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Abstract— With early sign of bowel cancer being changes
in affected lesions biomechanical properties, an AI-assisted
dynamic tissue evaluation is proposed for early bowel cancer
diagnosis. Dynamic signals from a self-propelled vibrational
capsule in contact with in-situ bowel lesions were processed and
analysed for features that may be indicative of biomechanical
changes in the lesions. Different combinations of the features
were used to develop different lesion characterisation models.
Supervised classification using Multi-Layer Perceptron (MLP)
and Stacking Ensemble networks (SE) was carried out alongside
unsupervised classification using K-means clustering. The SE
base-learners comprised Support Vector Machine (SVM), De-
cision Tree, Naı̈ve Bayes and Random Forest. Cross-validation
on simulated test data showed that the SEs outperformed
their composite base-learners, however, SVM as a base-learner
showed tendency to yield greater than 90% accuracy. The
MLPs outperformed the SEs in accuracies and in numbers
of high-performance models, hence, were the only supervised
network used during experimental validation and they yielded
an average accuracy of 96.5%. For unsupervised classification,
both simulation and experimental data showed that the lesions
are best clustered into two categories representing benign and
malignant lesions.

I. INTRODUCTION

The intestinal mucosa of the human digestive tract includ-
ing the small and large bowel are sometimes characterised
with different lesions. Some of these lesions can mutate
over time from benign (i.e. adenoma) to malignant (i.e.
adenocarcinoma). Bowel lesions that have mutated to become
malignant are referred to as bowel cancer. Globally, bowel
cancer is the second most common cause of cancer deaths in
men and women with about one million deaths per year [1],
however, studies have shown that patients have 98% chance
of surviving if diagnosis is made early [2]. This makes
early diagnosis a crucial part of bowel cancer treatment and
survival, however, most of the existing screening methods
rely on post-development features including number, size and
shape of polyps to infer diagnosis [3]. With these methods,
advanced stage bowel cancer are easily detected but the
early stage bowel cancer are quite difficult to detect as they
often appear as subtle mucosal lesions [4]. A more recent
screening method is the non-invasive capsule endoscopy
which makes use of a wireless pill sized video camera to
examine the inside of the bowel [5]. Capsule endoscopy was
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developed to meet the increasing demand for bowel cancer
screening while reducing the discomfort, risk of infection,
manoeuvring difficulty and vigorous training often associated
with conventional colonoscopy [6], [7].

Like other cancers, the development of bowel cancer often
start with changes in biomechanical properties [8] of affected
lesions and this is often obscured and unquantifiable to
the endoscopist, thus making early detection very difficult.
In this study, a non-invasive biomechanical evaluation of
lesions is carried out using readily measurable dynamics of
a self-propelled capsule and machine learning. The resulting
dynamics of the capsule travelling and encountering lesions
in the bowel are envisaged to carry information that are
intrinsic to encountered lesions. The measured dynamics
are processed and analysed for features that may be in-
dicative of biomechanical differences in the lesions. With
no established relationship between the resulting features
and the lesion’s biomechanical properties, machine learning
algorithms capable of learning complex relationships from
data were adopted for classifying the features into different
biomechanical classes. Supervised classification using Multi-
Layer Perceptron (MLP) and Stacking Ensemble networks
(SE) was carried out alongside unsupervised classification
using K-means clustering. During supervised learning, the
algorithms were first trained to find patterns from a large
dataset and the trained models were later used to make
prediction on unseen data. For unsupervised learning, attempt
was made at classifying all the data into desired classes
without prior training.

Stiffness is one of the measurable biomechanical prop-
erties that tends to increase at the early stage of bowel
cancer development [8], [9]. This is suggested to be as a
result of the overproduction of collagens, alignment of fibres
and pathological collagen crosslinking [8]. As a measure
of resistance to deformation, tissue stiffness has often been
denoted as Young’s modulus in most literature with stiffer
materials having higher values. Studies such as [9], [10]
have demonstrated how biomechanical characterisation can
be used to distinguish between healthy and cancer infected
tissues. However, these previous biomechanical characteri-
sation have always required invasive retrieval of the tissues
via surgery or biopsy, but in this present study a non-
invasive method is introduced. The schematic illustration of
the proposed early bowel cancer detection is presented in
Fig. 1 and this novel approach is expected to make early
stage bowel cancer detection possible and easier.

The remaining of this letter is structured as follows.
Section II introduces the mathematics, operational modes and



Fig. 1. Conceptual design and real-world prototype of the vibrational capsule system for early bowel cancer detection, where a capsule prototype, 26
mm in length and 11 mm in diameter, was fabricated. The prototype contains a T-shaped permanent magnet for vibration, a helical spring for reverting the
magnet’s position and a capsule shell with a primary and a secondary constraint for restricting the vibration of the magnet. Once the magnet is excited by
the external electromagnetic field using a square wave signal, it may impact with the constraints, so the capsule can progress either forward or backward.
During the procedure, a clinician will hold a coil panel above the capsule to guide it from the patient’s rectum to the cecum. The capsule has two operational
modes: progression and diagnostic. In progression mode, the capsule is driven to the place of interest, while in diagnostic mode, it is stabilised at a location
where a lesion is detected for further diagnosis. In progression mode, responses favourable for the capsule’s progression are most likely until a lesion
is encountered. In diagnostic mode, the capsule’s responses are determined by the bowel tissue’s biomechanical properties, such as mucosal friction and
encountered lesion’s elastic modulus.

accompanying dynamics of the capsule. Measurable dynamic
signals and extractable features are described in Section
III while the machine learning algorithms used for the AI
models are discussed in Section IV. The results of the training
and testing of the AI models are presented in Section V for
both simulation and experimental data. The letter is rounded-
off with some discussions and conclusions in Section VI.

II. THE SELF-PROPELLED VIBRATIONAL CAPSULE

The self-propelled vibrational capsule was invented to
reduce the long hours of capsule endoscopic procedures
while also permitting forward and backward motion control,
allowing endoscopists to re-visit areas of interest.

A. Mathematical model

The capsule shown in Fig. 2 has a cylindrical body of
length L, radius of R and mass mc with a bowel lesion of
height hp and width wp in front. It is driven by an externally
excited magnetic inner mass mm impacting a secondary
and a tertiary spring constraint with stiffnesses k1 and k2,
respectively. As seen from the figure, a primary damping
spring with stiffness k and damping c connects mm to the
capsule shell. k1 and k2 are separated from mm by gaps g1
and g2, respectively. The inner mass is subjected to periodic
excitations using an external periodic force Fe, in this case
a square waveform signal given as

Fe =

{
Pd, mod (t, T ) ∈ [0, DT ],

0, otherwise,
(1)

where Pd, T and D ∈ [0, 1] represent the amplitude, period,
and duty cycle ratio of the excitation force, respectively and
mod (t, T ) indicates t modulo T .

By impacting the forward and backward constraints, the
inner mass drives the capsule either forward or backward.

Fig. 2. Physical model of the vibrational capsule with a bowel lesion.

Considering the free-body diagram and the prevailing forces,
the dynamics of the capsule’s motion in the bowel can be
modelled as [11],{

mmẍm = Fe − Fi,

mcẍc = Fi + Fx + Ff ,
(2)

where Fi is the interactive driving force impacted on the
capsule by the inner mass represented as

Fi =


kxr + cvr + k1(xr − g1), if xr > g1,

kxr + cvr, if − g2 ⩽ xr ⩽ g1,

kxr + cvr + k2(xr − g2), if xr < −g2.

(3)

Here xr = xm−xc and vr = ẋm− ẋc respectively represent
the relative displacement and velocity between the inner
mass and the capsule shell. On the other hand, Fx and Ff

respectively represent the horizontal reaction from the lesion
and the Coulomb friction that accounts for tangential contact
forces, where the vertical force Fy from the lesion cancels
the capsule gravity G. Depending on these two forces, the
overall frictional force is given as

Ff =


−sign(ẋc)µG, if ẋc ̸= 0

−sign(Fi + Fx)µG, if ẋc = 0 and |Fi + Fx| ≥ µG

−Fi − Fx, if ẋc = 0 and |Fi + Fx| < µG
(4)

where µ is the frictional coefficient and Ff has been proven
to sufficiently represent the friction between the intestinal



walls and the capsule [12]. For a detailed study of Fx, readers
can refer to [11].

B. Dynamics of the vibrational capsule

Excitation amplitude, period and duty cycle are the capsule
parameters that are alternated to drive and impose the differ-
ent operational modes on the capsule. This can either be the
diagnostic or progression modes (Fig. 1). In diagnostic mode,
the inner mass is restricted to forward impacts that causes the
capsule to move but sticks and vibrates on lesions. During
progression, the capsule is made to either move forward or
backward via impacts of the inner mass with the forward
or backward constraint, respectively. These capsule modes
alongside their representative dynamical variables and phase
portraits are illustrated in Fig. 3. For (D,T ) = (0.2, 0.05),
(0.2, 0.07) and (0.3, 0.05), diagnostic modes were observed
for Pd ∈ [25, 40] mN, [20, 29] mN and [20, 29] mN, respec-
tively. The vibro-impacts imposed on the capsule are well
obvious from the inner mass acceleration signals (ẍm), and
it is seen to relatively exhibit either the period-one motion
with one impact per period of excitation or the period-two
motion with two impacts.
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Fig. 3. Measurable dynamics of the capsule and their phase trajectories for
(a) period-one motion with one impact per period of excitation (diagnostic
mode) (b) period-two motion with two impacts (diagnostic mode) and (c)
period-one motion with one impact (progression mode). Red, pink and blue
lines on the left panels represent the acceleration (ẍm) and displacement
(xm) of the inner mass and the capsule’s displacement (xc), respectively.
Black, vertical red lines and red circles on the right panels denote the
capsule’s phase trajectories on the (xr, vr) plane, impact boundaries of
the constraints and the Poincaré sections of the trajectories, respectively.

III. CAPSULE SIGNALS AND FEATURE EXTRACTION

With respect to the works of Yan et al. [11], the dynamics
of the capsule encountering a conical intestinal lesion (see
Fig. 2) were simulated for parameters given in Table I. The
investigated tissue stiffness varied in E ∈ [12, 170] KPa and
were labelled into five classes as shown in Table II. E ∈
[2, 70] kPa, stiffness values were sampled at a step size of 1.2
kPa, while for E ∈ [72, 170] kPa, they were sampled at 2.4
kPa. In all, 2363 dynamical signals of capsule’s displacement
xc were generated in the diagnostic mode. White Gaussian

noise of signal-to-noise ratio 20 was added to the simulated
signals before smoothening as exemplified in Fig. 4 in order
to adapt them to experimental scenarios.

TABLE I
CAPSULE PARAMETERS FOR THE DYNAMIC SIMULATION.

Parameters Symbols Units Values
Capsule length L mm 26
Capsule radius R mm 5.5
Capsule mass mc kg 0.00167

Inner mass mm kg 0.0018
Primary stiffness k N/m 62

Secondary stiffness k1 N/m 27900
Tertiary stiffness k2 N/m 53500

Gap to k1 g1 mm 0.8
Gap to k2 g2 mm 0.8
Damping c Ns/m 0.0156

Duty cycle ratio D - [0.2,0.3]
Excitation period T s [0.05,0.07]

Lesion height hp mm 8
Lesion width wp mm 8

TABLE II
INVESTIGATED E-VALUES AND AFFIXED CLASS LABELS.

E-values (kPa) Class label

E ⩽ 39.6 E0

39.6 < E ⩽ 67.2 E1

67.2 < E ⩽ 98.4 E2

98.4 < E ⩽ 129.6 E3

129.6 < E ⩽ 170 E4

0 0.05 0.1 0.15 0.2

6

6.5

7

7.5
Raw Noise Smoothened

Fig. 4. Example of noise effected and smoothened signals.

Machine learning, especially those involving real-life
problems have often required working with huge and lengthy
time histories data. Building AI models using such data set
can be very costly in terms of computing time, memory
and power, and sometimes yield under-performing models.
Feature extraction is often used to circumvent this problem
and it involves condensing lengthy raw measurements into
fewer numerical features manually or automatically. Manual
feature extraction often requires expert domain knowledge to
identify and extract discriminating features. Automatic fea-
ture extraction on the other hand utilises special algorithms
to extract features with little or no manual intervention. In
this study, manually defined statistical (in time and frequency
domains), waveform and nonlinearity features (listed in Ta-
ble III) were extracted from smoothened xc signals and used



as inputs into the machine learning models. These features
are believed to be indicative of biomechanical difference,
however, with complex nonlinear relationship. The schematic
layout of the proposed hard-to-visualise early bowel cancer
detection is shown in Fig. 5.

Fig. 5. Schematic layout of the proposed early bowel cancer detection.

Figure 6 shows the nonlinearity between some features
and their corresponding stiffness. The features showed higher
sensitivity and discrimination at lower stiffness values com-
pared to larger values. The red-broken lines cuts across fea-
ture values for E = 22.8 kPa using different Pd−values and
these are seen to differ despite representing same stiffness.
This was the basis for including excitation parameters D, T ,
Pd, g1 and the periods of each signal in the network inputs.
In all, 47 features were gathered and scaled to have a mean
of zero and standard deviation of one based on

z =
(xf−x̄f )

σf
, (5)

where z is scaled value, xf is the original value, x̄f is
the mean and σf is the standard deviation of each feature.
Figure 7 shows the variation of original 47 features for a
particular displacement signal before and after rescaling.
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Fig. 6. Comparison of E-values with their corresponding features including
(a) mean, (b) average peak-to-peak, (c) average forward displacement and
(d) variance. The red-broken lines cut across feature values for E=22.8 kPa
for signals of different excitation amplitudes Pd.

IV. MACHINE LEARNING ALGORITHMS

In the healthcare sector, machine learning has been applied
to surgical robotics and automation [13]–[15] as well as in
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Fig. 7. Variation of defined features for a particular displacement signal
(a) before and (b) after scaling.

disease identification and diagnosis [16], [17] using different
learning algorithms.

A. Supervised learning algorithms

Supervised learning algorithms are capable of force learn-
ing the mapping function between input data and their
corresponding targets via examples of input-output pairs. The
resulting mapping function is then used to make prediction
on similar new input data. In the present study, MLP and SE
were used.

1) Multi-Layer Perceptron: MLPs evaluate input infor-
mation in a single and forward direction using series of
interconnected neurons organised in its input, output and
hidden layers. Hidden layer can be single or multiple and
the neurons of a particular layer interact with those of the
following layer via connections of weights w and biases b.
MLP learning process involves finding optimal sets of w and
b that gives the best output. For input data xi, i = 1, 2, ..., N ,
the overall network output yo is given as [18]

yo = fo

 M∑
j=1

Wjfh

 N∑
i=1

Wijxi

+ bo

 , (6)

where N is the number of input data, M is the number of
hidden neurons, xi is the ith input data, Wij is the weight
parameter between the ith input data and jth hidden neuron
and Wj is the weight parameter between the jth hidden
neuron and the output neuron. Being a classification problem,
the activation function fo is given as a sigmoid function
while fh is a hyperbolic tangent function. The difference
between the network’s prediction (yo) and the actual target
(yt) is defined as a cross-entropy error,

Eer = −
P∑

k=1

{ytk ln(yok) + (1− ytk) ln(1− yok)}, (7)

where k = 1, 2, ..., P , P is the size of outputs. For this work,
a two-layer MLP with three hidden neuron each was used.

2) Stacking ensemble classification model: Ensemble
learning including bagging, boosting and stacking [19] in-
volves training a set of base learner networks and using



TABLE III
EXTRACTED DYNAMIC SIGNAL FEATURES.

Time domain features Avg cumulative minimum Skew factor Waveform features
Mean Root-mean-square (RMS) Signal-to-noise ratio (SNR) Avg forward disp.
Minimum abs(Maximum value)

RMS
Total harmonic distortion (THD) Avg backward disp.

Maximum Root-sum-of-squares (RSSq) SNR-to-THD ratio Avg prominence
Standard deviation Crest factor Frequency domain features Peak-to-peak amplitude
Range Mean absolute value Mean frequency Area under curve
Kurtosis Form factor Median frequency Nonlinearity features
Variance Impulse factor Band power Lyapunov exponent
Skewness Mean square root of absolutes Occupied bandwidth Correlation dimension
Mean normalised frequency Kurtosis factor Power bandwidth Approximate entropy
Clearance factor Margin factor Peak amplitude
Avg cumulative maximum Shape factor Power spectral density

their prediction outputs as input features for training another
network. While bagging and boosting often use copies of
same network as base-learners, stacking utilises multiple
and heterogeneous networks (see Fig. 8). In this study a
SE was developed using support vector machine (SVM)
with Gaussian kernel, K-nearest neighbor (KNN), Decision
tree (DT), Naı̈ve Bayes (NB), and Random forest (RF).
Classification scores rather than the predicted labels of the
base learner were obtained as the new input features which
were of the same length as the original data. For each
base model, a K-fold prediction function (‘kfoldPredict’)
as available in MATLAB was used to obtain the five-class
classification scores for the training data. This is to avoid
creating an overfitted SE. The trained base-learners were also
applied on the test data to obtain their classification scores.

In
p

u
t 

tr
ai

n
in

g
 d

at
a SVM

NB

KNN

RF

DT k
-f

o
ld

 c
ro

ss
-v

al
id

at
io

n

S
E

-N
et

����

���

����

���

�	


Base learners Scores

E0

E1

E2

E3

E4

Fig. 8. Concept of the SE classification model.

B. Unsupervised learning algorithms

Unsupervised learning involves learning from input data
without making reference to their corresponding targets and
it is often used to discover groups of similar examples in the
input data. In this study, K-means clustering was adopted to
unsupervisedly group the lesions using the extracted features.
K-means clustering introduced by MacQueen in 1967 [20]
is one of the simplest unsupervised learning algorithms. It
aims at partitioning input data into k clusters such that the
resulting clusters have high intra-cluster similarity but low
inter-cluster similarity.

On initialising, K-means randomly selects no number of
objects for each cluster from the input data and computes a
centroid for them. The remaining data is assigned into the
cluster to which they are most similar based on the distance
between them and the cluster’s centroid. A new centroid
is computed for the clusters and the process is iterated.

For this study, distance metrics including squared Euclidean
distance (SqEucl) and city block (CtyBlk) which respectively
use mean and component-wise median as centroids [21]
were compared. Due to the medical relevance of this study,
clustering results were evaluated by comparing with ground-
truth rather than the often used silhouette values.

V. LESION CATEGORISATION

A. Simulation results

For the supervised learning, about 70% and 30% of
the data were respectively used for training and testing.
Different network models were developed using raw signal
data, all extracted feature data and dimensionally reduced
feature data. Feature reduction algorithms, including Chi-
square tests (fschi2), Minimum Redundancy Maximum Rele-
vance (fsmrmr), Neighborhood Component Analysis (Fsnca),
ReliefF (FsRlfF) , Principal Component Analysis (PCA) and
Coefficient of Determination (R2 > 0.6), were utilised. Some
features were repeatedly selected by two or more algorithms
and these include Mean, RMS, Root-sum-of-squares, Mean
absolute value, Mean square root of absolute values, Shape
factor, Band power and Average forward displacement.

Figure 9 shows the confusion matrices of the base-learners
and the resulting SE on test data using Fsschi2 features. The
blue diagonal cells indicate the number of correctly classified
instances for each class. The blue cell of a particular class
represents its true positive while the other blue cells represent
its true negative. The brown off-diagonal cells indicate the
misclassified instances representing the false positive (in-
row) and the false negative (in-column). The overall accuracy
of the learners was calculated as

Accuracy(%) = TP+TN
TP+TN+FP+FN × 100%, (8)

where TP, TN, FP and FN denote true positive, true negative,
false positive and false negative, respectively.

Tables IV and V show the results of the SE and the
MLP models on the simulation data. Comparing the base-
learners in Table IV, SVM showed better performances as
five of its models achieved accuracies greater than 90% on
test data. However, the resulting SE outperformed individual
base-learners except for the Fscna and R2 based SVMs. The
SE models showed an average accuracy of 91.7% on the



TABLE IV
BASE-LEARNERS AND SE MODELS ACCURACIES (%): SIMULATION.

Feature Data SVM NB KNN RF DT SE

Raw Train 99.7 71.5 100 100 98.5 99.9
Test 93.0 72.2 92.3 92.3 85.6 95.9

All-Fts Train 99.8 100 98.7 74.5 99.6 99.8
Test 58.8 75.9 88.1 73.4 91.5 91.4

Fschi2 Train 91.5 42.0 100 85.0 95.5 96.0
Test 83.8 71.6 79.8 36.4 74.5 88.1

Fsmrmr Train 96.9 73.3 100 97.7 97.7 98.2
Test 92.0 85.7 87.0 72.3 87.4 92.6

Fsnca Train 96.9 73.9 100 95.7 97.5 99.0
Test 91.2 85.2 84.9 74.9 88.2 89.6

FsRlF Train 97.4 73.3 100 94.9 97.1 98.8
Test 93.0 89.4 86.6 73.8 88.1 93.4

PCA Train 98.8 67.7 100 94.4 95.8 98.9
Test 81.3 88.6 85.5 67.8 89.3 89.7

R2 Train 97.1 74.4 100 93.6 96.6 98.8
Test 94.1 90.1 84.8 74.2 87.9 92.7

Average Train 97.3 72.0 99.8 92.0 97.3 98.6
Test 85.9 82.3 86.1 70.6 86.6 91.7

Models > 90% 5 1 1 1 1 5

TABLE V
MLP MODELS ACCURACIES (%): SIMULATION.

Feature Training Testing
Raw 95.8 87.5

All-Fts 98.0 97.8
Fscchi2 98.0 97.8
Fscmrmr 98.5 97.5

Fscna 98.5 97.9
ReliefF 98.2 97.7

PCA 98.4 97.0
R2 98.1 97.8

Average 97.9 96.4

test data with five of them having accuracies greater than
90%. Figure 10 shows the cross-validation performance of
Fschi2-based SE model on the test data. It can be observed
that the misclassified (red dots) were more concentrated
at the boundary for the lower stiffness classes including
E0, E1, E2 and E3. This might be as a result of the
narrow differences between the classes, about 1.2− 2.4 kPa.
The occurrence of misclassified samples across the E4 class
further establishes the low sensitivity and low discriminative
power of extracted features at higher stiffnesses.

Table V shows that the feature-based MLPs significantly
outperformed the raw data MLP. Compared to the feature-
based SEs, the feature-based MLPs showed better perfor-
mances with seven of its models yielding accuracies greater
than 97% on test data and an average accuracy of 96.4%.
However, SE outperformed MLP using the raw signal data
as they showed accuracies of 95.9% and 87.5% respectively
on the test data. This suggests that SE, combining the powers
of multiple base-learners is more suitable for unprocessed
raw data, however, at a higher computing cost. The results
also showed that further dimensionality reduction via feature
selection did not always equate to improved network per-
formance. Some All-Fts models were seen to outperformed
some reduced features models.
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Fig. 9. Confusion matrices of the base-learners and the resulting ensemble
network using Fschi2 features.
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one (circled red) using the Fschi2-based SE.

Attempt to unsupervisedly classify the simulated signals
into five lesion classes via K-means clustering as done
for supervised learning proved unsuccessful. Same class
signals were clustered to belong to two or more different
classes, however, a two-class clustering came out success-
fully (Fig. 11). Samples previously labelled as E0 were
re-labelled as Category 1 representing benign lesions while
classes E1, E2, E3 and E4 were re-labelled as Category
2 representing malignant lesions. Results of the K-means
clustering are reported in Table VI. SqEucl as a distance
metric outperformed CtyBlk with six of its models yield-
ing accuracies greater than 94%. Both metrics, however,
achieved greater than 93% accuracies using unprocessed
raw signals. Like the supervised models, misclassification



occurred mostly at the boundary of the two classes.

Fig. 11. Unsupervised classification into (a) five classes (b) two classes
using K-means clustering.

TABLE VI
K-MEANS CLUSTERING ACCURACIES (%): SIMULATION.

Features SqEucl CtyBlk
Raw 94.8 93.4
All 75.5 76.2

Fscchi2 70.2 71.8
Fscmrmr 95.2 89.4

Fscna 95.8 92.8
ReliefF 94.4 88.7

PCA 94.8 88.2
R2 95.2 87.7

Average 89.5 86.0

B. Experimental validation

For experimental validation, three conical bumps were
fabricated from Ecoflex-30, 50 and 80. Ecoflex has in the
past been used to represent biological soft tissues [22], [23].
Fabricated bumps were sowed into an artificial intestine of
stiffness 25 kPa to create synthetic lesions. Quasi-static test
using INSTRON machine revealed the Young’s modulus of
the synthetic lesions to be E = 56.32 kPa, 84.48 kPa and
168.96 kPa for the Ecoflex-30, 50 and 80 respectively rep-
resenting E1, E2 and E4 lesion categories. The schematic
and laboratory set-up of the experiment are shown in Fig. 12.
In all, 977 experimental xc were obtained by alternating the
capsule parameters between D = [0.2, 0.35, 0.5, 0.65, 0.8]
and T = [0.05, 0.07, 0.1, 0.2]. The magnetic field at capsule’s
location was calculated using Biot–Savart’s law [24] and
this was further used to calculate the excitation amplitude
[25], which varied in Pd ∈ [40.1, 82.6] mN. Savitzky-Golay
algorithm was used to smoothen the experimental signals.

Based on low memory requirement, shorter training time
and better performance on simulation data, MLP was the
only supervised network used in the experimental validation
using the three classes experimental data. K-means clus-
tering into two categories was also carried out to validate
the unsupervised categorisation. Results of the experimental
validation are presented in Table VII. The experimental

feature-based MLPs achieved at least 91% accuracies with
some achieving 100% and all appending ‘NaN’ to the none
experimentally available classes as shown in Fig. 13. With an
average accuracy of 99.6%, K-means clustering using SqEucl
outperformed CtyBlk which had average accuracy of 81%.
The experimental results also showed that feature selection
did not improve the classification.

TABLE VII
EXPERIMENTAL VALIDATION RESULTS.

Features MLP models (%) K-means (%)
Training Testing SqEucl CtyBlk

Raw 88.3 88.1 100 100
All 100 100 100 100

Fscchi2 99.2 96.2 98.2 54.8
Fscmrmr 100 100 99.4 99.5

Fscna 96.9 95.9 100 100
ReliefF 100 100 100 58.4

PCA 100 99.7 100 35.6
R2 92.1 91.8 99.4 100

Average 97.1 96.5 99.6 81

VI. CONCLUSIONS

In this study, an AI based dynamic tissue evaluation has
been proposed and investigated for the purpose of early
bowel cancer detection using a vibration propelled robotic
capsule. Using extracted features, supervised MLP and SE
network models have been developed and evaluated along-
side unsupervised K-means clustering. Extracted features
were seen to be more sensitive and discriminative for lower
E-values compared to higher E-values. This suggests that the
proposed method will be efficient in differentiating between
benign lesions and hard-to-visualise early bowel cancers.
Based on the implemented feature selection, features that
could be of first point of consideration include Mean, RMS,
RSSq, Mean absolute value, Mean square root of absolute
values, Shape factor, Band power and Average forward
displacement. Based on required computing power, training
time and resulting accuracies, the MLPs are more preferable
for the feature based supervised classification. SE on the
other hand is seen to combine the predictive powers of it
base-learners to outperform the MLP when using raw and
unprocessed signal data, however, at higher computational
cost. Most of the resulting SE models outperformed their
composite base-learners. Implemented unsupervised classi-
fication showed that the lesions are better categorised into
two classes representing healthy (benign) and unhealthy
(malignant) tissues rather than five classes. K-means clus-
tering using Squared Euclidean distance (SqEucl) as the
distance metric outperformed city block (CtyBlk). Further
analysis of the prediction results showed that most of the
misclassification occurred at the boundary of the classes.

The overall performance analysis of the proposed method-
ology indicates its huge potential to improve bowel cancer
treatment and survival via early detection. As future works, a
threshold difference needs to be established for the E-values
of benign lesions and early bowel cancer lesions. Also, the
current study requires an in-vivo testing.



Fig. 12. (a) Schematic and (b) photograph of the experimental setup. The T-shaped magnet inside the capsule prototype was excited through an on-off
electromagnetic field

#»
B and the helical spring to generate forward and backward impact motion, leading to the locomotion of the prototype. The on-off

external excitation was generated using a signal generator producing a pulse width modulation (PWM) signal via a power amplifier, and the amplifier can
control the voltage applied to the coils by adjusting a DC power supply. The prototype was put on a piece of cut-open synthetic intestine supported by
a halved black plastic tube, which was placed along the axis centre of the coils. Three conical bumps made by Ecoflex-30, 50 and 80 were sowed into
the artificial intestine to create synthetic lesions representing E1, E2 and E4 lesion categories, respectively. On the left of the experimental setup, a laser
sensor was used to record the displacement of the capsule, and recorded data were smoothed and analysed for lesion classification.
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Fig. 13. Confusion matrix of the All-features based MLP.
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