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Abstract: The use of combined heat and power (CHP) systems has recently increased due to their 
high combined efficiency and low emissions. Using CHP systems in behind-the-meter applications, 
however, can introduce some challenges. Firstly, the CHP system must operate in load-following 
mode to prevent power export to the grid. Secondly, if the load drops below a predefined threshold, 
the engine will operate at a lower temperature and hence lower efficiency, as the fuel is only half-
burnt, creating significant emissions. The aforementioned issues may be solved by combining CHP 
with a battery energy storage system (BESS); however, the dispatch of CHP and BESS must be op-
timised. Offline optimisation methods based on load prediction will not prevent power export to 
the grid due to prediction errors. Therefore, this paper proposes a real-time Energy Management 
System (EMS) using a combination of Long Short-Term Memory (LSTM) neural networks, Mixed 
Integer Linear Programming (MILP), and Receding Horizon (RH) control strategy. The RH control 
strategy is suggested to reduce the impact of prediction errors and enable real-time implementation 
of the EMS exploiting actual generation and demand data on the day. Simulation results show that 
the proposed method can prevent power export to the grid and reduce the operational cost by 8.75% 
compared to the offline method. 

Keywords: economic dispatch; CHP systems with BESS; MILP with LSTM; receding horizon control 
 

1. Introduction 
The importance of efficient and sustainable energy production is growing as a result 

of the increased global demand for energy and growing concerns about the accelerating 
effects of greenhouse gases. The actions toward lowering greenhouse gas emissions have 
led to an increasing emphasis on boosting energy efficiency. Thus, distributed generation 
is supported primarily through the use of CHP systems [1]. A CHP system simultaneously 
generates electricity and usable heat from a single fuel source. Thus, many CHP units that 
are compact and powered by internal combustion engines can supply quick balancing 
energy owing to excellent dynamic behaviour and simultaneous heat for heat loads, such 
as residential, industrial, and commercial buildings [2]. CHP is a technology that offers 
excellent primary energy savings and, consequently, lowers CO2 emissions; this technol-
ogy was identified as one of the options for attaining the primary energy-saving targets 
of the European Union [3]. CHP units achieve cost advantages due to energy savings 
(electricity produced that would otherwise have been imported from the grid) and heat 
savings (heat generated that would otherwise have been supplied by on-site gas-fired 
boilers). The installation, maintenance, and fuel costs must all be addressed when deter-
mining the economic feasibility of CHP units. 

The maintenance and fuel input expenses make up the CHP units’ operational costs. 
Typically, the output from a CHP unit is roughly 40% electricity and 60% heat, with elec-
trical efficiencies ranging from 35% to 45% and 85–90% total efficiency. A typical CHP 
system will convert about 90% of the fuel into energy [4]. Therefore, it is vital to verify 
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whether the CHP sizing is based on electrical or thermal demand. In this paper, the CHP 
is sized based on the electrical load demand; therefore, it is electrically led. 

When compared to the utilisation of conventional methods for the delivery of energy, 
such as diesel generators, the consumption of fuel by a CHP system is reduced by approx-
imately 35% [5]. However, even in the best-case scenario, cogeneration systems would still 
incur losses if the demand was lower than the supply. In energy management, striking a 
healthy equilibrium between the supply of energy and the demand from end users has 
been a challenge for a long time. It is difficult to keep up with changing demand, which 
makes it challenging to match supply to demand. It is common knowledge that energy 
storage has the potential to help bridge the gap that exists between supply and demand. 
Existing CHP systems may be supplied with thermal storage but seldom with electrical 
storage, even though electrical storage may also provide significant benefits [6]. The in-
clusion of these energy storage facilities will not only increase the flexibility and overall 
efficiency of a CHP system but will also enable the decoupling of energy output and de-
mand, enabling surplus energy production to be stored and utilised when more energy is 
necessary [6]. When the BESS is full, extra power might be sold to the grid if the network 
operator permits it. It is advised not to use the CHP at less than 50% of its capacity for it 
to function properly. This is due to the possibility that continuous operation in low-load 
mode could result in higher gas consumption and, as a result, a significant buildup of 
carbonised oil, or oil residue, in the engine, the suction, and the exhaust system [7]. This 
residue would reduce the engine’s effectiveness and dependability, increasing mainte-
nance costs. Usually, operating uninterruptedly under low-load mode can lead to ignition 
problems, increased lubricant oil consumption, and fuel dilution [8]. The emergence and 
persistence of residue negatively impact the functional behaviour and the engine’s life-
time. In addition, when a conventional engine is operating in low-load mode, it cools 
down. Due to the low temperature in the chamber, the fuel is partially burned, producing 
white smoke with high hydrocarbon emissions. The percentage of unburned fuel caused 
incomplete combustion and poor engine performance [7,9]. 

In light of these limitations in running a CHP system that is connected to the grid, 
numerical optimisation can be utilised to improve the efficiency of their operation. Opti-
mising the operation of a grid-connected CHP system has been the subject of a number of 
studies, which has led to the development of a variety of potential solutions. The primary 
limitation is meeting the local heat demand at all times due to the impossibility of trans-
porting heat over long distances. In this way, the system’s economic dispatch aims to min-
imise the fuel costs of the CHP units [10], [11]. Maleki et al. [12] developed a combined 
heat and power (CHP) system that can sell its surplus energy to the grid at the Feed-in 
Tariff rate (FIT). However, the energy market agreements upon which this strategy is 
based are not always in the best interest of the microgrid owner or operator. Xie et al. [13] 
Using the mass balance and energy balance equations, presented a nonlinear dynamic 
model of a grid-connected CHP system that can successfully mimic thermoelectric inter-
actions and then explore the effects of the CHP on the power grid. In order to maximise 
CHP systems’ efficiency and grid stability, this research is beneficial for designing new 
control strategies. In [14], an energy management strategy for the joint operation of CHP 
and PV prosumers inside a grid-connected microgrid is presented using a game theory 
approach. A Stackelberg-based optimisation model is developed, with the microgrid op-
erator (MGO) as the leader and PV prosumers as the followers. The game’s characteristics 
are investigated, showing that the game has a unique Stackelberg equilibrium. The MG 
operators can allow the prosumers to use nonlinear constraint programming in order to 
achieve Stackelberg equilibrium. Verification of the model’s efficacy in calculating MGO 
pricing and optimising net load characteristics. 

Recent advances have focused on system design, thermal analysis, and prime mover 
optimisation. However, technical solutions for the cost-effective dispatch of CHPs are still 
in the early stages of development [15,16]. In terms of the connection between the electri-
cal load and the heat demand, there are few studies that analyse the economic dispatch of 



Energies 2023, 16, 1274 3 of 21 
 

 

hybrid CHP systems with battery energy storage. Nazari-Heris et al. [15] present a re-
search study on the short-term scheduling of an industrial heat and power microgrid that 
is linked to the grid and contains a fuel cell (FC), combined heat and power (CHP), boiler, 
battery storage system, and a heat buffer tank. The authors provided a solution to the 
multi-objective issue of microgrid dispatch by minimising cost and emissions while con-
sidering demand response programmes and uncertainties. For the purpose of overcoming 
the uncertainties in the optimal energy management of the microgrid for the optimal 
scheduling of the grid-connected system, a probabilistic framework that is based on a sce-
nario method has been employed. This framework takes into consideration load demand 
and price signals. Economic analysis of energy storage is notoriously difficult due to the 
time-dependent nature of the technology. The future utility of a storage facility is contin-
gent on the manner in which an individual facility is first managed. The indeterminacy of 
future events makes selecting the optimal storage procedure a challenging decision. Var-
ious methods exist for resolving the economic dispatch issue of CHP units with energy 
storage [16,17]. 

Deploying CHP systems in ‘behind-the-meter’ applications presents certain difficul-
ties. Firstly, to avoid electricity being injected into the grid due to limits imposed by net-
work operators, the CHP system must be configured to run in a load-following mode. 
Secondly, if the load drops to less than 50% of its nominal power, the CHP will have to be 
turned off, owing to the detrimental impact of operating gas engines at low power. Com-
bining CHP systems with battery storage can address these concerns; nevertheless, the 
dispatch of CHP and battery power must be managed to optimise the overall operation, 
with all generated power being consumed on-site. In an offline day-ahead optimisation, 
previous knowledge of the electrical load is essential, and thus, it will rely on it as fore-
casted load data [18]. The prediction error is likely to produce suboptimal dispatch com-
mands that might result in power being injected into the grid, violating the ‘behind-the-
meter’ constraints. In practice, a power meter at the point of common coupling can be 
used to override the battery commands in real-time to prevent power from being fed into 
the grid. 

This paper proposes a new online EMS for optimal economic operation of a hybrid 
(CHP and battery) grid-connected system for ‘behind-the-meter’ application. The objec-
tive is to minimise the operating costs of the hybrid CHP system while ensuring that 
power is not injected into the grid in the presence of changing electrical load demand. 
Rather than utilising the forecasted day-ahead electrical load, the optimiser runs online 
and performs load forecasting using long-short-term memory (LSTM) network and opti-
misation using mixed integer linear programming MILP considering a 24 h horizon. This 
is repeated every 30 min using the receding horizon (RH) strategy [19]. In the existing 
literature, the application of this combination of RH-based control using LSTM and MILP 
has not been previously considered for behind-the-meter applications. 

The rest of the paper is organised as follows: Section 2 presents the model of the grid-
connected CHP system. The problem is formulated in Section 3, and the energy manage-
ment system implementation is presented in Section 4. Section 5 presents the simulation 
results with a detailed analysis, and the conclusion is drawn in Section 6. 
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2. System Description 
The grid-connected CHP system under study is presented in Figure 1, with red dot-

ted lines showing the communication link between the components of the microgrid and 
the EMS. It comprises two CHP units rated at 250 kWe connected to the grid, a 1000 kWh 
BESS, and a heat storage buffer tank. The present study considers the case of an animal 
feed processing factory that has both electrical and thermal energy requirements. The sys-
tem is designed such that the electrical load is met by the combination of the electrical 
power generated from the two CHP units, power discharged from the BESS, and energy 
from the grid, while the recoverable heat from the CHP units and that from the tank 
should be equal to the heat demand at all times and any excess heat will be taken by the 
buffer tank and utilised when the heat generated by the CHP units is less than the heat 
demand or when the CHP units are out of operation. This is represented in Equations (1) 
and (2) below. 

 
Figure 1. Grid-connected CHP system with energy storage (CHP + BAT + GRID). 

( ) ( ) ( ) ( ) ( )+ + + =EL EL D EL
chp1 chp2 bat grid dP t P t P t P t P t   (1)

( ) ( ) ( )
chp1 chp2 D BT
G GH t H t H t H+ = +   (2)

where, ( )EL
chp1P t  and ( )EL

chp 2P t  are the electrical power generated by the CHP systems, 

( )D
batP t  is power discharged from the BESS, ( )gridP t  is the power utilised from the grid 

and ( )G
chp1H t , ( )G

chp2H t , ( )DH t , and BTH ( )BT BT1 BT2H H H= +  are the recoverable 
heat from the CHP units, the heat demand, and heat stored in the buffer tanks respec-
tively. 

Up to two-thirds of the energy produced by conventional electricity generation is 
wasted in heat. The heat recovered from the system can be calculated using Equation (3) 
representing the relationship between the electrical power generated by the CHP system 
and the recoverable heat. 

( ) ( )= ×G EL
chp chp hrrH t P t Q , (3) 

where ( )G
chpH t  is the total heat recovered from the CHP system and hrrQ  is the useful 

heat recovery rate. 



Energies 2023, 16, 1274 5 of 21 
 

 

The useful heat recovery rate hrrQ  shown in Equation (3) depends mainly on the fuel 
consumed by the prime mover and the fuel offset. Conversely, the fuel offset depends on 
the amount of useful heat recovery achieved by the CHP system, which measures the ef-
fectiveness with which the thermal energy is recovered from the prime mover and used 
to meet on-site thermal needs [20]. 

3. Problem Formulation 
The problem formulation is based on the model shown in Figure 1. Since running the 

CHP generators at under 50% of their capacity is harmful, the scheduling problem will 
consider real-time demand uncertainties and ensure that the CHP generators operate 
within safety limits, as stated in the manufacturer’s datasheet [21]. 

3.1. Economic Operation of the Hybrid CHP System Using MILP 
Economic dispatch, as part of unit commitment, represents the scheduling of gener-

ators to minimise the total operating cost, which can be cast as a constrained optimisation 
problem. The operation of the CHP system is very similar to that of the diesel generators, 
which have a nonlinear quadratic cost function, as seen in Equation (4). 

( ) = + +

≤ ≤

2f P aP bP c,  

P P P
 (4) 

where a, b, and c are the fuel cost coefficients and P  is the electrical power output 
(power generation) of the CHP unit. 

This makes it difficult to solve its economic dispatch problem using linear program-
ming. Thus, a piecewise linear approximation of the quadratic function is suggested to 
make the nonlinear quadratic cost function a MILP problem by approximating the non-
linear function as a series of straight-line segments [22,23], as shown in Figure 2. 

 
Figure 2. Nonlinear cost function approximated by piecewise linear approximation. 
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The next formulation shows how the economic dispatch problem can be structured 
as a MILP problem. At first, the nonlinear cost function is expressed as a set of linear func-
tions from a series of straight-line segments by approximating the operation using a piece-
wise-linear approach divided into three operating segments, as seen in Figure 2. The three 
segments of the CHP system are represented as 

1 2 3I ,  I , and I with variables 

I 1 I 2 I 3CHP CHP CHPP ,  P , and P  that represent the marginal production in each segment. Each 

segment will have a slope designated ( )<
I1 I2 I3 I1 I2 I3

S ,  S , and S  S S < S . The fuel cost is a 

function of the power dispatch of the CHP system and is the sum of the cost at m in
IP plus 

the sum of the linearised cost for each segment which is the slope (i.e., the slope multiplied 
by the 

IJCHPP ) variable such as: 

( ) ( )
I I I1 I 2 I 3

min
I CHP I CHP I1 CHP I2 CHP I3 CHPF P F P S P S P S P= + + + , (5) 

where 
I 1 I 2 I 3I 1 CH P I 2 CH P I 3 CH PS P S P S P+ +  is the sum of the linear cost function for each 

segment. 

where, 
Ik Ik

max
CHP CHP0 P P≤ ≤ . (6) 

for 
{ }k 1,2,3∈

 and 

I I I I1 I 2 I 3

min
CHP CHP CHP CHP CHP CHPP P P P P P= + + + +  (7) 

( ) ( )
( ) ( )

Ik 1 Ik

Ik 1 Ik

I CHP I CHP
Ik

CHP CHP

F P F P
S

P P
+

+

−
=

−
. (8) 

The cost function is now made up of a linear expression in the three new optimisation 
variables 

I 1 I 2 I 3C H P C H P C H PP ,  P , and P  as an update of Equation (8). 

=

 + + = 
 

CHP

I

N
D

CHP bat grid Load
I 1

P P P P . (9) 

where CHPN  is the number of CHP systems in the power system. 
The MILP is then formulated to solve the economic dispatch problem to find the min-

imum operating cost while respecting the imposed constraints considering decision vari-
ables in Table 1. 

Table 1. MILP economic dispatch continuous and binary decision variables. 

Decision Variable  Variable Type  Description  
EL

gridP (t)  Continuous  Power from the Grid to the 
Electrical Load 

bat
gridP (t)  Continuous Power from the Grid to the 

BESS 
EL
chpP (t)  Continuous Power from the CHP to the 

Electrical Load 
bat

chpP (t)  Continuous Power from the CHP to the 
BESS 

CH
bat (t)γ  Binary  

On/off state of the BESS 
charge 
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D
bat (t)γ  Binary On/off state of the BESS dis-

charge 

The equality constraints imply that the produced electricity and heat should be equal 
to the electricity demand and equal to the heat demand, and the heat stored in the heat 
buffer tank, as shown in Equations (9) and (2). The power imported from the grid is given 
by: 

( ) ( )EL bat
grid grid gridP (t) P t P t .= +  (10) 

where EL
gridP  is the power from the grid utilised by the electrical load and bat

gridP  is the 
power from the grid used for charging the BESS. The BESS is charged with the power from 
the CHP units bat

CHPP  and the power from the grid bat
gridP . 

( ) ( )CH bat bat
bat chp gridP t P P t + .=  (11) 

The power from the BESS utilised by the electrical load is given in Equation (12). 

( ) ( ) ( )EL
bat

EL EL EL
d grid chpP t P t P t P .= − −  (12) 

The grid power and CHP power utilised by the BESS at any time should be greater 
than or equal to zero as: 

( )
( ) ( )

g rid

b a t b at
C H P g ridP t 0 ,  P t 0

P t 0 ,
.

≥ ≥

≥ 



 (13) 

The state of charge (SoC) is constrained by the minimum and maximum operating 
limits of the BESS. 

( )min max
soc soc soctβ ≤β ≤β  (14) 

where socβ  represents the BESS SoC state of charge. The inequality constraints for the 
BESS state of charge are given in Equations (15) and (16). 

CH D
.BESS soc bat c bat d BESS(t) P (t) t P (t) tϕ β + η Δ − η Δ ≤ ϕ  (15) 

( ) ( ) ( ) ( ) ( ) ( )soc soc d c
D CH

BESS bat BESS batt 1 t P t t P t t .β + = β − φ η + φ η× ×  (16) 

where EESSϕ  represents the BESS capacity and EESSφ  is the coefficient associated with 
the physical features of the BESS and converts the BESS charge/discharge from its kW 
units to a percentage,ηd and ηc  are the charge/discharge efficiencies of the BESS, respec-
tively. 

During the optimisation process, it is important that the charging and discharging of 
BESS are not scheduled simultaneously. Therefore, an inequality constraint for the ‘‘on’’ 
and ‘‘off’’ state of the BESS charge and discharge is formulated as an integer in Equation 
(17). 

( ) ( )CH D
bat batt t 1,γ + γ ≤  (17) 

where CH
batγ and D

batγ  are binary variables representing the ‘‘on/off’’ and ‘‘off’’ states of the 
BESS charge and discharge, respectively. The inequality constraints for charging and dis-
charging the BESS are shown in Equation (18). 
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( )

( ) ( )

CH
maxCH CH

bat bat bat
D
maxD D

bat bat bat

P t P (t)

P t P t
.

≤

≤


× γ 


× γ 

 (18) 

The general objective function for the entire system is formulated as an economic 
dispatch problem in Equation (19). 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 chp 2 2 chp1 2

T

chp chp SU chp chp SU grid grid
t =1

min : Z = P t T t T t P t T t T t P t T t .× + + × + + ×  (19) 

Subject to Equations (1) and (9)–(18), where SUT  is the start-up cost of the CHP units, 

2chpT  and gridT  are the cost of operating the CHP and the grid tariff, respectively. 

4. EMS Implementation 
The MILP optimisation-based EMS is suggested to be implemented in two ways: of-

fline and online. Explanations of the two approaches are provided. 

4.1. Offline Implementation 
The offline version relies on data from the past and forecasts for the next day’s load. 

The above-described MILP optimisation requires a 24 h load profile as an input to be put 
into practice. Figure 3 depicts the results of a prediction made with a long short-term 
memory (LSTM) network, a type of RNN, to determine this profile. Next, the MILP opti-
miser receives the predicted data profile and uses it to formulate the dispatch commands 
for the battery and CHPs over the next 24 h. Then, in real-time, the predetermined dis-
patched commands are carried out. Inconsistencies with the optimisation constraints, 
such as the inadvertent injection of power into the grid, are expected due to the difference 
between the LSTM predicted load demand and actual load profiles. 

LSTM  MILP

Grid 
Conneceted 

CHP 
System 

with BESS

Constraints

( ) ( )chp 24chp1P ......P

GridTariff

T

( ) ( )24batbat 1P ......P

Heat & Electrical Load Demand Updated  every 24-H

Historical Heat 
and Elecrical Load 

Demand  

 
Figure 3. LSTM-MILP flow model for real-time operation of the grid-connected CHP system (offline 
optimisation scheme). 

One way of solving this problem is to dispatch only the CHP commands from the 
offline, ‘day-ahead’ optimisation. The BESS then balances the difference between genera-
tion and load demand in real time. While this scenario prevents reverse grid power, the 
system is likely to operate sub-optimally because the battery commands are not optimised 
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4.2. Online Implementation Using Receding Horizon 
The RH method is derived from model predictive control (MPC), which addresses 

control issues by determining the current control action via online model-based optimisa-
tion [24]. It is a general-purpose control technique that continually solves a limited opti-
misation problem by utilising predicted power generation and load demand across a shift-
ing time horizon to determine the control action. The RH control directly and intuitively 
handles limitations, such as limits on control variables, and provides accurately computed 
control actions that adhere to the constraints. The fundamental RH policy is simple and 
straightforward. At time t, we consider a period spanning T steps into the future (every 
half hour): t, t 1, ........, t T+ +  as seen in Figure 4. This method can correct load prediction 
errors in future iterations for energy systems scheduling problems that depend heavily on 
load demand forecasts [25]. The RH is a proposed solution that is intended to minimise 
the impact of the prediction error and make it possible to implement the economic dis-
patch problem in real time. This problem is improved by the utilisation of real-time load 
data. An illustration of the implementation of the online EMS can be found in Figure 5. 

 
Figure 4. Illustration of the RH control strategy. 

Historical Heat 
and Elecrical Load 

Demand  
LSTM MILP & RH 

CONTROL

Grid 
Conneceted 

CHP 
System 

with BESS

Constraints

Heat & Electrical Load Demand Updated  every 24-H

( )−T 1
  

Real-Time Heat and Electrical 
Load Demand 

chp(1) bat(1)P ,P

GridTariff

 
Figure 5. LSTM-MILP-RH flow model for real-time operation of the grid-connected CHP system 
(online optimisation). 

This paper uses MILP to model the system under consideration as an economic load 
dispatch optimisation problem over a period of 24 h consisting of 48-time steps (every half 
hour). For the future time horizon, the LSTM makes projections for both PV generation 
and load data. After that, the MILP and RH control strategy are applied to solve the eco-
nomic dispatch problem [17]. Only the dispatch command for the real-time (first-time 
step) is applied to the CHP Units and BESS, and the process is repeated. 

  



Energies 2023, 16, 1274 10 of 21 
 

 

5. Results of Simulation 
In this section, the specifics of the case study and the outcomes of the EMS deploy-

ment are discussed to demonstrate the technical specifications of the gas engines with six 
in-line cylinders that power the CHP units (GXC250-NG) [21]. You can see Table 2-5, the 
values in Table 3 are calculated from Table 2. Tables 4 and 5 describe the components that 
make up the lithium-ion battery package and the cost of the daily time-of-use tariff for 
gas, respectively. 

Table 2. CHP Power and Efficiency @ 50 Hz. 

Description Full 
Load Operation 

75% 
Load Operation 

50% 
Load Operation 

Load 100% 75% 50% 
Electrical Power (kWe) 250 187.5 125 

Heat Power (kWth) 333 249.75 166.5 
Fuel/Energy Input (kW) 710 522 361 

Electrical Efficiency 35.5% 35.9% 34.3% 
Heat Efficiency 47.3% 47.8% 45.9% 
Total Efficiency 82.8% 83.7% 80.2% 

Table 3. The CHP Input-Output Curve (where (a, b, c) are the fuel cost coefficients). 

Description Values (CHP) 
a 7.045 × 10−5 
b 0.0297 
c 2.0654 

Table 4. Characteristics of the Lithium-Ion BESS Package. 

Description Value 
Rated Depth of Discharge (DOD) % 70 

Maximum charging power (kW) 250 
The efficiency of Battery charge (%) 90 

The efficiency of Battery discharge (%) 90 
Maximum State of Charge (%) 100 
Minimum State of Charge (%) 30 

Nominal EESS Capacity @ 100% SoC (kWh) 1000 

Table 5. Daily Time of Use (ToU) Electricity Tariff/Cost of Gas. 

Description Time Tariff 
Off-peak time 00:00–7:30  0.106  £/kWh 

Peak time 7:31–23:59 0.14 £/kWh 
Cost of Gas  0.0198 £/kWh 

The economic dispatch and energy management system simulation was conducted 
in MATLAB on a computer with a 32 GB 64-bit operating system, dual-core i7, 2.70–2.90 
GHz. The simulation’s average computing time was about 11.93 ± 2.012 s. The offline and 
online economic dispatch results with optimal cost comparison are presented below. The 
proposed economic dispatch simulation was performed in MATLAB language. 

5.1. Load Prediction Using LSTM 
In this section, deep learning based on LSTM is used to forecast future load demand 

and PV generation considering one year of historical data of the factory. LSTM networks 
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are a sort of recurrent neural network (RNN) that have sequences of gates and are often 
referred to as modules rather than neurons. Each LSTM cell has a kind of long-term 
memory in the form of a cell state that is updated over time [26]. As an alternative to 
stochastic gradient descent (SGD), the LSTM model is trained using the Adam optimiser 
(adaptive movement optimisation), which uses a root-mean-squared error (RMSE) loss 
function. The maximum number of epochs has been set to 500, and the initial learn rate 
has been set at 0.005. The root-mean-squared error (RMSE) is a measure of predicting error 
that displays the gap between the expected and observed values [17,27]. The training and 
testing data must go through several pre-processing stages before being used to train or 
test a neural network. In this particular scenario, normalisation was utilised as a pre-pro-
cessing strategy as a result of the fact that it lessens the impact of various scales on the 
acquired data, as well as to interpolate any data points that were missing and arranges 
the data (historical load demand) in chronological order. In the subsequent stage, the nor-
malised data are fed into the LSTM network as input [17]. 

The RMSE is a suitable metric for evaluating the performance of the LSTM. The 
RMSE indicates the deviation between the predicted value and the actual measured value, 
and it is a measure of the forecasting error. In other words, the RMSE indicates how far 
off the predicted value is from the actual measured value. A lower RMSE Value indicates 
better performance, and the RMSE is computed with the following formula: 

( )2K v v

k 1

P A
RMSE

K=

−
=   (20) 

The initial predicted electrical load and heat demand are shown in Figures 6 and 7. 

 
Figure 6. Real and predicted electrical load with RMSE. 



Energies 2023, 16, 1274 12 of 21 
 

 

 
Figure 7. Real and Predicted Heat Demand with RMSE. 

5.2. EMS Implementation Results 
Four Scenarios are considered in our simulations: 

• Scenario 1 predicted data are the same as the real data; offline EMS provides dispatch 
commands to CHPs and the battery. This represents the ideal scenario, which is not 
achievable and does not exist in reality but provides a best-case benchmark for com-
paring the other scenarios. 

• Scenario 2 predicted data are different from real data; offline EMS provides dispatch 
commands to CHPs and the battery. 

• Scenario 3 predicted data are different from real data; offline EMS provides dispatch 
commands to CHPs only. The battery operates to balance generation and load in real-
time. 

• Scenario 4 predicted data are different from real data; online EMS provides dispatch 
commands to CHPs and batteries. 
Figure 8 shows the electrical power, the heat generated from the CHP units, and the 

predicted load demand resulting from the offline optimisation in Scenario 1 using pre-
dicted data. The result of the first scenario, which is the ideal case, is shown in Figure 9, 
there is no power exported to or imported from the grid, and total generation equals load 
plus battery discharge power. 
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Figure 8. Total output electrical power and heat generated from 2 × 250 kWe CHP units using pre-
dicted load demand data. 

 
Figure 9. Total electrical power generated, the ideal real-time load demand, and BESS charge/dis-
charge command (scenario 1). 

For the second scenario, the commands of the CHP units and the BESS from the of-
fline optimisation are dispatched on the real-time data. The results are presented in Figure 
10, while Figure 11 shows that power is exported to the grid whenever there is an excess 
generation, which violates the constraints as, in this case, we do not want to export power 
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to the grid. For the third scenario, the offline EMS only provides the dispatch commands 
to the CHPs. At the same time, the BESS offsets the difference between the load demand 
and the dispatched CHP command in real time (BESS operated to balance the generation 
and the load). It can be seen from Figures 12 and 13 that the total power generated equals 
the load demand plus battery charge power, and power is not exported into the grid. Since 
the CHP command for the three scenarios is based on offline optimisation, the total gen-
erated heat for all scenarios remains the same as in Figure 14, where the total generated 
heat is greater than or equal to the heat demand with excess heat stored in the heat buffer 
tank, respecting the constraint in Equation (2). 

 
Figure 10. Total electrical power generated, real-time load demand, and BESS charge/discharge 
command (Scenario 2). 
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Figure 11. Grid participation, BESS SoC, grid tariff, and BESS charge/discharge command (Scenario 
2). 

 
Figure 12. Total electrical power generated, real-time load demand, and BESS charge/discharge 
command (Scenario 3). 

 
Figure 13. Grid participation, BESS SoC, grid tariff, and BESS charge/discharge command (Scenario 
3). 
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Figure 14. Total heat generated by the CHP units and heat demand (offline optimisation). 

For online optimisation (Scenario 4), the LSTM-MILP-RH approach has been used. 
The results are presented in Figures 15–18. Figure 15 shows the total power generated by 
the two CHP units, the recoverable heat, and the difference between the power generated 
by the CHP units and the real-time load demand. Figure 16 shows that, with online opti-
misation, the total generated power from all sources can meet the load demand in real-
time using the RH control strategy. The charge/discharge power of the BESS, the state of 
charge, and the power imported from the grid are shown in Figure 17. This confirms that 
the concept of real-time load following can easily be achieved using the proposed online 
optimisation method. 

Figure 18 shows the total generated heat and heat demand, where the total generated 
heat is greater than or equal to the heat demand with excess generated heat stored in the 
buffer tank, respecting the constraint in Equation (2). 

 
Figure 15. Total power and heat generated from 2×250 kWe CHP units vs. real-time electrical load 
(online optimisation). 
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Figure 16. Total electrical power generated, real-time load demand, and BESS charge/discharge 
command (scenario 4). 

 
Figure 17. Grid participation, BESS SoC, grid tariff, and BESS charge/discharge command (scenario 
4). 
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Figure 18. Total heat generated by the CHP units and heat demand (online optimisation). 

Table 6 shows the distinction between the grid-connected CHP system’s total oper-
ating cost when real-time offline and online optimisation is done and the factory’s total 
operating cost when supplied exclusively by the grid. The percentage savings provides 
insight into how online optimisation compares to offline optimisation (where just the CHP 
command is sent in real-time). The online optimisation strategy is superior when compar-
ing grid utilisation, total operating cost, and percentage cost reductions for the investi-
gated model. In terms of cost savings, Scenario 4’s online method is better than Scenario 
3’s offline approach by 8.75%, and by 5.4% when comparing the two scenarios to the grid 
supply exclusively, and the difference is around 7.1% when comparing the two to Scenario 
1 (ideal scenario). 

Table 6. Total daily operating cost and % saving for all scenarios. 

Description 
Scenario 1 

(Ideal) 

Scenario 2 (Of-
fline) Violates 

Load-Following 

Scenario 3 
(Offline) 

Scenario 4 
(Online) 

Grid Supply 
Only  

Total Daily Operat-
ing (£) 

333.65 602.15 453 413.4 731.98  

% Daily Cost Sav-
ings WRT Grid 

Supply Only 
54.4 17.7 38.1 43.5 - 

6. Conclusions 
This study analyses the financial viability of a hybrid grid-connected CHP system 

built to provide an industrial facility with the electricity and heat it needs to operate. Hav-
ing established a minimum operating condition with varying load demand that some-
times falls below the minimum safe and economical operating condition for the CHP 
units, the emphasis is on keeping the CHP running continuously during production. This 
paper presents a real-time EMS based on RH that uses LSTM for load demand forecasting 
and MILP for operation optimisation. The proposed online EMS has been demonstrated 
to minimise operating costs compared to offline EMS via simulation. This is due to the 
online EMS’s enhanced capacity to rectify prediction errors using real-time data. In 
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addition, the online EMS has been able to fulfil all the requirements, notably those regard-
ing the control of power injection into the grid and the prevention of CHP units running 
below acceptable limits. 
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Nomenclature 

Nomenclature Description Nomenclature Description 

chp1P , chp2P  Electrical power from both 
CHP units 1 and 2, respectively 

EL
gridP  Power from the grid to the electrical 

load demand 
D
batP  Power from the BESS to the 

load 
bat

gridP  Power from the grid for charging the 
BESS 

gridP  Power from the grid DH  Heat load 

EL
dP  Electrical load demand bat

chpP  Power from the CHP units for charg-
ing the BESS 

EL
chpP  Total electrical output power of 

the CHP units 
CH
batP  Total BESS charging power 

hrrQ  Useful heat recovery rate βmin
soc  Minimum state of charge of the BESS 

G
chpH  Recoverable heat from the CHP 

unit 
βmax

soc  Maximum state of charge of the 
BESS 

1 2 3I ,I  and I  Segments of CHP units βsoc  BESS state of charge 

I1 I 2 I 3CHP CHP CHPP ,P  and P  Power segments of CHP units ϕEESS  BESS nominal capacity (kWh) 

I1 I2 I3S ,S  and S  The slope of each segment of 
the CHP Unit 

ηc , ηd  Charge and discharge efficiency of 
the BESS, respectively 

I

m in
CHPP  The minimum operating condi-

tion of the CHP unit Δ t  Time-step 

Ik

max
CHPP  Maximum power of each seg-

ment of the CHP unit 
γCH

bat , γD
bat  On and of state of the BESS charge 

and discharge, respectively. 
( )

II CHPF P  CHP cost function gridT  Time-of-use tariff of the grid 

Z  The objective function CHPT , 
CHPSUT  CHP operating cost and start-up cost 
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