1	Influence of nonmetallic elements doping on the NH3-SCR activity and
2	properties of $Ce_{20}W_{10}Ti_{100}O_z$ catalyst via melamine modification
3	Zhibo Xiong ¹ , Jiaxing Liu ¹ , Fucheng Guo ¹ , Yanping Du ² , Fei Zhou ^{1,3} , Qiguo Yang ¹ *, Wei Lu ¹ , Huancong Shi ^{4,5} **
4	1. School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China
5 6	 Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Penryn, Cornwall TR109FE, UK
7	3. Jiangsu Guoxin Jingjiang Power Generation Co., Ltd., Jingjiang, 214500, China
8	4. Huzhou Institute of Zhejiang University, Huzhou, Zhejiang Province, 313000, China
9	5. Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
10	Abstract: In this study, the melamine (Mel) modification method was adopted to optimize the
11	NH ₃ -SCR activity of $Ce_{20}W_{10}Ti_{100}O_z$ doped with C or/and N elements. It was found that with the
12	improved doping of C or/and N into the lattice of anatase TiO_2 of $Ce_{20}W_{10}Ti_{100}O_z$, the dispersion
13	of tungsten/cerium species and the conversion of partial Ce ⁴⁺ to Ce ³⁺ on its surface were significant
14	enhanced, resulting in a large improvement of its surface chemical adsorbed $oxygen(O_{\alpha})$
15	concentration. Interestingly, the enhancement of Mel/Ti(SO ₄) ₂ mass ratio slightly decreases the
16	surface N/O _{α} concentrations, but further improves the surface Ti concentration and Ce ³⁺ /(Ce ³⁺ +Ce ⁴⁺)
17	molar ratio. Furthermore, Mel modification increases the surface/sub-surface oxygen relative
18	concentrations of $Ce_{20}W_{10}Ti_{100}O_z$, although decreases its low-temperature reducibility and acidity.
19	Due to the larger N doped amount, Ce ₂₀ W ₁₀ Ti ₁₀₀ O _z -Mel _t :Ti=1:2 shows a higher surface acidity and
20	$O_{\alpha}/(O_{\alpha}+O_{\beta})$ molar ratio than $Ce_{20}W_{10}Ti_{100}O_{z}$ -Mel _t :Ti=4:2, which might be responsible for its
∠ı 22	* Corresponding author: Qiguo Yang, Tel.: +86 21 55272320

23 ** Corresponding author. Huancong Shi, Email addresses: yangqg@usst.edu.cn (Q. Yang), hcshi@usst.edu.cn (H. Shi).

24 improved catalytic performance due to the melamine (Mel) modification.

25 Keywords: NH₃-SCR, Nonmetallic elements doping, Melamine modification, Surface
26 composition

27 1. Introduction

28 In recent years, accompanying the rapid process of industrialization and civilization, the 29 emission of nitrogen oxides (NO_x) from fossil fuel and automobile inevitably causes 30 environmental issues, such as photochemical smog, acid rain, ozone depletion and greenhouse 31 effect [1,2]. Nowadays, selective catalytic reduction of NO_x with NH₃ (NH₃-SCR) is an efficient 32 method to control NO_x with V_2O_5 -WO₃(MoO₃)/TiO₂ as the commercial catalyst due to its high 33 efficiency and excellent hydrothermal stability [3-5]. Meanwhile, there exists some unavoidable 34 problems which restrict the practical applications of the commercial catalyst, including the narrow 35 temperature range of 300~400 °C, the high conversion of SO₂ to SO₃ and the poison of vanadium 36 pentoxide to human health and environment [6,7]. Accordingly, it is desirable to develop novel 37 NH₃-SCR catalyst to substitute the conventional V_2O_5 -WO₃(MoO₃)/TiO₂ catalyst [2,8,9].

38 At present, various types of metal oxide catalysts, using copper, titanium, iron, manganese, 39 nickel and cerium as the basic active components, have been studied and developed in photocatalysis [10-15], electrocatalytic [16-18], NO_x reduction [19,20] and other fields [21,22] 40 41 due to the good crystal structure and magnetic structure characteristics [23-26]. Hassan et al. 42 prepared a series of Se-doped NiFe2O4 and found that the introduction of Se led better 43 conductivity of NiFe₂O₄ and makes it easier for electrons to transfer from the electrode to the 44 catalyst surface. In addition, the addition of selenium provided more surface area and active sites 45 to the decomposition of water [18]. Anantharaman et al had reported that the perovskite phase

46 Cerium Titanium Ferrites (CeTi_{1-x}Fe_xO_{3-δ}) nanocatalyst had smaller grain size, more oxygen vacancies and higher magnetic saturation, thus presented the prosperous photocatalytic 47 48 performance [27]. Xu et al. confirmed that the introduction of an appropriate amount of TiO₂ could effectively improve the NH₃-SCR performance of WO₃/CeZrTi_xO₂ series catalysts. In 49 50 addition, the addition of TiO₂ promoted the adsorption and activation of NH₃ and increased the 51 reactivity of adsorbed nitrate species with NH₃ species, which significantly affected the NH₃-SCR 52 performance [28]. Therefore, nano metal oxide catalysts with metal elements as the main active 53 components have attracted wide attention.

54 Among them, cerium oxide (CeO₂) has received much attention in NH₃-SCR reaction due to its remarkable oxygen storage capacity, high Ce³⁺/Ce⁴⁺ conversion and outstanding reducibility 55 56 property [29-31]. Meanwhile, owing to the unselective oxidation of NH₃ at high temperatures and the lack of acid sites, single CeO2 presents a low activity in NH3-SCR reaction. The combination 57 58 of different compounds could generate new composite materials with excellent electronic and 59 structural properties, and the addition of other metal elements help to enhance the acidity or/and 60 the oxygen vacancy of cerium oxide, significantly improves the electronic properties of the 61 obtained composites [32-34], thereby increases its NH₃-SCR activity, for instance W [35], Fe [36], 62 Cu [37], Ni [38]. When titanium is doped into other metals, it can occupy the non-equivalent 63 crystal position and affect the crystal structure parameters, thus make the resistivity and the temperature of transition to the activated conductivity [25,39]. Besides, owing to the nontoxicity, 64 65 chemical inertness, stability and effectiveness, TiO₂ is commonly used as the carrier of cerium-based catalyst in the NH₃-SCR reaction. Therefore, CeO₂/TiO₂ has received great attention 66 67 in the field of NH₃-SCR reaction. It had been proven that CeO₂/TiO₂ exhibited excellent

68	medium-temperature NH3-SCR activity. Meanwhile, this catalyst showed poor anti-poisoning
69	under the high-concentration of SO_2 [40,41]. Thus, other additives were also introduced to further
70	enhance the NH ₃ -SCR activity and anti-SO ₂ poisoning of CeO ₂ /TiO ₂ via the synergistic effect of
71	components [42], for example, Cu [43], Mo [44], Mn [45] or W [46] et al. The W-based
72	composites exhibit excellent electrical, mechanical and thermal properties and the introduction of
73	WO3 could enhance the concentrations of the active oxygen species and acid sites through the
74	synergistic effect of cerium and titanium components, thereby significantly improved the NH ₃ -SCR
75	activity of cerium-titanium mixed oxide catalyst [47-49]. Park et al. found that the tungsten-doped
76	CeTiO _x catalyst could achieve 100% NO _x conversion at 250~400 °C due to the enhancement of
77	tungsten-doping on its oxygen vacancy and reduction properties [50]. Thus,
78	cerium-tungsten-titanium mixed oxide is a suitable replacement for the conventional
79	V ₂ O ₅ -WO ₃ (MoO ₃)/TiO ₂ catalyst owing to the excellent NH ₃ -SCR activity.
80	The previous studies had pointed out that the preparation methods affected the morphologies
81	crystal structures, mechanical and optical properties of the composite metal oxides, thus had a
82	greater impact on the physical and chemical properties of catalysts [51-53]. It has been reported that
83	when Ni-Fe thin films were deposited on silicon substrates by electrodeposition, the average crystal
84	size of the growth was less than the critical value (10 nm), which could provide less roughness,
85	defects and greater thickness of the film uniformity [54]. The synthesized TiO ₂ via the improved
86	hydrothermal homogeneous precipitation method contributed to increasing the reduction of NO _x to
87	94.12%, and the hydrothermal treatment significantly improved the specific surface area, particle

88 size and uniformity of TiO₂ samples [55]. Furthermore, our previous research also confirmed that

89 $Ce_{20}W_{10}Ti_{100}O_z$ synthesized via one-pot hydrothermal co-precipitation presented a better NH₃-SCR

90 activity [56].

91 Interestingly, the doping of nonmetallic elements has also been confirmed to improve the 92 activity of metal oxide-based catalysts by inducing the surface structural defects/oxygen vacancies 93 and changing the electronic properties [57-60]. Zeng et al. found that the doping of phosphorus 94 inhibited the agglomeration of TiO₂ and promoted the dispersion of CeO₂ on the surface of 95 CeO₂/TiO₂, thereby enhanced its NH₃-SCR activity [61]. Liu et al. had investigated the influence 96 of sulfur-doping on the NO_x reduction of MnO_x/TiO_2 , and found that the doping of S contributed 97 to bringing the distortion of TiO₂ lattice, thereby improved the acidity and redox property of 98 catalyst [58]. Cong et al. reported that the doping of nitrogen enriched the Brønsted acid sites of 99 ceria oxide and inhibited the oxidation of NH3 over it, thus the nitrogen-doped catalyst exhibited 100 superior NO_x removal efficiency and N₂ selectivity [63]. Moreover, relevant studies had shown 101 that the introduction of carbon could also change the magnetic and electron transfer characteristics 102 of metal oxides and enhance the stability of metal oxides [57,64,65]. Therefore, the doping of 103 non-metallic elements could exhibit a good improvement on the NH3-SCR activity of 104 cerium-based catalyst.

Melamine (1, 3, 5-triazine-2, 4, 6-triamine, C₃H₆N₆, Mel), a nitrogen-rich precursor with a high content of nitrogen element up to 66%, is predominately used in the production of fertilizers, flame retardants, photocatalysts or/and the nitrogen-doped materials via the thermal polymerization [66,67]. Interestingly, due to the similar structure and electronic characteristics of N and O atoms, the N-doped metallic oxide has also been deeply researched [68]. It was reported that the doping of N broadened the visible light response range of TiO₂, and the N-doped TiO₂ presented a good photocatalytic degradation performance for organic dyes and gaseous acetaldehyde [69]. Wang et al. pointed out that the co-doping of C and N elements via a heat treatment of melamine significantly enhanced the photocatalytic activity of TiO₂ nanotube owing to their synergistic promotional effect [70]. Yao et al. found that the doping of N helped to enhance the electron donor effect and electron mobility of manganese-containing semi-coke catalyst, thus promoted its low-temperature NH₃-SCR activity [71]. However, there are few studies about the doping of nonmetallic elements (N or/and C) on the structure, chemical properties and NH₃-SCR activity of Ce-based catalyst via the co-pyrolysis of Mel.

119 In order to improve the NH₃-SCR activity of Ce₂₀W₁₀Ti₁₀₀O_z catalyst and increase its 120 practical application in reducing NO_x emission from the coal-fired power station, nonmetallic N 121 or/and C are doped by the co-pyrolysis of Mel. The results indicated that the doping of N/C 122 significantly improved the medium/low temperature NH₃-SCR activity of $Ce_{20}W_{10}Ti_{100}O_{z}$. 123 Furthermore, the influence of N/C doping on the structure and physical properties of catalyst was 124 thoroughly characterized by N₂ adsorption-desorption, X-ray diffraction (XRD), Raman spectra 125 (Raman), X-ray photoelectron spectroscopy (XPS), Transmission electron microscope (TEM), 126 Energy dispersive spectroscopy (TEM-EDS), NH₃ temperature-programmed desorption 127 (NH₃-TPD) and Hydrogen temperature-programmed reduction (H₂-TPR).

128

2. Materials and methods

129 $Ce_{20}W_{10}Ti_{100}O_z$ were synthesized via the hydrothermal co-precipitation method with 130 $Ce(NO_3)_3 \cdot 6H_2O$, $(NH_4)_6H_2W_{12}O_{40} \cdot nH_2O$ and $Ti(SO_4)_2$ as the precursors [72]. For the preparation 131 of $Ce_{20}W_{10}Ti_{100}O_z$ -Mel_f:Ti=x:2, $Ce(NO_3)_3 \cdot 6H_2O$, $(NH_4)_6H_2W_{12}O_{40} \cdot nH_2O$, $Ti(SO_4)_2$, excess urea 132 and Mel were firstly dissolved in deionized water by keeping the molar ratio of Ce/W/Ti and the 133 mass ratio of Mel/Ti(SO_4)_2 being 20:10:100 and x:2 (x=1,2,3,4), respectively. A pale-yellow

134	precipitate was obtained after being stirred vigorously at 90 °C for 12 h, and then the obtained
135	precipitate was filtrated and washed by the de-ions water and the absolute ethanol. Finally, the
136	dried precipitate was calcined at 550 °C for 5 h in a muffle furnace. The obtained catalyst was
137	denoted as $Ce_{20}W_{10}Ti_{100}O_z$ -Mel _f :Ti=x:2, where x represents the added dosage of Mel before the
138	hydrothermal co-precipitation. Similar to the preparation of Ce ₂₀ W ₁₀ Ti ₁₀₀ O _z -Mel _f :Ti=x:2,
139	$Ce_{20}W_{10}Ti_{100}O_z$ -Mel _t :Ti=y:2(y=1,2,3,4) were synthesized by adding a certain of Mel into the
140	mixed solution of the precipitate after the hydrothermal co-precipitation. Then, the mixed solution
141	was hydrothermally treated at a certain temperature for 0 h, 2 h or 4 h, and the following process
142	was the same as the preparation of $Ce_{20}W_{10}Ti_{100}O_z$ -Mel/:Ti=x:2. In comparison,
143	$Ce_{20}W_{10}Ti_{100}O_z$ -Mel ₁ :Mel ₁ :Ti=x:(4-x):2 (x=1,2) catalysts were also obtained by the distributed
144	addition of Mel but the mass ratio of $(Mel_f+Mel_t)/Ti(SO_4)_2$ was kept at 4:2. The as-prepared
145	Ce ₂₀ W ₁₀ Ti ₁₀₀ O _z -Mel _t :Ti=1:2 and Ce ₂₀ W ₁₀ Ti ₁₀₀ O _z -Mel _t :Ti=4:2 catalysts were characterized by a
146	series of techniques to investigate the doping of C/N on the physical-chemical properties of
147	$Ce_{20}W_{10}Ti_{100}O_z$, which were given in the supporting information.

- 148 The reaction conditions were controlled as follows: the used sample of 0.45 g, 600 ppm NO,
- 149 600 ppm NH₃, 5 vol.% O₂, N₂ balance, and 1500 mL/min total flow rate of the simulated flue gas,
- 150 corresponding to a gas hourly space velocity (GHSV) of 200,000 mL/(g·h). The concentrations of
- 151 NO_x at the inlet and outlet of the reactor were monitored online using a flue gas analyzer (testo350,
- 152 Germany). NO conversion (X_{NOx}) was calculated by the equation as below:

153
$$X_{NOx} = (1 - [NO_x]_{out} / [NO_x]_{in}) \times 100\% \text{ with } [NO_x] = [NO] + [NO_2]$$
(1)

154 **3. Results and discussions**

155 **3.1. Catalytic performance**

156	Fig. 1(a) shows the influence of Mel modification before the hydrothermal co-precipitation on
157	the NH ₃ -SCR activity of $Ce_{20}W_{10}Ti_{100}O_z$. It can be seen that $Ce_{20}W_{10}Ti_{100}O_z$ -Mel _f :Ti=4:2 presents a
158	little better catalytic performance than $Ce_{20}W_{10}Ti_{100}O_z$, especially the activity at 450~500 °C. This
159	demonstrates that the addition of Mel before the hydrothermal co-precipitation doesn't
160	substantially enhance the NH3-SCR activity of Ce20W10Ti100Oz. Therefore, we investigated the
161	influence of Mel modification after the hydrothermal co-precipitation on the NH ₃ -SCR activity of
162	$Ce_{20}W_{10}Ti_{100}O_z$ by keeping the mass ratio of Mel/Ti(SO ₄) ₂ also being 4:2. It was found that
163	Ce ₂₀ W ₁₀ Ti ₁₀₀ O _z -Mel _t :Ti=4:2 exhibited higher catalytic performance at 150~450 °C than both
164	$Ce_{20}W_{10}Ti_{100}O_z$ and $Ce_{20}W_{10}Ti_{100}O_z$ -Mel _f :Ti=4:2, indicating that the addition of Mel after the
165	hydrothermal co-precipitation presents a stronger promotional effect on the NH ₃ -SCR activity of
166	catalyst. Interestingly, the qualities of these three dried samples after the hydrothermal
167	co-precipitation decrease as follow: Ce ₂₀ W ₁₀ Ti ₁₀₀ O _z -Mel _t :Ti=4:2>Ce ₂₀ W ₁₀ X ₁₀ X ₁₀ O _z -Mel _t :Ti=4:2>Ce ₂₀ W ₁₀ X
168	$\approx Ce_{20}W_{10}Ti_{100}O_z$. The main reason of this phenomenon is that the dry yellowish precipitate of
169	$Ce_{20}W_{10}Ti_{100}O_z$ -Mel _t :Ti=4:2 contains the white, salt-like crystalline particles which are the formed
170	cyanuric acid from the slow hydrolysis of partial Mel. Meanwhile, the hydrolysis of Mel is related
171	to the temperature and pH value of mixed solution [73]. Thus, the added Mel before the
172	hydrothermal co-precipitation might be almost hydrolyzed when the mixed solution has been
173	hydrothermally treated at 90 °C for 12 h [74], and the duration of hydrothermal treatment can
174	affect the residual of Mel and cyanuric acid in the dried samples before the calcination. In addition,
175	there still exists a large residual Mel and cyanuric acid in the dried precursor of
176	$Ce_{20}W_{10}Ti_{100}O_z$ -Mel _t :Ti=4:2 even if the added Mel solution has been hydrothermally treated at
177	90 °C for another 4 h, thus the duration of hydrothermal treatment lower than 4 h almost plays no

178 role on the promotional effect of Mel modification on the NH₃-SCR activity of Ce₂₀W₁₀Ti₁₀₀O_z. 179 Interestingly, as shown in Fig.1(b) and (c), the hydrothermal temperature after adding Mel also 180 presents a similar effect of the hydrothermal duration on the catalytic performance of the modified 181 catalyst. Therefore, it can be deduced that the residual Mel or/and cyanuric acid in the dried 182 samples might play an important influence on promoting the NH₃-SCR activity of $Ce_{20}W_{10}Ti_{100}O_z$ 183 due to the generated reducing gas (NH₃) during the calcined pyrolysis of Mel or/and cyanuric acid. 184 Sun et al. had proven that the treatment of NH3 contributed to promoting the adsorbed oxygen 185 formed on the surface of CeO₂ catalyst, thus improved its NH₃-SCR activity [75]. Furthermore, 186 according to the results in Fig.1(d), the decrease of Mel/Ti(SO₄)₂ mass ratio from 4:2 to 1:2 187 slightly increases the NH₃-SCR activity of Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=4:2 at 150~250 °C, but the 188 enhancement of Mel/Ti(SO₄)₂ mass ratio from 4:2 to 8:2 reduces its catalytic performance due to 189 the formed carbon nitride(g-C₃N₄) from the calcined pyrolysis of large residual Mel or/and cyanuric acid [76]. Therefore, the Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=1:2 and Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=4:2 190 191 catalysts had been chosen to investigate the influence of C/N doping on the physical-chemical 192 properties of $Ce_{20}W_{10}Ti_{100}O_z$ in the following sections.

Fig.1. Influence of melamine modification on the NH₃-SCR activity of Ce₂₀W₁₀Ti₁₀₀O_z catalyst ((a): The effect of addition amount of Mel; (b): The effect of hydrothermal duration after the introduction of Mel; (c): The hydrothermal temperature after the introduction of Mel; (d): The dosage of Mel. Reaction conditions:
[NO]=[NH₃]=600 ppm, [O₂]=5 vol.%, balanced with N₂, 1500 mL/min total flow rate, 0.45 g of catalyst with GHSV of 200,000 mL/(g·h))

199 3.2. N₂ adsorption-desorption

193

200 the adsorption-desorption Fig. shows N_2 isotherms of $Ce_{20}W_{10}Ti_{100}O_z$, 2(A) 201 Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=1:2 and Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=4:2. According to IUPAC classification, 202 the isotherms of catalysts are attributed to type IV with the H₂ hysteresis loop, which indicates that 203 they present meso-porous structure related to the capillary polycondensation in the mesopore 204 range (2~50 nm) [77]. The BET surface area, pore volume and average pore diameter of catalysts 205 are listed in Table 1. It can be seen that the enhancement of Mel/Ti(SO₄)₂ mass ratio from 1:2 to 206 4:2 strengthens the reducing effect of Mel modification on the BET surface area and pore volume

207	of $Ce_{20}W_{10}Ti_{100}O_z$. However, according to the results in Fig. 2(B), this modification refines the
208	pore diameter of catalyst by making its pore size distribution shift to left, and contributes to the
209	formation of the meso-porous of $Ce_{20}W_{10}Ti_{100}O_z$ at 2~5 nm. In general, larger BET surface area
210	helps to improve the adsorption of reactants on the surface of catalyst, thereby increases its
211	NH ₃ -SCR activity [78]. Therefore, the modification of Mel after the hydrothermal co-precipitation
212	decreases the BET surface area of $Ce_{20}W_{10}Ti_{100}O_z$, but increases its catalytic performance, and the
213	BET surface area might not be the determining factor on affecting the NH ₃ -SCR activity of
214	$Ce_{20}W_{10}Ti_{100}O_z$.

- 215

Table1 The micro-structure properties of $Ce_{20}W_{10}Ti_{100}O_z$, $Ce_{20}W_{10}Ti_{100}O_z$ -Mel_t:Ti=1:2 and

Ce20W10Ti100Oz-Melt:Ti=4:2 catalysts

	Samples	BET surface area ^a (m²g⁻¹)	Pore volume ^b (cm ³ g ⁻¹)	Pore diameter ^c (nm)
_	Ce ₂₀ W ₁₀ Ti ₁₀₀ O _z	86.38	0.171	5.8
	Ce ₂₀ W ₁₀ Ti ₁₀₀ O _z -Mel _t :Ti=1:2	84.66	0.141	4.8
	Ce ₂₀ W ₁₀ Ti ₁₀₀ O _z -Mel _i :Ti=4:2	73.28	0.111	4.3

a BET surface area

218 ^b BJH desorption pore volume

219 ° BJH desorption pore diameter

220 221

222

The N₂ adsorption-desorption isotherms, (B) The pore size distributions)

Fig.2. N₂ adsorption results of Ce₂₀W₁₀Ti₁₀₀O_z, Ce₂₀W₁₀Ti₁₀₀O_z-Mel_i:Ti=1:2 and Ce₂₀W₁₀Ti₁₀₀O_z-Mel_i:Ti=4:2 ((A)

223 3.3 XRD and Raman

224 The XRD results of the as-prepared Ce20W10Ti100Oz, Ce20W10Ti100Oz-Melt:Ti=1:2 and 225 Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=4:2 catalysts are illustrated in Fig. 3(A). It can be clearly seen that all catalysts exhibit the diffraction peaks of typical anatase TiO₂ (PDF#21-1272), but the modification 226 227 of Mel decreases the intensity of diffraction peaks attributed to the anatase TiO_2 of $Ce_{20}W_{10}Ti_{100}O_2$. 228 Furthermore, due to the calcined co-pyrolysis of the residual Mel and cyanuric acid, nonmetallic 229 elements, including C or/and N, might be doped into the lattice of anatase TiO₂ crystallite, thus 230 changes the crystal structure of catalyst [79]. The main reason is that the residual Mel and 231 cyanuric acid in the dried precursor firstly thermally decomposes into the nitrogen-containing 232 materials volatilized in the form of ammonia, and then aggregates into the carbon-nitrogen 233 compounds, for example, Melem (2,5,8-triamino-tri-s- triazine) [80]. As a result, a certain of N 234 or/and C elements might be doped into the lattice of anatase TiO₂ crystallite during the calcination, 235 although the XRD diffractions of N/C nanocrystal had not been detected in the modified catalysts. 236 It should be mentioned that the tungsten or cerium species present in amorphous or 237 microcrystalline phase because no XRD diffraction peaks attributed to them were also detected

Fig.3. XRD patterns(A) and Raman spectroscopy(B) of Ce₂₀W₁₀Ti₁₀₀O_z, Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=1:2 and

253 3.4 XPS

250

254 XPS spectra was measured to investigate the influence of Mel modification on the chemical 255 states of species and their concentrations on the surface of $Ce_{20}W_{10}Ti_{100}O_z$ with C1s (BE=284.6

256	eV) as the calibration. According to the full scan survey spectra of the catalysts depicted in Fig. S1.
257	It can be seen that the XPS spectra of Ce 3d, W 4f, Ti 2p and O 1s have been detected, and
258	$Ce_{20}W_{10}Ti_{100}O_z$ exhibits the C 1s peak arising from the adventitious hydrocarbon exposure in the
259	instrument. However, the modification of Mel increases the intensity of the C 1s peak, and this
260	effect is further enhanced by increasing the Mel/Ti(SO ₄) ₂ mass ratio from 1:2 to 4:2, which
261	indicates that the modification of Mel contributes to doping carbon into the anatase TiO ₂ of catalyst.
262	Furthermore, the Mel modification also induces the nitrogen element formed in
263	$Ce_{20}W_{10}Ti_{100}O_z$ -Mel _t :Ti=1:2 and $Ce_{20}W_{10}Ti_{100}O_z$ -Mel _t :Ti=4:2 according to the results in Fig.4(D).
264	Therefore, the modification of Mel helps to dope C or/and N species into the modified
265	$Ce_{20}W_{10}Ti_{100}O_z$ catalysts.

266 Table 2. XPS results of Ce₂₀W₁₀Ti₁₀₀O_z, Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=1:2 and Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=4:2 catalysts

Samular	Surface concentrations of elements and the calculated molar ratio (%)						
Samples	Ce	W	Ti	0	N	Ce ³⁺ /(Ce ³⁺ +Ce ⁴⁺)	$O_{\alpha}/(O_{\alpha}+O_{\beta})$
Ce ₂₀ W ₁₀ Ti ₁₀₀ O _z	5.71	5.52	20.82	67.41	-	20.9	28.2
$Ce_{20}W_{10}Ti_{100}O_{z}-Mel_{t}:Ti=1:2$	5.22	5.29	21.30	67.63	0.57	25.2	33.5
Ce ₂₀ W ₁₀ Ti ₁₀₀ O _z -Mel _t :Ti=4:2	4.83	5.06	21.39	68.29	0.44	28.6	30.0

By fitting the Ce 3d XPS spectra into eight peaks as shown in Fig.4(A), it can be found that both Ce³⁺(u' and v') and Ce⁴⁺(u, u", u"', v, v" and v"') species exist on the surface of Ce₂₀W₁₀Ti₁₀₀O_z. Furthermore, the modification of Mel increases the calculated surface Ce³⁺/(Ce³⁺+Ce⁴⁺) molar ratio by promoting the conversion of Ce⁴⁺ to Ce³⁺ on the surface of Ce₂₀W₁₀Ti₁₀₀O_z(20.9% as shown in Table 2), and this promotional effect can be further enhanced by increasing the Mel/Ti(SO₄)₂ mass ratio from 1:2 to 4:2. Generally, the enrichment of Ce³⁺

273	species has been considered to promote the generation of active oxygen on the surface of
274	Ce-based catalyst and improves its catalytic oxidization of NO to NO ₂ , thus helps to promote the
275	NH_3 -SCR reaction [85]. Besides, the presence of Ce^{3+} species could lead to the imbalance of
276	surface charge and the formation of unsaturated chemical bonds, thereby improving the
277	chemisorption of oxygen on the surface of Ce-based catalyst. In general, a higher surface
278	$Ce^{3+}/(Ce^{3+}+Ce^{4+})$ molar ratio contributes to enhance the redox performance of catalyst [63]. It is
279	thus clear that the doping of C or/and N improves the redox performance of $Ce_{20}W_{10}Ti_{100}O_z$ by
280	increasing its surface $Ce^{3+}/(Ce^{3+}+Ce^{4+})$ molar ratio via the modification of Mel. As shown in Fig.
281	4(B) and Table 2, both the lattice oxygen (529.8~530.1 eV, marked as O_β) and chemical adsorbed
282	oxygen (531.00~532.50 eV, marked as O_{α}) present on the surface of the as-prepared catalysts [86],
283	and the Mel modification indeed enhances the surface $O_{\alpha}/(O_{\alpha}+O_{\beta})$ molar ratio of $Ce_{20}W_{10}Ti_{100}O_{z}$.
284	It had been pointed out that the increase of surface oxygen defects contributed to increasing the
285	Curie point and the conductivity of metal oxides, thereby affected the interaction of components in
286	metal oxides [87,88]. Therefore, the presence of surface Ce ³⁺ helps to create oxygen vacancies and
287	increase the surface chemisorbed oxygen of catalyst, which is beneficial to the oxidation of NO to
288	NO ₂ , thus improves the NH ₃ -SCR activity [46,89]. Meanwhile, Ce ₂₀ W ₁₀ Ti ₁₀₀ O _z -Mel _t :Ti=4:2
289	presents a lower surface $O_{\alpha}/(O_{\alpha}+O_{\beta})$ molar ratio than $Ce_{20}W_{10}Ti_{100}O_z$ -Mel _t :Ti=1:2, which isn't in
290	accordance with the calculated surface $Ce^{3+}/(Ce^{3+}+Ce^{4+})$ molar ratios. This demonstrates that the
291	surface chemical adsorbed oxygen not only comes from the redox couples of Ce^{3+}/Ce^{4+} formed on
292	the surface of the as-prepared catalyst, but also might be affected by the difference of C or/and N
293	doping owing to the influence of Mel dosage. As shown in Fig.S2, the W 4f XPS spectra of samples
294	can be fitted into two peaks, attributing to W 4f $_{7/2}(35.6 \text{ eV})$ and W 4f $_{5/2}(37.5 \text{ eV})$, respectively. Thus,

295 tungsten exists in W⁶⁺ species on the surface of catalysts [49,84]. Meanwhile, the Mel 296 modification lowers the W4f electron binding energy of $Ce_{20}W_{10}Ti_{100}O_z$ by increasing the electron 297 cloud density of surface tungsten species, thus changes the chemical environment around them. 298 Furthermore, the doping of C or/and N into the lattice of anatase TiO₂ via Mel modification also lowers the binding energy of Ti 2p on the surface of $Ce_{20}W_{10}Ti_{100}O_z$ by decreasing the electron 299 300 cloud density around Ti⁴⁺ ion [90,91]. This is in accordance with the previous studies about the 301 reducing effect of nitrogen doping on the binding energy of Ti 2p [92,93]. 302 The results of N 1s spectra in Fig.4(D) also confirms the doping of N into the Mel-modified 303 catalysts with one N1 s peak centered at 398.7 eV observed over Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=1:2 and 304 Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=4:2, and this peak might be attributed to the doped nitrogen element by 305 replacing the lattice oxygen of TiO₂ crystallite via the N-Ti-N bond [94]. After the modification of 306 Mel, Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=1:2 and Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=4:2 presents stronger C 1s 307 spectrum than $Ce_{20}W_{10}Ti_{100}O_z$. This demonstrates that carbon element has also been doped into the above catalyst via the Mel modification. At the same time, the C 1s spectrum of the modified 308 309 catalysts can be deconvoluted into three main peaks located at 284.4 eV, 286.3 eV and 288.7 eV, 310 which correspond to the adventitious carbon impurities, C=N groups, and sp²-bonded carbon of 311 the N-C=N coordination, respectively [95,96]. Furthermore, Ce₂₀W₁₀Ti₁₀₀O_z-Mel_i:Ti=4:2 exhibits 312 larger carbon surface concentration than Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=1:2. Because the XPS spectra 313 were calibrated by C 1s (BE=284.6 eV), the surface concentrations of Ce, W, Ti, O and N 314 elements were calculated according to the XPS results without considering the doped carbon 315 content. As shown in Table 2, the Mel modification effectively enlarges the surface concentrations 316 of Ti/O species and increases the dispersion of Ce/W species on the surface of $Ce_{20}W_{10}Ti_{100}O_z$.

330 Fig.4. The XPS spectra of (a) $Ce_{20}W_{10}Ti_{100}O_z$, (b) $Ce_{20}W_{10}Ti_{100}O_z$ -Mel_t:Ti=1:2 and (c) $Ce_{20}W_{10}Ti_{100}O_z$ -Mel_t:Ti=4:2

332 3.5 HR-TEM and EDS

333 In order to investigate the influence of Mel modification on the microstructure of catalyst, especially the surface dispersion characteristics of the doped C or/and N, $Ce_{20}W_{10}Ti_{100}O_z$ and 334 335 Ce20W10Ti100Oz-Melt:Ti=4:2 had been chosen to be characterized by HR-TEM/EDS, and the 336 results are given in Fig. 5 and 6. As shown in Fig.5, Ce₂₀W₁₀Ti₁₀₀O_z-Mel_i:Ti=4:2 presents graver 337 particle agglomeration than $Ce_{20}W_{10}Ti_{100}O_z$ due to the doping of C or/and N. This result is 338 consistent with the effect of Mel modification on reducing the specific surface area/pore volume 339 of $Ce_{20}W_{10}Ti_{100}O_z$ and the XRD diffraction of anatase TiO₂ crystallite. According to the HR-TEM 340 image in Fig. 5(b) and (d), the lattice fringe (d) of 0.352 nm ascribed to the crystal plane of 341 anatase TiO₂ (101) is observed on the surface of both $Ce_{20}W_{10}Ti_{100}O_z$ and 342 Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=4:2 [50], which demonstrates that the doping of C or/and N can't regulate 343 the exposed crystal plane of anatase TiO₂ on the catalyst surface. Moreover, no lattice fringes 344 attributed to the cerium or tungsten species are observed and they present in amorphous or highly 345 dispersive microcrystalline phase, which are in accordance with the results of XRD and Raman. 346 From the HR-TEM-EDS mappings results in Fig.6, it can be clearly seen that $Ce_{20}W_{10}Ti_{100}O_z$ 347 exhibits high dispersion of Ce, W, Ti and O elements on its surface. Meanwhile, the Mel 348 modification not only leads to the agglomerate distribution of these main components, but also 349 promotes the formation of C and N elements on the surface of catalyst. This result confirms that C and N have been doped into $Ce_{20}W_{10}Ti_{100}O_z$ catalyst via the Mel modification, which improves the 350 351 catalytic performance of Ce₂₀W₁₀Ti₁₀₀O_z.

Fig.5. HR-TEM and TEM images of Ce₂₀W₁₀Ti₁₀₀O_z (a-b) and Ce₂₀W₁₀Ti₁₀₀O_z-Mel₁:Ti=4:2 (c-d) catalysts

Fig.6. TEM-EDS mapping of Ce₂₀W₁₀Ti₁₀₀O_z (a-e) and Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=4:2 (f-l) catalysts

3.6 H₂-TPR

357	The redox ability plays a significant impact on the catalytic performance of NO_x reduction
358	due to the promotional activation of ammonia and NO_x on the surface of catalyst [97]. Thus, the
359	H2-TPR technology had been used to study the influence of Mel modification on the redox
360	properties of $Ce_{20}W_{10}Ti_{100}O_z$ herein. As shown in Fig. 7, the H ₂ -TPR spectra of $Ce_{20}W_{10}Ti_{100}O_z$
361	can be de-convoluted into several sub-peaks at the temperature range of 400~650 °C. Among
362	them, the peaks centered at 470 $^{\circ}$ C and 560 $^{\circ}$ C are attributed to the reduction of the surface or
363	sub-surface oxygen, which come from the stoichiometric ceria of type Ce4+-O-Ce4+ and the
364	nonstoichiometric ceria of type Ce ³⁺ -O-Ce ⁴⁺ [98]. And, the reduction peaks at 501~536 °C are also
365	assigned to the reduction of surface/subsurface oxygen from ceria [99] Moreover, it had been
366	pointed out that the reduction peaks at around 501 °C and 437 °C could be ascribed to the
367	reduction of surface Ce^{4+} to Ce^{3+} and WO_3 to $WO_{2.9}$, respectively [46,100]. Thus, the modification
368	of Mel increases the reduction temperature of the surface or sub-surface oxygen, the surface Ce^{4+}
369	to Ce^{3+} and WO_3 to $WO_{2.9}$ for $Ce_{20}W_{10}Ti_{100}O_z$, and makes its H ₂ -TPR spectra shift to high
370	temperatures. However, $Ce_{20}W_{10}Ti_{100}O_z$ -Mel _t :Ti=1:2 presents stronger H ₂ -TPR spectra than
371	$Ce_{20}W_{10}Ti_{100}O_z$, which shows that the Mel modification optimizes the reducibility of the surface
372	oxygen and active Ce/W species of catalyst when the Mel/Ti(SO ₄) ₂ mass ratio is 1:2, especially
373	the surface or sub-surface oxygen. Interestingly, $Ce_{20}W_{10}Ti_{100}O_z$ -Mel _t :Ti=4:2 presents higher
374	surface/sub-surface oxygen relative concentrations (Molar ratio) than
375	$Ce_{20}W_{10}Ti_{100}O_z$ -Mel _t :Ti=1:2. Therefore, the Mel modification enlarges the reduction temperature
376	owing to more Ti species formed on the surface of $Ce_{20}W_{10}Ti_{100}O_z$, but increases its
377	surface/sub-surface oxygen relative concentrations due to the doping of C or/and N. Meanwhile,
378	the dosage of Mel can regulate the amount of Ti species, doped C or/and N elements on the

379 surface of catalyst, thus affects its reducibility. In general, the redox properties are positively 380 correlated with the activity of catalyst [101]. In this study, $Ce_{20}W_{10}Ti_{100}O_z$ -Mel_{*i*}:Ti=1:2 and 381 $Ce_{20}W_{10}Ti_{100}O_z$ -Mel_{*i*}:Ti=4:2 present better NO_x conversion at the test reaction temperature, while 382 they exhibit higher surface/sub-surface oxygen relative concentrations, which are in accordance 383 with the XPS results.

384

385 Fig.7. H₂-TPR curves of Ce₂₀W₁₀Ti₁₀₀O_z, Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=1:2 and Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=4:2 catalysts

386 3.7 NH₃-TPD

387 It has been established that the surface acidity plays a significant role on the NH₃-SCR reaction 388 of catalyst [102]. In our previous study, it had been pointed out that two NH₃ desorption peaks were 389 obtained for Ce₂₀W₁₀Ti₁₀₀O_z. Among them, the low-temperature peak is attributed to the physically adsorbed NH3 and the partial ionic NH4⁺ bound to the weak Brønsted acid sites. And the 390 391 middle-temperature peak is imputed to the coordinated NH₃ bound to the Lewis acid sites and the 392 ionic NH4⁺ bound to the strong Brønsted acid sites [56]. Herein, in order to confirm the thermal 393 stability of adsorbed NH₃ species bound to the Lewis acid sites or/and strong Brønsted acid sites and 394 prevent the desorption of the doped C or/and N groups under the temperature higher than 400 °C, a 395 new test method had been adopted to measure the NH₃-TPD of Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=1:2 and 396 Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=4:2 by introducing a two-hour durative desorption of ammonia species at 397 350 °C. By comparing our previous research [56] and the results in Fig. 8, it can be found that the 398 Mel modification decreases the low-temperature NH₃ desorption properties of Ce₂₀W₁₀Ti₁₀₀O_z, but 399 $Ce_{20}W_{10}Ti_{100}O_z$ -Mel_t:Ti=1:2 presents stronger surface acidity than $Ce_{20}W_{10}Ti_{100}O_z$ -Mel_t:Ti=4:2 at 400 the tested temperature range. Interestingly, after a two-hour durative desorption of NH₃ species at 401 350 °C, the two modified catalysts exhibit similar desorption properties of NH₃ species when the 402 desorbed temperature increases from 350 to 500 °C. This demonstrates that the adsorbed NH₃ species can be almost completely desorbed at the temperature lower than 350 °C and the 403 404 enhancement of Mel/Ti(SO₄)₂ mass ratio decreases the surface acid sites of 405 Ce₂₀W₁₀Ti₁₀₀O_z-Mel_t:Ti=1:2, which is in accordance with its effect on the NH₃-SCR activity.

406 407

Fig.8. NH₃-TPD curves of Ce₂₀W₁₀Ti₁₀₀O_z-Mel_i:Ti=1:2 and Ce₂₀W₁₀Ti₁₀₀O_z-Mel_i:Ti=4:2 catalysts

408 4. Conclusions

409 In this paper, melamine (Mel), the nitrogen and carbon-rich material, was firstly used to 410 promote the NH₃-SCR activity of $Ce_{20}W_{10}Ti_{100}O_z$ catalyst via the doping of nonmetallic elements. 411 The characterization results demonstrate that the Mel modification after the hydrothermal 412 co-precipitation helps to dope C or/and N into the lattice of anatase TiO₂ crystallite for

413	$Ce_{20}W_{10}Ti_{100}O_z$ and thus reduces the intensity of the XRD diffraction and Raman spectroscopy
414	attributed to anatase TiO2. In addition, the Mel modification enhances the dispersion of tungsten
415	and cerium species, which present in amorphous or microcrystalline phase on the surface of
416	Ce ₂₀ W ₁₀ Ti ₁₀₀ O _z . In addition, the doping of C or/and N elements after the Mel modification
417	increases the surface $Ce^{3+}/(Ce^{3+}+Ce^{4+})$ molar ratio of catalyst by promoting the conversion of
418	partial Ce ⁴⁺ to Ce ³⁺ , thus increases its surface concentration of chemical adsorbed oxygen(O_{α}). The
419	high dispersion of metal elements, more surface Ce3+ and larger chemisorbed oxygen ratio
420	contribute to promoting the oxidation of NO to NO ₂ , which is conducive to the "fast SCR"
421	reaction. Meanwhile, Ce ₂₀ W ₁₀ Ti ₁₀₀ O _z -Mel _t :Ti=1:2 presents stronger surface acidity and larger
422	surface $O_{\alpha}/(O_{\alpha}+O_{\beta})$ molar ratio than $Ce_{20}W_{10}Ti_{100}O_{z}$ -Mel _t :Ti=4:2, which might be the important
423	reasons for its better catalytic performance. Finally, the influence of Mel adding method, Mel
424	dosage, hydrothermal temperature and duration time on the NH3-SCR activity of the modified
425	Ce ₂₀ W ₁₀ Ti ₁₀₀ O _z catalyst had also been investigated. Ce ₂₀ W ₁₀ Ti ₁₀₀ O _z -Mel _t :Ti=1:2 achieves higher
426	than 98% NO _x conversion at an abroad window temperature range of 250~450 °C and presents the
427	best catalytic performance. The research results provide an effective strategy for optimizing the
428	NH ₃ -SCR activity of CeWTi catalyst and are valuable to develop the high-efficiency and low-cost
429	modified composite metal-based catalyst for NO_x reduction.

430 Acknowledgements

This work was supported by the National Science Foundation of China (No. 51406118),
Program of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning
(No. QD2015017). The Bureau of Huzhou Municipal Science and Technology (NO.
2021ZD2043).

435 Availability of data and materials

436 All data generated or analyzed during this study are included in this published article and its437 supplementary information files.

438 References

446

- 439 [1] X. Wu, L.L. Liu, J.N. Liu, B.H. Hou, Y.L. Du, X.M. Xie, NiMn mixed oxides with enhanced low-temperature
- 440 deNO_x performance: Insight into the coordinated decoration of MnO_x by NiO phase via glycine combustion
- 441 method, Appl. Catal. A Gen. 610 (2021) 117918, https://doi.org/10.1016/j.apcata.2020.117918.
- 442 [2] Z.H. Wang, M.Y. Jiao, Z.P. Chen, H. He, L.C. Liu, Effects of montmorillonite and anatase TiO₂ support on
- 443 CeO₂ catalysts during NH₃-SCR reaction, Micropor. Mesopor. Mat. 320 (2021) 111072,
 444 https://doi.org/10.1016/j.micromeso.2021.111072.
- 445 [3] M.Y. Guo, Q.L. Liu, C.X. Liu, X.H. Wang, Y.L. Bi, B.Y. Fan, D.G. Ma, X.Y. Liang, Z.G. Li, Rational design

of novel CrZrO_x catalysts for efficient low temperature SCR of NO_x, Chem. Eng. J. 413 (2021) 127554,

- 447 https://doi.org/10.1016/j.cej.2020.127554.
- 448 [4] J.Y. Chen, B.Z. Zhu, W.Y. Song, Y.L. Sun, Catalytic performance of calcined Fe₂O₃/CA catalyst for NH₃-SCR
- reaction: Role of activation temperature, J. Solid State Chem. 316 (2022) 123630,
 https://doi.org/10.1016/j.jssc.2022.123630.
- 451 [5] J. Arfaoui, A. Ghorbel, C. Petitto, G. Delahay, Promotional effect of ceria on the catalytic behaviour of new
- 452 V₂O₅-WO₃-TiO₂ aerogel solids for the deNO_x process, J. Solid State Chem. 300 (2021) 122261,
 453 https://doi.org/10.1016/j.jssc.2021.122261.
- 454 [6] H.L. Wu, M.Y. He, W.Z. Liu, L.J. Jiang, J. Cao, C. Yang, J. Yang, J. Peng, Y. Liu, Q.C. Liu, Application of
- 455 manganese-containing soil as novel catalyst for low-temperature NH₃-SCR of NO, J. Environ. Chem. Eng. 9
- 456 (2021) 105426, https://doi.org/10.1016/j.jece.2021.105426.

- 457 [7] X. Wu, R.N. Wang, Y.L. Du, C.L. Zou, H. Meng, X.M. Xie, Performance enhancement of NH₃-SCR via
- 458 employing hydrotalcite-like precursor to induce the decoration of NiO by TiO₂ phase, Mol. Catal. 467 (2019)
- 459 150–160, https://doi.org/10.1016/j.mcat.2019.02.004.
- 460 [8] C.X. Li, Z.B. Xiong, J.F. He, X.K. Qu, Z.Z. Li, X. Ning, W. Lu, S.M. Wu, L.Z. Tan, Influence of ignition
- 461 atmosphere on the structural properties of magnetic iron oxides synthesized via solution combustion and the
- 462 NH₃-SCR activity of W/Fe₂O₃ catalyst, Appl. Catal. A Gen. 602 (2020) 117726,
 463 https://doi.org/10.1016/j.apcata.2020.117726.
- 464 [9] K.B. Nam, S.H. Lee, S.C. Hong, The role of copper in the enhanced performance of W/Ti catalysts for
- 465 low-temperature selective catalytic reduction, Appl Surf Sci. 544 (2021) 148643,
 466 https://doi.org/10.1016/j.apsusc.2020.148643.
- 467 [10] S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M.
- 468 Salavati-Niasari, Dy2BaCuO5/Ba4DyCu3O9.09 S-scheme heterojunction nanocomposite with enhanced
- 469 photocatalytic and antibacterial activities, J. Am. Ceram. Soc. 104 (2021) 2952-2965,
- 470 https://doi.org/10.1111/jace.17696.
- 471 [11] S. Sangeetha, G. Krishnamurthy, Electrochemical and photocatalytic applications of Ce-MOF, Bull Mater Sci.
- 472 43 (2020) 269. https://doi.org/10.1016/j.apsusc.2020.148643.
- 473 [12] S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Control sonochemical parameter to prepare pure Zn0.35Fe2.65O4
- 474 nanostructures and study their photocatalytic activity, Ultrason. Sonochem. 58 (2019) 104619,
- 475 https://doi.org/10.1016/j.ultsonch.2019.104619.
- 476 [13] S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, Synthesis, characterization and application of
- 477 Co/Co₃O₄ nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in
- 478 wastewater and antibacterial properties, J. Mol. Liq. 337 (2021) 116405,

- 479 https://doi.org/10.1016/j.molliq.2021.116405.
- 480 [14] S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Hydrothermal synthesis
- 481 of DyMn₂O₅/Ba₃Mn₂O₈ nanocomposite as a potential hydrogen storage material, Int. J. Hydrogen Energ. 44
- 482 (2019) 24005–24016, https://doi.org/10.1016/j.ijhydene.2019.07.113.
- 483 [15] S.R. Yousefi, A. Sobhani, H.A. Alshamsic, M. Salavati-Niasari, Green sonochemical synthesis of
 484 BaDy₂NiO₅/Dy₂O₃ and BaDy₂NiO₅/NiO nanocomposites in the presence of core almond as a capping agent
- 485 and their application as photocatalysts for the removal of organic dyes in water, RSC Adv. 11 (2021) 11500–
- 486 11512, https://doi.org/10.1039/D0RA10288A.
- 487 [16] J. Wang, H.C. Xuan, L.X. Meng, X.H. Liang, Y.P. Li, J. Yang, P.D. Han, N, S co-doped
- 488 NiCo₂O₄@CoMoO₄/NF hierarchical heterostructure as an efficient bifunctional electrocatalyst for overall
- 489 water splitting, Int. J. Hydrogen Energ. In Press, https://doi.org/10.1016/j.ijhydene.2022.11.253.
- 490 [17] S. Manzoor, S.V. Trukhanov, M.N. Ansari, M. Abdullah, A. Alruwaili, A.V. Trukhanov, M.U. Khandaker,
- 491 A.M. Idris, K.S. EI-Nasser, T.A. Taha, Flowery In₂MnSe₄ novel electrocatalyst developed via anion exchange
- 492 strategy for efficient water splitting, Nanomaterials. 12 (2022) 2209. https://doi.org/10.3390/nano12132209.
- 493 [18] M. Hassan, Y. Slimani, M.A. Gondal, M.J.S. Mohamed, S. Güner, M.A. Almessiere, A.M. Surrati, A. Baykal,
- 494 S. Trukhanov, A. Trukhanov, Structural parameters, energy states and magnetic properties of the novel
- 495 Se-doped NiFe₂O₄ ferrites as highly efficient electrocatalysts for HER, Ceram. Int. 48 (2022) 24866-24876.
- 496 https://doi.org/10.1016/j.ceramint.2022.05.140.
- 497 [19] X.J. Yao, L. Chen, J. Cao, Y. Chen, M. Tian, F.M. Yang, J.F. Sun, C.J. Tang, L. Dong, Enhancing the deNO_x
- 498 performance of MnO_x/CeO₂-ZrO₂ nanorod catalyst for low-temperature NH₃-SCR by TiO₂ modification, Chem.

499 Eng. J. 369 (2019) 46–56, https://doi.org/10.1016/j.cej.2019.03.052.

500 [20] F.Y. Gao, C. Yang, X.L. Tang, H.H. Yi, C.Z. Wang, One-step synthesis by redox co-precipitation method for

- 501 low-dimensional Me-Mn bi-metal oxides (Me=Co, Ni, Sn) as SCR DeNO_x catalysts, Environ. Sci Pollut Res.
- 502 29 (2022) 21210–21220, https://doi.org/10.1007/s11356-021-14644-5.
- 503 [21] G.N. Özyönüm, R. Yildirim, Water gas shift activity of Au-Re catalyst over microstructured cordierite
- 504 monolith wash-coated by ceria, Int. J. Hydrogen Energ. 41 (2016) 5513–5521,
 505 https://doi.org/10.1016/j.ijhydene.2016.02.025.
- 506 [22] D.H. Lee, T. Kim, Effect of Catalyst Deactivation on Kinetics of Plasma-Catalysis for Methanol
- 507 Decomposition, Plasma. Process. Polym. 11 (2014) 455–463, https://doi.org/10.1002/ppap.201300185.
- 508 [23] V.A. Turchenko, A.V. Trukhanov, I.A. Bobrikov, S.V. Trukhanov, A.M. Balagurov, Investigation of the
- 509 crystal and magnetic structures of $BaFe_{12-x}Al_xO_{19}$ solid solutions (x = 0.1-1.2), Crystallogr. Rep. 60 (2015)
- **510** 629–635, https://doi.org/10.1134/S1063774515030220.
- 511 [24] M.V. Zdorovets, A.L. Kozlovskiy, D.I. Shlimas, D.B. Borgekov, Phase transformations in FeCo-
- 512 Fe₂CoO₄/Co₃O₄-spinel nanostructures as a result of thermal annealing and their practical application, J. Mater.
- 513 Sci.: Mater. Electron. 32 (2021) 16694–16705, https://doi.org/10.1007/s10854-021-06226-5.
- 514 [25] D.A. Vinnik, A.Yu. Starikov, V.E. Zhivulin, K.A. Astapovich, V.A. Turchenko, T.I. Zubar, S.V. Trukhanov,
- 515 J. Kohout, T. Kmječ, O. Yakovenko, L. Matzui, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, Y. Yang,
- 516 A.V. Trukhanov, Changes in structure, magnetizatin and resistivity of BaFe_{12-x}Ti_xO₁₉, ACS Appl. Electron.
- 517 Mater, 3 (2021) 1583–1593. https://dx.doi.org/10.1021/acsaelm.0c01081.
- 518 [26] K. Tanwar, D.S. Gyan, P. Gupta, S. Pandey, OmParkash, D. Kumar, Investigation of crystal structure,
- 519 microstructure and low temperature magnetic behavior of Ce^{4+} and Zn^{2+} co-doped barium hexaferrites
- 520 (BaFe₁₂O₁₉), RSC Adv. 8 (2018) 19600–19609, https://doi.org/10.1039/C8RA02455C.
- 521 [27] A. Anantharaman, S.G. Hashwene Priya, P.A. Vinosha, M. George, Structural, optical and photocatalytic
- 522 activity of cerium titanium ferrite, Optik. 143 (2017) 71–83, https://doi.org/10.1016/j.ijleo.2017.06.059.

- 523 [28] H.D. Xu, X. Feng, S. Liu, Y. Wang, M.M. Sun, J.L. Wang, Y.Q. Chen, Promotional effects of Titanium
- 524 additive on the surface properties, active sites and catalytic activity of $W/CeZrO_x$ monolithic catalyst for the
- 525 selective catalytic reduction of NO_x with NH₃, Appl Surf Sci. 419 (2017) 697 707, 526 https://doi.org/10.1016/j.apsusc.2017.05.055.
- 527 [29] X.J. Yao, L. Chen, J. Cao, Y. Chen, M. Tian, F.M. Yang, J.F. Sun, C.J. Tang, L. Dong, Enhancing the deNO_x
- 528 performance of MnO_x/CeO₂-ZrO₂ nanorod catalyst for low-temperature NH₃-SCR by TiO₂ modification, Chem.
 529 Eng. J. 369 (2019) 46–56, https://doi.org/10.1016/j.cej.2019.03.052.
- 530 [30] F.Y. Gao, Y.Y. Liu, Z. Sani, X.L. Tang, H.H. Yi, S.Z. Zhao, Q.J. Yu, Y.S. Zhou, Advances in selective catalytic

oxidation of ammonia (NH3-SCO) to dinitrogen in excess oxygen: A review on typical catalysts, catalytic

- 532 performances and reaction mechanisms, J. Environ. Chem Eng. 9 (2021) 104575,
 533 https://doi.org/10.1016/j.jece.2020.104575.
- 534 [31] Y.H. Zhou, S. Ren, J. Yang, W.Z. Liu, Z.H. Su, Z.C. Chen, M.M. Wang, L. Chen, Effect of oxygen vacancies
- on improving NO oxidation over CeO₂ {111} and {100} facets for fast SCR reaction, J. Environ. Chem Eng. 9
- 536 (2021) 106218, https://doi.org/10.1016/j.jece.2021.106218.
- 537 [32] D.I. Shlimas, A.L. Kozlovskiy, M.V. Zdorovets, Study of the formation effect of the cubic phase of LiTiO₂
- 538 on the structural, optical, and mechanical properties of Li2±xTi1±xO3 ceramics with different contents of the
- 539 X component, J. Mater. Sci.: Mater. Electron. 32 (2021) 7410 7422.
- 540 https://doi.org/10.1007/s10854-021-05454-z.

531

- [33] N.A. Algarou, Y. Slimani, M.A. Almessiere, F.S. Alahmari, M.G. Vakhitov, D.S. Klygach, S.V. Trukhanov,
- A.V. Trukhanov, A. Baykal, Magnetic and microwave properties of SrFe₁₂O₁₉/MCe_{0.04}Fe_{1.96}O₄ (M = Cu, Ni,
- 543 Mn, Co and Zn) hard/soft nanocomposites, J. Mater. Res. Technol. 9 (2020) 5858 5870,
- 544 https://doi.org/10.1016/j.jmrt.2020.03.113.

- 545 [34] A.L. Kozlovskiy, M.V. Zdorovets, Effect of doping of Ce^{4+/3+} on optical, strength and shielding properties of
- 546 (0.5-x)TeO₂-0.25MoO-0.25Bi₂O₃-xCeO₂ glasses, Mater. Chem. Phys. 263 (2021) 124444 ,
- 547 https://doi.org/10.1016/j.matchemphys.2021.124444.
- 548 [35] Z.B. Xiong, Z.Z. Li, C.X. Li, W. Wang, W. Lu, Y.P. Du, S.L. Tian, Green synthesis of Tungsten-doped CeO₂
- 549 catalyst for selective catalytic reduction of NO_x with NH_3 using starch bio-template, Appl Surf Sci. 536 (2021)
- 550 147719, https://doi.org/10.1016/j.apsusc.2020.147719.
- 551 [36] J. Yang, S. Ren, T.S. Zhang, Z.H. Su, H.M. Long, M. Kong, L. Yao, Iron doped effects on active sites formation
- 552 over activated carbon supported Mn-Ce oxide catalysts for low-temperature SCR of NO, Chem. Eng. J. 379
- 553 (2020) 122398, https://doi.org/10.1016/j.cej.2019.122398.
- 554 [37] K. Zhao, W.L. Han, G.X. Lu, J.Y. Lu, Z.C. Tang, X.P. Zhen, Promotion of redox and stability features of doped
- 555 Ce-W-Ti for NH₃-SCR reaction over a wide temperature range, Appl Surf Sci. 379 (2016) 316–322,
 556 https://doi.org/10.1016/j.apsusc.2016.04.090.
- 557 [38] F.Y. Gao, X.L. Tang, H.H. Yi, J.Y. Li, S.Z. Zhao, J.G. Wang, C. Chu, C.L. Li, Promotional mechanisms of
- activity and SO₂ tolerance of Co- or Ni-doped MnO_x-CeO₂ catalysts for SCR of NO_x with NH₃ at low
- temperature, Chem. Eng. J. 317 (2017) 20–31, https://doi.org/10.1016/j.cej.2017.02.042.
- 560 [39] D.A. Vinnik, A.Yu. Starikov, V.E. Zhivulin, K.A. Astapovich, V.A. Turchenko, T.I. Zubar, S.V. Trukhanov,
- 561 J. Kohout, T. Kmječ, O. Yakovenko, L. Matzui, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V.
- 562 Trukhanov, Structure and magnetodielectric properties of titanium substituted barium hexaferrites, Ceram. Int.
- 563 47 (2021) 17293–17306. https://doi.org/10.1016/j.ceramint.2021.03.041.
- 564 [40] X. Gao, Y. Jiang, Y.C. Fu, Y. Zhong, Z.Y. Luo, K.F. Cen, Preparation and characterization of CeO₂/TiO₂
- 565 catalysts for selective catalytic reduction of NO with NH₃, Catal. Commun. 11 (2010) 465–469,
- 566 https://doi.org/10.1016/j.catcom.2009.11.024.

- 567 [41] L. Zhang, L.L. Li, Y. Cao, X.J. Yao, C.Y. Ge, F. Gao, Y. Deng, C.J. Tang, L. Dong, Getting insight into the
- influence of SO₂ on TiO₂/CeO₂ for the selective catalytic reduction of NO by NH₃, Appl. Catal. B Environ. 165
- 569 (2015) 589–598, https://doi.org/10.1016/j.catcom.2009.11.024.
- 570 [42] Y. Jiang, Z.M. Xing, X.C. Wang, S.B. Huang, Q.Y. Liu, J.S. Yang, MoO₃ modified CeO₂/TiO₂ catalyst
- 571 prepared by a single step sol-gel method for selective catalytic reduction of NO with NH₃, J. Ind. Eng. Chem. 29
- 572 (2015) 43–47, https://doi.org/10.1016/j.jiec.2015.04.023.
- 573 [43] X. Gao, X.S. Du, L.W. Cui, Y.C. Fu, Z.Y. Luo, K.F. Cen, A Ce-Cu-Ti oxide catalyst for the selective catalytic
- 574 reduction of NO with NH₃, Catal. Commun. 12 (2010) 255–258, https://doi.org/10.1016/j.catcom.2010.09.029.
- 575 [44] L.L. Li, P.X. Li, W. Tan, K.L. Ma, W.X. Zou, C.J. Tang, L. Dong, Enhanced low-temperature NH₃-SCR
- 576 performance of CeTiO_x catalyst via surface Mo modification, Chinese J. Catal. 41 (2020) 364–373,
 577 https://doi.org/10.1016/S1872-2067(19)63437-6.
- 578 [45] X.S. Leng, Z.P. Zhang, Y.S. Li, T.R. Zhang, S.B. Ma, F.L. Yuan, X.Y. Niu, Y.J. Zhu, Excellent low
- 579 temperature NH₃-SCR activity over $Mn_aCe_{0.3}TiO_x$ (a = 0.1-0.3) oxides: Influence of Mn addition, Fuel Process.
- 580 Technol. 181 (2018) 33–43, https://doi.org/10.1016/j.fuproc.2018.09.012.
- 581 [46] Y. Jiang, Z.M. Xing, X.C. Wang, S.B. Huang, X.W. Wang, Q.Y. Liu, Activity and characterization of a
- 582 Ce-W-Ti oxide catalyst prepared by a single step sol-gel method for selective catalytic reduction of NO with
- 583 NH₃, Fuel. 151 (2015) 124–129, https://doi.org/10.1016/j.fuel.2015.01.061.
- 584 [47] A.L. Kozlovskiy, A. Alina, M.V. Zdorovets, Study of the effect of ion irradiation on increasing the
- 585 photocatalytic activity of WO₃ microparticles, J. Mater. Sci.: Mater. Electron. 32 (2021) 3863–3877,
 586 https://doi.org/10.1007/s10854-020-05130-8.
- 587 [48] D.I. Tishkevich, T.I. Zubar, A.L. Zhaludkevich, I.U. Razanau, T.N. Vershinina, A.A. Bondaruk, E.K.
- 588 Zheleznova, M. Dong, M.Y. Hanfi, M.I. Sayyed, M.V. Silibin, S.V. Trukhanov, A.V. Trukhanov, Isostatic

- 589 hot pressed W-Cu composites with nanosized grain boundaries: microstructure, structure, and radiation
- 590 shielding efficiency against gamma-rays, Nanomaterials 12 (2022) 1642,
 591 https://doi.org/10.3390/nano12101642.
- 592 [49] W.P. Shan, F.D. Liu, H. He, X.Y. Shi, C.B. Zhang, A superior Ce-W-Ti mixed oxide catalyst for the selective
- 593 catalytic reduction of NO_x with NH₃, Appl. Catal. B Environ. 115–116 (2012) 100–106,
 594 https://doi.org/10.1016/j.apcatb.2011.12.019.
- 595 [50] G. Park, M. Kim, J. Cha, H. Kim, H. Lee, Local atomic structure and enhanced catalytic activity of W doped
- 596 CeWTiO_x catalysts, J. Solid State Chem. 292 (2020) 121689, https://doi.org/10.1016/j.jssc.2020.121689.
- 597 [51] S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, Hydrothermal Synthesis of Nickel Hydroxide Nanostructures
- and Flame Retardant Poly Vinyl Alcohol and Cellulose Acetate Nanocomposites, J. Nanostruct. 6 (2016)
 77–82, https://doi.org/10.7508/jns.2016.01.00*.
- 600 [52] S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, An.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich,
- 601 V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, Polarization
- 602 origin and iron positions in indium doped barium hexaferrites, Ceram. Int. 44 (2018) 290-300.
 603 https://doi.org/10.1016/j.ceramint.2017.09.172.
- 604 [53] A.L. Kozlovskiy, M.V. Zdorovets, Synthesis, structural, strength and corrosion properties of thin films of the
- 605 type CuX (X = Bi, Mg, Ni), J. Mater. Sci.: Mater. Electron. 30 (2019) 11819–11832.
- 606 https://doi.org/10.1007/s10854-019-01556-x.
- 607 [54] T.I. Zubar, S.A. Sharko, D.I. Tishkevich, N.N. Kovaleva, D.A. Vinnik, S.A. Gudkova, E.L. Trukhanova, E.A.
- 608 Trofimov, S.A. Chizhik, L.V. Panina, S.V. Trukhanov, A.V. Trukhanov, Anomalies in Ni-Fe nanogranular
- films growth, J. Alloys Compd. 748 (2018) 970–978. https://doi.org/10.1016/j.jallcom.2018.03.245.
- 610 [55] J. Yao, Z.P. Zhong, TiO₂ preparation by improved homogeneous precipitation and application in SCR catalyst,

- 611 J. Cent. South Univ. 23 (2016) 2139–2145, https://doi.org/10.1007/s11771-016-3270-2.
- 612 [56] J. Liu, Z.B. Xiong, F. Zhou, W. Lu, J. Jin, S.F. Ding, Promotional effect of H₂O₂ modification on the
- 613 cerium-tungsten-titanium mixed oxide catalyst for selective catalytic reduction of NO with NH₃, J. Phys. Chem.
- 614 Solids. 121 (2018) 360–366, https://doi.org/10.1016/j.jpcs.2018.05.051.
- 615 [57] M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Green synthesis of DyBa₂Fe₃O_{7.988}/DyFeO₃
- 616 nanocomposites using almond extract with dual eco-friendly applications: Photocatalytic and antibacterial
- **617** activities, Int. J. Hydrogen Energ. 47 (2022) 14319–14330,
- 618 https://www.sid.ir/en/journal/ViewPaper.aspx?id=506268.
- 619 [58] X.S. Liu, Q.F. Yu, H.F. Chen, P. Jiang, J.F. Li, Z.Y. Shen, The promoting effect of S-doping on the NH₃-SCR
- 620 performance of MnO_x/TiO₂ catalyst, Appl Surf Sci. 508 (2020) 144694,
 621 https://doi.org/10.1016/j.apsusc.2019.144694.
- 622 [59] S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, A new nanocomposite superionic system (CdHgI4/HgI2):
- 623 Synthesis, characterization and experimental investigation, Adv. Powder. Technol. 28 (2017) 1258–1262,
- 624 https://doi.org/10.1016/j.apt.2017.02.013.
- 625 [60] R. Zhang, Q. Zhong, W. Zhao, L.M. Yu, H.X. Qu, Promotional effect of fluorine on the selective catalytic
- reduction of NO with NH₃ over CeO₂-TiO₂ catalyst at low temperature, Appl Surf Sci. 289 (2014) 237–244,
- 627 https://doi.org/10.1016/j.apsusc.2013.10.143.
- 628 [61] Y.Q. Zeng, Y.N. Wang, P. Hongmanorom, Z.G. Wang, S.L. Zhang, J.T. Chen, Q. Zhong, S. Kawi, Active sites
- 629 adjustable phosphorus promoted CeO₂/TiO₂ catalysts for selective catalytic reduction of NO_x by NH₃, Chem.
- 630 Eng. J. 409 (2021) 128242, https://doi.org/10.1016/j.cej.2020.128242.
- 631 [62] C.X. Liu, L. Chen, J.H. Li, L. Ma, H. Arandiyan, Y. Du, J.Y. Xu, J.M. Hao, Enhancement of Activity and Sulfur
- 632 Resistance of CeO₂ Supported on TiO₂–SiO₂ for the Selective Catalytic Reduction of NO by NH₃, Environ. Sci.

- 633 Technol. 46 (2012) 6182–6189, https://doi.org/10.1021/es3001773.
- 634 [63] Q.L. Cong, L. Chen, X.X. Wang, H.Y. Ma, J.K. Zhao, S.J. Li, Y. Hou, W. Li, Promotional effect of
- 635 nitrogen-doping on a ceria unary oxide catalyst with rich oxygen vacancies for selective catalytic reduction of
- 636 NO with NH₃, Chem. Eng. J. 379 (2020) 122302, https://doi.org/10.1016/j.cej.2019.122302.
- 637 [64] H. Zeng, M. Wu, H.Q. Wang, J.C. Zheng, J.Y. Kang, Tuning the magnetic and electronic properties of
- 638 strontium titanate by carbon doping, Front. Phys-Beijing. 16 (2021) 43501,
 639 https://doi.org/10.1007/s11467-020-1034-9.
- 640 [65] S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, Photo-degradation of organic dyes: simple
- 641 chemical synthesis of Ni(OH)₂ nanoparticles, Ni/Ni(OH)₂ and Ni/NiO magnetic nanocomposites, J. Mater
- 642 Sci-Mater. EI. 27 (2016) 1244–1253, https://doi.org/10.1007/s10854-015-3882-6.
- 643 [66] Jigyasa, J.K. Rajput, Bio-polyphenols promoted green synthesis of silver nanoparticles for facile and
- 644 ultra-sensitive colorimetric detection of melamine in milk, Biosens. Bioelectron. 120 (2018) 153-159,
- 645 https://doi.org/10.1016/j.bios.2018.08.054.
- 646 [67] G.L. Wang, H.J. Jiao, X.Y. Zhu, Y.M. Dong, Z.J. Li, Enhanced fluorescence sensing of melamine based on
- 647 thioglycolic acid-capped CdS quantum dots, Talanta. 93 (2012) 398–403,
 648 https://doi.org/10.1016/j.talanta.2012.02.062.
- 649 [68] W. Wang, M.O. Tadé, Z.P. Shao, Nitrogen-doped simple and complex oxides for photocatalysis: A review,
- 650 Prog. Mater. Sci. 92 (2018) 33–63, https://doi.org/10.1016/j.pmatsci.2017.09.002.
- 651 [69] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped
 652 Titanium Oxides, Science. 293 (2001) 269–271, https://doi.org/10.1126/science.1061051.
- [70] J.P. Wang, B.B. Huang, Z.Y. Wang, X.Y. Qin, X.Y. Zhang, Synthesis and characterization of C, N-codoped
- TiO₂ nanotubes/nanorods with visible-light activity, Rare Met. 30 (2011) 161–165,

- 655 https://doi.org/10.1007/s12598-011-0261-1.
- 656 [71] L. Yao, Q.C. Liu, S. Mossin, D. Nielsen, M. Kong, L.J. Jiang, J. Yang, S. Ren, J. Wen, Promotional effects of
- 657 nitrogen doping on catalytic performance over manganese-containing semi-coke catalysts for the NH₃-SCR at
- 658 low temperatures, J. Hazard. Mater. 387 (2020) 121704, https://doi.org/10.1016/j.jhazmat.2019.121704.
- [72] H.L. Huang, W.P. Shan, S.J. Yang, J.H. Zhang, Novel approach for a cerium-based highly-efficient catalyst
- 660 with excellent NH₃-SCR performance, Catal. Sci. Technol. 4 (2014) 3611–3614,
 661 https://doi.org/10.1039/C4CY00926F.
- 662 [73] Q.H. Liang, B.B. Shao, S.H. Tong, Z.F. Liu, L. Tang, Y. Liu, M. Cheng, Q.Y. He, T. Wu, Y. Pan, J. Huang, Z.
- Peng, Recent advances of melamine self-assembled graphitic carbon nitride-based materials: Design, synthesis
 and application in energy and environment, Chem. Eng. J. 405 (2021) 126951,
- 665 https://doi.org/10.1016/j.cej.2020.126951.
- 666 [74] Z. Mo, H. Xu, Z.G. Chen, X.J. She, Y.H. Song, P.C. Yan, L. Xu, Y.C. Lei, S.Q. Yuan, H.M. Li, Self-assembled
- 667 synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy, Appl.

668 Catal. B Environ. 225 (2018) 154–161, https://doi.org/10.1016/j.apcatb.2017.11.041.

- 669 [75] X. Sun, R.T. Guo, S.W. Liu, J. Liu, W.G. Pan, X. Shi, H. Qin, Z.Y. Wang, Z.Z. Qiu, X.Y. Liu, The promoted
- 670 performance of CeO₂ catalyst for NH₃-SCR reaction by NH₃ treatment, Appl Surf Sci. 462 (2018) 187–193,
- 671 https://doi.org/10.1016/j.apsusc.2018.08.114.
- 672 [76] Q. Huang, K. Wei, H.D. Xia, Investigations in the recrystallization of evolved gases from pyrolysis process of
- 673 melamine. J. Therm. Anal. Calorim. 138 (2019) 3897–3903. https://doi.org/10.1007/s10973-019-08338-x.
- 674 [77] J.Z. Chen, L.Y. Guo, H.C. Zhu, Y. Qiu, D.J. Yin, T. Zhang, J.J. Chen, Y. Peng, J.H. Li, Balancing redox and
- acidic properties for optimizing catalytic performance of SCR catalysts: A case study of nanopolyhedron
- 676 CeO_x-supported WO_x, J. Environ. Chem. Eng. 9 (2021) 105828, https://doi.org/10.1016/j.jece.2021.105828.

- 677 [78] X.L. Tang, C.Z. Wang, F.Y. Gao, Y.L. Ma, H.H. Yi, S.Z. Zhao, Y.S. Zhou, Effect of hierarchical element
- doping on the low-temperature activity of manganese-based catalysts for NH₃-SCR, J. Environ. Chem. Eng. 8
- 679 (2020) 104399, https://doi.org/10.1016/j.jece.2020.104399.
- 680 [79] H. Li, Y.B. Hao, H.Q. Lu, L.P. Liang, Y.Y. Wang, J.H. Qiu, X.C. Shi, Y. Wang, J.F. Yao, A systematic study
- $\label{eq:constraint} 681 \qquad \qquad \text{on visible-light N-doped TiO}_2 \ \text{photocatalyst obtained from ethylenediamine by sol-gel method, Appl Surf Sci.}$

682 344 (2015) 112–118, https://doi.org/10.1016/j.apsusc.2015.03.071.

- [80] X. Nie, G.Y. Li, P.K. Wong, H.J. Zhao, T.C. An, Synthesis and characterization of N-doped carbonaceous/TiO2
- 684 composite photoanodes for visible-light photoelectrocatalytic inactivation of Escherichia coli K-12, Catal.
- 685 Today. 230 (2014) 67–73, https://doi.org/10.1016/j.cattod.2013.09.046.
- 686 [81] S.V. Trukhanov, V.A. Khomchenko, L.S. Lobanovski, M.V. Bushinsky, D.V. Karpinsky, V.V. Fedotova, I.O.
- 687 Troyanchuk, A.V. Trukhanov, S.G. Stepin, R. Szymczak, C.E. Botez, A. Adair, Crystal structure and
- 688 magnetic properties of Ba-ordered manganites $Ln_{0.70}Ba_{0.30}MnO_{3-\delta}$ (Ln = Pr, Nd), J. Exp. Theor. Phys. 103

689 (2006) 398–410, https://doi.org/10.1134/S1063776106090093.

- 690 [82] A.L. Kozlovskiy, D.I. Shlimas, M.V. Zdorovets, Synthesis, structural properties and shielding efficiency of
- 691 glasses based on TeO₂-(1-x)ZnO-xSm₂O₃, J. Mater. Sci.: Mater. Electron. 32 (2021) 12111-12120,
- 692 https://doi.org/10.1007/s10854-021-05839-0.
- 693 [83] W.W. Xie, G.D. Zhang, B. Mu, Z.C. Tang, J.Y. Zhang, The promoting effect of palygorskite on
- 694 CeO₂-WO₃-TiO₂ catalyst for the selective catalytic reduction of NO_x with NH₃, Appl. Clay Sci. 192 (2020)
 695 105641, https://doi.org/10.1016/j.clay.2020.105641.
- 696 [84] W.P. Shan, F.D. Liu, H. He, X.Y. Shi, C.B. Zhang, Novel cerium-tungsten mixed oxide catalyst for the
- 697 selective catalytic reduction of NO_x with NH_3 , Chem. Commun. 47 (2011) 8046–8048,
- 698 https://doi.org/10.1039/c1cc12168e.

- 699 [85] Y.Q. Li, P. Jiang, J.Q. Tian, Y. Liu, Y.J. Wan, K. Zhang, D.H. Wang, J.M. Dan, B. Dai, X.L. Wang, F. Yu,
- 3D-printed monolithic catalyst of Mn-Ce-Fe/attapulgite for selective catalytic reduction of nitric oxide with
- 701 ammonia at low temperature, J. Environ. Chem. Eng. 9 (2021) 105753,
 702 https://doi.org/10.1016/j.jece.2021.105753.
- 703 [86] L.Y. Zong, G.D. Zhang, H.J. Zhao, J.Y. Zhang, Z.C. Tang, One pot synthesized CeO₂-WO₃-TiO₂ catalysts with
- 704 enriched TiO_2 (0 0 1) facets for selective catalytic reduction of NO with NH_3 by evaporation-induced
- 705 self-assembly method, Chem. Eng. J. 354 (2018) 295–303, https://doi.org/10.1016/j.cej.2018.07.199.
- 706 [87] I.O. Troyanchuk, S.V. Trukhanov, D.D. Khalyavin, H. Szymczak, Magnetic properties of anion deficit
- 707 manganites Ln_{0.55}Ba_{0.45}MnO_{3-γ} (Ln=La, Nd, Sm, Gd, γ≤0.37), J. Magn. Magn. Mater. 208 (2000) 217–220,
- 708 https://doi.org/10.1016/S0304-8853(99)00529-6.
- 709 [88] A. Kozlovskiy, K. Egizbek, M.V. Zdorovets, M. Ibragimova, A. Shumskaya, A.A. Rogachev, Z.V. Ignatovich,
- 710 K. Kadyrzhanov, Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of
- 711 FeCeO_x nanocomposites doped with Nb₂O₅, Sensors 20 (2020) 4851, https://doi.org/10.3390/s20174851.
- 712 [89] C. Gao, J.W. Shi, Z.Y. Fan, Y.K. Yu, J.S. Chen, Z.H. Li, C.M. Niu, Eu-Mn-Ti mixed oxides for the SCR of NO_x
- 713 with NH₃: The effects of Eu-modification on catalytic performance and mechanism, Fuel Process. Technol. 167
- 714 (2017) 322–333, https://doi.org/10.1016/j.fuproc.2017.07.006.
- 715 [90] F.X. Li, X.D. Xiao, C. Zhao, J.N. Liu, Q. Li, C.Y. Guo, C.G. Tian, L.P. Zhang, J.A. Hu, B.J. Jiang,
- 716 TiO₂-on-C₃N₄ double-shell microtubes: In-situ fabricated heterostructures toward enhanced photocatalytic
- 717 hydrogen evolution, J. Colloid Interface Sci. 572 (2020) 22–30, https://doi.org/10.1016/j.jcis.2020.03.071.
- 718 [91] S.F. Sun, M.X. Sun, Y.L. Fang, Y. Wang, H.P. Wang, One-step in situ calcination synthesis of g-C₃N₄ /N-TiO₂
- 719 hybrids with enhanced photoactivity, RSC Adv. 6 (2016) 13063–13071, https://doi.org/10.1039/C5RA26700E.
- 720 [92] H.Y. Li, S.L. Zhang, Q. Zhong, Effect of nitrogen doping on oxygen vacancies of titanium dioxide supported

- 721 vanadium pentoxide for ammonia-SCR reaction at low temperature, J. Colloid Interface Sci. 402 (2013)
- 722 190–195, https://doi.org/10.1016/j.jcis.2012.10.033.
- 723 [93] X.D. Wang, K. Zhang, X.L. Guo, G.D. Shen, J.Y. Xiang, Synthesis and characterization of N-doped TiO₂
- 1024 loaded onto activated carbon fiber with enhanced visible-light photocatalytic activity, New J. Chem. 38 (2014)
- 725 6139–6146, https://doi.org/10.1039/c4nj00962b.
- 726 [94] G.D. Yang, Z. Jiang, H.H. Shi, T.C. Xiao, Z.F. Yan, Preparation of highly visible-light active N-doped TiO₂
- 727 photocatalyst †, J. Mater. Chem. 20 (2010) 5301–5309, https://doi.org/10.1039/c0jm00376j.
- 728 [95] K. Wang, Q. Li, B.S. Liu, B. Cheng, W.K. Ho, J.G. Yu, Sulfur-doped g-C₃N₄ with enhanced photocatalytic
- 729 CO₂-reduction performance, Appl. Catal. B Environ. 176–177 (2015) 44–52,
 730 https://doi.org/10.1016/j.apcatb.2015.03.045.
- 731 [96] H. Liu, Z.Z. Xu, Z. Zhang, D. Ao, Highly efficient photocatalytic H₂ evolution from water over
- 732 CdLa₂S₄/mesoporous g-C₃N₄ hybrids under visible light irradiation, Appl. Catal. B Environ. 192 (2016)
- 733 234–241, https://doi.org/10.1016/j.apcatb.2016.03.074.
- 734 [97] J. Arfaouia, A. Ghorbela, C. Petittob, G. Delahay, Effect of acidic components (SO4²⁻ and WO₃) on the
- 735 surface acidity, redox ability and NH₃-SCR activity of new CeO₂-TiO₂ nanoporous aerogel catalysts: A
- 736 comparative study, Inorg. Chem. Commun. 140 (2022) 109494.
- 737 https://doi.org/10.1016/j.inoche.2022.109494.
- 738 [98] S.S. Liu, H. Wang, Y. Wei, R.D. Zhang, Core-shell structure effect on CeO₂ and TiO₂ supported WO₃ for the
- 739 NH₃-SCR process, Mol. Catal. 485 (2020) 110822, https://doi.org/10.1016/j.mcat.2020.110822.
- 740 [99] Y. Peng, J.H. Li, L. Chen, J.H. Chen, J. Han, H. Zhang, W. Han, Alkali Metal Poisoning of a CeO₂–WO₃
- 741 Catalyst Used in the Selective Catalytic Reduction of NO_x with NH₃: an Experimental and Theoretical Study,
- 742 Environ. Sci. Technol. 46 (2012) 2864–2869, https://doi.org/10.1021/es203619w.

- 743 [100] L. Chen, D. Weng, J.D. Wang, D. Weng, L. Cao, Low-temperature activity and mechanism of WO₃-modified
- 744 CeO₂-TiO₂ catalyst under NH₃-NO/NO₂ SCR conditions, Chinese J. Catal. 39 (2018) 1804–1813,
- 745 https://doi.org/10.1016/S1872-2067(18)63129-8.
- 746 [101] Q.L. Wang, J.J. Zhou, J.C. Zhang, H. Zhu, Y.H. Feng, J. Jin, Effect of ceria doping on the catalytic activity and
- 747 SO₂ resistance of MnO_x/TiO₂ catalysts for the selective catalytic reduction of NO with NH₃ at low temperatures,
- 748 Aerosol Air Qual. Res. 20 (2020) 477–488, https://doi.org/10.4209/aaqr.2019.10.0546.
- 749 [102] Y. Jiang, G. Cheng, R.N. Yang, H.F. Liu, M. Sun, L. Yu, Z.F. Hao, Influence of Preparation Temperature
- and Acid Treatment on the Catalytic Activity of MnO₂, J. Solid State Chem. 272 (2019) 173-181,
- 751 https://doi.org/10.1016/j.jssc.2019.01.031.