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Quasipotentials for coupled escape problems and the gate-height bifurcation
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The escape statistics of a gradient dynamical system perturbed by noise can be estimated using properties of
the associated potential landscape. More generally, the Freidlin and Wentzell quasipotential (QP) can be used
for similar purposes, but computing this is nontrivial and it is only defined relative to some starting point. In
this paper we focus on computing quasipotentials for coupled bistable units, numerically solving a Hamilton-
Jacobi-Bellman type problem. We analyze noise induced transitions using the QP in cases where there is no
potential for the coupled system. Gates (points on the boundary of basin of attraction that have minimal QP
relative to that attractor) are used to understand the escape rates from the basin, but these gates can undergo
a global change as coupling strength is changed. Such a global gate-height bifurcation is a generic qualitative
transition in the escape properties of parametrized nongradient dynamical systems for small noise.
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I. INTRODUCTION

Noise induced transitions in dynamical systems are im-
portant in understanding a wide variety of phenomena in
nonlinear science [1–3], such as in solid state physics [4],
brain network dynamics [5,6], and climate dynamics [7,8].
For systems that (in the absence of noise) have multiple at-
tractors, the addition of noise will initiate transitions between
neighborhoods of the attractors. These transitions can be un-
derstood in terms of “escape problems,” where one attempts
to determine the distribution of times of first exit from a
neighborhood of one attractor A into the basin of another
attractor. For low amplitude noise, the exit path from the basin
of an attractor A typically goes along a “most likely path”
(also called instanton) through a “gate” on the boundary. The
escape rate is then asymptotically given by a large deviation
result—there is an “escape rate” that scales exponentially with
the noise amplitude and the height of the gate.

If the system of interest consists of a network of coupled
systems, each of which is multistable, this gives extra structure
that one can take advantage of. We consider here a case where
individual systems are bistable, but where one of the states
(that we call quiescent) is marginally stable and the other (that
we call active) is substantially more stable, so that the escape
rate to return to the quiescent state is much lower than to
escape from the quiescent state. As noted in [5,9], emergent
effects can appear in such sequential escape problems. For a
number of uncoupled units, each of which can independently
undergo escape, there will clearly be independence of the
escape processes, but the presence of coupling can create

nontrivial dependence in the escapes and even synchroniza-
tion of escapes for large enough coupling [10]. In previous
papers [9,11] we highlighted that so-called slow- and fast-
domino regimes can arise as the coupling strength changes,
in cases where there is escape from a quiescent attractor to
an active attractor at rates that are much faster than the re-
verse escape. The slow-domino regime appears at a critical
coupling strength, beyond which escape of one unit to an
active state induces the escape of a unit coupled to it, but with
some approximately deterministic delay. The fast-domino
regime appears at higher couplings and corresponds to cases
where the coupling is strong enough such that escape of one
unit results in immediate escape of units coupled to it.

These low noise regimes are separated by bifurcations of
the basin boundaries of the stable states in the coupled system.
Our earlier work [9] extends the analysis to sequential escapes
in a system of three bistable nodes with unidirectional cou-
pling and shows how these regimes can be defined and how
they affect the escape times and the likely order of escape.

A. Freidlin-Wentzell quasipotential

Consider a system on x ∈ Rd that evolves according to the
stochastic differential equation (SDE)

dx = f (x) dt + σ dWt , (1)

where f (x) is smooth, Wt is a standard Brownian motion
on Rd , and σ > 0 is a noise amplitude (we assume identity
growth in covariance per unit time for simplicity but note that
the methodology we use has been extended in [12] to allow
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more general matrix-valued σ ). In the limit of σ → 0 one
can relate this to the dynamics of the ordinary differential
equation (ODE)

ẋ = f (x). (2)

In the special case, where f (x) = −∇V (x) is determined by
the gradient of some smooth potential V : Rd → R, we say
(2) is a gradient system, and in that case one can apply the
method of Eyring and Kramers to compute the rate of escape
from attractors of (2) in terms of the potential barrier that must
be overcome for a transition to take place (for a review of such
methods, see [13]).

However, for most choices of f (x), no such potential V
exists and so the method above cannot be used—we say the
system is nongradient. Nonetheless, Freidlin and Wentzell
[14] introduced a notion of quasipotential (QP) for nongra-
dient systems, and using this it is possible to obtain rates
of escapes and most likely paths taken by escaping trajecto-
ries. Similar methodologies have been studied for many years
as, e.g., in Refs. [15–17], but only recently have numerical
methods been developed that allow one to explicitly [18] or
perturbatively [19] calculate the QP. To define the quasipo-
tential we first need to define the Freidlin-Wentzell action.
As explained in [18] the action is a functional depending on
a differentiable path φ ∈ C1([0, T ],Rd ), with φ(s) in phase
space defined for s ∈ [0, T ]. It is defined by

ST (φ) = 1

2

∫ T

0

∥∥∥∥dφ

ds
(s) − f (φ(s))

∥∥∥∥
2

ds. (3)

Note that ST (φ) � 0, and it is zero if and only if φ(t ) is
precisely a trajectory ϕt (x0) of (2) parametrized by time t ∈
[0, T ]. We then define the quasipotential with respect to the
arbitrary set A ⊂ Rd as

UA(x) = inf{ST (φ) : φ ∈ C1([0, T ]),

φ(0) ∈ A, φ(T ) = x, T > 0}. (4)

If A is asymptotically stable then UA(x) has a minimum at A in
a neighborhood of the basin of A. Note that the quasipotential
needs to be defined relative to the subset A of phase space; this
is usually chosen to be an attractor. Choosing a different sub-
set will give additional information and quasipotentials that
differ on different subsets of phase space. For any attractor
A we write B(A) = {x ∈ Rd : ϕt (x) → A} to be the basin of
attraction of A, where ϕt is the flow generated by (2).

Computation of the quasipotential is a nontrivial problem
in that it requires finding a limiting optimal path φ and typ-
ically there will be nondifferentiable points in UA(x). The
methods that have recently been developed [18,20] to com-
pute the quasipotential for low dimensional systems start by
transforming to a geometric action, namely [20, Appendix A],
which shows that

UA(x) = inf{S̃(ψ ) : ψ ∈ C1([0, L]),

ψ (0) ∈ A, ψ (L) = x, L > 0}, (5)

where we define a geometric action S̃ for the path ψ (s) inde-
pendent of its parametrization:

S̃(ψ ) =
∫ L

0
‖ψ ′‖‖ f (ψ (s))‖ − ψ ′ · f (ψ (s)) ds. (6)

Posing an associated Hamilton-Jacobi-Bellman problem for
this geometric action [18] turns the problem of finding UA(x)
from (4) into finding viscosity solutions [21] of the following
ill-posed Hamilton-Jacobi equation [20,22]:

‖U (x)‖2 + 2 f (x) · ∇U (x) = 0, U (A) = 0. (7)

This equation is instrumental in finding the minimum action
paths that minimize the geometric action relative to some
attractor A.

Of particular interest is the distribution of first escape times
of trajectories x(t ) of (1) from some open set N containing
B(A) but no other attractors. This is the random variable

τN = inf{t > 0 : x(0) ∈ A and x(t ) �∈ N}.
The utility of the quasipotential is that it gives a low-noise
asymptotic estimate [14] of the escape time τ from this neigh-
borhood N of B(A):

E[τN ] � exp[UA(x∗)/σ 2] (8)

as σ → 0, where x∗ is a unique point that minimizes UA(x)
for x ∈ ∂B(A). Note that if x∗ is a point such that

UA(x∗) � UA(x), x ∈ ∂B(A), (9)

then we say x∗ is the gate for the basin B(A); typically a
basin will possess only one gate though this may change as
a parameter changes, and there may be multiple gates if there
are symmetries of the system that fix the attractor. The relation
� indicates logarithmic equivalence; see [13,23] for precise
statements and proofs.

The ordered upwind method (OUM) was introduced
in [24,25] to approximate solutions of the Hamilton-
Jacobi-Bellman equation (7) on a grid in phase space. This
was subsequently used in [18] to numerically approximate
the quasipotential. More recently, this has been improved
for 2D phase spaces in [20] and we use the latter method.
These methods have also been extended to 3D phase spaces
in [22,26] and for anisotropic noise in [12]. We refer to these
papers for more discussion of the algorithms and numerical
errors which depend on grid spacing. In our computations we
use a 1024 × 1024 grid of the illustrated part of phase space.

B. Quasipotentials for systems of bistable nodes

We are not aware of any previous attempts to use quasipo-
tentials to understand cascades of noise-induced escapes for
coupled systems. Hence the aim of this paper is to explore the
properties and qualities of a system of coupled nodes using
this computational tool. We identify a range of behaviors that
are not present in the symmetric and potential case, but do not
claim to give an exhaustive theory even in the low noise limit.

II. ESCAPE FOR COUPLED BISTABLE SYSTEMS

We consider a network of prototypical bistable nodes gov-
erned by the system of SDEs

dxi =
[

f (xi, ν) + β
∑
j∈Ni

(x j − xi )

]
dt + α dwi, (10)
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where the dynamics of each node is given by

ẋ = f (x, ν) := −(x − 1)(x2 − ν). (11)

The coupling strength is β and Ni represents the set of
neighbors for node i. An independent identically distributed
white noise process dwi is added to each node with ampli-
tude α. For 0 < ν < 1 the system is bistable with two stable
equilibria that we call quiescent (Q) and active (A) separated
by an unstable saddle equilibrium (S); we use ν = 0.01 and
α = 0.05 unless otherwise stated. We write these states as
xQ = −√

ν, xS = √
ν, and xA = 1 and note that for small ν

escape from the quiescent state xQ will be more rapid than
from the active state xA.

We have used this model with bidirectional coupling to
investigate “domino”-like transitions on small network motifs
[9]. In this symmetric case the systems can be expressed
as a gradient system and the potential landscape V can be
computed.

Here we consider the case of two nodes with unidirectional
coupling, given by

dx1 = [ f (x1, ν) + β(x2 − x1)]dt + α dw1, (12)

dx2 = [ f (x2, ν)]dt + α dw2.

For chains of nodes, as in [9] we write xQA to signify states
that are continuations from β = 0 of states where x1 = xQ

and x2 = xA, etc. For β > 0 the system is nongradient and
we compute the quasipotential landscape U relative to each
attractor A. We show how the quasipotential can inform the
escape times and escape order for different values of β. We
then consider a chain of three nodes, previously considered in
[9], given by

dx1 = [ f (x1, ν) + β(x2 − x1)]dt + α dw1,

dx2 = [ f (x2, ν) + β(x3 − x2)]dt + α dw2, (13)

dx3 = [ f (x3, ν)]dt + α dw3.

We explore what the quasipotential results from two nodes can
tell us about cascades of chains of nodes.

We compare our quasipotential results to numerical simu-
lations of the model computed in MATLAB using the stochastic
Heun method with step size 10−3. The initial condition for
each realization is xQQ for the two node system (12) and xQQQ

for the three node system (13); namely we start with xi = xQ

for all i. We pick a threshold xS < ξ � xA and compute the
time of escape of node x(i) as

τ (i) = inf{t > 0 : xi(t ) > ξ}.
We also identify return times; for example, the first return to
xQ is

τ
(i)
R = inf{t > 0 : xi(t ) < ξ ′

and there is 0 < s < t with xi(s) > ξ}, (14)

where xQ � ξ ′ < xS . Both times τ (i) and τ
(i)
R are random vari-

ables that depend on the coupling strength, the parameters,
and the particular noise path. Moreover, they only weakly de-
pend on the choice of ξ and ξ ′. We compute 2000 realizations
of the model for each set of parameter values. From this we
estimate the mean escape times, mean number of returns, and
probability of direction of escape.

FIG. 1. Potential V (dashed teal) and the scaled quasipotential
U (solid teal) computed from xQQ for the uncoupled (β = 0) two
node system (12) with no noise (α = 0). The white area is the region
in which the quasipotential was computed. Equilibria are marked as
stable (circle, xQQ), saddle (triangle, xSQ, xQS), and unstable (square,
xSS). Note that this symmetric case has two gates: xSQ and xQS .

A. Uncoupled

We first consider two nodes (12) with β = 0 (uncoupled)
for which the system admits nine equilibria corresponding to
the states of the system xs1s2 , where si ∈ {Q, A, S} is the state
of node i. This case is a gradient system for which the potential
landscape is

V = x4
1 + x4

2

4
− x3

1 + x3
2

3
− ν

(
x2

1 + x2
2

)
2

+ ν(x1 + x2). (15)

We use the Hamilton-Jacobi-Bellman formulation described
above to compute the quasipotential for this system from
a given attractor. Figure 1 shows the comparison between
the contours of the potential landscape V with the (scaled)
quasipotential U computed with respect to x0 = xQQ in a small
area of the (x1, x2) plane. The quasipotential was computed
using the algorithm given in [20] in the white region of the
(x1, x2) plane. We note that the region in which U is computed
appears bounded by the contour line that intersects the two
saddle equilibria. In this symmetric case these saddles have
the same height in the potential (and quasipotential) land-
scape. When the level sets of the algorithm reach these gates,
they make an arbitrary choice and continue over one of them.
This can be seen in Fig. 2 as a thin line along the unstable
manifold of the saddle xQS to the computation boundary (the
edge of the figure box). In agreement with the theory, there is a
linear relationship V (x) = U (x)/2 + V (x0) (up to errors from
discretization of phase space for computation of U ), within
the basin of attraction of x0 and up to the potential of the gate.

The quasipotential U can be computed starting from any
of the four stable equilibria in this system. Figure 2 shows the
quasipotential computed for the uncoupled system from each
of the stable equilibria xQQ, xAQ, and xAA for the case ν = 0.01;
due to the symmetry of the uncoupled system we omit xQA.
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FIG. 2. Top row: contour lines of the quasipotential U for (12) with β = 0 and ν = 0.01 computed from xQQ (a), xAQ (b), and xAA (c).
Equilibria are marked as in Fig. 1 with the starting point marked in yellow. The red lines show saddle to sink connections and the blue lines
show other invariant manifolds. The values of the contour lines are chosen for illustrative purposes. Bottom row: the scaled quasipotential
plotted against x1 for fixed values of x2 corresponding to the equilibria values, when computed from different starting points. The potential
V is shown as a black dashed line, which can be seen to lie on top of one of the colored lines showing the quasipotentials U from different
equilibria. The insets (bottom left and middle) show enlargements of the curves around x1 = 0; note different values for U corresponding to
different attractors.

The quasipotential can be computed for any arbitrary domain.
The contour lines are concentric circles around the starting
equilibria up to the nearest saddle or pair of saddles. From
there U deviates from V ; the quasipotential does not decrease
when a saddle or gate is reached; rather it remains constant
until the next attractor is reached and only then increases. The
most likely path of escape appears as a channel to the next
stable point. These channels follow heteroclinic connections
from gate to attractor. The large white regions in the pan-
els correspond to plateaus in the quasipotential. The bottom
row of Fig. 2 shows that this behavior results in multiple
quasipotential height values at each well and gate, depending
on which equilibria it is computed from.

B. Unidirectional coupling

For β > 0 the system (12) is nongradient; we numeri-
cally compute the quasipotential U using the method and

code presented in [20]. Figure 3 shows how the equilib-
ria and quasipotential change with the coupling strength
β. The quasipotential is computed from both xQQ and
xAA. As β increases from 0 the states xQA and xSA un-
dergo a saddle-node bifurcation of the noise-free system at
βSN1 = 0.01, denoting the end of the weak coupling regime
[9]. Unstable states xQS and xSS meet at a transcritical
bifurcation at βTC = 0.18 and states xSQ and xAQ undergo
a saddle-node bifurcation at βSN2 = 0.2025. A final saddle-
node bifurcation occurs at βSN3 = 0.3025 between xSS and
xAS . The corresponding α = 0 bifurcation diagram is shown
in Fig. 4.

The contours of the quasipotentials shown in Fig. 3 indicate
the global most likely path of escape. From xQQ the most
likely path to xAA is via the xQS gate as this gate has the low-
est height. This is supported by numerical simulation of the
escape times of the two nodes. Figure 4 shows the probability
of escape from xQQ is highest in the x2 direction. From xAA the
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FIG. 3. Quasipotential landscapes and equilibria for (12) with ν = 0.01 and a range of β values. The top row shows the quasipotentials
computed from xQQ; the bottom row shows quasipotentials computed from xAA. Other equilibria are as in Fig. 1. The gates xQS and xAS are
marked to indicate the direction of most likely escape from the starting equilibria (yellow dot).

FIG. 4. Top left: noise-free bifurcation diagram (for ν = 0.01 and α = 0) for (12) plotted against β; green diamonds are saddle-node
bifurcations βSN · and the purple square is the transcritical bifurcation βTC . The purple and green lines in the remaining panels mark the
corresponding bifurcations. Top right: the percentage of realizations starting at xQQ that return from xAQ back to xQQ is plotted against β for
α = 0.05. Bottom left: the mean escape times (detail in inset) for “first*” (the mean first escape from xQQ to xAQ), “first” (the mean first escape
from xQQ to xAA, after possible multiple returns to xQQ), “second*” (the mean escape time from xAQ to xAA, without passing xQQ), and “second”
(the mean escape time from xAQ to xAA, after possible multiple returns to xQQ). Bottom right: the direction of final escape from the basin of xQQ

to xAA, plotted against β. In the uncoupled case (β = 0) the probability is equal at 0.5. For β > 0 the most likely direction of escape is in the
x2 direction.
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FIG. 5. Quasipotential for (12) computed from the equilibria xAQ (yellow dot) for each of the given β values (top row); other equilibria
are marked as in Fig. 1. The height of the quasipotential (QP) at the gates xSQ and xAS against β is bottom left. The inset shows the switch in
gate heights and the identified gate-height bifurcation point βG ≈ 0.1857. Bottom right shows the proportion of realizations that escape from
xAQ in the x1 and x2 directions against β; the transcritical bifurcation (TC) and the gate-height bifurcation values are marked. The gate-height
bifurcation occurs in the β range in which there is a local peak in the percentage of returns shown in Fig. 4.

most likely path to xQQ is via the gate xAS for β � βSN3 and
via xQS for β > βSN3.

Figure 4 also shows that, for certain values of β, when a
realization escapes in the direction of x1, instead of the more
probable x2, there is a chance that it will return to xQQ before
arriving at xAA. This is a deviation from the idealized low
noise case where a realization is expected to always follow the
most likely path. The proportion of realizations that transition
back and forth between (thresholds separating) xQQ and xAQ

is around 1% for the chosen values of ν and α. The mean
first and second escape times are also shown in Fig. 4 and
are E[τ (i)]. We distinguish between “first*” escape from the
initial condition where no nodes have previously escaped and
“first” where one node has escaped but then the realization has
returned to xQQ before escaping again. Note that this returning
behavior can occur several times before first escape to xAA.
The figure also shows times taken for the second node to
escape after the first escape, i.e., from xAQ or xQA. A low pro-
portion of realizations return, making only a small difference
to the mean escape times.

The returning phenomena can be explained by considering
the local most likely escape paths from xAQ. The quasipoten-
tial computed from xAQ is shown for a range of β values in
Fig. 5. The top row shows that for β = 0.17 and β = 0.18
there is a channel in the potential landscape between the
xAQ state and the full escaped xAA state indicating preferred
escape in this direction. Before the second saddle node at
βSN2 there is a change of preference and the most likely path
is back towards xQQ. This change of local most likely path

can be seen by considering the height of the gates xSQ and
xAS . The change of likelihood is seen when the height of xSQ

becomes lower than xAS for β = βG ≈ 0.185. We refer to this
qualitative change as a gate-height bifurcation. The effect of
this bifurcation is observed in the numerical results in Fig. 4
at β = 0.19, where there is a local peak in the proportion of
returns and a peak in the probability that x1 will be the final
direction of escape. Note that the effect of this bifurcation is
limited by the saddle-node bifurcation βSN2 at which xAQ and
xSQ coincide.

We note that the quasipotentials computed from xQQ and
xAQ look relatively flat between the two equilibria for the β

values close to the gate-height bifurcation. This allows real-
izations to have multiple returns, i.e., transition back and forth
between the xQQ and xAQ states multiple times before escaping
to xAA, as observed in the numerical simulations. However, the
proportion of realizations with returns is effected by choice of
α and ν, as investigated in Appendix A. The proportion of
realizations that use the higher gate increases as α increases
(for constant ν and β), while the proportion of realizations
that return decreases as ν decreases (for constant α and β).

III. QUASIPOTENTIALS FOR ESCAPES IN A CHAIN OF
BISTABLE SYSTEMS

We now consider what quasipotentials can tell us about
cascades along a chain of three bistable nodes given by system
(13). Although they are not invariant in the presence of noise,
one can apply the 2D quasipotential method on planes in the
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G

G

FIG. 6. Quasipotentials and gate heights for (13) with x3 = xQ for ν = 0.01 and varying β. The yellow dot indicates the starting equilibrium
for the quasipotential calculation in each panel; other equilibria are marked as in Fig. 1. The bifurcation diagram against β is shown bottom
right with the saddle-node bifurcations marked (green diamonds). The height of the quasipotential computed from xAQ at gates xSQ and xAS is
shown bottom left; note the exchange of gate heights at βG ≈ 0.1528.

phase space given by x3 fixed at x3 = xQ = −√
ν in (13). This

will give an upper bound on the QP in that plane—there may
be indirect paths that leave and then return to the plane asymp-
totically. For β = 0 the equilibria in the system are equivalent
to the two node case. The bifurcation diagram against β, de-
picted in Fig. 6, shows four saddle-node bifurcations. The first
at βSN1 ≈ 0.01 involves xQAQ = xQA and xSAQ = xSA when
compared to the saddles for (12). The second at βSN2 ≈
0.06 involves unstable states xQSQ = xQS and xSSQ = xSS , in
contrast to the two node case above. Stable states xAQQ =
xAQ and xAAQ = xAA undergo simultaneous saddle-node bi-

furcations with xSQQ = xSQ and xASQ = xAS , respectively,
at β = 0.2025. The only remaining state for β > 0.2025
is xQQQ = xQQ.

Figure 6 shows the quasipotentials computed from stable
states xQQ, xAQ, and xAA for representative values of β. The
quasipotential computed from xQQ shows the global most
likely path to escape is via the x2 direction. From xAA the
preferred direction of escape is in the x2 direction towards
xAQ. To determine preference of direction from xAQ we again
consider the height of the gates xSQ and xAS . Here the gate-
height bifurcation occurs at β = βG ≈ 0.1528, where for β ∈
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G

FIG. 7. Statistics computed from realizations of the full three bistable node system (13) with ν = 0.01, α = 0.05, and varying β. Top row
shows the probability of first escape in each direction and the percentage of realizations that return at least once; compare to the two node case
of Fig. 4. The bottom panel shows the observed sequences and their probabilities where simulations are terminated on the first occasion when
all nodes cross a threshold to the state xAAA. A returning transition is marked as negative. The sequences with returns are colored according
to their final order of escape (canceling out returns). The circle and square markers denote 2 escapes before 1, and the triangle and diamond
markers denote that 1 escapes before 2. Sequences are plotted in order of appearance in increasing β. The saddle-node (green dotted lines) and
gate-height bifurcations (gray dashed line) are marked in each panel.

[0.15, 0.2025] the preferred direction is x1 and so to return
to xQQ.

Figure 7 shows the direction of escape, percentage of re-
turns, and escape sequences computed from the numerical
simulations of the full three-node system (13). Here 10 000
realizations were computed for α = 0.05. For β > 0 the most
likely direction of first escape is in the x3 direction, and the
sequence [321] is the most likely in line with our previous
findings [9]. The probability of escaping in direction x2 and
x1 changes at βG and the percentage of realizations that return
is nonzero for β > βG. The observed sequences are shown
with their associated probabilities. The original six sequences
(without returns) are all equally probable for β = 0 and no
returns are seen. Sequence [231] initially decreases then in-
creases in probability with increasing β and for β > βG is the
second most likely order. This reflects the change of prefer-
ence of direction from x1 to x2. This is further supported for

large β as sequences where 2 escapes before 1 (circle marker,
[231], [213]) become more likely than sequences where 1 es-
capes before 2 (triangle marker, [132], [123]). Sequences with
returns appear for β > βG and some have multiple returns.
They also show that the first and final order of escape differ;
for example, for sequence [1 − 1321] the order of first escape
is [132] but the order of final escape is [321]. This sequence
with one return becomes as probable as some sequences
without returns around β = 0.21. For large β returning se-
quences where the final sequence is [321] become more
probable than other sequences with returns (see Supplemental
Material [27]).

The stable states xQQA, xAQA, and xQAA are simultaneously
eliminated in saddle-node bifurcations at β = 0.01. There
is no gate-height bifurcation and when x3 escapes the other
nodes follow almost simultaneously in the so called “fast-
domino regime.”
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IV. DISCUSSION

This paper presents the first attempt at computing and
analyzing quasipotential landscapes of nongradient systems
of coupled bistable nodes. We compute the quasipotentials
starting from the metastable states and reveal the local and
global most likely paths of the system. We identify how these
paths change for different values of the coupling strength and
through the bifurcations of the noise-free system.

We introduce the gate-height bifurcation of the quasipoten-
tial as a global transition for a parameter (β in this case) where
the values of two local minima xa and xb of QP on the basin
boundary become equal global minima. In the generic case,
the rates of change of the QP with parameter will be unequal
meaning that there is transition from one xa being the gate
before the bifurcation to xb being the gate after the bifurcation.
This implies there will be a qualitative change in the local
most likely escape paths from passing through xa to passing
through xb. At the bifurcation there may be more than one
likely escape path, each with nonzero probability in the limit
σ → 0. Such a gate-height bifurcation allows us to identify
regimes where a subset of the realizations of the system are
likely to change sequence of visits. In Fig. 7 we show how this
approach gives insight into the timing and order of dominolike
cascades of escapes. We contrast this to the local bifurcation
of gates found for two symmetrically coupled bistable units
in [9] and in [5], where a pitchfork bifurcation of gates dis-
tinguishes the slow and fast domino regimes; the degenerate
case at bifurcation corresponds to escape over a non-
quadratic saddle where a modified version of Kramer’s law is
needed [28].

Our finding that some realizations return to the original
state has several implications. It illustrates that the nature of
the diffusive coupling depending on the coupling strength can
be both activating (or excitatory, i.e., promoting escape to
xAA) and inhibitory (or suppressing) depending on whether
the coupling strength is lower or greater than the gate-height
bifurcation value, respectively. An interesting direction for
further work would be to investigate how this behavior de-
pends on the choice of coupling function and whether this
affects the robustness of the return of realizations observed
with other coupling functions.

From a practical point of view an inhibitory coupling could
have implications for preventing or correcting undesirable
escape or tipping phenomena. The return of a realization
to its original state indicates that certain escapes, or tipping
events, could be reversed or occur several times before a
cascade is triggered. The standard definition of first escape
time and local most likely path should not be considered in
isolation in this case. The final escape time, the last escape

time of a node given multiple returns, and direction may
be more relevant to identify the trigger of the domino ef-
fect or cascade. For a system in a given regime, realizations
could remain oscillating between two states for a long period.
Noisy trajectories have been found to cycle between states in
a mean-field model of bursting in neuronal networks [29].
The authors of [29] compute local potentials for the stable
states of this system. Using quasipotentials to identify the
global most likely paths could explain the interplay between
escape direction and distributions of escape times in that
model.

The coupled bistable model considered here and in [30]
is a simple conceptual example. Its simplicity allows us to
compute and analyze the quasipotential landscape for the
two and reduced three node examples. The quasipotential ap-
proach is widely applicable to analyze transient dynamics in,
for example, neuroscience [29,31], gene regulatory networks
[32], and climate tipping points [8,33]. Models for these ap-
plication areas may include more complex elements in the
node dynamics. A natural extension to this work to make it
more applicable to, for example, climate tipping cascades [33]
would be to consider heterogeneous coupled nodes or, in the
case of neuroscience, more physiologically meaningful node
dynamics such as those with periodic or excitable dynamics.
We also leave for future work investigation of networks of
more than three coupled nodes. Note that the quasipotential
computation methods [20] used here have been extended to
stochastic hybrid systems [34] and to 3D phase spaces in
[22,26]. Explicit computation of the QP in higher-dimensional
phase spaces is however challenging—for this reason other
methods such as adaptive multilevel splitting [35] have been
developed to give estimates for large deviation and escape
properties in cases where the QP is inaccessible.

Code for the computations in this paper is available from
[36].
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APPENDIX A: TWO-NODE SYSTEM: PARAMETER DEPENDENCE

In Fig. 8 we illustrate the influence of noise amplitude α on the proportion of escapes to compare with the bottom right panel
of Fig. 5. In Fig. 9 we illustrate the influence of ν on proportion of escapes to compare with Fig. 4.

APPENDIX B: THREE-NODE SYSTEM: NODE THREE FIXED IN ACTIVE STATE

In Fig. 10 we show the QP for the three node system (13) with x3 = xA to compare with Fig. 6.
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FIG. 8. Direction of escape from xAQ for α = 0.03, 0.05, 0.08. The x1 direction is towards xQQ over gate xSQ and the direction x2 is towards
xAA over gate xAS . The proportion of realizations that escape in the direction of x1 increases as α decreases. with very low noise realization
following the landscape closely. In the limit at α → 0 the proportion of escapes will be 0.5 in each direction at the gate-height bifurcation βG.

realizations

FIG. 9. Bifurcation diagrams for ν = 0.001, 0.005, and 0.01. The mean escape times for ν = 0.005 are plotted in the bottom left panel; the
percentage of realizations with returns and probability of direction of final escape are shown bottom right. Compare to Fig. 4. The percentage
of returning realizations is an order of magnitude lower than for ν = 0.01 and there is no discernible influence of returns on the mean escape
times.
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FIG. 10. Quasipotentials for the three-node system with x3 = xA fixed. Potentials are computed from xQQA = xQQ (blue), xAQA = xAQ

(green), and xAAA = xAA (dark yellow) and the start point is marked as a yellow dot in each panel. The potential from xQAA = xQA is omitted
due to the symmetry in the system. Two values of β are shown; both are in the weak coupling regime identified in [9]. For β > 0 the preferred
direction of escape from xQQ is x2. From xAQ the preferred direction of escape is x2 and there is no gate-height bifurcation. For β ≈ 0.0101
there are four simultaneous saddle-node bifurcations of the metastable states and for β > 0.0101 only the xAAA state remains.
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