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Abstract: Climate change, energy transition, population growth and other natural and 11 

anthropogenic impacts, combined with outdated infrastructure, can force Dam and Reservoir 12 

Systems (DRS) operation outside of the design envelope, thus creating adverse operating 13 

conditions. Since there is no easy way to redesign or upgrade the existing DRSs to mitigate against 14 

all the potential failure situations, Digital Twins (DT) of DRSs are required to assess system’s 15 

performance under various what-if scenarios. The current state of practice in failure modelling is 16 

that failures (when a system is not performing at the expected level or not at all) are randomly 17 

created and implemented in simulation models. That approach helps in identifying the riskiest parts 18 

(subsystems) of the DRS (risk-based approach), but does not consider hazards leading to failures, 19 

their occurrence probabilities or subsystem failure exposure. To overcome these drawbacks, this 20 

paper presents a more realistic failure scenario generator based on a causal approach. Here, the 21 



novel failure simulation approach utilizes fuzzy logic reasoning to create DRS failures based on 22 

hazard severity (from a predefined hazard database) and subsystems’ reliability. Combined with 23 

the system dynamics (SD) model this general failure simulation tool is designed to be used with 24 

any DRS. The potential of the proposed method is demonstrated using the Pirot DRS case study in 25 

Serbia over a 10-year simulation period. Results show that even occasional hazards (as for more 26 

than 97% of the simulation there were no hazards), combined with outdated infrastructure can 27 

reduce DRS performance by 50%, which can help in identifying possible “hidden” failure risks 28 

and support system maintenance prioritization.  29 

Keywords: water resources resilience, digital twins, failure modes, system dynamics model, 30 

Highlights 31 

 A novel method is proposed to simulate common failure situations for dam and reservoir 32 

systems  33 

 A fuzzy-logic-based failure simulator uses hazard severity and system reliability as input 34 

 The failure simulator provides failure magnitudes on a normalized scale 35 

 The failure simulator is coupled with an SD model using a novel failure implementation 36 

framework 37 

 The failure simulator coupled with an SD model provides a universal simulation tool 38 

applicable to any DRS 39 

40 



Graphical abstract 41 

42 

43 

44 



1 Introduction 45 

In many areas of the world, dams and impounding reservoirs play a significant role in the 46 

management of water resources. Reliable management of these systems strongly depends on the 47 

capacity and operation of dam and reservoir systems (DRS) (DeNeale et al., 2019). An increasing 48 

trend in energy demand along with the energy transition, population growth, the everchanging 49 

climate conditions, global market fluctuations and other natural and anthropogenic impacts, put 50 

additional pressure on DRSs, leading to a reduction in performance reliability and safety (Gleick, 51 

2000; Winz et al., 2009; Chernet et al., 2014; Li et al., 2019; Đorđević et al., 2020; Badr et al., 52 

2021). These impacts, combined with ageing infrastructure, often result in operational drift outside 53 

design criteria, into so-called adverse operating conditions. Since natural and anthropogenic 54 

impacts (disturbances) are dynamic and stochastic in nature, difficulties arise in the prediction and 55 

estimation of plausible dangerous scenarios. Furthermore, there is often no practical way to 56 

redesign or upgrade existing DRSs to allow safe mitigation of a potential multitude of 57 

unfavourable, worst-case scenarios. Therefore, DRS management must “steer” the system 58 

operation toward the narrow space to meet the ever-growing demands while avoiding water 59 

shortages, flooding (Bhadra et al., 2015), and dam safety risks. Asset owners and stakeholders need 60 

to be prepared to absorb certain risks due to (complete/partial) failure of the system’s components. 61 

They also need to adapt the system configuration and operation to minimize (or even eliminate) 62 

potential losses and recover the full DRS capacity. To analyze the system performance and enable 63 

the system to withstand and bounce back from adverse operating conditions DRS operators have 64 

to assess the system’s reduced performance under various what-if scenarios (Srivastava, 2013; 65 

Delgado-Hernández et al., 2014; Morales-Nápoles et al., 2014; DeNeale et al., 2019; King et al., 66 

2019).  67 



System analysis, in general, is performed using physical or mathematical models via model 68 

experiments. Performing experiments on DRS full-scale or prototype physical models, to evaluate 69 

various what-if scenarios, is impractical due to limited capacity, safety and economic reasons. 70 

Thus, theoretical and/or empirical methods are the only viable solutions to assess the system’s 71 

performance in adverse operating conditions. For example, widely used empirical methods in the 72 

industry for the evaluation of DRS failure modes are Failure Modes and Effects Analysis – FMEA, 73 

Fault Tree Analysis – FTA, Event Tree Analysis – ETA and Partitioning Multiobjective Risk 74 

Method – PMRM (Haimes et al., 1988; Hartford and Baecher, 2004; Baecher et al., 2013). These 75 

methods use inductive reasoning for identifying the potential failures of the system based on 76 

previous experience with the system or similar cases, i.e., using expert knowledge. Even though 77 

these methods can provide essential information about the DRS failure modes they are unable to 78 

deal with component interactions, cascading events and nonlinearity in the system’s behavior 79 

(Hartford and Baecher, 2004; Regan, 2010; Leveson, 2011; Thomas, 2013; King et al., 2019). 80 

Nowadays, novel digital technologies, such as digital twins (DT), as a new paradigm in simulation, 81 

provide tools capable of solving different issues in the water sector (Seshan et al., 2020; Alzamora 82 

et al., 2021; Bartos and Kerkez, 2021; Savić, 2022). DT can facilitate a comprehensive analysis of 83 

the DRSs’ behavior in adverse operating conditions using the system dynamics (SD) modelling 84 

approach (Regan, 2010; Simonovic and Arunkumar, 2016; King et al., 2017; Stojkovic and 85 

Simonovic, 2019; King, 2020; Lee and Kang, 2020; Simonovic, 2020; Ignjatović et al., 2021;86 

Momeni et al., 2021; Samadi-Foroushani et al., 2022) coupled with expert knowledge. Here, 87 

complex, multipurpose DRSs, are represented using the SD model mimicking physical and non-88 

physical components’ performance and their interaction.  89 



Utilization of the SD models within digital twins is of great importance due to their flexibility, 90 

mainly in terms of allowing the variation of the input parameters, system structure, boundary and 91 

initial conditions to simulate different what-if scenarios. Hence, DTs, including the SD models and 92 

real-world monitored data, should be utilized for analyzing the behavior and improving the 93 

performance of the DRSs in adverse operating conditions. Such an approach relies on the adequate 94 

representation of the disturbances, their impact on the components and nonlinear component 95 

interactions (Ivetić et al., 2022).  96 

When a DRS digital twin is used to analyze the system behavior under adverse operating 97 

conditions, particular attention should be paid to generating plausible disturbances and 98 

implementing failure modes in the SD model. The current state of practice suggests creating a DRS 99 

failure database (i.e., the operating state database) using a Cartesian product of all the potential 100 

operating states (Patev and Putcha, 2005; Cleary et al., 2015; King et al., 2019; Ardeshirtanha and 101 

Sharafati, 2020; King and Simonovic, 2020; Badr et al., 2021). In this approach, a failure 102 

(presented as a sample from the operating state database) is randomly chosen and coupled with the 103 

SD model to evaluate its impact on system performance. That helps decision makers to identify the 104 

riskiest subsystems (which subsystem’s failure will have the biggest impact on system 105 

performance). However, this failure implementation procedure is time consumig and has to be 106 

modified for each case study (e.g., there could be different types of subsystems for different case 107 

studies). Furthermore, that approach can overlook a possible failure occurrence and shift the focus 108 

from truly failure-exposed subsystems (those subsystems with lower impact on overall system 109 

performance, but with higher failure consequence due to its bad condition). Finally, that approach 110 

is unable to identify the chain of critical events that can cause the failure.  111 



When there is a necessity to evaluate the true failure risks, and improve investment prioritization 112 

accordingly, hazards leading to the failures have to be considered (United Nations Office for 113 

Disaster Risk Reduction - UNDRR, 2020). Hazards occurrence probabilities and severities have to 114 

be combined with the system component’s reliability (e.g., to represent ageing infrastructure) to 115 

evaluate failure risks. Hence, this paper presents a novel failure simulator where the failure 116 

magnitude is used to quantify the system component’s (i.e., subsystem) failure. It is evaluated using 117 

fuzzy logic (Zadeh, 1975) as a commonly used approach to evaluate engineering systems’ 118 

performance (Nabipour et al., 2020; Jeon and Paek, 2021; Zayed et al., 2021). The approach 119 

considers hazard’s severity and subsystem’s reliability as the input variables to the fuzzy-logic 120 

system. Fuzzy logic has already been used for the description of the failure modes, but the 121 

applications were site-specific or focused only on dam safety problems (Kutlu and Ekmekçioǧlu, 122 

2012; Patricio et al., 2012; Singh and Sarkar, 2017; Fu et al., 2018; Yang et al., 2020; Ribas et al., 123 

2021; Zhu et al., 2021; Sang et al. 2022). Here, a general fuzzy logic-based simulator is developed 124 

to generate failure magnitude values on a universal (0-1) scale (applicable to any DRS). This new 125 

SD model builds on the previous work (Ignjatović et al., 2021; Ivetić et al., 2022) and completes 126 

the holistic framework by implementing the new failure generation model. In this approach, failure 127 

magnitude assessment is implemented in the SD model using the functionality indicator. By 128 

utilizing the functionality indicator, failures (generated using the novel fuzzy logic failure 129 

simulator) can be represented in a time series format (values in the range from 0 to 1), showing the 130 

percentage of functionality loss for each subsystem. Thus, it represents a powerful simulation tool 131 

used with DRS digital twins capable of creating a wide range of realistic adverse operating 132 

conditions. Supported by the expert knowledge at the initial stage of application (to define potential 133 

hazards and estimate the reliability drop rate for each subsystem), it enables better insight into the 134 

failure mechanisms and helps with system maintenance prioritization.   135 



2 Materials and methods 136 

2.1 Fuzzy logic-based failure generator – overview  137 

To analyze DRS adverse operating conditions, a digital twin can be created using the following 138 

elements: hazard database, subsystems database, failure generator, system dynamics model and 139 

performance evaluator. In this research, particular focus is placed on disturbance modelling within 140 

the DRS digital twin, where a causal approach to generate failure magnitudes for DRS’ subsystems 141 

is used (Figure 1). The failure magnitude estimation procedure can be divided into the following 142 

steps: (1) hazard sampling, (2) identification of the affected subsystems, and (3) failure magnitude 143 

evaluation. At each time step of the analysis, the procedure is re-initiated. In step (1) of the failure 144 

generator, a single hazard is selected from the predefined list, using a probabilistic selection. Expert 145 

knowledge is used to determine the list of plausible hazards and assign their estimated occurrence 146 

probability. A single hazard for a certain time step is sampled using a fitness proportionate 147 

selection, i.e., roulette wheel selection (Figure 1). For the selected hazard, in step (2), a list of 148 

directly affected DRS subsystems is provided, using prior knowledge obtained from various 149 

sources, e.g., site operators’ experience, detailed modelling, and literature. Lastly, in step (3), the 150 

failure magnitude is determined for each affected subsystem. Failure magnitude is evaluated using 151 

the fuzzy logic-based method. The inputs in the fuzzy logic failure generator are hazard severity 152 

and subsystem’s reliability, which are evaluated using the data from the subsystems database. A 153 

detailed explanation of each failure generator step is presented in the following subsections. 154 



155 

Fig. 1 Causal failure modelling approach – schematic overview 156 

157 

2.2 Hazard generator and detection of affected DRS components 158 



Generating realistic DRS failure modes within the digital twin requires a reliable database 159 

containing information about potential hazards. Initially, expert knowledge from the operators, 160 

management and literature should be utilized to formulate the hazard database, linking them to the 161 

potentially affected subsystems (Figure 2).  162 

The first step in applying the failure simulator is to sample a single hazard from the entire list. Even 163 

though hazards can be selected randomly, this paper uses non-uniform probabilistic selection to 164 

better represent the stochastic nature of potential hazards. The hazard database (used in this 165 

research) contains the following attributes used to select a hazard during a simulation: 166 

��– occurrence probability for each hazard, where I denotes i-th hazard 167 

�� – hazard severity estimated using the custom-made severity scale. Larger values of severity are 168 

correlated with a lower probability of occurrence and vice versa.   169 

Hazard severity scales are widely used to describe the devastation potential of hazard events. 170 

Recently, efforts have been made to create a uniform, hazard severity scale (Wang and Sebastian, 171 

2021). It works with natural hazards by analysing historical events. However, water systems are 172 

also affected by anthropogenic hazards. Due to a lack of uniform hazard severity scales (both 173 

natural and human-induced), a custom-made scale is used in this work. 174 

Besides �� and �� variables, each hazard contains a list of potentially affected DRS’ subsystems. 175 

This attribute is assessed using historical data if there are documented historical failures, and/or 176 

detailed numerical and theoretical analyses of the DRSs behavior (Rehamnia et al. 2020; Chen et 177 

al., 2021; Rakić et al., Nafchi et al., 2021a; Nafchi et al., 2021b; 2022; Tang et al., 2022). It should 178 

be noted that the hazard database contains an event to describe normal conditions (no hazard), 179 

which has the highest occurrence probability. The hazard database in this work is created using 180 



only single hazards. Because a hazard is selected at each simulation time step, there is a possibility 181 

to create a chain of hazards within one timestep lag. Considering that the simulation time step (e.g., 182 

hourly) is significantly shorter than the time scale used to analyze DRS behavior (e.g., several 183 

years), it can be assumed that the chain of hazards with associated lags can be used to represent 184 

multiple hazards occurring at the same time. When larger time steps are used, e.g., days, in similar 185 

time scales, the combination of single events (e.g. Cartesian product) should complement the 186 

hazards list, where the occurrence probability is estimated by multiplying single events’ occurrence 187 

probabilities.  188 

189 

Fig. 2 Probabilistic hazard generator using the example of the DRS’s digital twin hazards 190 

database  191 



At each simulation time step, the roulette wheel (Blickle and Thiele, 1996) selects the hazard, where 192 

the occurrence probability �� transforms into the roulette selection probability. The hazard selection 193 

could be conducted using different sampling techniques (e.g. tournament selection) but it would 194 

go beyond the objectives of this paper. Analyzing the effects of different sampling methods could 195 

be a subject of separate research. 196 

When a hazard is sampled, severity �� and the list of the affected subsystems is used as an output 197 

from this stage (step (2) in Figure 1). This data is used in the failure magnitude estimation block 198 

(step (3) in Figure 1). 199 

2.3 Subsystems failure magnitude evaluation 200 

2.3.1 Reliability evaluation for the affected DRS subsystems 201 

When the affected subsystems are detected, the failure magnitude and failure duration for each 202 

affected subsystem are determined. To complete this task, DRS subsystem reliability has to be 203 

estimated using the subsystems database (Figure 3).  204 



205 

Fig. 3 Failure magnitude estimation using the DRS subsystem reliability database 206 

The DRS subsystem reliability database (used in this work) has the following attributes: 207 

�� – current functionality level of the subsystem [0-1], where � denotes �-th subsystem, described 208 

using the following expression: 209 

�

= �

1, subsystem in usual operation − full functionality
0 <  � < 1, subsystem is in the failure mode − partial functionality

0, subsystem is in the failure mode − non functional
�

(1)

���� – last repair date (variable updated during the simulation) 210 

����  – last failure date (variable updated during the simulation) 211 



�� [/]– cumulative density function shape parameter (used to estimate subsystem’s current 212 

reliability) 213 

�� – cumulative density function scale parameter (used to estimate subsystem’s current reliability) 214 

�������,� – expected repair time in days 215 

�����,� – expected procurement time in days (used to simulate time required to identify the failure 216 

and collect all resources for subsystem repair) 217 

These variables are used during a simulation to evaluate the current reliability level �(�) [0-1] for 218 

each affected subsystem. Here, reliability is adopted as a common engineering metric to quantify 219 

the current state of the system. It should be mentioned that other mathematical methods (e.g. 220 

vulnerability) could be used instead, but the effects of choosing the mathematical method to 221 

describe subsystems’ state should be analyzed in separate research. 222 

Unlike in the static reliability assessment (Kjeldsen and Rosbjerg, 2004), continuous evaluation of 223 

the subsystems’ reliability is performed here. To assess this variable for each subsystem during a 224 

simulation (at each simulation time step), an exponential reliability function is used (Calixto, 2016).  225 

Before the reliability is estimated, the current functionality for each affected subsystem is checked. 226 

First, there is a possibility that some of the affected subsystems are already in a failure mode (Eq. 227 

1). For the subsystems in a failure mode (partial functionality), current functionality ��(�) has to 228 

be checked and updated. If aggregated procurement and repair times are equal to the difference 229 

between current and the time since the last failure date (trepair,j + tproc,j = t – LFDj), the current 230 

functionality of the subsystem is fully restored, i.e., equal to 1. If the current functionality of a 231 

subsystem is 0, it means that the subsystem is still non-functional and should be removed from the 232 

affected subsystems list.  233 



For each affected subsystem (those fully or partially functional), reliability ��(�) is evaluated using 234 

the customized exponential reliability equation: 235 

��(�) = ��(�) ∙ �
��

������

��
�

��

 (2)

Where � represents simulation time. This equation assumes that the reliability of �-th subsystem is 236 

1 at the moment when the repair process is finished. The reliability exponentially decreases with 237 

time passing from the last repair. The reliability decrease rate depends on parameters �� and ��, 238 

which have to be estimated using expert knowledge and historical failure data. As more information 239 

regarding the functionality of a particular subsystem is obtained, these parameters should be 240 

updated during the DRS lifetime. In this work, the values of parameters �� and �� are selected to 241 

demonstrate the failure generation methodology. Additionally, it is assumed that the reliability of 242 

the subsystems in partial failure mode decreases more rapidly than in fully functional mode. 243 

Therefore, the exponential representation of the reliability is multiplied by the current value of the 244 

subsystems’ functionality value (Eq. 2). When the reliability ��(�) is evaluated for each affected 245 

subsystem, the next step is to determine the failure magnitude. 246 

2.3.2 Evaluation of the DRS component’s failure magnitude  247 

Failure magnitude, for each affected subsystem, �� takes a value between 0 and 1, where 0 means 248 

that there is no failure while 1 represents the maximum failure magnitude leading to the complete 249 

subsystem failure (�� = 0). The failure magnitude describes the lost value of the current 250 

subsystem’s functionality ��(�) caused by the generated failure (i.e., the percentage of the current 251 

functionality that will be reduced by the failure). When the failure magnitude is estimated, the new 252 

value of the current functionality level is calculated using the following equation: 253 



��(� + ∆�) = ��(�) ∙ �1 − ��� (3)

where ∆� denotes the simulation time step.  254 

In this approach, the failure magnitude is estimated using the fuzzy logic approach, where the 255 

process involves formulating the mapping from a given input to an output using fuzzy logic. Even 256 

though this task could be done using some other approach, fuzzy logic has been adopted due to its 257 

ability to group many input numerical values into categories and create simple IF-THEN rules 258 

using the “natural language”. The most common approach for fuzzy logic applications is the 259 

Mamdani rule-based fuzzy inference system (Mamdani, 1974). In this approach the following steps 260 

have to be conducted (Figure 4): 261 

- Fuzzification – where all input variable (crisp) values are transformed into their fuzzy 262 

counterparts, 263 

- Inference – where fuzzified input is transformed into fuzzified output using logical (IF-264 

THEN) rules, and 265 

- Defuzzification – where fuzzy output is transformed into crisp (number) values. 266 

267 



268 

Fig. 4 Estimation of the failure magnitude using the fuzzy logic-based generator 269 

The first step in fuzzy system implementation is to apply fuzzification to transform hazard severity 270 

�� into fuzzy sets using the “natural language” approach. The custom-made severity scale used in 271 

this work assigns a severity value in the range between 0 and 10 to each hazard. To represent this 272 

scale in “natural language”, those values are transformed into fuzzy sets using the membership 273 

functions: mild, moderate or extreme (Figure 5a). It practically means that each hazard, according 274 



to the assigned severity value cannot be unambiguously characterized as a mild, moderate or 275 

extreme event, since there is no clear border between these categories. Therefore, fuzzy logic 276 

transforms the hazard severity (represented as a single number) into an array (Figure 5a). The array 277 

size is equal to the number of membership functions. Each array element represents the value of 278 

the membership function for the given hazard severity. The membership function takes values 279 

between 0 and 1. If a mild membership function has a value of 1, for the selected hazard severity, 280 

the fuzzified value becomes [1;0;0]. If the hazard severity indicates 0.7 for the mild, 0.3 for the 281 

moderate and 0 for the extreme membership function, respectively, then the fuzzified value of 282 

severity becomes [0.7;0.3;0].  283 

Although the number of membership functions can vary, this work uses three membership 284 

functions to describe hazard severity. Values used to describe the membership functions were not 285 

obtained by analyzing real data, but were selected to illustrate the approach. For real-world 286 

applications, these values should be obtained using expert knowledge and/or historical data and 287 

should be updated during the generator’s exploitation phase if some of the failures occur.  288 



289 

Fig. 5 a) Fuzzification of the hazard severity, b) Fuzzification of the subsystem’s reliability and c) 290 

Fuzzification of the desired output (failure magnitude) 291 

The second step in the fuzzification process involves the transformation of reliability values 292 

(between 0 and 1) into a fuzzy set for each affected subsystem. Here, three membership functions 293 

are used: low, moderate and high (Figure 5b). This fuzzy set can also be densified by adding 294 

additional membership functions (e.g., very low and very high) which can be the subject of separate 295 

analysis. In this research, three membership functions are used for demonstration purposes (Figure 296 

5b). 297 

Once the input variables are fuzzified, membership functions are defined for the output 298 

fuzzification. The membership functions are then used to create an output value using the fuzzy 299 

rules. The expected output from the fuzzy logic-based failure generator is failure magnitude � for 300 



each affected subsystem that takes values between 0 and 1. Here, there are nine possible 301 

combinations for fuzzified inputs. To better differentiate the effects of some inputs’ combinations, 302 

five membership functions are used for failure magnitude fuzzification: very high, high, moderate, 303 

low and very low (Figure 5c). This means that single-value reliability is transformed into an array 304 

that contains five numbers, representing the values of the membership function. Failure magnitude 305 

fuzzification can also be densified using additional membership functions. The set of membership 306 

functions in this research is used only to demonstrate the methodology. 307 

After the fuzzification is complete, the next step (inference) creates fuzzified output using the 308 

fuzzified input and custom-made rules. Here, simple IF-THEN rules are used (Rule set in Figure 309 

6). The rules use logical operators (AND, OR and NOT) for representation. However, AND, OR 310 

and NOT are Boolean operators using the truth/false input values often denoted by 1 or 0. Fuzzy 311 

logic, however, assumes values between 0 and 1. Therefore, Boolean operators AND, OR and 312 

NOT, in fuzzy logic, are executed using the MIN, MAX and complement functions respectively 313 

(rules execution in Figure 6).  314 



315 

Fig. 6 IF-THEN rule set to estimate the fuzzified failure magnitude 316 

Finally, when the fuzzy inference process is finished, defuzzification is conducted to get crisp 317 

values of the failure magnitudes based on the output fuzzy set. Here, defuzzification is conducted 318 

using the centroid method (Figure 7). Defuzzification could be done using other methods, such as 319 

the center of area, the center of sums, the weighted average method or maxima methods. However, 320 

the centroid method is adopted here as the most frequently utilized approach. The rationale for the 321 



choice of the particular defuzzification method could only be justified by separate analysis by 322 

comparing the results simulation results against historical (real-world) data. 323 

324 

Fig. 7 Failure magnitude defuzzification using the centroid method  325 

When the failure magnitude has been evaluated, current functionality is updated for each affected 326 

subsystem (Eq. 3). In the next simulation step where the entire procedure is repeated. When the 327 

failure model run is finished, the final outputs from the simulation are functionality time series 328 

�(�) for each DRS’ subsystem (Ivetić et al., 2022). The current functionality of the affected 329 

subsystem stays reduced while the resources needed for repair are being procured (procurement 330 

time tproc). After the resources are procured, the subsystem’s functionality drops to 0 because most 331 

of the subsystems have to be fully disconnected when the repair process begins. Until the repair is 332 

finished (repair time elapses), �(�) stays 0. For those subsystems which do not require full 333 

disconnection, the repair time is set to 0 and the subsystem works with reduced functionality until 334 

the repair is completed (procurement + repair time).  335 



336 

2.4 DRS Pirot case study – system dynamics model and failure implementation 337 

The proposed failure generator and its implementation within the system dynamics model are tested 338 

on the Pirot DRS digital twin. Pirot DRS is located in the southeastern region of Serbia, near the 339 

city of Pirot. It is a multi-purpose reservoir system, currently primarily used for hydropower 340 

production and flood protection along the Nišava and Visočica rivers. The system also provides 341 

environmental flows (to preserve the downstream freshwater ecosystem) and sediment control at 342 

the watershed scale and it is planned to augment the water supply in the future. The Pirot DRS 343 

includes the following elements: Zavoj reservoir and dam, power tunnel, surge tank, penstock, 344 

hydropower plant (HPP), tail race (open channel for hydropower plant discharge) and 345 

compensation reservoir (Figure 8). The compensation reservoir is located on the right bank of the 346 

Nišava river and is designed for HPP discharge release attenuation. The system is presented in 347 

more detail in previous publications (Ignjatović et al., 2021; Ivetić et al., 2022; Rakić et al., 2022). 348 

The system is decomposed in one of the many possible ways and the appropriate SD model is 349 

created (Figure 8a) to demonstrate the failure generation methodology. Key subsystems are 350 

identified along with failure indication parameters for each subsystem (Table 1). Failure indication 351 

parameters are used to easily implement failure for each subsystem according to the failure 352 

implementation framework presented in previous research (Ivetić et al. 2022). For each subsystem, 353 

reliability parameters, λ  and k, are arbitrarily selected to demonstrate the effects of reliability 354 

decrease in failure magnitude Additionally, the last repair date in the subsystems database is also 355 

arbitrarily selected to mimic real-world situations where the existing systems are repaired 356 

occasionally, and not all subsystems at the same time. For realistic estimation of the subsystems’ 357 



reliability, experts and operators in charge have to be consulted and a thorough analysis should be 358 

conducted to estimate reliability parameters (shape and scale parameters). 359 

360 

Fig. 8 a) Conceptualization of the decomposed DRS Pirot with interdependency links between 361 

subsystems  (Ivetić et al., 2022), b) stage-storage curve for the Zavoj reservoir, c) the stage-storage 362 

curve for the compensation reservoir and d) the rating curve at the Nisava control point 363 



364 



Table 1. An example of a subsystems database for the Pirot DRS – initial data 365 

ID Subsystem 

Failure 

indication 

parameters 

Implement

-ation 

(equation) 

α [/] LRD λ [/] 
k

[/] 

trepair,exp

[days] 

tproc,exp

[days] 

1 
Environment-

al 
���� (7) 1 01-jan-2015 1e+4 1 30 30 

2 Seepage � (12) 1 01-jan-1970 1e+6 1 300 300 

3 Spillway � (11) 1 01-jan-2000 5e+4 1 30 60 

4 
Firefighting 

extraction 
��� (8) 1 01-jan-2010 1.5e+4 1 5 10 

5 Power tunnel ���� (13) 1 01-jan-1995 8e+4 1 60 150 

6 
Penstock – 

diameter 
���� (13) 1 01-jan-2005 8e+4 1 60 100 

7 
Penstock–- 

leakage 
����.����. (10) 1 01-jan-2005 8e+4 1 60 100 

8 
Powerhouse – 

flow 
����

� (10) 1 01-jan-2020 4e+4 1 60 100 

9 
Powerhouse – 

power 
����

� (14) 1 01-jan-2020 4e+4 1 60 100 

10 

Zavoj water 

level sensor – 

noise 

∆��,����� (15) 1 01-jan-2021 2e+4 1 10 30 

11 

Zavoj water 

level sensor – 

zero drift 

∆��,����� (15) 1 01-jan-2021 2e+4 1 10 30 



12 

Nišava water 

level sensor – 

noise 

∆��,����� (15) 1 01-jan-2021 2e+4 1 10 30 

13 

Nišava water 

level sensor – 

zero drift 

∆��,����� (15) 1 01-jan-2021 2e+4 1 10 30 

14 

Maintenance 

unit – repair 

team 

�������,�(j–

- 

subsystem) 

(16) 1 01-jan-2017 3e+4 1 100 1500 

15 

Maintenance 

unit – 

procurement 

team 

�����,�(j–- 

subsystem)
(17) 1 01-jan-2018 3e+4 1 100 1500 

16 

Water 

supply–- 

demand 

��� . (9) 1 01-jan-2013 1e+4 1 10 60 

17 

Water 

supply–- 

leakage 

���.����. (9) 1 01-jan-2014 1e+4 1 30 60 

366 

The system dynamics model and failure generator are implemented in the MATLAB programming 367 

environment (The MathWorks, 2022). The mathematical expressions are integrated and used in 368 

each time step to calculate the changes in the state and operation of the system. Water balance in 369 

the Zavoj reservoir, with inflow from the Visočica river, �����č���
�  (Ignjatović et al., 2021) and 370 

HPP, environmental, overflow, seepage, evaporation and forest fire outflows are mathematically 371 

represented using the following balance equation:  372 



������
��∆� = ������

� + ∆�

∙ ������č���
� − ����,���

� − ����
� − ��

� − ���
� − ����

� − ���
� − ���

� �

(4)

where ������
�  (������

��∆� ) represents the Zavoj reservoir water volume at time � (� + ∆�), and ∆�373 

represents the simulation time step (∆� = 1 hour). The reservoir water level, ������
� , is evaluated 374 

using a stage-storage curve (Figure 8b). ����
�  represents the environmental flow (Eq. 5), ��

�  is 375 

evaporation rate modelled using the input temperature time series (Linacre, 1977), ���
�  is the 376 

firefighting water extraction which is above 0 only when severe forest fire disturbance occurs while 377 

���
�  is the drinking water extraction. ����

� , ���
�  and  ���

�  are represented using the following 378 

equations: 379 

����
� = ����

� ∙ ����,�������� (5)

���
� = (1 − ���

� ) ∙ ���,��� (6)

���
� = ���

� ∙ ���,�������� − (1 − ���,����
� ) ∙ �����,��� (7)

In Eqs. (5), (6) and (7) the following variables are used: 380 

����
� , ���

� , ���
� , ���,����

�   [/]– functionality indicators for environmental, firefighting, water supply 381 

demand and water supply leakage subsystems respectively,  382 

����,�������� [m3/s]– required (minimum) environmental flow, ����,�������� is 0.4 m3/s 383 

���,��� [m3/s]– maximum flow used for firefighting ���,��� is 0.2 m3/s 384 

���,�������� [m3/s]– required water supply flow rate ���,�������� is 0.15 m3/s 385 

�����,��� [m3/s]– max value for leakage in water supply subsystem �����,��� is 0.1 m3/s 386 



Water transport towards the HPP is represented by reservoir outflow ����,���
�  using the following 387 

equation: 388 

����,���
� = ���, ��� ∙ ����

� ∙ ����,�����������������������������
����

�

+ �1 − ����.����.
� � ∙ ����.����.

�

(8)

where ���, ��� is a binary operator determining the command to operate or stand by, ����
�  is the 389 

failure indicator used to demonstrate failure potential for turbine operation (e.g., one turbine 390 

operational, other non-operational due to the main inlet valve failure ����
� = 0.5), ����,�������� is 391 

the total HPP capacity (set at 45 m3/s), ����.����.
�  is the penstock leakage failure indicator and 392 

����.����.
�  is the estimated maximum value of leakage set at 1 m3/s. For the analysis presented here, 393 

only penstock leakage is considered (including leakage at the penstock and main inlet valve), 394 

although power tunnel leakage is also possible. 395 

HPP discharge  ����,���
�  flow into the compensation reservoir or directly into the Nišava river, 396 

depending on the water level in the compensation reservoir. This reservoir is used for discharge 397 

attenuation of the ����,���
�  between two successive HPP operation runs. Water volume in the 398 

compensation reservoir is evaluated using the following balance equation: 399 

�����,���
��∆� = �����,���

� + ∆� ∙ ������,��
� − �����,���

� � (9) 

Where �����,���
�  (�����,���

��∆� ) represents compensation reservoir water volume at time � (� + ∆�). 400 

�����,��
�  represents compensation reservoir inflow (Eq. 10), �����,���

�  represents compensation 401 

reservoir outflow (Eq. 12) and �����,���
�  represents the water level in the compensation reservoir 402 

evaluated using the stage-storage curve (Figure 8c). 403 



�����,��
� = �

0, �����,���
� ≥ �����,���

���

����,���
� �����,���

� < �����,���
��� � (10)

�����,���
� = �

����,���
� ∙

����

24ℎ
, �����,���

� ≥ �����,���
���

0 �����,���
� < �����,���

���
� (11)

In Eqs. (10) and (11) �����,���
���  represents the maximum water level in the compensation reservoir 404 

while ���� represents the period in which HPP was active and it is determined using the 1-point 405 

discrete hedging rule (Tayebiyan et al., 2019). 406 

If the inflow into the compensation reservoir is disabled, the total Zavoj reservoir outflow (towards 407 

HPP) is directly discharged into the Nišava river (Eq. 12). Finally, the Nišava flow, downstream 408 

of HPP outlet �������,��
� , is calculated by eq. 13: 409 

����,������
� = ����,���

� − �����,��
� (12)

�������,��
� = ����,������

� + �����,���
� + �������

� (13)

Where  ����,������
�  represents HPP discharge directly to Nišava river and �������

�  represents natural 410 

flow in Nišava upstream of the HPP outlet. The Nišava River water level at the control point �������
�411 

is evaluated using the rating curve (Figure 11d).  412 

Spillway overflow ��� is represented by the following equation: 413 

���
� = �� ∙ ��

� ∙ � ∙ �2 ∙ � ∙ �������
� − ���

�
(14)

where the following variables are used: 414 

�� [/] – overflow coefficient set at 0.42, 415 

� [m] – crest length set at 27 m (3x9 m), 416 



� [m/s2]– acceleration due to gravity, 417 

�� [m] – spillway crest level (615 m), 418 

�� [/] – functionality indicator used to simulate failure of the spillway by decreasing the crest 419 

length 420 

Seepage (infiltration) rate ���� is represented using the following equation:  421 

����
� =

�

��
� ∙ �������

� �
�

(15)

where seepage coefficient � is set at 3.85e-06 and seepage exponent is set at � = 2. The seepage 422 

coefficient is identified as the failure indication parameter (dam body damage can increase the 423 

seepage coefficient value). Hence, the seepage coefficient is multiplied by the failure function 424 

�(�) = 1/�� to introduce failure potential. 425 

Power generated by the turbines ����
� at a specific time is evaluated using the following equations: 426 

��
� = ������

� − ���,���
� −

8 ∙ ���� ∙ ����

���,���
� ∙ �����

�
∙ ��

∙ ����,���
� −

8 ∙ ���� ∙ ����

���,���
� ∙ �����

�
∙ ��

∙
����,���

�

2

(16)

����
� = ���.���.

� ∙ �� ∙ � ∙ � ∙ ����
� ∙ ��

�
�������������

����.���
�

(17)

where the ��
�  is the turbine net head (0 if the functionality indicator for tunnel or penstock is 0), 427 

���,���
�  is the water level at the tailrace, and the values with subscript ��� and ��� are related to 428 

the power tunnel and penstock, respectively. The ����
�  is generated power at the powerhouse, 429 

����.���
�  is the max power of the plant (80 MW) and ���.���

�  is the functionality indicator used to 430 



model the disconnection of the HPP from the grid. Furthermore, two water level monitoring 431 

systems are modelled as shown in Eq. (18). The first one is considering the Zavoj level 432 

measurements and is used as one of the process variables for the control of the ����
� , and the second 433 

is the Nišava river water level measurements at the Hydrological station Pirot, also used as a 434 

process variable for the outflow control. Since the water level sensors are identified as an important 435 

subsystem, the following equation is used to model this subsystem: 436 

�������,�
� = ��

� +
����() ∙ ∆������

������
� + �1 − ������

� �∆������ (18)

where �� is reservoir water level obtained by the SD model (i = zavoj for Zavoj water level and i 437 

= nisava for Nišava water level), ∆������ represents noise amplitude, ∆������ represents the 438 

sensor’s zero drift, and ����() should be used to generate a random number between -1 and 1.  439 

Finally, �������,� is used to simulate the water level sensor output used in the control unit. Here, 440 

������ denotes functionality indicator considering noise while ������ represents functionality 441 

indicating the sensor zero drift. In this case study ∆������ and ∆������ are set to 0.2 and 0.5, 442 

respectively. 443 

Sensor water levels at the Zavoj reservoir and Nišava control point together with ���� (obtained 444 

from the hedging rule) are used to determine whether the HPP will operate. The HPP is 445 

disconnected (i.e., not operating, ���, ��� = 0) if the following conditions are met: Zavoj 446 

reservoir water level is below the minimum working level, Nišava water level is above the 447 

maximum water level at the control point or HPP working hours are exceeding the suggested 448 

working hours ����. Otherwise, HPP is active (���, ��� = 1). 449 



In this work, global crises (e.g., covid-19 pandemic, financial crisis, conventional and economic 450 

wars, etc.) are also considered potential hazards. Therefore, the maintenance unit is identified as 451 

the failure-prone subsystem due to the global crisis. In that case, the repair time ������� and 452 

procurement time ����� are used to represent the effects of such an event. These failure indication 453 

parameters for the maintenance unit affect all other subsystems and they are modelled using the 454 

following equations: 455 

������� =
�������,���

�������
(19)

����� =
�����,���

�����
(20)

where �������,��� is the expected repair time (when there are no global crisis events, presented in 456 

Table 1), �������,��� is the expected procurement time necessary to gather all the resources for 457 

repairing a subsystem, ������� is a functionality indicator for repair and ����� is a functionality 458 

indicator for procurement. 459 

To demonstrate the proposed failure generator an example of a hazards database is also presented 460 

(Table 2).  461 

Table 2. An example of a hazard database for Pirot DRS  462 

ID Hazard 
Return period 

T [years] 

Occurrence 

probability 

F=1/T/365

[1/day] 

Hazard 

severity S [/] 

Affected subsystems’ 

IDs 

1 No hazard / 0.973 0 All 

2 Earthquake – weakest 2 0.0014 2 [1, 3] 



3 Earthquake – weak 5 0.0005 4 [1, 3, 11, 13] 

4 Earthquake – moderate 10 0.0003 6 [1, 2, 3, 7, 11, 13, 17] 

5 Earthquake – strong 50 5.5e-05 8 [1, 2, 3, 7, 11, 13, 17] 

6 Earthquake – strongest 100 2.74e-05 10 
[1, 2, 3, 5, 6, 7, 8, 9, 

11, 13, 16, 17] 

7 Forest fire – moderate 0.5 0.0055 3 [4] 

8 Forest fire – intense 1 0.0027 5 [4] 

9 Lightning 1 0.0027 2 [9] 

10 Debris build-up 1 0.0027 4 [3, 8] 

11 Ice-freezing 2 0.0014 3 [1, 3, 8, 11] 

12 Windstorm 2 0.0014 1 [10, 12] 

13 Voltage fluctuation 5 0.0005 1 [10, 11, 12, 13] 

14 Global crisis – weak 5 0.0005 3 [14] 

15 Global crisis – moderate 10 0.0003 5 [14, 15] 

16 Global crisis – strong 20 0.0001 7 [14, 15] 

17 Sensor drift – weak 1 0.0027 2 [11, 13] 

18 Sensor drift – moderate 2 0.0014 4 [11, 13] 

19 Sensor drift – strong 10 0.0003 6 [11, 13] 

20 
Power grid synchronization 

issue 
1 0.0027 3 [9] 

Occurrence probability F for each hazard should be estimated using historical data (e.g. Keller et 463 

al., 1992) for natural hazards. To demonstrate the new methodology, assumed return periods were 464 

used since there is no data available to estimate the return periods of the human-induced hazards. 465 

Return periods are given in years (Table 2). However, the failure generator is started at each 466 

simulation time step (hourly) and hazard probability has to be adjusted accordingly. In this case, 467 

hazard probability in failure generator simulation is given as F = 1/T/365/24 [1/hour].  468 



Finally, to evaluate DRS’s response to the created input scenario, an appropriate system 469 

performance indicator has to be evaluated. This indicator needs to address all the objectives used 470 

for DRS system management. Here, some of the common objectives related to the DRS operation 471 

are included: maximising hydropower generation, providing flood protection, meeting water 472 

supply needs and preserving environmental flows in the river. A single performance indicator can 473 

be used for assessing each objective separately, but for complex, multipurpose systems overall 474 

performance has to be evaluated, taking all of the objectives into account. Hence, the system 475 

performance indicators are used to evaluate each of the objectives (Eqs. 21-24) and then to combine 476 

them into a single, overall performance indicator (Eq. 25). 477 

����
� = min �1,

����
� + ���

�

����,��������
� (21)

������
� =

⎩
⎪
⎨

⎪
⎧

1 �������,������
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⎪
⎬

⎪
⎫

(22)

���
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���
�

���,��������
(23)

������
� =

����
�

����,���
(24)

�������
� =

����
� + ������

� + ���
� + ������

�

4
(25)

����
� represents the current performance indicator of the system considering environmental criteria 478 

downstream of the Zavoj reservoir. If ����
� = 1 it means that the system meets completely the 479 

environmental criteria and ����
� = 0 means that the system failed (did not release any water) to 480 

meet this objective. ������
�  represents a performance indicator that considers flood protection 481 



criteria at the Nišava control point. If the �������,������
�  is below the flood defence water level 482 

����,�� then ������
�  is 1. When �������,������

�  is above ����,�� and below emergency flood defence 483 

level ����,�� then ������
�  is between 0 and 1. When the water level at the Nišava control point 484 

reaches or exceeds the emergency flood protection level it means that the system failed to meet the 485 

flood protection objective and the indicator is 0. ���
�  represents the current performance indicator 486 

considering the water supply criterion. If ���
� = 1 it means that the system completely meets the 487 

water supply demand and ���
� = 0 means that the system failed to meet this requirement. If the 488 

���
�  takes the value between 0 and 1 it means that the system partially meets the demand (same for 489 

all other performance indicators). ������
�  represents the performance indicator for power generated 490 

at the HPP. When the hydropower plant is working (���, ��� = 1) power functionality indicator 491 

is evaluated by comparing the actual power generated with the HPP’s capacity ����,��� (Eq. 24). 492 

When the HPP is deactivated (���, ��� = 0) power functionality indicator takes the last value 493 

when HPP was active. Finally, all performance indicators are integrated into the overall 494 

performance indicator �������
�  which also varies between 0 and 1 (Eq. 25). 495 

When the simulation is finished, and system performance indicators are estimated, statistical 496 

analysis of the simulation results should be conducted. This can be a useful decision support tool 497 

for the operators in charge of investment prioritization and reduction of failure risks. For example, 498 

the total number of failures, min, max or mean value of the failure magnitudes for each subsystem 499 

and accompanying system performance drop can be useful for the initial assessment of the failure 500 

potential for each subsystem. However, it should be noted that many system performance drops 501 

could be induced by a chain of failures (several subsystems at once, depending on the generated 502 

hazard and its targeted subsystems). In that case, the number of simultaneous failures (the number 503 

of subsystems that sustained a failure at the same time), which led to a performance drop, has to 504 



be considered. To determine the damage potential for each subsystem during the simulation, the 505 

sum of performance drops and the number of joint failures should be used, as proposed in the 506 

following equation: 507 

��� = �
∆�������,�

������,�

����

�

(26)

where ���  represents damage potential for the j-th subsystem, ∆�������,� represents system 508 

performance indicator drop induced by a i-th hazard which affects the j-th subsystem. The number 509 

of joint failures, for the i-th hazard is represented by ������,� and ���� represents the total number 510 

of (generated) hazards affecting the j-th subsystem. 511 

3 Results and discussion 512 

To demonstrate the application of the fuzzy logic-based failure generator in assessing the system’s 513 

performance in adverse operating conditions, a simulation of 10 years period is performed starting 514 

on 1st January 2022 at 12 AM (simulation starting day is used for initial evaluation of the 515 

subsystems’ reliability based on the last repair date from Table 1). Hydrological model driving 516 

input is created using the historical hydrometeorological data (Visočica and Nišava rivers flow 517 

hydrographs) and air temperature time series for estimation of the evaporation rate (Figure 9a). As 518 

the focal point of this analysis, the disturbance part of the input scenario (adverse operating 519 

conditions) is implemented in the form of functionality indicator time series for each subsystem 520 

(Figure 9b-e). These functionality indicator time series are created using the proposed fuzzy logic-521 

based failure generator. In this test case, hazards are selected during the simulation using the 522 

roulette wheel selection. This selection method provides more frequent occurrences of low-severity 523 

hazards (Figure 10a).   524 



525 

Fig. 9 Input scenario: a) Hydrometeorological data time series, b-e) generated functionality 526 

indicators time series  527 

Using the created input scenario, a system dynamics simulation is performed. The system’s 528 

performance is evaluated using single and overall performance indicators (Figures 10b and 10c) 529 

based on the system dynamics simulation results.  530 

When hazards, sampled by the roulette wheel selection, are analyzed, it can be noticed that the 531 

system was operating under no-hazard conditions for more than 97% of the simulation period 532 

(Figure 11a). In the remaining period of the simulation (approximately 3% of the simulation period) 533 

hazards occurred but there was no hazard with a severity value above 6. This happens due to the 534 

return period for some of the hazards in the database (Table 2) being much longer than the 535 

simulation period thus reducing the probability of high-severity hazard occurrence. Extending the 536 



simulation period could increase the number of occurrences for the extremely high-severity 537 

hazards. 538 

539 

Fig. 10 System performance indicators for generated failure scenarios: a) failure magnitudes during 540 

the simulation, b) single performance indicators, c) overall performance indicator, d) Water levels 541 

in Zavoj reservoir and Nišava flood control point 542 

Even though hazards are generated sporadically during the simulation (less than 3% of the hazard 543 

samples in roulette wheel selection are real hazards) and most of them are low-severity, they 544 

induced the subsystems’ failures with significant effect system performance. For example, failure 545 

magnitudes and failure durations forced the system to underperform (single and overall 546 

performance indicators below 1) for a significant part of the simulation period, even though there 547 

were no extreme hazards during the simulation. The single performance indicators duration curves 548 



(Figure 11b) show that the system met the expected performance level for more than 75% of the 549 

simulation period (out of 10 years) when the environmental criterion is considered. When the flood 550 

protection criterion is analyzed, ������ indicator time series (Figure 11b) shows that the system 551 

relatively frequently failed to meet the required flood protection. However, these were events with 552 

short duration, as the system met the expected performance level for almost 95% of the simulation 553 

period, according to the duration curve (Figure 11b) for the flood protection performance indicator. 554 

The system also met the expected performance level when the water supply criterion is analyzed. 555 

In that case, the water supply is stable for approximately 80 % of the simulation (the duration curve 556 

in Figure 11b). When ������ � performance indicator is analyzed the duration curve shows that the 557 

system was underperforming for almost the entire simulation period. In this case, the performance 558 

indicator was between 0.5 and 1 for approximately 55% of the simulation period. That led to low 559 

overall system performance where ������� was below 0.8 for almost 60% time and with a minimum 560 

value of 0.4.561 



562 

Fig. 11 a) hazards occurrence frequency (roulette wheel samples percentage), b) single 563 

performance indicators – duration curve, c) overall performance indicator – duration curve 564 

Based on the overall performance indicator for the generated power objective, the system is 565 

underperforming. Unlike the environmental, flood protection and water supply objectives, the 566 

hydropower subsystem has a more detailed representation, and thus can be affected by more 567 

hazards than other subsystems (Table 2). Additionally, the hydropower subsystem can be indirectly 568 

affected by other failures. For example, some failures of the water supply, seepage or firefighting 569 

subsystems, will lead to changes in Zavoj reservoir water levels. Those changes affect the water 570 

head and eventually impact the power generated by the turbines. Assessing the effects of indirect 571 

impacts on different subsystems can be analysed only by system dynamics modelling, which 572 

emphasizes the role of this approach in system failure analysis.  573 



Simulation results revealed that the system is frequently underperforming, even though the hazards 574 

were occasional and mostly low-severity. This indicates that the ageing and outdated infrastructure 575 

significantly increases failure risk and reduces the performance of the system endangered by the 576 

considered hazards. Additionally, accelerating the reliability decay during the partial functionality 577 

of a subsystem increases the system’s vulnerability (Eq. 2). This also amplifies the subsystem 578 

failure potential. As a consequence, a chain of low-severity hazards can lead to non-linearly 579 

superimposed effects causing significant damage to the system.  580 

Statistical analysis of the simulation results is conducted (Table 3) to help with investment and 581 

maintenance prioritization. Several parameters are estimated and can be used to quantify the failure 582 

potential of each subsystem. Here, failure potential for each subsystem is analysed using the 583 

following parameters: the total number of failures, failure magnitudes (max, min and mean values), 584 

performance indicator drops ∆������� (max, min and mean values) and damage potential ��. The 585 

drop in a performance indicator is evaluated prior to subsystem full disconnection, i.e., it considers 586 

only the initial performance drop when the hazard occurs. The total number of failures shows that 587 

some of the system's components were in failure mode more than 20 times (e.g., spillway, 588 

firefighting extraction,) while some other subsystems were affected just a couple of times (seepage, 589 

penstock leakage, maintenance unit) or unaffected (power tunnel, penstock diameter, water 590 

supply). However, this parameter could be used for some preliminary maintenance plans since it 591 

does not show the full effect of the subsystems’ failures on system performance. To assess the real 592 

effects of the subsystem failures and make decisions accordingly, failure magnitudes and 593 

accompanying system performance drops have to be considered.  594 

595 



Table 3. Subsystems failure magnitudes and induced drop of overall performance indicator – 596 

summary statistics 597 

Subsystem 

ID 
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Performance indicator drop - 

∆�������  (prior to subsystem’s full 

disconnection) 
DP 

∆�������
��� ∆�������

��� ∆�������
����

1 15 0.331 0.075 0.166 0.094 0.019 0.046 0.195 

2 1 0.250 0.250 0.250 0.093 0.093 0.093 0.013 

3 21 0.457 0.075 0.240 0.094 0.002 0.032 0.197 

4 24 0.401 0.186 0.227 0.167 1.66e-05 0.027 0.317 

5 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

6 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

7 1 0.250 0.250 0.250 0.093 0.093 0.093 0.013 

8 14 0.363 0.186 0.264 0.094 0.002 0.031 0.137 

9 14 0.214 0.075 0.118 0.049 0.001 0.01 0.107 

10 5 0.075 0.075 0.075 0.003 3.209e-05 8.867e-04 9.962e-04 

11 25 0.250 0.075 0.169 0.094 1.082e-05 0.025 0.134 

12 5 0.075 0.075 0.075 0.003 3.209e-05 8.867e-04 9.962e-04 

13 19 0.250 0.075 0.153 0.093 1.082e-05 0.010 0.031 

14 1 0.250 0.250 0.250 0.026 0.026 0.026 0.013 

15 1 0.250 0.250 0.250 0.026 0.026 0.026 0.013 

16 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

17 7 0.364 0.250 0.266 0.093 0.042 0.056 0.162 

598 

Failure magnitudes vary between 0.075 and 0.457 during the simulation. The largest failure 599 

magnitude was generated for the spillway (Subsystem 3). However, this value does not reflect the 600 



true failure potential of the spillway. The maximum performance drop during the spillway failures 601 

is 0.094, which is the same as the max performance drops during the failures of environmental, 602 

seepage, penstock, powerhouse, Zavoj and Nišava water level sensors subsystems. This non-linear 603 

relationship between the max failure magnitude and max performance drop (i.e., max failure 604 

magnitude does not coincide with the max performance drop) can be explained by the fact that the 605 

generated max failure magnitude can happen in the period when some of the subsystems are not 606 

used. For example, the spillway can have the max failure magnitude even when there is no 607 

overflow. In that case, the failure effect on system performance will be negligible. To quantify the 608 

true failure potential of a subsystem, the total number of failures and total performance drop (the 609 

sum of the single performance drops during the subsystem’s failures) have to be considered. Still, 610 

a single performance drop cannot be always assigned to one subsystem as, in many cases, it is 611 

induced by a chain of failures. Hence, a total performance drop during the failures of a subsystem 612 

cannot be used. The number of simultaneous failures, which induced the single performance drop, 613 

should be also used. When all these factors are considered, the true failure potential DP for each 614 

subsystem can be quantified (Eq. 25). In this case study, the firefighting subsystem had the greatest 615 

effect on system performance drop (DP = 0.317) due to frequent failures during the simulation. 616 

Also, DP values between 0.107 and 0.197 show significant effects of the environmental, spillway, 617 

powerhouse, and water supply subsystems failures. Based on the simulation results, these 618 

subsystems should be prioritized in maintenance plans to increase their reliability and reduce 619 

failure potential accordingly. Furthermore, DP is evaluated assuming that each subsystem affected 620 

by a generated hazard, equally contributes to a system performance drop. Weighting the 621 

contribution of each subsystem requires further insight into the subsystems’ failure modes, which 622 

will be the subject of future research. 623 



The Pirot DRS case study demonstrates the application of the proposed methodology. Data used in 624 

this study pertain to a real system, but some of the data sets were assumed to create the subsystems 625 

database and the simulation results are affected by that selection. For a more realistic application, 626 

expert knowledge and real-world data have to be used for creating a reliable hazard database. 627 

628 

4 Conclusions 629 

This paper presents a novel failure generation methodology suitable for the creation of the 630 

disturbance scenarios for the dam and reservoir system digital twin. The methodology contributes 631 

to the assessment of the system's performance under failure conditions. Here, failure modes of the 632 

dam and reservoir system are created using a causal approach where each subsystem’s failure 633 

depends on external disturbance (represented by hazard severity) and subsystem reliability (used 634 

to describe ageing). The hazard severity and subsystem’s reliability are used as input variables for 635 

the fuzzy logic-based failure magnitude simulator. The main output from the simulator is the failure 636 

magnitude, which quantifies the subsystem’s failure using the universal functionality indicator. 637 

The subsystem’s functionality is described using the 0-1 numerical scale, where the subsystem can 638 

be (1) fully functional (functionality indicator is 1), (2) non-functional (functionality indicator is 639 

0) or (3) in partial failure mode (still operating but with reduced capacity, taking values between 0 640 

and 1). This failure estimating procedure can be repeated at each simulation timestep making the 641 

failure simulator suitable for coupling with system dynamics models to evaluate failure effects on 642 

system performance. The application of the proposed failure generator is demonstrated on the Pirot 643 

DRS in Serbia. Based on the results obtained in this study, the following specific conclusions can 644 

be derived: 645 



 The probabilistic failure generator based on roulette wheel selection creates disturbances in 646 

a realistic way when low-severity hazards occur more often. If it is necessary to estimate 647 

the effects of high-severity hazards, the simulation period has to be extended to increase 648 

the possibility of those hazards being selected in a roulette wheel-based selection process. 649 

Even though it seems that the absence of extreme hazards (in short simulation periods) can 650 

be solved by applying random selection, this could lead to the frequent occurrence of 651 

extreme events. This can lead to unrealistic total collapse situations (e.g., dam failure which 652 

makes the system non-recoverable). 653 

 Even though the failure generator selects hazards occasionally (according to the occurrence 654 

probability assigned to each hazard), the SD model reveals significant underperformance 655 

in long simulation periods. This is achieved by modelling the effects of ageing and 656 

increasing the system’s vulnerability when subsystems are partially functional. Using the 657 

exponential reliability function yielded an efficient way to represent subsystems’ ageing. 658 

Increasing subsystems’ vulnerability by modifying the exponential reliability function 659 

shows a plausible approach to mimicking the amplified failure potential of the subsystems 660 

that are already in failure mode.  661 

 Using hazard severity and subsystem reliability scales as the failure generator inputs and 662 

subsystem’s failure magnitude (and functionality accordingly) as the normalized (0-1) 663 

output makes the proposed fuzzy logic-based failure generator general and applicable to 664 

different systems. 665 

 Expert knowledge, used here to create causality in the failure process, describes only the 666 

direct impacts of the specific subsystems for each hazard. Coupling expert knowledge with 667 



the proposed failure generator and SD model helped in assessing the indirect effects of 668 

different failures on the overall system’s performance.  669 

 The proposed methodology helps in the detection of the riskiest subsystems considering 670 

their true failure exposure, unlike the traditional approach where all the subsystems are 671 

treated equally (the current state of the subsystem is not considered). True failure potential 672 

is evaluated using the parameter describing the current state of the subsystem (reliability) 673 

and the hazard leading to the failure (hazard occurrence probability and hazard severity). 674 

This approach can support system investment prioritization due to its capability to detect 675 

“hidden” failure risks.  676 

 Expert knowledge is used to estimate parameters and membership functions used in the 677 

fuzzy logic-based failure generator. SD models allow for the hard-coded variables to be re-678 

evaluated and updated occasionally according to subsequently obtained real failure 679 

information. This will enable the generation of more realistic failures.  680 

Considering the specific conclusions derived in this paper, further insights into the DRS digital 681 

twin developments are needed to overcome some of the assumptions of this case study and will be 682 

a subject of future investigation. Fuzzy logic parameters and membership functions used in failure 683 

magnitude estimation have to be analyzed in more detail to determine the optimal level of 684 

complexity for the fuzzification process. Variables in the subsystems database, such as 685 

procurement and repair times, have to be estimated using real-world data. This can be integrated 686 

into occasional updates of the parameter required by the failure generator. Additionally, expert 687 

knowledge (previous experience and theoretical knowledge) has to be employed to identify 688 

potential hazards and causalities, and for better estimation of the subsystems’ reliability over time.  689 
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