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Abstract

Earth scientists increasingly deal with ‘big data’. Where once we may have

struggled to obtain a handful of relevant measurements, we now often have data

being collected from multiple sources, on the ground, in the air, and from space.

These observations are accumulating at a rate that far outpaces our ability to

make sense of them using traditional methods with limited scalability (e.g., mental

modelling, or trial-and-error improvement of process based models). The revolution

in machine learning offers a new paradigm for modelling the environment: rather

than focusing on tweaking every aspect of models developed from the top down

based largely on prior knowledge, we now have the capability to instead set up

more abstract machine learning systems that can ‘do the tweaking for us’ in order

to learn models from the bottom up that can be considered optimal in terms of

how well they agree with our (rapidly increasing number of) observations of reality,

while still being guided by our prior beliefs.

In this thesis, with the help of spatial, temporal, and spatio-temporal examples

in meteorology and geology, I present methods for probabilistic modelling of

environmental variables using machine learning, and explore the considerations

involved in developing and adopting these technologies, as well as the potential

benefits they stand to bring, which include improved knowledge-acquisition and

decision-making. In each application, the common theme is that we would like to

learn predictive distributions for the variables of interest that are well-calibrated and

as sharp as possible (i.e., to provide answers that are as precise as possible while

remaining honest about their uncertainty). Achieving this requires the adoption of

statistical approaches, but the volume and complexity of data available mean that

scalability is an important factor — we can only realise the value of available data

if it can be successfully incorporated into our models.
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Chapter 1

Introduction

It is in the interest of any organism to gain knowledge of the environment in

which it resides so that available resources can be utilised efficiently, and potential

disasters mitigated against. Even a humble seedling could grow its root network

and branches optimally if it could only collect, process, and act upon the necessary

information about the state of its surroundings in a suitable way. Fortunately, as

human beings we are comparatively gifted in our abilities to collect and process

information, and have long been the natural masters of our surroundings as a

result. Our natural intelligence — whilst not without flaws — has got us to where

we are today.

However, we are in a time of great change: the finite nature of our planet is

becoming ever harder to ignore as we progress into a self-inflicted climate crisis.

Somewhat ironically, the burning of the same fossil fuels that have induced this

crisis has also powered an explosion in technological progress (Figure 1.1) such

that our ability to collect and process information digitally has evolved almost unre-

cognisably over the last century. Whilst our actions have been having significant

negative impact on the Earth system, we have at least put ourselves in a position

to recognise this.

In light of the climate crisis, the future success of humanity (and of life on

Earth as we know it) now depends on our ability to act collaboratively and sensibly

within the closed system of planet Earth. In some ways, as a species we now

find ourselves in the same situation as the humble seedling: with nowhere to go,

our future depends on how successfully we can collect and process information

about our environment in order to act as close to optimally as possible. While a

plant’s control systems benefit from millions of years of evolutionary refinement,

the same cannot be said of humanity’s collective control systems: at the species
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scale, we’ve got no ‘prior experience’ of navigating a climate crisis — our success

depends entirely on the systems we develop ‘in the moment’ to enable the actions

we take here and now. Fortunately, we now have on our side a rapidly evolving

body of information-processing technology that potentially already includes the

precursors of true artificial intelligence.

Figure 1.1: Timeline of climate science, and general technology since 1800. It
is staggering to consider how rapidly technology has evolved over the last two
centuries (and decades), and yet Pierre Simon Laplace had recognised by 1812
that “The most important questions of life... are indeed for the most part only
problems of probability”. It is perhaps only now, with the recent data science
revolution, that we are fully appreciating just how right he was. Image from
Sceptical Science, sks.to

In this thesis, we explore some possible machine learning approaches for

distilling environmental knowledge — in the form of predictive probability distribu-

tions of environmental variables — from large volumes of data, which may include

outputs of existing models (e.g. from numerical weather prediction). We do so with

the ambition that such approaches can contribute to humanity’s ability to ‘master

our surroundings’ in a 21st century sense: by improving the quality with which

we can model the current and future states of our environment, we can enable

ourselves — as a collective — to make decisions that are closer-to-optimal for
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achieving our goals. These decisions needn’t all be revolutionary; even our day-

to-day interactions with the environment can benefit from improved efficiency and

reduced wastage, or loss, by having better information. By developing probabilistic

modelling systems that can strive to learn predictive distributions of environmental

variables which are as sharp (or precise) as possible subject to calibration (honesty

about uncertainty), we put ourselves in a position to make decisions that are as

precise as possible while remaining robust to uncertainty.

1.1 Thesis content and structure

This thesis covers probabilistic modelling examples in temporal, spatial, and spatio-

temporal contexts, using data-sets and use-cases from both the UK Met Office

and the British Geological Survey, both of whom deal with some of the UK’s

most complex environmental modelling challenges in meteorology and geology

respectively. Motivation for the work has largely come from the need within weather

forecasting to be able to assimilate and digest for specific purposes the wealth

of information provided by increasing numbers of increasingly complex physics-

based numerical weather prediction models. However, there is much commonality

between the challenges of post-processing gridded forecasts from numerical

weather prediction models (in relation to point-sampled ground-truth observations),

and of incorporating information from gridded auxiliary variables (e.g. terrain

elevation data, satellite imagery) into environmental models in general. As a

result, this thesis explores this area of commonality and proposes architectures

for probabilistic machine learning systems that are suitable for dealing with these

conceptually similar data integration problems.

Specifically, Chapter 3 presents a Quantile Regression Forest (QRF) approach

to site-specific post-processing of numerical weather forecasts using the example

of Met Office road surface temperature forecasting (or MORST). This serves to

illustrate the complexity of numerical model output data that is available nowadays

to help inform predictions of weather variables even on a site-by-site basis, and
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therefore conveys the necessity for developing machine learning systems that can

deal with this scale of data. We then expand our thinking to address spatial model-

ling in chapters 4 and 5, in which we develop a Bayesian neural network based

approach for combining spatial interpolation and computer vision capabilities in

order to automatically extract relevant information from gridded auxiliary variables,

such as those provided by satellite imagery or numerical weather prediction grids

(although we actually develop the concept using national geochemical survey

observations accompanied by a national-scale terrain elevation grid). In Chapter 6

we address spatio-temporal modelling, this time building on the Bayesian deep

learning architecture of chapters 4 and 5 to develop a deep mixture model for

robust spatio-temporal interpolation of crowd sourced weather observations.

The initial goal of this trajectory of research was to develop a suitable probabil-

istic machine learning system for full spatio-temporal post-processing of numerical

weather forecasts. As things stand, this ‘ultimate’ full post-processing application

is not demonstrated in this thesis, in part due to the disruption of the coronavirus

pandemic and related difficulties in assembling the necessary data-sets, but also

due to the increasingly crowded nature of the AI weather forecast post-processing

research space (largely since Rasp and Lerch (2018)). Therefore, in an effort to ad-

just the project design in the light of unforeseen problems, the final chapter of this

thesis — Chapter 7 — explores the implications of our research to the discipline of

geological mapping. This is an area in which the author has background expertise,

but which has remained largely isolated from mathematical modelling efforts over

the decades (and centuries) since its conception. As Chapter 7 explains, the

Bayesian deep learning approaches developed during this PhD, inspired by the

challenges and solutions of weather forecasting, may turn out to hold the key to a

long overdue probabilistic revolution in geological mapping practice.

All the core research chapters of this thesis (chapters 3 to 7) have been

published along the way (albeit that chapters 4 and 6 are currently just publicly

available pre-prints on arXiv). In addition, some of the content of Chapter 2’s
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literature review has been published as part of an internationally-coauthored

review on AI for weather forecast post-processing, but as I was not the lead author

of that publication I have included material from it only sparingly. For a full list

of publications associated with this thesis, see the previous section ‘Associated

publications’.

1.2 Modelling philosophy

1.2.1 Environmental modelling and probability

While the pressing issues for our species have changed over time, human beings

have always modelled their environment to some degree. Being skilful at predicting

where the nearest heard of edible creatures might currently be found, or when

and where the most nutritious fruit will crop, would always have provided an

advantage — and such basic mental modelling abilities clearly predate us as a

species by many eons. In fact, even bacteria live their lives according to (simple)

environmental models: by the process of chemotaxis the movement of bacteria is

biased towards environments which contain higher concentrations of beneficial

chemicals (e.g. food), or lower concentrations of toxic chemicals (Wadhams and

Armitage, 2004). Implicit behind this evolved behaviour is a crude model of the

environment which says that good things can be found, and bad things avoided,

simply by following chemical gradients.

We can imagine that any agent, or collection of agents, with a set of goals can

increase their chances of achieving these goals by improving their environmental

knowledge. Even the simple bacterium who follows chemical gradients could in

theory, if given perfect information about its environment, make a direct beeline

to the chemically-optimal location (potentially going against beneficial gradients

to get there — the local optimum may not be the global optimum) and thereby

live out a happy and easy life. As human beings in the face of a climate crisis,

if we had perfect information about the current and future states of the Earth

(and how our different possible actions would affect this), then we could simply
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make the optimal set of actions to mitigate or even perhaps overt the crisis. The

problem, of course, is that we can never have perfect information: not everything is

directly observable everywhere, and even things that can be observed can only be

observed with some level of error. This introduces uncertainty into our knowledge

of even the current state of the Earth. This uncertainty is then amplified when

it comes to forecasting future states, as even in a deterministic universe small

changes in initial state can lead to enormous changes in future states (Lorenz,

1963). This is summarised by Edward Lorenz’s comment on chaos: “when the

present determines the future, but the approximate present does not approximately

determine the future”.

In the 1700s, Pierre Simon Laplace pondered what would be possible to

predict given sufficient ‘intellect’ if we could observe the present state of the

universe with absolute certainty, in an idea known as Laplace’s demon (Laplace,

1814): “We may regard the present state of the universe as the effect of its past

and the cause of its future. An intellect which at a certain moment would know all

forces that set nature in motion, and all positions of all items of which nature is

composed, if this intellect were also vast enough to submit these data to analysis,

it would embrace in a single formula the movements of the greatest bodies of

the universe and those of the tiniest atom; for such an intellect nothing would be

uncertain and the future just like the past would be present before its eyes”.

The content of this PhD thesis generally concerns the prediction of envir-

onmental variables through space and through time. Suppose we have some

variable, y, whose value varies with position in space, s, and in time, t. Given

Laplace’s demon, we would be capable of making predictions of y — here denoted

ŷ — which are perfect and without error, such that

ŷs,t = ys,t (1.1)

and therefore our predictions at any position in space and time would perfectly
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match reality.

If we had Laplace’s demon at our disposal, and could use it to foresee with

certainty the outcomes of different decisions that we could make (if we are free

to make decisions in such a deterministic universe), then it would be relatively

straightforward to simply make whatever decisions best achieve our chosen goals.

However, there are several reasons why Laplace’s demon is unrealistic, even as

a hypothetical thought experiment: Laplace himself knew that “while the human

mind offers, in the perfection which it has been able to give to astronomy, a feeble

idea of this intelligence ... it will always be infinitely removed [from it]”.

More recently, Gödel’s incompleteness theorem (Gödel, 1931) showed that

“Any consistent formal system F within which a certain amount of elementary

arithmetic can be carried out is incomplete; i.e., there are statements of the

language of F which can neither be proved nor disproved in F” (Raatikainen et

al., 2020) and hence that there are inherent limitations to what can be know in

any formal system, and thus Laplace’s demon is logically impossible to achieve

even in a deterministic universe. In addition, chaos theory (Lorenz, 1963) tells

us that, even in deterministic systems, slight differences in initial conditions can

evolve into considerably different states, imposing a practical time-horizon on the

predictability of such systems. Therefore, regardless of the power of our computers

the predictions we make will never be reliably perfect and error free, i.e. the reality

for us is that

ŷs,t ̸= ys,t . (1.2)

Since Laplace’s demon will always be unachievable, our predictions will always

be imperfect and uncertain, it therefore makes sense to adopt a probabilistic

approach in order to issue predictions in the form of probability statements, rather

than as (almost certainly incorrect) absolutes. The alternative, of simply issuing

absolute predictions that we hope are ‘close enough’ to reality, can be dangerous

18



because users of those predictions cannot take into account the risks associated

with reality turning out to be different from the prediction. Instead, we can aim to

issue a prediction as a distribution

p(ys,t) (1.3)

in which the probabilities (or probability densities, if y is continuous) that we

assign to different possible values of ys,t represent our uncertainty about what the

true value of ys,t is in reality.

Given that ys,t will have some true value in reality, it could be argued that

issuing a probabilistic prediction is also ‘incorrect’, because there is only one

reality that we can observe in practice, not a distribution of realities. Ideally we

would be able to predict the true value of ys,t without error (i.e., as in Laplace’s

demon), but this is unachievable — there will always be uncertainty due to the

impossibility of observing everything (and even more-so to observe everything

without error). The key benefit of issuing a probability distribution as a prediction is

that doing so enables us to convey the uncertainty associated with the prediction,

such that users of the prediction — downstream decision makers — can account

for the probabilities of encountering different scenarios in reality, therefore enabling

them to mitigate appropriately against adverse outcomes.

1.2.2 Frequentist vs Bayesian methods

In order to issue our probabilistic prediction p(ys,t) for all points in space and time

in which we might be interested, it makes sense to predict a probability density

for y conditional on some inputs or predictor variables, xs,t , which describe each

location or position in space and time, and to do so according to some model m.

Our predictions would therefore take the form

p(y|xs,t ,m). (1.4)

19



Changing the model, m, will change the resultant predictive distribution,

p(y|xs,t), and, as model choice is subjective, so too is the resultant predictive

distribution. Clearly it is important to use the ‘right’ m — in an ideal world we could

use Laplace’s Demon, but since that is not an option, there are two opposing

schools of thought about the best approach; Frequentism and Bayesianism.

In the frequentist approach, we tend to aim to find (or discover, learn) a model,

m̂, which has the highest likelihood (Le Cam, 1990) of having generated all of the

data we observe, yyy. This is to say, by some procedure of model selection and

parameter optimisation, arrive at a ‘best’ model, m̂, which maximises p(yyy|m) so

that

m̂ = argmax
m

p(yyy|m). (1.5)

If the likelihood, p(yyy|m), is sufficiently high then we may be inclined to believe in

the suitability of our chosen model, m̂. However, we should beware that

p(yyy|m) ̸= p(m|yyy) (1.6)

and therefore the model that maximises the likelihood is not necessarily the most

probable model given the data. To calculate this ‘inverse probability’, p(m|yyy),

requires adopting a Bayesian approach (Bayes, 1763; Laplace, 1820) using Bayes’

theorem

p(m|yyy) = p(yyy|m)p(m)

p(yyy)
. (1.7)

where p(m|yyy) is the posterior probability of the model given the data, p(yyy|m)

is the probability of the data given the model (the likelihood), p(m) is the prior

probability of the model, and p(yyy) is the evidence, or marginal likelihood, equal to∫
m p(m)p(yyy|m)dm in the case that the space of possible models is continuous, or

∑m p(m)p(yyy|m) in the case that the space of possible models is discrete.

Omitting p(yyy), the (subjective, user specified) posterior probability of the model

given the data is proportional to the prior probability of the model multiplied by the
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likelihood:

p(m|yyy) ∝ p(yyy|m)p(m). (1.8)

Using Bayes theorem unlocks the capability of basing model selection and para-

meter optimisation on maximising p(m|yyy) rather than p(yyy|m), which is arguably

more logical. This is known as maximum a posteriori estimation (MAP), which

returns a ‘best’ model, m̂, as

m̂ = argmax
m

p(m|yyy). (1.9)

MAP estimation is similar to maximum likelihood estimation in the sense that

it aims to find a single ‘best’ model, but it incorporates the prior beliefs of the

modeller in the form of p(m).

The real power of the Bayesian approach however comes in modelling the

full distribution of possible models p(m|yyy). That is to say, rather than committing

to a single ‘best’ model (whether based on maximal likelihood, maximal posterior

probability, or some other criteria) we instead entertain — and use to predict —

all possible models according to their posterior probability p(m|yyy). This posterior

distribution of possible models becomes particularly useful when making predic-

tions out-of-sample, where the spread between predictions from different models

that could each reasonably fit our in-sample data, yyy, is likely to increase. Using a

single best model for out-of-sample prediction is therefore likely to be inherently

overconfident; because the resultant predictions would be based on the strong

assumption that we know for sure that our single model is the right one.

The Bayesian approach provides predictions in the form of the posterior

predictive distribution (here assuming a continuous space of models)

p(Ys,t |xs,t ,yyy) =
∫

m
p(Ys,t |xs,t ,m)p(m|yyy)dm. (1.10)

which we can approximate using Monte Carlo integration by repeating a two step

process of first sampling a possible model from the posterior distribution p(m|yyy),
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and then, given the model, sampling from the likelihood distribution p(Ys,t |xs,t ,m) —

so sampling a possible value for our target variable at different positions in space

and time. In this manner, the Bayesian posterior predictive distribution captures

our uncertainty about the form of the ‘true’ model, by predicting from a distribution

over possible models according to their posterior probability.

By contrast, predictions from a maximum likelihood, or MAP, single-model

approach simply take the form

p(Ys,t |xs,t ,yyy) = p(Ys,t |xs,t , m̂) (1.11)

where m̂ is our single ‘best’ model with either maximal likelihood p(yyy|m) or maximal

posterior probability p(m|yyy), depending on the chosen estimation. The single

model can only account for uncertainty using its likelihood function. While this is

useful for representing uncertainty in the data — or aleatoric uncertainty — it fails

to capture uncertainty in the model itself — or epistemic uncertainty. Intuitively,

making predictions using only a single model in situations where multiple models

are possible will lead to predictions being underdispersive, so that they do not

convey the full spread of environmental scenarios expected to be observed in

reality. By modelling a distribution over possible models, the Bayesian approach

captures both aleatoric and epistemic uncertainty.

The Bayesian definition of probability is as a degree of belief (Lee, 1989), and

so in Bayesian modelling the posterior distribution over parameters, or possible

models, represents our belief (between 0 and 1) in the parameter values, and

the models they represent, being true. The posterior probabilities, or probability

densities, are proportional to our prior belief in those parameter values multiplied

by their likelihood. Conversely, the frequentist definition of probability is as a

relative frequency of events in a long run of repeated experiments or trials, but for

situations where the experiment can only happen once (e.g., the outcome of an

election) this definition of probability makes little sense.

22



Even in situations where we are not interested in making fully probabilistic

predictions, there are still benefits to adopting a Bayesian approach. For example.

if we are interested in predicting just the mean of our target variable through

space and time, in the Bayesian approach this prediction becomes more stable,

because the discrepancies between the predictions of different possible models

are averaged out (i.e., as is the case for the MAP estimate). In this sense, the

Bayesian approach behaves similarly to regularisation in frequentist methods (and

in fact equivalently in some instances, for example ridge regression can be derived

as the MAP estimate resulting from using an independent Gaussian prior; Hastie

et al., 2009; Vladimirova et al., 2019), which is used to avoid ‘overfitting’ to the

training dataset at the expensive of the model’s ability to predict out-of-sample

observations — which is what matters in the real world.

1.2.3 Model performance on out-of-sample data

We should beware that any single model with a high number of parameters may

perform well on the sample of data on which it is trained (the training sample;

Figure 1.2), while potentially performing much less well on out-of-sample data that

it has not seen during training (the test sample; Figure 1.2). This phenomenon

is referred to as over-fitting, because the model has ‘over-fit’ to the training data,

at the expense of its ability to predict out-of-sample observations well. This can

similarly be considered as over-fitting to noise, at the expense of fitting to signal;

a model that is more complex than the true data generating process will not

generalise well to new observations (whereas a model that is less complex than

the true data generating process may perform about equally well on in-sample and

out-of-sample data, despite not capturing the full complexity of the problem).

Due to the risk of overfitting, simply maximising the likelihood with regard to

the training data, p(yyytrain|m), is therefore no guarantee of arriving at a model with

maximal (or even high) probability of generating the test observations, p(yyytest |m).

In order to reduce the discrepancy between the model’s performance on in-sample

and out-of-sample data (such that in-sample performance metrics become a
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Figure 1.2: Goodness of model fit as a function of model complexity for in-sample
(training) and out-of-sample (test) data. Adapted from Hastie et al. (2009).

better indicator of out-of-sample performance), we can use a penalised likelihood

approach, or regularisation, where we aim to maximise not the likelihood itself but

the likelihood plus some penalty for complexity.

For example, ridge regression includes a quadratic penalty on the values of a

model’s parameters, θ , (excluding the intercept, so that the result does not depend

on the origin of the observations, yyy). The solution to ridge-penalised maximum

likelihood then becomes

m̂ = argmax
m

p(yyy|m)−λ

M

∑
j=1

j ̸=intercept

θ
2
j . (1.12)

where λ ≥ 0 is a user-specified complexity parameter that controls how heavily

complexity is penalised. The larger the value of λ the more the coefficients are

shrunk towards zero, thereby inducing a ‘simpler’ model with lesser tendency to

overfit.

While complexity penalties help guide us away from models that overfit the
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training data, it still makes sense to assess the performance of our models on

out-of-sample data rather than in-sample data, because this is the performance

that matters in the real world — the ability to make good predictions in contexts

that have not been seen during training.

If ample data is available, we can assess out-of-sample performance by

splitting our dataset into separate folds, then training the model on different folds

to those used to assess the model’s performance. We adopt this approach for

the applications in this thesis, for which we generally have ample data available.

Specifically, we have tended to adopt a dataset splitting approach, whereby a

dataset is split into three separate folds — train, validate, and test — at a ratio of

approximately 80:10:10 from which a model is trained on the ‘train’ set (80% of

total), while being tweaked to maximise performance on the ’validate’ set (10%

of total), with final model fit metrics being reported for the ‘test’ set only (another

10% of total). Doing so largely nullifies the risk of overfitting, on the assumptions

that model performance on the ‘validate’ set should be similar to that on the ‘test’

set, and that performance on the ‘test’ set provides adequate approximation of the

‘out of sample’ performance of the model in general.

There is some controversy over the validity of randomly splitting data into

training and testing folds in situations where the resultant folds may be non-

independent. For example, folds produced by random sampling of spatial data

may exhibit spatial autocorrelation, thus making them more similar, and easier

to predict, than folds consisting of data points at geographically opposite ends of

a study area. This may therefore lead to an optimistic bias when evaluating the

performance of spatial models using randomly sampled folds.

Block cross-validation, in which folds are sampled as spatially distinct blocks,

rather than spatially-interdispersed random samples, has been suggested as

a solution (Roberts et al., 2017). However, through experimentation Wadoux

et al. (2021) found ‘that spatial cross-validation strategies resulted in a grossly

pessimistic map accuracy assessment, and gave no improvement over standard
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cross-validation’. Therefore, despite the potential issue of non-independence within

randomly sampled folds of spatial data, evaluation using randomly sampled test

observations seems a viable approach, given that we generally wish to evaluate

the performance of a map-producing model within the spatial extent of data on

which it was trained (i.e, to assess its interpolation performance).

If we instead wish to assess a spatial model’s extrapolation performance,

e.g., the ability of a model trained using UK data to make predictions in France,

then spatial cross-validation would provide a more suitable proxy for this, but as

Wadoux et al. (2021) found, it would produce a pessimistic view of the interpolation

performance of the model. Therefore it seems most appropriate to evaluate model

performance using held out test data, or folds, that best reflect the intended real-

world use case of the model. For that reason, we have evaluating the spatial

models within this thesis using randomly sampled test sets.

In situations where less data is available, so that splitting the dataset becomes

overly wasteful, an alternative approach to avoid selection of an overfitted model is

to use a criterion that again involves penalising the likelihood for model complexity.

For example, the Akaike Information Criterion (Akaike, 1974) chooses the model

for which the quantity

ln p(yyy|m)−M (1.13)

is largest, where M is the number of adjustable parameters in the model. However,

in practice this tends to lead to favouring overly simple models (Bishop and

Nasrabadi, 2006), and is therefore perhaps less useful selection criterion for

modern high-M machine learning methods.

1.2.4 Assessing the quality of a probabilistic prediction

There are a number of ways that we might choose to assess the quality of a

probabilistic prediction p(ys,t). All the approaches mentioned here can be con-

sidered different aspects of ‘model checking’, which is to some extent a subjective

process for sense-checking model output and measuring performance on a range
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of metrics that we deem to be important for assessing a given model’s output.

1.2.4.1 Keep it simple: pretend it’s deterministic

Thinking deterministically, which is perhaps the simplest place to start, we might

hope that the mean of our predictive distribution, E(ys,t), will be close to observed

values of ys,t . It would be typical to assess this using the mean squared error,

MSE =
n

∑
s=1

(ys,t −E(ys,t))
2, (1.14)

or, in the original units of the variable y, the root mean squared error,

RMSE =

√
n

∑
s=1

(ys,t −E(ys,t))2 (1.15)

both of which will be zero if our the mean of our predictive distribution, E(ys,t),

perfectly matches observations of y (as Laplace’s demon would achieve).

1.2.4.2 Calibration and sharpness

However, given that quantifying uncertainty is the key benefit of issuing probabilistic

predictions, it makes sense to assess the quality of this uncertainty quantification,

rather than just the closeness of the predictive mean to reality. To do so, we can

think in terms of the calibration of our predictive distribution. To quote Donald

Rubin: “A Bayesian is calibrated if his [or her] probability statements have their

asserted coverage in repeated experience ... Consequently, the probabilities

attached to Bayesian statements do have frequency interpretations that tie the

statements to verifiable real world events” (Rubin, 1984).

Gneiting, Balabdaoui and Raftery (2007) propose a framework for defining

calibration in terms of three modes: probabilistic calibration, exceedance calibra-

tion, and marginal calibration, each of which corresponds to a different measure

of comparison between a predictive probability distribution (or forecast) F and

nature’s own probability distribution G from which observations are drawn. Consid-

ering times t = 1,2, ..., nature picks a probability distribution Gt and the forecaster
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or modeller chooses a probabilistic predictive distribution Ft . While we talk here

in terms of forecasts and outcomes for different times, t, the concepts are just as

applicable to predictions and outcomes for different points in space, s.

Following Gneiting, Balabdaoui and Raftery (2007), let (Ft)t = 1,2, ... and

(Gt)t = 1,2, ... denote sequences of continuous and strictly increasing cumulative

distribution functions (CDFs) at each timestep t. We can think of (Gt)t = 1,2, ... as

the true data-generating process and of (Ft)t = 1,2, ... as the associated sequence

of probabilistic forecasts. Gneiting, Balabdaoui and Raftery (2007) then define the

three modes of calibration as follows:

a) The sequence (Ft)t = 1,2, ... is probabilistically calibrated relative to the se-

quence (Gt)t = 1,2, ... if

1
T

T

∑
t=1

Gt
(
F−1

t (p)
)
−→ p for all p ∈ (0,1). (1.16)

b) The sequence (Ft)t = 1,2, ... is exceedance calibrated relative to the sequence

(Gt)t = 1,2, ... if
1
T

T

∑
t=1

G−1
t
(
Ft(x)

)
−→ x for all x ∈ R. (1.17)

c) The sequence (Ft)t = 1,2, ... is marginally calibrated relative to the sequence

(Gt)t = 1,2, ... if the limits

Ḡ(x) = lim
T→∞

{
1
T

T

∑
t=1

Gt(x)

}

and

F̄(x) = lim
T→∞

{
1
T

T

∑
t=1

Ft(x)

}
exist and equal each other for all x ∈ R, and if the common limit distribution places

all mass on finite values.

If all of the above calibration modes are satisfied (i.e., it is probabilistically

calibrated, exceedance calibrated, and marginally calibrated) then the sequence

(Ft)t = 1,2, ... is said to be strongly calibrated relative to (Gt)t = 1,2, ....
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These notions of calibration all require averaging over units of time (or posi-

tions in space). Thus the calibration of a forecast, or of the predictive distribution

of a model in general, does not necessarily indicate the accuracy with which

predictions are made at the scale of individual points; rather it indicates how well

probabilistic predictions correspond to reality on average. In theory, the best

situation we can possibly hope for is that

Ft = Gt for all t (1.18)

so that our predictive distribution Ft is equal to nature’s proposal distribution Gt

from which observations xt are drawn. Given that in reality we cannot directly

observe Gt (only the observations that are drawn from it) (Gneiting, Balabdaoui

and Raftery, 2007) propose the paradigm of maximising the sharpness of the

predictive distribution subject to calibration — where sharpness simply refers to

the concentration of the predictive distribution — as a reasonable way to get as

close as possible to the ideal forecast. The more concentrated the predictive

distributions are, the sharper the forecasts, and the sharper the better, subject to

calibration.

We can illustrate this principle with the following simple example: Figure 1.3

and Figure 1.4 both show identical observations of some variable y made at

different values of some covariate x (which in this case runs from 0 to 365, and is

perhaps most easily imagined to be day of the year). In Figure 1.3, the shaded

ribbon depicts a mean-centred 95% prediction interval for a model which does

not account for the effect of x on y; as a result the predictive distribution remains

constant for all values of x, but it is probabilistically calibrated, with observations

falling within the 95% prediction interval 95% of the time (and for all other intervals

in the appropriate corresponding proportions). In Figure 1.4, the shaded ribbon

again depicts a mean-centred 95% prediction interval, but in this case for a model

whose predictive distribution does account for the effect of x on y. As a result the

predictive distribution varies with x, in this simulated example it equals the true
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Figure 1.3: Simulated observations of some variable y plotted against a covariate
x, which could be imagined to be day of the year. The grey ribbon depicts a
mean-centred 95% prediction interval for a model which does not take account of
the effect of x on y, and is thus not very sharp.

Figure 1.4: Simulated observations of some variable y plotted against a covariate
x, which could be imagined to be day of the year. The grey ribbon depicts a
mean-centred 95% prediction interval for a model which takes account of the effect
of x on y, and is thus sharper (and is in fact equal to the true data generating
distribution in this case, making it the ‘ideal forecast’).
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distribution from which the observations are generated, i.e. the model depicted

in Figure 1.4 is the ideal forecast. Gneiting, Balabdaoui and Raftery (2007)

conject that following the paradigm of maximising the sharpness of the predictive

distribution subject to calibration leads us towards this ideal forecast by favouring

models that are as precise as possible while remaining honest about uncertainty.

1.2.4.3 Implications for decision making

As Tim Palmer (2017) explains: “A deterministic forecast provides the user with the

simple decision strategy: take protective action when the event E is forecast. By

contrast, a probabilistic forecast provides a more refined strategy: take protective

action when the risk of the event pL < C. Here p is an estimate of the probability of

E, based on the ensemble forecast [and L is the loss caused by the event, and C is

the cost of taking action to avoid this loss]. For example, according to this strategy,

the user should almost always take protective action if C ≪ L. However, when

C is comparable with L, he or she should only take protective action when it is

almost certain that E will occur.” Our ability to take action to prevent loss therefore

depends upon the ‘quality’ of probabilities issued.

Intuitively it seems sensible that maximising the sharpness of the predictive

distribution subject to calibration will be helpful when it comes to decision making,

because doing so narrows down as far as possible (within the constraints of our

ignorance, i.e. while remaining honest about uncertainty) the spread of scenarios

that we can expect to encounter. As a result, well-calibrated and sharp models

are able to reveal opportunities to exploit gains / minimise losses which less sharp

models will fail to capture. We illustrate this below with a fictitiously simple example.

More on decision theory can be found in e.g., Pratt, Raiffa, Schlaifer et al. (1995)

and Smith (2022).

If we imagine that y is road surface temperature, if (as in Figure 1.5) our

predictive distribution fails to capture the time-of-year effect we might believe that

the probability of sub-zero temperatures was a constant 0.05 per day. If gritting
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Figure 1.5: Simulated observations of some variable y plotted against a covariate
x, which could be imagined to be day of the year. The grey ribbon depicts a
mean-centred 95% prediction interval for a model which does not take account of
the effect of x on y, and is thus not very sharp. The red line shows the probability
of y falling below zero given the model - in this case it is constant.

Figure 1.6: Simulated observations of some variable y plotted against a covariate
x, which could be imagined to be day of the year. The grey ribbon depicts a
mean-centred 95% prediction interval for a model which takes account of the effect
of x on y, and is thus sharper (and is in fact equal to the true data generating
distribution in this case, making it the ‘ideal forecast’). The red line shows the
probability of y falling below zero given the model - the sharpness of the model
focuses the probability mass around the period when p(y < 0) is highest in reality.
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costs £10 000 per day, but untreated frozen roads cost £100 000 per day in

damage (through accidents, road deterioration etc), then although our expected

daily loss to frozen roads is 0.05 x 100 000 = £5 000, it would not be worth

spending £10 000 a day on gritting to prevent this, because over time our loss to

constant expenditure would simply match the loss caused by occasional frozen

roads. In this situation, as a result of being too ignorant to effectively mitigate our

losses, we lose an expected £1.825m (£5000 x 365) per year – it’s simply not

viable to mitigate against the risk given how little we know.

If, on the other hand, we have a well calibrated and sharp predictive distribu-

tion (bottom figure), we can be more precise and efficient in how we mitigate risks

(and pursue rewards). With the benefit of the ‘ideal forecast’ (whose predictive

distribution is closer to, or in this case matches, the true data generating distribu-

tion; Figure 1.6) we find that our highest risk day has p(y < 0) = 0.25, giving an

expected loss for the day of 0.25 x 100 000 = £25 000. Therefore, by gritting on

this day at a cost of £10 000 we can expect to save £15 000 on average (£25 000

– 10 000 = £15 000).

If we choose to grit on every day that we expect on average to save more than

the cost of gritting (i.e, using cost-loss decision making; Murphy, 1966; Palmer

and Richardson, 2014), we will end up gritting the 80 highest-risk days at a cost of

£800 000, but this will reduce our expected loss from damage from £1.825m to

just £200 000; a reduction of £1.625m. With an annual gritting cost of £800 000,

and an annual expected damage loss of £200 000, our total expected loss for the

year is now £1m instead of the original £1.825m; utilising the sharper (and still

well-calibrated) model for decision making saves us £825 000 per year.

While the above example concerns prediction of some variable y through time,

the benefits of sharpness are perhaps best visualised via the prediction of variables

through space; i.e. in the modelling of spatial maps. A previous study of my own —

“ machine learning approach to geochemical mapping” Kirkwood et al. (2016a) —

compared spatial interpolation using ordinary kriging to a regression-on-covariates
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approach using a quantile regression forest for the purpose of predicting chemical

element concentrations in soils. This application illustrates the difference that

sharpness can make to map outputs, with the regression-on-covariates machine

learning approach accounting for the effects of auxiliary variables in order to

increase the precision of predictions over a purely spatial autocorrelation based

interpolator.

Increasing the sharpness of spatial and spatiotemporal model output has

the potential to reveal opportunities (to maximise gain or minimise loss) that less

sharp models would not reveal. For a meteorological example, knowing precisely

when and where rain will cause surface flooding would allow for precise mitigation

measures to be rolled out — such as evacuation of vulnerable people and setup of

flood barriers — in all the places that this is required (but none that it is not, thereby

maximally reducing loss for minimal cost). For a geological example, knowing

precisely where critical metals are concentrated allows us to optimise how we

extract them. As explained in subsection 1.2.1, as the world faces a climate crisis

the importance of maximising the efficiency and minimising the waste of all our

activities is amplified, and sharp well-calibrated environmental models are the key

to interacting with the Earth with the levels of precision that the situation demands.

1.2.4.4 Proper scoring rules

Having made the case that it is desirable to construct probabilistic models whose

predictive distributions achieve maximal sharpness subject to calibration, it is

important to have suitable metrics by which this can be assessed. We can do

so using scoring rules, and in particular, proper scoring rules. As Gneiting and

Raftery (2007) explain “scoring rules assess the quality of probabilistic forecasts,

by assigning a numerical score based on the predictive distribution and on the

event or value that materialises. A scoring rule is proper if the forecaster maximises

the expected score for an observation drawn from the distribution G if he or she

issues the probabilistic forecast F = G, rather than F ̸= G. It is strictly proper if the

maximum is unique. In prediction problems, proper scoring rules encourage the
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Figure 1.7: Soil cerium concentrations in south west England modelled using
ordinary kriging (OK), such that predictions are made on the basis of spatial
autocorrelation alone, resulting in a ‘blunt’ predictive distribution which lacks
precision (note, calibration not shown, but for the sake of illustration we assume
that both maps are similarly well calibrated). From Kirkwood et al. (2016a).

Figure 1.8: Soil cerium concentrations in south west England modelled using
a regression-on-covariates quantile regression forest approach (RF), such that
predictions are dependent on the values of auxiliary variables at each location,
resulting in a sharp predictive distribution (note, calibration not shown here, but for
the sake of illustration we assume both maps are similarly well calibrated). From
Kirkwood et al. (2016a).
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forecaster to make careful assessments and to be honest”.

In this thesis, we use the Continuous Ranked Probability Score (CRPS) as

our (strictly) proper scoring rule,

CRPS =
∫

x

(
P(ypred ≤ x)−P(yobs ≤ x)

)2 dx (1.19)

which is the mean squared error (MSE) between the predicted and observed

cumulative distribution functions (CDFs; Figure 1.9), such that a CRPS of zero

means that the distribution of predictions and the distribution of observations is

the same. In the language of Gneiting and Raftery (2007), this would mean that

the forecaster has successfully issued the probabilistic forecast F (which is the

same distribution from which observations are drawn).

Figure 1.9: Illustration of the Continuous Ranked Probability Score (CRPS). The
curves show the cumulative distribution functions (CDFS) of a set of predictions
(blue) and observations (orange). The CRPS measures the mean squared erorr
(MSE) between the two CDFS, and would be zero if the two distributions match,
i.e. if the distribution issued by the forecaster matches the distribution from which
observations are drawn in reality.

The Continuous Ranked Probability Skill Score (CRPSS) is favoured by the

European Centre for Medium Range Weather Forecasting (ECMWF) for com-

parisons between the quality of forecasts. It enables the CRPS of a forecast to

be compared with the CRPS of some benchmark (for example climatology; the

historic distribution of weather conditions for a given location at a given time of
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year).

CRPSS = 1−CRPS f orecast/CRPSbenchmark (1.20)

such that: when CRPSS = 1 the forecast has perfect skill compared to the bench-

mark / climatology; when CRPSS = 0 the forecast has no skill compared to the

benchmark / climatology; when CRPSS = a negative value the forecast is less

accurate than the benchmark / climatology.

As Palmer and Richardson (2014) explain through a similar demonstration of

cost-loss decision making as Section 1.2.4.3 in this thesis, “the CRPSS is simply a

normalised measure of the potential economic value of a forecast system (typically

an ensemble forecasting system) for a family of users which span the possible

range of cost-loss ratios and for weather events which span the range of possible

rainfall thresholds. That is to say, CRPSS is perhaps the simplest single measure

of the overall value of a forecasting system for decision-making! ... If a perfect

forecasting system (the oracle) would save the European economy C100 billion,

then a forecasting system with a CRPSS of 0.2 would realise C20 billion of this

saving. Doubling the CRPSS from 0.1 to 0.2 means doubling the savings from

C10 billion to C20 billion.”

Murphy (1993) makes the case that “forecasts possess no intrinsic value.

They acquire value through their ability to influence decisions made by users of

the forecasts”. These words are equally valid in all contexts of making probabilistic

predictions; the value of proper scoring rules like the CRPS — because of their re-

lation to decision making — is not limited to the context of forecasting atmospheric

variables, despite that being the use-case in which they have gained popularity.

1.2.4.5 Higher-order properties

The concepts of calibration and sharpness allow us to compare a forecast (or

predictive) distribution to the true distribution (or observations drawn from it) on

a point-wise basis. This enables the average quality of the predictive distribution

at each point of comparison to be assessed, but disregards assessment of any
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covariance that may exist between the point-wise values of individual samples

from which the predictive distribution is composed.

We can illustrate this invariance to the covariance of predictive samples

by simulating samples from a multivariate normal distribution with two different

covariance matrices. Firstly, by simulating from a multivariate normal distribution

with diagonal covariance (i.e., all values of the covariance matrix are zero apart

from the diagonal — which dictates just the variance — which is set to 5 in this

case) we recover samples whose values at each point in space are independent

(Figure 1.10). Secondly, by exchanging the diagonal covariance matrix for a

Matern(5,4) covariance matrix, we introduce covariance to the simulates samples

(Figure 1.11).

Figure 1.10: Illustration of samples drawn from a 10-dimensional multivariate
normal distribution with diagonal covariance matrix such that the values of each
sample are independent from point to point (e.g. across space or time). The
shaded area indicates a 90% prediction interval.

Figure 1.11: Illustration of samples drawn from a 10-dimensional multivariate
normal distribution with Matern(5,4) covariance matrix, such that the values of
each sample are dependent from point to point (e.g. across space or time); and
exhibit spatial or temporal autocorrelation. The shaded area indicates a 90%
prediction interval.

In both cases the calibration and sharpness of the predictive distribution is the
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same (see for example that both Figure 1.10 and Figure 1.11 show a shaded ribbon

indicating a mean-centred 90% prediction interval, and that these are identical) but

the covariance of the samples of which they are composed is very different. When

does this matter? If the output of the model is only of interest on a point-wise basis,

then the covariance of its individual samples is not important. However, if the

output of the model is to be used to provide information about areas or volumes (in

space and / or time), then the ‘realism’ of the covariance of the predictive samples

becomes important because of its effect on the variance of (areal) integrals of the

predictand, as shown in Figure 1.12 and Figure 1.13.

Figure 1.12: Rainfall accumulating in a river basin is one example where the
autocorrelation properties of the predictand (precipitation in this case) can have an
important effect on the variance of estimates of the sum total (or areal integral) of
the predictand; i.e., the volume of water flowing out of the catchment. Simulations
with longer length scales lead to higher variance in total rainfall accumulation (see
Figure 1.13).

Auto-correlation within predictive samples causes areal integrals of the pre-

dictand to have higher variance than those calculated from unstructured samples /
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Figure 1.13: Density plots produced by integrating over x for 10000 samples from
a multivariate normal distribution with diagonal covariance (red; Figure 1.10) and
Matern(5,4) covariance (blue; Figure 1.11). Note how the auto-correlated samples
cause the integral of the predictand (e.g., rain accumulated by a drainage basin)
to have higher variance.

simulations whose predictand values are independent from one another. We can

think for example of models of rainfall over a river catchment, where independent

predictions of rainfall at each point within the catchment cause estimates of the

total volume of accumulated water to be quite stable. Conversely, highly auto-

correlated predictions of rainfall across the catchment cause estimates of the total

volume of water accumulated to have much higher variance, because simulations

featuring low rainfall everywhere, or high rainfall everywhere, are much more

likely. Another example would be in the context of resource estimation for mining,

where the variance of the estimated total tonnage of some commodity metal within

a volume of rock will again be dependent on the spatial auto-correlation of the

individual predictive samples, with more spatially auto-correlated samples resulting

in estimates with higher variance.

The spatial auto-correlation of predictive samples is just one example of

a ‘higher-order property’ of predictive distributions that goes beyond the typical

assessments of calibration and sharpness, and highlights the fact that model

checking is not a one-size-fits-all exercise; the ways that we assess the quality of

our models should depend on the purposes for which they are used. For example,

weather forecasters have historically prioritised the physical plausibility of their

predictive samples by developing models that simulate the atmosphere using

the rules of physics. As we shall see, this tends to come at the expense of the

calibration of the predictive distributions they can provide, and hence statistical
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post-processing is necessary to correct this (see Chapter 3; A framework for

probabilistic weather forecast post-processing across models and lead times).

The ‘ideal’ environmental models would generate predictive distributions

that are perfectly well-calibrated, as sharp as possible, and consist of physically

plausible samples with covariance / auto-correlation properties that match our

observations of the real-world. However, the likely expense of such models, both

in terms of development time and computational requirements, means that such

‘perfect’ aims are not always sensible in practice. This thesis covers a range of

probabilistic machine learning approaches that satisfy the differing requirements

of the various applications we look at. A general theme is the need to model large

environmental datasets in useful ways using methodologies which are relatively

straightforward to implement in practice. As George Box (1919-2013; Wasserstein,

2010) is famously quoted as saying: “all models are wrong, but some are useful”.

1.2.5 The primacy of doubt

“He believed in the primacy of doubt: not as a blemish on our ability to know,
but as the essence of knowing.”

- James Gleick (1993) on theoretical physicist Richard Feynman

In the context of weather forecasting, Tim Palmer (2017) makes the case that “the

ability to quantify uncertainty is not a “bolt-on” extra, but rather a sine qua non [an

essential requirement]. Quantifying uncertainty is less about predicting the skill of

some “central” prediction, as estimating probability distributions of future weather”.

Meanwhile, Andrew Gelman et al. (2013) explains that “the guiding principle [of

using probability as a measure of uncertainty] is that the state of knowledge about

anything unknown is described by a probability distribution.”

The power of probabilistic modelling therefore comes from its ability to formally

represent our state of knowledge, which would otherwise be buried — perhaps

only loosely assembled — within our own minds. By embracing the primacy of
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doubt, we can construct probabilistic models that are honest reflections of our

uncertainty, and use this uncertainty as a guide towards improving our state of

knowledge.

1.2.5.1 Probabilistic models as knowledge - a visual example

To demonstrate the concept of probabilistic modelling as a representation of our

knowledge, we provide here an illustrated toy example of adopting the Bayesian

philosophy to model the surface air temperature observed at a random site in

the UK during July 2021. We start with our prior distribution p(H), which is a

distribution over hypotheses that we think could plausibly generate these type of

observations.

It seems reasonable to believe that the temperature observations would

be generated by some smooth function that varies in some way according to

the time of day, averaging about 15°C. As such, our prior distribution p(H) is

a distribution over these kind of functions, representing our degree of belief in

plausible hypotheses for the generation of temperature observations (although it is

worth noting that we could also have beliefs simply about what the temperature

will be, without proposing a data generating model):

p(H) = . (1.21)

In this case, each hypothesis is just a smooth function that varies through time
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and by time of day:

Hx = . (1.22)

However, we also assume that each hypothesis can generate data from a Gaussian

distribution centred around it (e.g., in order to capture measurement error):

p(Y |Hx) = . (1.23)

This Gaussian distribution provides the likelihood, p(Y |Hx), from which we can

simulate hypothetical sets of observations that we may expect to observe if Hx was

true:

∼ p(Y |Hx). (1.24)
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Integrating over our prior data-generating hypotheses gives us our prior predictive

distribution (density of temperature values we think we might observe a priori).

This represents both data uncertainty (i.e., by the variance of each hypothetical

function’s Gaussian likelihood) and model uncertainty (i.e., the spread between

different hypotheses):

∫
H

p(Y |H)p(H)dH = .

(1.25)

Now, if we collect some observations, it becomes apparent that our prior predictive

distribution is overly cautious; it represents an outdated state of knowledge which

should be updated given the new observations:

∫
H

p(Y |H)p(H)dH = .

(1.26)

Updating our state of knowledge requires computing the posterior distribution of

hypotheses, i.e. the distribution of hypothesis given the data, p(H|DDD). This illus-

tration uses the Monte Carlo dropout method for approximate Bayesian inference

in deep neural networks (and so results will differ from exact inference, but the
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principle remains):

∫
H

p(Y |H)p(H|DDD)dH = .

(1.27)

As we have seen, a good probabilistic model should generate a well-calibrated

(and sharp) predictive distribution, such that new observations will fall within a 95%

prediction interval 95% of the time (and likewise for all other intervals). The red

line below shows the true observations, from which our sample observations were

taken. It is reasonably well represented by our posterior predictive distribution:

∫
H

p(Y |H)p(H|DDD)dH = .

(1.28)

If we were to reduce the number of Monte Carlo samples used to estimate our

posterior predictive distribution, the quality of calibration is likely to suffer, especially

in the tails of the predictive distribution (where infrequent but potentially important

events may occur). Here we display just a handful of hypotheses sampled from
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the posterior, each uniquely coloured:

∫
H

p(Y |H)p(H|DDD)dH = .

(1.29)

This, as we shall see, takes us into similar territory to the outputs of numerical

weather prediction ensembles, which tend to be limited in the number of ensemble

members (effectively posterior predictive samples) that they produce. In addition, it

is the experience of this thesis that weather forecasting ensembles do not include

‘data uncertainty’ i.e., p(y|H), but instead provide only samples of p(H|D):

∫
H

p(Y |H)p(H|DDD)dH = .

(1.30)

Thus, despite our Bayesian inference example here being for a temporal inter-

polation problem rather than a forecast of the future, the similarity between a

sparsely-sampled Bayesian posterior distribution and the output from numerical

weather prediction should be quite apparent (see more details in Chapter 4; A

framework for probabilistic weather forecast post-processing across models and
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lead times):

∫
H

p(Y |H)p(H|DDD)dH =
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(1.31)

And it is of note that the lack of sampling for the data uncertainty, p(y|H), for each

hypothesis / ensemble member is in itself a reason why Numerical Weather Predic-

tion (NWP) ensembles tend to be underdispersive; i.e., they tend to underestimate

uncertainty (Raftery et al., 2005).

Similar limitations apply, although to an even greater extent, to the practice of

geological mapping, in which maps are traditionally drawn by hand with no ability to

convey uncertainty — only a single hypothesis is portrayed, and the uncertainty of

data around this hypothesis is not considered (Figure 1.15). This is the antithesis

of embracing the primacy of doubt, and Chapter 7; Geological mapping in the age

of artificial intelligence, proposes a Bayesian solution to it.

It is apparent then, that despite continual development in the practices of

environmental modelling — including for both weather and geology — there is

a logical need to embrace the primacy of doubt, and to be confident in issuing

probabilistic predictions which may themselves be far from confident. The real-

world risk-abating benefits of probabilistic modelling are clear in comparison to the

pit-falls that await those who would disregard the primacy of doubt in a show of

false confidence.
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Figure 1.14: The similarity between weather forecast ensemble members (top),
and samples from a Bayesian posterior distribution (bottom).
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Figure 1.15: Conceptual comparison of traditional geological mapping (top) and
geological mapping using a Bayesian neural network (bottom). The black line
shows the true value of some geological property, y, through space, x. Black
crosses are the observations of this property, with some error, which the two
mapping approaches utilise. While mapping using a single set of discrete classes
fails to represent continuous geological properties, and cannot convey uncertainty,
mapping ‘properties first’ using Bayesian AI methods brings the potential to obtain
skilful probabilistic maps of any geological properties of interest. See more in
Chapter 7.
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Chapter 2

Background

As each of the subsequent research chapters (3 - 7) includes its own review of

relevant background literature, this standalone background chapter provides only a

brief summary of the history and progress of the disciplines of weather forecasting

and geological mapping through the lens of statistics / probabilistic machine

learning. There is generally very little overlap between these two disciplines in the

literature, which makes sense on account of the stark differences in properties and

behaviour between the atmosphere and the lithosphere, and yet, through a data

science lens, the aims of both — to make useful predictions of yet-to-be-observed

conditions through space (and time) — are rather similar.

As such, it is not surprising that some statistical methodologies, for example

those of geostatistics, do have a history of being applied within both disciplines.

It seems likely that in the future, as machine learning methods become increas-

ingly integrated within the sciences, that the fundamental commonalities between

weather forecasting and geological mapping will provide new opportunities for the

development of models which are inspired by work within both disciplines. The

later chapters of this thesis (4-7) detail the development of a probabilistic deep

learning technique — Bayesian deep learning for spatial (and spatio-temporal)

interpolation in the presence of auxiliary information — that has properties that

make it reasonable for learning models of both atmospheric and lithospheric vari-

ables. It could be that this approach therefore contributes a step in a direction of

progress towards the development of artificial intelligence systems for probabilistic

modelling of the environment as a whole.
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2.1 The rise of machine learning

The last few years has seen something of an explosion in the adoption of machine

learning methods in both industry and academia, often producing state-of-the-art

results in a wide range of applications. The kernel for this explosion can be traced

back to the 2012 ImageNet image classification competition, which was won by

AlexNet: a deep convolutional neural network developed by Geoffrey Hinton’s

team (Krizhevsky, Sutskever and Hinton, 2012). This was the first convincing

demonstration that bottom-up feature learning could outperform manual top-down

feature engineering for solving complex modelling problems. This result more-or-

less made 20 years worth of computer vision research in custom feature extraction

redundant (e.g. see review by Tian, 2013), and in time sent ripples across the

wider scientific community. It is now increasingly being shown that, given sufficient

data, self-learning function approximators (whether statistical or machine learning

methods by name) are capable of outperforming manually constructed models for

solving complex tasks. At the time of writing this sentence (Sept 2022), Krizhevsky,

Sutskever and Hinton’s AlexNet paper has been cited 115099 times (Figure 2.1).

Incredibly, this is up from 35680 citations in Feb 2019, when I first noted the figure

down in the early days of my PhD.

The following sections provide a brief review of applications of data science

techniques to weather forecasting (and then to geological mapping), and explores

some opportunities where this technology may yet be applied. Methods from both

Figure 2.1: Google scholar citations of Krizhevsky, Sustkever, and Hinton’s break-
through work achieving a new state of the art in image classification using deep
neural networks in 2012 Krizhevsky, Sutskever and Hinton, 2012. From 342 cita-
tions in 2013, to over 20 000 citations each year from 2019, this timeline depicts
the explosion in interest in artificial intelligence methods over the last 10 years.
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the statistical modelling and the machine learning literature are considered, and

in fact these fields are seen as more-or-less synonymous for the purposes of

this literature review — both fields provide methods for learning (to approximate

functions) to represent the relationships between variables in order to predict the

value or class assignment of new observations.

For weather forecasting, the output variables are those that describe the

weather at a given location and time e.g, air temperature, precipitation, wind speed

and direction. Having good predictions of such variables is useful for decision

making in our everyday lives (e.g., should I take an umbrella to work?) but also

underpins a huge range of applications; energy(Zhang, Wang and Wang, 2014),

transport(Berrocal et al., 2010), defence(Miller, 1967), agriculture(Calanca et al.,

2011), hazard mitigation (Dale et al., 2014) and more (Katz and Murphy, 2005).

Extreme weather events such as hurricanes and flooding are among the most

damaging natural hazards that we face. Effectively mitigating the risk of such

hazards requires having well-calibrated and sharp probabilistic forecasts that can

allow us to make decision which are closer to optimal, and it is here that statistical

and machine learning methods, with foundations in probability theory, have much

to offer.

For geological mapping, the output variables are those that describe the geo-

logy (the ground beneath our feet) at a given location. For example, age, texture,

and composition are variables on which traditional rock classification schemes are

constructed, but there are additional specific variables which may be of interest,

for example the concentrations of commodity elements or potentially harmful ele-

ments, and the values of engineering properties such as shear strengths. Just as

for weather forecasting, generating well-calibrated and sharp probabilistic predic-

tions of these properties allows us to improve the outcomes of our interactions

with the lithosphere.
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2.2 Weather forecasting

Weather forecasting has existed as a quantitative science for over a century. Fol-

lowing from initial synoptic-map based manual forecasting efforts by Robert Fitzroy

in the mid 1800s (Hughes, 1988), it was around the year 1890 that Cleveland

Abbe, Chief Meteorologist of the United States Weather Bureau first proposed

that meteorology should be “essentially the application of hydrodynamics and

thermodynamics to the atmosphere” (Lynch, 2008). In his subsequent publication

The physical basis of long-range weather forecasting Abbe, 1901 described how

physical equations could be used to represent atmospheric processes, and con-

veyed his hope that atmospheric scientists would “take up our problems in earnest

and devise either graphical, analytical, or numerical methods” with which to solve

these equations.

Soon after, Norwegian physicist Vilhelm Bjerknes, who had been in corres-

pondence with Abbe (Friedman, 1993), published his work on The problem of

weather forecast, viewed from the standpoint of physics and mechanics (Bjerknes,

1904). Bjerknes defined seven equations to represent the seven variables of

pressure, temperature, density, humidity and three components of velocity, and

devised a qualitative graphical method to solving them. These graphical methods

allowed Bjerknes to progress weather charts forwards through time in steps based

on the rules of physics, however Bjerknes was unsatisfied with the accuracy of

his method — a problem confounded by the lack of available observations — and,

given the technology of the time, could see no practically useful way to implement

his work (Lynch, 2008).

Later, in 1913, British scientist and mathematician Lewis Fry Richardson joined

the UK Meteorological Office as Superintendent of the Eskdalemuir Observatory in

Scotland (Lynch, 2008). Richardson had little prior experience of meteorology, but

had previously worked across scientific disciplines, including publishing work on

using finite differences to solve physical problems involving differential equations
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(Richardson and Glazebrook, 1911). Richardson recognised the suitability of

his finite difference method to provide approximate solutions to the equations

proposed by the likes of Abbe and Bjerknes, and went ahead to develop the first

numerical methods for weather prediction, which he communicated in his book

Weather Prediction by Numerical Process (Richardson, 1922).

Despite these key works of the late 19th and early 20th century, the first imple-

mentation of numerical modelling for weather prediction on an electronic computer

did not take place until 1950, when Charney, Fjörtoft and von Neumann of the

Meteorology Project at Princeton, USA succeeded in implementing hindcasts on

the Electronic Numerical Integrator and Computer (ENIAC) (see Charney, Fjörtoft

and Neumann, 1950). Their successes made numerical weather forecasting an

operational reality within five years, with the first real-time forecasts being made in

Stockholm in 1954 (see Bolin, 1955).

It was still not until the 1970s that developments in supercomputing made

solving the full set of equations proposed by Abbe and Bjerknes feasible (Lynch,

2008), but the near-exponential increases in computing power over the years

(Moore first hit upon his law in 1965), combined with continued improvements

in data collection, model parametrisation, and numerical solution methods, have

resulted in forecasting skill increasing at a rate of about one additional day per

decade (i.e. 6-day forecasts today are as accurate as 5-day forecasts were ten

years ago). However, these methods, which have come to be referred to ubiquit-

ously as numerical weather prediction (NWP), are essentially the continuation of

the ideas of Abbe, Bjerknes and Richardson.

Prior to the practical implementation of Numerical Weather Prediction in the

1970s, statistical methods rather than dynamical modelling were being used to

provide weather forecasts as part of a push towards ‘objective weather forecasting’

(Byers et al., 1951) and an effort to move away from reliance on meteorologists’

subjective expert judgement as a way to issue forecasts (e.g. Brier, 1946; Grin-

gorten, 1955). As Glahn (1982) writes: “Statistical weather forecasting, in its
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broadest sense, has undoubtedly been practiced for thousands of years. All that

is necessary is for someone to collect some data, someone to process it, and

someone to use the results to make a forecast. Ancient man, seeing a dark cloud

approaching and thinking that rain was likely, would be practising statistical weather

forecasting even if he had no knowledge of the physical processes involved”.

Further, Glahn (1982) wrote that “In the early years of operational numerical

weather prediction, competition rather than cooperation dominated the relationship

between those individuals engaged in developing statistical models and those

researchers concerned with developing numerical models. Each group thought

that its approach was the best way to proceed and that the other branch of objective

weather prediction was not necessary. Even though the barriers between the two

groups have not yet vanished, each group has become much more tolerant of

the other group’s viewpoint. Statistical modelers now use the results from (rather

than compete with) numerical models, and numerical modelers recognise the

usefulness of properly applied statistical procedures.”

2.2.1 Applications and opportunities

In their review the quiet revolution of numerical weather prediction Bauer, Thorpe

and Brunet (2015a) explain that, so far, the greatest increases in predictive skill

have been obtained from improvements in three areas — physical process repres-

entation, ensemble forecasting, and model initialisation. Bauer, Thorpe and Brunet

also anticipate that these three areas will continue to provide the greatest improve-

ments to NWP in the next decade, but that additional challenges come from the

high-performance computing required to run NWP at ever higher resolutions.

So where does machine learning fit in? The ultimate application of machine

learning to weather forecasting would be in the implementation of an end-to-end

architecture: a system that could predict the future values of weather variables

based on their current values by learning to model the relationships between past

and future states using historic observations. Krizhevsky, Sutskever and Hinton’s
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deep neural network for classifying images was one such system — it was able

to learn a function to map images to their labels through example alone. When I

started this PhD, no such example had been demonstrated in the space of weather

forecasting, however given the commercial attention that machine learning, and

in particular deep learning, has been getting, it was perhaps not surprising that

large corporates, such as NVIDIA, would step up to the mark and develop end-

to-end deep learning systems for weather forecasting (Kurth et al., 2022; Pathak

et al., 2022). Deep learning based forecasting systems are now being developed

outside of these corporations too with the help of GPU donations (to hardware

accelerate neural network training) from NVIDIA (e.g., Weyn et al., 2021). In the

latter half of this PhD, the UK’s European Centre for Medium Range Weather

Forecasting (Düben et al., 2021), Natural Environment Research Council (NERC,

2022), and Met Office (Met Office, 2022) have all published strategies specifically

for developing and incorporating machine learning and data science methods into

their operations. In the case of the Met Office, this includes the launch in 2020

of the University of Exeter - Met Office partnered Joint Centre for Excellence in

Environmental Intelligence. These organisational strategies do not necessarily

revolve around deep learning only, but are an indication of the technological (and

philosophical) changes that we are currently living through and which provide the

backdrop for this PhD.

At the start of this PhD, end-to-end deep learning systems had already been

developed to solve tasks within a range of fields outside of weather forecasting, for

example Amodei et al. (2016) presented an end-to-end deep learning solution for

the transcription of audio to text, stating that “because it replaces entire pipelines

of hand-engineered components with neural networks, end-to-end learning allows

us to handle a diverse variety of [conditions]”. The same technology powers the

translation and voice recognition functionalities of modern smartphones, and is

a likely candidate for the realisation of self driving cars (Bojarski et al., 2016).

However, while replacing pipelines of hand engineered components certainly

sounds applicable to current NWP workflows, unlike the above tasks, accurate
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weather forecasting could never be considered learnable by one individual human,

and the challenge of matching or outperforming 100 years of NWP development is

likely to be somewhat tougher, with more stringent requirements.

When Lewis Fry Richardson first joined the UK Meteorological Office in 1913,

the meteorologists used an Index of Weather Maps to look up maps of past

weather scenarios that were most similar to the one presently being observed.

Predictions were then made by eye, on the assumption that “what the atmosphere

did then, it will do again now”. Richardson was sceptical of this technique, writing

“why then should we expect a present weather map to be exactly represented in

a catalogue of past weather?” (Lynch, 2008). Ironically, the concept of the Index

of Weather Maps approach is essentially the same as that of machine learning,

although machine learning systems are specifically evaluated on their ability to

make accurate predictions in situations that they have not previously encountered,

so as to demonstrate their competence in interpolating within the space of a task,

rather than simply regurgitating the nearest known examples as a best guess (i.e.,

K nearest neighbours algorithm with K = 1). Perhaps today Richardson could be

convinced by a suitable demonstration of modern machine learning methods.

Taking a step back from end-to-end approaches (most of which, it should be

said, have not so far been concerned with the modelling of uncertainty - self driving

cars being the exception), less grandiose applications of self-learning function

approximators (e.g., statistics, machine learning, AI) to weather forecasting require

the integration of these methods with existing NWP frameworks. Recapping Bauer,

Thorpe and Brunet’s three key areas for improvements going forward: physical

process representation, ensemble forecasting, and model initialisation (and the

fourth, speed), it seems that none are beyond the reaches of potential benefits

from machine learning approaches.

In terms of physical process representation, Gentine et al. (2018) and Rasp,

Pritchard and Gentine (2018) find that neural networks are able to adequately learn

to represent subgrid processes in atmospheric models, reducing computational
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complexity in the process. O’Gorman and Dwyer (2018) apply random forests

in a similar fashion to learn to parameterise moist convection, and conclude that

the use of machine learning is promising, although they note issues with failing to

generalise to different climates (partly because decision trees cannot extrapolate).

The use of statistical methods in conjunction with ensemble forecasting has a

longer history. Ensemble forecasting is NWP’s answer to uncertainty quantification,

given that each individual NWP model run is deterministic and provides only a

point forecast. Ensembles can be run using a range of model types — including

with parameters perturbed to capture model uncertainty — and a range of initial

conditions, where initial conditions are perturbed to capture uncertainty in the

observed state (for an overview of the Met Office’s ensemble forecasting see

https://www.metoffice.gov.uk/research/approach/modelling-systems/u

nified-model/weather-forecasting). Running ensembles of forecasts with

these perturbations produces a distribution of point forecasts which provides an

indication of forecast uncertainty, although the high computational expense of the

numerical model runs limits the number of ensemble members that can be obtained.

By using statistical post-processing on the limited number of NWP ensemble

members’ output we can correct biases and improve calibration (and sharpness)

by learning from the historic performance of the numerical models compared to real

observations. Statistical post-processing therefore has the potential to increase

forecast skill; improving predictions of the most likely outcomes and quantifying

the probabilities of extreme events.

The principle established methods for the statistical post-processing of NWP

ensembles are Ensemble Model Output Statistics (EMOS; Gneiting et al., 2005)

and Bayesian Model Averaging (BMA; Raftery et al., 2005). These two approaches,

both co-authored by Tilmann Gneiting and Adrian Raftery (and others) in the same

year, emerged as solutions to the problem of calibrating ensemble forecasts, given

that ensemble forecasting first became an operational reality around this time

(including that year at the Met office; Bowler et al., 2008).
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The EMOS approach (Gneiting et al., 2005) proposes using multiple linear

regression to predict a univariate weather quantity y, such that

y = a+b1X1 + ...+bmXm + ε (2.1)

where a and b1, ...,bm are regression coefficients, and ε is an error term. In

order to capture the spread-skill relationship, by which an increase in spread

between ensemble members will tend to correspond to increasing uncertainty,

(Gneiting et al., 2005) model the error term, ε , as a linear function of the ensemble

spread. That is,

Var(ε) = c+dS2, (2.2)

where S2 is the ensemble variance, and where c and d are nonnegative

coefficients. Combined, these equations yield the Gaussian predictive distribution

N(a+b1X1 + ...+bmXm,c+dS2) (2.3)

whose mean derives from the regression eqution and forms a bias-corrected

weighted average of the ensemble member forecasts, and whose variance de-

pends linearly on the ensemble variance (Figure 2.2).

Through this task-tailored multiple linear regression approach, EMOS com-

bines information from numerical ensemble members into a single bias-corrected

unimodal predictive distribution. While this is simple, it is also a potential weakness,

as it fails to account for any inherent multimodality that the numerical ensemble may

legitimately exhibit. BMA on the other hand is able to capture such multimodality,

as explained below.

Where EMOS combines the numerical ensemble into a single statistical model,

59



Figure 2.2: Example predictive probability density function produced by the EMOS
post-processing approach for a 48-h forecast of sea level pressure. Also shown
are the five ensemble member forecasts (solid vertical lines) and the verifying
observation (broken vertical line). From (Gneiting et al., 2005).

BMA treats each ensemble member as a statistical model, and then (as the name

suggests) applies Bayesian Model Averaging to combine them. By doing so, BMA

captures the between-model uncertainty better than EMOS can, and thus is less

likely to produce under-dispersive output.

As (Raftery et al., 2005) explain, in the case of a quantity y to be forecast on

the basis of training data Y using K statistical models M1, ...,MK, the law of total

probability tells us that the forecast PDF, p(y), is given by

p(y) =
K

∑
k=1

p(y|Mk)p(Mk|Y ), (2.4)

where p(y|Mk) is the forecast PDF based on model Mk alone, and p(Mk|Y ) is

the posterior probability of model Mk being correct given the training data, and

reflects how well the model Mk fits the training data. The BMA probability density

function, p(y), is a weighted average of the conditional PDFs given each of the

individual models, weighted by their posterior model probabilities p(Mk|Y ).

To extend this from the averaging of statistical models, to the averaging of

numerical ensemble members requires that each ensemble member fk provides

its own PDF gk(y| fk), which is not naturally the case since numerical weather

prediction ensemble members provide a deterministic point-prediction, rather than
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a probability distribution. If each ensemble member provides its own PDF gk(y| fk),

then the BMA predictive distribution becomes

p(y| f1, ..., fk) =
K

∑
k=1

wkgk(y| fk), (2.5)

where wk is the posterior probability of the forecast k being the best one and

is based on forecast k’s performance in the training period.

Figure 2.3: Example predictive probability density function (thick curve) and its five
components (thin curves) produced by the BMA post-processing approach for a
48-h forecast of temperature. Also shown are the ensemble member forecasts and
range (solid horizontal line and bullets), the BMA 90% prediction interval (dotted
lines), and the verifying observation (solid vertical line). From (Gneiting et al.,
2005).

For some weather variables (e.g. temperature and pressure) it is reasonable

to assume a Gaussian distribution for the errors around a forecast ensemble

member, such that each ensemble member’s conditional PDF gk(y| fk) should be a

normal distribution with mean ak +bk fk and variance σ2:

y| fk ∼ N(ak +bk fk,σ
2). (2.6)

The model parameters ak,bk,wk for k = 1, ...,K, and σ2 require estimation,

which is achieved on the basis of a training dataset consisting of ensemble fore-

casts and verifying observations. Following (Raftery et al., 2005) we denote space

and time by subscripts s and t so that fkst denotes the kth forecast for place s and

61



time t, and ys,t denotes the corresponding verification.

First, ak and bk are estimated by simple linear regression of yst on fkst using

the training data. This can be viewed as a simple bias correction of each forecast

/ ensemble member. Then, wk for k = 1, ...,K and σ2 are estimated by maximum

likelihood using the same training data. The log-likelihood function for the model

(Equation 2.5) is

ℓ(w1, ...,wk,σ
2) = ∑

s,t
log

(
K

∑
k=1

wkgk(yst | fkst)

)
. (2.7)

In summary, BMA for ensemble weather forecast post-processing first per-

forms a simple bias correction of each ensemble member, and then ‘dresses’

each ensemble member with its own conditional PDF, with shared variance σ2

which, along with the mixing weight, wk, of each ensemble member, is optimised

to maximise the likelihood of the resultant blended PDF in relation to training

observations. This process is performed separately for each lead time (Raftery

et al., 2005).

Because the variance of each ‘dressed’ forecast in (Raftery et al., 2005, ’s)

BMA approach is controlled by a single shared parameter σ2 which is optimised to

maximise the likelihood, calibration is to some extent built in as a natural trade-off

between intra-model (within-model) and inter-model (between-model) variance.

However, as we move into the age of artificial intelligence it is likely that it will

become commonplace to generate statistical forecasts that inherently have their

own PDF, p(y| f ), rather than just point predictions. In this case, as we see in the

next chapter, if the individual forecasts are themselves well-calibrated, then the use

of BMA without control of the variance of the individual forecasts tends to produce

an over-dispersed predictive distribution, because adding inter-model variance

to forecasts with pre-calibrated intra-model variances leads to overdispersion.

A different approach may therefore be more appropriate (which we propose in

Chapter 3).

62



While EMOS and BMA are the established core of NWP post-processing

methods, other methods have been and continue to be proposed, which go beyond

linear regression setups (Hagedorn, Doblas-Reyes and Palmer, 2005) in order

to capture more complex effects, which may include relationships to covariates

outside of the forecast ensemble itself. For example, neural networks, (Shamseldin,

O’Connor and Liang, 1997; Rasp and Lerch, 2018), gene expression programming

(Zaherpour et al., 2019), and decision tree ensemble techniques Taillardat et al.

(2016) have been proposed. Deep learning based generative models such as

variational autoencoders (VAEs - Kingma and Welling, 2013), and generative

adversarial networks (GANs - Goodfellow et al., 2014) also have great potential

due to their ability to learn potentially complex sampling distributions.

We can perhaps take a step back and say that the ideal weather forecast would

be a well-calibrated and sharp-as-possible predictive distribution composed of

physically plausible samples or simulations. Existing numerical weather prediction

ensembles, which are physically plausible in the sense that they operate on

physical equations (although with some unrealistic constraints, such as their

discretisation into coarse grids) therefore get close to satisfying requirements of

physical plausibility, but this tends to be at the expense of calibration. Numerical

weather prediction systems are also highly computationally expensive, which limits

the number of samples (ensemble members) that they can generate. Therefore, it

is computationally more efficient to use the output of numerical weather prediction

to inform statistical post-processing systems which can generate many more

samples from a well-calibrated and sharp predictive distribution. In the extreme,

statistical post-processing systems may even utilise just a single deterministic

numerical forecast to good effect (e.g. Chapman et al., 2019). To achieve physically-

plausible predictive samples from the statistical post-processing system is perhaps

the hardest part of the task, but cheaper approximations may be acceptable

depending on the application.
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2.2.2 Summary

The concepts behind numerical weather prediction (NWP) have remained largely

unchanged for the last century, although increasing data availability due to satel-

lites, combined with innovations in data assimilation (e.g., 4D VAR; Lorenc and

Rawlins, 2005) have resulted in continuous steady progress. Meanwhile, there

have been revolutionary breakthroughs in machine learning technologies within the

last few years (e.g. deep learning) which can now supersede “entire pipelines of

hand engineered components” for complex modelling tasks. The first applications

of these technologies to weather forecasting have shown promising results, but

we are only just entering what could become a loud revolution (as opposed to

the quiet revolution of Bauer, Thorpe and Brunet, 2015b) in weather forecasting

methodology. It fundamentally makes sense that statistical and machine learning

methods, with foundations in probability theory, have much to offer compared to

deterministic numerical methods when it comes to accurately modelling systems

as chaotic as the atmosphere - but how best to implement them has remained to

some extent an open question.

2.3 Geological mapping

Geological mapping was not originally intended to be part of this thesis, but the

conceptual commonalities between probabilistic weather forecasting and probabil-

istic geological mapping are clear, and thus similar statistical techniques are likely

to be applicable to both. Given that geological mapping is currently quite far behind

weather forecasting in terms of technological advancement — while the Met Office

generates the UK’s official weather forecasts using Numerical Weather Prediction

run on supercomputers (as do other weather forecasting agencies around the

world), the British Geological Survey draws the UK’s official geological maps by

hand (as do other geological surveys around the world) — there is clearly signific-

ant impact to be had in the adoption of more sophisticated mapping techniques by

the geological community.
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One could argue — I would say incorrectly — that geological mapping would

not benefit from probabilistic modelling because we are quite certain of what

our maps should look like. While it is the case that the uncertainties involved in

geological mapping are probably lesser than those involved in weather forecasting

(at long ranges in particular). The uncertainties involved are perhaps of a similar

scale to short range weather forecasting, or nowcasting, on time scales at which

chaos has only a minimal effect. However, weather forecasting benefits from

a great advantage in that the atmosphere is quite observable from space, and

therefore satellite observations allow our knowledge of the current state of the

atmosphere to be relatively certain (albeit with some limitations; the information

is not perfect). By contrast, geological maps, which convey our knowledge of the

lithosphere, have the disadvantage of the ground being relatively impenetrable

to sensing equipment (and the human eye). Seismic data can help here, but the

information it provides is limited.

As such, while weather forecast uncertainty increases with time into the future,

geological map uncertainty increases with depth below ground. However, the cur-

rent practice of hand drawing geological maps fails to quantify uncertainty even at

the surface, and we need to get that right before we can hope to quantify the larger

uncertainties at depth. So, there is a need to develop probabilistic approaches

to geological mapping, for which ensemble weather forecasting (including its

statistical post-processing) provides good inspiration. While the meteorological

community has had around a century of numerical modelling development between

their original hand-drawn maps (i.e., the Index of Weather Maps; Lynch, 2008) and

their adoption of artificial intelligence, the geological community (at least in the

main; and represented by the British Geological Survey) stands a good chance of

going straight from hand-drawn maps to probabilistic maps produced by artificial

intelligence. There will be challenges along the way, but communication between

meteorologists and geologists is likely to facilitate their resolution.
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2.3.1 Applications and opportunities

Despite the great differences in how they are generated — with weather fore-

casts being the solution to the equations of a dynamical system, and geological

maps being a data-based classification — we can think of a single hand-drawn

geological map as being conceptually equivalent to a single deterministic NWP

forecast, in that neither provides an estimate of uncertainty (the geological map is

also a coarser representation owing to its reliance on classification, rather than

continuous modelling of lithospheric properties akin to the continuous modelling of

atmospheric properties that NWP achieves).

Similarly to the BMA approach for weather forecast post-processing, we could

simply ‘dress’ a geological map with a PDF centred on the map (or bias-corrected)

and with suitable variance. However, the variance in this case would only be intra-

model variance to represent the data uncertainty, rather than the uncertainty of the

model / map itself. To make geological mapping truly probabilistic (and embrace

the primacy of doubt) requires devising a system to simulate possible geological

maps, just as numerical weather prediction can simulate possible weather maps.

This would allow the inter-model variance, or model uncertainty, to be represented

too.

It has to be noted that the field of geostatistics emerged from geology (or more

specifically mining engineering; Krige, 1951; Matheron, 1969) for the purposes

of interpolating between and simulating from observations of geological variables.

One may superficially think, therefore, that the challenge of probabilistic geological

mapping is essentially a solved problem. However, this is not the case, primarily

due to limitations of traditional geostatistical methods, i.e. kriging, which we will

briefly outline here. Nevertheless, it is true that the development of any future

probabilistic geological mapping systems should rightfully be referred to under

the umbrella of ‘geostatistics’, although that term has become perhaps overly

associated with traditional kriging.
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Kriging corresponds to Gaussian process regression; which (here adopting

the explanation of Gelman et al., 2013) is regression using a Gaussian process

from which random functions µ(x) can be drawn at any n prespecified points

x1, ...,xn from the n-dimensional normal distribution,

µ(x1), ...,µ(x2)∼ N ((m(x1), ...,m(xn)) ,K (x1, ...,xn)) , (2.8)

with mean m and covariance K. This is a Gaussian process µ ∼ GP(m,k).

The mean function represents an initial guess at the function, so that the Gaussian

process can model deviation from this initial guess, whilst being centred on it.

Traditional geostatistics, e.g. for resource estimation, would typically use a linear or

quadratic mean function for this trend removal purpose (Journel and Rossi, 1989).

The function k specifies the covariance between the process at any two points,

with K an n× n covariance matrix with element (p,q) corresponding to k(xp,xq)

which can be written in shorthand as k(x,x′). The covariance function controls the

smoothness of realisations and the degree of shrinkage towards the mean (i.e.,

regularisation). A common choice is the squared exponential covariance function,

k(x,x′) = τ
2 exp

(
−|x− x′|2

2l2

)
, (2.9)

where τ and l are unknown parameters in the covariance and |x− x′|2 is the

squared Euclidean distance between x and x′. Here τ controls the magnitude

and l the smoothness of the function; i.e., l is the length scale. In practice one

may also estimate an additional parameter, σ2, to control the variance of zero-

centred independent random noise, or ‘nugget variance’ which can be added to the

Gaussian process to represent measurement and other independent errors. This

enables a GP conditioned on observations to not have to pass directly through

them:
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µ ∼ GP(m,k)+N(0,σ2). (2.10)

In ‘model based geostatistics’ Diggle, Tawn and Moyeed (1998) extended

kriging methodology to include situations in which the stochastic variation in

the data is known to be non-Gaussian, in the same way that generalized linear

models (Nelder and Wedderburn, 1972) extend the classical Gaussian linear model.

The key point to make here though is that, whether Gaussian or non-Gaussian,

the traditional ‘kriging’ geostatistical approaches require making an assumption

of stationarity because the parameters of their covariance function (e.g., τ, l;

Equation 2.9) are estimated globally rather than themselves being dependent on

position in space (and time). This means that resultant simulations will exhibit

the same spatial structure throughout the mapped area, which, depending on

the variables being mapped, may well be a rather unconvincing assumption to

make. In the case of geological variables, they spatial structure they exhibit is

highly variable owing to the presence of differing terranes (containing different

types of rock) and dislocational features such as faulting and shearing. To map

geological variables in a geologically convincing way therefore requires the use of

more flexible models than those to which the term ‘geostatistics’ typically pertains,

although these more flexible models will by definition still technically fall within the

discipline of ‘geostatistics’.

There are a variety of ways that one could add more ‘flexibility’ into the single-

layer Gaussian process regression of traditional geostatics (i.e., kriging). The

possibilities fall into two broad categories; either to make the kernel parameters

dependent on position in space and time (Heinonen et al., 2016), for example

(τ, l,σ2) = f (xs,t). (2.11)

or to warp the space on which the kernel is acting, such that |x− x′|2 is no

longer the squared Euclidean distance in true geographic space (map space) but
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instead a distance in some latent space, or feature space, Z, which is itself a

(potentially non-linear) transformation of position in true geographic space (e.g.

Calandra et al., 2016; Wilson et al., 2016). This may be achieved using deep

Gaussian processes (Damianou and Lawrence, 2013), in which the space of inputs

is transformed through one or more Gaussian processes before being passed as

the input to a final Gaussian process layer.

While Gaussian processes are perhaps the best way to achieve flexible

regression with ‘full control’ (i.e., a clearly defined prior, although it is difficult to

preserve and interpret the ‘meaning’ of this prior as depth increases), they have a

downside in their computational complexity, which makes it unfeasible to use them

for modelling the largest of datasets (although efficiency developments such as

sparse Gaussian processes — Snelson and Ghahramani, 2005 — do improve the

situation).

By contrast, neural networks with their ability to be trained using stochastic

gradient descent on modern GPU hardware (for frequentist inference, but also

for variational-inference and other Bayesian approximations; Wilson, 2020), are

among the most scalable modelling methods available to us, and are famously

suitable for flexible regression. It has also been shown that a single-hidden-

layer neural network with independent and identically distributed priors over its

parameters becomes equivalent to a Gaussian process in the limit of infinite layer

width (Neal, 1995), and that this equivalence extends to their deep counterparts

(Lee et al., 2017).

Gal and Ghahramani (2016) showed that training deep neural networks using

dropout, in which the output of each node is multiplied by a Bernoulli distribution

(so that sampling returns either zero [i.e., the node is ‘dropped out’] or the node’s

original output) can be cast as approximate Bayesian inference in deep Gaussian

processes. This therefore enables the use of deep neural networks for applications

where deep-Gaussian-process-like behaviour is desired, but with lesser compu-

tational expense by avoiding the need to compute distances between all pairs of
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observations, which is required in Gaussian processes in order to compute the

covariance k(x,x′) between observations.

We make use of this Bayesian deep neural network approximation to deep

Gaussian processes, BNN(x) ≈ GP(m,k), in the approach we develop in this

thesis for Bayesian deep learning for spatial (and spatiotemporal) interpolation in

the presence of auxiliary information, and achieve results that suggest that our

Bayesian deep learning approach is a suitable candidate for the ‘next generation’

of geostatistical models that are required in order to model geological variables in

a geologically convincing manner.

There remains an open question about whether including a covariance kernel,

k(x,x′), to explicitly model spatial autocorrelation would bring benefits over the

spatial autocorrelation that our Bayesian deep learning approach already implicitly

models (see the final figure of Chapter 5’s appendix). This could be achieved for

example by adopting a deep kernel learning approach (Wilson et al., 2016), by

which the deep neural network would be used to transform the space of inputs into

a suitable feature space to pass through a Gaussian process as the final layer of

the deep model. Alternatively, our current Deep learning architecture could simply

be used as the mean function for a single-layer Gaussian process, although this

is likely to prove overly restrictive due to the stationarity assumptions of using a

fixed-parameter kernel (without feature space warping). In either case, explicit

modelling of spatial (and spatiotemporal) covariance will always add computational

cost, and so it is interesting to investigate what Bayesian neural networks can

achieve without doing so.

A crucial benefit of adopting a deep neural network based approach enables

the incorporation of computer vision capabilities using convolutional layers. This

brings the capability to extract task-relevant features from gridded auxiliary vari-

ables, and thus allows the model’s resultant interpolations / simulated maps to

capture structure (which in the case of geology may include faulting, if this is

alluded to within the covariates) in a way that traditional approaches (e.g., re-
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gression kriging; Hengl, Heuvelink and Rossiter, 2007) cannot emulate without

requiring prohibitive amounts of manual feature engineering. This benefit may in

itself justify what may otherwise be considered a ‘downgrade’ in using Bayesian

neural networks over exact Gaussian processes.

2.3.2 Summary

With the fundamental aims of geological mapping (the prediction of geological

variables through space) being quite similar to those of weather forecasting (the

prediction of atmospheric variables through space and time), there is potentially

a lot of overlap between the two disciplines when viewed through the lens of

statistical modelling and machine learning, and both stand to benefit equally from

well-implemented probabilistic modelling.

Where the established practice for weather forecasting is to generate forecasts

using numerical weather prediction (NWP) based on physical laws, the established

practice for geological mapping is to generate maps through a process of mental-

modelling and hand-drawing by geologists. The outputs of both can be viewed

as ‘forecasts’ to be post-processed by statistical learning systems, but perhaps

the bigger prize is the development of end-to-end statistical learning systems

which can ingest the same observations as existing approaches use, and from

these learn well-calibrated and sharp predictive distributions (preferably composed

of realistic / physically plausible samples). After all, Bayesian data models are

dependent on our choice of prior, and the prior knowledge currently used in weather

forecasting (i.e., atmospheric physics) and geological mapping (i.e, geological

experience), form no exception to this.

From a statistical perspective geological mapping has so far, in the main,

failed to become a quantitative modelling practice because of the limitations of

traditional geostatistical techniques, and the geologically unrealistic / unconvincing

prior assumptions that these have historically required making (e.g., of stationarity,

isotropy). With the development of the right methods, there is not reason why a new
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generation of geostatistical modelling techniques cannot revolutionise geological

mapping in a similar manner to how (ensemble) numerical weather prediction has

revolutionised (probabilistic) weather forecasting. Excitingly, the requirements of

spatio-temporal weather forecast post-processing systems, which must ingest and

learn from numerical weather prediction forecast grids (as well as other covariates),

are perhaps surprisingly similar to those of spatial geological mapping systems,

which must ingest and learn from geologically informative covariate grids. Some

of these covariate grids may even be the very same; for example digitial elevation

models, and satellite imagery, and so the same statistical modelling approaches

may perform well in both tasks (although task-specific tweaks are likely to be

beneficial).
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Chapter 3

A framework for probabilistic
weather forecast post-processing
across models and lead times

Forecasting the weather is an increasingly data intensive exercise. Numerical
Weather Prediction (NWP) models are becoming more complex, with higher
resolutions, and there are increasing numbers of different models in operation.
While the forecasting skill of NWP models continues to improve, the number
and complexity of these models poses a new challenge for the operational
meteorologist: how should the information from all available models, each
with their own unique biases and limitations, be combined in order to provide
stakeholders with well-calibrated probabilistic forecasts to use in decision
making?

In this chapter, we use a road surface temperature example to demonstrate a
three-stage framework that uses machine learning to bridge the gap between
sets of separate forecasts from NWP models and the ‘ideal’ forecast for
decision support: probabilities of future weather outcomes. First, we use
Quantile Regression Forests to learn the error profile of each numerical model,
and use these to apply empirically-derived probability distributions to forecasts.
Second, we combine these probabilistic forecasts using quantile averaging.
Third, we interpolate between the aggregate quantiles in order to generate
a full predictive distribution, which we demonstrate has properties suitable
for decision support. Our results suggest that this approach provides an
effective and operationally viable framework for the cohesive post-processing
of weather forecasts across multiple models and lead times to produce a
well-calibrated probabilistic output.
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3.1 Introduction

The importance of weather forecasting for decision support is likely to increase as

we progress into times of changing climate and perhaps more frequent extreme

conditions (Rahmstorf and Coumou, 2011). Any methodological developments

that can improve our ability to make the optimal decisions in the face of meteorolo-

gical uncertainty are likely to have a real impact on all areas that utilise weather

forecasts.

Since the inception of meteorology as a mathematical science, driven by the

likes of Abbe (1901), Bjerknes (1904), and Richardson (1922), numerical modelling

has been the core methodology of weather forecasting. In 2015, Bauer, Thorpe

and Brunet (2015a) reviewed the progress of numerical forecasting methods in the

quiet revolution of numerical weather prediction, and explained how improvements

in physical process representation, model initialisation, and ensemble forecasting

have resulted in average forecast skill improvements equivalent to one day’s worth

per decade — implying that in 2020 our five day forecasts have approximately the

same skill as the one day forecasts of 1980.

However, the continuation of these gains requires ever more computational

resources. For example, in pursuit of higher resolution models, halving grid cell

length in three dimensions requires eight times the processing power, but due

to model biases and initial condition uncertainty, corresponding improvements

in forecasting skill are not guaranteed. At the same time, as society progresses

we are placing greater emphasis on efficiency and safety in everything we do. In

order for businesses to operate efficiently and in order to keep the public safe

from meteorological hazards, there should be great emphasis on improving the

functionality of weather forecasts as decision support tools — and that means

bridging the gap between deterministic NWP model outputs (including sparse

ensembles from these) and fully probabilistic forecasting approaches suitable for

supporting decision making through the use of decision theory Economou et al.,
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2016; Simpson et al., 2016. In essence, statistical approaches are key to optimal,

transparent, and consistent decision making.

At the same time, while numerical weather prediction methodology has

evolved gradually over the last century (hence ‘the quiet revolution’), the last

decade has seen significant developments in machine learning and its rise into

the scientific limelight, with promising results being demonstrated in a wide range

of applications e.g. Gulshan et al., 2016; Silver et al., 2017; Hey et al., 2020.

The catalyst for this new wave of machine learning can perhaps be attributed to

the results of Krizhevsky, Sutskever and Hinton (2012) in the Large Scale Visual

Recognition Challenge (ILSVRC) of 2012, who demonstrated for the first time

that deep neural networks — with their ability to automatically learn predictive

features in order to maximise an objective function — could outperform existing

state-of-the-art image classifiers based on hand-crafted features, which had been

the established approach for previous decades. The parallels between the hand-

crafted features in image classification, and the human choices that are made in

all kinds of data processing pipelines — including weather forecasting — have in-

spired exploration into new applications of machine learning. In meteorology, could

these tools relieve pressure from current model development and data processing

bottlenecks and deliver a step-change in the rate of progress in forecasting skill?

Initial efforts using machine learning in the context of post-processing NWP

model output have shown promising results (e.g. Rasp and Lerch, 2018; Chapman

et al., 2019; Taillardat et al., 2016) in both probabilistic and deterministic settings.

We believe that the greatest value of machine learning in weather forecasting

lies in the probabilistic capabilities of these methods: not only do they have the

potential to learn to improve forecasting skill empirically, but also to bridge the gap

between traditionally deterministic forecasting approaches (i.e. numerical weather

prediction) and the probabilistic requirements of robust decision support tools.

To this end, in this chapter we demonstrate our framework for probabilistic

weather forecast post-processing using machine learning. We have designed
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this framework to be suitable for use by operational meteorologists, and there-

fore, unlike other studies that we are currently aware of, our proposed solution

incorporates forecast data from all available model solutions (i.e. multiple NWP

model types, and all available forecast lead times). The framework aggregates the

available forecast information into a single well-calibrated predictive distribution,

providing probabilities of weather outcomes for each hour into the future. Our

application is road surface temperature forecasting — a univariate output — using

archived operational data from the UK Met Office. In this demonstration we use

Quantile Regression Forests (QRF, Meinshausen, 2006) as our machine learn-

ing algorithm, but hope to convince readers that our overall approach — flexible

quantile regression for each forecast, followed by averaging of quantiles across

forecasts, and finally interpolating the full predictive distribution — provides a

flexible framework for probabilistic weather forecasting, and crucially one that is

compatible with the use of any probabilistic forecasting models (post-processed or

otherwise).

Our framework can be seen as an overarching aggregator of forecast in-

formation, emulating part of the role of the operational meteorologist, who must

otherwise develop a sense for how skillful each individual forecast is through

experience, and mentally combine these forecasts in order to make probabilistic

statements to inform decision making. These include judgements of uncertainty

such as a ‘most likely scenario’ and a ‘reasonable worst case scenario’ (Stephens

and Cloke, 2014). Figure 3.1 gives an example of how complex a task it is to make

sense of the available forecast information, even for the single variable of road

surface temperature at a single site.

76



-5

0

5

Jan 04 Jan 06 Jan 08 Jan 10
validity time (dashed line represents time zero)

ro
ad

 s
ur

fa
ce

 te
m

pe
ra

tu
re

 (°
C

)
model_type

enuk

eur_eu

eur_uk

glm

glu

pvrn

ukv

Figure 3.1: A visualisation of the information provided by numerical weather
prediction (NWP) forecasts. Each coloured line represents an ensemble member
from a different model type. Observations (solid black line) go as far as time
zero (vertical dashed line - the ‘current time’, which is 00:00 on 5th of Jan in this
figure) and beyond that, if a statistical approach is not used, it’s down to individual
meteorologists to determine the likely weather outcomes based on the information
presented by the models.

While methods for weather forecast post-processing using more traditional

statistical approaches have existed for some time (e.g. Raftery et al., 2005; Glahn

and Lowry, 1972; Wilks and Hamill, 2007; Gneiting et al., 2005), we believe our

machine learning based approach to be a useful contribution to the field as interest

in meteorological machine learning grows. The development of our framework has

been guided by the needs of operational weather forecasting, including handling

sets of different weather forecasting models with their own unique ranges of lead

times. Increasingly these forecasts may not all be raw NWP forecasts, but are

themselves likely to have been individually post-processed using machine learning

(e.g. for downscaling), or purely statistical spatio-temporal forecasts. It is therefore

a strength of our proposed framework that we can post-process any number of

models of any type, and for any lead times.

3.2 Post-processing framework

The key considerations in designing our framework were that we wanted to develop

an approach that was flexible, compatible, and fast. Flexible in the sense that
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we would like to minimise the number of assumptions made that would constrain

the form of our probabilistic forecasts, and largely ‘let the data do the talking’, as

tends to be the machine learning ethos. Compatible in the sense that we would

like our framework to generalise to scenarios in which NWP model outputs are

not the only forecast available - this is likely to become more common as machine

learning becomes more commonplace. And fast, because weather forecasting is

a near-real-time activity and any post-processing approach has to be able to keep

up.

There are many possible approaches for post processing individual weather

forecasts, and indeed many possible approaches for producing forecasts in the

first place (for example spatio-temporal statistical models (Hengl et al., 2012), or

more recently neural network based approaches (Asanjan et al., 2018), in addition

to the traditional NWP models). By using quantiles as the basis on which we

combine multiple forecasts, our approach is compatible with any forecast from

which well-calibrated predictive quantiles can be obtained, either from the forecast

model directly (if probabilistic), or through uncertainty quantification of deterministic

models, as we demonstrate in this chapter. The three stages of our framework’s

methodology are explained in the following subsections.

3.2.1 From deterministic to probabilistic forecasts

For our application to road surface temperature forecasting, the available forecasts

come from a set of NWP models, as is commonly the case. Our model set

spans from long range, low resolution global models (glu, glm) through medium

range, medium resolution European models (eur eu, eur uk) to shorter range,

high resolution UK specific models (ukv, enuk) including a six-hour nowcast (pvrn).

Apart from the ‘enuk’ model, which itself provides an ensemble of 12 members

on each run, the other models provide single deterministic forecasts. While all of

these models provide spatial forecasts, in this study we post-process the forecasts

for specific sites in order to focus on the probabilistic aspects. Figure 3.1 shows a

snapshot of the set of model forecasts for a single site.
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While the final output of our framework is a full predictive distribution sum-

marising the information contained in the entire set of NWP model output, the first

step is to convert each deterministic forecast into an individually well-calibrated

probabilistic forecast. We do this by using machine learning to model the error

profile of each deterministic forecast conditional on forecasting covariates. The

error is defined as:

εt,m = y− xt,m (3.1)

where xt,m is a NWP model forecast for model type m (e.g. ‘eur uk’) and lead time

t while y is the corresponding observation. For our surface temperature data, lead

times range from 0 hours to 168 hours. Predictions of future data points are then

obtained by

ŷt,m = xt,m + εt,m (3.2)

Modelling the forecast errors rather than y was empirically found to produce

better predictions using significantly less training data. An explanation for this is

that xt,m is used as a complex trend removal function (e.g. for seasonality and

other non-stationary effects), thus allowing us to treat εt,m as a time-invariant

(stationary) variable — the stochastic relationship between bulk model error and

lead time is quite stable across absolute time (see Figure 3.2). This simplifying

assumption may not hold up in every case, and we would recommend checks

before applying it to other variables and forecasting tasks. Modelling the forecast

errors, ε , also has the benefit of providing many more unique εt,m observations for

training than is provided by the absolute temperature observations yt,m. This is

because, while yt is identical for all m (only one absolute temperature observation

is made per time step), ε is unique for each t,m pair because each unique NWP

forecast produces its own unique error. The recent work of Taillardat and Mestre

(2020), and Dabernig et al. (2017) before them, shows that we are not alone in

successfully using an error modelling approach.

Figure 3.2 shows εt,m for m = glm (global long range forecast) and t =

0,1, . . . ,168. Note the expected general increase in variance with increasing lead
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times and the increase in the location of the mean of the distribution (red line)

indicating a systematic bias in the forecast. There is also a cyclic trend caused

by the interaction between lead time and model initialisation time. This particular

model is initialised at 00:00 and 12:00 hours, so we see increased errors on a 12

hour cycle starting from initialisation. This is because temperature errors tend to

be larger in the early hours of the afternoon (when effects of inaccurately modelled

cloud coverage on solar irradiance are most pronounced) compared to the early

evening and morning.
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Figure 3.2: Plot of εt,m for m = glm against lead hour (1,2, . . . ,168) for a random
sample of our dataset (spanning multiple months of absolute time). Each point is
εt,m at a single hourly time step. The red line is a smooth estimate of the mean.

In order to learn the error distribution of each NWP model type, we use

Quantile Regression Forests (QRF, Meinshausen, 2006) as implemented in the

‘ranger’ package in R (Wright and Ziegler, 2017). While many other data modelling

options are possible, QRF has a number of desirable properties. First, it has the

flexibility to fit complex functions with minimal assumptions. For data rich problems

such as ours, not specifying a parametric distribution allows us to capture the

true complexity of the error distribution. Second, it is very fast in both training

and prediction, and suitable for operational settings avoiding user input such as

convergence checks (e.g. MCMC or gradient descent based methods). Third, it is

relatively easy to understand the algorithm and has only a few hyper-parameters

to tune, which makes getting reasonably good results in new problems quite
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straightforward.

For a detailed explanation of the QRF algorithm see Athey, Tibshirani and

Wager (2019) or Taillardat et al. (2016) for a more weather oriented description.

For regression problems like ours, the QRF algorithm (a variant of the popular

random forest algorithm) consists of an ensemble of regression trees. A regression

tree recursively partitions the space defined by the covariates into progressively

smaller non-overlapping regions. A prediction is then some property/statistic of the

observations contained within the relevant region. Conventionally for each tree the

prediction is the sample mean of the observations in the partition corresponding to

new input data. Suppose for instance that a regression tree is grown on the data

in Figure 3.2 and that our aim is to predict the mean forecast error at 100 hours.

Suppose also that the tree had decided to group all observations in t ∈ [98,106]

into the same partition. Then the prediction for t = 100 would simply be the mean

of all observations between 98 and 106 hours. For a QRF however, the same tree

would instead return the values of all the observations between 98 and 106 hours

as an empirical distribution from which quantiles are later derived.

The predictive performance of random forests is sensitive to how the covariate

space is partitioned. The splitting rule, which governs the placement of partitioning

splits as each tree grows, is therefore an important parameter, as are tunable

hyper-parameters that we discuss in the next paragraph. Here we use the variance

splitting rule, which minimises the intra-partition variance within the two child

partitions at each split. A key aspect of the random forest and QRF algorithm is

that each tree in the ensemble is grown on its own unique bootstrapped random

sample of the training data. This produces a forest of uncorrelated trees, which

when aggregated (called bootstrap aggregation or ‘bagging’) results in an overall

prediction that is less prone to over-fitting than an individual decision tree, while

retaining the ability to learn complex functions. To produce quantile predictions, the

QRF returns sample quantiles from all observations contained within the relevant

partition of each individual tree in the forest. In doing so it behaves as a conditional
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(on the covariates) estimate of the CDF.

Extending from the earlier work of Breiman (2001) who proposed the random

forest algorithm, Meinshausen (2006) provides explanation of the workings of

the quantile regression forest approach as follows (initially the random forest is

explained, and then the quantile regression forest). Let θ be the random parameter

vector that determines how a tree is grown. The corresponding tree is denoted

by T (θ). Let B be the space in which X lives, that is X : Ω → B ⊆ Rp, where

p ∈ N+ is the dimensionality of the predictor variable. Every leaf l = 1, ...,L of a tree

corresponds to a rectangular subspace of B. Denote this rectangular subspace by

Rl ⊆ B for every leaf l = 1, ...,L. For every x ∈ B, there is one and only one leaf l

such that x ∈ Rl (corresponding to the leaf that is obtained when dropping x down

the tree). Denote this leaf by l(x,θ) for tree T (θ).

The prediction of a single tree T (θ) for a new data point X = x is obtained by

averaging over the observed values in leaf l(x,θ). Let the weight vector wi(x,θ be

given by a positive constant if observation Xi is part of leaf l(x,θ) and 0 if it is not.

The weights sum to one, and thus

wi(x,θ) =
1{Xi ∈ Rl(x,θ)}

#{ j : X j ∈ Rl(x,θ)}
(3.3)

The prediction of a single tree, given covariate X = X , is then the weighted average

of the original observations Yi, i = 1, ...,n,

single tree: µ̂(x) =
n

∑
i=1

wi(x,θ)Yi. (3.4)

Using random forests, the conditional mean E(Y |X = x) is approximated by the

averaged prediction of k single trees, each constructed with an i.i.d. vectorθt , t =

1, ...,k. Let wi(x) be the average of wi(θ) over this collection of trees,
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wi(x) = k−1
k

∑
t=1

wi(x,θt). (3.5)

The prediction of random forests in then

Random Forests: µ̂(x) =
n

∑
n=1

wi(x)Yi. (3.6)

The approximation of the conditional mean of Y , given X = x, is thus given by a

weighted sum over all observations. The weights vary with the covariate X = x and

tend to be large for those i ∈ {1, ...,n} where the conditional distribution of Y , given

X = Xi, is similar to the conditional distribution of Y , given X = x.

One could expect that the weighted observations may deliver not only a good

approximation of the conditional mean, but also to the full conditional distribution.

The conditional distribution function of Y , given X = x, is given by

F(y|X = x) = P(Y ≤ y|X = x) = E(1{Y≤y}|X = x). (3.7)

The last expression is suited to draw analogies with the random forest approx-

imation of the conditional mean E(Y |X = x). Just as E(Y |X = x) is approximated

by a weighted mean over the observations of Y , define an approximation to

E(1{Y≤y}|X = x) by the weighted mean over the observations of 1{Y≤y},

F(y|X = x) =
n

∑
n=1

wi(x)1{Yi≤y}, (3.8)

using the weights wi(x) as for random forests, defined in (3.5). This approximation

is at the heart of the quantile regression forest algorithm.

Pseudocode The algorithm for computing the estimate F̂(y|X = x) can be sum-

marised as:
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(a) Grow k trees T (θt), t = 1, ...,k, as in random forests. However, for every tree,

take note of all the observations in this leaf, not just their average.

(b) For a given X = x, drop x down all trees. Compute the weight wi(x,θt) of

observation i ∈ {1, ...,n} for every tree as in (3.3). Compute weight wi(x) for

every observation i ∈ {1, ...,n} as an average over wi(x,θt), t = 1, ...,k, as in

(3.5).

(c) Compute the estimate of the distribution function as in (3.8) for all y ∈ R,

using the weights from Step b).

For modelling NWP surface temperature errors, the tuning of QRF hyper-

parameters as well as the selection of input covariates was conducted manually

with the aim of achieving good out-of-bag quantile coverage (a QRF proxy for

out-of-sample performance) across all lead times. This was achieved using visual

checks such as Figure 3.3, which indicates that on average, prediction intervals are

close to the ideal coverage across lead times, i.e. 90% of the time observations

will fall within the 90% prediction interval. However for operational setups it

may be preferable to use a more formal optimisation procedure, such as Bayesian

optimisation. We found that using just lead time, t, and model type, m, as covariates

gave the best calibration results, presumably aided by the parsimonious nature

of this simple representation. The chosen hyper-parameters were: mtry = 1

(this is the number of covariates made available at random to try at each split),

min.node.size = 1 (this limits the size of the terminal nodes / final partitions of each

tree - in this case there is no limit on how small these can be), sample.fraction

= 128/nrow(training data) (this is the size of the bootstrap sample of the training

data provided to each tree), and num.trees = 250 (this is the number of trees in

the forest). The use of a relatively small sample size (128 observations for each

tree, out of a total of around 50,000 observations in a 14 day run-in period) and

a minimum node size of one (trees grown to full depth) was found to produce

the best out-of-bag coverage at a minimal run time. Our mtry setting meant that

one of our two covariates (t and m) was made available at random to each tree
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at each split. If another objective had been prioritised (e.g. to minimise mean

squared error, rather than optimise coverage) the optimal hyper-parameters would

be different.
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Figure 3.3: Coverage of the 50%, 80%, 90%, and 95% QRF prediction intervals on
out-of-bag data from one training scenario (though the picture is indicative of other
scenarios). The coverage is the proportion of observations that fall within each
prediction interval, and should match the interval (i.e. with 95% of observations
falling within the 95% prediction interval) in a well-calibrated setup.

Once the QRF has been trained, each NWP forecast can be converted to a

probabilistic forecast by adding to it the predicted error distribution (3.2). Unlike

the deterministic NWP forecast, the prediction is now a probability distribution, con-

structed through a conditional bootstrap of εt,m via the QRF algorithm. Prediction

intervals are obtained as quantiles of this distribution as illustrated in Figure 3.4.
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Figure 3.4: A deterministic NWP forecast for m = glm that has been converted to a
probabilistic forecast using equation (3.2). The 80% and 95% prediction intervals
are shown as overlain grey ribbons, while the solid grey line is the median (which
differs little from the NWP forecast here).

3.2.2 Combining probabilistic forecasts

The next step is to combine these predictive distributions from each NWP model

output into a single distribution that is suitable for use in decision support. The

challenge is to combine the forecasts in a probabilistically coherent manner, with

the goal of producing a single well-calibrated and skillful predictive distribution.
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Figure 3.5: Synthetic example of combining two probabilistic forecasts using
Bayesian Model Averaging (BMA) and Quantile Averaging (QA), after Schepen
and Wang, 2015.

A popular approach for combining probabilistic models is Bayesian Model

Averaging (BMA), and its use in the statistical post-processing of weather forecasts
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has precedent (e.g. Hoeting et al., 1999; Raftery et al., 2005; Gneiting and Ranjan,

2013). Basic BMA produces a combined distribution as a weighted sum of PDFs.

However, in order to satisfy the requirements of our framework, we propose

an alternative approach using quantile averaging, whereby each quantile of the

combined distribution is taken as the mean of the same quantile estimated by each

individual model. An illustrative comparison of equal-weighted BMA and quantile

averaging is shown in (Figure 3.5). For the purposes of our framework, we found

BMA to be unsuitable for the following three reasons: 1) Achieving good calibration

of the combined distribution produced by BMA requires optimisation of the intra-

model variance, i.e. the spread of each individual model’s error profile. In our case,

where each model’s error profile has been learned independently by QRF, and is

already well-calibrated, combining these through BMA produces an over-dispersed

predictive distribution due to the inclusion of the inter-model variance in addition to

the already calibrated intra-model variances. 2) In turn, this makes BMA rather

incompatible with input models that are individually well-calibrated (e.g. statistical

nowcasts), and therefore incompatible with a general framework like ours. 3) The

use of BMA across all models and lead times is complicated by the fact that there

are not an equal number of forecasts available for each lead time. This means

that the inter-model variance is intrinsically inconsistent across lead times, even

dropping to zero at our longest ranges, where only a single deterministic forecast

is available (e.g. Figure 3.1). This decrease in inter-model variance with increasing

forecast range trends opposite to the true uncertainty, which intuitively should on

average increase with forecast range. This is a quirk of NWP forecast availability

and one that probabilistic post-processing must overcome.

Our framework overcomes this instability in inter-model variance by using

quantile averaging (also known as the ‘Vincentization’ method (Genest, 1992;

Vincent, 1912) to combine forecasts that are already well-calibrated for cover-

age (owing to their QRF error profiles, in our case). Using this approach, we

construct our combined forecast distribution from the quantile predictions of our

individual QRF post-processed forecasts. To produce each predicted quantile
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of the combined distribution, Vincentization simply takes the mean of the set

of estimates of the same quantile by each individual forecast. As explored by

Ratcliff (1979), Vincentization produces a combined distribution with mean, vari-

ance, and shape all approximately equal to the average mean, variance, and

shape of the individual distributions (as we see in Figure 3.5). Vincentization

therefore provides similar functionality to parameter averaging of parametric distri-

butions, but for non-parametric distributions such as ours. Within our framework,

Vincentization effectively integrates out the inter-model variance (by taking the

mean across models), and in doing so preserves the calibration of the individual

QRF post-processed forecasts, avoiding the underdispersion issues that would

be introduced by BMA in this situation, since each individual forecasts is already

pre-calibrated by the QRF post-processing step, and so including the inter-model

variance in the model blending step would overinflate the total variance of the

combined predictive distribution. Vincentization, quantile averagin, is therefore one

possible solution to the issue of combining pre-calibrated probability distributions

without loss of calibration Gneiting and Ranjan, 2013, and has previously been

found capable of providing sharper and better calibrated forecasts (Lichtendahl Jr,

Grushka-Cockayne and Winkler, 2013). However, the method by which probability

distributions are combined can have important implications for decision-support

forecasting, and while quantile averaging satisfies our general requirements for

this framework, we do not discount that alternative approaches may be preferable

depending on the application.

Our quantile averaged forecast benefits from stability owing to the law of large

numbers — any quantile of the forecast distribution represents an average of the

estimates of that quantile across the available individual forecasts. This approach is

therefore more akin to model stacking procedures, as used in ensemble machine

learning to improve prediction accuracy by reducing prediction variance (Ren,

Zhang and Suganthan, 2016). Indeed, this same logic is behind the bootstrap

aggregation (‘bagging’) procedure of the random forest algorithm: by averaging the

predictions of multiple individual predictors — each providing a different perspective
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on the same problem — the variance of the aggregate prediction is reduced,

resulting in improved prediction accuracy at the expense of some increased bias

(Belkin et al., 2019). Crucially for our framework, unlike a BMA approach which

retains the inter-model variance, the calibration of our quantile averaged output

is invariant to the number of forecasts available at each timestep. This is key for

temporally coherent forecast calibration across all lead times.

Our error modelling approach does require one extra-step of processing in

order to handle model types which themselves have multiple interchangeable

ensemble members. The ‘enuk’ model (Figure 3.1) is our example of this, having

twelve non-unique members. In such cases, the apparent error profile for the

model type as a collective gets overinflated by the inter-member variance. Our

solution to this is to label each ensemble member by its rank (at each time step).

This splits our 12-member ‘enuk’ ensemble into 12 unique model types in the eyes

of the QRF. This approach produces well-calibrated error profiles (though with

significant offset bias in the extreme ranking members, as would be expected).

3.2.3 Simulation from the full predictive distribution

While quantile averaging provides an effective way of combining multiple probab-

ilistic forecast distributions, it leaves us with only a set of quantiles rather than

the full predictive distribution. This distribution is desirable because it allows us

to (a) answer important questions such as ‘what is the probability that the tem-

perature will be below 0◦C?’ and (b) evaluate the skill of the probabilistic forecast

using a range of proper scoring rules (although, depending on the end use, some

proper scoring rules could be calculated directly from quantile predictions, e.g. the

quantile score Bentzien and Friederichs, 2014 or the interval score Gneiting and

Raftery, 2007).

To obtain the full predictive distribution, we interpolate between the quantiles

of our combined forecast in order to construct a full CDF using the method of

Quiñonero-Candela et al. (2006), which has previously been applied to precipitation
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Figure 3.6: Interpolated CDF of the combined predictive distribution (top), and
corresponding road surface temperature simulation (bottom) for a particular 50-
hour ahead forecast.

forecasting Cannon, 2011 and is available in the R package qrnn Cannon, 2011.

The method linearly interpolates between the given quantiles of the CDF (our

combined quantiles from Vincentization), and, beyond the range of given quantiles,

extrapolates down to P(X ≤ x) = 0 and up to P(X ≤ x) = 1 assuming tails that

decay exponentially with a rate that ensures the corresponding PDF sums to one

(Figure 3.6 top, for details see pages 8 and 9 of Quiñonero-Candela et al. (2006)).

Using this approach allows us to construct a full predictive distribution from the

Vincentized quantiles of our individual QRF post-processed forecasts. Depending

on the application at hand, suitable forecast information might be obtained by

querying the CDF of the predictive distribution directly at each time step, but in our

application here, we go the extra step of simulating temperature outcomes at each

timestep by randomly sampling from the CDF (Figure 3.6 bottom). This is the final
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step of our framework — taking us from a set of disparate NWP forecasts to a full

predictive distribution of weather outcomes.

3.3 Results

To evaluate our framework, we applied it to 200 randomly time-sliced and site-

specific forecasting scenarios extracted from our UK Met Office road surface

temperature dataset, which we have aggregated to hourly time steps. Each

scenario has its own training window of 14 days, providing approximately 50 000

data points of εt,m to train the QRF, immediately followed by its own evaluation

window extending as far as the longest range NWP forecast (up to 168 hours / 7

days), which is akin to the area to the right of the vertical dashed line in Figure 3.1.

While there are only 336 hours in a 14 day training window, the number of NWP

models and their regular re-initialisation schedule, means that approximately 150

forecasts are made for any hour by the time it is observed. While we only use the

current forecasts from each model type to generate our predictions, the training

benefits from every historical forecast within the window.

Figure 3.7 shows an example prediction of up to 168 hours into the future for

a particular scenario. This is just one of the 200 random scenarios used in our

overall evaluation. Although the prediction at each hour ahead is a full probability

distribution, here we present prediction intervals as well as a simulation of 1000

temperature values from it. The samples were used to derive the probability

of the temperature being below 0◦C as the proportion of values less than zero.

Different stakeholders will require their own unique predictive quantities, and by

providing a full predictive distribution, our framework should cater for a wide variety

of requirements.

Various metrics could be used to evaluate the skill of our probabilistic forecasts

over multiple scenario runs. From the perspective of decision support, the ideal

metric to evaluate would be the change in loss resulting from using our forecasts

to make real world decisions, such as about when to grit roads in our case.
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Figure 3.7: An example of the output of our post-processing framework. Top:
the probabilistic forecast is visualised by the 80% and 95% prediction intervals.
Bottom: simulations from the full predictive distribution as grey dots, while the red
line (right-hand y-axis) shows the probability of temperature being < 0◦C. NWP
model forecasts are shown by coloured lines, and the true observed temperature
(not known at time of forecasting) is shown by a solid black line.

However, in the interest of a more general analysis we use a range of standard

metrics. These are: prediction interval coverage (Figure 3.8 left), the mean-

absolute-error (MAE) of the median (Figure 3.8 right, because sometimes a single

‘best’ deterministic forecast is still desired), as well as the continuous ranked

probability score (CRPS) and logarithmic score of our probabilistic forecast (both

in Figure 3.9).
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Figure 3.8: Evaluation metrics from 200 forecast scenarios. On the left, coverage
of the prediction intervals of the combined probabilistic forecasts. On the right,
the MAE achieved by the median of the combined probabilistic forecast (QRF pp)
compared to taking the median of the available NWP forecasts (NWP avg).

Figure 3.8 indicates that coverage is good overall, with 94.7% of observations

falling within the 95% prediction interval, although there is some over-dispersion

of our forecast at the shortest ranges and under-dispersion at the longest ranges.

This is an indication that, despite producing near perfect results on out-of-bag

training data (Figure 3.3), the QRF performance diminishes slightly when applied

to new data. The range dependent over- and under-dispersion may be due to the

partitioning process on which the forest is grown - by necessity the partitions that

represent the extremes of forecast range must extend some distance towards the

middle of the range, and in doing so end up capturing an empirical error distribution

that is slightly biased towards the average empirical error distribution, rather than

perfectly representing the distribution at the extremes of covariates. It may be the

case that other data modelling approaches could do better in this respect.

Although deterministic performance was not our focus, the QRF median pre-

diction does outperform the median of the available NWP models across the entire

forecast range in terms of MAE. While only a conceptual benchmark, this can be

taken as some indication that we have not ‘thrown away’ deterministic performance

in pursuit of probabilistic calibration. Figure 3.8 also indicates that our method

results in a monotonically increasing error with forecast range, unlike the median

of the original NWP forecasts. Similarly, we see a monotonic increase in both the

93



0

2

4

6

8

0 50 100 150
hours ahead

C
R

PS

method
QRF post-processed

Raw NWP ensemble

0

2

4

6

8

0 50 100 150
hours ahead

lo
g 

sc
or

e method
QRF post-processed

Raw NWP ensemble

Figure 3.9: Evaluation metrics of our post-processing framework across all lead
times on 200 random forecast scenarios. We compare our QRF post-processed
output to the raw NWP ensemble in terms of continuous ranked probability score
(CRPS, top) and logarithmic score (bottom).

CRPS and the logarithmic score with increasing forecast range (Figure 3.9, top

and bottom), and, when compared to the performance of the raw NWP ensemble

on the same metrics, find our QRF post-processing approach to perform better. In

the case of CRPS, our QRF post-processing approach reduces the rate at which

forecasting skill decreases with forecast range. Also, by looking at the spread of

performance across individual forecasting scenarios (represented by individual

points in Figure 3.9, rather than the lines, which trace the mean) we can see

that our QRF post-processing approach reduces the variance in forecasting skill

across different forecasting scenarios, making it a more consistent forecast than

raw NWP. In the case of logarithmic score (Figure 3.9, bottom) we see again that

the forecasting skill provided by the QRF post-processed output is more consistent
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than that of the raw NWP ensemble, although the difference in the mean perform-

ance is less pronounced. The logarithmic score of the NWP ensemble cannot

be obtained at longer ranges as only a single deterministic forecast is available.

The authors recognise that comprehensive comparisons of our approach to other

probabilistic post-processing approaches (in addition to raw NWP output) will be

important to consider when choosing the best approach for any operational setup.

While we do not offer such comparisons in this study, we have made our dataset

openly accessible as one of several benchmark datasets compiled by Chapman

et al. (n.d.) and Haupt et al. (2021) at https://doi.org/10.6075/J08S4NDM in

the hope that it will facilitate comparison of different post-processing approaches

on common benchmarks in the future. In terms of speed, training the QRF for

each forecast scenario takes between just three and four seconds on an i7-8550U

laptop, and so the implementation of this framework can be expected to add very

little overhead to a typical operational NWP forecasting setup.

3.4 Discussion and conclusions

The conversion of disparate forecasts into a cohesive probabilistic output is im-

portant. A key function of weather forecasts is to support decision making, but

current numerical methods do not provide the well-calibrated probabilistic output

required to do this rigorously. By applying our framework we compensate for this

shortcoming, effectively supplementing forecasts with information from their his-

toric performance in order to combine all available deterministic inputs, for all lead

times, into a single well-calibrated probabilistic forecast. Whilst our approach is by

no means the first to provide probabilistic post-processing of weather forecasts,

we believe the flexibility and speed provided by our use of machine learning, along

with our framework’s relative simplicity and ability to simultaneously deal with all

available models and lead times, makes it a strong option for consideration in

operational forecasting settings.

In this study we have only applied our framework to site specific forecasting,
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but there are no fundamental reasons why the same principles cannot be applied to

spatial forecasting by providing the QRF with additional spatial covariates against

which to learn its error profiles, or by adopting the standardised anomaly model

output statistics (SAMOS) approach as proposed by Dabernig et al. (2017). The

error modelling approach that we use seems a very effective way of minimising the

amount of training data required compared to predicting absolute values. Taillardat

et al. (2016), who also make use of QRF in their post-processing, initially used four

years of training data for their absolute value forecasting system in 2016, but have

since adopted an error modelling approach themselves (Taillardat and Mestre,

2020).

There are still several aspects of our framework that are open to further

investigation. One significant aspect that we explored in preliminary experiments

but have not included in our methodology here, is the opportunity to use weighted

quantile averaging for combining forecasts. In our setup, where all of the inputs are

recent NWP forecasts (and therefore similarly skillful), we saw negligible difference

in using a weighted averaging approach, but in situations where more diverse

forecast types are in use, it may prove beneficial to assign weightings according to

forecast skill. A dynamic weighting approach also enables individual models to be

updated without jeopardising the overall post-processed output, as the contribution

of the new or updated model will be minimal until it’s error profile is well understood.

The QRF algorithm provides a convenient means by which skill can be estimated

ahead of time, in the form of out-of-bag metrics. For example, we showed earlier

the out-of-bag coverage of our trained QRF (Figure 3.3). Metrics such as the

CRPS, logarithmic score, and Kullback–Leibler divergence would provide good

comparisons of forecast skill on which to base quantile averaging weight, although

their calculation would add some additional processing time. Yao et al. (2018)

provide more detail about using such metrics for weighted model stacking, and in

fact these weights can be optimised as an additional supervised learning problem

(Ren, Zhang and Suganthan, 2016).

96



The overall strategy for combining forecasts is also open to further research.

Because it retains the inter-model variance, BMA may be considered to provide

a better representation of extreme outcomes at the expense of well-calibrated

coverage (at least in setups where each input forecast is already well-calibrated,

which is likely to become the norm). We also think that the output of BMA would

be difficult to make use of in practice when applied across all lead times as in our

framework, because of the discrepancy in the number of models available at each

time step, and therefore the spurious inconsistency of the inter-model variance

across the forecast range. Still, applications where capturing extremes is a priority

may wish to investigate further. For general purposes, we are satisfied with our

time-consistent and calibration-preserving quantile averaging approach.

It is our belief that, as time goes on, and the number of different forecast-

ing models in use — along with their complexity and resolution — continues to

increase, there will be increasing need for algorithmic interfaces such as ours

to summarise the otherwise overwhelming sea of forecast information into de-

cision ready output. This would consist of optimally well-calibrated probabilities

of future weather outcomes given all available information. Probabilistic machine

learning is a technology that can enable this, and we hope that the work we have

demonstrated here will go some way in aiding progression towards this goal.

3.5 Code, data, and acknowledgements

Our dataset has been made available with permission from the Met Office and

Highways England, for which we are grateful. It is available for download along

with several other open weather forecast post-processing datasets collated by

Chapman et al. (n.d.) and Haupt et al. (2021) at https://doi.org/10.607

5/J08S4NDM. In addition, the code for this study can be accessed at https:

//github.com/charliekirkwood/mlpostprocessing

The lead author is grateful for the insightful discussions and community feed-

back that came from attending the Machine Learning for Weather and Climate
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Modelling conference at the University of Oxford in 2019, and the EUMETNET

Workshop on Artificial Intelligence for Weather and Climate at the Royal Meteor-

ological Institute of Belgium in 2020. In addition CK would like to thank Thomas

Voigt for offering his data engineering expertise. We are grateful to all who have

helped to guide this study.
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3.6 Bridge into Chapter 4 and beyond

To go beyond site-specific weather forecast post-processing requires adopting

spatial methods, which can model a forecast predictive distribution through space

(as well as through time). The setup of the numerical weather prediction post-

processing problem; in which the gridded outputs of numerical models are clearly

the main source of information, motivates a desire to develop statistical approaches

which can ingest and learn from gridded inputs. In order to develop such ap-

proaches, we have been inspired by methods in computer vision (i.e., convolutional

neural networks) and in fact incorporate these into our models. While full spatio-

temporal post-processing of ensemble weather forecasts could be one of the

ultimate goals of the development of these hybrid geostatistical-computer-vision

methods, over the next two chapters we make use of a complex static spatial

dataset (observations from the British Geological Survey’s geochemical baseline

survey of the environment; Johnson et al., 2005) as a test bed for developing

the spatial modelling capabilities of our the hybrid geostatistical-computer-vision

method that we develop over these chapters. We then apply the approach, with

some modifications for outlier filtering, to spatio-temporal atmospheric data —

crowd-sourced temperature observations from the Met Office’s Weather Obser-

vation Website — in Chapter 6, before returning to the lithosphere in Chapter

7 to demonstrate our refined hybrid geostatistical-computer-vision method as a

suitable foundation for a probabilistic revolution in geological mapping.

Thus, the model development research that this thesis presents combines

inspiration from ensemble weather prediction, computer vision, and geostatistics in

order to realise what could be considered a new generation of general probabilistic

environmental AI methods, from which many branches of future research directions

spring up - both in terms of real-world use and theoretical developments. We

summarise these in Chapter 8; Summary and conclusion.
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Chapter 4

Deep covariate-learning: Optimising
information extraction from terrain
texture for geostatistical modelling
applications

Where data is available, it is desirable in geostatistical modelling to make
use of additional covariates, for example terrain data, in order to improve
prediction accuracy in the modelling task. While elevation itself may be
important, additional explanatory power for any given problem can be sought
(but not necessarily found) by filtering digital elevation models to extract
higher-order derivatives such as slope angles, curvatures, and roughness. In
essence, it would be beneficial to extract as much task-relevant information
as possible from the elevation grid. However, given the complexities of the
natural world, chance dictates that the use of ‘off-the-shelf’ filters is unlikely to
derive covariates that provide strong explanatory power to the target variable
at hand, and any attempt to manually design informative covariates is likely to
be a trial-and-error process — not optimal.

In this chapter we present a solution to this problem in the form of a deep
learning approach to automatically deriving optimal task-specific terrain texture
covariates from a standard SRTM 90m gridded digital elevation model (DEM).
For our target variables we use point-sampled geochemical data from the
British Geological Survey: concentrations of potassium, calcium and arsenic
in stream sediments. We find that our deep learning approach produces
covariates for geostatistical modelling that have surprisingly strong explanatory
power on their own, with R2 values around 0.6 for all three elements (with
arsenic on the log scale). These results are achieved without the neural
network being provided with easting, northing, and absolute elevation as
inputs, and purely reflect the capacity of our deep neural network to extract
task-specific information from terrain texture alone. By visualising our deep-
learned covariates as geographic maps, we can see that complex but general
features of the surface environment and the subsurface are being captured.
We hope that these results will contribute to further investigation into the
capabilities of deep learning within geostatistical applications.
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4.1 Introduction

Since it’s inception in 1951 by mining engineer Danie Krige (Krige, 1951), the

‘kriging’ method has largely defined the field of geostatistics. In the beginning,

kriging was a purely spatial model, utilising only the spatial autocorrelation of

the target variable in order to make new predictions. The underlying logic is

perhaps best summed up by Tobler’s third law of geography: that ”everything is

related to everything else, but near things are more related than distant things”

(Tobler, 1970). Kriging worked very well for its original purpose of interpolating

gold grades in mines, where additional data was not available. In subsequent

decades, as more data-rich problems began to be tackled, kriging evolved to

include the ability to handle additional covariates in the model. There have been

several somewhat muddled incarnations along the way (i.e., universal kriging;

Matheron, 1969, regression kriging; Odeh, McBratney and Chittleborough, 1995,

kriging with external drift; Hudson and Wackernagel, 1994) but, as has been well

explained by Murray Lark (Lark, 2012), in 1999 Michael Stein (Stein, 1999) brought

mathematical clarity to the situation. Stein pointed out that all varieties of kriging

that aim to minimise the mean squared error (MSE) can be considered as forms of

the empirical best linear unbiased predictor (or BLUP) based on the linear mixed

model:

Z = Xτττ +u+ εεε, (4.1)

where Z is a random vector corresponding to the target variable at n sites,

X is an n× p design matrix, containing the values of any covariates, τττ are the

corresponding fixed effects coefficients, u is a spatially correlated random variable

(Gaussian process), and εεε is an independently and identically distributed random

variable. This formulation was significant for geostatistics as it enabled parameter

estimation by maximum likelihood, with corresponding improvements over the

previous method-of-moments approach (Lark, 2000). For our purposes, the
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formulation is significant because it allows us to separate the ‘regression on

covariates’ component, Xτττ — on which we focus — from the spatial, u, and noise,

εεε, components of this definitive geostatistical model. As mentioned in Chapter

2, Diggle, Tawn and Moyeed (1998) showed how kriging could also be extended

to cater for non-Gaussianity (similarly to how generalised linear models extend

classical Gaussian linear models) and how Bayesian inference via MCMC methods

could be used to incorporate parameter uncertainty - a topic we cover in more

detail in the context of deep learning in Chapter 5.

In general, obtaining measurements of the target variable for any geostatistical

application is difficult. It could be said that this is the reason geostatistical models

are required in the first place — if we could easily observe our target variable at

any point in space, we would have little need for statistical models. At the same

time, the progression of technology has lead to a vast increase in data availability

in general. In the geosciences, the rise of remote sensing means that multispectral

satellite imagery is readily available for the entire globe, along with elevation data

(which we make use in this study), and many countries have now conducted some

form of airborne geophysical survey to provide gravity, magnetic, and radiometric

measurements in continuous gridded format. Although these datasets tend not

to measure our target variables directly, they may contain information that can

contribute to the ‘regression on covariates’ component of the typical statistical

model, Xτττ. But are we making the most of the information they provide? The

typical geostatistical model, as formulated in Equation 4.1, is restricted to only

being capable of capturing linear relationships between any provided covariates

and the target variable. This means that the typical geostatistical approach to

utilising remote sensing data has previously always had to involve manually post-

processing gridded datasets in order to derive new covariates that we hope will be

informative for the task at hand (i.e. that will display a linear relationship with the

target variable).

In the case of terrain analysis, it is common to use a set of standard filters
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in order to obtain derivatives such as slope aspect, curvature and roughness.

The Topographic Roughness Index (TRI) (Riley, DeGloria and Elliot, 1999) for

example, has been used to identify landslides (Berti, Corsini and Daehne, 2013),

model forest fire return levels (Stambaugh and Guyette, 2008) and map emerging

bedrock in eroding landscapes (Milodowski, Mudd and Mitchard, 2015), among

other applications. But are we to believe that the TRI provides optimal explanatory

power from the terrain to any of those tasks? The range of applications that have

made use of ‘off-the-shelf’ filters to derive covariates for their geostatistical models

is huge. In fact, to the best of our knowledge, the study we present here is the

first of its kind to demonstrate an approach for automatically deriving optimal task-

specific covariates from gridded datasets for geostatistical modelling applications.

The covariates we derive are optimal in that they have been engineered by our

deep neural network to have maximal explanatory power with respect to the target

variable, to which they relate linearly. This linearity ensures that our deep learned

covariates are compatible for use within the fixed effects component of the typical

geostatistical model, Xτττ in Equation 4.1.

In reality, if all the covariate information provided to the geostatistical model is

being processed through our neural network, as it is in this study, then the neural

network’s output is the fixed effect component of our geostatistical model. This

is because of the 1:1 relationship (plus noise, εεε) between our neural network’s

output (the covariate, with values contained in X) and the target variable, Z. As a

result, the value of τττ, the fixed effect coefficient (singular in this case), would be

one. We therefore replace our typical geostatistical model formulation with a ‘deep

covariate-learning’ geostatistical model formulation:

Z = D+u+ εεε, (4.2)

where D is the output of our deep neural network. Because of the additive

nature of these formulations, we do not give much consideration to the spatial

component, u, or the noise component, εεε, in the rest of this chapter. They do
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not interact with D, and so we focus on evaluating the explanatory power that our

deep neural network output, D, provides to our target variable, Z, on a stand-alone

basis.

4.2 Method

Our approach is inspired by the work of computer scientist Geoffrey Hinton and

colleagues, who revolutionised the field of computer vision in 2012 by using deep

learning to achieve a new state-of-the-art in image classification accuracy on

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) (Krizhevsky,

Sutskever and Hinton, 2012). Prior to their work, image classification problems

had been solved by providing linear classification algorithms with sets of manually

derived image features. Similarly to the way that ‘off-the-shelf’ covariates are

currently used in geostatistical modelling problems, it seemed unlikely that the

manually derived image features were optimal for the task at hand, but a viable

alternative had yet to be proven. Deep learning changed everything by replacing

the existing setup with end-to-end learning: in deep learning the classification

algorithm is also the feature learner — feed raw images in, and get answers out. In

2012, the answers that Krizhevsky, Sutskever, and Hinton got out — correct labels

for images — were the best that had ever been achieved (Krizhevsky, Sutskever

and Hinton, 2012), and lead to the ubiquitous use of deep learning in computer

vision applications.

We hope that the parallels between manually creating features for image

classification and manually deriving covariates for geostatistical applications are

apparent. At the same time we do acknowledge the view of Coveney, Dougherty

and Highfield (2016) that ‘big data need big theory too’ and that while automatically

learning features is valuable if it leads to improved predictions, perhaps the greatest

value of all is in understanding how the features that have been learned relate to

the physical processes of nature - a topic we do not get into here, but which future

work should explore.
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In our case, we want to learn features from terrain texture in a similar way, so

that we can go beyond using ‘off-the-shelf’ terrain derivatives as covariates, and

extract more explanatory power from the landscape for any specific task. To do

this we use our own deep neural network, constructed from similar building blocks

as used by Hinton and colleagues in 2012. The critical difference is that in our

case we want to learn to do image regression rather that classification, because

our target variables (element concentrations from geochemical survey data) are

continuous. In practice this simply means giving our network a single linear output

rather than using a multinomial logistic output. An additional consideration for us

has been the importance of retaining spatial context amongst the terrain texture.

Translation invariance is an important feature of the deep neural networks used

in image classification: it shouldn’t matter where in the image the cat is, it’s still

an image of a cat. For our purposes however, it seems likely that the positions of

terrain features relative to our prediction point and to each other matters greatly.

In geochemistry, concentrations of immobile elements can be expected to be

associated in situ with certain bedrock types, while mobile elements may show

spatial relationships with distance to faults and other fluid conduits along which

they might be mobilised.

It should be noted at this point that deep learning has been applied to problems

within the realms of remote sensing and geostatistics before, and the novelty of our

study does not lie in deep learning itself but in how we use it. For some background,

deep learning has seen significant use in remote sensing applications in the latter

half of the last decade, applied to tasks of object detection, scene classification,

image fusion, image registration, land-use classification, semantic segmentation

and more (e.g. Han et al., 2014; Zou et al., 2015; Zhang, Zhang and Du, 2016; Zhu

et al., 2017; Ma et al., 2019). Meanwhile, general machine learning approaches

have been applied to the spatial interpolation of environmental variables (e.g. Li

et al., 2011), which had traditionally been considered the preserve of geostatistics.

Complex mapping tasks, such as that of landslide susceptibility (Pourghasemi

and Rahmati, 2018), or mineral prospectivity analysis (Rodriguez-Galiano et al.,
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2015) have always relied on being provided with good covariates in order to

achieve good results. It is exactly to these complex mapping tasks, where a

ground-measured target variable is modelled with the support of remotely-sensed

auxiliary variables, that our deep covariate-learning approach appeals. Where

previously covariates have had to be derived manually from remotely-sensed

auxiliary variable grids, deep covariate-learning allows this covariate-derivation

process to happen automatically and optimally. The unique contribution of this

study is therefore that, to the best of our knowledge, it is the first to show how

the feature-learning ability of deep learning can be used within the framework of

the well-established BLUP geostatistical model (Equation 4.1), thus providing new

capabilities for use in geostatistical applications.

We believe that the interface between deep learning and geostatistics is an

under-explored area in general, but would like to highlight some contributions

that have preceded us in this space: Wadoux (2019) and Wadoux, Padarian and

Minasny (2019), and Padarian, Minasny and McBratney (2019) have demonstrated

how deep learning can be used in the context of digital soil mapping, and their

work has utilised the feature-learning ability of deep learning (although manually

derived covariate grids are also included). However, where as we present deep

learning as a way to learn optimal covariates for use in typical geostatistical models

— as deep covariate-learning — these previous studies have used deep learning

to replace the entire geostatistical model. As we discuss later on, there may well

be benefits to such end-to-end approaches. Nevertheless, we believe our deep

covariate-learning approach provides a unique contribution to this under-explored

research area in that it lays bare the ability of deep learning to extract information

from remotely-sensed auxiliary variable grids even in the absence of explicit spatial

location information. We hope this work will contribute to continued investigation

into how to combine the best of both worlds (geostatistics and deep learning) in

order to advance our capabilities in modelling and mapping complex environmental

phenomena.
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4.2.1 Data setup

For this study, we make use of two datasets: 1) NASA’s SRTM 90m gridded

global elevation data (Van Zyl, 2001), from which we use deep learning to derive

optimal covariates in order to map 2) element concentrations from the British

Geological Survey’s G-BASE stream sediment sampling program (Johnson et al.,

2005). Both can be seen in Figure 4.1. The geochemical dataset contains element

concentrations from 110 794 sample sites from across the UK, though the number

of observations used in this study varies by element as sites containing NA values

are excluded. Any element concentrations reported below the accepted lower

limit of detection were set to half the lower limit of detection as in previous studies

using the geochemical dataset (Kirkwood et al., 2016b). For readers whose focus

is on geochemical mapping and prospectivity analysis, we would recommend

using log-ratio transformations on the geochemical data to avoid issues with

compositional closure (Pawlowsky-Glahn, Egozcue and Tolosana-Delgado, 2015).

However, in this study our focus lies in learning terrain textural features, and so

we simply use our element concentrations in their raw form, with the exception

that we log transform arsenic in order to improve stability of the gradient descent

process by which the neural network is trained, and to make for more eye-friendly

visualisations.

While our target variables are simple element concentrations, our inputs are

square images of SRTM terrain data. For our training dataset, these images

each consist of a 32x32 cell window of terrain centred around their respective

geochemical sample site (Figure 4.2). We use a cell size of 500m, which gives

a real-world window size of 16x16km square. The size and resolution of these

images can be thought of as a tunable hyper-parameter to the neural network,

but in reality we chose them by our own visual judgement, believing that they

should provide a reasonable amount of information without exceeding our compute

capacity (an Nvidia Titan X Pascal GPU - with thanks to Nvidia’s grant scheme).

As is standard practice in neural network training, we normalised our input data
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Figure 4.1: Left - SRTM 90m elevation data for the UK. Right - G-BASE stream
sediment geochemistry sample collection sites (110 794 sites in total).

values. This is typically done to each input variable by subtracting the mean

and dividing by the standard deviation, in order to achieve a mean of zero and a

standard deviation of one. In our case we set the centre of each image to zero

and divided all elevation values by the standard deviation of the UKs elevation grid.

By setting the centre of each image to zero, we remove elevation as an explicit

variable to the neural network. We also don’t provide easting and northing to the

neural network - terrain texture is all it has to make use of.

For each element, our dataset therefore consists of an element concentration

vector of length n and a corresponding multidimensional array of dimensions

n× 32× 32× 1 that contains the images to be input to the neural network. It is

worth mentioning that while our images only contain a single channel (terrain)

there is no reason why our approach cannot be extended to multiple channels if

other continuous covariates are available (such as from other airborne and satellite

surveys).
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Figure 4.2: Three examples of 32x32 cell terrain input images as provided to
our neural network. The colour scale is linear with cell elevation and is shared
across all three images - more extreme shading variations therefore represent
more extreme terrain. However, the absolute elevation of each terrain image has
been normalised out, so that the central point is always at zero. This means that
the neural network cannot use absolute height to ‘cheat’ - it must learn features
purely from the terrain texture.

4.2.2 A deep neural network for terrain filtering

Figure 4.3: The architecture of our deep neural network. Input terrain images
of size 32x32x1 (left hand side) are filtered through 5 128-channel convolutional
layers and a single average pooling step to represent each image as a 4x4x128
spatial tensor. This then flattened into a vector of length 512 before being passed
through two more fully connected hidden layers (256 and 128 nodes) prior to
the final output - a single linear output (right hand side). The network uses
dropout throughout, and a small amount of gaussian noise is added before each
convolutional layer, to minimise overfit.

We implement our deep neural network using the Keras interface to Tensorflow,

via the R language for statistical computing. We refer readers to our code for

full details. The architecture of the network we present here represents the best

performance we were able to achieve through fairly extensive trial and error. For

future versions we may utilise automated procedures for architecture design and
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hyper-parameter tuning, but it was an enjoyable experience to gain intuition into

effective neural network designs for extracting information from the terrain. The

design we settled upon (Figure 4.3) consists of a series of stacked convolutional

layers topped off with an average pooling layer which feeds into a fully-connected

multilayer perceptron-type architecture which provides the final output (predictions

of element concentrations). In total our network has just over 600 000 trainable

parameters, and our objective function is to minimise mean-squared-error (MSE)

in relation to the target variable. In order to prevent overfitting, we use dropout at

every level in the network, and inject a small amount of gaussian noise ahead of

each convolutional layer to further aid generalisation. Despite our efforts, it seems

almost certain that the design we present here is not truly optimal (indeed, the

optimal network design would be different for any given set of data) but it performs

well in our application. The field of deep learning is very fast moving, and in this

study we aim to share the general approach of using deep learning to derive

task-specific covariates from terrain texture, rather than promote any particular

network architecture.

Figure 4.4: The training history of our neural network trained to predict log(arsenic)
in stream sediments from terrain texture. The vertical dashed line marks the best
epoch, for which the mean-square-error (MSE) on held out test data is lowest. The
weights at this best epoch are the ones that are kept for subsequent use.

To train the neural network, for each element we split our dataset into 10 folds

at random, and trained using 9 of them, while monitoring the mean-squared-error

(MSE) of the neural network’s predictions on the 10th fold to ensure that we did not
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overfit. We trained the neural network using the ADAM optimiser, and a batch size

of 4096 observations. We ran training for up to 300 epochs (Figure 4.4), but early

stopping tended to find the best fit around 200 epochs (before the MSE began

to increase again on held out test data as the network began to overfit, but this

was very gradual thanks to our regularisation measures). On our NVIDIA Titan X

Pascal GPU each training run (one for each element) took about 10 minutes.

Once our deep neural network has been trained to predict the concentration of

an element from the terrain (though this could equally be any other target variable),

its output is the optimal terrain texture covariate that we wanted to learn. As we

saw in Equation 4.2, if no other covariates are supplied to the geostatistical model,

as is the case in this study, then the deep neural network output in fact becomes

the entire fixed effect component of our ‘deep covariate-learning‘ statistical model.

The neural network knows nothing of the spatial location at which a prediction is to

be made (no easting, northing, or absolute elevation were provided) and can only

extract information contained within the texture of surrounding terrain. It stands in

for the role of the ‘off-the-shelf‘ covariates in the typical geostatistical model, with

the aim to provide as much explanatory power as possible independently from the

spatial component of the problem. The difference is that by using deep learning

we are able to optimise this process of extracting information from the terrain —

the neural network learns to derive the best terrain texture covariates that it can for

the task at hand — providing as much explanatory power as possible with respect

to the target variable.

4.3 Results

We can evaluate the explanatory power of our neural network’s output by com-

paring its predictions to the true observed values in held-out test data (the 10th

fold - not used in training, Figure 4.5). By doing so we find that our deep learning

approach is able to explain a significant proportion of the variance in our target

variables. It explains 61% of the variance in log(arsenic) (As), 58% of the variance
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in calcium (oxide, CaO), and 64% of the variance in potassium (oxide, K2O).

These are fairly high degrees of explanatory power to achieve by harnessing the

information contained within terrain texture alone.

For reference, previous studies in geochemical mapping have achieved out-of-

sample R2 values that top out at about 0.7 (Kirkwood et al., 2016a; Wilford, Caritat

and Bui, 2016) although this of course varies between different elements, study

areas, sampling strategies, and modelling approaches. In (Kirkwood et al., 2016a)

ordinary kriging achieved cross-validated R2 values above 0.6 for only 6 of 51

elements modelled. Wilford, Caritat and Bui (2016) achieved an R2 value of 0.7 for

chromium and 0.67 for sodium, both modelled using the ‘Cubist’ algorithm (similar

to a random forest but with trees whose terminal nodes are linear functions) and a

range of ‘manually engineered’ environmental features.

Geologists have long understood that underlying geology is reflected in the

terrain, but the complexity of this relationship — requiring caveats, conditions, and

qualifiers at every turn — has never lent itself to being formalised. It is somewhat

remarkable then, that deep learning has been able to capture these relationships

so successfully, and in less than ideal circumstances given that our neural network

has never been told where it is - all it gets to see is the 16x16km window of terrain

- and always centred at zero elevation.

Figure 4.5: Plots evaluating the predictive performance, or explanatory power, of
the output of our deep neural network trained to optimally extract terrain texture
information in order to predict each of our three target variables: arsenic (As),
calcium (CaO), and potassium (K2O) concentrations in UK stream sediments.
These evaluations are made on held out test data that was not seen by the network
during training.
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To get a feel for the complexity of terrain features that the neural network has

been able to learn (each in relation to the concentrations of chemical elements

in stream sediments) we can generate maps of its output. We do this by making

predictions from the neural network on a regular grid. For each prediction, the

corresponding 16x16km terrain window is first extracted from the underlying SRTM

elevation data (and elevation normalised, as explained in methods), which are

then provided to the neural network so that it can make predictions for the new

locations. Even though the neural network has never seen these new windows of

terrain before, we take its performance on the held-out test set (Figure 4.5), which

it had also never seen, as evidence of its explanatory ability on previously unseen

data. The maps we produce in this manner are essentially SRTM elevation grids

run through a complex non-linear filter (machine-learned from the bottom up, not

designed from the top down) which maximises explanation of the target variable.

These deep-learned covariate maps (Figure 4.6, Figure 4.7, Figure 4.8) reveal

a great deal of geological information, but in fact their task of explaining stream

sediment geochemistry is more complex than explaining geology alone: Not only

are stream sediments subject to the influence of surface processes as well as

geological ones, but they also consist of mixtures of material accumulated from

their upstream catchment area rather than representing any single point. This

areal property makes their prediction difficult without accounting for upstream

catchments during any modelling process (Kim et al., 2017). Visually (and it

will be very interesting to investigate further), our deep-learned covariate maps

do appear to have captured some flow-like effects. For example, in Figure 4.7

we can see patterns that appear to show the ‘washing out’ of elevated calcium

concentrations from the chalk scarp that brightly trends north-east into East Anglia

(the most eastern lobe of the UK). While these maps — which harness only the

information contained within terrain texture — fall short of explaining all of the

variance in our target variables (which would never be expected) it is somewhat

surprising that they are able to explain so much of it (with R2 values around 0.6 for

all three elements), and a very encouraging result for the use of deep learning in
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Figure 4.6: Top - Map of potassium concentrations as predicted exclusively from
terrain texture using our deep neural network. 500 random geochemical sample
sites are overlain. These ground-truth point values share the same colour scale as
the raster map. The lack of deviation between the ground-truth and the prediction
(also seen in Figure 4.5) supports the conclusion that the detail in the map is ‘real’
and not a product of over-fitting. However, at these scales some checker-board
aliasing artefacts are apparent, which we would hope to remove with subsequent
refinement of our neural network architecture. Bottom - The corresponding SRTM
terrain from which the above map is derived via deep learning.

geostatistical applications.

4.4 Discussion

Our results have shown that deep neural networks are capable of extracting a

great deal of geochemically-explanatory information from terrain texture alone,

and it seems likely that similar success could be had by applying our methodology

to other target variables and input grids. Adding additional channels to our terrain
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Figure 4.7: Our optimal terrain texture covariate for the prediction of stream
sediment calcium. The map was produced by running the UK’s SRTM elevation
grid through our deep-learned terrain texture filter, optimised for explanatory power
with respect to calcium concentrations. This map accounts for 58% of the variance
in calcium concentrations through terrain texture alone. Subsequent geostatistical
modelling can be used to improve prediction further, by taking account of spatial
information (easting, northing, elevation) and perhaps other non-terrain based
covariates too.
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Figure 4.8: Left - Our optimal terrain texture covariate for the prediction of stream
sediment arsenic concentrations. Right - Our optimal terrain texture covariate
for the prediction of stream sediment potassium concentrations. In both cases,
geological features are clearly apparent, and it is fascinating to see these being
revealed through geochemically-optimal filtering of terrain texture alone. We
recommend the British Geological Survey’s iGeology mobile app ( https://www.
bgs.ac.uk/igeology/) to readers who wish to learn more about the features that
these maps reveal.

input images where available, such as for gravity, magnetics, and radiometrics data

would likely further improve the neural network’s ability to explain geochemistry

and perhaps other target variables too. It will be very interesting to explore how

widely applicable this deep covariate-learning approach is in future research.

Could deep learning revolutionise geostatistics the same way it revolutionised

computer vision in 2012? Some encouraging evidence comes from the fact

that previous investigations of machine learning for geochemical mapping (but

using ‘off-the-shelf’ covariates; Kirkwood, 2016; Rodriguez-Galiano et al., 2015;

Kirkwood et al., 2016a; Zuo, 2017; Kirkwood et al., 2017) have generally found

terrain data to be among the least informative when compared to data from

geophysical surveys (Kirkwood et al., 2016a). It will be interesting to see what deep
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covariate-learning can achieve when applied to these innately more geochemically-

informative datasets.

In a sense we do injustice to deep learning in this study by not treating our

application (modelling element concentrations) as an end-to-end problem: we

have only tasked the neural network with the restricted function of learning to

derive optimal terrain texture covariates for use in geostatistical models (i.e. either

to contribute to X in Equation 4.1, or to take the place of X as D in Equation 4.2),

rather than tasking the neural network with replacing the geostatistical model

entirely. To do so would require that the neural network also handles the spatial

component of the problem. This could be achieved most conveniently by simply

providing the neural network with easting, northing, and absolute elevation as

additional input variables. The neural network would effectively then replace both

Xτττ and u in our model formulation. It is actually likely that doing so would result

in improved prediction accuracy over the geostatistical model by virtue of the fact

that the neural network would be free to learn the interactions between terrain

features and spatial location. Conversely, the additive nature of the statistical

model formulation (Equation 4.1, Equation 4.2) prevents interaction between the

spatial component, u, and the fixed effects ‘regression-on-covariates’ component,

Xτττ. This is perhaps a detrimental over-simplification, particularly for large and

heterogeneous study areas, although it is well established practice nevertheless.

The reasons we have not gone all the way to providing an end-to-end ‘com-

plete solution’ neural network in this study are two-fold. Firstly, at this stage we

find more scientific interest in investigating the ability of deep-learning to derive

optimal covariates for geostatistical modelling, given that the use of covariates in

geostatistical models (i.e. Equation 4.1) is such well-established practice. As it

is, our ‘deep covariate-learning’ geostatistical model formulation (Equation 4.2)

seems like a reasonable middle ground from which to investigate the opportunit-

ies of deep learning within geostatistics without having to leave the established

geostatistical modelling framework behind. This brings us to the second reason
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for not presenting an end-to-end solution here: While an end-to-end approach

would play into the defining strength of deep learning — its unique ability to learn

features from unstructured data in order to optimise an objective — it would also

reveal what is currently deep learning’s main weakness: uncertainty quantification.

Uncertainty quantification in deep learning is a rapidly developing sub-field and

promising breakthroughs have been made (e.g. Gal and Ghahramani, 2016; Kend-

all and Gal, 2017; Farquhar, Osborne and Gal, 2019), but at the time of writing, it

is likely that potential end users of our approach would prefer to use deep learning

to derive optimal covariates for use within well-established geostatistical model

formulations (e.g Equation 4.1), hence the title and angle of this chapter (although,

as you will see in Chapter 5 and beyond, we do further develop this approach into

a full probabilistic end-to-end deep learning model, with perhaps surprisingly good

result).

Despite the restricted capacity within which we apply deep learning in this

study (i.e. to learn optimal covariates for geostatistical modelling, rather than

using deep learning as an end-to-end solution in itself), the implications of our

results are very significant. Let’s take mineral exploration for example, although

similar situations are likely to occur in other applications: The original geostatistical

approaches (still often used), which rely purely on the spatial auto-correlation of

the target variable are almost destined to perform poorly in the search for new

mineral deposits. This is because they can only interpolate between observations

in the geographic space. In such cases, if we have not been fortunate enough to

‘hit’ a mineral deposit with one of our samples, then the deposit can easily remain

unseen between sampling locations.

Adding a ‘regression-on-covariates’ fixed effects component to the geostat-

istical model (e.g. Equation 4.1) alleviates this pathology to an extent, but only

in as much as the available covariates can provide a good explanation of the

target variable. Using deep learning to derive optimal covariates is therefore a

step-change in the geostatistical modelling approach, as it allows us to objectively
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optimise the explanatory power we can obtain from gridded auxiliary datasets

for any geostatistical modelling task. In doing so, we are able to explain the

distribution of our target variable in terms of the deeper relationships between

the target variable and terrain properties. Although not done as part of this study

(or within this thesis), it would be interesting to provide the neural network with a

randomly generated spurious covariate in addition to the genuine covariates (in

this case just terrain elevation). By assessing to what extent the spurious covariate

may influence the neural networks predictions (and latent representations at every

layer of the neural network) could provide a means of checking how susceptible

the neural network is to learning nonsense features. The hope would be that the

neural network would not learn nonsense features, as this would indicate over

fitting to spurious relationships, at the expense of ability to generalise in the real

world).

The results we have obtained in this study demonstrate that the relationships

learned by the deep neural network do generalise spatially. This is evidenced by

the fact that our neural network achieves the explanatory power that it does without

ever being provided with easting, northing, and absolute elevation by which to

infer its spatial position. The patterns that it learns to recognise between terrain

texture and geochemistry therefore have to be applicable throughout the study

area. This feature of deep covariate-learning therefore makes it an exciting new

tool for identifying undiscovered mineral deposits, assuming that some examples

of known mineral deposits are included within the training data. Based on our

results, we would not be surprised to see deep learning become a key technology

for discovering the mineral deposits of the future, each always harder to find than

the last.

4.4.1 A look to the future

Interestingly, Gaussian process regression — essentially the same method as

kriging under a different name — is today considered a leading machine learning

technique for applications where uncertainty quantification is important, and is
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often applied to higher dimensional problems than the mostly-spatial ones en-

countered in the field of geostatistics. Gaussian process regression is favoured

over other methods for uncertainty quantification due to its well understood math-

ematical properties and its compatibility with the Bayesian framework (Gibbs, 1998)

which has also been adopted within geostatistics (e.g. Diggle, Tawn and Moyeed,

1998; Sahu, 2022). However, in 1995 Radford Neal showed that as the number of

hidden nodes in a single layer fully-connected neural network approaches infinity,

the network will become mathematically equivalent to a Gaussian process (Neal,

1995). More recently, similar equivalence has been explored between deep fully-

connected neural networks and Gaussian processes (Lee et al., 2017), and we

now have Deep Gaussian processes (Damianou and Lawrence, 2013), including

with convolutional layers (Blomqvist, Kaski and Heinonen, 2019). So what’s the

catch? Computational complexity. In terms of time, neural network training scales

linearly with the number of observations, however Gaussian process inference

scales with the cube of the number of observations (Liu et al., 2020). This is

perhaps the main reason why deep neural networks have risen into mainstream

applications ahead of Gaussian process regression - they are allowing us to solve

otherwise unsolvable big data problems, and in many applications deterministic

prediction is adequate. However, as the neural network community strives to

improve their ability to quantify uncertainty, and the Gaussian process community

strives to reduce their computational footprint, the two camps may well converge

on methods that provide very similar functionality to practitioners.

Where will this leave geostatistics? It seems important to frame the function-

ality of well established geostatistical models (Equation 4.1) in the context of the

functionality that deep neural networks (and deep Gaussian processes) can bring

to the table. As demonstrated in this chapter, the capability to optimally extract

information from unstructured data (like terrain grids) is extremely powerful, and

could be a game changer in terms of eliminating the need to manually design

(sub-optimal) covariates for use in geostatistical analyses. Essentially, we can

push our variable selection processes right back to whatever raw unstructured
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data we have available, and trust (with empirical evaluation) deep neural networks

to extract the relevant information. It is worth here a comment to highlight (and

caution against) the possibility of data leakage, whereby a model may appear to

perform well, but in fact has learned to ‘cheat’ its way to a correct answer using

information that has been provided to it, but on which the answer does not causally

relate. For example, in the original version of Rajpurkar et al. (2017)’s study on

using deep learning to detect pneumonia in chest X-ray images, images of the

same patients were used in the training dataset as in the test dataset, which meant

that the deep neural network was able to ‘cheat’ and simply learn to identify the

patients themselves, rather than any disease they may have been exhibiting. The

analogy in the context of deep learning for spatial interpolation may be that if

a neural network with a sufficiently wide convolutional perceptual field is used,

then it may start to predict the right value simply by memorising the values at

distinctive locations in the surroundings. The topic of data leakage in deep learning

for environmental modelling remains to be explored in more detail.

There is an argument to say that learning features automatically reduces

the interpretability of our model (deep learning as a ‘black box’), which we may

have wished to preserve. It is true that there is no way to fully comprehend in

‘explainable’ terms the series of transformations that our neural network applies

to terrain texture in order to produce a representation that correlates maximally

with the target variable. On the other hand, if deep learning allows us to explain a

higher proportion of variance without deferring to spatial auto-correlation, which is

itself fairly opaque, then that could be seen as beneficial. With models increasingly

being used to support important decision making, it could be argued that models

should be judged by the quality of information they provide, rather than by how

easily interpretable they are, in order that we can progress towards optimal decision

making. In the end, the best approach to choose will be the one that best satisfies

the objectives at hand, and this will always be case dependent.
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4.5 Conclusions

In this chapter we have demonstrated a new approach for utilising deep learning

to derive optimal terrain texture covariates for geostatistical modelling applications.

We have shown that our deep learning approach is entirely compatible with the

typical geostatistical model formulation (Equation 4.1) and in fact can be used

as the exclusive source of covariate information in a ‘deep covariate-learning’

geostatistical model formulation (Equation 4.2). The results our deep neural

network achieves on held-out test data are extremely encouraging. Terrain data

has historically not tended to be regarded as particularly informative for most

geochemical applications, at least within quantitative modelling, and yet our deep

neural network has been able to extract sufficient information to explain 61%,

58% and 64% of the variance of our target variables: log(arsenic), calcium. and

potassium concentrations in stream sediments. This is all from using only terrain

texture, without accounting for spatial variability explicitly (the network was not

provided with easting, northing, and absolute elevation as inputs, and had only

16x16km square images of terrain texture to work with). Within the geostatistical

modelling framework, this spatial variability is accounted for instead by the spatial

random variable component of the model (u in Equation 4.1).

Our results suggest that deep learning has a very significant role to play

in the future of geostatistical modelling, and offers a step-change in how we

can make use of gridded auxiliary datasets in the modelling process by allowing

us to optimise the extraction of information from them. The covariates that our

deep learning approach learns to derive are spatially generalisable within the

study area, and it is quite possible that they can shed new predictive light on

otherwise under-sampled geographic regions, for example for mineral exploration

purposes. The strong predictive performance achieved using only 16x16km

windows of terrain texture warrants further investigation of our deep covariate-

learning approach using different window sizes, as well as including channels for

additional auxiliary variables. The apparent ability of deep learning to capture
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complex structural relationships (for example, appearing to realise that stream

sediments do ‘flow’ from upstream catchments) mean it will be interesting to

see how much further this approach can be developed. At the same time, it is

worth considering that improvements to prediction do not necessarily constitute

improvements to understanding, and that improved prediction in the absence of

improved understanding may not be as valuable scientifically as prediction and

understanding improved in tandem. While deep learning may excel at prediction,

attempts to improve understanding as a result have had mixed success (e.g.,

Kindermans et al., 2019; Zhang et al., 2021; Saxe, Nelli and Summerfield, 2021;

Lei et al., 2020; Guo et al., 2016) although this is an area at the forefront of ongoing

research (more generally under the guise of ‘XAI’ or eXplainable AI; Gunning et al.,

2019; Das and Rad, 2020; Arrieta et al., 2020; Adadi and Berrada, 2018).

If enough explanation can be obtained from gridded datasets alone, then

perhaps we will no longer have need for the spatial random variable component

of our geostatistical models (u in Equation 4.1), and the fairly opaque spatial

autocorrelation based explanation that it provides. Alternatively, we may find that

the best overall predictive performance is achieved by using deep learning end-

to-end for geostatistical modelling tasks, in which it would have the benefit over

the typical geostatistical model (Equation 4.1) of being able to learn interactions

between covariates features (which are themselves learned) and spatial location.

Reliable estimates of uncertainty are perhaps the main justification for refraining

from an end-to-end deep learning approach at the moment, hence in this chapter

we demonstrate deep learning within the typical geostatistical modelling framework,

but research into improving uncertainty quantification in deep learning is developing

at a rapid pace. If the future of transport will be dominated by autonomous vehicles,

the future of geostatistical modelling will surely also be driven by deep learning.
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4.6 Code and data

We also thank the British Geological Survey for making the G-BASE geochemical

data available for this study. For academic research purposes, readers may

request access to the G-BASE dataset from the British Geological Survey at https:

//www.bgs.ac.uk/enquiries/home.html or by email to enquiries@bgs.ac.uk.
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Chapter 5

Bayesian Deep Learning for Spatial
Interpolation in the Presence of
Auxiliary Information

Earth scientists increasingly deal with ‘big data’. For spatial interpolation
tasks, variants of kriging have long been regarded as the established geo-
statistical methods. However, kriging and its variants (such as regression
kriging, in which auxiliary variables or derivatives of these are included as
covariates) are relatively restrictive models and lack capabilities provided by
deep neural networks. Principal among these is feature learning: the ability
to learn filters to recognise task-relevant patterns in gridded data such as
images. Here we demonstrate the power of feature learning in a geostatistical
context, by showing how deep neural networks can automatically learn the
complex high-order patterns by which point-sampled target variables relate to
gridded auxiliary variables (such as those provided by remote sensing) and in
doing so produce detailed maps. In order to cater for the needs of decision
makers who require well-calibrated probabilities, we also demonstrate how
both aleatoric and epistemic uncertainty can be quantified in our deep learning
approach via a Bayesian approximation known as Monte Carlo dropout. In
our example, we produce a national-scale probabilistic geochemical map from
point-sampled observations, with auxiliary data provided by a terrain elevation
grid. By combining location information with automatically-learned terrain
derivatives, our deep learning approach achieves an excellent coefficient of
determination (R2 = 0.74) and near-perfect probabilistic calibration on held
out test data. Our results indicate the suitability of Bayesian deep learning
and its feature learning capabilities for large-scale geostatistical applications
where uncertainty matters.
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5.1 Introduction

Maps are important for our understanding of Earth and its processes, but it is

generally the case that we are unable to directly observe the variables we are

interested in at every point in space. For this reasons we must use models to

fill in the gaps. In order to support decision making under uncertainty, statistical

models are desirable (Berger, 1985). Kriging — the original geostatistical model —

provides smooth interpolations between point observations based on the spatial

autocorrelation of a target variable (Cressie, 1990; Stein, 1999). However, addi-

tional sources of information are often available thanks in part to the rise of remote

sensing (Mulder et al., 2011; Colomina and Molina, 2014) which provides grids

of what we consider here to be auxiliary variables (e.g., terrain elevation, spectral

imagery, subsurface geophysics). These are complete maps of variables that we

are not directly interested in but which are likely to contain information relating to

our variables of interest.

How best to extract information from auxiliary variable grids for geostatistical

modelling tasks has remained an open question, but has often involved trial-

and-error experimentation using manually designed filters to extract features with

as much explanatory power as possible (e.g., Ruiz-Arias et al., 2011; Poggio,

Gimona and Brewer, 2013; Parmentier et al., 2014; Shamsipour et al., 2014;

Kirkwood et al., 2016a; Kirkwood, 2016; Young et al., 2018; Lamichhane, Kumar

and Wilson, 2019). For example, Youssef et al., 2016 use slope angle derived

from a digital terrain model as a feature to explain landslide susceptibility, but many

more complex features may be useful, and these are not necessarily known in

advance. To enable the utilisation of complex and unknown features, here we

present an end-to-end geostatistical modelling framework using Bayesian deep

learning, which frames the information extraction problem as an optimisation

problem (Shwartz-Ziv and Tishby, 2017), and in doing so eliminates the need for

manual feature engineering and feature selection steps. Our approach therefore

has the potential to supersede traditional geostatistical approaches by bringing

126



automatic feature learning to probabilistic geospatial modelling tasks.

Figure 5.1: Overview of our deep neural network architecture visualised with
the help of NN-SVG software (LeNail, 2019). For each observation, input A
feeds an image of surrounding terrain into a stack of convolutional layers (shown
as horizontal blocks). Simultaneously, input B feeds the observation’s location
variables into a fully connected layer. These two branches of the network are
then concatenated and fed through a further two fully connected layers (shown
as vertical blocks) from which the two parameters of a Gaussian distribution are
output

Here we present a two-branch deep neural network architecture — convolu-

tional layers for feature learning combined with fully-connected layers for smooth

interpolation — that brings the benefits of deep learning to geostatistical applic-

ations, and we do so without sacrificing uncertainty estimation: Our approach

estimates both aleatoric and epistemic uncertainties (via Monta Carlo dropout;

Gal and Ghahramani, 2016) in order to provide a theoretically grounded predictive

distribution as output, which is composed of spatially coherent realisations (see

Appendix A: Simulation). Our work brings together ideas from the fields of machine

learning (Krizhevsky, Sutskever and Hinton, 2012; Srivastava et al., 2014), remote

sensing (Zhang, Zhang and Du, 2016; Zhu et al., 2017) and Bayesian geostatistics

(Handcock and Stein, 1993; Pilz and Spöck, 2008), and unites them in a general

framework for solving ‘big data’ geostatistical modelling tasks in which gridded

auxiliary variables are available to support the interpolation of point-sampled target

variables. We demonstrate our approach on a national-scale geochemical map-

ping task with encouraging results, both in terms of deterministic and probabilistic

performance on held out test data. As far as we are aware, our framework is

the first to provide both well-calibrated probabilistic output and automated feature
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learning in the context of spatial interpolation tasks. By using neural networks, we

also ensure that our framework is scalable to the largest of problems.

While the framework we present here is new, it can also be seen as a unifica-

tion and generalisation of a range of prior works. Deep learning (LeCun, Bengio

and Hinton, 2015) — machine learning using ‘deep’ neural networks consisting

of multiple stacked layers capable of learning hierarchical composite functions

— has seen increasing uptake within scientific communities in the last decade.

Deep neural networks typically consist of two components: a (deep) sequence of

convolutional layers designed to extract a hierarchically more efficient encoding of

the signal, followed by fully connected layers at the end to estimate the desired

function from the encoded representation. Both parts are trained jointly using

stochastic gradient descent, ensuring that the learnt features are optimised for

the task. The popularity of deep learning has followed from breakthrough work

by Krizhevsky, Sutskever and Hinton (2012) who achieved a new state of the

art in image classification by using deep neural networks to automatically learn

informative features from images (rather than manually engineering them). Deep

learning has since been widely adopted within the remote sensing community

(e.g., Zhang, Zhang and Du, 2016; Zhu et al., 2017; Li et al., 2017; Zuo et al.,

2019) and has been applied to a variety of problems in geoscience, for example

detecting and locating earthquakes (Perol, Gharbi and Denolle, 2018), detecting

faults in 3D seismic data (Wu et al., 2019), and classifying lithologies from drill core

images (Alzubaidi et al., 2021). However, difficulty in obtaining reliable uncertainty

estimates from deep neural networks (Kendall and Gal, 2017) has meant that deep

learning has not been widely adopted for applications where uncertainty matters

(or, as in the aforementioned works, the proposed approaches skirt around the

ever-present issue of uncertainty and simply use fixed-weight deterministic neural

networks instead).

A few authors have made use of deep learning to automate feature learning

in a geostatistical context (Padarian, Minasny and McBratney, 2019; Wadoux,
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Padarian and Minasny, 2019; Wadoux, 2019; Kirkwood, 2020), mostly for digital

soil mapping, but only one — Wadoux (2019) — has been able to provide un-

certainty estimates, though these were achieved via a bootstrapping approach

and found to be underdispersive. Here we make use of a theoretically groun-

ded and practically effective approach to uncertainty estimation in deep neural

networks: Monte Carlo dropout as a Bayesian approximation, as conceived by

Gal and Ghahramani (2016). The authors are aware of one prior instance of its

use in a geospatial setting: for a semantic segmentation task by Kampffmeyer,

Salberg and Jenssen (2016). While our work shares similarities with the work

of Kampffmeyer, Salberg and Jenssen (2016), our motivation is from the angle

of geostatistical tasks in which the challenge is to utilise auxiliary information to

interpolate between sparsely-sampled point observations, whereas Kampffmeyer,

Salberg and Jenssen (2016) tackle the remote sensing challenge of semantic

segmentation: classifying each pixel of airborne images of the urban environment

with their corresponding object class (e.g., car, building, tree) by training on fully

manually labelled images without gaps. Both approaches require learning features

from gridded data, but only ours combines this with general spatial interpolation

abilities in order to provide a viable solution to the task of spatial interpolation in

the presence of auxiliary information. Overall, while various separate concepts

behind our work may be familiar to some readers already, here we bring them

together and present Bayesian deep learning as a general solution for big data

geostatistics.

Outside of the relatively recent influences of deep learning, there have also

been longstanding works in the geoscience community to utilise Bayesian infer-

ence within general geological modelling practices. This initially stemmed from

developments in geophysics (Tarantola, Valette et al., 1982; Mosegaard and

Tarantola, 1995; Sambridge and Mosegaard, 2002) in which Monte Carlo meth-

ods were presented as a means to deal with the uncertainty that is inherent to

under-determined inverse problems (where many different solutions are capable

of generating the observed data, i.e. the solution is non-unique — a common
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occurence within the geosciences). More recently, Varga and Wellmann (2016)

focused on how the Bayesian framework can be used to combine both geological

knowledge and quantitative data into geological models, a theme that is further

developed by Wellmann et al., 2018; Grose et al., 2019; Schaaf et al., 2020 and

Olierook et al., 2021.

Our Bayesian deep learning approach for spatial interpolation in the presence

of auxiliary information borrows more heavily from the machine learning and geos-

tatistics literature than from these geological modelling works, but we acknowledge

the background on both sides because we share the same motivations: the desire

to incorporate all sources of information into our models, and also to characterise

both aleatoric and epistemic uncertainties, such that our models will be maximally

informative while remaining honest about uncertainty. Our Bayesian deep learning

approach could be seen as the ‘data rich, prior knowledge poor’ end-member on a

spectrum of Bayesian modelling methods, with the above mentioned geological

modelling approaches falling closer to the ‘knowledge rich, data poor’ end of

the spectrum. The data rich setting brings its own set of challenges in terms of

scalability, and the need to deal with large volumes of data is a strong justification

for adopting a neural network based approach such as the one we present here.

5.2 Method

5.2.1 Feature Learning for Geostatistics

The core domain of geostatistics has been in the spatial interpolation of point

observations in order to produce continuous maps in two or three dimensions.

Kriging, the now ubiquitous geostatistical technique conceived by South African

mining engineer Danie Krige (1951), originally accounted for only the location and

spatial autocorrelation of observations in order to produce smooth interpolations

(or threshold-classified smooth interpolations in the case of indicator kriging) that

can be considered optimal if no other information is available (Matheron, 1962;

Cressie, 1990), often under assumptions of stationarity and isotropy. When other
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information is available, as is commonly the case today, the pursuit of optimal

spatial interpolation becomes more complex. An extension of ordinary kriging,

regression kriging (which is also mathematically equivalent to universal kriging and

kriging with external drift;Hengl, Heuvelink and Rossiter 2007 - see also Diggle,

Tawn and Moyeed, 1998), allows covariates to be included in the model: the

mean of the interpolated output is able to vary as a linear function of the value

of covariates at the corresponding location (Gotway and Hartford, 1996). For an

illustrative example, the inclusion of elevation as a covariate in an interpolation

of surface air temperature data could be expected to result in a map that reflects

the underlying elevation map, i.e. whose mean function is a linear function of

elevation. However, this quickly brings us to the limits of regression kriging: what

if a linear function of elevation does not provide as much explanatory power to

surface air temperature as some non-linear function of elevation? What non-linear

function of elevation would be the optimal one? At the same time, what if we also

have wind direction available to use as a covariate? Wouldn’t the best predictor of

surface air temperature account for not just elevation, or wind direction, but how

they interact, with air flowing down from mountains expected to be cooler? We

quickly find ourselves in the realms of feature engineering and feature selection, a

world of hypothesising and trial-and-error experimentation which has become a

necessary but impractical step in the traditional geostatistical modelling process.

The defining strength of deep neural networks is their ability to learn features

for themselves owing to their hierarchical structure in which the output of each layer

(with non-linear activation function applied) provides the input to the next. Through

back-propagation of error gradients, neural networks can automatically learn non-

linear transformations of input variables and their interactions as necessary in

order to minimise a loss function. It has also been shown that in the limit of infinite

width (infinite number of nodes) a neural network layer becomes mathematically

equivalent to a Gaussian process (Neal, 1996), which is itself the same smooth

interpolator conceived by Danie Krige (i.e. kriging) under a different name. The

deep neural network approach we present here combines these spatial abilities
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with a unique ability to learn its own features from auxiliary variable grids. We

achieve this efficiently through the use of convolutional layers: trainable filters

which pass over gridded data to derive new features, in a similar manner to how

edge detection filters derive edges from photographs (Chen et al., 2017). By

stacking convolutional layers, the complexity and scale of features that can be

derived increases, along with the size of the receptive field of the neural network

(Luo et al., 2016), which allows longer-range dependence structures to be learned.

5.2.2 Neural Network Architecture

As is shown in Figure 5.1, our neural network, which we constructed and trained

using Tensorflow (Abadi et al., 2016) and Tensorflow Probability (Dillon et al.,

2017), has two separate input branches: a five-layer convolutional branch that

takes auxiliary variable images as input (the auxiliary information branch); and

a single-layer fully connected branch that takes location variables as input (the

geographic location branch). The outputs of these two branches are flattened and

concatenated into a single 2048 dimensional vector (128 from the convolutional

branch, 1920 from the fully connected branch) that feeds into the final layers of our

neural network, which consist of a further two fully connected layers (1024 nodes,

and 256 nodes) before outputting the two parameters — mean, µ, and variance,

σ2 — of a Gaussian distribution that represents the target variable. Throughout

the network, we use the Rectified Linear Unit (‘ReLU’) activation function. In total

our neural network architecture has 2.8 million trainable parameters.

The depth of the network, and the various widths of the layers, are to some

extent arbitrary choices (at least we cannot show that this architecture is ‘optimal’)

but through quite extensive manual tuning and experimentation this arrangement

was found to work well while remaining relatively cheap to train (i.e. with test loss

plateauing within about 30 mins of training on a single GPU, due to the relatively

low number of trainable parameters, as far as deep neural networks are con-

cerned). The ‘optimal’ architecture will vary from task to task, but given sufficient

computational resources (and time) one could attempt to explore the space of
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possible architectures automatically using, for example, Bayesian optimisation

(Kandasamy et al., 2018; White, Neiswanger and Savani, 2021) or evolutionary

algorithms (Miller, Todd and Hegde, 1989; Leung et al., 2003; Idrissi et al., 2016).

In our auxiliary information branch, the first four layers are convolutional layers,

each with 128 channels, using 3x3 kernels with a stride of 1 (apart from the first,

which uses a stride of 3 in order to rapidly reduce the spatial dimensions of the

feature learning branch from the 32x32 input image to 10x10 and therefore reduce

the number of parameters in subsequent convolutional layers). In convolutional

layers, filters, or kernels, of specified dimension (e.g. 3x3 pixels) are scanned

across the input image, with a step size specified by the stride parameter (e.g.

1 pixel). For the first convolutional layer, the input image is the raw input image

provided to the neural network - i.e. the observation centred image of terrain

elevation, however for subsequent convolutional layers, their respective ‘input

image’ is output from the previous convolutional layer. At each layer, the number

of filters is specified as the number of channels, in our case 128. At each location

across a layer’s input image, the output of a convolutional filter is the dot product

of the filter’s values and the corresponding pixel values of the image, so that for

each position of the kernel

kernel · img =
n

∑
i=1

(kernelipixeli) = kernel1pixel1 +kernel2pixel2 + ...+kernelnpixeln.

(5.1)

This results in an output image with one pixel per kernel position, whose pixel

values depend on the values of the kernel, which are trainable - thus giving the

neural network the capacity to learn new features from images.

In our architecture, the fifth layer of the convolutional branch is a global

average pooling layer, which reduces the final convolutional layer’s 4x4 (x128

channel) output image into a 1x1 (x128 channel) output by simply taking the

mean of each channel’s image. Pooling introduces translation invariance into

convolutional neural networks, because the exact position at which kernels are

activated is lost in the average. While it may seem counter-intuitive to instil any
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level of translation invariance into a spatial mapping problem, we found that it

seems to help reduce overfitting in the network, perhaps by encouraging it to learn

features that are more descriptive of general setting (e.g. rock types) rather than

of the exact location (e.g. where one specific stream meets another), and which

are therefore more useful for generalising to unseen locations. We also found

that average pooling outperformed max pooling for this use-case (resulting in

lower validation loss) perhaps because it produces smooth transitions between the

contextual features present at adjacent locations (rather than having features pop

in and out depending on whether they are present anywhere within the extent of

the auxiliary information image). While the convolutional architecture we propose

here is effective, we also suspect that there is room for improvement, and would

encourage further research in this area.

The geographical location branch (from input B in Figure 5.1) of our neural

network consists of a single fully connected layer and is thus simpler than the

convolutional branch. If the architecture included only the geographical location

branch, then our model would simply be a deep fully-connected neural network op-

erating on spatial location inputs (easting, northing, elevation), and could therefore

be regarded as approximately performing ‘deep kriging’, or spatial interpolation

using deep Gaussian process regression, which is what our neural network would

become in the limit of infinite layer width (Neal, 1996). The idea of ‘deep kri-

ging’ has been explored by Li, Sun and Reich (2020) in their paper of the same

name, who propose a neural network architecture that uses an embedding layer

to transform the input space. The inclusion of the auxiliary information branch

in our neural network however turns it into something closer to ‘deep regression

kriging’, a term that seems not to have previously been coined. Unlike traditional

regression kriging, not only does our deep neural network architecture learn its

own regression features automatically from gridded auxiliary information, but also

learns interactions between these features and spatial location owing to the fact

that we have subsequent hidden layers after the auxiliary and spatial information

branches are concatenated. We can therefore think of our neural network as
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performing interpolation in a self-learned hybrid space - a representation which

blends global location information with local contextual information.

So, our neural network provides a forward model from the location information

and auxiliary information inputs, whose output is a Gaussian distribution repres-

enting the target variable (stream sediment calcium concentrations in the example

we present here) via two parameters: the mean, µ, and variance, σ2. These two

output parameters are generated by separate linear functions of the same 256

learned features that constitute the neural network’s final hidden layer (which in

this case has 256 nodes). While µ is free to vary on the real line, we constrain

σ2 to always be positive (and therefore valid) by using a softplus link function:

so f t plus(x) = log(exp(x)+1). Because these output parameters have access to

the same features, there may be some amount of cross-talk between them. This

could be forcibly avoided by using separate neural networks to learn each of these

output parameters. However, given the nature of the problem it is likely that both µ

and σ2 will vary according to the same underlying processes, such as changes in

lithological or hydrological setting. It therefore seems a reasonable approach to

allow both µ and σ2 the capacity to share the same features (and to have them

jointly inform the learning of these features). The quality of our results empirically

supports this reasoning.

Our probability model p(Ys|xs,w) for our target variable Ys, at any location s,

given the inputs xs and weights of the neural network w is defined as

Ys|xs,w ∼ N (µ(xs), σ(xs)
2) (5.2)

µ(xs) = g(layer f inal)

σ(xs)
2 = log(exp(h(layer f inal))+1),

where both g and h are linear functions of the 256 features of the final hidden

layer of the neural network (layer f inal) so that both take the form g(layer f inal) =

β0 +β1 f eature1 +β2 f eature2 +β3 f eature3 + · · ·+β256 f eature256. Each of these 256

features is itself a learned transformation of the neural network’s inputs, xs, namely
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location information and auxiliary information (Figure 5.1). The specifics of these

functions are dictated by the trainable parameters, or weights, in the neural network.

In the next section we explain how these parameters, and the functions they induce

the neural network to represent, are learned.

5.2.3 Quantifying Uncertainties via MC Dropout

Traditionally, neural networks are deterministic models in that they provide a fixed

output for a given input, subject to the values of their parameters (or weights, w).

Neural networks are commonly trained through back-propagation to converge on a

set of weights that minimise a loss function (often mean squared error in the case of

regression problems). However, in these traditional deterministic neural networks

the weights are fixed, having no distribution, which means that there is no way to

estimate the uncertainty in these weights or therefore the uncertainty about the

function or model that the neural network has learned. Natural processes inevitably

involve uncertainties, and it is right that we should want to estimate these in order

to provide well-calibrated probabilistic predictions suitable for use in decision

support (Yoe, 2011; Fox and Ülkümen, 2011). We do so here using the Monte

Carlo dropout approach of Gal and Ghahramani (2016) for approximate Bayesian

inference, which allows us to capture both aleatoric and epistemic uncertainty as

described by Kendall and Gal (2017). Aleatoric uncertainty can be thought of as

the innate randomness in a data generating process — irreducible noise inherent

in the observations of the target variable — and can be represented by using a

parametric distribution as the output of the neural network so that, rather than

making single point predictions, our model predicts a distribution whose variance

acknowledges the inherent randomness in the observations. In our case, our

deep neural network outputs the mean, µ(xs), and variance, σ(xs)
2, of a Gaussian

distribution (Equation 5.2) which provides our likelihood function for the neural

network (LNN). If we define vector yyy = (y1, . . . ,yn) to be the observed data on Ys

(our output variable). Then the likelihood is defined as the joint probability of the

136



data yyy given specific values of µ(xs), σ(xs)
2 and w. This is given by

LNN = p(yyy|µ(xs),σ(xs)
2,w) (5.3)

=
n

∏
s=1

p(ys|µ(xs),σ(xs)
2,w)

=
n

∏
s=1

1√
2πσ(xs)2

exp
(
− 1

2σ(xs)2 (ys −µ(xs))
2
)

=
1

(2πσ(xs)2)n/2 exp

(
− 1

2σ(xs)2
s

n

∑
s=1

(ys −µ(xs))
2

)
.

If we were not also interested in epistemic uncertainty — uncertainty within the

model itself — we could simply optimise the weights, w, to arrive at a fixed set which

maximise the likelihood (maximise the probability of the data given the model).

Assuming a Gaussian error distribution as we do here (with spatial covariance

being handled implicitly within the neural network’s parameter uncertainty, such

that our neural network approximates the role of both the mean function and the

Gaussian process in a typical ordinary kriging or regression kriging setup, with

the Gaussian error distribution providing only non-correlated ‘nugget variance’),

maximising the likelihood would lead our neural network to fit the predictive mean,

µ(xs), equivalently to if we were minimising the mean squared error (MSE),

MSE =
n

∑
s=1

(ys −µ(xs))
2, (5.4)

which is perhaps the most commonly used loss function for deterministic regression

problems. However, by having our neural network learn both the mean, µ(xs), and

the variance, σ(xs)
2, of our target variable as functions of the inputs, we can learn

a spatially-precise heteroscedastic (Kendall and Gal, 2017) representation of the

uncertainty within the data — the aleatoric uncertainty.

In addition to modelling the aleatoric uncertainty, we also wish to model

the epistemic uncertainty — the uncertainty within the model itself. We do so

in acknowledgement of the fact that, given that we do not have complete and

perfect information (our set of observations is finite), there is uncertainty about
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the form of the true data generating process. This uncertainty can be reduced by

collecting more data, but without infinite observations there will always be room

for multiple possible model fits, or explanations, for the data we observe. If we

simply task our neural network with learning a single ‘best fit’ function to represent

the data generating process (e.g. by maximising the likelihood) then we would

be ignoring this epistemic uncertainty about the range of possible fits, resulting in

overconfident predictions and poor generalisation. Instead, to model the epistemic

uncertainty we model a distribution over the range of possible model fits. To do

so requires operating within the Bayesian framework to learn a distribution over

the neural network weights, rather than simply learning a fixed set of weights as in

non-Bayesian neural networks. However, learning a distribution over each weight,

or parameter, in the model is a challenging proposition for large neural networks

due to the extreme dimensionality of the model (2.8 million trainable parameters in

our case).

Here we use the Monte Carlo dropout approach for approximate Bayesian

inference in deep neural networks (Gal and Ghahramani, 2016). This approach

places a Bernoulli prior row-wise over the weight matrices of the neural network,

which means that for every iteration of training and prediction, the nodes of the

neural network each have a probability of being switched off, or ‘dropped out’ (with

weights set to zero). Each layer of the neural network can be represented by a

matrix of weights which dictate the values of the layer’s nodes as weighted sums

of the layer’s inputs, multiplied by an activation function (the ReLU function in our

case, where

ReLU(x) = max(0,x) =


1 if x > 0,

0 if x < 0.
(5.5)

The inputs to the first layer will be the raw inputs provided to the neural network,

while subsequent layers will take the node values of the previous layer as inputs.

For example, if we imagine a neural network with four input variables, two

hidden layers of eigth and six nodes, and a single linear output (e.g., Figure 5.2)
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then such a network will possess three weight matrices, W 1, W 2, and W 3, which

parameterise the transformation from each layer to the next.

Figure 5.2: An illustration of a neural network with two hidden layers, using NN-
SVG software (LeNail, 2019). Each connection represents a weight in the neural
network, and is coloured from red to blue according to how positive or negative it is.
The configuration of weights between each layer is represented mathematically by
a weight matrix. The weights here have just been initialised randomly for illustrative
purposes.

If we populate W 2, the matrix that parameterises the transformation from the

first to the second hidden layer, with some random weights (∈ R)

W 2 =



−1.08 0.71 −0.19 0.14 −0.43 1.2

1.22 0.85 0.82 −0.04 −1.5 −0.31

0.68 −0.77 0.57 1.33 0.11 −2.17

−0.29 −0.08 1.46 0.89 1.33 1.19

1.12 −0.1 0 1.25 −0.01 −1.36

−0.15 −1.16 −0.45 0.27 0.28 0.03

0.49 −1.5 1.67 1.53 −0.24 0.01

0.47 −0.66 0.38 −2.21 0.98 2.07



(5.6)

where the value of each node in the second hidden layer (the columns) is a

weighted sum of the values of the nodes of the first hidden layer (the rows), i.e. so

that

L3
1 = max(0,

n

∑
n=1

(L2
1 ×−1.08+L2

2 ×1.22+ ...+L2
8 ×0.47) (5.7)

where L3
1 means the third layer’s first node. Applying dropout row-wise, i.e mul-
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tiplying each row by a bernoulli random variable z ∼ Bern(π) where π = Pr(z = 1),

equates to giving each node of the second layer a probability 1− π of being

dropped out, in other words having its value set to zero and therefore not have

the information it provides propogate through the subsequent layer. The inclu-

sion of this stochastic dropout transforms the neural network from representing a

single deterministic function to instead representing a distribution over functions,

whose variance relates indirectly to the dropout rate π, as well as to the weights

themselves.

The probability or rate at which nodes will drop out is a tuneable hyper-

parameter. While a Bernoulli prior may seem ‘unrealistic’ — why should a para-

meter only exist with a fixed probability? — the overall effect of Monte Carlo

dropout on the network as a whole is to turn our single neural network into a near

infinite self-contained ensemble. Each different configuration of dropped nodes

realises a different function (or model) from the ensemble, so that rather than

learning a single ‘best’ fit, our neural network learns a distribution over possible

fits.

The dropout rate relates to the variance we expect to see between different

functions drawn from the ensemble — it acts as our prior distribution over functions.

In general, a higher dropout rate will induce higher variance within the ensemble, as

samples (or ‘ensemble members’) become less correlated. However, the dropout

rate also affects the capacity of the neural network to represent complex functions,

for example a high dropout rate of 0.9 would on average leave only 10% of the

nodes of the network active for any given sample, effectively causing the ensemble

to be composed of much smaller neural networks which would likely be weaker

learners (Srivastava et al., 2014). In the same way that theory does not dictate the

optimal neural network architecture for a given task, so too the optimal dropout

rate is task (and architecture) dependent. By manually tuning the dropout rate in

order to minimise loss on the evaluation set, a well-calibrated posterior predictive

distribution can be achieved. For our geochemical mapping application, we found
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a dropout rate of 0.2 for the fully connected layers, and a spatial dropout rate of

0.5 for the convolutional layers (in which filters, rather than nodes, are dropped)

to be effective. The manual tuning of dropout rates adds some time to the model

development process, but it is just one of many hyper-parameters to consider in

the design of the neural network (along with depth, layer width, activation function,

convolutional kernel size, dilation, stride, pooling etc). It is worth noting that other

approaches to Bayesian inference in deep neural networks have been proposed, in

what is a rapidly developing area of research (we recommend the concise review

by Wilson, 2020). We therefore remain open minded about what may emerge as

the ‘best’ approach over the coming years, but have found Monte Carlo dropout to

perform well in our task.

We now provide a deeper look at the principles behind Monte Carlo dropout

as a Bayesian approximation, though for the complete details we refer readers

to the original work of Gal and Ghahramani (2016). First, consider the simpler

scenario of using our neural network without dropout. In this scenario, the gradient

descent training procedure aims to find a fixed set of weights, w∗, which maximise

the likelihood: the probability of the data given the weights, p(yyy|w∗). Given its

enormous number of parameters, our neural network could potentially achieve

this by fitting the mean of its Gaussian output, µ, directly through our training

observations, and setting its variance, σ2, close to zero everywhere - although this

would undoubtedly be a case of overfitting the data. Regularisation techniques

can be used to prevent this overfitting by penalising complexity, but regardless, the

outcome would still be a fixed set of weights, w∗, which provides no estimate of

epistemic uncertainty.

In order to quantify epistemic uncertainty, we want to learn the posterior

distribution of the weights, p(w|yyy), given the data yyy. To do so in the traditional way

requires combining the likelihood, p(yyy|w), with a prior distribution for the weights,

p(w), through Bayes rule. In our case, our prior is constructed by assuming

randomly initialised fixed weights β and, for each node of the network (each row
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of the neural network’s weight matrices) a Bernoulli random variable z ∼ Bern(π)

where π = Pr(z = 1). Then the distribution over weights is defined as p(w) = β z,

which defines whether the weight β is ‘active’ (z = 1) with probability π or ‘dropped

out’ (z = 0) with probability 1− π, where 1− π is the dropout rate to be tuned

manually as a hyper-parameter. Using Bayes rule the posterior is defined as

p(w|yyy) = p(yyy|w)p(w)
p(yyy)

, (5.8)

but the Monte Carlo dropout approach provides an approximation whereby we

obtain the posterior by training the fixed weights, β , while dropout is active at

the rate we specify. Once training is complete, we take the Monte Carlo dropout

distribution, βT RAINEDz, to be our posterior, so that

p(w|yyy) = βT RAINEDz. (5.9)

This approximation is efficient in that, once the fixed weights have been trained

(for which we can use the standard efficient optimisers for deep learning), the

Monte Carlo dropout samples immediately provide independent samples from the

posterior, p(w|yyy), with no burn in or thinning required, unlike samples obtained by

MCMC methods (e.g. see Raftery and Lewis, 1996). However, it does mean that

we are entirely dependent on learning an optimal set of fixed weights, βT RAINED

(subject to the dropout rates we specify), in order that our approximate posterior

results in a well-calibrated model. From the perspective of big data efficiency, this

is in fact a selling-point of the Monte Carlo dropout approach, as it means we

can use the established tools for training deep neural networks very efficiently,

namely stochastic gradient descent in frameworks such as Tensorflow, and treat

the dropout rate as a hyper-parameter to be tuned in the neural network design

process.

To arrive at our trained weights, βT RAINED, in Tensorflow we task stochastic

gradient descent with optimising β to minimise the negative log-likelihood loss,

−log[p(yyy|w)], which equates to maximising the likelihood. However, with dropout
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active, a different random sample of weights are updated at each iteration of

training (i.e., for each mini-batch that the optimiser operates on, a different Monte

Carlo dropout sample of weights are used). This provides Monte Carlo integration

over p(w|yyy) during training time, such that the quantity maximised is actually the

(approximate) posterior predictive

p(Y |x,yyy) =
∫

w
p(Y |x,w)p(w|yyy)dw, (5.10)

in which the noise provided by Monte Carlo dropout, to induce a distribution over

functions, prevents the posterior p(w|yyy) (or alternatively βT RAINEDz) from collapsing

to a maximum likelihood point estimate and forces the optimiser to optimise the

entire predictive distribution. This enables epistemic uncertainty to be represented

by the spread of possible functions in the posterior distribution (over functions)

(Kendall and Gal, 2017) and improves generalisation relative to traditional non-

Bayesian model fitting (Srivastava et al., 2014).

The uncertainty estimates obtained from Bayesian methods will always have

some sensitivity to the choice of prior. In our case, the dispersion of our Monte

Carlo dropout posterior is sensitive to our choice of the dropout rate. Fortunately,

in a big data setting such as ours, we can use a large evaluation data set to

help tune the dropout rate and any other hyper-parameters (more details of our

specific setup follow in the next subsection). Our aim with tuning the dropout rate

is that the stochastic gradient descent training process should arrive at a solution

βT RAINED which corresponds to a model that fits the training data as closely as

possible without overfitting, which would present itself as a degradation of predictive

performance on the evaluation set. We can see this as it happens by monitoring

the training and evaluation loss during the stochastic gradient descent process in

Tensorflow. With dropout at a suitable rate, training loss will continue to decrease

as stochastic gradient descent continues, while evaluation loss will reach a low

plateau and stay there. This indicates that the resultant posterior corresponds to a

model that well represents both the training data and the evaluation data, without
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becoming overconfident (i.e. overfitting). The better the uncertainty quantification,

the better the predictive performance will be outside of the training data.

The posterior distribution is the key to capturing epistemic uncertainty —

it represents the uncertainty in the function, or model, that the neural network

has learned. Given the posterior distribution over weights, p(w|yyy), the posterior

predictive distribution of any output Ys given the associated value of the input xs, is

given by

p(Ys|xs,yyy) =
∫

w
p(Ys|xs,w)p(w|yyy)dw, (5.11)

where p(Ys|xs,w) is our Gaussian model (Equation 5.2). Note that Ys in Equa-

tion 5.11 can be any value of the output variable, observed and unobserved alike,

e.g. Ys can be a location s not covered by the observed data yyy. In practice we

calculate this integral using Monte Carlo integration: simulating from the posterior

predictive distribution for a given input, xs, one sample at a time, where each

sample is drawn from the Gaussian distribution using a different arrangement

of weights wi, sampled (by Monte Carlo dropout) from the posterior distribution

p(w|yyy). For more on simulation, and the spatial properties of resultant realisations,

see appendix A.

5.2.4 Application to Geochemical Mapping

We applied our Bayesian deep neural network to the task of mapping stream

sediment calcium concentrations, as log(calcium oxide), across the UK. This

geochemical dataset, provided by the British Geological Survey, contains 109201

point-sampled calcium observations (as well as many other elements) measured

by chemical assay of sediment collected from the beds of streams across the

UK, approximately at random (Johnson et al., 2005). For our auxiliary grid, we

use NASA’s Shuttle Radar Topography Mission (SRTM) elevation data (Van Zyl,

2001), which we access via the Raster package in R (Hijmans, 2017; R Core

Team, 2020) at a resolution of 30 arc-seconds, which translates to a horizontal

resolution of 528m and a vertical resolution of 927m once projected into the
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British National Grid coordinate system. In total for the UK this provides 611404

grid cell elevation values. We chose calcium concentration partly for its ability

to differentiate rock types: calcium carbonate is the main constituent of chalk

and a major constituent of limestones, but can be almost completely absent from

deeper marine sediments deposited below the calcite compensation depth. We

also chose calcium for how easy-weathering and mobile it tends to be in the

surface environment, which means that it exhibits a complex relationship with

terrain topography. Not only can we expect terrain features to be indicative of

underlying bedrock composition (due to different rock compositions weathering

differently, producing different surface expressions), but mobile elements will also

be transported according to hydrological processes at the surface. In order to

make good predictions of calcium concentrations our neural network therefore has

to learn and combine knowledge of both bedrock and surface processes.

Constructing our study dataset required linking together the two input types

(location information, and auxiliary information in the form of an observation-

centred terrain image) to each observation of our target variable. Location inform-

ation consists of the easting and northing values recorded for each observation

in the G-BASE dataset, along with an elevation value extracted from the SRTM

elevation grid at that location. The observation-centred terrain images each consist

of 1024 elevation values extracted on a regular 32x32 grid centred at the location

of the observation site. Bilinear interpolation of the elevation grid was used in

all elevation extractions, in order to avoid aliasing issues in the terrain images.

We extract the terrain images at a grid cell size of 250m, which means that the

neural network has an 8x8km square window centred on each observation from

which to learn its terrain features. Constructing the auxiliary information images

through bilinear interpolation also means that we are not tied to the resolution

of the underlying auxiliary grids. It is worth noting that our framework is capable

of ingesting multiple auxiliary variable grids at once (multi-channel images as

input), and there is no obligation to use only terrain. For instance, other sources

of auxiliary information such as satellite or geophysical imagery may also be
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available.

In order to facilitate the learning of terrain features, we normalise each 32x32

cell image so that the centre point is at zero elevation. Features are then learned

in terms of contextual relation to the sample site, rather than to absolute elevation.

However absolute elevation, along with easting and northing, are provided explicitly

as the second input to the neural network (after the convolutional layers — see

Figure 5.1) in order to provide the network with awareness of overall location in

the geographic space as well as awareness of local topography (i.e. from the

auxiliary information). All location inputs are scaled to have mean of zero and

standard deviation of one, with the elevation images also collectively scaled to

have standard deviation one, but without further centring beyond setting the centre

of each image to zero elevation.

In order to conduct our study, we split our assembled dataset at random into

ten folds, of which one was set aside as a final test dataset (from which we report

our prediction accuracy and calibration results in section 5.3), one was used as an

evaluation set during the neural network training (to monitor loss on out-of-sample

data to guide hyper-parameter tuning, such as tuning of dropout rates), and the

remaining eight folds were used as the training set (which amounted to 87361

training observations). Different proportions could have been chosen for this hold-

out validation scheme, but we have chosen tenths on the basis that this is common

practice and that our held out test set is sufficiently large (10920 observations) for

us to be confident in our results.

As mentioned in the introduction of the thesis, there is some controversy over

the validity of randomly splitting data into training and testing folds in situations

where the resultant folds may be non-independent (i.e., due to spatial autocor-

relation). For spatial data like that used here, training-testing splits produced

by random sampling are bound to be correlated due to the close proximity of

their respective observations, and therefore easier to predict than splits which

enforce geographical separation (i.e., ‘block cross-validation’ Roberts et al. 2017).
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However, through experimentation Wadoux et al. (2021) found ‘that spatial cross-

validation strategies resulted in a grossly pessimistic map accuracy assessment,

and gave no improvement over standard cross-validation’. Therefore, despite the

potential issue of non-independence within randomly sampled folds of spatial data,

evaluation using randomly sampled test observations seems a viable approach

given that we generally wish to evaluate the performance of a map-producing

model within the spatial extent of data on which it was trained (i.e, to assess its

interpolation performance) — this is the real-world use case in which the maps

we produce here would be used, rather than to make extrapolations outside of the

area in which observations have been collected (although extrapolative abilities

are also of interest, and could potentially be where incorporating computer vision

techniques brings the most value due to the potential to learn ‘generalisable truths’

from the landscape itself).

To train the neural network we used the Adam optimiser (Kingma and Ba,

2014) with learning rate of 0.001, weight decay of 1e-6, and a batch size of

4096. With the dropout rate tuned to a suitable value (we settled on 0.2 for the

fully connected layers, and 0.5 for the convolutional layers), we found that our

neural network was resistant to overfitting even when trained for a large number of

epochs. This can be seen during training by monitoring predictive performance on

the evaluation set, which plateaued after many epochs but did not degrade. This is

a good sign, as it suggests that the posterior predictive distribution had become a

good approximation of the true data distribution. We trained our neural network for

1000 epochs, which took about 25 minutes on a single GPU workstation (Nvidia

Pascal Titan X GPU). Note that all of our result metrics are reported from the

third dataset — the test dataset — which was not used during training at all. We

would therefore expect the results we present in section 5.3 to well represent the

general performance of our method in the context of predicting values of log(CaO)

at unobserved locations within the UK.

We chose the SRTM and G-BASE datasets for their ease of access and
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use as well as for the complexity of the spatial relationships they contain, which

we believe provide a good demonstration of the capability of our Bayesian deep

learning approach for geostatistical modelling tasks. The methodology we present

in this chapter is intended as a general framework for data-rich geostatistical

applications where gridded auxiliary variables are available in addition to point-

sampled observations of the target variable, and we would encourage readers

to use the code we share alongside this chapter (available at https://github.c

om/charliekirkwood/deepgeostat) to test the approach on other geostatistical

applications.

5.3 Results and Discussion

The national scale geochemical map that our Bayesian deep neural network has

produced (Figure 5.3) is extremely detailed and appears to have successfully

captured the complex relationships between our target variable: stream sediment

calcium concentrations as log(CaO), and our auxiliary variable grid: terrain el-

evation. In addition to subjectively achieving good detail in the mapping task,

our objective results on held out test data (unseen during the model training and

hyper-parameter tuning procedure) are very encouraging. In a deterministic sense,

the mean prediction from our Bayesian deep neural network explains 74% of the

variance in our target variable (Figure 5.4a). The performance of the network in a

probabilistic sense is less easily summarised by a single number, but a compar-

ison of the predictive distribution with the true distribution on the held out test set

(Figure 5.4b, Figure 5.4c) indicates a well-calibrated fit (Gneiting, Balabdaoui and

Raftery, 2007). We have also measured performance using two proper scoring

rules (Gneiting and Raftery, 2007): the continuous rank probability score (CRPS)

and logarithmic score (Figure 5.4b), though these will be most useful in future

comparisons with other models.

It is apparent in the observations data presented in Figure 5.4 that a cluster of

observations share the same identical value of -3.69 log(CaO), which is the lowest
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Figure 5.3: Predicted log(CaO) interpolated from stream sediment geochemistry
observations across the UK using auxiliary information provided by a digital elev-
ation model. This map shows the mean of our deep neural network’s predictive
distribution, which has captured complex relationships between terrain features
and log(CaO)
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Figure 5.4: Evaluating our model’s performance on the held out test data set
(n = 10920). a Comparison of observed and predicted values, taking the mean
of the predictive distribution as a deterministic prediction. b Density, c Q-Q
and d prediction interval coverage plot comparisons of observed and predicted
distributions

Figure 5.5: South-north cross section of our Bayesian deep neural network’s
output, running along a line at 400000 metres easting BNG. Also shown are all
the observations within 500m either side of this line
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value observed and corresponds to 0.025 weight % CaO on the linear scale. We

believe that this set of identically valued observations are the result of a bug in

error correction of the assay data for low calcium concentration samples and we

are therefore not concerned by the discrepancy between our predictions and these

observations (the neural network predicts that all should have higher values than

recorded). It may even make sense to exclude these spurious observations from

our comparisons, but we leave them in as a reminder that data sets in general are

not necessarily free of defects, and that probabilistic data models like ours can in

fact be a good way to identify statistically implausible defects like these.

Checking the coverage of our prediction intervals on the held out test data

(Figure 5.4d), we find that 94.6%, 71.4%, and 51.6% of observations fall within

the 95%, 70%, and 50% prediction intervals respectively. We take these numbers

(which we may expect to be slightly skewed by the above mentioned spurious

measurements in the low tail of the data) on a relatively large held out test set

(10920 observations, 10% of the total dataset) as evidence that our Bayesian

deep neural network is providing well calibrated probabilities, and therefore that it

would be reasonable to use the predictive distribution to support decision making

(Gneiting and Katzfuss, 2014).

We visualise the probabilistic capabilities of our deep neural network using a

south-north section line through the map along the 400000 metres easting gridline

(Figure 5.5). In doing so, we can see that the neural network is able to represent

epistemic and aleatoric uncertainty independently as necessary to minimise loss.

The credible interval for the mean varies spatially despite the fixed rate of Monte

Carlo dropout, showing that the neural network is able to capture spatial variability

in epistemic uncertainty. Likewise, the estimated aleatoric uncertainty also varies

spatially, and can be high even where epistemic uncertainty is low. For example, we

see this behaviour exhibited just south of 600000 metres northing. A quick check

of the British Geological Survey’s Geology of Britain Viewer (British Geological

Survey, 2020) suggests that the geology of this section consists of the Yoredale
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group of interbedded limestone, argillaceous rocks and subordinate sandstone.

The interplay of these compositionally different rock types on fine spatial scales that

are unresolvable to the model (and to the geologists who classified the formation)

is likely the reason for the comparatively high aleatoric uncertainty estimates in

this area even with low epistemic uncertainty: the model has recognised that

calcium concentrations here have higher variability at short spatial scales, and

has increased its ‘nugget’ variance to account for this. This is one example of

how probabilistic machine learning can be used as a guide towards discovery of

further knowledge. By outputting a full predictive distribution, the Bayesian deep

learning approach can provide probabilistic answers to all sorts of questions (e.g.,

Cawley et al., 2007; Kirkwood et al., 2020). Probabilities of exceedance at any

location, for example, can be calculated simply as the proportion of probability

mass in excess of any chosen threshold. We can also obtain individual realisations

from the model through simulation. These realisations have spatial autocorrelation

properties similar to that of the data - see appendix A for further details.

Figure 5.6: Zooming in on a local area. a, SRTM elevation data: the source of our
auxiliary information. b, Predicted log(CaO): deterministic mean. c, Uncertainty
of predicted log(CaO): standard deviation of posterior predictive distribution. All
maps use linear colour scales where brighter = greater. The white inlet is the tip of
the Humber estuary

We zoom in on the national scale map, and visualise predictive uncertainty in

Figure 5.6. Viewing the deterministic mean map at this finer scale, and comparing

it to the elevation map of the same extent reveals in more detail the ability of
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our deep convolutional neural network to learn the complex ways in which the

distribution of our target variable relates to features of terrain. The same level

of complexity is reflected in the uncertainty map, and shows that in addition to

being very well calibrated (Figure 5.4), our Bayesian neural network is also very

specific in its assignment of uncertainty to different spatial locations. In other

words, our predictive distribution is both honest and sharp, which is desirable

under the paradigm proposed by Gneiting, Balabdaoui and Raftery (2007) that

probabilistic predictions should ideally be achieved by maximising the sharpness

of the predictive distribution subject to calibration. Our combination of high map

detail (in terms of both predictive mean and variance) and near-perfect coverage

indicates that our Bayesian deep learning approach is successfully producing a

predictive distribution that is both sharp and well-calibrated.

Our deep neural network is able to produce these specific and detailed

outputs because it is interpolating not just in geographic space — as in traditional

geostatistical models — but also in terrain feature space. This has important

implications for mapping tasks. In traditional geostatistical models any predictions

made outside the geographic extent of observations would be considered to be

extrapolations, and are likely to have high error and uncertainty (Journel and Rossi,

1989). In our case, because our neural network is working in a hybrid space,

predictions that would be considered out of sample geographically may still be

within sample in terms of terrain features. While regression kriging may also be

provided with terrain features as covariates, only a deep learning approach like

ours has the capability to automatically learn complex terrain features for itself,

and therefore has the potential to discover new ways to predict target variables

based on fundamental relationships with the landscape rather than relying on

spatial autocorrelation. This may have significant implications for applications like

mineral exploration, where obtaining sensible predictions for unexplored regions is

a key driver of new discoveries (Sabins, 1999). It also has implications for sample

design in the age of ‘deep geostatistics’, which we leave for future work, other than

to say that sample design ought to consider both the geographic space and the
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terrain feature space, and would likely be best guided by the epistemic uncertainty

estimates of the deep models themselves.

The effects of fluvial processes on calcium are perhaps the most noticeable

terrain-related effects captured in the map, with downslope ‘washing out’ of calcium

apparent in valleys. In the zoomed-in region of Figure 5.6 for example, we can see

elevated calcium concentrations in the channels that drain away from the calcium-

rich area in the north-west of the figure (coordinates approx. 380000, 450000)

even where these channels cross through otherwise low-calcium areas. This

suggests that the convolutional branch of our neural network may have learned

the concept of hydrological catchments and associated sediment transport directly

from the data, a capability that Zuo et al. (2019) suggest will be important for

improving robust mapping of geochemical anomalies in the future.

Further work will be needed to fully explore the capacity of our approach to

learn complex physical process by example, and perhaps also to investigate the

physical plausibility of the resultant predictions. However, the authors are aware of

no other methods that could match the capabilities of our Bayesian deep learning

approach in this geochemical mapping task. Numerical models may be able to

represent physical processes more accurately, but they can struggle to accurately

quantify uncertainties (e.g., Smith, 2013). Conversely, traditional geostatistical

modelling approaches like regression kriging may do well at quantifying uncertain-

ties, but have no capabilities in feature learning, which limit their capacity to fully

utilise the information contained within auxiliary datasets. An approach known

as topographic kriging (Laaha, Skøien and Blöschl, 2014) has been developed

specifically for interpolation on stream networks, but this is unable to generate

predictions outside of the manually designated stream network, and so is of limited

use for general mapping applications. We therefore postulate that the Bayesian

deep learning approach we present here represents an evolution in capabilities

over previous geostatistical approaches, for its ability to automatically learn such

complex relationships between target variables and the landscape.
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5.4 Conclusion

Our Bayesian deep learning approach to spatial interpolation in the presence

of auxiliary information achieves excellent predictive performance on held out

test data according to both probabilistic and deterministic metrics, and in doing

so produces maps with a high level of functional detail whose well-calibrated

probabilities would be suitable for use in decision support. Our approach is unique

in combining the following capabilities: I) automated information extraction from

auxiliary variable grids via convolution, II) pure spatial interpolation abilities not

dissimilar to that of ordinary kriging (each fully-connected layer in our neural

network architecture would be equivalent to a Gaussian process in the limit of

infinite layer width), III) outputting a well-calibrated predictive distribution by using

Monte Carlo dropout for approximate Bayesian inference, and IV) the ability to

handle very large datasets, including compatibility with GPU acceleration. As

such, our approach brings new feature learning abilities and ‘big data’ efficiencies

from deep learning to the established geostatistical domain of probabilistic spatial

interpolation.

The major benefit of our end-to-end deep learning approach is the ability to

automatically learn and utilise the complex relationships between auxiliary grids

and target variables that it would not be possible or practical to manually specify,

for example capturing the effects of fluvial processes on calcium distributions in our

demonstration. Traditional geostatistical methods have no ability to automatically

learn features, hence the significance of this work. By improving our ability to

utilise auxiliary information in mapping tasks, we also reduce reliance on spatial

autocorrelation for making predictions. This has the potential to improve the

generalisation of geostatistical models, including beyond the spatial extents of

a study area, owing to the potential of deep learning approaches to learn the

‘fundamental truths’ that may relate target variables to auxiliary grids. This potential

remains to be explored.
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5.5 Code and data

The code to reproduce this study is available at https://github.com/charlieki

rkwood/deepgeostat and includes functions to download NASA’s SRTM elevation

data via the raster package in R. We are unable to provide open access to the

stream sediment geochemistry target variable dataset, however for academic

research purposes, readers may request access to this dataset from the British

Geological Survey at https://www.bgs.ac.uk/enquiries/home.html or by email

to enquiries@bgs.ac.uk.
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5.6 Appendix A: Simulation

Figure 5.7: Nine simulated maps, or realisations, from our deep neural network.
Each map is a sample from the posterior predictive distribution. Crossing your
eyes to focus on two maps at once can help to make the differences more apparent

Our Bayesian approach means that we have not learned just a single ‘best fit’

for our neural network, but a distribution over possible fits (see subsection 5.2.3)
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from which we can simulate different spatially coherent maps, or realisations

(Figure 5.7). Each realisation presents predictions from a possible model fit, which

collectively construct our posterior predictive distribution, which itself represents

our current state of knowledge. Each realisation can therefore be thought of as

depicting what we might observe if the data collection procedure was repeated (at

all grid cells of the map), subject to our current state of knowledge. We simulate

these realisations by sampling from our posterior predictive distribution,

p(Ys|xs,yyy) =
∫

w
p(Ys|xs,w)p(w|yyy)dw. (5.11)

We do so by iterating two steps. First, we sample wi ∼ p(w|yyy), which is to say

we sample one configurations of weights from our posterior distribution. Second,

we sample Ysi ∼ p(Ys|xs,wi), in other words, for each location s across the map we

sample one data value from our sampling distribution (the Gaussian output of our

model) conditional on both the inputs to the neural network at that location and the

configuration of weights from the first step. The form of our model — in which we

represent aleatoric uncertainty using independent Gaussian noise — means that,

conditional on xs and wi, the simulated values Ys are independent for each spatial

location s. This independent noise can also be thought of as our model’s ‘nugget

effect’ (Clark, 2010).

In practice, due to the fact we are using Monte Carlo dropout, making predic-

tions across an entire map using the same sampled configuration of neural network

weights, wi, requires freezing the dropout mask for multiple calls to Tensorflow’s

predict function (one call for each grid cell of the map). We have provided code to

achieve this, as this functionality is not built in to Tensorflow, which, when Monte

Carlo dropout is active, would normally sample a new configuration of weights

for each individual prediction, preventing spatially coherent maps of posterior

predictive samples (i.e. realisations) from being obtained.

Whether or not we use dropout mask freezing in order to realise spatially
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coherent realisations, the posterior predictive distribution at any location, p(Ys|xs,yyy),

remains the same. In this chapter we have focused on the quality of our deep neural

network’s posterior predictive distribution, as assessed by its ability to provide good

probabilistic predictions at the locations of unseen held out test data (see Figure 5.4

and section 5.3). This is the general use case that we envision our Bayesian deep

learning approach being used for. However, for some applications users may be

interested in the properties of individual realisations in addition to the properties of

the predictive distribution overall. For example, in resource estimation and mine

planning, obtaining realisations that fit the main characteristics of the revealed

reality (Journel, 1974, of which spatial autocorrelation is seen as most important)

has enabled more efficient optimisation of mining activities (Dimitrakopoulos, 1998;

Dimitrakopoulos, 2018; Menabde et al., 2018) and analysis of risk (Vann, Bertoli

and Jackson, 2002).

Figure 5.8: In blue: semivariograms for 250 simulations of log(CaO) values
predicted at the locations of the held out test observations (n = 10920). In red:
semivariogram of the held out test observations. Variograms produced using a bin
size of 2km

Unlike traditional geostatistical approaches, the deep learning approach we

present here is not parameterised to model spatial autocorrelation specifically.

This has benefits, such as freeing us from assumptions of stationarity and isotropy,

but the flexibility of our deep neural network could come at a cost in terms of our

model’s ability to simulate realisations with spatial autocorrelation properties that

match those of observations. To investigate this, we have checked the spatial

autocorrelation of 250 simulated realisations against that of the held out test data
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by comparing variograms (Figure 5.8). Each realisation’s variogram is calculated

by taking its values at the same 10920 locations as the held out test observations

so as to eliminate any differences that might arise from considering different

locations. As is to be expected, each of our realisations displays slightly different

spatial autocorrelation properties, which results in a distribution of semivariances

at each lag distance (we are using 2km bins).

We find that for all lag distances (Figure 5.8) the semivariance of the ob-

servations is within the range of the semivariances of the simulated realisations,

suggesting that overall there is reasonable agreement between the spatial autocor-

relation of realisations and the spatial autocorrelation of the data. To more critical

eyes, there is some indication that realisations may on average have slightly too

much ‘nugget’ variance (too much variability at zero distance) while not having

quite enough variability at longer ranges (Figure 5.8), however we reserve making

more absolute judgements of these higher-order properties of our model’s out-

put for further work and testing — in this study our priority has been point-wise

predictive performance and calibration (Figure 5.4). For use cases where the

spatial autocorrelation of realisations is a priority, we would recommend further

investigation into these properties of Bayesian deep learning approaches like ours.

Overall, on the basis of this comparison of simulation and observation vari-

ograms using held out test data (Figure 5.8) it appears that, in addition to providing

a well-calibrated and sharp predictive distribution (Figure 5.4 and section 5.3), our

Bayesian deep learning approach also produces realisations with similar spatial

autocorrelation properties to the observations. Each simulated realisation repres-

ents values we could observe if we were to repeat the data collection procedure,

subject to our current state of knowledge (as represented by the posterior predict-

ive distribution; Gelman et al., 2013). An additional consideration is the extent

to which this similarity in spatial autocorrelation properties is influenced by the

non-independence of the held out test data in this study (due to spatial autocorrel-

ation in the dataset, and the use of random sampling rather than geographic block
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sampling to derive the test dataset). Experimentation with different schemes for

producing test datasets with different levels of dependence (e.g. random sampling,

block sampling) would provide insight into how well the deep model’s apparent

abilities to capture the spatial autocorrelation structure of the data hold up when

making predictions far out-of-sample.

It is an additional benefit of our Bayesian approach that obtaining realisations

comes at no additional computational cost over what is already required to make

general predictions with our model. This is because Monte Carlo sampling must be

used to obtain our otherwise intractable posterior predictive distribution, and each

of these samples is a realisation. So simulation is an innate part of our Bayesian

approach. It is also the case that Monte Carlo dropout neural networks are a

computationally efficient Bayesian method. On a single GPU workstation, it takes

under 30 minutes to train our model on 87361 training observations. Simulation

then takes about 5 seconds per realisation for the entire 0.6 million grid cell map.
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Chapter 6

A deep mixture density network for
outlier-corrected interpolation of
crowd-sourced weather data

As the costs of sensors and associated IT infrastructure decreases — as
exemplified by the Internet of Things — increasing volumes of observational
data are becoming available for use by environmental scientists. However, as
the number of available observation sites increases, so too does the oppor-
tunity for data quality issues to emerge, particularly given that many of these
sensors do not have the benefit of official maintenance teams. To realise
the value of crowd sourced ‘Internet of Things’ type observations for envir-
onmental modelling, we require approaches that can automate the detection
of outliers during the data modelling process so that they do not contamin-
ate the true distribution of the phenomena of interest. To this end, here we
present a Bayesian deep learning approach for spatio-temporal modelling
of environmental variables with automatic outlier detection. Our approach
implements a Gaussian-uniform mixture density network whose dual pur-
poses — modelling the phenomenon of interest, and learning to classify and
ignore outliers — are achieved simultaneously, each by specifically designed
branches of our neural network. For our example application, we use the
Met Office’s Weather Observation Website data, an archive of observations
from around 1900 privately run and unofficial weather stations across the
British Isles. Using data on surface air temperature, we demonstrate how
our deep mixture model approach enables the modelling of a highly skilled
spatio-temporal temperature distribution without contamination from spurious
observations. We hope that adoption of our approach will help unlock the
potential of incorporating a wider range of observation sources, including from
crowd sourcing, into future environmental models.
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6.1 Introduction

As environmental scientists, the volumes of observational data that we have at

our disposal are ever increasing. Movements such as the Internet-of-Things (IoT),

exemplified in the context of weather data by the Met Office’s Weather Observation

Website (Kirk, Clark and Creed, 2021), have enabled near real-time collection and

sharing of environmental data by low cost sensing equipment around the world.

The implications of this are numerous, but where once the challenge was to collect

sufficient data for specific modelling problems (often hindered by expense), now

often the challenge is to maximise the utility of the high volumes of data that we

already have. The rise of ‘data science’ can be viewed, to some extent, as a

response to this shift in challenges.

In the case of weather modelling and forecasting, it is likely that harnessing

the ever-growing network of IoT type environmental sensor data, in addition to

the observations provided by traditional official weather stations, will facilitate

the development of higher-precision, finer-scale models which can serve more

specific predictions to stakeholders (Bell, Cornford and Bastin, 2015; Chapman,

Bell and Bell, 2017). Linked to this, a benefit of IoT type sensor data is that

these observations have the potential to be more representative of the weather

experienced by the device owners themselves (e.g. due to private weather stations

being located at homes), rather than representative of remote rural locations (as

tends to be the case for official weather stations). The adoption of data from

these unofficial private weather stations and IoT type environmental sensors

could therefore enable models to provide more specific, personalised weather

information at hyperlocal scales.

However, while crowd-sourcing weather data can greatly increase the num-

ber of observations being made, and the number of unique locations which are

observed, it also opens the door to data quality issues owing to the low cost, low

maintenance nature of unofficial weather stations compared to official weather
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stations. The traditional way of addressing data quality issues is to have some form

of manually-guided rules based quality control procedure to subjectively approve or

deny the inclusion of each sensor’s observations into downstream models. While

a manually-guided procedure may seem the best approach in terms of having

complete hands-on control at an individual observation level, such an approach

will tend to suffer from scalability issues as the number of sensors increases, and

is difficult to achieve consistently through space and time.

As the number of sensors enters or exceeds the thousands, it becomes

necessary to automate aspects of the quality control procedure in order to keep

up with the scale of the task. Common approaches include statistical time-series

analysis or rule-based outlier detection algorithms to help identify sensors that

are producing data of questionable quality, which can then be excluded from input

into subsequent models. Here we propose a unified approach whereby detection

of outliers is achieved as part of a downstream statistical data model itself: in

this case a Bayesian deep neural network based spatio-temporal interpolator of

crowd-sourced temperature observations collected by the Met Office’s Weather

Observation Website, with a mixture model or mixture density network architecture

to enable automatic identification and correction of outliers as part of the modelling

process.

In this chapter we proceed by briefly providing some background on IoT

sensor data and its potential benefits for environmental modelling applications, as

well as an overview of existing methods for outlier detection. We then introduce our

deep mixture model approach for spatio-temporal interpolation with simultaneous

probabilistic outlier detection, using an example dataset composed of surface tem-

perature observations collected by the Met Office’s Weather Observation Website.

By adopting a mixture model approach, we incorporate our knowledge about data

issues into the data model through our choice of probability distributions, which

provide our likelihood function. This, in combination with our Bayesian approach

allows us to quantify both aleatoric and epistemic uncertainties — uncertainty
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about the data and uncertainty about the fit of the model — in order to provide

a well-calibrated posterior predictive distribution. Bayesian deep learning frame-

works (here we use Tensorflow Probability) allow us to combine the above benefits

of Bayesian statistical modelling with the flexibility and scalability of deep neural

networks.

We assess the performance of our model on held-out test data, finding our

approach to be successful in filtering outliers in order to provide ‘clean’ spatio-

temporal interpolation that is free from outlier-induced anomalies. In addition, as

our probabilistic approach (including epistemic uncertainty via Monte Carlo dropout

as a Bayesian approximation) provides a well-calibrated predictive distribution

rather than single point predictions, it therefore provides useful information for

downstream applications and decision making.

6.2 Background

6.2.1 IoT sensor data in environmental modelling

Within the field of environmental modelling, the concept of ‘models of everywhere’

(Beven, 2007) has been proposed. This is a concept which stems specifically

from hydrology but is applicable across environmental sciences. The concept

aims to “change the nature of the modelling process, from one in which general

model structures are used in particular catchment applications to one in which

modelling becomes a learning process about places” (Beven and Alcock, 2012).

This idea is driven by the need to constrain uncertainty in the modelling process

in order to support policy setting and decision making (Blair et al., 2019a). The

concept is a reaction to the shortfalls of the use of ‘generic models’, in which

spatially-discretised (gridded) predictions are likely to fail to provide well-calibrated

probabilistic predictions for the specific locations or areas (not grid cells) which are

of interest to stakeholder decision making (Beven et al., 2015). However, the issue

is not simply one of scale, and increasing the resolution of imperfect models does

not solve the problem of what Beven et al. (2015) term ‘hyperresolution ignorance’
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in that uncertainty about parameters will still exist, and a model outputting at finer

scales will not necessarily be providing more information. This is a topical issue

for weather forecasting too, as numerical weather prediction models continue to

increase in resolution.

Technological challenges such as limited computational power have slowed

the adoption of the ‘models of everywhere’ concept, but Blair et al. (2019b) propose

that data science, including cloud computing infrastructure, may provide the means

to make the ‘models of everywhere’ concept a reality by using data mining tech-

niques to combine information from remote sensing and in-situ earth monitoring

systems in data-driven models. This includes live-updating IoT sensors (Atzori,

Iera and Morabito, 2010; Nundloll et al., 2019) such as the unofficial weather

stations which provide data to the Met Office’s Weather Observation Website (Kirk,

Clark and Creed, 2021). These provide a greater number of observations from

more numerous unique sites than traditional monitoring systems (e.g. traditional

weather stations), and the combination of increasingly dense observations (by

IoT sensors) and machine learning may allow data-driven models to supersede

alternative modelling approaches, such as ‘generic’ physics based models. How-

ever, IoT sensors have greater potential for data quality issues over traditional

monitoring systems owing to their cheaper costs, less stringent maintenance, and

being more numerous. Therefore, in order to maximise the benefits of IoT sensor

data for environmental modelling, issues of data quality have to be addressed as

part of the solution.

We propose that the approach we present here, which uses Bayesian deep

learning to combine information from remote sensing and in-situ earth monitoring

in order to provide specific and well-calibrated predictions for any point within the

extent of observed space and time, does satisfy the ideals behind the ‘models of

everywhere’ concept. As such, it can be viewed as an example of the kind of large

scale data-driven environmental modelling that is likely to become more feasible

as computing power continues to increase - putting ‘models of everywhere’ at our
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fingertips.

A B

Figure 6.1: A, The locations of the 1893 private weather stations across the British
Isles that provide crowd-sourced data to the the Weather Observation Website.
B, SRTM elevation data for the British Isles which our model uses as auxiliary
information.

6.2.2 Outlier detection

There are many possible approaches to outlier detection, ranging from fully-manual

data checking, to manually designed rule-based filters, to statistical and machine

learning based systems, which may include both supervised and unsupervised

learning (with supervised learning having the downside that it requires the creation

of manually labelled training datasets in advance; e.g. Nesa, Ghosh and Banerjee,

2018). For a full review of outlier detection techniques we refer the reader to Wang,

Bah and Hammad (2019), who provide a general review of developments in outlier

detection since the year 2000. In addition, Ayadi et al. (2017) provide a review of

techniques specifically for wireless sensor networks, including a comparison of

the respective pros and cons of statistical, nearest-neighbour, artificial intelligence,

clustering and classification based approaches (although these categories have

some overlap). Napoly et al. (2018) propose a combination of rule-based and
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Figure 6.2: Time-series visualisation of our Met Office Weather Observation
Website temperature data for a seven day period in November 2020. Each line
represents one weather station, which are coloured such that higher latitudes are
a lighter shade. Note how the data is not clean, but contains spurious observations
on either side of the central distribution

z-score thresholds for outlier detection in crowdsourced air temperature data. This

approach has been adopted by other authors (e.g. Venter et al., 2020; Zumwald

et al., 2021) but this is not the approach we take.

The approach we adopt for this study is a regression approach using a deep

neural network mixture model — or mixture density network (Bishop, 1994) —

through which we represent the conditional distribution of reported temperature

values as a mixture of a Gaussian and a Uniform distribution, with parameters

learned by our deep neural network. We explain the full details of the approach in

subsequent sections, but in brief terms, our approach incorporates outlier detection

into the spatio-temporal modelling process itself, by having the neural network learn

the probability that an observation is an outlier (whose values are best explained

as having been generated by the Uniform distribution) as an unsupervised sub-

task to the overall supervised spatio-temporal modelling task. The benefit of this
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holistic approach is that it allows the user to incorporate knowledge about data

issues into the data model itself through the use of suitable probability distributions,

and makes for more seamless model checking when compared to a two-stage

procedure of separate outlier-detection followed by data modelling.

6.3 Method

6.3.1 Dataset

We demonstrate our approach using surface air temperature data from the Met

Office’s Weather Observation Website archives (Kirk, Clark and Creed, 2021).

These data contain observations from 1893 unique IoT type weather stations (Fig-

ure 6.1), from which we have taken a continuous 14 day window from 2020/01/26

to 2020/11/09 to use as our dataset in this study. The data provide our target

variable, surface air temperature in degrees Celsius, as well as spatio-temporal

location information in the form of British National Grid (BNG) Easting and North-

ing, and a timestamp. Collectively these Weather Observation Website weather

stations record 8000 observations per hour on average, which equates to about

four observations per site per hour, although this varies by site. Each sensor

records observations at different intervals, rather than synchronously at set times,

so that collectively the observations provide good coverage across continuous

time (Figure 6.2).

In addition to using the Weather Observation Website data, we also make

use of gridded UK elevation data as covariate or auxiliary information in order

to help inform the spatio-temporal interpolation. The data used comes from

NASA’s Surface Radar Topography Mission (SRTM; Farr et al., 2007) and is

accessed via the Raster package in the R programming language. The elevation

data is rasterised with a grid size of 528 by 927 metres (longer latitudinally than

longitudinally), resulting in 0.66 million grid cell elevation dataset covering the UK

and Ireland.
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For input into our model, we extract terrain elevation images centred on each

observation (in the case of training) or location to be predicted. The images

extracted have a resolution of 32x32 grid cells with a grid cell size of 500m (we

use bilinear interpolation so that the image resolution is not locked to the overall

digital elevation model resolution). These images provide auxiliary information,

from which the convolutional layers of our deep neural network learn to extract

useful contextual covariates (e.g. as explained in Kirkwood, 2020; Kirkwood et al.,

2022) for the task of spatio-temporal interpolation of surface air temperature data.

Illustrative examples could include slopes facing the sun that warm faster, or valleys

that channel cool air from cold mountainous areas. There are likely to be many

such complex interactions between the landscape and surface air temperatures,

and by providing elevation data as images to our deep neural network we allow

them to be learned from data. Further details of the preparation of our dataset for

model training, evaluation, and testing are provided in the section ‘Practical setup’.

6.3.2 Mixture model concept

We design our model to address three considerations: 1) The capacity to represent

our target phenomenon (a spatio-temporally varying temperature distribution in

this case), under the assumption that outliers can be objectively identified and

excluded. 2) The capacity to successfully identify outliers. 3) A means by which to

achieve both 1 and 2 simultaneously within a single probabilistic data model.

At the heart of our model is a two-part mixture probability distribution whose

individual component distributions - psignal and poutlier - represent the two classes of

observation that we judge to exist within our dataset, as evidenced by exploratory

visualisation of the data (Figure 6.2). These are 1) The ‘true’ signal distribution of

our target phenomenon, which we assume here is a Gaussian distribution as is

common for temperature measurements, and 2) the outlier distribution, in this case

we choose a Uniform distribution ‘catch-all’ that can account for the generation of

spurious observations by biased or faulty weather stations. It is worth noting that

the selection of these distributions is a modelling choice, and that different target
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variables are likely to warrant the use of different distributions in the model output,

from which the likelihood is derived (the probability of the data given the model).

We then introduce parameter θ – the probability that an individual data point

comes from the “true” Gaussian distribution of temperature. Equivalently, 1−θ is

the probability that a data point is spurious and therefore comes from the uniform

distribution. More formally, let ys,t denote the temperature at location s and time

point t. The probability distribution of ys,t is defined as:

p(ys,t) = θs,t psignal(ys,t)+(1−θs,t)poutlier(ys,t), (6.1)

psignal(ys,t) = N(µs,t ,σ
2
s,t) with density

1√
2πσs,t

exp

{
1

2σ2
s,t
(ys,t −µs,t)

2

}
(6.2)

poutlier(ys,t) = Uniform(µs,t −50,µs,t +50) with density
1

100
. (6.3)

The “true” temperature distribution is therefore assumed Normal with mean µs,t

and variance σ2
s,t , while the spurious observations are centered at the “true” mean

µs,t but are allowed to vary uniformly around this mean. This range of 100◦C was

chosen from exploratory data analysis and was deemed sufficient to capture the

outliers in the data.

A perhaps more intuitive way of interpreting this model, is to introduce a

latent binary variable, Zs,t where Pr(Zs,t = 1) = θs,t and Pr(Zs,t = 0) = 1−θs,t . The

probability model for temperature ys,t conditional on Zs,t is then:

ys,t |Zs,t = 1 ∼ Normal(µs,t ,σ
2
s,t) (6.4)

ys,t |Zs,t = 0 ∼ Uniform(µs,t −50,µs,t +50) (6.5)

Zs,t ∼ Bernoulli(θs,t). (6.6)

We can think of Zs,t as the result of a ‘coin toss’ where at any given location s and

time point t, we can get a spurious observation with probability 1−θs,t . Note that

θs,t varies with space and time, in order to flexibly capture the flawed data points

(as opposed to assuming a constant θ ).
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Note further that the fact that µs,t appears in the model for the spurious data

points, i.e. the Uniform distribution, allows some information from such data points

to be utilised. This is based on a belief that on average, the flawed data are centred

on the true mean, such that negative and positive biases cancel each other out

(though in practice this may well be optimistic; Bell, Cornford and Bastin, 2015).

Note that any flawed data point which is much further from the mean µs,t than the

Normal(µs,t ,σ
2
s,t) distribution implies, will be “absorbed” by the Uniform distribution

so that the Normal part of the model can be interpreted as the model for the true

temperature process. As such, predictions from the Normal(µs,t ,σ
2
s,t) part after the

model is implemented, can be seen as “corrected”.

6.3.3 Network architecture

The parameters of our mixture distribution are µs,t , σ2
s,t and θs,t . We therefore

require that our model has the capacity to learn to optimise these parameters

in relation to space and time so that predictions from (6.2) are a reasonable

representation of the real data generating processes at location s and time t (as

we assess through model checking against held-out test data).

To achieve this, our neural network architecture consists of two halves, which

we term the signal network and the outlier network. The signal network is tasked

with learning the parameters, µs,t and σ2
s,t , of our ‘true’ Gaussian distribution, which

are conditioned on the space and time variables that we provide as inputs to the

model (the details of which we explain in subsequent sections). The outlier network

meanwhile is simply tasked with learning θs,t or in other words the probability that

an observation is an outlier, which is conditioned on site ID (which we provide

one-hot encoded) and time. One-hot encoding means representing our n site

IDs as n separate predictor variables, to which we assign the value 1 only if an

observation corresponds to that site, otherwise a value of 0 is assigned. The

one-hot encoding approach allows us to input categorical variables into the neural

network in a sensible way. We provide site IDs (rather than more general spatial

variables such as easting and northing) to the outlier network because it has

172



no need to learn generalisable patterns, its sole purpose is to identify outliers

probabilistically during the training phase, and this ability is improved by making

the task as simple as possible. Overfitting is not a concern since the outlier network

serves no purpose in the spatio-temporal interpolation beyond the training stage.

From the perspective of deep neural networks as “black boxes”, we can view

our signal and outlier networks simply as function approximators that learn to

provide optimal values of their respective output parameters, such that

(µs,t) = g( fsignalnetwork(xspace,time)), (6.7)

(σ2
s,t) = h( fsignalnetwork(xspace,time)), (6.8)

and

logit(θs,t) = foutliernetwork(xsite,time), (6.9)

however we have designed the architecture of the two branches — signal

network and outlier network — in line with their specific goals. The architectures

of each branch, and the specific space and time variables that they take as inputs,

are explained in the following paragraphs, accompanied by Figure 6.3 as a visual

aid.

Our signal network architecture (Figure 6.3) is designed for terrain-aware

interpolation, which it achieves through the combination of a convolutional branch

to derive relevant terrain features from gridded auxiliary information (e.g. terrain

elevation, satellite imagery), and a fully-connected branch for interpolation in space

and time. The combined effect is to achieve spatio-temporal interpolation in a

hybrid space that includes local terrain context so that, for example, the differences

between valleys and hill-tops (and anything relevant about their orientations) can
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Figure 6.3: The architecture of our deep neural network, which combines a signal
modelling network and an outlier detection network. The signal network learns the
parameters of our Gaussian output distribution as a function of its inputs for each
observation. Meanwhile the outlier network learns the probability of an observation
being an outlier as a function of site ID and time (based on the likelihood of the
observation having been generated by the Uniform distribution rather than the
Gaussian). Architecture extends from Kirkwood et al. (2022)

be recognised. Unlike more traditional geostatistical approaches, which might offer

the model pre-defined derivatives from terrain analysis as input features, our deep

learning approach allows these derivatives to be learned optimally for the task at

hand via trainable convolutional filtering of raw terrain elevation grids (Behrens

et al., 2018; Padarian, Minasny and McBratney, 2019; Wadoux, 2019; Kirkwood,

2020; Kirkwood et al., 2022).

For its location input (input B in Figure 6.3) our signal network receives

easting, northing, and elevation as spatial location information (all in metres), and

continuous time and time of day as temporal location information (in minutes). To

provide a cyclic representation of time of day to the network (to aid learning of the

diurnal cycle), we transform our minute-of-the-day variable into position on a circle

defined by the two dimensions sin(2πt/T ) and cos(2πt/T ) where t is the specific

minute of the day and T = 1440: the total number of minutes in a day. It is important

that our signal network is able to generalise well to unobserved locations, and so

over-fit must be avoided. In aid of this, and in line with the Bayesian interpretation
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Figure 6.4: Snapshot map of mean surface air temperature produced during
preliminary modelling by our signal network only (before the development out
of our mixture-model and outlier detection network). Erroneously high and low
temperature measurements contaminate the map with dark and bright spots
respectively, and are clearly a problem in need of being corrected, which our final
architecture (Figure 6.3) achieves. This map is lower resolution than our final
model outputs due to being part of the preliminary investigation phase.
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of our model — which we discuss in the next section — we run our signal network

with a dropout rate of 0.5 on all hidden layers (or spatial dropout in the case of

convolutional layers).

In contrast, generalisation is not a concern for our outlier network (Figure 6.3),

whose sole task is to model the probability that each training observation is an

outlier. To make this task as simple as possible, we provide the outlier network

directly with one-hot encoded site IDs, as well as continuous time, such that the

outlier network provides outlier probabilities as a linear function of site ID plus

a (site-tailored) non-linear function of continuous time (eq. 6.10) facilitated by

passing continuous time through a single hidden layer.

logit(θs,t) = foutliernetwork(xsite,time)≈ βSIT Es + fSIT Es(t) (6.10)

For full layer-by-layer details of our neural network architecture, we encourage

readers to view our code at https://github.com/charliekirkwood/deepoutli

ers.

Note that if we use only the signal network and omit the outlier network and

mixture-model architecture (of Figure 6.3) then, as could be expected, the resultant

interpolations are contaminated by the outliers. See Figure 6.4 for an example of

what this looks like (and why we’d like to avoid it).

6.3.4 Bayesian inference

With the parameters and architecture of our model established, we would like

to use the Bayesian framework to learn a posterior distribution for all trainable

parameters given the data, D, on which we will train the model. The parameters

that control the probability distribution of temperature are θs,t , µs,t and σ2
s,t but these

are of course themselves functions of the weights within the entire neural network,

which we collectively refer to as w. By Bayes’ rule we can obtain this posterior

distribution over the weights given the data as
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p(w|D) =
p(D|w)p(w)

p(D)
(6.11)

So that p(w|D) is proportional to the likelihood of the data given the weights,

p(D|w), multiplied by our prior distribution over the weights, p(w). Assuming

independence of temperature values given θs,t , µs,t and σ2
s,t , the likelihood of our

mixture model is:

p(D|w) = ∏
s

∏
t

p(ys,t) (6.12)

where p(ys,t) is given in equation (6.1).

Here, we adopt a prior distribution for w by utilising Monte Carlo Dropout as

suggested by Gal and Ghahramani, 2016. The prior is defined by assuming that

a particular “fixed” weight β j in the network can be randomly “dropped out”, by

introducing a set of Bernoulli random variables B j ∼ Bern(π). An individual weight

w j is then defined as

w j = B jβ j (6.13)

so that w j = β with probability π and w j = 0 with probability 1− π. The fixed

weights β are learned by stochastic gradient descent during training, whereas

the dropout rate π is considered a hyper-parameter of the network and is fixed

a priori. Equation (6.13) means that the weights w j are probabilistic in nature so

that stochastic forward passes can be used in a Monte Carlo setting to provide an

approximate posterior distribution p(w|D) for w.

The particular setup assumes that π is fixed a priori, preferably by tuning it. It

is however possible that this is automatically estimated using ‘Concrete Dropout’

(Gal, Hron and Kendall, 2017), or by exploring the number of other approaches

to Bayesian inference in neural networks that have been proposed (e.g. MacKay,

1995; Graves, 2011; Neal, 2012; Heek and Kalchbrenner, 2019). At present,

Bayesian inference in deep neural networks, with their extreme dimensionality (a

modest 696 114 trainable parameters in our case), remains a challenge and an

ongoing topic of research.
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After obtaining the posterior distribution p(w|D) (the practicalities of which we

discuss in the next section), we are in a position to compute the posterior predictive

distribution for any point in space and time. To obtain robust predictions of the

phenomenon of interest, we can set θs,t = 1 (i.e. exclude the uniform distribution

component) and thus generate predictions exclusively from the ‘true’ Gaussian

distribution (6.2). Specifically, we can obtain samples from the posterior predictive

distribution of any ys,t (both observed and not):

p(ys,t |D) =
∫

w
psignal(ys,t |w)p(w|D)dw, (6.14)

6.3.5 Practical setup

We use Weather Observation Website surface air temperature observations from a

fourteen day period from 26/10/2020 to 09/11/2020 for this study. This period was

selected for containing interesting weather patterns (as evident even in the simple

time series of observations; Figure 6.2), including storm Aiden which passed over

on the UK on the 31st of October 2020. We randomly subsampled the observations

from this period to a single observation per site per hour (where available), which

provides 417141 observations in total. We then split this dataset by site ID into

10 folds of approximately equal unique number of unique sites (about 145 unique

sites per fold). We split our folds in this site-wise manner in order to assess the fit

of the model at sites unseen during training, and therefore to assess the ability of

the model to interpolate to new spatial locations throughout the period of observed

time.

We assigned data folds one to eight to be used for training, with fold nine

providing an evaluation set for hyper-parameter tuning, and fold ten providing

a held out test set for assessing the performance of the final trained model at

locations unseen by the model. Running on a single GPU workstation (with Nvidia

GTX 3070) our neural network trains at one epoch every 3 seconds, so that training

for 600 epochs takes about 30 minutes.
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6.4 Results and discussion

Figure 6.5: Time-series visualisation of our training dataset, coloured by posterior
probability that observations would more likely be generated by the uniform outlier
distribution rather than the Gaussian signal distribution (for the purposes of the
figure, probabilities are averaged by site in order to obtain a fixed line colour per
site). We proceed to make predictions using only the Gaussian output of our deep
mixture model, such that all predictions represent the true, clean temperature field
without spurious measurements.

Our approach has not required the manual labelling of outliers in the training

data, but we can see from the output of the model — specifically the parameter θ ,

which controls the mixing of the Gaussian and Uniform distributions — that obser-

vations that visually appear to be outliers have been assigned a high probability of

being outliers generated by the Uniform distribution (see for example Figure 6.5,

in which sites are coloured by the average predicted outlier probability of their

observations). On the basis of this qualitative assessment, we have confidence

that predictions generated by our neural network’s Gaussian output distribution are

a clean (outlier free) representation of the true surface air temperature - we also

find this to be evident in the clean look of maps generated by the model (using
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only the Gaussian distribution for prediction), which do not contain the localised

bright or dark spots that could be expected if the model had incorrectly fitted to

outlier observations. All subsequent reporting of results, and their discussion, is

made on the basis of using only the Gaussian distribution for prediction, so that all

predictions are ‘outlier-filtered’.

In terms of the quantitative performance of the model as assessed on held

out test data (from sites unseen by the model during training), we find that our

deep learning approach to spatio-temporal interpolation provides a good degree

of predictive skill in both a deterministic and probabilistic sense (Figure 6.7). In a

deterministic sense (Figure 6.7A), the mean of the predictive distribution provides

an R2 of 0.90 and a root mean square error (RMSE) of 1.15 degrees Celcius.

Probabilistically, our model achieves a continuous rank probability score of 0.6

(Figure 6.7B), and the predictive distribution has good calibration, with held out test

observations falling within the 95% prediction interval 92.7% of the time. We can

see from the quantile-quantile plot (Figure 6.7C) and prediction-interval coverage

plot (Figure 6.7D) that the probabilistic calibration of the predictive distribution

performs well across the range of predicted quantiles, although we do see a slight

under-dispersion in the tails (i.e. beyond a 90% prediction interval). This may be

attributable to limitations of our Monte Carlo dropout approach to approximate

Bayesian inference, in that our posterior distribution is fundamentally centred

about a single optimum, rather than composed of diverse samples from separate

local optima as in full Bayesian inference via MCMC sampling methods (or other

proposed approximations such as the ‘deep ensembles’ approach; Lakshminaray-

anan, Pritzel and Blundell, 2016) which may reduce the diversity and coverage

of the posterior. However, as we assess here on held-out test data, this under-

dispersion, if present, appears to be minimal and not overly concerning, especially

given that some of our test observations are outliers themselves, which means

that perfect calibration (using predictions from our Gaussian distribution alone)

cannot be expected.
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Overall the performance metrics indicate that our deep mixture density net-

work approach to outlier-filtered spatio-temporal interpolation is doing a good

job of providing accurate and trustworthy predictions of historic surface air tem-

peratures for locations in space which have not been observed. It provides a

statistical hindcast which is likely to be both computationally cheaper and better

calibrated than numerical hindcast alternatives. When run over a long duration,

our approach should also provide high quality probabilistic climatology estimates

at any unobserved location, which may be useful for planning purposes.

Turning to the maps produced by our model, we can see that our deep

learning approach produces detailed predictions which take account of surface

topography. For any snapshot in time, we can obtain a map of the predicted mean

(average value of µs,t ; Figure 6.8), the average aleatoric uncertainty (average value

of σ2
s,t ; Figure 6.9), the epistemic uncertainty of the mean (standard deviation of

the posterior distribution of µs,t ; Figure 6.10), and the total uncertainty (standard

deviation of the posterior predictive distribution; Figure 6.11). Maps of any desired

predictive quantiles, or other statistics of the posterior predictive distribution, can

also be produced. In all such maps we can see that our deep learning approach

produces predictions and predictive uncertainties that are highly spatially specific.

In combination with the high quality of probabilistic calibration achieved (e.g.

Figure 6.7 this indicates that our model is producing a predictive distribution that

is both sharp and well-calibrated - the ideals for probabilistic predictions and

forecasts as proposed by Gneiting, Balabdaoui and Raftery (2007).

Additionally, we can sample from the posterior distribution to generate simu-

lated realisations of surface air temperature fields for any snapshot of time within

the observed period. We can generate these both with the Gaussian output

distribution active in order to achieve samples of the predictive distribution itself

(including aleatoric uncertainty; Figure 6.12), or sample from only the posterior

distribution of the mean (without independent noise from the Gaussian) in order to

view alternative hypotheses for the mean temperature field at a given time (i.e. the
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epistemic uncertainty; Figure 6.13). These simulated realisations help to convey

the uncertainty in the model, by offering different explanations for plausible data

generating processes.

To visualise the output of the model through time, rather than purely in space,

we can compare samples from the model (again with and without aleatoric un-

certainty included) to observations recorded at a held out test site as timeseries

(Figure 6.14). As is indicated by the overall model fit and calibration metrics

(Figure 6.7, the predictive performance for held out test sites is good - we can

see in the timeseries of samples from the model that samples of the mean track

the observations quite closely (but do not track noise in the observations) mean-

while, samples from the posterior predictive distribution, with aleatoric uncertainty

included, do a good job of covering the distribution of observations, including

noise. Both epistemic and aleatoric uncertainty vary through time (and space,

as we saw in Figure 6.9 and Figure 6.10). Animations of the model output (per-

haps the best way to view spatio-temporal model output) are available to view at

https://github.com/charliekirkwood/animations.

The role of the model we present here, as a spatio-temporal interpolator of

weather data, is similar to the role that would traditionally be filled by numerical

hindcasting (e.g. Palmer et al., 2004). This is where the same physics-based

numerical weather prediction models used for forecasting are fitted retrospectively

to historic weather observations, to provide a ‘best fit’ of historic weather conditions.

In order to provide an indication of uncertainty, ensemble hindcasts can also be

run, but it is generally the case that numerical weather prediction ensembles are

underdispersive in relation to observations (e.g. Gneiting et al., 2005). By providing

well-calibrated spatio-temporal interpolations, our deep learning approach may

have the potential to provide a probabilistically-superior (and computationally

cheaper) alternative to numerical hindcasting, despite our model having no notion

of the physical equations that govern atmospheric dynamics (i.e. Navier-Stokes;

Kimura, 2002). The level of detail of spatial structure captured by the model will be
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limited by a combination of the resolution of auxiliary information (gridded terrain

elevation data in this case) and the spatial density of observations, but the model

remains free to provide predictions for any point in space. The resolution, or

spatial precision, of our proposed approach can naturally improve as the density

of observations, and the resolution of auxiliary information, increases.

Our deep spatio-temporal model could also have a role to play in forecast ana-

lysis; the problem of determining the best initial conditions for numerical weather

prediction (Lorenc, 1986) and of representing the uncertainty in these initial con-

ditions (Bauer, Thorpe and Brunet, 2015b) so that ensemble members may be

initialised from them (e.g., Figure 6.6). However, whereas analyses for numerical

Figure 6.6: Schematic diagram of 36-h ensemble forecasts used to estimate
the probability of precipitation over the UK, which shows the role of the analysis
in estimating initial condition uncertainty from which the numerical ensemble
members are initialised. Taken from Bauer, Thorpe and Brunet (2015b) where it
was provided by K. Mylne of the UK Met Office.

weather prediction also incorporate information from the numerical model itself

(both in terms of the model’s structure; with parameters being estimated on a

discrete grid and representing known physics, and also using recent forecasts as a

source of prior information for the current state in data assimilation e.g. Bengtsson

et al. (1982) and Benjamin et al. (2019)) our spatio-temporal deep neural network

is non-physical and could instead be viewed as an evolution of traditional kriging

approaches for analysis of weather observations (Lorenc, 1986) but which can
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more flexibly incorporate information from terrain, as well as filter out outliers

(in the case of our mixture model). Further work will be necessary to establish

whether our approach can bring improvements to existing methods of analysis.

It is interesting to observe the difference between samples of our model’s

posterior distribution both with and without aleatoric uncertainty — the independent

noise provided by the Gaussian output distribution — included (e.g. by comparing

the top and bottom of Figure 6.14, or comparing Figure 6.12 with Figure 6.13).

As can be seen in Figure 6.14, the independent noise of our Gaussian output

distribution is required in order to provide well-calibrated coverage in relation

to observations (at least in our setup, in which independent noise is a part of

the model). Without this aleatoric uncertainty included, the distribution over our

plausible mean functions would be underdispersive in relation to the observations.

This has parallels in the setup of numerical weather prediction and hindcasting

(e.g. Rawlins et al., 2007; Rougier and Beven, 2013; Bauer, Thorpe and Brunet,

2015b), in which ensembles tend to be underdispersive in part for the same reason:

that while these numerical ensemble members do capture epistemic uncertainty

in initial conditions Rougier, 2013 and perhaps across model parameters Leut-

becher and Palmer, 2008, they tend not to model aleatoric uncertainty. In order to

achieve well-calibrated numerical weather forecasts, statistical-post processing

must therefore be used, such as Bayesian model averaging in which individual

ensemble members are ‘dressed’ with suitably scaled Gaussian noise (Raftery

et al., 2005), thus effectively transforming the underdispersed ensemble at the

bottom of Figure 6.14 to the well-calibrated ensemble at the top of Figure 6.14. It is

perhaps another strength of our Bayesian deep learning approach that ‘ensemble’

predictions of both forms (with and without aleatoric uncertainty) can be generated

equally easily by sampling from the same model, and that our full posterior pre-

dictive distribution (which includes aleatoric uncertainty) is innately well-calibrated

and requires no subsequent post-processing.
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A B

C D

Figure 6.7: A, Deterministic comparison of observed and predicted values of
surface air temperature, taking the mean of the predictive distribution as the pre-
diction. Note some outlier observations are present in the test set. B, Probabilistic
comparison of observed and predicted distributions of surface air temperature,
taking 50 samples from the predictive distribution for each observation. C, Q-Q
plot and D, prediction interval coverage plot to check the calibration of our model’s
predictive distribution against test observations. All use data from the held out test
set (n = 41836), taken from sites kept unseen until after hyper-parameter tuning
and model training.
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Figure 6.8: Mean surface air temperature map for a single snapshot in time, as
predicted by our deep neural network. The use of convolutional layers in our neural
network architecture allows our predictions to be informed by patterns relating air
temperature to terrain features, and in doing so produce detailed spatio-temporal
fields.
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Figure 6.9: Aleatoric uncertainty (mean standard deviation of the Gaussian output
distribution, °C) at the same snapshot in time.
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Figure 6.10: Epistemic uncertainty (standard deviation of the mean, °C) at the
same snapshot in time.
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Figure 6.11: Total uncertainty (standard deviation, °C) of the predictive distribution
at the same snapshot in time.
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Figure 6.12: Six samples, or simulated realisations, from the posterior predictive
distribution at 19:00 on 30/10/2020. As a collective (in the limit of infinite samples)
such samples represent the total uncertainty in our spatio-temporal interpolation
of surface air temperatures.
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Figure 6.13: Six samples from the posterior distribution of the mean at 19:00
on 30/10/2020. As a collective (in the limit of infinite samples) such samples
represent the epistemic uncertainty in our spatio-temporal interpolation of surface
air temperatures.
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Figure 6.14: Time series of samples generated from the trained model, showing
total uncertainty (top, epistemic and aleatoric uncertainty), and uncertainty in
just the predicted mean (bottom, epistemic uncertainty only) for predictions on a
held-out test site.

6.5 Conclusions

We have presented a deep learning approach that provides well-calibrated outlier-

corrected spatio-temporal interpolation of crowd-sourced weather observations.

Our deep mixture density network approach to outlier classification unifies outlier

detection and correction as part of a same single probabilistic data modelling

process, which provides a more streamlined modelling and model-checking work-

flow compared to alternative two stage techniques (in which outlier detection and

filtering is performed separately prior to data modelling).

Our unified approach allows us to, through a single probabilistic data model

192



(our Bayesian deep neural network), generate high fidelity spatio-temporal predic-

tions from historic crowd-sourced weather observations. The ultimate functionality

is therefore similar to that of numerical hindcasting or reanalysis, but our ap-

proach is likely to be computationally cheaper and our predictions are innately

well-calibrated, requiring no post-processing. By providing a full predictive dis-

tribution, the uncertainty of predictions is fully quantified, therefore making our

output useful to decision makers. The predictive uncertainty can also be viewed

and mapped as its two separate components: aleatoric uncertainty, or irreducible

uncertainty in the data, and epistemic uncertainty, or reducible uncertainty about

our state of knowledge. In addition our predictions can be provided at any point in

space and time, therefore catering for hyper-local scales, and so may be viewed

as satisfying the requirements of a ‘models of everywhere’ approach to harnessing

Internet of Things (IOT) type weather observations. On the basis of all these bene-

fits we therefore consider our approach to have potentially powerful applications for

quality control, data assimilation and climatological studies that maximise the utility

of IOT data for environmental modelling applications in an increasingly data-rich

world.

Compared to ‘standard’ Bayesian hierarchical modelling using either Marcov

Chain Monte Carlo (MCMC) or Integrated Nested Laplace Approximation (INLA)

methods of inference (Blangiardo et al., 2013; Bakar and Sahu, 2015), our deep

neural network approach (using Monte Carlo dropout for inference) brings the

potential to benefit from computer vision by learning new features through which

the target variable relates to the landscape. The Monte Carlo dropout approach is

also very computationally efficient and scalable, and thus suitable for modelling

very large datasets. On the other hand, ‘standard’ Bayesian Hierarchical Modelling

provides a precise framework in which to specify prior beliefs mathematically (as

opposed to the more ‘hand-wavy’ approach of ‘specifiying’ prior beliefs in the form

of neural network architectures). As a result, Bayesian hierarchical models are

perhaps in general the more sensible option where the importance of prior belief

is particularly important; i.e., for modelling problems with a relatively small number
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of observations. As the number of observations increases however, the exactness

with which we specify our prior beliefs, and of our Bayesian inference methods, be-

comes arguably less important, and methods that are suited to learning potentially

new relationships from very large datasets become increasingly sensible. Our

deep Bayesian spatio-temporal model occupies a position closer to this ‘data rich,

prior knowledge poor’ end of the spectrum. It is also worth noting that even for

systems that we do believe we understand apriori - such as atmospheric dynamics

- deep learning approaches are beginning to be demonstrated which do outperform

our existing numerical weather prediction systems (e.g., Bi et al., 2022) which

provides some evidence that the importance of exactly specifying our prior beliefs

(which may themselves be incorrect, either directly or due to a computational need

to make approximations) is perhaps diminishing as the amount of available data

increases.

6.6 Code and data

The code to reproduce this study is available at https://github.com/charlieki

rkwood/wowpaper and includes functions to download NASA’s SRTM elevation

data via the raster package in R. Data from the Met Office’s Weather Observation

Website can be downloaded from https://wow.metoffice.gov.uk/

Animations of the deep mixture density network’s spatio-temporal interpola-

tions are also available as .mp4 files in the repository https://github.com/charl

iekirkwood/wowpaper
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Chapter 7

Geological mapping in the age of
artificial intelligence

While weather forecasting has been a mathematical practice since the first half
of the 20th century, modern geological mapping practice typically continues to
rely on mental modelling and hand-drawing. In many ways the two disciplines
are ‘cousins’ in that both aim to provide information about the current (and
future) state of their respective spheres; the atmosphere and the lithosphere.

The fundamental advantages of probabilistic modelling apply equally to both
disciplines: probabilistic predictions and forecasts allow us to make decisions
which account for uncertainty and therefore (hopefully) avoid losses due to
unforeseen occurrences. On the surface it might seem that weather forecasts
have higher uncertainty, but this is dependent on their lead time: while our
uncertainty about the future state of the atmosphere increases with lead time,
we can actually be quite certain about the current state of the atmosphere due
to the comprehensive range of sensing technologies by which we observe it
(i.e., satellites, radar, weather stations). On the other hand, our knowledge
of even the current state of the lithosphere is quite uncertain, due to the
comparative difficulty of making lithological observations, but also due to the
comparative simplicity of hand-drawn geological mapping practices relative to
atmospheric modelling practices.

If artificial intelligence has the potential to improve probabilistic weather fore-
casting — as the evidence increasingly demonstrates — then even more-so it
has the potential to not just improve, but to revolutionise geological mapping,
which has not undergone the same ‘quiet revolution’ in Numerical Weather
Prediction that weather forecasting has benefited from over the decades.
Instead, when it comes to geological mapping the accepted ‘benchmark’
remains mental modelling and hand-drawn mapping practice.

This chapter is an exploration of the viability of the geostatistical Bayesian
deep learning methodology conceived in chapters 4, 5, and 6 to tackle the task
of geological mapping. It is intentionally written in accessible language, and
has appeared in Geoscientist magazine — the magazine of the Geological
Society of London — as a feature article.
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7.1 Introduction

Our technology has progressed immensely in two centuries. It was back in 1804

that the world’s first steam locomotive, invented by Cornish engineer Richard

Trevithick, hauled 10 tonnes of iron ore and 70 passengers on a nine-mile journey

from a Merthyr Tydfil ironworks to Abercynon in the valleys of South Wales. This

first steam train barely exceeded walking speed, but by demonstrating machinery

that could bypass the relevant limitations of horses, Trevithick revolutionised our

approach to transport (though of course, the changes did not all happen overnight).

It was during this time of industrial revolution, interspersed with riots by

luddites who understandably sought a fairer share of the benefits of new machinery,

that William Smith published the first geological map of Britain in 1815. This

was followed in 1820 by the map of George Bellas Greenough, who was the

president of the Geological Society of London at the time. These two pioneers had

disagreements in their ideas for the best mapping approach: Smith used fossils

to recognise and map different strata, while Greenough is said to have favoured

‘mineralogical views.’ Such is the nature of science. Despite their considerable

age, the maps of both Smith (Figure 7.1) and Greenough (Figure 7.2) still look

entirely familiar to us today – bodies of similar rock are classified as distinct units

and mapped as coloured polygons (or as three-dimensional volumes using cross

sections). Is this all that geological mapping ever needed to be?

7.1.1 Limitations of the traditional approach

It could be said that the production of a general-purpose geological map, with

the aim to provide an overall summary of geological information rather than to

support a specific task in particular (such as planning for construction, mineral

extraction, or geohazard mitigation) is as much an artistic endeavour as a scientific

one, with no right or wrong answer. Smith’s map may emphasise biostratigraphy,

while Greenough’s may highlight mineralogy, but without a particular purpose for

the map in mind, can we really say that one is better than the other?
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Figure 7.1: William Smith’s original geological map of Britain published in 1815.
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Figure 7.2: George Bellas Greenough’s geological map of Britain published in
1820.
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Ideally, we would assess the quality of any map by how closely it matches

reality (the same philosophy is now behind the development of ‘digital twins’ in

many fields). However, in the case of traditional ‘classification first’ geological

maps this assessment is not easy to make. That is because, while in reality

geological properties vary continuously through space, classified geological maps

instead make the assumption that geological properties will be fixed uniformly

within the boundaries of each mapped lithological unit – their classes cannot

represent internal spatial variability. This means that when it comes to providing

geological information for any point in space, the classified geological map can

only offer the overall attributes of the unit in which the point sits as a summary,

rather than provide precise location specific information.

The geological classification procedure therefore introduces a high degree

of spatial imprecision to our maps (it does not matter where within a unit our

point of interest lies), as well as reduces the fidelity with which our maps can

represent geological properties by limiting the number of possible values that any

geological property can take (to the number of unique classes on the map). For

these reasons, the traditional ‘classification first’ geological mapping approach

muddies the water when it comes to comparing our maps with reality. This is a

problem because comparison with reality is the best guide we have in our efforts

to improve our knowledge and understanding of the Earth.

In addition to these difficulties with providing high-fidelity location-specific

information, another limitation of traditional classified geological maps is that they

do not communicate uncertainty. A geological map provides predictions of the

geology we can expect to find at all locations across the map. However, not

all locations can be observed during the mapping process, and this means that

the practice of geological mapping is an exercise in ‘filling in the gaps’ between

observations, which may be few and far between. Without infinite observations we

will never be certain about the true form of the geology that we are mapping. In light

of this inherent and unavoidable uncertainty, the logical solution is to work within a
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Figure 7.3: Conceptual comparison of ‘classification first’ mapping (top) and
‘properties first’ mapping using Bayesian AI (bottom). The black line shows
the true value of some geological property, y, through space, x. Black crosses
are the observations of this property, with some error, which the two mapping
approaches utilise. Note that regardless of their number, or the exact position of
their boundaries, a single set of discrete classes fundamentally fails to represent
continuous geological properties, and cannot convey uncertainty. These issues
only become more severe in the real-world mapping case of attempting to represent
multiple properties at once using the same class boundaries. Conversely, mapping
‘properties first’ using Bayesian AI methods brings the potential to obtain skilful
probabilistic maps of any geological properties of interest.
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probabilistic framework and to use Bayesian reasoning to formally acknowledge

that “the true map could be this, or it could be that” – and so on ad infinitum –

rather than to falsely claim that one single map is definitely ‘the truth’, which is the

traditional geological mapping approach. We will discuss more on this later.

These criticisms of the traditional ‘classification first’ approach to geological

mapping should not take away from the magnitude of William Smith’s achievement

in publishing the first geological map of Britain back in 1815, a full six decades

ahead of the invention of the lightbulb (and even ahead of the invention of the

first lighter and friction match in 1823 and 1826 respectively). Back then it was

reasonable for William Smith to make the simplifying assumption that the variability

within different units of rock could largely be ignored during the mapping process,

because this made his goal of mapping Britain achievable using the technology

of the time (i.e. travelling by horse and drawing on paper). Ignoring within-unit

variability meant that ‘all’ William Smith had to do was delineate boundaries

between lithological units – although in fact he did also use gradational shading to

indicate some within-unit variability, a capability that has unfortunately been lost in

the modern digitisation of classified geological maps.

We also cannot blame William Smith for failing to convey the uncertainty

associated with his map. He was limited to the medium of paper and had no

access to computational power beyond his own brain. By some coincidence

however, it was in 1814, just a year before the publication of Smith’s map, that

French polymath Pierre Simon Laplace published his Philosophical Essay on

Probabilities, which presents what we now consider to be a Bayesian approach

of using probability to deal with uncertainty (after work following Thomas Bayes

in the 1700s). The Bayesian approach provides the mathematical foundations for

quantifying uncertainty – namely Bayes theorem – which remains a cornerstone

of modern AI.

Today, with our electricity, trains, cars, planes, computers, satellites, and

MRNA vaccines, our technology has progressed enormously. This is fortunate
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for us, as the issues we face in the 21st century undoubtedly have higher stakes

than ever – we now know how interconnected the world is, from lithosphere to

atmosphere to cryosphere to biosphere, and how our own imperfect actions are

causing a climate crisis. If there was ever a time that humanity would most

benefit from having precise high-fidelity knowledge of the Earth’s crust, with

uncertainties quantified, that time is surely now. And yet, the traditional two-

century old ‘classification first’ approach to geological mapping seems to remain

accepted practice. William Smith himself, being the innovator that he was, would

likely question why we have not moved on, given all our technological advantages

today.

7.1.2 Transition to geological properties mapping

If there’s just one change we should be making to our geological mapping pro-

cedures, it’s to transition from a ‘classification first’ approach to a ‘properties first’

approach. From this many improvements can naturally follow. In a ‘properties

first’ approach we would focus on mapping the multitude of properties on which

our classifications have traditionally been based (e.g. mineralogy, texture, age,

and more), and only then (if necessary) apply a classification scheme afterwards,

which can be tailored specifically for the task at hand (e.g., Harff and Davis, 1990).

The key benefit of adopting a ‘properties first’ approach to mapping is that

this allows us to directly assess the quality of our maps (including uncertainty

quantification) against observations, without the imprecision of a classification

scheme getting in the way. The ‘properties first’ approach also enables the

option of providing task-specific geological information directly as continuous non-

classified output, thus avoiding the problem of losing information to discretisation

(the process of converting naturally continuous properties into discrete classes)

which has always been the case for traditional classified geological maps (Fig 2).

As you may well be thinking, this ‘properties first’ approach is not necessarily

a new idea. For example the mineral exploration industry has been operating
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‘properties first’ for decades due to the fact that it is much easier to find metal de-

posits by observing and mapping the concentrations of those metals directly, rather

than trying to infer their distributions on the basis of classified geological maps

(although in reality, both approaches are used side by side in order to gain as much

task-specific information as possible – but is there a better way?). Work published

by South African mining engineer Danie Krige in 1951 laid the foundations for the

now ubiquitous geostatistical approach to spatial interpolation known as kriging,

the mathematics of which were formalised by French mathematician Georges

Matheron in the 1960s. Krige and Matheron could therefore be considered the

original masterminds of the properties first mapping approach. Crucially their work

allowed geological properties to be mapped probabilistically for the first time, but

not without making some perhaps overly-restrictive simplifying assumptions.

By the way, it is worth us acknowledging that mapping geological properties by

hand is not practically feasible, if for no other reason than that the geologist would

have to be an incredibly good artist to map any continuous geological property

using continuous colour (or pencil) shading with any kind of accuracy. This then is

another reason for the historic dominance of the ‘classification first’ approach to

geological mapping – when working by hand we in general find it much easier to

draw lines than to shade with continuous gradation, and so the origins of geological

mapping as a hand-drawn practice favoured the delineation of distinct classified

units using lines. However, statistical interpolation methods such as kriging and

more complex artificial intelligence approaches allow us to bypass these artistic

limitations when producing maps of continuous geological properties.

Why is it then, that the ‘properties first’ approach has not already taken over as

the standard approach to geological mapping? I believe the reason is that we have

been limited by the simplicity of our geostatistical models, or more specifically by

the simplifying assumptions that technological limitations have so far been forcing

us to make. Again, this is not a criticism of Krige or of Matheron, for they, like

Smith, were pioneers of revolutionary ideas which remain foundational to this day
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Figure 7.4: Architecture of the deep neural network that generates the RGB (K, Fe,
Ca as centred-log ratios) AI map shown in this chapter. The architecture combines
parallel chains of information processing in order to learn both local contextual
features from gridded terrain elevation data (Input A) and global position features
(Input B), as well as the interactions between these two feature types. The ‘thought
processes’ involved are not unlike those of a field geologist. After Kirkwood et al.,
2022.

(as an aside, let us try and make it the case that the future pioneers of geoscience

can be women just as easily as men).

Ordinary kriging relies on a key assumption that the autocorrelation proper-

ties of the observations (how the similarity between observations relates to the

distances between them) will not change through space. It usually also assumes

that the autocorrelation properties will be the same in all directions. While these

assumptions may be acceptable when working on the scale of a single mine,

when mapping at regional or national scales any field geologist would agree that

geological structure is important, and so maps produced by kriging, which fail to

capture this structure, seem unconvincing to us. This is surely a major reason

for the fact that maps produced using geostatistical modelling have not already

won over the geological mapping community. Instead, ‘classification first’ maps

have retained the limelight because, for all their flaws, their hand drawn linework

does allow geological structure to be conveyed. But can we marry the strengths of

the two? In order for the ‘properties first’ approach to geological mapping to be-

come widely adopted, we will require a new generation of geostatistical modelling

methods which do away with the need to make assumptions that are geologically

unbelievable – in short, this is where artificial intelligence comes in.

204



So far, in my experience, geologists have been able to criticise geostatisticians

when they make unconvincing assumptions about the stationarity of the autocor-

relation of geological properties through space (clearly there is deeper structure

at play, which ordinary kriging cannot capture). Meanwhile, geostatisticians have

been able to criticise geologists when they make unconvincing assumptions about

the uniformity of geological properties within each mapped unit (clearly there is

spatial variability within lithological units, which the traditional ‘classification first’

mapping approach cannot capture). Real progress will be made when we can

collectively agree on – or at least not be diametrically opposed over – a set of

foundational assumptions on which our mapping procedures should operate. Do-

ing so will allow us, as a community, to harness the power of artificial intelligence

to generate high quality maps that not only closely match reality but also appear

convincing to us as geoscientists. Crucially, using computational approaches

also allows us to quantify uncertainties in a way that traditional mapping methods

simply cannot compete with, thus providing information that is more transparent

and trustworthy to users.

Figure 7.5: Monitoring the negative log-likelihood of the Bayesian neural network
as it trains by stochastic gradient descent.

7.2 Artificial intelligence for geological mapping

While the mathematical foundations of how to learn from data can be traced

back centuries (to at least Laplace and Bayes in the 1700s) it is only now that
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our computers are becoming powerful enough to realise the wider potential of

what can be achieved – hence the current revolution in data science and artificial

intelligence.

Most prominently, the last ten years has seen the breakthrough of ‘deep

learning’ – an approach to modelling that uses neural networks with multiple

stacked layers to hierarchically learn the salient features of a problem. The classic

example is the task of recognising a cat in an image – the combination of features

such as whiskers and pointy ears would be highly indicative of the presence of a

cat, but previously the recognition of these features relied on manually constructed

filters. It is difficult to precisely describe to a computer what exactly a cat’s ears

look like, and so these manually constructed filters tended not to be very effective.

The breakthrough moment for deep learning came just ten years ago in 2012,

when Ukrainian computer scientist Alex Krizhevsky and colleagues used deep

neural networks trained on graphical processing units (GPUs) to beat all existing

approaches for classifying images. This result has triggered a revolution in artificial

intelligence not unlike the revolution in transport triggered by Richard Trevithick’s

steam locomotive – these are moments that change the course of history.

The deep learning revolution has been made possible by a combination of

advances in computer hardware and efficient algorithms. In simple terms, the thing

that is new is the ability to perform optimisation in hugely high dimensional spaces,

and in relation to enormous datasets – and these abilities will only continue to

improve. Deep learning is perhaps the most effective way to capitalise on these

computational advancements, hence its rise to popularity over the last decade. To

appreciate the implications, let’s look within the context of geological mapping.

As previously discussed, transitioning from a ‘classification first’ to a ‘prop-

erties first’ approach to geological mapping enables direct comparison between

our maps and reality, unmuddied by the classification process itself. This allows

us to define precise measures of the quality of our maps, and to use these to

guide their improvement. Perhaps the best way to assess the quality of a map
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is to use the principle of likelihood. This is a statistical concept, which refers to

the probability that the scenario depicted by a given model (or map in this case)

would generate the observations that we see. You could say that if a map is a good

match to reality, then the likelihood will be high, because there is a high chance of

the geological scenario depicted by the map generating the observations we see

in the real world. In classical statistics it is common to take a ‘maximum likelihood’

approach to model fitting – this means using optimisation to pinpoint the values of

model parameters that are most likely to have generated the observations we see.

I would argue that as mapping geologists we instinctively aim to do the same thing,

so that the single geological map (or 3D model) that we produce best explains

what we observe in the field. As mapping geologists we may therefore instinctively

be likelihood maximisers, even though the ‘parameters’ with which we are working

are not components of a digital model, but ideas within a mental model in our own

heads – still we are aiming to optimise our geological interpretation in relation to

our observations.

The issue of what parameters our models should have (in order that they

produce geological maps, in this case) is a difficult one to address. Going back

to the cat recognition example, we may expect an effective model to require at

least one parameter representing ‘cat ear ness’, but how values of that parameter

should relate to the raw pixel values of the input image is almost impossible for us

to describe in a precise and accurate way. Likewise for geological mapping, we can

expect that our models will require parameters representing the kinds of features

we look for in the field as geologists, such as breaks of slope and differences in

terrain textures and vegetation to provide clues about the underlying bedrock, as

well as contextual associations with surrounding features at a range of scales, but

again defining the precise nature of these relationships is a significant challenge.

Deep learning offers a solution to this struggle of trying to define what para-

meters our models should have, and how they should interact. In its simplest

form the deep learning solution is to construct a large multi-layered system of
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Figure 7.6: (Left of diagonal) AI-generated ‘properties first’ geological map, which
provides probabilistic predictions of geological properties through space. The prop-
erties mapped here are centred log-ratios of potassium (K; red), iron (Fe; green),
and calcium (Ca; blue) concentrations as observed in stream sediments. (Right
of diagonal) A traditional ‘classification first’ geological map whereby rock units
are manually classified according to convention. Source: The British Geological
Survey’s Geology of Britain Viewer (http://mapapps.bgs.ac.uk/geologyofbritain3d/).
Contains British Geological Survey materials © UKRI 2022
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Figure 7.7: A zoomed in section of the AI generated geochemical map, to show
finer detail
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interconnected parameters – an artificial neural network – and use optimisation to

find the values of these parameters which produce the output we require, which

in this case may be to produce a geological map with the maximum likelihood of

having generated our observations. In concept, this training process (Figure 7.5) is

not incomparable to the process of training a human geologist with the necessary

skills to produce good geological maps.

Crucially, the more prior knowledge a geologist has, the better job they are

likely to do when mapping a new area. The same applies to artificial intelligence –

we can incorporate our geological wisdom into the design of AI mapping systems

by structuring them such that they are equipped to learn the types of relationships

that we believe are important (Figure 7.4, Figure 7.6, Figure 7.7). As such, while

deep learning can be conducted ‘mindlessly’, the best results come from skilful

incorporation of prior knowledge into the system. Therefore, a transition to AI

mapping does not mean a transition away from the importance of geological

expertise. Instead it is an opportunity for us to collate our collective expertise

inside the digital domain.

Viewed in the parameter space of our models, the process of maximising

the likelihood is quite literally like climbing a mountain of probability – somewhere

there exists a summit whose coordinates are the exact values of parameters which

correspond to a model (or map in our case) which is most likely to have generated

the observations we see. However, as previously mentioned, if we don’t have

infinite geological observations there will always be room for multiple possible

geological interpretations because of the uncertainty about what is going on in the

gaps between our observations. Therefore, the act of producing only a single best-

fit geological map (the maximum likelihood approach) is inherently overconfident –

we are putting all our eggs into one basket despite logic dictating that this basket

is just one of many possibilities. It is easy to see how simply using a single ‘best’

map for important decision making can therefore lead to catastrophic outcomes,

because by doing so we are blind to the unavoidable uncertainties involved in the
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production of the map, which may well be large enough to derail our projects in

the real world.

The challenge of dealing with uncertainty is perhaps another reason why

the ‘classification first’ geological map has endured so long – without the proper

systems in place to model uncertainty, it is easier and ‘safer’ to simply avoid trying

to produce detailed maps at all. In the extreme, a single class map that simply

labels everything ‘rock’ will never be wrong. However, it will clearly also never

be useful – instead we need our predictions to be as specific as possible while

remaining honest about uncertainty.

So, how can we deal with uncertainty? We need to shift our goal away from

producing a single best geological map (the maximum likelihood approach) and

instead aim to produce all of the maps which are possible given the data that

we have observed. This is the Bayesian approach, and while it might sound like

pie in the sky, our technology is reaching the point that this is now achievable

even for extremely complex models like those that geological mapping requires. If

maximising the likelihood was like climbing a mountain of probability in parameter

space, Bayesian modelling instead requires exploring the entire mountain, or

range of mountains, in order to understand the shape of this probability landscape.

By modelling all possible maps, we can think of simulating a digital flipbook

– infinitely long – where each page shows a realisation of a different possible

geological map. As a collective, the possible maps describe a distribution over

the possible geological scenarios that could have generated the observations we

see. By collecting more observations – perhaps specifically targeting the areas

of greatest uncertainty – we can increase our knowledge and reduce the spread

between possible geological scenarios, particularly in the immediate vicinity of the

observations themselves.

This is all extremely useful, because it means we can plan our activities and

policies around probabilities rather than potentially incorrect absolutes, and there-

fore optimise the outcomes of our geology-related endeavours (as well as optimise
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the collection of new data). Of course, probabilities need to be well calibrated

against reality in order to be useful, but this is all part of the workflow of developing

AI systems (Figure 7.8). Interestingly, much of the work in assessing the skill of

probabilistic predictions has been developed in the context of weather forecasting,

which is in many ways the spatio-temporal cousin of geological mapping, and also

had its early roots in hand drawn maps.

Somewhat ironically – because it’s only seen as a training exercise – the

closest thing we have to a Bayesian approach in the world of traditional (non

computational) geological mapping practice is ‘the undergraduate mapping trip’,

on which a cohort of student geologists are each tasked with producing their

own map of the same study area. The result is a collection, or ensemble, of

possible geological maps. This ensemble conveys uncertainty (“it could be this,

or it could be that”) better than any single map could, which is the same reason

that weather forecasters have been using ensemble models for about the last 30

years. However, in the case of the undergraduate mapping trip we may question

the overall skill of the resultant ensemble on the grounds that it has been produced

by inexperienced geologists, whose individual interpretations may not always be

sensible. But imagine if instead the ensemble of maps was produced by infinitely

many world-leading geological mapping experts – in essence this is what artificial

intelligence has the potential to provide us with, if we design it well.

7.3 Where the future leads

There is really no way to go about achieving Bayesian geological mapping in

a rigorous way without using powerful computers – and so we must port our

mapping procedures into the digital domain, and that doesn’t mean drawing maps

and models by hand on a computer, it means designing machine learning systems

that can themselves conduct the task of geological modelling and mapping. Not

only will this allow us to produce geological models and maps at new levels of

fidelity, and with fully quantified uncertainties, but in the process we would be
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Figure 7.8: Two checks of the quality of the AI map facing the title page, both are
made against held-out test observations not seen during the modelling process.
Left scatter plot of observed and predicted element concentrations (taking the
mean of the AI’s predictive distribution – which is what the map shows – as a
point prediction). High R2 values show good fit between the map and unobserved
locations. Right quantile-quantile plot assessing the probabilistic calibration of
the AI’s predictive distribution against observed reality. Calibration is near-perfect,
suggesting that as-yet unseen element concentrations will be observed with the
same frequencies that the AI’s predictive distribution implies.

‘laying out on the table’ the necessary intellectual machinery required to produce

geological maps. Technologically, this will essentially require utilising and further

developing modern geostatistical and structural geological methodologies (e.g.

Sahu, 2022; Lindsay et al., 2012; Varga and Wellmann, 2016; Wellmann et al.,

2018; Hillier et al., 2021; Kirkwood et al., 2022) to incorporate prior knowledge and

geological data into geologically plausible models with quantified uncertainties.

By incorporating our geological knowledge into the design of geological learn-

ing machines, we would be setting our expertise free from the closed system of

our own minds and bringing it out into the open where it can be more effectively

utilised. The formula one cars of today are massively more sophisticated (faster,

safer, better) compared to their counterparts from 100 years ago. This progress

would never have occurred if the idea of a formula one car had remained hidden in

the minds of racing enthusiasts rather than turned into real-life machinery whose

design could be iterated over and improved upon. Likewise, our current geological

maps are the products of thought processes ‘hidden’ in the minds of geologists. By
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adopting artificial intelligence approaches to mapping, we can bring our collective

mapping expertise out onto the workbench where it can be iterated over and

improved upon in a collaborative and transparent way.

It is difficult to predict just how drastic the progress could be if we – the

geoscience community – adopt artificial intelligence as an integral part of geological

mapping. It seems likely that this transition could be as significant as the transition

from horse-drawn wagons to steam locomotives back in the early 1800s. Back

then, once we first adopted machine-powered transport, it took only 150 years to

go all the way from steam trains to bullet trains and space rockets, with cars and

aeroplanes emerging earlier within the first 100 years. What will the equivalent

progress in AI powered geological mapping look like? The specifics remain to be

seen, but we can be sure that developing AI to improve our ability to distil and

convey geological information will benefit humanity, particularly as we face the

pressing challenges of the climate crisis. Now more than ever we need to be in

tune with our planet, and that means going beyond the opaque polygons of our

traditional mapping approaches.
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Chapter 8

Summary and Conclusion

This thesis has presented and developed some viable approaches for the applica-

tion of machine learning methods for probabilistic modelling of the environment.

Building on the reasoning and history behind why we should strive to develop

and improve our probabilistic models of the environment (Chapter 1), and a back-

ground of research in statistical modelling and post-processing in meteorology

and geology (Chapter 2, and individual chapter introductions), we have seen how

even a relatively simple regression-tree based machine learning system for site-

specific weather forecast post-processing (Chapter 3) can improve the calibration

of Numerical Weather Prediction ensembles, and also accommodate predictions

from pre-calibrated probabilistic forecasts, the likes of which future AI weather

forecasting systems are likely to generate.

From this site-specific weather forecast post-processing illustration (Chapter

3), we have expanded the problem space to include spatial (Chapters 4, 5) and

spatio-temporal domains (Chapter 6) and have developed a deep neural network

architecture that combines computer vision capabilities with geostatistical traits in

order to provide ‘intelligent’ spatial and spatio-temporal interpolation that automat-

ically utilises information contained within auxiliary datasets. We have shown that

our deep learning approach is capable of providing well-calibrated predictive distri-

butions on a range of tasks when trained using approximate Bayesian inference

(in the form of Monte Carlo dropout, so far). It is perhaps justifiable to suggest that

this ‘Bayesian deep learning for spatial interpolation in the presence of auxiliary

information’ approach — now published in the geostatistics and machine learning

special issue of Mathematical Geosciences; Kirkwood et al., 2022 — may repres-

ent a potential new generation of ‘universal’ probabilistic interpolation approaches

for big data problems where large numbers of environmental observations have
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been point-sampled over gridded covariates. It is increasingly becoming the case

that gridded covariates are available to support environmental modelling, whether

from satellite imagery or even from other model output, for example from Numer-

ical Weather Prediction, and so it seems sensible to incorporate computer vision

capabilities into the spatial and spatio-temporal interpolation techniques of the

future.

Of course, there is no such thing as a true one-size-fits-all approach to

modelling (beyond perhaps Bayes’ theorem itself) on the grounds that our prior

beliefs will (or should) always be different depending on the problem being tackled.

As such, model development should always be task-specific. However, as the

number of observations increase, the influence that our prior beliefs have on our

posterior predictions decreases, which potentially provides more space for the

development of ‘universal’ (or near-universal) machine learning solutions. At the

same time, the decision of what covariates to include within a model is already

often the strongest statement of prior belief that a practitioner may have (even if

they are not formally operating within the Bayesian framework), and so perhaps

there is scope for the adoption of near-universal big data modelling methods in the

environmental sciences which can be applied to a range of problems involving a

range of predictands and covariates. It seems that many opportunities can arise

from recognition of the commonalities between different disciplines; for example

weather forecasting and geological mapping (Chapter 7), which both aim to model

their respective spheres - atmos and lithos - and summarise this information in a

useful way. Working through the lens of data science facilitates the combining of

ideas from different disciplines in order to develop more capable solutions for the

future.

8.1 Future work

In our original work on site-specific weather forecasting (Chapter 3), we referred to

the need for ‘algorithmic interfaces’ to combine and present the information con-
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tained within otherwise overwhelming ensembles of weather forecasting models;

a problem which will become more important as the number of models available,

and their complexity, increases (Kirkwood et al., 2020; Haupt et al., 2021). The

quantile regression forest (QRF) based approach that we used was able to improve

the calibration of road temperature forecasts on a point-wise basis (i.e., at each

forecast location the predictive distribution provided by our approach improved

on the calibration of the raw ensemble). However, while the QRF approach is

appealing for its simplicity and speed (which is important in an operational envir-

onment), it is not capable of providing simulations that are close to realistic due

to decision trees not being physically constrained (partitioning of a feature space

by feature thresholds is unlike any natural physical process), and the predictive

distributions that we derive from the quantile regression forest at each location

being independent of one-another.

As explained in the introduction, our overall goal in probabilistic environmental

modelling should be to be able to generate predictive distributions that are well-

calibrated and as sharp as possible, but ideally these would also be composed

of ‘realistic’ or physically plausible individual samples / simulations. For example,

these simulations should possess spatial or spatio-temporal autocorrelation struc-

tures (or covariance) that are consistent with reality, as well as ideally adhering

to physical laws of conservation of mass, momentum and energy (Laubscher

and Rousseau, 2022; Wang et al., 2020). Incorporating physical knowledge into

machine learning systems is a current hot topic of research that goes by the

name of physics-informed machine learning (PIML) (Karniadakis et al., 2021) or

knowledge-guided machine learning (Karpatne et al., 2017; Willard et al., 2022),

and many avenues have been proposed (e.g. Kashinath et al., 2021) including

customised loss functions (Karpatne et al., 2017; Beucler et al., 2019), custom-

designed neural network architectures (Mohan et al., 2020; Kashinath, Marcus

et al., 2020), and enforcing constraints on the covariance of generative adversarial

network (GAN) outputs (Wu et al., 2020).
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The logical extension of Chapter 3’s site-specific post-processing system is

therefore to develop post-processing systems that can produce physically plaus-

ible samples whilst being informed by the range of available ensemble models.

This requirement has inspired the work of subsequent chapters, which develop

Bayesian deep learning architectures for spatial and spatio-temporal modelling

which are able to generate predictive distributions that are composed of individual

simulations that could each be considered quite plausible - for example see the

appendix of Chapter 5, in which we assess the spatial autocorrelation properties

of maps simulated by Bayesian deep learning.

The generation of plausible samples from probabilistic machine learning

systems is overall the main area of future work following from this thesis. In this

research so far we have prioritised modelling methods that are fast and scalable

to large datasets, and we have seen how approaches that are relatively simple

to apply (e.g. quantile regression forests, Bayesian deep neural networks) can

produce good or even excellent results in terms of calibration and sharpness.

It was also encouraging to see that our approach to ‘Bayesian deep learning

for spatial interpolation in the presence of auxiliary information’ (Chapter 5) was

able to generate simulated maps whose autocorrelation properties match the

autocorrelation properties of held-out test data very well (Chapter 5 appendix)

despite the model containing no explicit length-scale parameter (unlike typical

Gaussian processes, which our deep neural network approach can be seen as

approximating inexactly).

This inspires a question of whether the physical plausibility of posterior

samples is an emergent property of sufficiently skilful machine learning systems;

can maximising the sharpness of a predictive distribution subject to calibration

naturally lead to the generation of physically plausible samples? Our results from

Chapter 5 suggest that, with the right machine learning systems (i.e., whose prior

distribution space does contain the true model, or a sufficiently similar model as

to be deemed ‘plausible’), the answer may be yes. This could perhaps be tested
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by training the machine learning system to predict target variables for which we

do have exhaustive observations — for example predicting land surface elevation

— but to do so by training on datasets of varying size. As the number of training

observations increases towards infinity, the posterior distribution should converge

on the ‘truth’. Samples from this posterior should therefore become increasingly

physically plausible in the process.

Incorporating Gaussian processes into our Bayesian deep learning systems is

one approach which may improve the physical plausibility of simulations for a given

number of observations, by providing more control over the prior distribution. The

approach of ‘Deep Kernel Learning’ (Wilson et al., 2016) for example, which uses

deep neural networks to transform the input feature space for Gaussian process

interpolation, is a likely candidate for improving control over the physical plausibility

of the simulations that our Bayesian deep learning systems generate, by allowing

covariance properties to be specified explicitly in the choice of kernel (even though,

if these kernels operate on a deep-learned feature space, the interpretation of their

parameters becomes more complex).

Additionally, different approaches to (approximate) Bayesian inference in deep

neural networks may also impact on the plausibility of generated samples, as well

as on the calibration and sharpness of the resultant predictive distributions. This is

therefore another area for future research, building on the work presented in this

thesis. The development of Bayesian inference techniques for deep models is a hot

topic in machine learning research (e.g., Wilson, 2020), and it will be interesting

to test and compare different schemes as they emerge. Given that we are still

only 10 years into the deep learning revolution, the architectures we develop in

this thesis are likely to seem increasingly elementary as time goes on (and to

some people they may already seem that way, but the aim has been to develop

and apply probabilistic machine learning methods to real-world environmental

modelling problems, rather than to progress probabilistic machine learning in a

pure sense) and so we can look forward to a future in which our probabilistic
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models can be made even more effective, although the underlying paradigms will

almost certainly remain the same.

8.2 Final remarks

In this thesis we have described the need for probabilistic environmental model-

ling, and developed and demonstrated some viable machine learning approaches

for achieving it in applications ranging from site-specific weather forecast post-

processing, to spatio-temporal interpolaton of crowd-sourced weather observa-

tions, to a preliminary development of probabilistic geological mapping. We

have been motivated by ‘the quiet revolution of numerical weather prediction’

(Bauer, Thorpe and Brunet, 2015b) and the associated rise (since the early 2000s)

of ensemble forecasts for quantifying uncertainty. We have seen how weather

forecasts composed of multiple ensemble members bear similarity to Bayesian

posterior predictive distributions approximated using Monte Carlo sampling, and

have developed a machine learning approach for site-specific weather forecast

post-processing that inexpensively corrects and ‘fills in’ the forecast probability

space with more dense sampling in order to produce better calibrated forecasts.

Extending beyond site-specific problems, we have adopted and developed

Bayesian deep learning methodologies that combine the strengths of computer

vision with approximate Gaussian processes for geostatistical interpolation, and

in doing so achieve a new generation of ‘intelligent’ probabilistic interpolators for

simulating continuous maps from point-sampled environmental variables. Our

Bayesian deep learning approach for spatial and spatio-temporal interpolation

can learn its own features automatically in order to extract relevant information

from gridded auxiliary covariates, even where these relationships are potentially

complex. As our demonstrations show, the resultant simulated maps (or ‘ensemble

members’) can be highly detailed, and appear capable of capturing structure

such that their spatial autocorrelation properties closely match those of held-out

test observations. We have also demonstrated how our Bayesian deep learning
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approach can be expanded into a mixture model, or mixture density network, in

order to filter outliers from noisy datasets during the modelling process, making it

suitable for use on crowd-sourced datasets in which the quality of observations

reported from individual stations is inconsistent.

The work presented in this thesis is intended to inspire further development of

machine learning approaches for probabilistic environmental modelling. It is clear

that having good-quality probabilistic models of the environment will be important

for our future, and despite the explosion in popularity of machine learning over the

last decade, it seems that many opportunities for progress within the environmental

modelling space remain under-explored. The experience of this PhD has shed light

on some of these opportunities, and of the benefits that cross-disciplinary thinking

can provide. No doubt the future will see these areas be developed further.
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Laplace, P. S. de (1820). Théorie analytique des probabilités. Vol. 7. Courcier

(Cited on page 20).

237

http://eudml.org/doc/203193


Lark, R. (2000). ‘Estimating variograms of soil properties by the method-of-

moments and maximum likelihood’. In: European Journal of Soil Science

51.4, pp. 717–728 (Cited on page 101).

Lark, R. (2012). ‘Towards soil geostatistics’. In: Spatial Statistics 1, pp. 92–99

(Cited on page 101).

Laubscher, R. and Rousseau, P. (2022). ‘Application of a mixed variable physics-

informed neural network to solve the incompressible steady-state and transient

mass, momentum, and energy conservation equations for flow over in-line

heated tubes’. In: Applied Soft Computing 114, p. 108050 (Cited on page 217).

Le Cam, L. (1990). ‘Maximum likelihood: an introduction’. In: International Stat-

istical Review/Revue Internationale de Statistique, pp. 153–171 (Cited on

page 20).

LeCun, Y., Bengio, Y. and Hinton, G. (2015). ‘Deep learning’. In: Nature 521.7553,

pp. 436–444 (Cited on page 128).

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J. and Sohl-Dickstein,

J. (2017). ‘Deep neural networks as gaussian processes’. In: arXiv preprint

arXiv:1711.00165 (Cited on pages 69 and 120).

Lee, P. M. (1989). Bayesian statistics. Oxford University Press London: (Cited on

page 22).

Lei, N., An, D., Guo, Y., Su, K., Liu, S., Luo, Z., Yau, S.-T. and Gu, X. (2020). ‘A

geometric understanding of deep learning’. In: Engineering 6.3, pp. 361–374

(Cited on page 123).

LeNail, A. (2019). ‘NN-SVG: Publication-ready neural network architecture schem-

atics’. In: Journal of Open Source Software 4.33, p. 747 (Cited on pages 127

and 139).

Leung, F. H.-F., Lam, H.-K., Ling, S.-H. and Tam, P. K.-S. (2003). ‘Tuning of

the structure and parameters of a neural network using an improved genetic

algorithm’. In: IEEE Transactions on Neural networks 14.1, pp. 79–88 (Cited

on page 133).

238



Leutbecher, M. and Palmer, T. N. (2008). ‘Ensemble forecasting’. In: Journal of

computational physics 227.7, pp. 3515–3539 (Cited on page 184).

Li, J., Heap, A. D., Potter, A. and Daniell, J. J. (2011). ‘Application of machine

learning methods to spatial interpolation of environmental variables’. In: Envir-

onmental Modelling & Software 26.12, pp. 1647–1659 (Cited on page 105).

Li, T., Shen, H., Yuan, Q., Zhang, X. and Zhang, L. (2017). ‘Estimating ground-level

PM2. 5 by fusing satellite and station observations: a geo-intelligent deep

learning approach’. In: Geophysical Research Letters 44.23, pp. 11–985 (Cited

on page 128).

Li, Y., Sun, Y. and Reich, B. J. (2020). ‘DeepKriging: Spatially Dependent Deep

Neural Networks for Spatial Prediction’. In: arXiv preprint arXiv:2007.11972

(Cited on page 134).

Lichtendahl Jr, K. C., Grushka-Cockayne, Y. and Winkler, R. L. (2013). ‘Is it better

to average probabilities or quantiles?’ In: Management Science 59.7, pp. 1594–

1611 (Cited on page 88).

Lindsay, M. D., Aillères, L., Jessell, M. W., Kemp, E. A. de and Betts, P. G. (2012).

‘Locating and quantifying geological uncertainty in three-dimensional models:

Analysis of the Gippsland Basin, southeastern Australia’. In: Tectonophysics

546, pp. 10–27 (Cited on page 213).

Liu, H., Ong, Y.-S., Shen, X. and Cai, J. (2020). ‘When Gaussian process meets

big data: A review of scalable GPs’. In: IEEE Transactions on Neural Networks

and Learning Systems (Cited on page 120).

Lorenc, A. C. (Oct. 1986). ‘Analysis methods for numerical weather prediction’. en.

In: Quarterly Journal of the Royal Meteorological Society 112.474, pp. 1177–

1194. ISSN: 00359009, 1477870X. DOI: 10.1002/qj.49711247414. URL: http:

//doi.wiley.com/10.1002/qj.49711247414 (visited on 23/10/2018) (Cited on

page 183).

Lorenc, A. C. and Rawlins, F. (2005). ‘Why does 4D-Var beat 3D-Var?’ In: Quarterly

Journal of the Royal Meteorological Society: A journal of the atmospheric

239

https://doi.org/10.1002/qj.49711247414
http://doi.wiley.com/10.1002/qj.49711247414
http://doi.wiley.com/10.1002/qj.49711247414


sciences, applied meteorology and physical oceanography 131.613, pp. 3247–

3257 (Cited on page 64).

Lorenz, E. N. (1963). ‘Deterministic nonperiodic flow’. In: Journal of atmospheric

sciences 20.2, pp. 130–141 (Cited on pages 17 and 18).

Luo, W., Li, Y., Urtasun, R. and Zemel, R. (2016). ‘Understanding the effective

receptive field in deep convolutional neural networks’. In: Advances in neural

information processing systems, pp. 4898–4906 (Cited on page 132).

Lynch, P. (2008). ‘The origins of computer weather prediction and climate modeling’.

In: J. Comput. Physics 227, pp. 3431–3444. DOI: 10.1016/j.jcp.2007.02.034

(Cited on pages 53, 54, 57 and 65).

Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G. and Johnson, B. A. (2019). ‘Deep learning

in remote sensing applications: A meta-analysis and review’. In: ISPRS journal

of photogrammetry and remote sensing 152, pp. 166–177 (Cited on page 105).

MacKay, D. J. (1995). ‘Probable networks and plausible predictions—a review

of practical Bayesian methods for supervised neural networks’. In: Network:

computation in neural systems 6.3, pp. 469–505 (Cited on page 177).

Matheron, G. (1969). Le krigeage universel: cahiers du Centre de Morpholo-

gie Mathematique. École nationale supérieure des mines de Paris (Cited on

pages 66 and 101).
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In: Studia Semiotyczne 34.1, pp. 267–278 (Cited on page 18).

Raftery, A. E., Gneiting, T., Balabdaoui, F. and Polakowski, M. (2005). ‘Using

Bayesian Model Averaging to Calibrate Forecast Ensembles’. en. In: Monthly

Weather Review 133, p. 20 (Cited on pages 47, 58, 60, 61, 62, 77, 87 and

184).

Raftery, A. E. and Lewis, S. M. (1996). ‘Implementing mcmc’. In: Markov chain

Monte Carlo in practice, pp. 115–130 (Cited on page 142).

Rahmstorf, S. and Coumou, D. (Oct. 2011). ‘Increase of extreme events in a

warming world’. en. In: Proceedings of the National Academy of Sciences.

ISSN: 0027-8424, 1091-6490. DOI: 10.1073/pnas.1101766108. URL: http

s://www.pnas.org/content/early/2011/10/18/1101766108 (visited on

24/04/2020) (Cited on page 74).

244

https://doi.org/10.1007/11736790_1
https://doi.org/10.1007/11736790_1
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1073/pnas.1101766108
https://www.pnas.org/content/early/2011/10/18/1101766108
https://www.pnas.org/content/early/2011/10/18/1101766108


Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul,

A., Langlotz, C., Shpanskaya, K. et al. (2017). ‘Chexnet: Radiologist-level

pneumonia detection on chest x-rays with deep learning’. In: arXiv preprint

arXiv:1711.05225 (Cited on page 121).

Rasp, S. and Lerch, S. (Oct. 2018). ‘Neural Networks for Postprocessing Ensemble

Weather Forecasts’. In: Monthly Weather Review 146.11, pp. 3885–3900. ISSN:

0027-0644. DOI: 10.1175/MWR-D-18-0187.1. URL: https://journals.amets

oc.org/doi/full/10.1175/MWR-D-18-0187.1 (visited on 27/04/2020) (Cited

on pages 15, 63 and 75).

Rasp, S., Pritchard, M. S. and Gentine, P. (Sept. 2018). ‘Deep learning to represent

subgrid processes in climate models’. en. In: Proceedings of the National

Academy of Sciences 115.39, pp. 9684–9689. ISSN: 0027-8424, 1091-6490.

DOI: 10.1073/pnas.1810286115. URL: https://www.pnas.org/content/115

/39/9684 (visited on 05/02/2019) (Cited on page 57).

Ratcliff, R. (1979). ‘Group reaction time distributions and an analysis of distri-

bution statistics’. In: Psychological Bulletin 86.3, pp. 446–461. ISSN: 1939-

1455(Electronic),0033-2909(Print). DOI: 10.1037/0033-2909.86.3.446 (Cited

on page 88).

Rawlins, F., Ballard, S., Bovis, K., Clayton, A., Li, D., Inverarity, G., Lorenc, A.

and Payne, T. (2007). ‘The Met Office global four-dimensional variational data

assimilation scheme’. In: Quarterly Journal of the Royal Meteorological Society:

A journal of the atmospheric sciences, applied meteorology and physical

oceanography 133.623, pp. 347–362 (Cited on page 184).

Ren, Y., Zhang, L. and Suganthan, P. (Feb. 2016). ‘Ensemble Classification and

Regression-Recent Developments, Applications and Future Directions [Review

Article]’. In: IEEE Computational Intelligence Magazine 11.1, pp. 41–53. ISSN:

1556-6048. DOI: 10.1109/MCI.2015.2471235 (Cited on pages 88 and 96).

Richardson, L. F. (1922). Weather Prediction by Numerical Process. en. Cambridge

University Press. ISBN: 978-0-521-68044-8 (Cited on pages 54 and 74).

245

https://doi.org/10.1175/MWR-D-18-0187.1
https://journals.ametsoc.org/doi/full/10.1175/MWR-D-18-0187.1
https://journals.ametsoc.org/doi/full/10.1175/MWR-D-18-0187.1
https://doi.org/10.1073/pnas.1810286115
https://www.pnas.org/content/115/39/9684
https://www.pnas.org/content/115/39/9684
https://doi.org/10.1037/0033-2909.86.3.446
https://doi.org/10.1109/MCI.2015.2471235


Richardson, L. F. and Glazebrook, R. T. (Jan. 1911). ‘The approximate arithmet-

ical solution by finite differences of physical problems involving differential

equations, with an application to the stresses in a masonry dam’. In: Philo-

sophical Transactions of the Royal Society of London. Series A, Containing

Papers of a Mathematical or Physical Character 210.459-470, pp. 307–357.

DOI: 10.1098/rsta.1911.0009. URL: https://royalsocietypublishing.o

rg/doi/abs/10.1098/rsta.1911.0009 (visited on 08/02/2019) (Cited on

page 54).

Riley, S. J., DeGloria, S. D. and Elliot, R. (1999). ‘Index that quantifies topographic

heterogeneity’. In: intermountain Journal of sciences 5.1-4, pp. 23–27 (Cited

on page 103).

Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G.,

Hauenstein, S., Lahoz-Monfort, J. J., Schröder, B., Thuiller, W. et al. (2017).
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Appendix A

Associated posters

Find here copies of posters presented at various conferences during the PhD.

These are:

1. “A probabilistic post-processing framework for blending all available weather

forecast” presented at the University of Exeter’s Environmental Intelligence Confer-

ence 2020.

2. “Harnessing auxiliary information for probabilistic spatial interpolation using

Bayesian deep learning” presented at the University of Exeter’s Environmental

Intelligence Conference 2020.

3. “Bayesian deep learning for large scale environmental data modelling” presented

at the Alan Turing Institute’s AI UK research showcase 2021.

4. “Harnessing auxiliary information for probabilistic environmental modelling using

Bayesian deep learning” presented at the University of Exeter’s Environmental

Intelligence Conference 2021.

5. “Deep geostatistics: incorporating computer vision for intelligent Bayesian

interpolation between environmental observations” presented at the AI Innovations

Summit 2022, Exeter and Berlin.

The posters are targeted to the different types of audiences at these different

events. Talks were also given (e.g. to the Met Office Data Science Community of

Practice, the Alan Turing Institute’s Environmental Monitoring group, the University

of Cambridge’s Environmental Data Science Group) but including the associated

slides would hugely extend this thesis, and so I have not.
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A probabilistic post-processing framework for 
blending all available weather forecasts

Problem statement

Much effort is placed in the development of ever more 
sophisticated, high-resolution, and accurate weather forecasting 
models – both by advancing numerical weather prediction and 
more recently also by utilising machine learning techniques.

However - regardless of the quality of individual models - with the 
increasing complexity and number of models in operation, a 
different challenge emerges: that of assimilating the information 
contained within the pool of available forecasts in order to provide 
well-calibrated probabilities on which to base decision making.

For risk-critical applications the task of assimilating information 
from the forecast pool is currently carried out by expert 
operational meteorologists, who assess the spread of forecasts 
produced by different models in order to provide statements about 
the most likely outcomes and reasonable worst case scenarios.

However, automating this process via the development of an 
‘algorithmic interface’ to forecast information has the potential to 
improve the calibration and consistency of probabilities that are 
provided to stakeholders – as well as ease of access.

Charlie Kirkwood, Theo Economou, Henry Odbert, Nicolas Pugeault

correspondence to: c.kirkwood@exeter.ac.uk

See more in the full paper – “A framework for probabilistic weather forecast post-processing across 

models and lead times using machine learning”, Philosophical Transactions of the Royal Society A, 2021

For risk-critical applications the task of assimilating information from the forecast pool is currently carried out by expert operational meteorologists, who can assess the spread of 
forecasts produced by different models and provide statements about most likely and reasonable worst case scenarios. As you can see in our road surface temperature example above, 
even when considering only a single location, the pool of different model forecasts is quite overwhelming to human interpreters.

Our solution (applied to road surface temperature forecasting)

We propose a framework by which to probabilistically combine the forecasting power of different weather models and their respective ensemble members, in order to automatically 
produce a ‘best estimate’ predictive distribution of future weather outcomes that has well-calibrated probabilities. Our approach borrows from model stacking concepts in machine 
learning, and is designed for fast operational use, including compatibility with any type of forecast model.

1. Convert individual deterministic forecasts to probabilistic forecasts by modelling their error profile:

Below: Example of the forecast pool for road surface temperature forecasting. Even in this simple site specific 
case the pool of different model forecasts is quite overwhelming to human interpreters and difficult to translate 

into well-calibrated probabilities of future weather outcomes.

Forecast variance erroneously decreases with increasing forecast range

We cannot rely on the inter-model variance of the available forecasts for our uncertainty 
estimates, because more ensemble members are available at short lead times than long. In 
our example, inter-model variance decreases to zero at the longest ranges – where we would 
expect uncertainty to be highest!

To overcome this, we instead simulate intra-model variance, by modelling the error profile of
each forecast:

Where y is the observed value corresponding to the prediction of the forecast x by model m 
at lead time t. We then use these modelled error profiles to ‘dress’ each forecast with its 
own (intra-model) variance:

We now have a set of debiased and individually well-calibrated probabilistic forecasts. In this 
study, we used quantile regression forests (QRF), based on the random forest algorithm, to 
model these error profiles – mostly due to the high speed and non-parametric flexibility.

We model each 
forecast’s error 

using historic data 
(left) and use this 

model to ‘dress’ 
the current 

forecast, making it 
probabilistic 

(below)

2. Combine individual probabilistic forecasts by quantile averaging:

Our set of forecasts are now individually well-calibrated, and we wish to retain this 
calibration for our final ‘best estimate’ predictive distribution. To do this, we use quantile 
averaging, which results in an aggregate predictive distribution with mean, variance, and 
shape all approximately equal to the average mean, variance, and shape of the individual 
probabilistic forecasts. We now have our ‘best estimate’ predictive distribution (below):

3. Results:

Our post-processing framework outperforms the raw ensemble in both probabilistic metrics 
(coverage, continuous rank probability score (CRPS), log score) and deterministic metrics 
(mean absolute error, mean squared error), and is more suitable for use in decision support.

We can see from 
plotting CRPS by 
forecast range 
(right), that our 
post-processed 
output provides 
more consistent, 
and consistently 
better forecasts 
than the raw 
ensemble
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Harnessing auxiliary information for 
probabilistic spatial interpolation using 

Bayesian deep learning

1. Problem statement

We are often unable to observe exhaustively the environmental 
phenomena in which we are interested, and are limited to the 
collection of point-sampled observations, from which we must 
interpolate in order to build up a complete picture.

Traditional spatial interpolation techniques  (e.g., ordinary 
kriging, inverse distance weighted (IDW) interpolation) consider 
only the two or three dimensions of physical space, and as a 
result produce spatially smooth outputs ‘in isolation’ which fail to 
consider any other available information.

In order to capture auxiliary information, established practice is 
to include a ‘regression on covariates’ component in the model, 
as in regression kriging:

Z = Xτ + u + ε,

where Z, a random vector corresponding to the target variable at 
n sites, is predicted as the sum of regression on covariates 
component Xτ (where X is an n × p design matrix containing the 
values of any covariates, for which τ are the corresponding 
coefficients), Gaussian Process spatial component u, and error 
term ε. 

However, it is difficult or even impossible to know a priori what 
would constitute optimal covariates for a given problem. This 
issue is especially stark in environmental modelling, where 
derivatives of satellite imagery and other remotely sensed data 
have the potential to be highly informative, but attempts to 
harness this information through manual filtering (e.g., using off-
the-shelf terrain analyses) are destined to fall short of optimality.

2. Our solution

To avoid the top-down trial and error of manual feature 
engineering and feature selection, we propose a bottom-up 
approach to utilising auxiliary information via Bayesian deep 
learning. Our methodology combines feature learning 
capabilities drawn from the field of computer vision with 
probabilistic spatial interpolation capabilities drawn from the 
field of (Bayesian) geostatistics. In addition, owing to the 
efficiencies of neural networks and modern deep learning 
frameworks (Tensorflow and Tensorflow Probability in this case), 
our method is scalable to very large datasets.

To demonstrate the ability of our approach to model complex 
environmental phenomena we present a case study using stream 
sediment calcium concentration as our point-sampled target 
variable, and SRTM digital elevation data (terrain topography) as 
our source of auxiliary information. We intend a similar approach 
for downscaling weather forecasts to continuous space.

Developing precise maps, models and forecasts 
requires capturing the complex interactions 

between all the environmental factors at play

3. Experimental setup

We used a 3CV train/evaluate/test data split for our neural network training, with a total of 109 201 point-sampled 
calcium observations from all across the UK. For data preparation, each calcium observation was appended with a 
vector of its location information in 3D space (easting, northing, and elevation) and an image of surrounding terrain 
topography, centred on the observation.

Our neural network architecture (above) has two branches – a 
convolutional branch takes the terrain topography image as input 
and trains convolutional filters to extract information about the 
context of the observation within the landscape. Meanwhile, the 
fully connected branch behaves like (deep) Gaussian Process 
spatial interpolation, or kriging. Combining these two branches 
allows our neural network to interpolate not simply in the 
geographic space, but in a self-constructed hybrid space that 
optimally combines global location information with local 
contextual information. In addition, we use Monte Carlo dropout 
(Gal and Ghahramani 2015) to provide a tuneable distribution on 
the network weights, which, in conjunction with our Gaussian 
likelihood, allows us to estimate uncertainty and approximate a full 
posterior predictive distribution.

4. Results

Quantitative (right): After training on 8 tenths of the data, we test 
final performance on the 1 tenth test set (after parameter tuning 
on the eval set). Our deep learning approach achieves impressive 
explanatory power for such a complex natural system (R2 of 0.72) 
and near-perfect coverage (94.9% of held-out observations were 
found to fall within the 95% prediction interval)

Qualitative (below): As we can see, our neural network makes 
good use of the auxiliary information within the topography data 
(a) in order to provide detailed predictions of the mean calcium 
concentration (b) and standard deviation of the predictive 
distribution (c) for all points in space. We can see by the precision 
of (c) that our predictive distribution is not just well-calibrated, but 
sharp too. 

Charlie Kirkwood, Theo Economou, Henry Odbert, Nicolas Pugeault

correspondence to: c.kirkwood@exeter.ac.uk

See more in the full paper – preprint available on arXiv – https://arxiv.org/abs/2008.07320
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Appendix B

Conference photographs

Figure B.1: Attendees of the machine learning for weather and climate modelling
workshop that took place at Corpus Christi College in Oxford in the first week
of September 2019, organised by Matthew Chantry, Hannah Christensen, Tim
Palmer, and Peter Dueben. A most interesting and inspiring conference - it felt like
a historic event. I am stood in the top right corner of this photo - directly in front of
Scott Hosking (in black) and left of Sebastian Lerch (in blue, in front of bench).

Figure B.2: Attendees of the Eumetnet workshop on AI for weather and climate
that took place at the Royal Meteorological Institute of Belgium in the last week of
February 2020, organised by Steven Dewitte and colleagues. Another extremely
interesting conference, though along with new ideas I also brought home suspected
COVID-19 (but thankfully was better in about a week). I am third from the left.
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