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Abstract  

 

Objectives: Health economic models commonly apply observed general population mortality 

rates to simulate future deaths in a cohort. This is potentially problematic, as mortality statistics 

are records of the past, not predictions of the future. We propose a new dynamic general population 

mortality modelling approach which enables analysts to implement predictions of future changes 

in mortality rates. The potential implications moving from a conventional static approach to a 

dynamic approach is illustrated using a case-study. Methods: The model utilised in NICE 

appraisal TA559, axi-cel for diffuse large B-cell lymphoma, was replicated. National mortality 

projections were taken from the UK Office for National Statistics. Mortality rates by age and sex 

were updated each modelled year with the first modelled year using 2022 rates, the second 

modelled year 2023 and so on. Four different assumptions were made around age distribution: 

fixed mean age; lognormal, normal and gamma. The dynamic model outcomes were compared to 

those from a conventional static approach. Results: Including dynamic calculations increased the 

undiscounted life years attributed to general population mortality by 2.4–3.3 years. This led to an 

increase in discounted incremental life years within the case study of 0.38–0.45 years (8.1–8.9%), 

and a commensurate impact on the economically justifiable price of £14,456–£17,097. 

Conclusions: The application of a dynamic approach is technically simple and has the potential 

to meaningfully impact estimates of cost-effectiveness analysis. As a result, we call on health 

economists and HTA bodies to move towards use of dynamic mortality modelling in future.  

 

Key words: dynamic, mortality, simulation, cost-effectiveness, dynamic mortality modelling, 

CAR-T, survival, extrapolation 
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Highlights 

1. Health economic models commonly apply observed general population mortality rates to 

simulate future deaths in a cohort. This is potentially problematic, as mortality statistics are records 

of the past, not predictions of the future 

2.We propose a new dynamic general population mortality modelling approach which enables 

analysts to implement predictions of future changes in mortality rates. We demonstrate the 

potential impact of this approach using a replication of the axi-cel model from NICE appraisal 

TA559 

3. Including dynamic calculations increased the undiscounted life years attributed to general 

population mortality by 2.4–3.3 years with a potentially meaningful impact on the economically 

justifiable price of £14,456–£17,097 

 

Introduction  

In health economic models, general population mortality statistics are commonly used to predict 

the survival of patients with non-terminal conditions. Typically, this is achieved by identifying 

age-specific mortality rates from recent population mortality tables and applying these 

longitudinally to simulate future deaths.1,2 The naïve application of this approach is potentially 

problematic, as mortality statistics are records of the past, not predictions of the future: they 

document solely the proportion of people in a population of a specific age and sex in a given year 

who died in a given year, not how these rates are expected to change in future. As a result, models 

that apply historical rates in this manner assume general population mortality rates will remain 

static over time. This is contentious, as general population mortality has improved substantially as 

societies have advanced. Furthermore, they are predicted to improve further in future, despite the 
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short-term impact of the COVID-19 pandemic.3,4 Consequently, application of a static approach 

to mortality modelling may result in the survival of future populations being underestimated, and 

associated cost-effectiveness estimates being biased.  

 

Modelling future population mortality is not the exclusive domain of health economists. For 

example, demographers simulate future death rates in order to predict the future size and 

composition of societies. This data is then used to inform national planning decisions, including 

regarding future investment in NHS services.5 Similarly, actuarial scientists model future mortality 

in order to estimate the financial risk associated with pensions and life insurance policies. In these 

fields, future dynamics in mortality rates are commonly modelled.6,7 Typically, these predictions 

draw upon historical trends in mortality and changes in mortality associated explanatory variables. 

For example, the Office for National Statistics (ONS) in the UK produce national population 

projections every 2 years by age and sex based upon expert panel views informed by target 

mortality improvement rates and historical trend data.8 In an academic setting, Janssen et al 

produce a more disaggregated prediction of future life expectancy for 18 countries in Europe 

considering the impact of smoking, obesity, and alcohol.4 Drivers of future life expectancy are 

complex and include economic growth, investment and policy drivers within health and social 

care, the speed of development of medical technologies, migration trends and exposure to risk 

factors such as smoking, obesity and alcohol use.4,9 Whilst predictions of the future are inherently 

uncertain, the transparent, evidence-based, and hypothesis driven extrapolation of historical 

mortality data appears more likely to generate accurate estimates of future mortality rather than 

simply assuming it is static over time. Despite this, to our knowledge, dynamic modelling of 

general population mortality has yet to be applied in cost-effectiveness analysis. 
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In this brief report, we implement both conventional static and new dynamic mortality general 

population mortality modelling approaches in an illustrative cost-effectiveness model. This 

example demonstrates the application of a dynamic approach is technically simple and has the 

potential to meaningfully impact estimates of cost-effectiveness analysis.   

 

Methods   

 

Case study: NICE TA559  

In 2019, NICE issued guidance on use of axicabtagene ciloleucel (axi-cel) for the treatment of 

diffuse large B-cell lymphoma (DLBCL) (TA559).10 In the Committee’s preferred analysis, it was 

assumed a proportion of patients treated with axi-cel would go on to experience mortality rates 

comparable to that of the general population. This assumption was implemented via use of general 

population mortality rates from 2014-2016, adjusted using a standardised mortality ratio (1.09) 

designed to simulate the potentially higher mortality in this cohort compared to the public as a 

whole. As the modelling of overall survival using general population mortality data was a key 

driver of the axi-cel model, we hypothesized incorporation of dynamic mortality modelling may 

have a meaningful impact on estimates of cost-effectiveness. Subsequently, this was selected as 

the case-study for this paper. 

 

Replicating TA559 survival modelling  

Overall survival curves from TA559 were replicated following the information provided in the 

appraisal documentation. Expected survival for axi-cel was estimated using a Weibull mixture cure 
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model as detailed in the manufacturer’s submission: constant 0.42, gamma 0.42, cure-fraction 0.5. 

Survival for the comparator, best supportive care (BSC), was estimated using a Gompertz curve 

with shape -0.0850 and scale 0.1864, which proved roughly equivalent to the curve provided in 

the slides for the final NICE committee meeting. Within the response to the first Appraisal 

Consultation Document the manufacturer submitted a weighted average of two Gompertz curves 

fitted to patients who did and did not receive a stem-cell transplant within the SCHOLAR-1 trial. 

10% of BSC patients are assumed to receive a stem-cell transplant, which equates to the lower-

bound of the committee estimate of 10-15%. In accordance with the committee’s preferred 

assumptions, general population mortality transition probabilities were used as a lower bound to 

mortality for BSC and to represent the mortality of patients ‘cured’ by axi-cel. As in TA559, ONS 

national lifetables from 2014-2016 were applied, and it was assumed patients have a mean age of 

56 years and that 33/101 patients are female. In line with the methodology used within the NICE 

appraisal, an assumption was made that 11/119 patients on the axi-cel arm experienced the same 

outcomes as BSC rather than axi-cel based on the size of the modified intention to treat (mITT) 

population relative to the ITT population. The mITT population included all patients treated with 

at least 1.0 x 106 anti-CD19 CAR T-cells/kg. Patients not receiving this dose were assumed in 

TA559 to experience the same outcomes as patients receiving BSC. 

 

The final fitted curves for axi-cel and best-supportive care were digitised from the Committee 

slides showing that the predictions from this case-study recreation using data from the ONS 2014-

2016 lifetables11 were similar to those from the original appraisal (see Supplementary 

Information).  
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Calculation of expected general population survival 

National population projections mortality assumptions were taken from UK ONS projections.8,12 

The published projections provide data up to 2070. Rates of mortality improvement by age and 

sex are derived based upon: 

 

● Projection of trends in mortality improvements observed from population and deaths data 

for the period 1961 to 2019 

● Adjustment for the impact of increased mortality during the coronavirus pandemic for 

people aged 30 and over between 2019 and 2022 

● National Population Projections Committee agreed target rates of mortality improvement 

for 2045 based on the above and assumptions around the method and speed of convergence 

 

Life expectancy is projected to increase under the principal of a 1.2% long-term improvement rate 

up to age 90 for the UK and constituent countries between 2020 and 2045. This trend is continued 

between 2045 and 2070. 

 

ONS mortality rates were firstly used to calculate expected general population survival assuming 

an assessment year of 2022 and a weekly model cycle.  The age profile from the TA559 case study 

was used to calculate general population mortality under 4 different assumptions around age 

distribution: fixed mean age of 56 (based upon a lifetime horizon of 44 years); lognormal, normal, 

gamma and distributions based on best fit to the available data on the age profile of participants in 

the ZUMA-1 trial (see supplementary information for further details). 
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In order to improve comparability of the dynamic and static alternatives, the static TA559 model 

was updated using 2020 ONS mortality rates (the most recent historic data available). The model 

assumes that 33/101 patients are female (based on the ZUMA-1 trial) and accounts for the change 

in male:female balance over-time as different mortality rates are applied by age and sex. In the 

absence of any trial data on the correlation between age and sex the same age profile was assumed 

at baseline for both sexes. Scenario analysis was conducted using National Cancer Institute Center 

for Cancer Research DLBCL age/sex data accessed via cancer.gov.13 For the dynamic mortality 

approach the mortality rates used by age and sex were updated per modelled year with the first 

modelled year using 2022 rates in the current year comparison, the second modelled year using 

2023 rates and so on until the time horizon of 44 years was reached. The impact of utilising the 

alternative mortality projections derived by Janssen et al was tested in scenario analysis.4,14 

In order to further explore the impact of considering dynamic mortality trends, an additional purely 

hypothetical scenario was explored. In this analysis, it was assumed axi-cel was launched and 

evaluated by NICE in 1983. This scenario was designed to illustrate the impact of applying a static 

approach using mortality data available at the time in comparison to the subsequently observed 

dynamic reality. Whilst this is not immediately of relevance to forward-looking models developed 

today, it is nevertheless illustrative of the potential bias associated with failing to account for future 

mortality trends in economic modelling. The year 1983 was selected for this analysis, as the earliest 

timepoint for which mortality data is available is 1981, and it was assumed a 2-year turnaround 

would be required for publication. Subsequently, this was the earliest possible year this scenario 

could be tested.  In this additional analysis, we derived cost-effectiveness results using both a static 

and an observed dynamic approach and then compared the estimated results. The model time 

horizon was fixed to 37 years as this was the limit in available observed data.  
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Accounting for uncertainty around future general population survival 

The ONS do not provide estimates of uncertainty around their predictions of future mortality 

trends. As a result, it was not possible to perform meaningful probabilistic sensitivity analysis 

(PSA) of this model input. In contrast, Janssen et al. do provide confidence intervals (90 and 95%) 

for their estimates..4,14 As a result, it was possible to perform PSA using this data. . This was 

achieved by first deriving  lognormal distributions for each age, year and sex based upon the 

presented 90 and 95% confidence intervals. Subsequently, random sampling across 1,000 runs was 

undertaken to explore the impact of this uncertainty on the model outcomes. As there is highly 

likely to be a correlation in mortality projections across years, a common random number was 

utilised to sample from each age/sex distribution in a given model run. . Only general population 

mortality was included within the probabilistic analysis. This is because insufficient data was 

available within theTA559 submission to enable this to be undertaken. 

 

Presentation of results 

The difference in life years between the dynamic and static mortality approaches was estimated 

undiscounted and using a 3.5% discount rate.15 This was done separately for a general population 

cohort with the age profile from the axi-cel case study, and for the incremental life years between 

axi-cel and BSC. Cost-effectiveness implications were calculated by deriving estimates of the 

difference in the economically justifiable price of axi-cel for the two approaches. This approach 

was taken rather than adding costs into the model, as the UK price for axi-cel was marked as 

commercial in confidence in the TA599 appraisal. Firstly, the difference in quality-adjusted life 

years (QALYs) between approaches was calculated assuming that the difference in life years 
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gained between the dynamic and static mortality approaches comes only from the progression-free 

state in line with the TA559 model. An average utility of 0.76 was applied based on a scenario 

analysis presented in the NICE appraisal. This value was chosen as the utility values used in the 

TA559 base case model were redacted. The economically justifiable price (eJP) was then 

calculated using a willingness to pay threshold of £50,000 per QALY, as axi-cel was deemed to 

have met NICE’s end-of-life criteria in TA559.10  

 

Base case results were derived using deterministic analysis..16 Scenario analysis applying general 

population mortality rates probabilistically is presented in the Supplementary Information. This 

includes mean and 95% confidence intervals for predicted life-years, QALYs and eJP. 

 

Results  

Including dynamic calculations of mortality increased the undiscounted life years attributed to 

general population mortality by 2.4 – 3.3 life years (12.7 - 12.8%), across all the weight distribution 

methods used (Table 1). Whilst the predicted life years increased in both arms within the TA559 

case study as would be expected implementing dynamic mortality had a larger impact on the axi-

cel arm where are higher proportion of patients were assumed to follow the general population 

trend. This led to an increase in the undiscounted and discounted incremental life years of 0.826 – 

1.183 years (13.4 – 13.6%) and 0.380 – 0.450 years (8.1 – 8.9%) respectively, dependent on the 

method used to model the age distribution. The commensurate impact on the eJP ranged between 

£14,456 and £17,097.  
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In scenario analysis, varying the assumed correlation between sex and age had little impact on the 

model results (Supplementary Table S3). Use of alternative life table projections provided in 

Janssen et al (Supplementary Table S4 and S5) had a more meaningful impact. In this scenario, 

the estimated discounted life-year gain associated with axi-cel increased from 0.380-0.450 years 

(ONS data) to 0.435-0.620 years (Janssen et al. data).Consequently, the eJP associated with axi-

cel increased from £14,456-£17,097 (ONS data) to £16,516-£23,575 (Janssen et al. data). The 

method chosen to calculate the age distribution was more influential when the Janssen et al 

mortality rates were used. Probabilistic estimates were similar to the deterministic results. In this 

analysis, inclusion of uncertainty around mortality projections produced variance in the mean 

increase in eJP of 2-4% at the 95% confidence interval.  

 

For the scenario analysis using historical data, use of dynamic approach increased estimates of the 

incremental undiscounted life years by 0.778 – 1.520 years (15.9 – 22.3%). The range presented 

is dependent on the method used for age distribution. Use of dynamic mortality modelling 

increased estimates of the economically justifiable price of axi-cel by £14,605 - £25,350. Detailed 

results for this analysis are provide in the Online Supplementary Appendix.  

 

Discussion  

We implemented dynamic mortality modelling in a case-study from a prior NICE appraisal. Future 

projections in mortality rates were taken from the ONS. Introducing dynamic mortality modelling 

was computationally simple, and easy to implement. Moving to a dynamic approach produced a 

sizeable change in the model outcomes. Notably, dynamic mortality modelling increased the 

estimated undiscounted incremental life-year benefit associated with axi-cel by over 0.8 life years 
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(over 13%) compared to use of a static approach. The difference between approaches was even 

more striking using historical observed data within scenario analysis. Use of alternative projections 

derived by Janssen et al. was tested in scenario analysis. The impact of including dynamic 

mortality in this case was consistent with the ONS-projection and historical data-based approaches. 

These results provide evidence that moving to a dynamic approach can have a meaningful impact 

on cost-effectiveness analyses. Consequently, if the projections of future mortality are accurate, 

application of a conventional static approach could introduce substantial bias into cost-

effectiveness analysis. This is likely to be particularly acute for therapies given for a fixed duration 

that provide substantial long term survival benefits to young people, where the assumption of static 

mortality has the potential to substantially understate long term survival benefits due to 

improvements in general population mortality associated with societal progress.  

 

Given the potential impact of including dynamic mortality modelling on estimates of cost-

effectiveness, and the inherent uncertainty associated with predicting future general population 

mortality, we suggest health technology assessment (HTA) bodies require manufacturers to model 

both static and a range of dynamic approaches to general population modelling. This approach 

would enable them to better understand whether their decisions are sensitive to the choice of 

approach utilised, and subsequently reach a considered conclusion regarding a therapy. We also 

suggest that HTA bodies that apply QALY-shortfall weighting (e.g., NICE) should consider 

whether estimates of shortfall should be derived based on static or dynamic projections of 

mortality. If future changes in mortality are not considered when estimating the number of QALYs 

experienced by healthy individuals, then estimates of the QALY-shortfall are likely to be biased. 
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Whilst we have applied this method using UK data, similar projections exist for at least 19 other 

countries.4,17,18 These include the USA, Canada, France and Germany. As a result, it would be 

feasible to incorporate dynamic mortality modelling in economic evaluations focused on a large 

number of countries. 

 

This analysis is not without its limitations. For example, we were unable to conduct probabilistic 

analysis using the ONS mortality projections, as the ONS do not provide estimates of probability 

associated with their estimates. In future work, it would be interesting to explore use of structured 

expert elicitation to derive estimates of probability associated with the ONS projections. This could 

then enable meaningful probabilistic analysis to be performed using these estimates. PSA was 

conducted using the Janssen et al data in scenario analysis with minimal impact on the model 

results; however, implementation of this approach required assumptions to made about 

dependence between projections across ages, sexes and years which may or may not hold.  

 

. In addition to these issues, it should be noted we did not have access to patient level data on axi-

cel. As a result, our analysis is based on reported mean age and sex-split figures not provided by 

age and assumed distributions for the trial age profile. This lack of data is potentially important, 

as our analysis demonstrates use of a simple mean age produces different model outcomes 

compared to use of an assumed age distribution for the trial population. In order to make mortality 

projections more accurate, it would have been preferable to have had access to more granular data. 

In addition, it is important to acknowledge that any projections of future population mortality are 

inherently uncertain. Whilst this is a clear limitation of use a dynamic approach, this issue applies 

equally to application of a static approach: assuming mortality rates remain static over time does 
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not resolve uncertainty, it simply forces a specific scenario that conflicts with the views of 

government statistical bodies, academic demographers and historical trends in mortality. As a 

result, we consider use of a dynamic approach to be preferable to a static one.  

 

Equally, this work has its strengths. For example, we applied dynamic mortality forecasts from the 

ONS: the national statistical institute of the UK.8,16 These projections reflect the considered, 

evidence-based, opinions of national experts in mortality rate measurement and projection and are 

based on all births and deaths in the UK. Subsequently, this appears to be a relatively high-quality 

data source to inform dynamic projections.  

 

We did not consider the potential inter-temporal dynamics in other model inputs. For example, as 

society progresses it is likely that morbidity at a given age will reduce, and that subsequently, 

average quality-of-life for people at a given age will increase over time.19 We did not capture this 

potential future dynamic, although it would be interesting to consider this in future work. Within 

our case study we have also assumed that mortality trends over time will evolve similarly in people 

with DLBCL who are long-term survivors in comparison to the general population/The validity of 

this assumption in future models may questionable in  diseases such as lung cancer or diabetes 

which are strongly correlated with risk factors such as smoking or obesity. In these cases, use of 

the methodology allowing for risk to be accounted for presented by Janssen et al may be more 

appropriate. Finally, interventions increasing life expectancy may also contribute to the 

improvements of mortality rates although practically the impact of this is expected to be negligible 

in most cases.  
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In conclusion, health economists conventionally apply a static approach to general population 

mortality modelling that is likely to overstate long-term mortality due to the lack of consideration 

of social progress. In response, we believe it preferable for health economists to learn from 

demographers and actuarial scientists and apply a more considered approach to simulating future 

dynamics in general population mortality rates. In this paper, we have demonstrated this is 

relatively simple to do, and has the potential to have a substantial impact on estimates of cost-

effectiveness. As a result, we call on health economists and HTA bodies to move towards use of 

dynamic mortality modelling in future.  
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Table 1: Model Results 

  Age distribution Fixed Lognormal Normal Gamma 

G
en

er
a
l 

p
o
p

u
la

ti
o
n

 

m
o
rt

a
li

ty
 

LYs assuming 

static mortality 

Undiscounted LYs 26.279 20.583 18.852 19.411 

Discounted LYs 16.583 13.939 13.060 13.354 

LYs accounting for 

dynamic mortality 

Undiscounted LYs 29.611 23.221 21.251 21.874 

Discounted LYs 17.818 15.060 14.127 14.437 

Difference in 

predicted LYs 

Undiscounted LYs 3.332 2.638 2.399 2.463 

Discounted LYs 1.234 1.122 1.066 1.083 

Difference in 

predicted LYs (%) 

Undiscounted LYs 12.7% 12.8% 12.7% 12.7% 

Discounted LYs 7.4% 8.0% 8.2% 8.1% 

A
x
i-

ce
l:

 T
A

5
5
9
 c

a
se

 

st
u

d
y
 

LYs assuming 

static mortality 

Undiscounted LYs 12.291 9.633 8.834 9.093 

Discounted LYs 7.970 6.716 6.304 6.442 

LYs accounting for 

dynamic mortality 

Undiscounted LYs 13.829 10.823 9.908 10.199 

Discounted LYs 8.549 7.233 6.792 6.940 

Difference in 

predicted LYs 

Undiscounted LYs 1.537 1.190 1.074 1.106 

Discounted LYs 0.579 0.517 0.488 0.497 

Difference in 

predicted LYs (%) 

Undiscounted LYs 12.5% 12.4% 12.2% 12.2% 

Discounted LYs 7.3% 7.7% 7.7% 7.7% 

B
S

C
: 

T
A

5
5

9
 c

a
se

 s
tu

d
y
 

LYs assuming 

static mortality 

Undiscounted LYs 3.484 2.896 2.722 2.777 

Discounted LYs 2.388 2.124 2.040 2.068 

LYs accounting for 

dynamic mortality 

Undiscounted LYs 3.839 3.169 2.971 3.032 

Discounted LYs 2.517 2.238 2.148 2.177 

Difference in 

predicted LYs 

Undiscounted LYs 0.355 0.274 0.248 0.255 

Discounted LYs 0.129 0.114 0.108 0.110 

Difference in 

predicted LYs (%) 

Undiscounted LYs 10.2% 9.5% 9.1% 9.2% 

Discounted LYs 5.4% 5.4% 5.3% 5.3% 

In
cr

em
en

ta
l:

 T
A

5
5
9
 

ca
se

 s
tu

d
y
 

Difference in 

incremental life 

years 

Undiscounted LYs 1.183 0.916 0.826 0.851 

Discounted LYs 0.450 0.403 0.380 0.388 

Difference in 

incremental life 

years (%) 

Undiscounted LYs 13.4% 13.6% 13.5% 13.5% 

Discounted LYs 8.1% 8.8% 8.9% 8.9% 

C/e implications* 
Increase in 

justifiable price £17,097 £15,304 £14,456 £14,726 
Key: BSC, best supportive care; C/e, cost-effectiveness; LYs, life years  

* Economically justifiable price calculated assuming that the difference in mortality approaches drives a 

gain in QALYs within only the progression-free state and a PFS utility of 0.76 based on unredacted scenario 

analysis value from TA559 and willingness to pay threshold of £50,000 per QALY  
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