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ABSTRACT 
 
The respiratory release of CO2 by microbes is a dominant component of the global carbon cycle. 
However, large uncertainties exist about the effects of climatic warming on the respiration of 
microbial communities due to lack of mechanistic, empirically-tested theory that accounts for 
dynamic species interactions. We developed a general mathematical model which predicts that 
thermal sensitivity of microbial community respiration increases as species interactions become 

more positive, i.e., change from competition to facilitation. This is because facilitation  
disproportionately increases positive feedbacks between the thermal sensitivities of species-level 
metabolic and biomass accumulation rates at warmer temperatures. We experimentally validated 
this prediction in bacterial communities of 8 taxa, finding that a shift from competition to 
facilitation after a month of co-adaptation caused a 60% increase in the thermal sensitivity of 
their respiration relative to de novo communities that had not co-adapted. Thus, rapid changes in 
species interactions can profoundly change the temperature-dependence of microbial community 
respiration and should be considered in climate change models.  
 
MAIN 
Empirical data show that ecosystem-level respiration generally follows an exponential-like relationship 
with temperature1 . These findings have led to concerns that climatic warming will increase carbon 
emissions from the biosphere, increasing positive feedbacks in the carbon cycle, ultimately accelerating 
the rate of planetary warming2–5. Microbes, and in particular bacteria, by conservative estimates make 
up ~20% of earth’s total biomass6, and by decomposing organic matter, account for a major fraction of 
the thermal response of ecosystem-level respiration2,7. For example, bacterial contribution to ecosystem 
respiration is estimated to be >50% in some ocean biomes7,8. Consequently, even small changes in the 
thermal sensitivity of microbial community respiration will likely have significant impacts on future 
global warming projections8,9. However, the response of microbial community respiration to 
temperature changes remains a key uncertainty in climate-carbon cycle projections for the coming 
century, and is also an unresolved question in microbial ecology2,10,11. 

     Published models of temperature responses of complex ecosystems typically assume that 
thermal responses can be scaled up from individual- to the ecosystem-level by a simple, weighted sum 
of the temperature responses of component species’ populations9,12–15. These models only focus on the 
direct effect of temperature on individuals and species’ metabolism, ignoring the effects of interactions 
among species. However, species interactions such as predation, competition and facilitation drive 
population dynamics in all ecosystems, determining the amount and distribution of biomass across 
species’ populations, and ultimately total ecosystem respiration and its response to changes in 
temperature16,17–21. Thus, by failing to account for the effects of species interactions, current models 
may not be able to predict the response of ecosystem respiration to changing temperatures.      

In microbial communities in particular, demographic processes and population turnover occur 
over relatively short timescales, and the temperature-dependence of community respiration most likely 
reflects the direct effect of temperature on individual metabolism as well as its indirect effects through 
species interaction-driven biomass dynamics. Microbial taxa interact in numerous ways, ranging from 
competition for limiting abiotic resources, to facilitation through cross-feeding on metabolic by-
products18–20. Microbial metabolic traits are temperature-sensitive, so when temperatures change this 
alters interaction-driven biomass dynamics and thus community-level respiration21. For example, 
widespread facilitation might amplify the effects of temperature by creating a positive feedback loop 
due to enhanced metabolic and growth rates in warmer conditions. Conversely, if weak or neutral 
interactions occur such as when species partition resources, their populations might become relatively 
decoupled, resulting in a response of community respiration to temperature that is a simple sum of the 
thermal responses of individual taxa weighted by their respective population biomasses. In general, if 
species interactions are strong, so will be the feedbacks between populations, amplifying the (positive 
or negative) effects of temperature across the whole system. Here, we investigated the role of biotic 
interactions in the temperature dependence of community metabolism by combining theory with 
laboratory experiments. 
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RESULTS 
      
Modelling the temperature dependence of microbial community respiration.  Our mathematical 
model links the effects of species-level metabolism and inter-species interactions to the thermal 
response of community-level (henceforth, synonymous with “ecosystem-level”) respiration (Fig 1). A 
fundamental premise of our model is that species interactions act primarily to affect species’ biomasses 
and  have a negligible effect on individual-level respiration rate. Respiration rate is constrained by 
cellular enzyme kinetics and is therefore driven primarily by environmental temperature. We also focus 
on the stages of community assembly and dynamics before populations reach carrying capacity for two 
key reasons. First, the bulk of community respiratory flux occurs when resource availability is high e.g., 
spring blooms in seasonal aquatic systems22 and litter fall in soils23, during which populations are in 
near exponential growth. Second, environmental perturbations and immigration events in natural 
microbial communities mean that these communities are constantly perturbed from equilibrium over 
time24,25.        

Consider a community comprising of N interacting species. This community’s total temperature 
(T)-dependent respiration rate (Reco(T)) depends on the sum of contributions of each population’s total 
respiration, which in turn can be expressed as the product of mass-specific respiration (Ri(T)) and 
biomass (Ci(T)) of each population: 
 

!!"#(#) = ∑$%&'!%(#)'%(#) .      (1) 
 

This equation implies that temperature affects community respiration by changing mass-specific 
respiration of individual populations, by changing their biomasses, or both (Fig 1a). Next, we derive 
the thermal sensitivity of Reco(T) (the magnitude of change of community respiration to a unit change 
in temperature in log-scale), which we denote by an apparent activation energy, Eeco (see Methods): 
 

(!"# = ∑!"#
$ )!(+)-!(+)./%,!0/',!1

∑!"#
$ )!(+)-!(+)

 ,     (2) 

 
where ER,i and EC,i are the thermal sensitivities (apparent activation energies) of mass-specific 
respiration and biomass dynamics of the ith species’ population, respectively. Eq 2 shows that Eeco is 
given by the average thermal sensitivities of biomass dynamics and respiration across all species 
(strains) in the system, weighted by each species’ total respiratory output, Ri(T)Ci(T). Note that Eq 2 
also contains temperature-dependent terms reflecting the effects of biomass dynamics, which results in 
a non-exponential thermal response of total ecosystem respiration (Fig. 1b). Next, we consider how Eeco 
(Eq 2) is affected by pairwise interspecific interactions. Below, we will consider the potential effects of 
indirect and higher order interactions (see Supplementary Materials). Assuming interactions do not 
affect species’ mass-specific respiration rate Ri (i.e., a single strain cell will have roughly the same 
respiration rate in the presence or absence of interactions), we focus on how they affect the biomass 
terms (Ci’s and EC,i’s) in Eq 2. We show that the thermal sensitivity of community-level respiration can 
be partitioned as (see Methods) 
     

(!"# ≈ *+ + -'./ 01%2*3, 2(),% + 5%36 + 0() + 56,  (3) 
 

where * is the average of the interaction coefficients between all species pairs (aij’s), + = 34
3+

($56)-#7(

8
 

is the average thermal sensitivity of time (t)-dependent biomass across all populations (driven by 

temperature-dependent changes in average population growth rate 7), 1%2*3 = )!-!.91
∑!"#
$ )!-!.91

 is the 

weighting of the ith species’ contribution (its normalised respiratory output), and 5% =
34!
3+
08 + 7(9!!-#,!

8
6 is the thermal sensitivity of its biomass at time t. The dependence of these weights 

on * arises through the effects of species interactions on population biomasses ('%2*3). 
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Equation 3 shows that the thermal sensitivity of community respiration is determined by three 
components: (i) the effect of averaged interspecies interactions (*+), (ii) the covariation between 
species’ responses to interactions (via the weighting terms) and their thermal sensitivities 
0-'./21%2*3, (),% + 5%36 and (iii) the average thermal sensitivities of respiration and biomass 

growth (not accounting for interactions) across species in the community 0() + 56. When interactions 

are on average neutral 2* = 03 the first of these terms is zero and community sensitivity is dependent 
only on internal factors affecting species’ population growth (growth rates and intra-specific 
interactions in the ! and covariance term). When interactions are non-neutral 2* ≠ 03 they will either 
amplify or dampen the sensitivity of community respiration relative to this neutral case (Fig 1b). More 
facilitatory (positive) interactions will increase (amplify) thermal sensitivity, while competitive 
interactions will result in a reduction (dampening) in sensitivity (including intransitive competition; see 
Supplementary Material). In general, stronger interactions (i.e., greater absolute values of *) will result 
in greater changes in community-level sensitivity. This amplification or dampening happens because 
interactions modulate the rate of change in biomass with temperature across the community (altered 
rates of biomass accumulation), captured by the γ term. 

In addition to this direct effect, interactions can also alter community sensitivity through the 
covariance term in Eq 3 ('./21%2*3, (),% + 5%3), which arises when species whose biomass is 
strongly affected by the interactions (i.e. those with more extreme 1%2*3 values) also tend to have 
higher temperature sensitivities of respiration and biomass accumulation 2(),% + 5%3). Although there 
is no empirical evidence of such relationships, it is possible that this pattern exists in nature. For 
example, in microbial communities it is possible that temperature and resource specialisation are 
positively correlated such that species with wide thermal niches (and low thermal sensitivities) also tend 
to be more general in their resource use (and thus are more affected by competition imposing a negative 
covariance structure). The relative effect of interactions through this covariance term will depend on 
the correlation between these two factors as well as the size of their variation across the community 
(i.e., greater variation in thermal sensitivity allows for more bias towards high sensitivity values). 
It is important to note that our theory focuses on pairwise interactions between populations and does 
not explicitly consider the effects of indirect and higher-order interactions, which can be important for 
shaping structure and function in microbial communities26–28. In particular, indirect interactions in the 
form of intransitive (rock-paper-scissor type) competitive loops can affect coexistence and biomass 
dynamics in communities27,28. We tested the effect of intransitive interactions on our theoretical 
predictions and found that they had no qualitative effect on amplification of the community-level 
thermal response (Methods; Supplementary Fig 1). Our theoretical predictions above also do not 
explicitly consider higher order interactions (HOIs), where one or more non-focal species modify the 
direct interaction between a pair of species26,27. In general, we expect the effects of HOIs to alter, but 
not qualitatively reverse community-level amplification or dampening (Supplementary Material). 
Future work focusing on HOIs is needed to build a more accurate understanding of the effects of these 
interactions on microbial community functioning and its thermal response. 
 
Experimental microbial communities show an amplified thermal sensitivity of respiration rate.   
We tested our theoretical predictions using experiments with communities of aerobic, heterotrophic 
bacteria. We assembled replicated (n = 6) communities of 8 bacterial taxa (henceforth, “strains”) 
isolated from geothermal streams in Iceland and incubated them in a minimal, single carbon source 
media (M9 + glucose) at ambient temperature (20°C) using serial transfers for ~100 generations 
(Methods, Fig 2).  This experimental design exploited the tendency of bacterial strains to increase 
facilitation by cross-feeding (exchanging metabolic by-products) when subject to resource limitation 
over time, producing replicated communities with the same strains but different interaction structures29–

31. We henceforth refer to these as ‘adapted’ communities. As a control, we also assembled replicated 
communities using the same ancestral strains, but incubated them for a much shorter period of 2 days, 
thus limiting the time available for co-adaptation (Methods) (we refer to these as ‘de novo 
communities’). In the adapted communities, biomass dynamics stabilised after 16 days (7 transfers, ~50 



5 

generations), with 5 of the 8 strains that were originally combined persisting at a relatively stable total 
abundances. At the end of the experiment, after 30 days (14 transfers, ~100 generations), we re-isolated 
the strains from each of the communities. We assessed whether community adaptation affected the 
thermal response of respiration for each of the 5 strains along a broad temperature gradient (15-35°C), 
for populations from both the de novo and the adapted communities. We found no significant difference 
in any of the parameters of the temperature response of respiration between the ancestral isolates and 
the same strains isolated from the adapted communities (Fig. 3a, Supplementary Table 1), showing that 
the population-level temperature response of mass-specific respiration remained unchanged following 
adaptation, consistent with our theoretical assumption. 

Our theory predicts that the thermal sensitivity of total community respiration should be higher 
in the adapted communities, where interactions were expected to have become less competitive (or 
more cooperative or facilitatory), compared to de novo communities. To test whether it was indeed 
facilitation through cross-feeding on metabolic by-products driving changes in interactions, we carried 
out community respiration assays in both M9+glucose, and “spent” media obtained by allowing 
communities to grow until all the initial glucose was depleted and only metabolic by-products remained 
(Methods). If an increase in metabolic facilitation is the main mechanism underlying changes in species 
interactions, then we expected to see an amplification of the thermal sensitivity of respiration in the 
adapted communities in the spent media, because the strains that comprise these communities would 
have adapted to persisting on the metabolic by-products, whereas the de novo assembled communities 
would not. By contrast, in the M9+glucose media, populations would be able to independently access 
glucose, relatively free from exploitative or interference competition (as the assays were carried out at 
low densities in the exponential phase of growth) leading to neutral interactions. Therefore, based on 
our theory which predicts a relatively small amplification effect when interactions are weak, for 
communities incubated in M9+glucose media, we expect comparable temperature sensitivities between 
the population- and community-level in both de novo and adapted treatments. 

Consistent with our predictions, we found that the average temperature sensitivity of respiration 
was statistically indistinguishable between the de novo and adapted communities measured in 
M9+glucose (Fig. 3b, Supplementary Table 2). Furthermore, the apparent activation energy of 
respiration at both population- and community-levels in the M9+glucose media (where interactions are 
expected to be weak) were indistinguishable (species = 1.01 eV ± 0.19, community = 1.04 eV ± 0.17), 
as predicted by Eq 3 for near-neutral interactions. In contrast, when we quantified the temperature 
response of community respiration in spent media, as predicted, we found a marked and statistically 
significant increase in the thermal sensitivity of respiration compared to that of de novo communities 
(Fig. 3c, Supplementary Table 2), with the activation energy of the adapted community in the spent 
media (1.4 eV ± 0.40) 40% higher than the average population-level activation energy. To eliminate the 
possibility that the observed amplification of community respiration was driven by changes in per-
capita, mass-specific respiration rates of the strains instead of interaction-driven biomass dynamics, we 
compared the thermal sensitivity of per capita respiration (mg O2 L-1 h-1 cell-1) and biomass 
accumulation (methods) between the de novo and adapted communities. We found that the thermal 
sensitivity of per-capita respiration was indeed statistically indistinguishable between the de novo and 
adapted communities (Fig. 4a-b, Supplementary Table 3), while that of biomass accumulation was 
significantly higher in the latter when communities were incubated in spent media (Fig. 4c-d 
Supplementary Table 4).  

 
The amplification in thermal sensitivity is driven by a shift from competition to facilitation during 
community adaptation. Next we confirmed that interactions had indeed become more facilitatory (or 
less competitive) in the adapted relative to the de novo communities through two additional 
experiments. First, we first looked at how the asymptotic biomasses of the communities and the 
individual strains (i.e., the carrying capacity, K) changed following adaptation. If interactions between 
populations had become more facilitatory, we expected to see higher biomass attained in these 
communities due to more efficient use of limiting resources. When each taxon was grown in 
monoculture on the M9+glucose media for 72 h at 20°C, we saw no statistically significant effect of 
treatment on K before and after adaptation (p=0.56, Supplementary Fig 2, Table 5). However, when the 
same test was performed with communities, K was higher in the adapted communities (Fig. 5a, M9 
+glucose media, Supplementary Table 6). To further investigate these effects, we repeated the 
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experiment, but this time incubated the communities in spent media. We found that the adapted 
communities reached higher K compared to the de novo assembled communities in the spent media (Fig 
5a, Supplementary Table 6). Furthermore, the K attained by the adapted communities in the spent media 
was even higher than they attained in the M9+glucose media. Thus, co-adaptation between strains 
increased the biomass production efficiency of the community for the given set of resources. Because 
we observed an increase in community-level performance of the adapted communities in M9+glucose 
media and spent media, it is likely that the facilitatory (or less-competitive) interactions persist in 
M9+glucose, albeit with a smaller impact on community biomass because on average, each strain’s 
population relies less on metabolic by-products in resource-rich media.  
 We then experimentally quantified the change in direction and magnitude of pairwise species 
interactions after adaptation. We grew isolates of each strain individually, and in all possible pairwise 
combinations of strains, before and after adaptation for up to 72 h (depending upon when they reached 
carrying capacity) at 20°C in M9+glucose and the spent media. We then estimated the mean of the 
pairwise interaction strengths using a measure based on the comparison of growth rates in mono- versus 
paired-cultures (Methods; Supplementary Figure 3). When grown in M9+glucose media, interactions 
predominantly shifted towards positive values following adaptation indicating a shift from competition 
to facilitation (Fig. 5b). When the same experiment was attempted in mono-culture in spent media, 
many of the isolates did not grow despite the whole communities being able to coexist under these 
conditions. This indicates that the resource environment that emerges from the metabolic by-products 
in multi-species communities is essential for the co-adapted populations to grow. The metabolic by-
products of just a single community member is insufficient to enable persistence. This point can be 
made more exact by analysing the Lotka-Volterra equations (Methods). Our experimental results 
showed that the population growth of monocultures in spent media was negative, such that growth, plus 
the effects of density dependence, were negative, i.e., "! − $!!%! < 0. The joint population growth is 
still negative in paired-cultures because the effect of positive pairwise interactions is still not enough to 
allow persistence. In contrast, the whole community’s growth is positive where all interspecies 
interactions are present, i.e., "! − $!!%! 	+ 	*$	% > 0. Taking both these constraints into account, it 
follows that the net effect of interactions must be positive in order to outweigh the negative intrinsic 
growth rates, and that $ > 0 in the assembled communities, consistent with our estimates of the pairwise 
interaction coefficients. We note that it was not possible to estimate each of the pair of (potentially 
asymmetric) interaction coefficients between any two strains in paired-culture in our experimental 
system, because this would have required us to track the relative abundance of each taxon over time. 
Importantly, our prediction that a shift towards positive species interactions amplifies the thermal 
sensitivity of community respiration pertains to the overall average of interaction strengths in the 
community, for which an estimate of the mean interaction strength between pairs of strains is sufficient.  

Finally, we tested the possibility that a change in the interaction structure to favour populations 
with higher thermal sensitivity (meaning an increase in the covariance term %,-./!.$0, 2",! +!!0 in 
Eq. 3) was responsible for the amplification of community respiration by examining the relationship 
between the population-level thermal sensitivity values and estimated interaction coefficients. We 
found no relationship between these two features (Supplementary Figure 4), either before or after 
adaptation, indicating that the covariance term contributed relatively little to the overall temperature 
sensitivity of community respiration. That is, the increase in thermal sensitivity of community 
respiration cannot be explained by an increase in the tendency for interactions to positively affect 
populations with high thermal sensitivity. 

 
DISCUSSION 
In summary, our theoretical and empirical results provide compelling evidence that a shift from 
competition to facilitation results in positive population dynamical feedbacks that ultimately amplify 
the thermal sensitivity of community-level respiration rate by increasing total biomass. This 
amplification occurs in a predictable way, and can be quantified through a general relationship between 
the magnitude and direction of average interaction strength in the community and the thermal sensitivity 
of its respiration that we have derived here.  

Our finding that changes in the direction and strength of microbial species interactions can so 
profoundly alter the temperature sensitivity of community-level respiration, has far-reaching 



7 

implications given the significant contributions that microbial communities make to ecosystem 
functioning in aquatic and terrestrial environments. Microbial communities tend to have either 
competitive or cooperative interactions across space20, or over time (during community assembly for 
example30,32 ). This implies that microbial communities can either dampen or amplify the effects of 
temperature change on carbon cycling. For example, changes in interaction structure over time due to 
longer-term assembly and turnover dynamics could mean that the same microbial community would 
switch between states that dampen (when competition dominates, at early stages of community 
assembly) and amplify (with facilitation dominates, in later states of community assembly) the 
sensitivity of ecosystem functioning to temperature change. In particular, microbe-mediated 
decomposition of organic matter, which is the main contributor to CO2 and CH4 fluxes in the carbon 
cycle, depends on facilitation among taxonomically diverse consortia of bacteria and archaea. Indeed, 
our finding that weakening of competition and strengthening of facilitation amplifies the temperature 
sensitivity of community metabolism may help to explain the relatively high thermal sensitivity seen in 
syntrophic methanogenic microbial communities33. 
 
 
METHODS 

Deriving the thermal sensitivity of ecosystem respiration. For a given ecosystem 
(henceforth, synonymous with a bacterial community), total temperature-dependent 
respiratory carbon flux, Reco(T) can be expressed as the sum of the products of species (strain-
)-level mass-specific respiration rates Ri(T)’s and biomasses Ci(T)’s (Eq (1)). We are 
interested in the thermal sensitivity of ecosystem respiration, Eeco: 

 (!"# = 3:#;	.))'*(+)1	
3+

. (4) 

Using the fact that 3:#;	.))'*(+)1	
3+

= 6
))'*(+)

3))'*(+)
3+

 and substituting Eq (1) in Eq (4), we get: 

(!"# =
<
<# 0∑$%&' !%(#)'%(#)6
∑$%&' !%(#)'%(#) =

∑$%&' =<!%(#)<# '%(#) + <'%(#)<# !%(#)>
∑$%&' !%(#)'%(#) .	

Using the general definition (= = 3:#;.=(+)1	
3+

, this simplifies to Eq 2. Equation 2 shows that 
the thermal sensitivity of ecosystem respiration is given by the average of the sensitivities of 
biomass and respiration to temperature across the community, weighted by the respiratory 
output of each species. We can further explore this by defining 1%> ≡ )!(+)-!(+)

∑$!"# )!(+)-!(+)
 

(effectively, a normalised weighting parameter) which lets us write Eeco as: 

(!"# =A
$

%&'

1%>2(-,% + (),%3	

= - 0() + (-6 + -'./21%>, (-,% + (),%3.   (5) 
 
where EC and ER are the average thermal sensitivities of biomass and respiration across all N 
species in the community (defined as ( = 6

$
∑$% (%). Expressing Eeco in this way shows that 

it depends on both, the average sensitivities across the community and the covariance 
between the weightings (i.e. the relative contribution of each species to total respiration) and 
the thermal sensitivities of individual species. Note that this partitioning of total ecosystem 
function into the contributions of the average effect across populations and the specific 
structure of their contributions and biomass (the covariance term) is the same as use in the 
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Price equation which has been previously applied to understand ecosystem function and the 
effects of species loss34. 

Next, we consider how inter-species interactions affect the thermal sensitivity of ecosystem 
respiration. Because species interactions are expected to change species’ biomasses much 
more rapidly than respiration rates (which change at much longer, macro-evolutionary 
timescales35), we focus on the effects of interactions on the biomass components of Eq 2 (the 
Ci’s and EC,i’s). To model these effects, we use the generalised Lotka-Volterra (GLV) model: 

 $
%!
  &%!&'   =  "!(6)  −  $!!  %!   +   ∑(! * + $!+  %+  	 (6) 

Here, ri(T)	is the (temperature dependent) intrinsic growth rate of the ith species, aij	the 
strength of the effect of the jth species on the ith one (positive or negative), and aii	the 
strength of (negative) intraspecific density dependence. For an arbitrary structure of species 
interactions (signs and strengths of the aij’s), it is impossible to meaningfully determine how 
interaction structure affects species’ biomasses. Therefore, next, we derive an approximate 
relationship with the aim to quantitatively predict the response of biomass in the early stages 
of community assembly as follows. 

First, we derive a mean-field approximation36,37 of the GLV model (Eq 6). We use the 
definition of the average interaction experienced by a focal species,  *%?  '% A ?   =
  6
$
  ∑$% A? *%?  '?   to write the interspecies interactions term in Eq 6 as: 

 ∑(!*+ $!+%+ = (* − 1)*BC 'B ≠ C   

Assuming the system is large (N	is large) and the difference between '?A %  and '  (i.e. the: 
exclusion of the ith species has little effect on ' ), we express the interaction term as: 
 ∑(!*+ $!+%+ = (* − 1)$% + (* − 1)%,-.$!+ , %+0	  

Assuming that the effect of any single interaction on a species’ biomass is small, we can take 
the covariance term to be negligible, yielding the mean-field approximation of the GLV (Eq 
6) model: 
 $

%!
&%!
&' ≈ "!(6) − $!!%! + (* − 1)$% (7) 

Although this approximation relies on the assumption of large community size, we show that 
our results hold qualitatively even in small communities (Supplementary Figure 5). 

Next, we need to solve this system of equations representing an ecosystem for the Ci’s, in 
order to determine the (temperature-dependent) effects of species interaction structure on 
population biomasses, Ci. We use a Taylor-series expansion around t	=	0	to get an 
approximate expression for Ci	in the early stage of community assembly in terms of average 
interaction strength a. We start by considering log-biomass as a function of time, log(Ci(t)), 
which can be approximated around t	=	0	giving: 
C.D 	2%,(;)3 	≈C.D 	2%,(0)3 	+ -

."(0)
0."(-)
0- |-=0 − -2

2."(0)2
002."(-)0-2	 |-=0 − %,(0)

02."(-)
0-2	 |-=06 (8) 

We use Eq 8 to get the second order derivatives (by taking the time derivative again). This in 
turn requires an expression for , which we obtain using the Taylor-series approximation of 
the average of a function of uncorrelated random variables xi,...,xN, 
 



9 

F(G6, … , G$) ≈ F 0G6, … , G$6 +
1
2A

$

%&6

K%8 =
L8F
LG%8

>	
 
Combined, these give an expression for the ith species’ log biomass at time t: 

C.D 2'%(8)3 	≈ *8 M
(- − 1)888''8

2 + (- − 1)8
8K-#8

2 O

+ * M
(- − 1)887	''

2 + (- − 1)8'' −
(- − 1)''*%%88''

2 −
(- − 1)*%%88''8

2

− (- − 1)*%%8
8K-#8

2 O + 

C.D ('') 	− -#(9!!
( 7(

8
− -#9!!4!(+)7(

8
− ''*%%8 + 7%(#)8  (9) 

We can take the derivative of Eq 9 with respect to temperature to get an expression for EC,i: 

(-,% = * =
($56)-#7(

8
34(+)
3+

> 08 − 7(9!!-#
8

6 34!(+)
3+

	,	

= *+ + 5%, 
(10) 

Where + = P($56)-#7
(

8
34(+)
3+

Q and 5% = 34!(+)
3+

08 − 7(9!!-#
8

6 are constants representing the 
temperature dependence of average biomass growth across the whole system and the biomass 
growth of species i	respectively. 

Finally, substituting Eqs 10 back into 5 gives an expression for the thermal sensitivity of 
respiration across the whole system (same as Eq 3): 

 
(!"# ≈ ∑$%&' 1%>2*32*+ + 5% + (),%3,	

= *+ + -'./21%>2*3, (),% + 5%3 + 0() + 56	
Supplementary Figure 6 shows that this approximation adequately captures the qualitative 

effects of interactions on thermal sensitivity of ecosystem respiration. Thus, as explained in 
the main text, the above equation predicts that Eeco	will depend only on internal factors 
affecting species’ population growth (growth rates and intra-specific interactions) when * =
0 (competitive and facilitatory interactions balance each other), and relative to this, it will be 
dampened if * < 0 (competitive interactions dominate) and amplified if * > 0	(facilitatory 
interactions dominate). 

 
Generating specific predictions. To generate specific predictions based on this theory, we 
parameterised Eq 9 with randomly generated communities of N	=	50	to obtain biomass 
estimates in the early stages of assembly (t	=	3.0), setting C(0)	=	0.01. We consider this time 
frame as it corresponds to the experimental setup. For each such synthetic community we 
multiplied these biomass estimates by mass-specific respiration R	and summed over all 
populations to get the total ecosystem respiration Reco	(Fig 1b). This process was repeated at 
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different fixed temperatures, from 5–25°C. We used a modified Boltzmann-Arrhenius 
equation to represent the temperature-dependence of growth r	and respiration R	rates, 

T(#) = T'U
5/E 6F+5

6
F++),

G	
where B0	is a normalisation constant, E	is the temperature sensitivity, k	is the Boltzmann 
constant, and T	and Tref	are the temperature and reference temperature (set to 15°C) 
respectively. For both r	and R, we sampled the B0	and E	values from normal distributions 
such that B0	∼N(1,0.1)	and E	∼N(0.6,0.1). We considered three types of community 
interaction structures—competitive, neutral and facilitatory— by setting a	=	−0.02, 0, and 
0.02	respectively. Intraspecific interactions were all set to aii	=	−10. We calculated Eeco	by 
using the same parameters in Eq 3 to generate the values in the inset plot of Fig 1b. 
 
Isolation and identification of bacterial taxa. The experiment was conducted with 8 
bacterial taxa isolated from a geothermal valley in Iceland (see Supplementary Table 7). 
These were isolated from biofilm samples collected from the surface of rocks in May 2016-
May 2017 in Hvergerdi Valley, 45 km east of Reykjavik, Iceland. Samples were immediately 
frozen upon collection with 17% glycerol and transported at -20°C for further processing in 
the laboratory. Upon return to the laboratory, samples were thawed at 20°C and prepared by 
serial dilution and plating 10 µL onto R2A agar plates (Oxoid Ltd) with sterile glass beads. 
Plates were incubated at a range of temperatures between 15-25°C for 5-10 days. The 
resulting colonies were distinguished by morphology, picked and placed into 200 µL 
Lysogeny Broth (LB) and incubated for 48 hours. To preserve the library of taxa, samples 
were then centrifuged, the supernatant was removed and the pellet was re-suspended in mix 
of LB and 17% glycerol before being frozen at -80°C. 

Isolates were assigned taxonomy using 16S Polymerase Chain Reaction (PCR) followed by 
Sanger sequencing within the 16SrRNA gene. A master-mix solution was prepared using 7.2 
µL of DNA free water, 0.4 µL 27 forward primer, 0.4 µL 1492 reverse primer and 10 µL of 
Taq polymerase per sample. To create a template solution 2 µL of sample 100x diluted in 
DNA free water was added to 18 µL of master-mix solution. Samples were then placed in a 
thermal cycler (Applied Biosystems Veriti Thermal Cycler). This procedure included 1 cycle 
at 94°C for 4 minutes, 35 cycles at 94, 48 and 72°C for 1 minute, 30s and 2 minutes, 
respectively, and finally, 1 cycle at 72°C for 8 minutes. The PCR product was cleaned up 
using Exonuclease I and Antartic Phosphatase and high-quality samples were Sanger 
sequenced using the 27F, 1492R primers (Core Genomic Facility, University of Sheffield). 
Sequences were trimmed in Genious (version 6.1.8) removing the bp from the 5’ end and 
trimming the 3’ end to a maximum length of 1000bp. Using Mothur v.1.39.538, sequences 
longer than 974bp were aligned to the Silva.Bacteria. Taxonomic identities were assigned 
using the RDP trainset 9 032012 as a reference database (Supplementary Table 7). 
Morphology was assessed visually to allow recognition of each taxon when mixed in an 
experimental community. 

Community adaptation experiment. We assembled replicated communities with the 8 
bacteria taxa. Stock cultures were first grown in LB medium at 20°C overnight to establish a 
dense, healthy culture and then standardized to a common biomass density in M9 media with 
0.2% glucose. We used this minimal growth medium because it has a single, defined, and 
easily quantifiable carbon source. A “community stock” solution was built by adding 100 µL 
of each taxon. Then, an 40 µL aliquot of the community stock solution was added to 5000 µL 
of M9 media + 0.2% glucose and incubated at 20°C in glass vials for 48 h. We used 6 
replicates and 2 blanks to check for media contamination. We transferred each community 
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every 48 h by diluting 40 µL of the community in 5000 µL of fresh media. Each transfer 
encompassed both exponential and stationary (typically reached within 24h) phases of the 
growth cycle. Preliminary experiments revealed that over 95% of the glucose was depleted 
after 24h. Consequently, the duration of each transfer encompassed both resource replete 
conditions where glucose was abundant, and periods where glucose was scarce. In the 
resource scarce periods, persistence of strains was expected to be strongly dependent on their 
ability to utilise recycled carbon in the form of metabolic by-products (cross-feeding). Each 
community was passaged 14 times (30 days, ∼100 generations) in this manner over the 
course of the experiment. Optical density (OD600) of the community was measured at every 
transfer using a Themo ScientificTM Multiskan Sky Microplate Spectrophotometer at 600 nm. 
Each community was also plated on R2A agar once a week to ensure they remained 
uncontaminated. At the end of the experiment, each community was plated and individual 
taxa isolated, identified and stored at -80°C for downstream analysis. We henceforth refer to 
these replicate communities, established from a common pool of taxa and then incubated 
across multiple generations under intermittent resource-depleted conditions, as “adapted”. For 
comparison, we assembled six replicated communities with the same 8 taxa in the same 
conditions as the adapted communities without transferring (passaging) them several times. 
We refer to these communities as “de novo”. 
 
Metabolic facilitation assay. To investigate whether metabolic facilitation emerged in each 
community we carried out an assay to quantify levels of total biomass production in 
conditions where the only available resources were metabolic by-products generated during 
its assembly (“spent media”). We hypothesised that if the development of metabolic 
facilitation were to drive species interactions to be more positive in communities where the 
constituent members had been grown together under resource limitation, then we should 
observe enhanced biomass production in the adapted compared to de novo communities, 
when both were grown in spent media. This is because metabolic facilitation should enable 
better growth on the metabolic by-products of community members. For this, the de novo and 
adapted communities were each inoculated into 5 mL of M9 media + 0.2% glucose and 
incubated at 20°C until the glucose level in the media fell below detection limit (typically, 48 
h). 

A Glucose GO Assay Kit (Sigma) was used to monitor the level of glucose in the media. 
The samples were then centrifuged at1421 g (3000 rpm), for  10 min. We refer to ‘spent 
media’ as the resulting media containing species metabolites without any other carbon source. 
The spent media was filter-sterilized and stored at 4°C. The de novo communities were then 
re-grown in the spent media extracted from their own (shorter) incubation. Each unique 
adapted community was re-grown in its own spent media. Biomass was measured every 4 
hours as optical density using a Themo ScientificTM Multiskan Sky Microplate 
Spectrophotometer at 600 nm. 

The community-level carrying capacity was quantified by fitting the logistic growth model 
to the resulting time-series using non-linear least squares regression using the R package 
nlsLoop (following Garcia et al.39). At the single-taxon level, we used an analysis of 
variance (ANOVA) to test for significant differences in carrying capacity among treatments 
(‘ancestral’ or ‘adapted’) (Supplementary Table 5). At the community level, we also used an 
ANOVA to test whether carrying capacity differed significantly between treatments 
(‘adapted’ or ‘de novo’), media sources (‘M9+glucose’ or spent media) or their interaction 
(Supplementary Table 6). 

Quantifying the temperature sensitivity of respiration. We characterized the thermal 
response curves for respiration at the taxon level for both, the ancestral and adapted strains 
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(isolated from the adapted communities). The isolates were grown overnight in LB medium 
from -80°C freezer stocks, then transferred into M9 media + 0.2% glucose and acclimated in 
incubators at 9 temperatures (15°C, 20°C, 25°C, 27.5°C, 30°C, 32.5°C, 35°C, 40°C, 45°C) 
for 24 hours. The incubation time was selected based on the time the isolates take to reach 
carrying capacity. After acclimation, biomass was estimated by measuring optical density 
using a Themo ScientificTM Multiskan Sky Microplate Spectrophotometer at 600 nm and then 
standardized at the same optical density (OD600 = 0.05). A 4 mL aliquot of each sample was 
added into 46 mL of fresh M9 media. We used 6 technical replicates of each taxon for each 
treatment (de novo & adapted) and took the average as our estimate of respiration rate. All 
measurements were made while the isolates were in the exponential phase of growth. 

At the community level, we measured the temperature sensitivity of respiration for the 
adapted and de novo assembled communities. The de novo isolates were grown in LB 
medium overnight immediately after coming out of the -80°C freezer, then transferred into 
either M9 media with 0.2% glucose or the spent media containing only metabolic by-
products. Each of the 6 adapted communities (i.e. 6 biological replicates) were transferred 
directly to fresh M9 media with 0.2% glucose or the corresponding spent media. All samples 
were acclimated in the appropriate assay media (either M9+glucose or spent media) in 
Percival incubators at 9 temperatures (15°C, 20°C, 25°C, 27.5°C, 30°C, 32.5°C, 35°C) for 24 
hours. After acclimation samples were standardized to the same biomass (OD600 = 0.05). The 
de novo communities were then assembled by adding 800 µL of each ancestral isolate into 46 
mL of the corresponding media (M9+glucose or spent media). Each de novo community was 
replicated 6 times. For the adapted communities, we added 522 µL of each replicate 
community into 6 mL of the corresponding media (M9+glucose or spent media). 

 
Respiration rate measurements. Respiration was measured as oxygen consumption using an 
array of 10 SensorDish Readers (SDR, PreSens GmbH, Regensburg, Germany). Each plate 
reader can analyse 24 samples, meaning the array of 10 allowed us to measure 240 samples 
simultaneously. The PreSens system was calibrated using a two-point calibration at each 
measurement temperature. 0% oxygen saturation was defined using a solution of 1% (w/w) 
sodium sulfite and 100% oxygen saturation used air-saturated water. In each well we placed a 
5 mL vial with the sample to be measured. The vials were slightly overfilled so that no air 
was trapped within the vials as the lids were closed. The equipment was then run in parallel at 
the 9 temperatures (see above) and measured the concentration of dissolved oxygen every 
minute for ∼4 h. The rate of respiration was derived from the slope of a linear regression of 
oxygen concentration against time (mg O2 l-1 h-1). To estimate respiration per cell, a 200 µL 
aliquot for each treatment, media and replicate was sampled after measuring the respiration 
rate to quantify bacterial abundance. Samples were fixed with paraformaldehyde and 
glutaraldehyde (P+G) 1% final concentration and kept in the -80 °C freezer. Samples were 
stained using SybrTM gold nucleic acid stain and analysed using the BD AccuriTM C6 flow 
cytometer in low flow rate. Total community respiration (mg O2 l-1 h-1) was divided by the 
total bacterial abundance (cell l-1) in order to obtain the respiration per cell. 

Biomass estimates. To estimate community biomass, a 200 µL aliquot for each temperature, 
treatment, media and replicate was sampled after community respiration rate measurements 
were completed. The samples were then analysed in a Themo ScientificTM Multiskan Sky 
Microplate Spectrophotometer standard plate reader at 600 nm to obtain the total bacterial 
biomass in OD600. A blank containing the media without any bacterial cell was also analysed 
to correct the data by subtracting the blank to the sample value. 

Model Fitting. We fitted the four parameter Sharpe-Schoolfield equation to the respiration 
rate data measured along the thermal gradient to calculate thermal sensitivity (see Padfield et 
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al.40). At taxon level, we fitted the Sharpe-Schoolfield model to the rate data using nonlinear 
mixed effects models in the nlme package in R. We modelled species as a random effect 
and treatment (ancestor or adapted) as a fixed effect on each parameter. Model selection 
started with the most complex possible model, including fixed effects on all parameters and 
then proceeded by removing treatment effects on each of the parameters. At the community 
level, we fit the Sharpe-Schoofield model separately to each media (M9+glucose and spent 
media) using nonlinear mixed effects models in the nlme R package. We modelled replicate 
as a random effect and treatment (de novo or adapted) as a fixed effect on each parameter in 
the Sharpe-Schoolfield equation. With both analyses, model selection started with the most 
complex possible model, including fixed effects on all parameters and then proceeded by 
removing treatment effects on each of the parameters. We used likelihood ratio tests for 
model comparisons (see Supplementary Tables 1-3). 

The temperature dependence of total biomass was quantified using the Arrhenius equation 
by applying a linear mixed effects model to the natural logarithm of total biomass along the 
exponential part of the thermal response (15 to 25°C). We used only the exponential part of 
the thermal response curve as total biomass did not follow a typical unimodal shape which 
precluded fitting the Sharpe-Schoolfield equation. 

 <=(*) = *4 − 25 > $67? (11) 

Where N is community biomass (ln (OD600), N0 is the rate constant, Ea is the 

activation energy, k is Boltzmann’s constant (8.62×10−5 eV K-1) and T 
is the absolute temperature in °C. 

We modelled replicate as a random effect on the intercept and treatment (de novo or 
adapted) as a fixed effect on both the intercept and the slope (Ea), estimates are given in 
Supplementary Table 4. 

Inferring species interactions. To quantify how long term co-culture altered the nature and 
strength of biotic interactions we use an approach based on the difference in experimentally 
observed growth rates when strains are grown individually versus when they are grown in 
pairs. In brief, our approach involves two stages. First, using the microcosm experiments we 
estimate growth rate for each strain individually, and in all pairwise combinations. We then 
use these to estimate the direction and magnitude of interactions based on a model of 
population growth detailed below. 

To measure growth rates for both pairs and individual strains, we grew isolates of each 
taxon before and after adaptation at 20°C in M9+glucose in monoculture, as well as in all 
possible pairwise combinations of taxa. For each incubation, we measured OD600 every hour 
until each pair reached carrying capacity. Depending on the species and treatment this 
incubation time could vary between 24 to 72 h. We then repeated the experiment using the 
spent media (see “Metabolic facilitation Assay'' above). This second set of experiments was 
focused on growing each taxon in the metabolites of the others in all pairwise combinations. 
First, we grew the five original isolates in LB medium. All taxon abundances were 
standardized at OD600 = 0.1 diluted into M9+glucose. We then inoculated 40 µL of each 
taxon’s population into 5 mL of M9 media with 0.2% glucose, in 5 mL vials. We incubated 
each vial until there was no detectable glucose remaining. The cells were separated from the 
spent media by centrifuging in 15 mL falcon tubes at 3000 rpm for 10 min and the spent 
media was filter-sterilized and stored at 4°C. We used the same protocol with the adapted 
isolates to obtain a spent media with their metabolic byproducts. Subsequent experiments 
with the ancestral or adapted isolates used the corresponding spent media. We inoculated 
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each of the five taxa in M9+glucose media and in the spent media of the five taxa in all 
pairwise combinations at 10% v/v in a 384 well plate. All taxa were standardized at OD600 = 
0.05 before being inoculated to 90 µL of M9+glucose or spent media. The plate was 
incubated in a Themo ScientificTM Multiskan Sky Microplate Spectrophotometer plate reader 
at 20 °C and OD600 was measured every hour until carrying capacity was reached. To obtain 
estimates of growth rates (r, h-1) from both experiments we fit both logistic and exponential 
growth models to the OD600 data from the first 20 hours. This time limit was chosen because 
it encompassed the growth phase (i.e. either before populations reached carrying capacity, or 
started to decline) across all strains and pairs. The growth estimate was taken from the best 
fitting model as indicated by the lowest AIC for each strain or pair and treatment 
combination. 

We used the growth rates obtained from these experiments to estimate pairwise interaction 
coefficients using a method based on the difference in growth rates when strains are grown in 
pairs or in monoculture. This method is similar to that previously used to assess the nature of 
interactions in bacterial communities29,39 (see Supplementary Materials for further discussion) 
and is derived as follows. 

First, consider the growth of a pair of strains x1	and x2	in isolation, which can be modelled 
by the growth equations: 

 &8$
&' = "$@$ and 3=(

37
= 78G8,	  

where r1,r2	are the mass-specific growth rate and x1,x2	are the biomass of each population. 
Note that we omit the intraspecific density dependence terms here as we are interested in the 
early stages of population growth within which the experimental observations were made. At 
these timescales the effects of density dependence will be of order O(C2), and thus smaller 
than the effects of actual growth rates, allowing them to be left out of the growth equation. In 
practice, any deviations from the true maximal growth rate caused by density dependence in 
the experiments will be captured in the effective growth rate we measure. 

When both strains are grown together the additional interaction terms a12	and a21	need to be 
introduced to capture the effect of interactions between the two species: 
 &8$

&' = "$@$ + $9$@$@9 and 3=(
37
= 76G8 + *68G6G8.	  

Next, we write the equations for the growth the total biomass of the pair xtot	as: 
 &8%&%

&' = &8$
&' +

&8'
&' = "$@$ + "9@9 + ($$9 + $9$)@$@9	 (12)	

which we can also approximate in the early stages of the pair’s assembly using a single 
effective growth rate which incorporates the effects of both intrinsic population growth and 
interactions from Eq 12. This is done in terms of the total biomass of the pair xtot	which the 
only quantity observable in the experimental data: 
 &8%&%

&' ≈ "':'@':'.	 (13) 

Combining Eqs 12 and 13 thus gives: 

77#7G7#7 = 76G6 + 78G8 + (*68 + *86)G6G8	
allowing us to solve for the total interaction strength: 
 $':' = $$9 + $9$ = ;%&%8%&%<;$8$<;'8'

8$8'
.	 (14) 

Equation 14 defines a line of solutions on which the values of a12	and a21	can lie. 
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Taking into account that at the beginning of the experiment each strain is at equal 
abundance i.e.G6 = G8 = 6

8
G7#7 and G6G8 = 6

H
G7#78 , we can write the total interaction strength 

as: 
 $':' = $$9 + $9$ = 9;%&%<(;$>;')

$
'8%&%

.	 (15) 

Equation 15 shows how the total interaction strength is given by the deviation of the total 
paired growth from the null-case with no interactions (given by the sum of the individual 
strain growth rates in monoculture). If the pair grows at a lower rate than expected from their 
growth in monoculture then we infer that the interaction between them is competitive and 
vice versa. Note that the use of the biomasses at t	=	0	here is not to say that biomasses of 
strains are constant over time but rather that the relative contributions of the growth rates of 
the individual strains to the null, non-interacting case is equal. In this way the biomasses are 
only used to correctly weigh the individual monoculture growth rates in the null model. The 
change in biomass over time is captured in the growth rate terms and we do not assume that 
the biomasses are constant. 

In order to derive an estimate of the individual pairwise interaction coefficients we next 
consider the case where interactions are symmetric a12	=	a21	=	α	letting us write: 

 A = 9;%&%<(;$>;')
8%&%

.	  

Note that this assumption is the same as considering the average interaction strength of the pair: 
* = 9-(09(-

8
= 8I

8
= V. Therefore, as such, the symmetry of interaction coefficients does not 

affect our inference of the overall average interaction strength across the community. In order 
to calculate asymmetric interactions, one would require data on the relative abundances of 
strains when grown together, over time. 

As the total abundance is held constant across all the experiments, the xtot	term in the 
denominator acts as a single scaling term across all interaction estimates and can thus be 
dropped giving the final expression: 

 A = 2"':' − ("$ + "9).	 (16) 

To apply Eq 16 to our data, we use a bootstrapping procedure to account for variation in 
growth rate estimates amongst replicates. Specifically, taking the data from the growth curve 
experiments, we sample each of the parameters from Eq 16 with replacement across the 
replicates 10,000 times and calculate α	for each taxon pair. This gives a distribution of 
estimates of α	for each pair as shown in Fig 5. 

Data and Code Availability. All data and code to reproduce our results are at 
https://doi.org/10.5281/zenodo.7105128 
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Fig 1. Species interactions affect the temperature sensitivity of microbial community respiration. 
a) Temperature can act on community-level respiration either by affecting individual metabolism 
directly (increasing respiration), or the amount of biomass, which is determined by the effects of 
temperature on growth rates and interactions between species. b) Prediction of the relationship between 
temperature and community respiration under different interaction structures. Respiration becomes 
more sensitive to temperature change as interactions become more positive. Main plot shows 
community respiration, log (Reco) normalised to a common Tref (15°C) at three levels of interaction 
strength across the community. Note that the curves are nonlinear in log scale because the thermal 
sensitivity of community respiration (the slope of log (Reco) versus temperature) is itself temperature-
dependent (Eq 2) due to the nonlinear change in biomass dynamics with temperature as explained in 
the main text. Inset plot shows the resultant effective thermal sensitivity Eeco measured at Tref. See 
Methods for parameter values used to generate these specific theoretical predictions. 
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Fig 2. Experimental design. First, an artificial community was created using 8 bacterial strains and 
replicated 6 times. Communities were transferred every 48 h for 100 generations. The 5 bacterial strains 
coexisting after the community adaptation experiment were isolated. The 5 strains and their 
corresponding ancestral were incubated in M9+glucose until glucose was depleted and their byproducts 
preserved in sterile conditions. Ancestral and adapted taxa were incubated in M9 + glucose and the 
corresponding byproducts for the metabolic facilitation assay (see Methods). The ancestral and adapted 
individual taxa and communities were incubated in M9+glucose and the corresponding byproducts at 
multiple temperatures to quantify the temperature sensitivity at taxon and community levels (see 
methods). Finally, ancestral and adapted individual taxa and all pairwise combinations of them were 
incubated in M9 + glucose and byproducts for species interactions assessment. Created with 
BioRender.com 

 
 
 
Fig 3. Microbial facilitation amplifies the temperature sensitivity of community respiration     
Temperature dependence of respiration at the population level in M9+glucose media (a), and 
community level in: (b) M9+glucose and (c) spent media. Colours denote whether populations or 
communities are from the adapted (n= 6 biological replicates) (red) or de novo (n = 6 technical 
replicates) community isolates (black). Inset plots show the distribution of thermal sensitivities (E, 
activation energy) for each treatment where box plots depict the median (centre line) and the first and 
third quartiles (lower and upper bounds). Whiskers extend to 1.5 times the inter-quartile range (the 
distance between the first and third quartiles). The solid lines represent the average temperature 
sensitivity estimated by fitting the Sharpe-Schoolfield equation using non-linear mixed effects models 
(see Methods). 
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Fig 4. Temperature dependence of respiration per cell and community biomass. Upper panels show 
respiration per capita (ln respiration rate (mg O2 cell-1 h-1)) at different assay temperatures (15, 20, 25, 
27.5, 30, 32.5 and 35 °C) for de novo assembled (black) and adapted (red) communities in M9 + glucose 
media (panel a) and ‘spent media’ (SM) (panel b). Details about model fitting and parameters estimation 
are given in Supplementary Table 3. Lower panels show community biomass (ln (OD600)) at different 
assay temperatures (15, 20, 25, 27.5, 30, 32.5 and 35 °C) for the de novo assembled (black) and adapted 
(red) communities in M9 + glucose media (panel c) and ‘spent media’ (SM) (panel d). Bright coloured 
points represent the exponential part of the temperature dependence and transparent points represent 
the biomass estimates beyond the maximum which were not included in the estimate of the temperature 
sensitivity. Details about model fitting and parameter estimation are given in Supplementary Table 4. 
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Fig 5. Emergence of facilitation in assembled synthetic microbial communities. Fig 3. Facilitation 
in experimental microbial communities.  
(a) Carrying capacity of the adapted (n = 6 biological replicates for each media treatment) and de novo 
(n= 6 technical replicates for each media treatment) assembled communities grown in either 
M9+glucose or spent media for 72 h at 20°C (Supplementary Table 6). Box plots depict the median 
(centre line) and the first and third quartiles (lower and upper bounds). Whiskers extend to 1.5 times 
the inter-quartile range (the distance between the first and third quartiles).  (b) Change in interaction 
strength between pairwise combinations of strains from the de novo to adapted communities in the 
M9+glucose. Each row shows the average and 95% bootstrapped confidence intervals of the estimated 
change in interactions for each pair. Negative values indicate interactions have become more 
competitive while positive values indicate that interactions have become more facilitatory. The 
interactions become predominantly more facilitatory (70% of the cases), with $ changing from -0.07 in 
the de novo to 0.065 in the adapted communities.  
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SUPPLEMENTARYMATERIALS
Potential effects of higher-order interactions. The GLV equations (Eq 6) are in fact an “effective”
system obtained by approximating the dynamics of the more complex underlying consumer-resource sys-
tem, which allows the interactions between populations through resource dynamics to be represented by
direct, pairwise coefficients41,42. These interaction coefficients thus embody the combined effects arising
through resource uptake and cross-feeding on metabolic by-products. Letten & Stouffer 30 have shown
that in cases where resource dynamics are not captured by the GLV approximation, its accuracy can be im-
proved by including higher-order interaction (HOI) terms directly into the GLV equations. In general, we
expect the effects of HOIs to alter, but not qualitatively reverse community-level amplification or damp-
ening. This is because HOI’s are of order O(C3), and thus much weaker than the pairwise interactions
(which are O(C2)) when biomass is relatively low at the early stages of community growth we consider
here. Specific structures of HOI’s would be needed to override the qualitative (net positive, leading to
amplification, or net negative, leading to dampening) effects of pairwise interactions on community-level
respiration. For example, if pairwise interactions are on average facilitatory (increasing biomass growth
across the community) the sum of all HOIs would need to sum to a negative value to override the effects
of the pairwise interactions. Nevertheless, future work focusing on HOI’s will likely yield a more nuanced
and accurate understanding of the effects of species interactions on microbial community functioning and
the dampening or amplification phenomenon.

Effects of indirect interactions. The interaction coefficients in the GLV model (Eq 6) represent direct
pairwise effects. Indirect effects (competition or facilitatory) between a pair of species can emerge in such
communities, through interaction chains. The simplest example involves three species (say, 1, 2, and 3),
where a species 1 affects 3 through 2 while the direct interaction coefficient between 1 and 3 is zero. In
the case of facilitatory interactions, this could arise, for example, from species 1 producing a metabolic
by-product that 2 utilises, and 2 in turn produces a by-product that 3 utilises. In the case of competitive, in-
teractions, a particularly important type of indirect interaction structure is intransitive competition, where
strictly hierarchical rock-paper-scissors type orderings of pairwise competition coefficients can stabilise
three or more species’ biomass dynamics 30,32. In cases where communities are dominated by indirect in-
teractions, we expect our results about dampening (if ā < 0, when competitive interactions dominate) or
amplification (if ā > 0, when facilitatory interactions dominate) of community-level respiration to remain
qualitatively unchanged, because the net feedback between biomass and growth rates will still be nega-
tive or positive, respectively. For example, intransitive competition enhances coexistence by reducing the
abundance of dominant competitors, which is still overall a negative feedback (which would cause damp-
ening of biomass growth). To demonstrate this explicitly, we numerically simulated communities with
varying levels of intransitive positive as well as negative interactions. To this end, we randomly generated
communities (setting N = 5) with different strengths of intransitive interactions and average interaction
strength across the community. We then both directly simulated these communities over time using the
GLV model (Eq 6) and generated predictions of thermal sensitivity from our theory (Main text Eq 3).
Specifically, for each such community, we first generated a 5 × 5 random interaction matrix by drawing
from a uniform random distribution with mean ā and range 1. We then set the strength of the intransitive
interaction loop (i.e. a12, a23, . . . , a51). We then add a correction factor to all non-intransitive interactions
to maintain the desired average interaction strength. This factor was determined by the deviation of total
interaction strength from the desired value divided by the number of non-intransitive interactions in the
community. The results (Supplementary Figure 1) show that varying the level of intransitive interactions
does not affect the qualitative effect of altering the average interaction strength across the community or
the predicted thermal or simulated thermal sensitivity values. To illustrate the qualitative robustness of
our results, here we modeled communities that were either strongly competitive or facilitatory (bottom
black vs top red lines in Supplementary Figure 1), spanning a range of intransitivity (the x-axis of the
figure). In regimes where highly intransitive interaction structures are combined with weak overall (av-
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erage) competition, which have been shown to yield a positive diversity-function relationship 32, would
be expected to yield weak amplification of respiration at the community level, or switching between am-
plification and dampening if the weakly-competitive community structure changes during assembly and
subsequent turnover.

Relation to other methods Though the derivation of the method we use to infer interactions here is new
it has similarities with previously used methods in terms of the overall approach and types and amounts
of data used. In this section we highlight similar methods of interaction inference use previously.

The most similar approach is the relative productivity method 33, 43 which is based on the productivity
(measured as either biomass accumulation or respiratory rate) of whole communities when compared to
the sum of their productivity in monoculture. This is based on the idea that if interactions are neutral
then the total community productivity should simply be the sum of the individual strain productivity in
monoculture. If they are competitive then productivity will be reduced relative to the neutral case and
vice versa. The difference between this metric and ours is that we consider the change in growth at the
pairwise level (allowing us to get individual estimates of each pairwise interaction) whereas the relative
productivity method measures interactions across the whole community. In this way our metric can be
thought of the pairwise version of this measure.

Our approach based on the change in growth rates in monoculture and in pairs is also similar to the
relative-yield method44. This method compares the total biomass (i.e. carrying capacity) reached by
species pairs when grown together verses in isolation. As with the relative productivity method the nature
of the interaction is inferred by comparing the yield to the non-interacting case where final paired biomass
is simply the sum of the individual carrying capacities.
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Supplementary Figures and Tables

Figure 1: The inclusion of intransitive interaction loops does not affect the predicted thermal sensitivity
or the qualitative effect of altering average interaction strength. Lines show the simulated (solid) and
approximated (dashed) thermal sensitivity values over differing levels of intransitive interaction strength
and average interaction strength (red and black). These simulation results were obtained by numerically
integrating the Lotka-Volterra dynamics generated with the same parameters as Fig 1b (see Methods) but
with interspecific interactions drawn from a normal distribution such that aij ∼ N (µa, 1/N) where µa is
0.02, 0.0 or−0.02 for the facilitatory, neutral and competitive cases respectively (same as the values used
to calculate the predicted E values based on the analytical approximation presented in the main text). E
values were then obtained by taking the slope of a linear model of log(Reco) vs

(
1
kT − 1

KTref

)
fitted to

the simulation data. Shaded areas represent 5-95 percentile bounds calculated across replicates.
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Figure 2: Carrying capacities for single bacterial strains (5 strains, n = 6 technical replicates or each strain)
before and after co-adaptation (treatment). Box plots depict the median (centre line) and the first and third
quartiles (lower and upper bounds). Whiskers extend to 1.5 times the inter-quartile range (the distance
between the first and third quartiles).No significant difference was found between carrying capacities of
ancestral and adapted strains (see Table 5 for details of one-sided ANOVA test).
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Figure 3: Pairwise Interaction estimates in the microbial communities Each panel shows the estimates
of interaction strengths between pairs of strains from de novo (black) versus adapted (red) communities.
Each point is a single bootstrapped estimate with the mean across all estimates shown by a grey dot. Most
(7/10) of the pairs show a shift towards significantly more positive interaction coefficients following
longer-term assembly (see Fig 3b). See methods for details on interaction estimation.
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Figure 4: There is no clear relationship between the interaction estimates and population level thermal
sensitivity of respiration either before or after assembly. This indicates that the increase in the thermal
sensitivity of community respiration cannot be explained by an increase in the tendency for interactions
to positively affect populations with high thermal sensitivity.
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Figure 5: The analytical approximation of thermal sensitivity Eeco gives the same qualitative result as
numerical simulations using the generalised Lotka-Volterra over varying system sizes. Lines show the
simulated (solid) and approximated (dashed) Eeco values relative to the neutral interaction case (ā = 0)
for facilitatory (red) and competitive (black) interactions. a) The approximate and simulated Eeco values
show the same sign of change, with both lines remaining on the same side of the horizontal line at y = 0
across differing system sizes. The Increase in amplification with increasing system size arises due to
increase in total interaction strength experienced by each population as system size increases. Simulations
were carried out with the same methods as in Supplementary Figure 1
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Figure 6: Comparison of the ecosystem thermal sensitivityEeco obtained from mean-field approximation
of the the generalised Lotka-Volterra model to that obtained from numerical simulation of the model. a)
The thermal sensitivity obtained from numerical simulations (blue) follow the same qualitative pattern as
those from the analytical approximation (red), increasing in magnitude as interactions move from being
competitive to neutral to facilitatory (moving across panels, from left to right. b) The pattern is made
clearer when thermal sensitivity relative to neutral interactions for both the facilitatory (ā > 0, red) and
competitive (ā < 0, black) cases are plotted over time. In both interaction scenarios, the simulated (solid)
and approximated (dashed lines) exhibit the same sign of change inEeco, with both lines remaining on the
same side of the horizontal line at y = 0. The simulation results were obtained by numerically integrat-
ing 100 replicate communities with Lotka-Volterra dynamics (Eq 6) generated with the same parameters
as Fig 1b (see methods) but with interspecific interactions drawn from a normal distribution such that
aij ∼ N (µa, 1/N) where µa is 0.02, 0.0 or −0.02 for the facilitatory, neutral and competitive cases
respectively (same as the values used to calculate theE values based on the analytical approximation pre-
sented in the main text). E values were then obtained by taking the slope of a a linear model of log(Reco)

vs
(

1
kT − 1

KTref

)
fit to simulation data. Shaded areas in all panels represent 5-95 percentile bounds

calculated from the 100 replicates.
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Model name Remove treatment effect on d.f. AIC BIC Loglik Test L.ratio p-value
Nlme.full Full model 13 538.83 589.95 -256.41
Resl.mix1 ln(r(Tc) 12 537.37 584.55 -256.68 1 vs 2 0.54 0.46
Resl.mix2 ln(r(Tc)+Ea 11 535.66 578.91 -256.83 2 vs 3 0.29 0.59
Resl.mix3 ln(r(Tc)+Ea+Eh 10 533.66 572.99 -256.83 3 vs 4 0.01 0.94

Resl.mix4 All 9 533.06 568.45 -257.53 4 vs 5 1.39 0.24
Parameters ln(r(Tc)) Ea Eh Th Topt

Species -0.35 0.82 10.10 305.64 30.56

Table 1: Model selection and parameters of thermal response curves for respiration at the strain level us-
ing non-linear mixed effect models. The Sharpe-Schoolfield model was fitted to the respiration rate data
quantified over a temperature gradient from 15 ◦C to 35 ◦C for all the ancestral and adapted community
strains. Models included random effects on each of the parameters by replicate and treatment (ancestral or
adapted) as a fixed factor on each parameter. Models were compared via likelihood ratio test using an anal-
ysis of variance (ANOVA) where only parameters deemed significant at p < 0.05 were retained in the best
fitting model (highlighted in bold). The minimum adequate model concludes that there was no difference
in the thermal response curves for respiration between the ancestral and adapted strains. The parameter,
ln(r(Tc)) is the rate of respiration normalized to an arbitrary reference temperature, Tc = 18◦C, where no
low or high temperature inactivation is experienced. Ea is the activation energy (in eV) that characterises
the steepness of the slope leading to a thermal optimum. Eh characterizes temperature-induced inactiva-
tion of growth above Th, the temperature where half the enzymes are rendered non functional and Topt is
the optimal temperature at which the maximum respiration rate is reached.
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Community in M9 media
Model name Remove treatment effect on d.f. AIC BIC Loglik Test L.ratio p-value
Nlme.full Full model 10 14.71 38.78 2.64

Resl.mix1 Ea 9 12.76 34.42 2.62 1 vs 2 0.04 0.84
Resl.mix2 Ea+Th 8 25.23 44.48 -4.61 2 vs 3 14.47 <0.001
Resl.mix3 ln(r(Tc)+Ea 8 31.58 50.83 -7.79 2 vs 4 20.82 <0.001
Parameters ln(r(Tc)) Ea Eh Th

De-novo -0.34 1.04 3.71 306.8
Adapted 0.15 1.04 2.20 303.41

Community in spent media
Model name Remove treatment effect on d.f. AIC BIC Loglik Test L.ratio p-value
Nlme.full Full model 10 20.46 44.53 -0.23
Resl.mix1 Eh 9 18.53 40.19 -0.26 1 vs 2 0.07 0.80

Resl.mix2 ln(r(Tc)+Eh 8 16.90 36.15 -0.45 2 vs 3 0.37 0.54
Resl.mix3 ln(r(Tc)+Ea+Eh 7 28.77 45.62 -7.39 3 vs 4 13.87 <0.001
Resl.mix4 ln(r(Tc)+Eh+Th 7 37.73 54.57 -11.86 3 vs 5 22.83 <0.001
Parameters ln(r(Tc)) Ea Eh Th

De-novo 0.46 0.63 2.43 308.79
Adapted 0.46 1.40 2.43 299.31

Table 2: Model selection and parameters of thermal response curves for respiration at community level
using non-linear mixed effect models. The Sharpe-Schoolfield model was fitted to the respiration rate
data quantified over a temperature gradient from 15 ◦C to 35 ◦C for all de novo and adapted communities
in two different media, M9+glucose and ‘spent media’. Models included random effects on each of the
parameters by replicate and treatment (de novo or adapted) as a fixed factor on each parameter. Models
were compared via likelihood ratio test using an analysis of variance (ANOVA) where only parameters
deemed significant at p < 0.05 were retained in the best fitting model (highlighted in bold). The minimum
adequate model concludes that there was no difference in the activation energy (Ea) between the de novo
and adapted community in M9+glucose media while in the ‘spent media’ we found differences in the
Ea between treatments. The parameter, ln(r(Tc)) is the rate of respiration normalized to an arbitrary
reference temperature, Tc=18 ◦C, where no low or high temperature inactivation is experienced. Ea is
the activation energy (in eV) that characterises the steepness of the slope leading to a thermal optimum.
Eh characterizes temperature-induced inactivation of growth above Th, the temperature where half the
enzymes are rendered non functional.
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Community in M9 media
Model name Remove treatment effect on d.f. AIC BIC Loglik Test L.ratio p-value
Nlme.full Full model 10 43.95 68.01 -11.97
Resl.mix1 Ea+Th 9 41.50 63.16 -11.75 1 vs 2 0.45 0.50

Resl.mix2 Ea 8 40.07 59.32 -12.04 2 vs 3 0.57 0.45
Resl.mix3 ln(r(Tc)+Ea+Th 7 42.68 59.53 -14.34 3 vs 4 4.61 0.03
Parameters ln(r(Tc)) Ea Eh Th

De-novo -23.55 0.60 4.17 307.40
Adapted -22.96 0.60 1.40 307.40

Community in spent media
Model name Remove treatment effect on d.f. AIC BIC Loglik Test L.ratio p-value
Nlme.full Full model 10 157.62 181.69 -68.81
Resl.mix1 Th 9 155.62 177.28 -68.81 1 vs 2 0.00 0.98
Resl.mix2 Eh+Th 8 154.09 173.32 -69.04 2 vs 3 0.45 0.50
Resl.mix3 ln(r(Tc)+Eh+Th 7 152.17 169.02 -69.09 3 vs 4 0.10 0.75

Resl.mix4 ln(r(Tc)+Ea+Eh+Th 6 150.97 165.41 -69.49 4 vs 5 0.80 0.37
Parameters ln(r(Tc)) Ea Eh Th

De-novo -22.71 0.47 2.30 306.53
Adapted -22.71 0.47 2.30 306.53

Table 3: Model selection and parameters of thermal response curves for respiration per cell at community
level using non-linear mixed effect models. The Sharpe-Schoofield model was fitted to the respiration
rate data quantified over a temperature gradient from 15ºC to 35ºC for all de novo assembled and adapted
communities in two different media, M9+glucose and ‘spent media’. Models included random effects on
each of the parameters by replicate and treatment (de novo or adapted) as a fixed factor on each parameter.
Models were compared via likelihood ratio test using an analysis of variance (ANOVA) where only pa-
rameters deemed significant at p < 0.05 were retained in the best fitting model (highlighted in bold). The
minimum adequate model concludes that there was no difference in the activation energy (Ea) between
the de novo and adapted community in both M9+glucose media and the ‘spent media’. The parameter,
ln(r(Tc)) is the rate of respiration normalized to an arbitrary reference temperature, Tc=18 ◦C, where
no low or high temperature inactivation is experienced. Ea is the activation energy (in eV) that charac-
terises the steepness of the slope leading to a thermal optimum. Eh characterizes temperature-induced
inactivation of growth above Th, the temperature where half the enzymes are rendered non functional.
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Community in M9 media
Model d.f. AIC Loglik Chisq p-value

Random effects structure
Random = ∼1/Id

Fixed effects structure
1.ln OD ∼ InvT +1 4 31.88 -11.94 - -

2.ln OD ∼ InvT +Treatment 5 25.12 -7.56 8.76 <0.01
3.ln OD ∼ InvT *Treatment 6 26.81 -7.40 0.31 0.58
Community in spent media

Model d.f. AIC Loglik Chisq p-value
Random effects structure

Random = ∼1/Id
Fixed effects structure
1.ln OD ∼ InvT +1 44 38.86 -15.43 - -

2.ln OD ∼ InvT +Treatment 5 40.85 -15.43 0.005 0.94
3.ln OD ∼ InvT *Treatment 6 30.52 -9.26 12.33 <0.001

Table 4: Model selection and parameters of thermal response curves for total biomass using linear mixed
effect models. The Arrhenius equation (Eq 11) was fitted to the biomass data quantified over a temper-
ature gradient from 15 ◦C to 25 ◦C for all de novo assembled and adapted communities in two different
media, M9+glucose and ‘spent media’. Models included a random effect on the intercept by replicate and
treatment (de novo or adapted as a fixed factor on both the slope and intercept. Models were compared
via likelihood ratio test using an analysis of variance (ANOVA) where only parameters deemed signif-
icant at p < 0.05 were retained in the best fitting model (highlighted in bold). The minimum adequate
model concludes that there was no difference in the activation energy (Ea) between the de novo and sta-
bilised community in the M9+glucose media. However in the ‘spent media’ the activation energy for
total biomass was significantly higher for the stabilised communities compared to the de novo assembled
communities. Ea is the activation energy (in eV) that characterises the steepness of the slope leading to a
thermal optimum.
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Strain level d.f. SumSqs MeanSqs F p
Treatment 1 0.004 0.004 0.33 0.57
Residuals 58 0.66 0.01 - -

Table 5: One-sided analysis of variance (ANOVA) comparing capacities before and after adaptation (treat-
ment) at the strain level (n = 6 technical replicates for each strain and treatment). Analyses reveals no
significant effect of adaptation on the carrying capacity at the strain level.
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Model d.f. SumSqs MeanSqs F p
Community Level
Analysis of Variance
K ∼ Treatment * Media

Response: K
Treatment 1 0.007 0.007 9.88 0.005
Media 1 0.004 0.004 6.83 0.02

Treatment:Media 1 0.001 0.001 1.45 0.24
Residuals 20 0.01 0.001

Table 6: Two-sided analysis of variance (ANOVA) comparing carrying capacities of five taxa before and
after adaptation (treatment) at the community level in M9 +glucose and ‘spent media’ (media) . Analyses
reveals a significant effect of adaptation and media on the carrying capacity at the community level and
no interaction effect because treatment effect is the same in each media.
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