gravitational processes in the study area. Sectors in which there
were negative differences corresponded to loss areas (i.e., highly unstable areas subject to
rockfalls). In contrast, areas in which there were positive differences corresponded to accu-
mulation areas, which were located along the base of the scarp, consisting of heterogeneous
debris that accumulated over time (Figure 5). The results revealed how four portions of the
scarp were more affected by rockfalls. Hereafter, we refer to these most active sectors in
terms of rock block release as Z1, Z2, Z3, and Z4, as reported by the white dashed polygons
in Figure 5. Over the time span being considered, the four source zones discharged more
than 3000 m3 of rock materials, which accumulated in the debris talus at its toe, as revealed
by the 3D change detection (Table 1).
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Figure 5. Analysis of three-dimensional differences between the 2016 and 2019 SfM point clouds.
White contour lines indicate sectors from which the largest volumes of rock have detached. The
colour bar is saturated at ±8 m, and the detection threshold is set to ±0.3 m.

Table 1. Surface and volume estimation related to rockfall processes that occurred between April
2016 and May 2019 at the Poggio Baldi rock scarp.

Source Sector Process Estimated Surface (m2) Estimated Volume (m3)

1 Rockfalls 1441 620

2 Rockfalls 1805 475

3 Rockfalls 2795 817

4 Rockfalls 1479 1196

Toe Debris accumulation 4572 5160



Land 2023, 12, 191 9 of 20

4.2. Geostructural Characterization

A 3D geostructural analysis carried out on clipped point clouds representative of the
four source zones led us to group the exposed fracture planes into five different joint sets
(Figure 6). Although within each of the individual zones along the scarp it was clear that
there were five dominant discontinuity sets, some differences were observed concerning
their principal orientation (Figure 7). Similarities appeared between Z1 and Z2 as well
as between Z3 and Z4. Among the source zones, J3, which represents the north-dipping
discontinuities, appeared to be the joint set that varied the most, whereas J1 (i.e., the slope
face) resulted in the most dominant and conforming set (Table 2). The bedding strata,
grouped as J2, were south dipping, with dip angles varying from 33 to 46 degrees.
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Table 2. Principal orientations of discontinuities extracted from source sectors in the 2019 SfM point cloud.

Joint Set Type of
Discontinuity

Z1 Z2 Z3 Z4

Dip-Dir Dip-Angle Dip-Dir Dip-Angle Dip-Dir Dip-Angle Dip-Dir Dip-Angle

1 Slope Face 98 80 99 70 105 64 88 65
2 Bedding 194 33 160 39 196 46 155 43
3 Minor Joint 44 80 37 74 12 57 356 39
4 Minor Joint 143 85 145 85 146 87 331 80
5 Minor Joint 304 47 262 54 284 50 272 65

Joint spacings were estimated for each discontinuity set and each analysed sector. The
distribution of the measured spacing values is depicted on the density plots (Figure 8)
for each slope sector, assuming nonpersistent joints. Based on the spacing densities, J1,
J4, and J5 had evenly distributed spacing values along the sectors, resulting in skewed
peak densities around 1.5 m. J2 and J3, which were represented by a minor number of
discontinuity planes with roughly distributed spacing values, resulted in wide density
distributions characterised by long tails and no tight peaks. Following the distribution
analysis, it is clear that the mean spacing of J2 derived from the 3D PC did not represent an
accurate value, thus leading to the need to better constrain the bedding strata. The mean
spacing values related to the density curves are summarised in Table 3.
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Table 3. Joint set normal mean spacings in the different source sectors.

Joint Set Z1 Z2 Z3 Z4

J1 1.902 1.449 1.197 1.443
J2 7.223 2.227 2.767 2.151

J2-OM 0.940 0.970 0.920 1.380
J3 2.894 3.384 7.858 4.764
J4 1.569 1.536 1.450 1.455
J5 1.458 1.975 1.715 1.146

In fact, the bedding strata of J2 were highly underestimated by the DSE analysis due to
their orientation (orthogonal to the slope face) and the low presence of surfaces illuminated
by daylight to be measured, thus affecting the three-dimensional geostructural results and
all related analyses (e.g., joint spacings). To overcome this limitation, the discontinuity
planes were also mapped in the orthomosaic within square boxes of 20 m per side (Figure 9).
As a result, scalable vector graphics with discontinuity traces composed of one or more
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segments delimited by nodes were obtained, thus allowing the computation of quantitative
patterns, with a focus on the bedding strata (Figure 10).
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The resulting mean spacing values, gathered from both PC-based spacing distributions
and orthophoto interpretations for each joint set and sector, are presented in Table 3. They
provide clear evidence that the 2D-based discontinuity analysis returned far lower values
of mean spacing for J2 (i.e., J2-OM in Table 3), which never exceeded 1.5 m. This contrasts
with the results of the bedding spacings obtained from the 3D fracture analysis, which
returned mean spacing values of up to 7 m.

After calculating the formed block based on the intersection of J1, J2, and J3, the
resulting volumes (Figure 11) were determined for both the PC and the PC integrated
with the orthomosaic (PC + OM) joint analysis. The mean volumes of the formed blocks
obtained from the PC-based spacing corresponded to 39.75 m3, 10.93 m3, 26.01 m3, and
14.79 m3; while the PC + OM-based spacing analysis returned volumes of about 5.17 m3,
4.76 m3, 8.65 m3, and 9.48 m3 for sectors 1, 2, 3, and 4, respectively (Figure 11).

Land 2023, 12, x FOR PEER REVIEW 12 of 20 
 

 
Figure 10. Bedding strata were manually traced from the orthomosaic within the box of each source 
sector. 

Table 3. Joint set normal mean spacings in the different source sectors. 

Joint Set Z1 Z2 Z3 Z4 
J1 1.902 1.449 1.197 1.443 
J2 7.223 2.227 2.767 2.151 

J2-OM 0.940 0.970 0.920 1.380 
J3 2.894 3.384 7.858 4.764 
J4 1.569 1.536 1.450 1.455 
J5 1.458 1.975 1.715 1.146 

 
Figure 11. Mean block volume estimation by source sector and dataset. 

4.3. Three-Dimensional Rockfall Trajectory Analysis 
Two accumulation zones, A and B, were identified (Figure 12a); accumulation zone 

A represents the area where most of the accumulation occurred (small volume blocks—
Figure 5), while accumulation zone B represents the area where sparse higher-volume 

Figure 11. Mean block volume estimation by source sector and dataset.

4.3. Three-Dimensional Rockfall Trajectory Analysis

Two accumulation zones, A and B, were identified (Figure 12a); accumulation zone
A represents the area where most of the accumulation occurred (small volume blocks—
Figure 5), while accumulation zone B represents the area where sparse higher-volume
blocks can arrive, and it was defined by integrating the M3C2 analysis (Figure 5) with field
and orthophoto observations. The accumulation zones and the rockfall fragment inventory
were considered during the model’s calibration phases, offering a clear spatial distribution
of the volumetric block classes. Finally, based on the GIS interpretation and field survey, a
land-use map, with associated rockfall propagation characteristics, was created for use as
an input for the subsequent RF3D analysis (Figure 12c). In Table 4, the parameters used in
the formal RF3D simulations are provided.

Table 4. RF3D parameters.

Terrain
Description RF3D Soil Type rg70 (m) rg20 (m) rg10 (m) Rn Avg Rn Range

Landslide scarp 6 0 0.1 0.5 0.53 0.48–0.58
Thinly covered bedrock 5 0.1 0.2 0.3 0.43 0.39–0.47

Marls and claystone 3 0 0.1 0.3 0.33 0.30–0.36
Talus slope 3 0.25 0.5 0.9 0.33 0.30–0.36
Flat surface 3 0 0.1 0.5 0.33 0.30–0.36

Engineered slope 2 0 0.1 0.2 0.28 0.25–0.31
Vegetation 1 0.3 0.4 0.6 0.23 0.21–0.25

Rock barrier 1 0 0 100 0.23 0.21–0.25
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Figure 12. Rockfall accumulation zones in the upper PB landslide. The source areas, as reported
by the M3C2 analysis, are shown in panel (a). Panel (b) reports the superficial rockfall fragment
inventory. The terrain subdivisions adopted for the RF3D modelling are reported in panel (c).

The rockfall scenarios were hypothesised based on the formed rock block volume
estimation, as reported in Figure 11.

In Figure 13, we report the spatial distribution of the intensity of deposited block, i.e.,
the number of blocks deposited. The NBD layer (number of blocks deposited) is compared
against the target areas, where the warm colours represent the highest number of individual
blocks that stopped in the pixel. In Table 5, the total number of source cells per Z is reported,
given 10,000 simulated blocks per cell (i.e., the total number of rock blocks falling from each
source area). According to the extensive research carried out by [59,63], the probabilistic
models with the lowest and least frequent trajectories (outliers) were removed from the
final results. Any value below the 1.5% threshold was considered unrealistic under the
working assumptions of this simulation. Both NBD layers demonstrated how the runout
of the simulated blocks was distributed well within the M3C2 2016–2019 boundaries; the
highest concentration of trajectory endpoints occurred at the very top of the scarp, in the
northernmost sector, constrained by the narrow channel, while on the lower portion of the
slope the geometry allowed for longer horizontal travel distances. The general direction of
the rockfall propagation was South-South-East. The rockfall simulation carried out with
volumes extracted from the PC analysis showed that rock blocks reached the homogeneous
scree of M3C2-extracted accumulation zone A and overflowed onto accumulation area
B (Figure 13b). The simulation undertaken using the PC + OM dataset seemed to better
replicate the target defined by M3C2-extracted accumulation zones A and B, with a good
cover of accumulation zone A and few blocks reaching zone B (Figure 13a, in agreement
with the results highlighted in Figures 5 and 12b).

Table 5. Simulation characteristics for each source area, with 10,000 trajectories simulated per source pixel.

Sector Source Pixels Total
Trajectories

PC + OM
Block Volume (m3)

PC
Block Volume (m3)

1 48 48 × 104 5.17 39.75
2 22 22 × 104 4.76 10.93
3 15 15 × 104 8.65 26.01
4 84 84 × 104 9.48 14.79
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5. Discussion

Three-dimensional change detection was carried out between two photogrammetric
georeferenced point clouds. The time span was about three years, from April 2016 to
May 2019. From this multitemporal analysis, four active sectors of the rock scarp and a
delimited accumulation area were identified, thus providing clear evidence of the state of
activity of the landslide, which is releasing thousands of cubic meters of rockfalls per year,
as also reported in [30]. With regards to the accumulation area, rockfalls tend to accrue
along a channel developed at the edges of a residual debris pile related to the main March
2010 reactivation, which is currently slowly moving downslope [31]. This morphology is
revealed by the vertical profiles shown in Figure 14. Furthermore, the 3D change detection
provided an estimate of the volumes involved, which represents a proxy for the activity rate.
Lost volumes within the four analysed sectors located over the rock scarp represent most
of the total gained volume at the toe, thus revealing the main contribution of these areas
in terms of rock block release. This agrees with the findings reported in [30]. Although
critical for generating comprehensive landslide scenarios and specific volumetric classes to
simulate during the trajectory analysis, the relatively short time span of the subsequent
SfM surveys represents the largest obstacle to the definition of a frequency–magnitude
relationship. Extrapolating a realistic trend seems to be impossible, given the available
observations. It is strongly advised to interpret this study’s results in terms of a very likely
scenario, the typical rockfall event for the Poggio Baldi slope, which does not necessarily
investigate the whole spectrum of possible landslide scenarios.



Land 2023, 12, 191 15 of 20

Land 2023, 12, x FOR PEER REVIEW 16 of 20 
 

the inherent challenges of defining the range of the MOH values accounting for the mi-
croroughness of the slope, which are usually obtained through time-consuming photoin-
terpretation and manual point cloud measurements. In this study, we failed to find a suit-
able programmatic approach to characterise the obstacles on the slope and had to rely on 
manual measurements of the scree slope in the point clouds. The time-independent rock-
fall hazard analysis explored the effects of geomorphological processes affecting the main 
scarp and the whole landslide; the RF3D simulation results explored the behaviour of the 
rockfall activity, especially considering the constraints given by the source and accumu-
lation areas highlighted by the M3C2 analysis. This provides a starting point for any fur-
ther investigation regarding the magnitude–frequency relationship [65] of the Poggio 
Baldi rockfall activity and future investigations in similar case studies characterized by 
complex geological/lithological settings. 

 
Figure 14. Three-dimensional change detection of UAV-based point clouds in highlighted accumu-
lation zones A and B (right side). Orthogonal vertical profiles showing the morphology of the slope 
(left side). 

 
Figure 15. Overview of the left part of the Poggio Baldi landslide rock scarp and details of typical in 
situ rock block dimensions measured from the point cloud (white box). 

  

Figure 14. Three-dimensional change detection of UAV-based point clouds in highlighted accumula-
tion zones A and B (right side). Orthogonal vertical profiles showing the morphology of the slope
(left side).

As a result, a further analysis was performed to investigate the potential block volume
involved and the related runouts. For the former purpose, information about geometric
parameters such as discontinuity sets and joint spacing were computed by integrating
2D and 3D UAV-derived remote sensing data. We stress that in the case of complex and
heterogeneous lithologies, semi-automatic software needs to be integrated with expert-
controlled tools to obtain accurate results [64]. Based on the 3D point cloud, five different
joint sets and their spacing values were identified along the slope. For each studied sector,
specific spacing values were derived from the 3D point cloud. However, due to the lack of
daylight in the bedding strata, its automatically extracted spacing values appeared to be
unrepresentative for the overall rock mass, and the relative block volume was overestimated.
This was confirmed by the orthomosaic-based analysis, which revealed the true mean
spacing value of the bedding within the investigated areas, which was significantly lower
than the value derived from the automatic discontinuity extraction from the 3D point cloud
(a difference of up to 6.2 m in zone 1, where sandstones prevail over marls). Hence, the
potential formed block volumes computed by integrating both automatic and orthomosaic-
based analysis spacing values appeared to be more consistent with the in situ rock blocks
(Figure 15), which stand around 5.75 m3. The performed geostructural characterization
highlighted how different members of the FMA, which correspond to different content
ratios of marly and arenaceous strata, result in differently formed blocks along the slope.
With this perspective, we stress the importance of performing sector-specific studies when
heterogeneous rock masses must be characterized.

With regards to the rockfall simulation, the PC + OM dataset volume distribution suc-
cessfully adhered to the available ground truth data, exhibiting a total runout distance and
spread compliant with accumulation zones A and B. The PC volume distribution showed
acceptable results concerning accumulation zone A, but an overflow on accumulation zone
B. This was related to the relatively larger volume of the blocks, which was interpreted as
overestimated when using automatic spacing extraction. The residual debris highlighted in
Figure 14, vertical section A-A’, a mound of large rock fragments mixed with loose sedi-
ment, is an obstacle for the eastward propagation of rockfalls that was highlighted by both
the M3C2 analysis and the RF3D results in Figure 13, and only a sparse number of higher-
volume blocks reach this area (accumulation zone B). The main limitation of this approach
is that it requires a very large set of multitemporal observations, which are most often not
available, to perform adequately. Extremely rare rockfall events are challenging to record
and describe. Hence, the balance between deterministic knowledge, input parameters, and
the stochastic nature of rockfall modelling is of upmost importance, so the validity of such
studies still largely relies on practitioners’ intuition and expert judgement. The justification
for the adoption of this study’s workflow arises from the iterative model calibration process



Land 2023, 12, 191 16 of 20

developed throughout the analysis, which provided runout characteristics that were in
good agreement with the available high-resolution interpreted images.

Land 2023, 12, x FOR PEER REVIEW 16 of 20 
 

the inherent challenges of defining the range of the MOH values accounting for the mi-
croroughness of the slope, which are usually obtained through time-consuming photoin-
terpretation and manual point cloud measurements. In this study, we failed to find a suit-
able programmatic approach to characterise the obstacles on the slope and had to rely on 
manual measurements of the scree slope in the point clouds. The time-independent rock-
fall hazard analysis explored the effects of geomorphological processes affecting the main 
scarp and the whole landslide; the RF3D simulation results explored the behaviour of the 
rockfall activity, especially considering the constraints given by the source and accumu-
lation areas highlighted by the M3C2 analysis. This provides a starting point for any fur-
ther investigation regarding the magnitude–frequency relationship [65] of the Poggio 
Baldi rockfall activity and future investigations in similar case studies characterized by 
complex geological/lithological settings. 

 
Figure 14. Three-dimensional change detection of UAV-based point clouds in highlighted accumu-
lation zones A and B (right side). Orthogonal vertical profiles showing the morphology of the slope 
(left side). 

 
Figure 15. Overview of the left part of the Poggio Baldi landslide rock scarp and details of typical in 
situ rock block dimensions measured from the point cloud (white box). 

  

Figure 15. Overview of the left part of the Poggio Baldi landslide rock scarp and details of typical in
situ rock block dimensions measured from the point cloud (white box).

The use of localised source areas rather than diffused hazard modelling offered higher
control over the calibration of the model, as shown in Figure 15. Individual block detail
provided a more rigorous comparison between the RF3D results, the rockfall fragment
inventory, and the M3C2 target area. Rockfall hazard practitioners will understand the
inherent challenges of defining the range of the MOH values accounting for the microrough-
ness of the slope, which are usually obtained through time-consuming photointerpretation
and manual point cloud measurements. In this study, we failed to find a suitable pro-
grammatic approach to characterise the obstacles on the slope and had to rely on manual
measurements of the scree slope in the point clouds. The time-independent rockfall haz-
ard analysis explored the effects of geomorphological processes affecting the main scarp
and the whole landslide; the RF3D simulation results explored the behaviour of the rock-
fall activity, especially considering the constraints given by the source and accumulation
areas highlighted by the M3C2 analysis. This provides a starting point for any further
investigation regarding the magnitude–frequency relationship [65] of the Poggio Baldi
rockfall activity and future investigations in similar case studies characterized by complex
geological/lithological settings.

6. Conclusions

Virtual outcrop models of the Poggio Baldi scarp area were successfully utilized to
provide key data for the monitoring and assessment of rockfalls. By combining information
derived from three-dimensional point clouds and the high-resolution orthomosaic, it was
possible to extract and quantify fracture patterns that characterized the rock mass and
defined block volumes. Multitemporal surveys allowed us to identify specific sectors of the
slope where rockfalls occurred most frequently as well as the related accumulation zones
at its toe. In addition, the overall lost and gained volumes were calculated to assess the
activity of the slope.

To model the associated rockfall hazard, we simulated rockfall trajectories using the
potential formed block volumes in each active sector of the slope. This was achieved utilizing
joint spacing values resulting from the integration of 3D automatic extraction tools using
point cloud data and 2D discontinuities that were manually extracted from the orthomosaic
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data. The use of both methods was required to provide more representative data due to the
unreliable results gathered for bedding strata spacing in the automatic extraction procedure
(not enough bedding surfaces illuminated by daylight were captured by the PC analysis), thus
highlighting the need for expert judgement when using automatic tools for discontinuity set
extraction. Subsequently, the potential formed blocks were used as input data for run-out
modelling, which was validated based on the 3D change detection results.

The resulting rockfall conceptual model was tested by means of a 3D process-based
probabilistic trajectory analysis; the parametrization of the model was informed by the
geostructural analysis and the available remote sensing datasets and geomorphological
observations. A time-independent rockfall hazard assessment demonstrated (i) the geomet-
rical characteristics of the rockfalls affecting the different sectors of the main scarp, (ii) the
benefits of differentiating the source areas based on 3D change detection, and (iii) the
importance of using structure-derived data for more accurate modelling. Furthermore,
the rockfall modelling coupled with the 3D change detection provided further insight into
the actual time-dependent behaviour of the active processes on the Poggio Baldi slope.
However, most of the information regarding the frequency–magnitude relationship of the
Poggio Baldi rockfalls was extremely hard to interpret from the geomorphology of the
landslide area, thus limiting the application of failure probability or frequency in rockfall
hazard modelling.

In a more general perspective, we demonstrated that the availability of multitemporal
data (3D models or images) of rock scarps may allow us to better calibrate simulations and,
consequently, provide better designs for protection measures. Considering the drastically
increased accessibility of tools for multitemporal data collection, we conclude that the
systematic collection of virtual outcrop models of rock slopes may significantly support
rockfall hazard practices.
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