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Abstract

1st Supervisor: Dr. David Richards 2nd Supervisor: Dr. Mike Deeks

Rising temperatures and growing populations are putting increased pressure on

food sources, with pathogens moving polewards in search of more favourable conditions.

Stopping crop losses due to disease would provide enough additional food to solve world

hunger, with spare left over. My PhD has been centred on discovering more about how

plants are able to defend themselves to new or unknown potential pathogens through the

use of the model organism, Arabidopsis thaliana. I have helped to develop a novel method

of stimulating the basal immune response in order to probe different components of this

system.

PEN3, a key defence protein that is transported to the site of infection, was observed

over the initial 20 minutes of an immune response and its accumulation was quantified.

PEN3 transport requires the actin cytoskeleton, which remodels within 30s of artificial peg

contact, therefore I developed an image analysis algorithm to segment and quantify vari-

ous aspects of the cytoskeletal network. This algorithm detected significant differences in

the network of loss-of-function mutants of arp2-1 and formin4/7/8 compared to the wild-

type, yet the PEN3 distributions were functionally identical. These findings, alongside

simulations of PEN3 accumulation with various delivery zone sizes led to the hypothesis

of at least one upstream signalling molecule designating PEN3 secretion into the mem-

brane.

The novel assay, network extraction tool and PEN3 simulations are discussed in

detail, including their limitations and potential improvements as well as other systems

they could be applied to.

© Copyright 2018-2023 Jordan Mark Hembrow.
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Chapter 1

Introduction

There are an estimated 300,000-400,000 species of plants on Earth, with more than 7 million

animal species. The existence of such a vast and wide variety of animals would not be

possible without these plant species. The ability of plants to harness energy from the sun

for their food production and growth, which coincidentally helped tame the surface of the

Earth to make it hospitable (Alcott et al. 2019), provided us a simple, safe and nutritious

form of sustenance. The importance of crops for human survival has been long-standing,

as shown by the evidence of agriculture from at least 10,000 years ago (Tauger 2010), if

not longer, likely as a result of a shift in the global climate into environmental stability,

like we enjoy today. With such a reliance on these crops, ensuring they are able to grow

sufficiently and not be toxic for consumption has also been a concern since the middle ages

(Lieber 1982).

While it had been long known that a toxic fungus was responsible for causing er-

gotism (a disease caused by ingesting grains infected by the fungus Claviceps purpurea)

throughout Europe, evidence of pathogenicity of micro-organisms was not found until

the nineteenth century (Lieber 1982), enabling the development of the plant pathology

field. By the end of the century the cause of wheat bunt—a fungus called Tilletia trit-

ici—and tobacco etch virus had been discovered. In the 222 years that have passed since

then, thousands of plant pathogens have been discovered and categorised, with fungal

and oomycete pathogens being the most prevalent pests. Evolution of disease and the
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rapid acceleration of climate change has made food security a prominent global concern.

1.1 Plants and Their Importance

Solar radiation is a free and abundant resource, accessible from most regions of the planet

surface for a significant portion of the day. While humans are only just beginning to tap

into it as a reliable energy source, plants have been using it for hundreds of millions of

years to great effect. Reliance on the sun allows plants to be (mostly) immobile which is a

great benefit as locomotion is an energy intensive task. This was made possible through

the development of the chloroplast organelle, which originally came from a photosyn-

thetic cyanobacterium. Tracheophytes developed vascular tissue, with specialised xylem

and phloem established in the flowering plants, which harness the capillary effect to pas-

sively uptake water from the soil and roots to the leaf canopy. Leaf cells have small, some-

times controllable holes (stomata) to enable gaseous exchange for chloroplast reactions,

and transpiration in these leaves generates a pressure gradient in the xylem, drawing up

more water (Morris 2018). Through the use of solar energy, water and carbon dioxide

are converted to sugar and oxygen via a complex series of biochemical reactions. These

chloroplasts also have an additional role in plant innate immunity, generating reactive

oxygen species (ROS) for both programmed cell death and systemic acquired resistance

(Littlejohn et al. 2021; Kachroo et al. 2021).

Perhaps the most obvious role of plants, and particularly crops, in human lives is as a

source of food. Approximately 88% of the worlds caloric intake is from plant consumption,

as well as around 80% of our total protein intake (Muhammad and Amusa 2005). While

both of these values tend to be lower in affluent countries due to increased meat consump-

tion, the reliance on crops is even more substantial. From 1990-2007 the consumption of

meat per capita increased by 25%, which coupled with the increase in population resulted

in a 60% rise in meat consumption over 17 years (Henchion et al. 2014). The inefficiency

of an additional step in the food chain requires a significant increase in the mass of crop

needed. In Europe, around 3.1 kg of dry feed is needed for 1 kg of poultry meat, whereas

the figure for pork is 6.2 kg and non-dairy cattle require 24 kg (Alcamo 1994; Ramírez

et al. 2006). Another major issue with this is that the important protein sources in ani-



1.1. PLANTS AND THEIR IMPORTANCE 3

mal feed are soybean meal, which competes with its use in food production, and fishmeal

which has limitations from marine over-exploitation (Chia et al. 2019; Masuda and Gold-

smith 2009; Tacon and Metian 2008). With projections of population growth reaching over

9 billion by 2050, the demand for global food production is expected to increase by 70-85%

over a 35 year period (Ray et al. 2013; Dhankher and Foyer 2018).

A more recent development in crop use is for biomass and biofuels as a result of

pressure to reduce carbon emissions and our reliance on fossil fuels. Biomass currently

provides approximately 14% of global energy needs (Koçar and Civaş 2013), with the most

common biofuels being bioethanol and biodiesel. Both of these are first-generation bio-

fuels which can be used to power vehicles in their purest form, but usually are added as

a supplement to existing petroleum and diesel fuels. The levels of the bioethanol com-

ponent are increasing, now 10% both in the UK and in Formula 1, with up to 25% for

newer vehicles in Brazil (Aggarwal et al. 2022). While some of the biofuel can be made

with the waste from food crops, primarily they are produced using fermentation of sugar

and starch crops which would otherwise be used for food production (Koçar and Civaş

2013). This further increases land use pressure, raises food costs and can add further

dependencies on food, especially for those that do not have enough (Boddiger 2007).

Plants play a huge role in maintaining the climate, and the most frequently refer-

enced benefit is their role in being a carbon sink. While plants do absorb CO2 and produce

O2, they may sequester carbon up to 50 times less efficiently than microalgae (Bhola et

al. 2014; Iglina et al. 2022), therefore in terms of farming it would likely be more beneficial

using microalgae for a given area. Another key benefit of plants is their effect on humid-

ity, water cycle and temperature control. Evapotranspiration of water from the stomata

on a leaf surface increases the relative humidity and decreases the temperature, which

reduces the risk of fire and promotes cycling of water through precipitation. By drawing

water out from the ground and releasing some of it into the atmosphere, the plants can

increase the frequency of rain (such as in tropical forests) and stop the moisture being lost

(Vorosmarty and Sahagian 2000). Plant roots provide an anchor for soil to help prevent

erosion and degradation of the land as well as provide habitats for a host of animals and

microorganisms alike.
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1.2 Threats to Food Security

Since 2019, many countries have officially declared a climate emergency, with climate

change and global warming posing a threat to current lifestyles. These changes in the cli-

mate affect soil fertility, microbial activity, plant growth and carbon sequestration which

has resulted in numerous ramifications for global food security and has already had a sig-

nificant impact on worldwide agricultural production (Dhankher and Foyer 2018). These

issues are exacerbated by the current low diversity and high intensity farming methods

which puts global food security at increasing risk. One of the most concerning changes

is centred around the weather and seasonality (Evangelista et al. 2013). Climate change is

likely to result in a shortened growing period which would be problematic for fruit and

vegetable produce (Malhotra 2017) while also increasing both the frequency and ampli-

tude of extreme weather events such as droughts and floods. This impact will vary be-

tween regions; those with drier climates, such as Ethiopia, will be susceptible to reduced

yields as agriculture is highly reliant on the volume and seasonal occurrence of rainfall

(Evangelista et al. 2013). The increased risk of flooding is bad for crop yields (Malhotra

2017) and unseasonal rains can cause fruits to rot or nuts to blacken, while weather is the

second most important factor of pathogen spread and infection of new diseases (Bebber

et al. 2013). Extreme weather events are likely to increase crop disease and the toll they

take from pathogens, resulting in lower yields and an increased risk of famine (Long et

al. 2015; Dhankher and Foyer 2018).

Increased CO2 levels and rising temperatures go hand-in-hand but mostly have op-

posing effects for plant growth, although it also varies between species. Drought and heat

stress often occur simultaneously and their combined effect on decreasing yield is greater

than the sum of their parts (Zandalinas et al. 2018). While vegetative growth of many

crop species is fairly tolerant of raised temperatures, reproductive growth is not. Even

the most resistant of crops show a decline beyond 26
◦
C while key crops such as rice were

effected at lower temperatures (Boote et al. 2005). These grains had improved yields at

raised CO2 levels, however, so the effects of temperature are partially mitigated, although

under these conditions some crop species show reduced nutritional value (Anderson et

al. 2020). Wheat and barley tend to be less sensitive and more resistant to climate change
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(Ashofteh et al. 2015), although wheat is still expected to see a 4-6% drop in yield for every

degree of global warming (Asseng et al. 2015), and maize is likely to see a 10-30% drop

in yield depending on the emissions scenario (Meza et al. 2008). Cassava, an important

crop in drier regions, and sweet potato are tolerant to drought conditions, but still see

a reduced tuber yield and starch content, as tuber crops tend to struggle with increased

temperatures (Malhotra 2017). Horticultural crops with a C3 photosynthetic metabolism

benefit from the increased CO2 levels, and higher temperatures can increase the rate of

fruit growth, but also run the risk of increased transpiration which can cause dehydration

injuries when combined with a lower relative humidity. Agriculture at high altitudes is

expected to see an increase in yield at elevated temperatures, whereas tropical regions

will see a decline for even a small increase in temperature. Poorer countries, which tend

to be at lower latitudes, are already close to heat thresholds and therefore any increase

in temperature could be catastrophic (Malhotra 2017; Evangelista et al. 2013). Under ele-

vated CO2 levels, alterations to current crop management methods are needed to optimise

any available yield gains (Anderson et al. 2020) while raised temperatures will need to be

managed depending on the region.

Disease has plagued crops and significantly decreased yields for as long as agri-

culture has existed, with 10-20% of crops being lost to pathogens every year and simi-

lar numbers post harvest (Bebber et al. 2013; Bebber and Gurr 2015). Severe pathogen

outbreaks can lead to entire crops being lost: the Irish potato famine in the 1840s was

caused by the oomycete Phytophthora infestans, the 1943 great Bengal famine from the fun-

gus Helminthosporium oryzae, and the African Cassava famine in the 1920s caused by the

Cassava mosaic virus. Fungal and oomycete pathogens are the leading cause of crop dis-

ease, with crop losses that could feed over 8% of today’s population (Fisher et al. 2012).

Evolution of existing and emerging pathogens will continue to be a threat, but climate

change is exacerbating the issue. Since 1960, pathogens have been shifting polewards at

an average speed of 2.7±0.8 km yr
-1

, nearly identical to predictions from warming (Bebber

et al. 2013). There is, however, significant variation between taxonomic groups, with some

pathogens reaching 8 km yr
-1

, resulting in crops being introduced to unusual pathogens,

increasing the risk of disease and the possibility of more catastrophic events. Current

agricultural practices provide little in the way of security from mutations and adaptations
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of pathogens, and tends to favour the emergence of aggression pathogen variants which

may overcome plants defences, fungicides, or both.

Land and water are finite resources, yet agriculture occupies around 40% of the

land surface while using 70% of the total available freshwater resources (Springmann et

al. 2018), therefore the solution to feeding an increasing population will rely on improved

efficiency rather than just increasing land use. The impact of agriculture on the environ-

ment further extends this idea, as it is the biggest driver of biodiversity loss, through frag-

mentation and habitat loss, as well as being the key driver of land use and land use change

(Willett et al. 2019). As a significant amount of carbon is sequestered in soil, the process

of converting land for agriculture is incredibly impactful on the environment (Ostle et

al. 2009), which alongside the downstream effects of deforestation such as regional dry-

ing, increased temperatures, habitat loss and soil degradation, agriculture is responsible

for around a quarter of global greenhouse gas emissions (Springmann et al. 2018), result-

ing in food production being identified as the largest cause of environmental change on a

global scale (Sandberg 2021). As the CO2 levels in the atmosphere become more critical,

alongside rising temperatures, the available land and freshwater are likely to decrease

(Kundzewicz et al. 2008), further exacerbating the issue of increasing crop production.

One key to the solution of mitigating anthropogenic climate change is through broad di-

etary shifts, reducing inefficiencies in the food chain (Robinson et al. 2019). Pulse crops

provide protein and micronutrients in an environmentally sustainable way and will likely

become a more significant component of peoples diets.

Between 1962 and 2012, the world population doubled and cereal crop yield tripled,

while agricultural land use increased by only 30% (Pingali and Broca 2014), meaning av-

erage yields per hectare increased over 130%. Large investments in crop research and

infrastructure enabled this green revolution, through both high yield varieties of crops as

well as a reduction in the time for crop maturity to increase cropping intensity. This re-

sulted in reduced poverty and saved significant amounts of land from being converted to

agriculture (Pingali 2012). While major crops in the developed world, such as wheat, rice

and maize, were the main focus of genetic research, the knowledge gained was adaptable

to those in developing countries (Spielman and Pandya-Lorch 2010; Dethier and Effen-
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berger 2012). From 1960-2000, a 208% rise in wheat yields was seen in developing coun-

tries, as well as 78% for potatoes, 36% for cassava, 157% for maize and 109% for rice (FAO

2004). Projections of population growth from 2015-2050 suggest a required 200 trillion

more calories need to be grown over the 35 year period (Bebber and Gurr 2015), which

combined with the increasing limitations due to abiotic stresses such as water crises and

rising energy costs, has resulted in the call for a new green revolution (Dhankher and

Foyer 2018; Pingali 2012). The use of technology has resulted in yield increases of over 11

times in horticulture crops since 1950 (Hay and Probert 2013), therefore technology will be

required for more efficient deployment of limited resources and to improve agricultural

gains further (Pingali 2012). The blue wavelengths from LED lighting is able to improve

the nutritional value of certain crops (Kopsell et al. 2015), which may reduce the amount

of crop required to be grown. Significant improvements in agricultural efficiency will be

needed to avoid malnutrition, famine and starvation in the future.

Some of the conventional methods of boosting agriculture have proven problematic;

however, with fertiliser use resulting in surface water pollution and ocean dead zones in

some regions (Springmann et al. 2018). The use of pesticides has not been without issue

either, and over the time of their deployment a range of pathogens have developed resis-

tances, with certain compounds overcome in just two years (Lucas et al. 2015). Many of

these chemicals are environmentally stable, leading to bio-accumulation and the possibil-

ity of unwanted toxicity (Fenik et al. 2011). Their continued use may result in pesticide

residues being present in the air, water or in food (Mostafalou and Abdollahi 2013), whilst

only around 1% of pesticides actually reach their intended target (Bernardes et al. 2015).

As the side effects of pesticide use may only be seen in the long term, such as genetic dis-

orders or reduced life span (Poletta et al. 2009), their use has to be carefully managed and

monitored. This, coupled with their significant research and design cost as well as the

rapid evolution of pests somewhat limits the efficacy of pesticides.

Another method of improving food security has been through genetically modified

(GM) crops. This isn’t always feasible, or even beneficial, and the EU has a near blanket

ban on the growth of GM crops (Rasheed et al. 2022). The main trait changes that have

been targeted by GM are herbicide tolerance and insect resistance (Rommens 2010), reduc-
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ing the reliance on pesticides. More complex traits; however, have proven much harder

to achieve, with attempts resulting in either no benefits or even unattractive side effects

(Chen and Lin 2013). Even if advances are made in the field, each specific modification

has to be thoroughly tested before being commercialised. The vast arrays of testing at-

tempt to assess the ecological impacts of each GM crop before use to avoid unwanted side

effects (Lu et al. 2010), which is not only a lengthy process, but is cost prohibitive on top of

the already significant R&D costs. It is difficult to determine the effect of long-term culti-

vation of these resistant strains, but it is possible that it will accelerate the evolution and

adaptation of pests and pathogens (Chen and Lin 2013), similar to the issues seen with

anti-microbial resistance. This phenomenon occurred in Uganda with the UG-99 wheat

stem rust infestation (Pingali 2012) which highlights the requirement of constant GM de-

velopment to remain one step ahead of the pathogens and avoid additional epidemics

(Conway 2012).

Outside of resistance genes, plants have a basal resistance to non-specific pathogens

which allows them to fend off new threats. Specific (host) resistance may be overcome in

2-3 years for some crops (Dean et al. 2012) so reliance on it is not ideal, therefore leveraging

non-host resistance could prove more beneficial. Allowing plants to defend themselves

can boost yields both pre- and post-harvest, as well as reduce pathogen transmission. To

probe this system, the mechanics of infection needed to be studied, and with the main

threat from fungal and oomycete pathogens (Bebber and Gurr 2015), these have often

been a priority. Magnaporthe oryzae causes rice blast, the leading cause of rice crop losses, of

which 50% of the population relies upon for their primary calorie intake (Dean et al. 2012).

It can also form a complex which may cause disease on a range of grasses and crops such as

barley and wheat. Its destructive nature and societal importance has led it to become one

of the model organisms for crop-fungal interactions. Another pathogen that infects wheat

and barley, two of the most relied upon crops worldwide, is Blumeria graminis, which has

become a model for other mildew and biotrophic pathogens (Dean et al. 2012). Alongside

pathogen models, Arabidopsis thaliana has been used as a model plant due to its small size

and rapid growth alongside its sizeable feature set for its small genome. These have been

used in tandem to improve our knowledge on plant-fungal interactions and will continue

to be used in the future.
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A better understanding of plant basal resistance will be critical in the changing land-

scape due to climate change and increasing population demands. Not only are pathogens

moving polewards, increasing reliance on non-host resistance, but wild species are too

(Parmesan and Yohe 2003; Burrows et al. 2011; Chen et al. 2011), suggesting agriculture

should consider doing the same. As yields and farming density rise alongside increased

cropping frequency, the threat of disease grows. With crops becoming a more and more

critical resource, the chance of catastrophe through disease increases. Around 800 million

people are hungry (Gillespie and Bold 2017; Research Institute (IFPRI) 2016) and 2 billion

people suffer from undernutrition resulting in 3.4 million deaths globally (Ng et al. 2014).

This is expected to increase, and disease outbreaks could cause severe loss-of-life on top of

these already significant numbers. The issue of food security is therefore huge, to which

there is no ’silver bullet’: a multi-faceted problem requires a whole host of solutions.

With the push to grow more food, even a static percentage loss means even more

wasted crop. Between 25-30% of globally produced food is lost or wasted, an increase

of 44% from 1961 to 2011 (Anderson et al. 2020). Even a slight reduction in losses will

significantly reduce the number of those that go hungry and the deaths that result. With

current projections of crop yield gains set to fall short of the food demands (Ray et al. 2013),

the fight against disease becomes more critical every day and plant non-host resistance has

a big role to play.

1.3 Introduction to Plant Immunity

Most phytopathogenic fungi have to penetrate plant cell walls at some point in their life

cycle: they can either chose to break through the cell wall of epidermal cells, or they

can determine the cell topology and infiltrate between cells with the aim of first entering

through a stomata, before attempting to penetrate into mesophyll cells. As both methods

require penetrating the cell wall, plant cells have devised methods to protect against this.

The cell wall is a dense, strong structure, therefore a significant amount of force is required

to break through it. Phytopathogens create a specialised structure known as an appres-

sorium in order to achieve this. To aid in their penetration attempt, some pathogens will

secrete cell wall degrading enzymes, weakening it before trying to break through, while
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others generate vast amounts of turgor pressure—in excess of 8MPa (Howard et al. 1991)—

in these appressoria. In order to apply these forces, the pathogen has to attach itself to

the surface of the cell, or neighbouring cells, and in the case of powdery mildews, they

generate a primary germ tube to determine the suitability of the surface for attachment

and penetration (Yamaoka et al. 2006). This stage is critical to the success of the pathogen,

and renders different tissues or even species nearly immune to some different pathogens

(Tucker and Talbot 2001). Depending on the phytopathogen, once inside the cell it will

either begin to colonise while the cell is still living, forming a biotrophic relationship, or

it will kill the cell and digest its contents as a necrotroph.

1.3.1 Zig-Zag Model

The two-branched innate immune system can be partially described by the zig-zag model

(Jones and Dangl 2006), named for the back-and-forth battle between plant and pathogen,

outlined in Fig. 1.1. This model is based upon phenotypic disease outcomes and therefore

is lacking in describing some of the molecular mechanisms, but is a solid starting point for

understanding how both the plants and pathogens respond. The first branch and the ini-

tial response of plant cells is PAMP triggered immunity (PTI), which is always non-specific

and can be successful in its own right (Méndez and Romero 2017). Both the chemical signa-

ture of the cell wall degrading enzymes, or their products, known as Pathogen-Associated-

Molecular-Patterns (PAMPs) and the physical stimulus of an appressorium can begin to

trigger this stage of the plant immune response. The PAMPs, which are often very similar

for a range of different phytopathogens, are detected by transmembrane pattern recogni-

tion receptors (PRRs) (Nishimura and Dangl 2010; Meisrimler et al. 2021), which triggers

reorganisation and reinforcement of the actin cytoskeleton locally (Ma et al. 2022), move-

ment of organelles and subcellular compartments, and accumulation of the cytosol below

the site of infection (Schmidt and Panstruga 2007), which is aided by the filamentous actin

nests. Plant cells are large and the volume of vacuole makes the cytoplasm very confined,

therefore efficient transport and delivery of key proteins requires significant rearrange-

ments of the cytoskeleton and organelles.

Coordinating these changes requires multiple signalling pathways, which also helps
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Figure 1.1: Zig-Zag Model: The primary step is recognition of pathogen associated molecular patterns

(PAMPS) via pattern-recognition receptors to initiate pattern-triggered immunity (PTI). For pathogens that

are successful in proceeding onwards, they produce effectors to suppress PTI and cause effector-triggered

susceptibility (ETS). One of the pathogen effectors may be recognised by the NB-LRR proteins of the plant,

activating effector-triggered immunity (ETI). ETI is an exaggerated version of PTI that may lead to the hy-

persensitive response (HR) and programmed cell death. In phase 3, one effector or suppressor is recognized

directly or indirectly by an NB-LRR protein, activating effector-triggered immunity (ETI), an amplified ver-

sion of PTI that often passes a threshold for induction of hypersensitive response (HR) and programmed cell

death (PCD). Over time, the pathogen may develop new effectors to trigger an addition ETS phase, and the

plant will have to evolve and select for a new NB-LRR protein to detect the effector in order to reach another

ETI stage. The magnitude of resistance to phytopathogens is proportional to PTI – ETS + ETI. Many of the

respective stages overlap and occur simultaneously in reality as the two ssytems compete for dominance.

Figure adapted from Jones and Dangl 2006

to ensure that the response is justified. PTI triggers the activation of both calcium depen-

dant protein kinases and receptor-like cytoplasmic kinases, such as the ten MAP4 kinases

in A. thaliana (Zhang et al. 2018). One of the MAP4 kinases is the Serine/Threonin-protein

kinase SIK1 responsible for efficient deployment of Reactive Oxygen Species (ROS) bursts.

SIK1 stabilises the receptor-like cytoplasmic kinase BIK1 which is responsible for activat-

ing RBOHD (Respiritory Burst Oxidase homolog protein D). This produces an extracel-

lular ROS burst as an immune response, which if compromised can reduce downstream

immune responses (Wang et al. 2014; Kadota et al. 2015).

Phytopathogens are also able to detect changes in the chemical signatures of their

environment and the plant cell surface. These pathogens may secrete effector proteins to

either suppress the effects of PTI, by blocking signalling pathways or counteracting some
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of the effects, or to manipulate non-immunity pathways to aid in colonisation (Meisrimler

et al. 2021), such as enabling nutrition dispersal for the pathogen. This process increases

the susceptibility of the plant and it is therefore called effector triggered susceptibility

(ETS) (Jones and Dangl 2006).

Successfully overcoming PTI can trigger specific dominant resistance (R) genes,

which detect the pathogen effectors. A large proportion of R genes encode a protein with

nucleotide binding (NB) and leucine-rich repeat (LRR) domains (Dangl and Jones 2001)

which detect these effectors and trigger a highly specific response, known as a host re-

sponse. A range of responses are generated through these effectors binding to the NB-LRR

proteins, of which there are 125 in the A. thaliana Col-0 genome, and this process is known

as effector triggered immunity (ETI) (Nishimura and Dangl 2010; Jones and Dangl 2006).

ETI is a extended version of PTI, of which co-activation results in a mutual potentiation of

the individual effects (Ngou et al. 2021). This can lead to enhanced ROS bursts generated

through PTI, or even the host cell activating its hypersensitive response (HR) leading to

cell death (Dodds and Rathjen 2010). The activation of these NB-LRR proteins is highly

coordinated, with signalling through the salicylic acid pathway, as well as jasmonic acid

and ethylene (Glazebrook 2005). The balance between these signalling pathways is chosen

to identify the nature of the pathogen, be it biotrophic or necrotrophic and to therefore

ensure the response is consistent with denying the needs of the pathogen. If the cell does

not enter the HR, the pathogen may secrete new effectors, through mechanisms such as

gene-transfer, causing the cell to enter ETS again. The back-and-forth between ETS and

ETI can continue multiple times, in a zig-zag manner. Even success here will likely induce

HR and cell death which is bad for crop yield and does not always completely deter the

pathogen. There are many additional layers to PTI, and the non-specificity is important

in a changing landscape.

The zig-zag model was developed mainly through data from Arabidopsis thaliana.

In the same way that the fruit fly became a model organism for genomic work, Arabidopsis

thaliana has been used as a model organism in plant and crop biology research, due to its

simplicity and its quick growth, to an even greater extent (Woodward and Bartel 2018).
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1.4 The Use of Model Organisms

A. thaliana is a seed plant that has most of the typical features you would expect (i.e. stems,

apical meristems, stomata which open/close for gas exchange between the atmosphere

and the leaf, roots with hairs, vascular tissue and pollen), while being small, quick grow-

ing and thriving indoors. In the same way that crop density and yield are important to

farmers, the same is true in research. Space is limited and growing large plants which take

a lot of time and energy is expensive. The smaller the time taken for these plants to grow

to maturity and produce offspring is important, as many genetic crossings require addi-

tional generations to be grown to ensure homozygous genes. Crops which are happy with

small fluorescent bulbs or LEDs as a source of light, and can grow in media other than soil

can massively improve the efficiency of research by increasing throughput and overhead.

The benefit of such a flexible crop is that many environmental factors can be controlled.

The use of LEDs can enable research into the effect of different and very specific wave-

lengths of incident light in the growth and development of the plants. This flexibility and

hardiness allows them to grown in growth chambers where the length of the day, light

intensity, water availability, atmospheric carbon dioxide content and humidity can all be

closely controlled and monitored. Many A. thaliana seeds can be grown in a petri dish,

allowing quick and efficient testing of drugs, growth media and nutrient content. This

can also be used to check the viability of certain lines without requiring significant wait

times.

A. thaliana is not only small in physical size, but it also has a comparatively small

genome (Provart et al. 2016; Cheng et al. 2017), while containing genes showing equiva-

lence to many of the features of key crops we are interested in. Despite noth being diploid

species, maize (Zea mays) and barley (Hordeum vulgare) still have genomes at least ten times

larger in size relative to A. thaliana, while common wheat (Triticum aestivum) is hexaploid

with an incredibly complex genome. The benefits of the small A. thaliana genome is that

these genes can easily be screened, tested and altered, often just by looking at the pheno-

typic outcomes and this can be translated to work in other species. This also meant that the

full genome of A. thaliana was available much earlier than other species (Nishimura and

Dangl 2010), increasing its popularity and therefore knowledge surrounding the species,
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enabling hypothesis testing at a greater rate. On the other hand; however, the lack of plant

mass can also be a detriment, where proteins, DNA or metabolites are to be extracted

(Woodward and Bartel 2018; Weckwerth 2003). Any time gained in using a smaller or-

ganism may be lost when having to use more plants and cells for extraction, especially as

any of these can be time consuming and technically challenging tasks.

One difficulty of studying a biological system is the vast array of interactions that

are taking place. Science is often reductionist in approach, and therefore the system being

tested is reduced to the most simple version possible, with one variable carefully adjusted

while the rest are controlled. The issue with taking out various components of a biological

system is that other systems may either be upregulated or downregulated to compensate

(Van Regenmortel 2004) or vary due to their developmental stage (Benfey and Mitchell-

Olds 2008). While this can be helpful in of itself, it makes testing hypotheses in vivo more

difficult (Van Norman and Benfey 2009). This is where a fundamentally more simplistic

system is beneficial. Anything that cannot be controlled has to be accounted for, and this

reduces the power of any scientific experiment, therefore smaller, more simple organisms

reduce the number of variables that have to be controlled or measured, while also being

quicker to grow and test, increasing throughput. This significantly increases the power

of an experiment and therefore enables more detailed testing and analysis to take place.

The use of model organisms isn’t perfect; however, and any work done needs to be

translated and tested in the system you are eventually concerned with. Work also needs to

be done in the first place to determine which model, if any, is suitable. Many land plants

require arbuscular mycorrhizal fungi for nutrient and water absorption, yet A. thaliana

does not associate with these fungi at all (Woodward and Bartel 2018). While this allows

it to thrive in aseptic conditions, some of the strigolactone chemical signals for promotion

of this symbiotic relationship are missing, therefore A. thaliana may be unsuitable for this

work. This initial overhead, which may yield nothing of value, can be a deterrent, but as

complexity of research increases, this overhead becomes less significant. The simplicity

of a model aids in testing a plethora of hypotheses in a short time, indicating what needs

to be investigated in greater detail on the final organism, while also aiding in refining or

developing new methods. Every process takes time, and more importantly has a cost -
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using a model is a way of improving efficiency, aiding in reducing both of these limitations.

While the findings may not be indicative of any equivalent results in the organism of

interest, more often than not it provides key insight and knowledge which aids in the

search (Somerville 2001; Provart et al. 2016).

The small size of A. thaliana is perfect for microscopy, and the quick growth time is

perfect for development of new techniques, both in terms of data collection and analysis.

As A. thaliana is frequently used as a model organism and its seeds take up a very small

volume, many seed banks with various genetic lines are available throughout the world,

such as the Eurasian Arabidopsis Stock Centre for European and Asian distribution or the

Arabidopsis Biological Resource Centre for America. This reduces the time taken for any

experiments to get up and running, as fewer transformations are required in-house, and

can also reduce the cost, both in terms of training and qualifications and well as reducing

the number of reagents and equipment needing to be bought and stored. This also enables

testing and validation through third parties to be as consistent as possible, helping to en-

sure reproducability in any discoveries. This is vital in any model, as translating methods

and assays to more complex systems can prove difficult. Simple reproducability in the

model ensures that any issues found in the next step are not due to issues in the model

system, and therefore any differences found can be confidently stated as an outcome of

additional interference and complexity, as opposed to a mistake. While gene editing is

much more simple and significantly cheaper than it used to be, especially since the dis-

covery and deployment of the CRISPR/Cas9 system (Li et al. 2013), it is still non-trivial

and requires validation before any large-scale experimentation can begin.

A. thaliana has already proven its worth as a model system of plants and crops (Mar-

tin et al. 2002; Singh et al. 2015; Wĳk and Kessler 2017; Provart et al. 2016; Somerville

2001; Llave et al. 2002; Park et al. 2002; Reinhart et al. 2002) and therefore has been cho-

sen for the research here. Many of the pathways of photorespiration, a mechanism to

reclaim some inefficiencies of photosynthesis in hot, dry conditions, were found first in

A. thaliana (Woodward and Bartel 2018). It was also one of the key organisms used in

the discovery of the MADS-box genes, their roles and interactions in floral development

(Woodward and Bartel 2018). The first plant microRNAs were discovered in A. thaliana
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and many breakthroughs in signalling pathways, such as the blue photoreceptor required

for phototropism and receptors for auxin, the plant growth hormone, also came from this

organism (Woodward and Bartel 2018). The ease of testing in A. thaliana enables the use

of reverse genetics in other systems, speeding up the process of locating genes relating to

a particular function. In-depth knowledge of the genome enables genes and functions to

be translated to other species so their benefits can be shared. An A. thaliana transcription

factor, MYB12, which is responsible for producing a chemical synonymous with markers

for cardiovascular health was successfully expressed in tomatoes, significantly enough to

change their colour (Woodward and Bartel 2018).

Research into resistance genes in A. thaliana may not be transferable to other organ-

isms depending on the species context or due to the differences between monocots and

dicots, therefore it is only really applicable on a case-by-case bases. Research into the basal

resistance of A. thaliana; however, could provide useful insight into the mechanisms plant

cells and tissues employ. These systems are fairly fundamental and therefore are likely to

have similarities between species, at least in part, therefore the choice of a model organism

is appropriate.

1.5 Focal Immune Response

Non-host resistance is defined as an entire plant species being resistant to a pathogen

(fungi, oomycetes, bacteria or viruses) but the same pathogen has the ability to infect

other plant species (Bent and Mackey 2007; Fan and Doerner 2012; Bellincampi et al. 2014;

Méndez and Romero 2017). A diverse range of proteins are recruited and transported to

the site of infection during the non-host response, in an effort to mitigate the effects of the

phytopathogen and to reinforce the cell wall and surrounding structures against the forces

of the appressorium (this is true in a host response, too, albeit often far less successfully).

The end goal is to produce the papilla, a cell wall apposition (CWA) localised to the site

of attempted penetration which will arrest the advances of an appressorium. The CWA

is a complex structure, consisting of callose, proteins, some inorganic compounds and at

times, reactive oxygen species. This extracellular release of proteins, secondary metabo-

lites and cell wall materials requires trafficking of secretory vesicles to the plasma mem-
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brane before secretion via exocytosis can be performed (Yun et al. 2022). The remodelling

of the actin cytoskeleton under the infection site is important for cytoplasm accumula-

tion and aids in the transport of vesicles and organelles along the network. This process

takes less than a minute for visible changes (Branco et al. 2017), and inhibiting this process

significantly decreases immune competency (Li and Day 2019; Henty-Ridilla et al. 2013)

therefore it has become a frequent target for pathogen effectors (Yun et al. 2022). Cy-

toskeletal remodelling also enables the transport of FORMIN4 to the infection site, which

is found to be upregulated during penetration attempts (Sassmann et al. 2018), where they

are added to the membrane in a punctate pattern. These FORMIN4 nano-domains are re-

sponsible for further development of the filamentous actin network under the infection

site, and remain there as a marker to signify the infection.

Penetration defence genes are activated in PTI, such as PEN1-PEN4, which are all

linked to the efficacy of the non-host response and have a range of roles (Johansson et

al. 2014). PEN1 is a plant syntaxin, a membrane-integrated protein that forms part of

the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) com-

plex which is instrumental in vesicle exocytosis (Takemoto et al. 2006). It is transported in

vesicles to the infection site, where it is responsible for timely deposition of key CWA com-

ponents such as callose into the into the apoplast. PEN1 undergoes continual shuttling

between the trans-golgi network (TGN) and the plasma membrane; it is suggested to work

at the TGN, mediating the fast recycling of papilla material (Rubiato et al. 2022). The loss

of PEN1 function in A. thaliana results in almost 90% of barley powdery mildew Blume-

ria graminis f. sp. hordei (Bgh) successfully penetrating the cell wall (Collins et al. 2003).

While PEN2 is associated with the periphery of peroxisomes (Lipka et al. 2005), this re-

mains to be a subpool of the protein and focal accumulation around the infection site is

transient. The main PEN2 population is localised to the membrane of mitochondria, of

which a sub-population have been shown to be fixed in proximity to the focal response

site (Fuchs et al. 2016). These mitochondria show redox imbalances and it is hypothesised

that these imbalances may lead to signalling changes important to the immune response.

PEN4 acts with PEN2 in the synthesis of the phytochelatin synthase peptide, which plays

a key role in heavy metal tolerance (Hématy et al. 2020) and PEN4 also aids in synthesis

of indole glucosinolates, with loss-of-function mutants showing reduced immune com-
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petency. PEN3 encodes PDR8, an ATP binding cassette (ABC) transporter protein (Stein

2006) which is distributed evenly across the plasma membrane during normal cell opera-

tion. Its role is to transport toxins from the cell to the apoplast (Matern et al. 2019), such as

indole glucosinolates, and accumulation of these toxins has been linked to the activation

of the salicylic acid (SA) pathway during pathogen invasion (Stein 2006). Upon detec-

tion of an attempted invasion there is an increase of PEN1 and PEN3 recruitment, while

PEN3 away from the infection site is recycled into endosomes and transported along the

actin cytoskeleton, via myosin motors, before being enriched at the infection site. Like

FORMIN4, these have been shown to be organised in a punctate pattern, although these

endomembrane domains are distinct from those containing FORMIN4. These penetra-

tion defence proteins are recycled and transported, reaching a steady state of enrichment

on the time scale of 1-4 hours (Sassmann et al. 2018) while CWA formation and matura-

tion is closer to a 24-48 hour time scale (Shimada et al. 2006). The increased density of

PEN3 at and around the appressorium is hypothesised to enable better excretion of toxins

and compounds which suppress PAMPs and effectors, enabling formation of papillae and

the CWA before maturation of the appressorium and without requiring a hypersensitive

response. This process is less impactful on plant growth and crop yields, while being

non-specific and not requiring additional genes.

In order to facilitate the endocytic recycling, lipid flippase proteins are recruited for

vesicle formation. As PEN3 is constantly being recycled between the plasma membrane

and the TGN/early endosomes, any inhibition of the lipid flippase, such as is seen in the

ALP3 mutant in A. thaliana, will result in a significant bottleneck and therefore a drop in

the membrane concentration of PEN3 (Underwood et al. 2017). Other immune defence

proteins, such as PEN2, are also suggested to be cycled through the TGN, so any bottleneck

would be devastating for penetration defence. Transport and positioning of the TGN is

also therefore likely to be important in the timely delivery and enrichment of penetration

defence proteins. While still not completely understood, the benefits of strengthening the

non-host immune response are significant in terms of global food security and efficiency

of crop production.

Activated signalling complexes are constantly being turned over during PTI and
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ETI, mediated by receptor endocytosis (Li and Day 2019) in order to maintain surveillance

for the immune system (He et al. 2017). The majority of the plasma membrane integrated

immune system components used during PTI are controlled through clathrin-mediated

endocytosis (CME), which relies on the actin cytoskeleton (Nagawa et al. 2012). This is

achieved by loading a clathrin coat onto the membrane components, enabling the com-

ponents to attach to actin filaments, which can then polymerise and grow (Li and Day

2019), a process known as actin flow (Kaksonen and Roux 2018). In animals, actin flow

is mediated by myosin and the Arp2/3 complex, although in plants the Arp2/3 complex

may not be necessary as the mutant in A. thaliana is non-lethal (Li et al. 2003), which would

be expected if CME was inhibited.

1.6 Actin Cytoskeleton

Amongst a multitude of other functions, the cytoskeletal network, prevalent in almost all

eukaryotic cells, provides physical shape and structure to cells, aids in cell growth, and

plays a key role in trafficking (Liang and MacRae 1997). Formed from polymerisation of

discrete protein sub-units, the cytoskeleton connects to various organelles (including the

nucleus) and the plasma membrane. This modular nature of the cytoskeleton allows it

to be dynamic, adapting as necessary to environmental changes relayed via a host of sig-

nalling processes (Schmidt and Hall 1998). Many of the cytoskeletal sub-units have been

highly conserved during evolution and are found in most eukaryotic cells, with homo-

logues even present in some prokaryotes (Wickstead and Gull 2011).

The cytoskeleton is typically divided into three distinct components: microtubules,

intermediate filaments and actin (Fletcher and Mullins 2010; Jülicher et al. 2007). Micro-

tubules, the thickest cytoskeletal component at about 25nm in diameter, are hollow tubes

consisting of repeated 𝛼- and 𝛽-tubulin sub-units (Wade 2009). In animals and fungi,

they play a number of roles including aiding in the formation of flagella or cilia (Vladar

et al. 2012), providing structures for material transport, and positioning of the mitotic

spindle during cell division (Nédélec et al. 1997). In plants, microtubules retain a role in

cell division but also guide cell wall development through their relationship with wall-

building enzyme complexes in the plasma membrane (Paredez et al. 2006).
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Unlike the globular units of microtubules and actin filaments, intermediate fila-

ments are themselves constructed from filamentous sub-units, and confer strength as well

as stress resistance to the cell (Fuchs and Weber 1994). Although they are present in almost

all mammalian cells, their existence in plants is still hotly debated (Nick 2020).

Finally, actin filaments, also known as microfilaments, are the narrowest compo-

nents of the cytoskeleton and are constructed from globular actin sub-units (G-actin) that

assemble to form a helical structure 5-7 nm in diameter (Pollard and Borisy 2003). In com-

bination with myosin motors, actin aids in transport by providing the roads and pathways

for cellular cargo (Brawley and Rock 2009). Actin microfilaments are present as both in-

dividual filaments and bundled into thicker filaments, and play a key role in plant cell

growth and internal transport (Svitkina 2018).

1.6.1 Actin in Plants

Although actin is present across eukaryotes, there are important differences between king-

doms, not least in plants. The versatility of actin enables it to play a key role in many as-

pects of plant life, including root tip growth (Geitmann and Emons 2000) and cell division

(Paez-Garcia et al. 2018). The ubiquity of the actin cytoskeleton, alongside the fact it can

be constantly remodelled in response to external forces and environmental factors, means

that active, directional transport is always available throughout plant cells. This transport

is particularly fast in plants, with Golgi speeds reaching up to 7 µm s
−1

(Geitmann and

Nebenfãhr 2015). This speed is key for transport in long cells such as the hypocotyl. To

enable these speeds the actin cytoskeleton typically runs mainly parallel to the long axis of

the cell, sandwiched between the vacuole and the plasma membrane and perpendicular

to the orientation of microtubules (Sampathkumar et al. 2011). The network consists of

two distinct populations: the fine F-actin arrays that undergo rapid and stochastic remod-

elling with polymerisation rates in A. thaliana hypocotyls reaching 1.7 µm s
−1

(Thomas

2012), and the thicker bundles responsible for long-range transport.

The actin cytoskeleton in plants is regulated through a large array of genes and pro-

teins that are coordinated by numerous signalling pathways. External influences on the

cell, whether from environmental factors (such as light or temperature) or other organisms
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(such as pathogens like Blumeria graminis that can attack the cell well through enzymes

or physical forces), can stimulate these pathways, triggering adaptations in the actin net-

work to counter the stimulus. Actin plays a key role in the response to pathogen attack,

rapidly remodelling itself at the site of the plasma membrane where the pathogen makes

contact (Schmidt and Panstruga 2007; Henty-Ridilla et al. 2013). F-actin aggregation at the

attempted penetration site, which enables cytoplasm accumulation (Takemoto et al. 2006),

can occur within approximately 20 seconds and can be triggered by small applied forces

of only 4 µN (Branco et al. 2017). Depolymerisation of actin using drug treatments causes

the catastrophic failure of this focused penetration defence (Kobayashi et al. 1997), as the

transport of key defence proteins such as PEN2 and PEN3 is actin-dependent. Conversely,

crop breeders have taken advantage of a mutation named mlo that enhances the actin

response in barley to offer increased protection against some types of fungi (Miklis et

al. 2007). Pathogens are under selective pressure to adapt their repertoire of secreted ef-

fector proteins to suppress plant defences, including the actin cytoskeleton (Leontovyčová

et al. 2020). Pseudomonas syringae secretes the effector protein HopW1 which results in the

reduction of f-actin and inhibits exocytosis, a key (actin-driven) process of plant immunity

(Kang et al. 2014). The SA-pathway has been shown to be triggered by actin disruption

(Matoušková et al. 2014; Kalachova et al. 2020), resulting in SA accumulation and acti-

vation of SA-responsive genes. SA binds to and alters the effects of many proteins to

aid in defence from biotrophic pathogens, and activation of the SA-pathway is important

for systemic-acquired resistance (SAR) which may lead to improved plant resistance to

pathogens (Leontovyčová et al. 2019). Barley powdery mildew fungi can secrete effec-

tors (ROPIP1) which target the microtubule array, another component of the cytoskeleton

(Sabelleck and Panstruga 2018). Local destabilisation of the cortical network architecture

would likely support fungal penetration.

1.6.2 Properties of Actin

Monomers of actin (G-actin) can be assembled into filamentous actin polymers (F-actin),

initially through the nucleation of G-actin into a trimer, before additional G-actin units are

sequentially added (see Fig. 1.2) (Rottner et al. 2017). One end of the filament (called the

barbed or positive end) has an exposed ATP binding site that is missing from the other
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end (the pointed or negative end), thus giving the structure an overall polarity (Narita

et al. 2012). While polymerisation occurs at both ends, the barbed end has a significantly

increased rate of assembly. G-actin monomers can also leave both ends, resulting in dis-

assembly. G-actin monomers bound to ATP are more likely to be assembled, shortly after

which the ATP is converted to ADP-Pi through nucleotide hydrolysis. After a delay, es-

timated to be around the order of seconds (Burnett and Carlsson 2012), the Pi is then

released, leaving just ADP in the binding site (Neuhaus et al. 1983). The various ADP-

ATP combinations contained within the nucleated monomers gives an indication of the

age of that part of the filament, which can be detected by disassembly machinery such as

Actin Depolymerising Factors (ADFs; also known as cofilins) (Henty-Ridilla et al. 2014).

Filament polarity results in frequent growth at the barbed end and disassembly at the

pointed end, known as treadmilling, which allows the structure to be adaptive to changes

in conditions and external forces. F-actin can also bundle together, forming thicker and

straighter filamentous structures that are more stable and have a longer lifetime. These

cross-linking and bundling processes are initiated by proteins such as villin and fimbrin

(Tang and Janmey 1996).

A range of actin binding proteins (ABPs) work in harmony with the cytoskeleton to

enable a higher level of organisation (see Fig. 1.2). For example, the actin related protein

(ARP) 2/3 complex is an actin nucleator (Deeks and Hussey 2005; Mathur 2005), which

works alongside a range of formins, aiding in the control of the rate and timing of actin

assembly and branching (Vidali et al. 2009; Deeks et al. 2010). ADF/cofilin and cyclase

associated protein (CAP) bind to G-actin and help to regulate the available pool of actin

monomers for assembly (McCurdy et al. 2001). Capping proteins bind to the barbed end of

F-actin and prevent both assembly and disassembly, thus controlling length and growth.

Conversely, severing proteins such as ADF/cofilin and villin sever filaments (Hussey et

al. 2006), usually towards the pointed end where the actin is bound to ADP (Deeks et

al. 2002) and so shorten the filament whilst creating a new barbed and pointed end.

Profilins are proteins that work in collaboration with plant formins to regulate sev-

eral aspects of cytoskeletal development and growth. A. thaliana contains five isoforms

of profilin, of which AtPRF3 has been found to have a disordered region that has a high
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Figure 1.2: Actin network dynamics. Actin within the cell consists of both single monomers (G-actin) and

branched filaments (F-actin). Filaments have an orientation, with a barbed end (+) and a pointed end (-).

Polymerisation and disassembly can occur at both ends, but polymerisation typically occurs at a higher rate

at the barbed end, while disassembly is more common at the pointed end. A range of proteins and signalling

pathways contribute to the turnover of actin monomers, which drives the structure of the actin cytoskeleton

and enables a high level of organisation and adaptation. The Arp2/3 complex is involved in filament nu-

cleation and branching, while capping proteins bind to the barbed end to prevent both polymerisation and

depolymerisation. Severing proteins such as ADF/cofilin can break the filament into two pieces, creating an

additional barbed and pointed end.

affinity for the polyproline region of formin. AtPRF3 binding to formin and then subse-

quent quick oligermerisation has been shown to inhibit AtFH1-mediated actin nucleation.

In response to PAMPs, the transcription of AtPRF3 and protein degradation are altered

in order to modulate actin turnover (Sun et al. 2018). During plant immune responses

this contributes to cytoskeletal remodelling and ensures the maintenance of the filamen-

tous actin nests in proximity to the attempted penetration site (Qin et al. 2021; Sassmann

et al. 2018).

The numerous types of protein working in concert to keep the cytoskeletal network

organised allows it to be adaptive and efficiently restructured as required. ADF (Henty-

Ridilla et al. 2014, profilin (Sun et al. 2018), formin (Sassmann et al. 2018) and the ARP2/3

complex (Qin et al. 2021) have all been implicated in the changes in structure and dy-

namics that place the actin cytoskeleton in a defensive poise against microbes. Each will

have a subtle input into the behaviour of the actin array and decoding these contributions

provides information about the key control points driving defence. Unfortunately, uncou-

pling the cascade of signalling molecules and cytoskeletal regulatory proteins is a complex
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process, therefore there is still a lack of understanding regarding the coordination of these

local actin and trafficking responses.

1.7 Previous Immunity Studies

Powdery mildews are one of the most studied pathogens in innate plant immunity and

they have been shown to have reduced penetration success post-lignification of papillae

in cereals. Lignification is essentially the process of creating wood, and it is achieved

through the synthesis of monolignols that are polymerised to form lignin. A series of

eight genes are responsible for monolignol synthesis in wheat, with 6 of these gene tran-

scripts accumulating in near synchronisation. Gene silencing was achieved with RNAi

by particle bombardment, and showed that the host immune response to wheat powdery

mildew B. graminis f. sp. tritici (Bgt) was only 60% successful. For a non-host response

using barley powdery mildew—Bgh—there was a 300% increase in successful penetra-

tion attempts, highlighting the importance of papillae lignification in successful immune

responses (Collinge 2009).

Phosphatidic acid (PA) and ROS are elevated in PTI, and the timing of their in-

creases roughly correlates with rearrangements in the actin cytoskeleton (Cao et al. 2022).

Isoforms of the lipid PLD𝛽 have been shown to be required for actin accumulation dur-

ing PTI in response to flg22, a PAMP widely used in basal defence studies (Jelenska et

al. 2017). PA generated by the PLD𝛽 signalling pathway (Wang 2004) acts upstream of

ROS signalling to inhibit capping protein activity which drives the actin cytoskeletal re-

modelling.

The importance of the cytoskeleton in achieving a competent immune response is

highlighted by simultaneous remodelling of the actin network in response to pathogens

due to signalling from both the internal plant response mechanisms and the effectors se-

creted by a pathogen (Li and Day 2019). The cellular response that is plant-regulated is

hypothesised to support immune signalling and downstream defence signalling (Day et

al. 2011), as several PAMPs (e.g. flg22 and chitin) have been shown to trigger PRRs which

results in actin reorganisation in A. thaliana epidermal cells (Henty-Ridilla et al. 2013;
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Henty-Ridilla et al. 2014) and guard cells (Shimono et al. 2016). The cytoskeletal reorgan-

isation is seen as actin bundling at the interface of a mature appressoirum from avirulent

bgh, but the changes are not seen with virulent bgh strains (Miklis et al. 2007), suggesting

the pathogen suppresses the response in order to make the host cell more susceptible. P.

syringae has been shown to disrupt and modify the microtubule network with its HopZ1a

effector (Lee et al. 2012), in an attempt to disrupt key immune processes such as trafficking,

while another of its effectors—HopW1—directly depolymerises f-actin during infection

(Kang et al. 2014). This can result in fragmented regions of the network, blocking protein

trafficking and endocytosis.

The cytoskeleton has been shown to exhibit two distinct populations of actin: the

finer filaments which display stochastic and very dynamic behaviour, and the thicker bun-

dles which are much more stable but still undergo near-constant remodelling. These fine

filaments polymerise at extremely high rates: 1.7 µm s
−1

in A. thaliana hypocotyl epider-

mal cells (Thomas 2012) and undergo remarkable buckling and straightening behaviour,

likely caused by manipulation from transiently binding microtubules (Sampathkumar et

al. 2011). The cytoskeleton is coupled to the plasma membrane, which enables it to sense

and transduce a variety of external signals from the cell wall and relay it to the cell.

Network analysis of the actin cytoskeleton in A. thaliana hypocotyl cells in relation

to transport of the TGN revealed several properties which enabled efficient transport even

in times of disruption (Breuer et al. 2017). Tracking of both the TGN and analysis of the

position and thickness of actin cables revealed that golgi transport was essentially mostly

reliant on molecular motors and the cytoskeleton, not passive diffusion or even cytoplas-

mic streaming. This network organisation can be used to predict movement of the TGN as

well as provide information about the functional requirements. The algebraic connectiv-

ity of the network, describing how many redundant paths are available between the start

and end points, was significantly higher than a random network, ensuring efficient trans-

port even if routes are blocked or the network is undergoing distinctive changes, such as

during growth or PTI. This is particularly relevant to hypocotyl cells as they are under-

going rapid elongation in search of sunlight. The cytoskeleton is also tuned towards a

shorter path length, in order to increase accessibility of the network, which is key given
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the slow rate of diffusion in a congested cytoplasm. The wiggling nature of the move-

ment of the TGN has the same power law distribution as foraging animals and microbes,

an optimised search strategy, displaying the efficiency of transport which enables rapid

and effective PTI.

Microneedles can be used to stimulate an immune response in plant cells due to

physical pressure and cell wall damage. The reorganisation can take less than two minutes

to be completed, with the initial changes being visible about 22 seconds despite very small

forces, down to 4 µN being applied (Branco et al. 2017). The speed of reorganisation is

likely due to this process being vital for subsequent steps in the immune response, such

as the transport of key defence proteins. Research has previously shown that the speed

of CWA formation is related to the effectiveness of the plant basal response (Hückelhoven

2014; Voigt 2014) and gentle physical stimuli can improve immune defences (Benikhlef

et al. 2013). Moving the stimulus to a different region of the cell, or an adjacent cell, after a

response was noted, yielded a near identical response, therefore highlighting that a single

cell can defend from multiple penetration attempts in succession. Whether the responses

could occur simultaneously remains to be seen.

1.8 Thesis Overview

The next chapter will introduce a range of different quantitative techniques that are used

both in this research and the broader field, as well as introducing the role of mathemat-

ical modelling and what these models hope to achieve. The third chapter will cover the

experimental set up of artificially generating an immune response, discussions of the va-

lidity of these methods and our findings in the transport and distribution of PEN3 in

the membrane. Chapter four covers the development and testing of the image analysis

software—DRAGoN—as well as its limitations and the motivation behind it. The next

chapter analyses the experimental results of using DRAGoN on acquired data of the actin

cytoskeleton in A. thaliana and discusses the implications of the outcomes. Chapter six

shifts the focus back to PEN3, using experimental data to determine its diffusion coeffi-

cient in the membrane. From here, we model PEN3 delivery and distribution in an attempt

to determine why the site of enrichment is shaped and sized as it is. The seventh chapter



1.8. THESIS OVERVIEW 27

will discuss the implications of my research in the wider field and what should be done

moving forward, and how this might aid in the goal of achieving global food security. The

final chapter will summarise and conclude my findings with a brief look to the future.
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Chapter 2

Quantitative Techniques and

Modelling

Before the introduction of various metrics to quantify the quality of research and its impact

(such as the H-index), scientific research tended to be focused on a single discipline (Morris

and Tusscher 2021), especially as many of the foundations of each discipline were still in

their infancy or even undiscovered. While many keep their research solely locked into one

specific area in order to optimise these metrics, the value of interdisciplinary research is

beginning to be realised. As biologists begin to look deeper and down at a much smaller

scale, effect sizes can reduce while noise remains persistent, making changes more subtle

and harder to detect. The role of quantitative methods, mathematical modelling, and

especially statistical testing begin to become increasingly apparent, somewhat blurring the

lines between biology, physics and mathematics, and this continuous dialogue between

experiments and theoretical models will be instrumental in future progress (Morris 2018).

2.1 Quantitative Techniques

Understanding the underlying physics behind transport mechanisms is important to es-

tablish how plants respond to their environment, and an understanding of the physical

forces at play is important for plant growth and development (Tomkins et al. 2021). Quan-

titative approaches in plant biology have led to a host of ground-breaking discoveries
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(Morris and Tusscher 2021), and as there are many sources of noise in the world, robust

quantitative techniques are required for responsible analysis (Autran et al. 2021).

Quantitative methods historically have aided the research into guard cell ion dy-

namics as well as calcium signalling (Tomkins et al. 2021), with image analysis also proving

fruitful. Some calcium signalling in plants is long-range, directed along vascular tissue,

and through the use of image analysis, it was shown that these signals are likely medi-

ated by diffusion (Bellandi et al. 2022). By wounding cells, observing and quantifying

the movement of amino acids, it was shown that these calcium channels are activated

by the amino acids, which arrive by diffusion in the apoplast. Tracking of the calcium

revealed that it is transported by bulk flow over long distances, but this calcium isn’t suf-

ficient to trigger all immune responses and therefore other mobile chemical messengers

are required.

Some phytopathogens use open stomata to get deeper into the leaf tissue before at-

tempting to penetrate cell walls. Because of this, guard cells may detect PAMPs through

PRRs on their surface and close stomata as an immune response (Li and Day 2019). Us-

ing image analysis, it was possible to quantify this process in response to environmental

cues and mutants (Bourdais et al. 2019), and would be useful in testing effectors which

attempt to reopen stomata (Asai and Shirasu 2015). The use of automation enables high

throughput of data with minimal bias, and release of the software enables transparency

and repeatability of this method.

Transport of cargo is an area which image analysis can prove highly useful and

this has been utilised on several occasions (Breuer and Nikoloski 2015; Breuer et al. 2017;

Weichsel et al. 2010). Kymographs represent spatial positions over time, and this can

be used with time-series images to determine both speed and direction of cytoskeletal

cargo (Racine et al. 2007). Quantitative comparisons of the trajectories of the vesicular

cargo, combined with information of the underlying microtubule network, showed that

the network was main factor in the transport trajectories, rather than the actual cargo itself.

The role of the cytoskeletal network in transport makes it a highly explored area of

plant cell biology, yet many questions still remain. Analysis of the coherence of an image
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(i.e. the amount and quality of clear structures) revealed that it is a sufficiently accurate

statistic to detect global alterations in cytoskeletal organisation (Weichsel et al. 2010), al-

though does not describe the specific changes. The density of the cortical cytoskeleton in

A. thaliana has been estimated by filtering and skeletonising images of the actin network,

then counting the fraction of pixels in the skeleton compared to the ROI size (Rosero et

al. 2014). This technique was sensitive enough to detect quantifiable differences between

a mutant and the wildtype, as well as after a depolymerising drug treatment. As actin

bundles are brighter than their unbundled counterparts, increased measurements of the

skewness of the intensity distribution of actin images has been used to quantify the pro-

motion of filament bundling.

Breuer et al. have developed an actin network extraction tool called CytoSeg (Breuer

et al. 2017; Nowak et al. 2020), which leverages a Python backend with GUI implementa-

tion in ImageJ. The actin network is described by a weighted graph (i.e. a mathematical

network of nodes connected by weighted edges) which builds upon the DeFiNe method

(Breuer and Nikoloski 2015). This yields powerful and simple analysis for transport net-

works, including routing and distances travelled, well-suited for analysis of vesicle and

organelle transport. However, one limitation of this approach is that filaments are repre-

sented by straight lines, a simplification that can miss key properties of actin networks such

as filament curvature. Not knowing the full network shape (with realistic non-straight fil-

aments) can make network analysis more difficult and can miss subtle network changes

that are often seen in mutants and drug treatments.

Many of the methods required to ’beat’ the diffraction limit and achieve super res-

olution require quantitative techniques (Huang 2010; Komis et al. 2015). Single molecule

localisation microscopy methods (e.g. PALM, STORM) reconstruct an image based on sev-

eral frames, each with a single molecule either temporarily localised (PALM), or a fixed

molecule is temporarily emitting (STORM). These events are diffraction limited, but by

knowing the point spread function of the imaging setup and by determining the centre

of each emission, the points can be superimposed to achieve a single, super resolution

image.
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2.2 Statistical Testing

When analysing quantitative data, it is important to perform sufficient statistical testing in

order to determine whether the null hypothesis should be accepted or rejected. Depending

on the type of data variables (e.g. discrete or continuous), the distribution of the data, or

the total number of groups being tested, a range of statistical tests are available. The first

step is to explore your collected data to learn its properties, such that the correct test can

be selected. Here I will detail a few of the more common tests, as well as those that were

useful for my data.

2.2.1 Chi-squared Test

When observing phenomena which either occur or do not occur, the total occurrence is

usually reported as a frequency in the range [0,1], a percentage, or as a total count for each

outcome. As this data is discrete, comparing means or standard deviation is not appro-

priate. In this case, a chi-squared (𝜒2
) test is needed. This non-parametric test analysing

discrete data across multiple (2+) groups was first introduced by Karl Pearson in 1900

(Mendenhall et al. 2003; Rayner et al. 2011). The groups are tested in a pairwise manner,

with the differences between observed 𝑂 and expected 𝐸 observations being calculated

as,

𝜒2 =

𝑛∑
𝑖=1

(𝑂𝑖 − 𝐸𝑖)2
𝐸𝑖

. (2.1)

With the 𝜒2
value, and the known degrees of freedom in the data set, the probability of

the null hypothesis (the categorical variables are independent and bear no difference in

outcome on the measured statistic of the population) being true can be determined. Most

statistics software (e.g. R, SPSS) will present the p-value automatically, while historically

you would need to compare your computed 𝜒2
statistic against a table to determine if it

was sufficient to reject the null hypothesis or not. When small (< 20) or low frequency (<

5) data are used, Fisher’s Exact test is recommended (Cochran 1954).

2.2.2 Repeated Tests

Perhaps the most common, and one of the most simple statistical tests is the students t-test.

This is used for comparing the means of a continuous variable across different groups, to
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Figure 2.1: Type I Error. By repeatedly using pairwise testing between groups, the chance of a Type I error

increases. The left y-axis shows the overall chance that, by using the cutoff p = 0.05, the null hypothesis may

be erroneously rejected, for a given number of repeated tests. The right y-axis has this value scaled by the

cutoff p = 0.05, therefore shows the correction that would need to be applied to achieve the desired cutoff for

repeated testing.

determine if there is a difference. This is perfectly acceptable for two groups, but in the case

of additional groups, the issue of repeated measures arises, which increases the chance

of a type I error. If the null hypothesis gets rejected with a p-value of 0.05 (i.e. only a 5%

chance that you have incorrectly rejected the null hypothesis), then the chance of being

incorrect at least once when doing 𝑛 repeated measures is given by

𝑃(𝑛) = 1 − (1 − 𝑝)𝑛 , (2.2)

where 𝑝 is your p-value cut-off. Sometimes it is difficult to avoid repeated testing, in which

case a correction factor may be applied to the p-value in order to ensure consistency. A

common choice to overcome either multiple hypothesis testing, or repeated testing, is

the Bonferroni correction, where the cutoff value is divided by the number of pairwise

tests performed (Kim 2017). As can be seen in Eq. 2.2 and Fig. 2.1, this can be both an

oversimplification and an over-correction in many cases, as it only holds in the limit of
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𝑝 → 0. Therefore, it is likely best to calculate the divisor for the correction using 𝑃(𝑛)/𝑝

or use a testing method which avoids or accounts for this issue.

2.2.3 ANOVA

Avoiding the issue of repeated testing can be done through the use of Analysis of Variance

(ANOVA), enabling the testing of the null hypothesis,

𝐻0 : 𝜇1 = 𝜇2 = . . . = 𝜇𝑛 . (2.3)

As with all parametric tests, this one has a range of assumptions, such as requiring nor-

mally distributed data. For large sample sizes, however, the central limit theorem states

that sample means are more normally distributed than their component data (Le Cam

1986) therefore this issue may be ignored (albeit with a possible loss in power). Despite

this, it is much better to transform the data and use the correct test, rather than leaving it

as is and using the wrong one. There are plenty of common transformations to normality,

such as the use of arcsin for fractional [0,1] data, or logarithmic transforms for data whose

residuals scale with the mean (Stahle and Wold 1989). If this, or the assumption that vari-

ances are the same (at least within an order of magnitude) is violated, then non-parametric

tests such as Kruskal-Wallis can be employed instead. An extension to the ANOVA for

multiple dependant variables—Multivariate ANOVA, or MANOVA—also exists, by first

combining the multiple variables into a single one, before running the ANOVA.

As the name ANOVA may suggest, this statistical model looks at the variance both

within a group and between groups (this groups can be split across multiple independent

variables or just one), estimating the variance due to residual error 𝜎2
(caused by errors in

measurement, noise etc.). This can be compared to estimates of variance between means

𝜎2

𝜇. The computed F-statistic of the ANOVA is therefore an estimate of

𝐹(𝑛) =
𝜎2 + 𝑛𝜎2

𝜇

𝜎2

, (2.4)

which will exceed unity when 𝜎2

𝜇 is non-zero (Stahle and Wold 1989). As with the Chi-

squared test, the calculated test statistic and the degrees of freedom can be used to compare
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to a significance table, in order to determine whether to reject the null hypothesis or not.

While this is informative, for 𝑛 > 2 we do not know which group has a difference in means,

or whether more than one group does. Obtaining this information requires further (post-

hoc) tests, where issues of repeated testing may arise.

Many of the post-hoc tests are designed to compensate for repeated testing (Kim

2017), with common statistical software reporting an adjusted p-value. This is done so that

depending on the number of comparisons made, the total type I error rate still remains

at 0.05, while reporting the numbers in such a way that the adjusted value cutoff is still

0.05. A commonly used post-hoc test following an ANOVA is the Tukey Honest Significant

Difference (HSD) as it does the adjustments automatically (Ludbrook 1998). It is important

to realise that the number of pairwise comparisons 𝑁𝑝 given by,

𝑁𝑝 =
𝑛(𝑛 − 1)

2

, (2.5)

increases much faster than the increase in the number of groups, therefore significantly

reducing the required significance level (i.e. requires a smaller, non-adjusted p-value to

reject the null hypothesis with the same type I error) and experimental power. Often it is

wise to reduce the group number or only observe a subset of the groups in order to detect

more subtle effects.

2.3 Mathematical Modelling

The benefit of quantifying data is that the noise and variability within the data can also

be quantified (Autran et al. 2021), enabling models to account for both the inner dynam-

ics and the external environment factors. Improvements to computational and technical

processes has resulted in a shift from reductionist to systems biology, which is important

when observing such complex, multi-feedback processes (Morris and Tusscher 2021). The

combination of modelling and high spatiotemporal resolution tools has led to a new stan-

dard in plant science (Autran et al. 2021). When generating a model, the hypotheses to

be tested must be formalised, which ensures they are testable, and modelling systems

enables preliminary testing, often for cheaper while being faster. The model predictions
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can be verified experimentally, which in turn drives feedback on the model, yielding new

predictions to test and driving the boundary of knowledge forward.

2.3.1 Diffusion

Many areas of quantitative biology are concerned with the physics governing transport

and trafficking (Martins et al. 2013), where modelling has provided insight into many basic

aspects of transport (Lin et al. 2021), in which the role of diffusion may be important and

therefore cannot be ignored. The use of diffusion models has also been instrumental in

the recent progress of AI generated images (Ulhaq et al. 2022; Borji 2022). The diffusion

equation, analogous to the heat equation, was first derived by Adolf Fick in 1855 (Fick

1855) and can be derived from Fick’s first law and the continuity equation. Fick’s first law

links the diffusion flux 𝐽 to the gradient of the species concentration 𝜌(®𝑟, 𝑡), through the

constant of diffusion 𝐷 as,

𝐽 = −𝐷∇𝜌(®𝑟, 𝑡). (2.6)

The continuity equation simply states that the change in density or concentration in a

part of a system can only be through movement of material in and out of that region (e.g.

nothing is created or destroyed) and is represented as,

𝜕𝜌(®𝑟, 𝑡)
𝜕𝑡

+ ∇ · 𝐽 = 0. (2.7)

By substituting in our flux to the continuity equation, making the assumption that 𝐷 is

constant in all regions, therefore ∇ has no effect on it, we arrive at,

𝜕𝜌(®𝑟, 𝑡)
𝜕𝑡

− 𝐷∇ · ∇𝜌(®𝑟, 𝑡) = 0, (2.8)

where ∇ · ∇ is the Laplacian, often written as ∇2
or Δ. Rearranging gives us Fick’s second

law, the diffusion equation,

𝜕𝜌(®𝑟, 𝑡)
𝜕𝑡

= 𝐷∇2𝜌(®𝑟, 𝑡) (2.9)

It is worth noting that the mechanisms behind diffusion (driven by thermal motion) and

osmosis (driven by pressure) are different (Tomkins et al. 2021). A difference in thermal

energy (or concentration) will produce a different rate of particle trajectories, resulting
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in mixing and passive transport. Osmotic flow, however, is an entropic effect driven by

a pressure difference across a membrane. Both diffusion and osmosis are important for

transport between cells, but studying and separating them requires quantitative methods

and modelling.

Many transport tunnels between cells in plants (e.g. plasmodesmata and aquapor-

ins) are narrow, and may have complex, time-dependent geometries, therefore modelling

flow with particle-based methods may be required (Hughes et al. 2021). Modelling the

physics of advection (osmosis) and diffusion yielded insight into sugar loading in the

phloem, facilitated through plasmodesmata, and similar mechanisms may be present in

aquaporins (Tomkins et al. 2021). Quantifying parameters of plasmodesmata experimen-

tally can be time-consuming experimentally, as well as costly (Hughes et al. 2021) whereas

modelling has the potential to be quick and cost-effective, and may provide a framework

to extend to other systems.

Passive transport of molecules within cells can be modelled by splitting the cell into

regions and solving partial differential equations (PDEs) such as Eq. 2.9, with a host of pre-

viously established Monte Carlo methods and algorithms available (Martins et al. 2013),

alongside extensions to include advection (Ekebjærg and Justesenu 1991). Transport of

organelles, however, is a little more difficult. Brownian motion is often insufficient to re-

duce gradients which involve membranous organelles (Lin et al. 2016) due to the crowded

nature of the cytoplasm. In these crowded environments, normal diffusion breaks down

which results in anomalous (or sub-) diffusion (Bressloff and Newby 2013; Tomkins et

al. 2021).

2.3.2 Other Transport Methods

Normal diffusion results in a linear relationship between mean squared displacement

(MSD) ⟨𝑟2⟩ and time 𝑡, with a gradient related to the diffusion constant. In anomalous

diffusion, however, the relationship looks like,

⟨𝑟2⟩ ∝ 𝑡𝛼 , (2.10)
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Figure 2.2: Normal and anomalous diffusion. Three particles with identical diffusion constants have drasti-

cally different displacements based upon their diffusive regime. Super diffusion, normally the result of active

transport, results in significantly greater distance covered, particularly over longer timescales, whereas sub-

diffusion keeps the particle fairly confined in space.

where 𝛼 is unity for normal diffusion, smaller for anomalous diffusion and greater for su-

per diffusion, as shown in Fig. 2.2. Super diffusion is usually the result of active transport

(Reverey et al. 2015; Chechkin et al. 2017), such as myosin motors walking vesicles along

the cytoskeletal network.

Due to the size of organelles, any long range, directed trafficking is primarily due

to active transport, while local, passive transport is most likely to be in an anomalous dif-

fusion regime, with some diffusion in less crowded regions (Lin et al. 2021). Cytoplasmic

flow may also achieve unidirectional transport, but this usually is only over short dis-

tances, although extremely long distance streaming can be seen in the aquatic plant Chara

(Goldstein and Meent 2015). The even distribution of organelles and other membrane-

bound compartments is vital for the survival and physiology of eukaryotic cells, which
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is why a range or organisms have been shown to coordinate between passive and active

transport mechanisms to achieve these distributions. Polar actin forces and opposing mi-

crotubules have been shown to enable the even distribution of peroxisomes and early en-

dosomes in filamentous fungi (Lin et al. 2016). Organelle transport is often modelled as

a combination of drift-diffusion (diffusion with a slow, unidirectional drift term from the

cytoplasmic flow) and long-range, molecular motor driven transport.

Quantitative techniques and modelling have been invaluable in researching sig-

nalling networks, as the feedback and signalling mechanisms are so complex (Autran et

al. 2021). Calcium ions are frequently part of these networks, and these molecules undergo

a range of different transport regimes as an inter- and intra-cellular signalling molecule

(Martins et al. 2013). Transport in the cytosol or through plasmodesmata is likely to result

in anomalous diffusion, whereas calcium released into the apoplast is likely to diffuse nor-

mally and freely, while some signalling designs will result in transport through streaming

or bulk flow.

2.3.3 Modelling Outside of Transport

Outside of transport, the reaction-diffusion equation can be useful for modelling the pat-

terns of morphological diversity in bacterial colonies (Mimura et al. 2000). The use of

network based algorithms (e.g. Dĳkstra’s) can provide insight into the organisation and

connectivity of vascular tissue (Al-Diri et al. 2010) or the cytoskeleton and provide insight

into the requirements of their roles. Image analysis of the ER has been used to extract and

quantify the network geometry (Lin et al. 2017), and was found to be quantitatively similar

to their ER model. Modelling the mechanisms of a system can reproduce experimental

observations and can be used to make predictions which can be tested experimentally

(Martins et al. 2013). This quantitatively similar ER model enabled a range of parameters

to be tested in the model to provide further insight into what should be probed in the

future.

Many systems, or aspects of systems, are difficult to probe experimentally (Sambade

et al. 2012), and therefore modelling can be used to provide mechanistic insight previously

unavailable. Modelling the orientation of fibres in guard cells provided understanding of
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the requirements for guard cell opening, which drove the choice of mutants used to test

hypotheses and validate model predictions (Woolfenden et al. 2017). This model enabled

insight into the subtle differences in shape and how this generates various cell wall prop-

erties.

One issue with plants is their photosensitivity and the fact that various signalling

pathways are triggered by light. The mechanisms behind the transition of microtubule

arrays from longitudinal to transverse were found through modelling (Allan et al. 2022),

as this is part of a light-signalling pathway. Visualising this experimentally can result in

growth inhibition, therefore mathematical modelling can sidestep this issue.

One of the biggest barriers to modelling is the issue of defining and estimating

parameters (Sumner et al. 2012). These parameters should be physical properties, which

also have a relevant biological meaning, limiting the use of emperically derived properties

where possible (Yin and Struik 2010). It is easy to perfectly fit any experimental data given

enough parameters, but the point is to do so with as few and yet meaningful parameters

as possible, while ensuring they are experimentally measurable (Beulke and Brown 2001).

This also would likely simplify the task of comparing between models, as it is important

to benchmark and understand their ability to represent the system at hand (Pullen and

Morris 2014). It is more beneficial; however, to collect data from additional variables of the

system, as opposed to collecting more data from just a few, and this increased knowledge

can more effectively drive experimental design. It is important to consider experimental

and model design when collecting preliminary data, and to construct the model in a way

that it should be able to probe scenarios outside of the benchmarked parameter set.

Many biological systems have complex, multimodal fitness landscapes, where the

issue of finding the desired optimum may be challenging. These systems will have many

optima for different constrained regions of parameter space, yet still likely have a single,

global optima over the entire parameter space. Searching the entire parameter space is

very time-consuming, and given biological context, many of these parameter values not

be useful in the system, as they might not be biologically relevant or realistic. The local

optima, however, may still be problematic depending on the choice of starting parameter

and optimisation algorithm. Some prior knowledge of the system, such as the fitness land-
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scape or the nature of the parameter space, can aid in choosing sensible initial parameters

or narrowing the scope of the search, as well as knowing which algorithm to choose. A

common choice is simulated annealing, where the initial "high temperature" of the system

can enable the parameter search to get itself out of local optima, and continue on to the

global optimum. Other options such as Bayesian modelling and parameter inference may

provide a solution to some models in systems biology (Pullen and Morris 2014).
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Chapter 3

Quantifying the PEN3 Response

3.1 Introduction

Fungal and oomycete pathogens which aim to penetrate the cell wall through the use of

degrading enzymes and physical force trigger the initial immune response: PAMP trig-

gered immunity (PTI). This response generates many downstream penetration defence

mechanisms, including upregulation of penetration defence genes (PEN). The roles of

PEN1-PEN4 are discussed in detail in 1.5, and PEN3 is summarised below.

PEN3 encodes PDR8, an ATP binding cassette protein with homogeneous distribu-

tion in the plasma membrane (Stein 2006). When a penetration attempt has been detected,

PEN3 recruitment is increased. This enables enrichment of PEN3 in the membrane proxi-

mal to the infection side, further aided by endocytic recycling of PEN3 from elsewhere in

the membrane. This transport is made possible through the use of myosin motors traffick-

ing these PEN3 endosomes along the actin cytoskeleton to the site of infection. Once in

place, the role of PEN3 is to transport toxins and antimicrobials from the PEN2 metabolic

pathway into the apoplast (Matern et al. 2019), which has been shown to contribute to A.

thaliana resistance against a range of fungal and oomycete pathogens (Lipka et al. 2005; He

et al. 2019).

This research aimed to develop a means of testing and quantifying the focal PEN3

trafficking responses to pathogens, through the use of an artificial penetration peg. Actin
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depolymerising drugs, and loss-of-function mutants in actin nucleation were used to test

the hypothesis that actin-driven trafficking delivers the PEN3 response.

3.2 Methods

3.2.1 Experimental Techniques

Arabidopsis thaliana ecotype Colombia-0 (Col-0) with PEN3-GFP were grown as the wild

type, alongside loss-of-function mutations in Arp2 or three formin genes (Formins 4, 7

and 8); these are actin network nucleation regulators with stress-response phenotypes.

A. thaliana seeds were sterilised with Cl2 for 4-5 hours in a sealed container by mixing

100 ml of bleach with 3 ml of 37% HCl. Sterilised seeds were suspended in molecular

biology grade water and stored in the dark at 3
◦
C for a minimum of 5 days. To produce

the extended hypocotyls, seeds were dark grown in a humid growth chamber at 21
◦
C

for 5 days. 100 µl half-concentration Murashige and Skoog (MS) growth medium with

Gamborg’s Vitamins containing 0.8% w/v agar was used as the growth medium, upon

which the seeds were placed. 500 µl centrifuge tubes were used to contain the medium

and support the hypocotyls.

We have developed a novel technique for artificial stimulation of the plant immune

response. In order to simulate the physical pressure of a fungal or oomycete penetration

attempt, custom cover slips were fabricated to contain microdiamonds on their surface

which contacts the sample. Initially, standard glass (0.13-0.17 µm) cover slips were cleaned

with a 5-minute acetone bath followed by an additional 5 minutes in isopropanol (IPA)

before being dried with compressed nitrogen gas. Clean cover slips were coated in poly-

methyl methacrylate (PMMA: 950k, A6) using a spinner at 3000 rpm for 55 seconds to

create an even 500nm layer. A microdiamond suspension using IPA (0.14 mg ml
−1

) was

dropped onto the coated cover slip and left to bake on a hot plate at 165
◦
C for 10 minutes.

This caused the PMMA layer to plasticise and fix the diamonds to the surface while the

IPA solution evaporated away. To ensure the diamonds protruded sufficiently from the

surface, a profiler was used to record the surface height and is shown in Fig. 3.1.

To simulate the chemical stimuli presented by the invading pathogen, A. thaliana
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Figure 3.1: Cover Slip Surface: A typical diamond embedded in the PMMA layer of the custom cover slip is

shown to protrude from the surface by a little over 1 µm. The system was designed to accurately measure the

change in height, while position resolution was limited, so the ∼10 µm width is likely less in reality, based

upon visual inspection on various microscopes.

hypocotyls were submerged in a molecular pattern for four hours prior to physical stim-

ulation and imaging. The aim of this was to upregulate PEN3 production and improve

both response time and intensity to aid in data collections (Sassmann et al. 2018). This

elicitation medium was prepared with 0.004% w/v driselase and 100 µg ml
−1

of chitin

granules. A chitinase suspension was added to activate the solution, containing 400 µl of

100 mM sodium phosphate (pH 6.1) and 400 µl glycerol to achieve a 0.05 mg µl
−1

solution.

In order to test the hypothesis that the actin cytoskeleton is vital in the role of the in PEN3

delivery, actin was depolyermised using 10 µM Latrunculin B diluted from a 10 mM stock

in DMSO. A mock DMSO solution was also prepared as a control, with these solutions

being added to the molecular pattern submerged hypocotyls 30 minutes prior to imaging.

A. thaliana hypocotyls were mounted on the custom cover slips with a mounting

medium which contained 10% molecular pattern (as described above) and a 10 mM MES

buffer at pH 7.5 to keep a consistent elicitation. The microscope slide was outlined with

a layer of petroleum jelly to provide a water-tight seal when the cover slip and slide were

taped together. When mounted on the spinning-disc microscope with an oil-immersion
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Figure 3.2: Artificially triggered immune responses. A. thaliana hypocotyl epidermal cells show enrichment

of PEN3-GFP in a local region around the point of physical simulation (using our novel microdiamond assay,

marked with an asterisk), 20 minutes after first contact. These images show the relative homogeneity of the

background PEN3 distributions, as well as some bright PEN3 endosomes just below the membrane. The im-

ages are from a spinning disc confocal microscope, maximally projected from stacks with 0.55 µm separation

and a 200 ms exposure.

60x lens (1.35 NA), the focal plane was adjusted to bring the xylem into focus before being

reset back to the surface of the epidermal cells. The pressure from the lens movement

was to provide the initial ’punch’ in order to mimic a fungal pathogen, and is the point

at which the timer was started. Z-Stacks (16 images, 0.55 µm separation, 200 ms expo-

sure with 7 mW laser power at 488 nm) were taken 20 minutes after the punch. For the

following 60 seconds, the stage was moved such that multiple images could be tiled to-

gether in order to provide a bigger picture of the response throughout a cell, as well as to

significantly increase throughput. An image of each genotype responding locally to the

physical stimulus is shown in Fig. 3.2.

3.2.2 Computational Analysis

All image stacks were projected into a single image: For every point in the x-y plane, each

image in the stack was checked, and the highest value pixel was kept. This is done so

that only pixels that were most in focus were kept, and any issues with non-flat surfaces

were mitigated. A mask was drawn by hand around the cell of interest for every image,
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Figure 3.3: Determining Which Diamonds to Compare: The curved surface of hypocotyl epidermal cells

means that the pressure exerted by the cover slip in the centre of the cell is greater than near the edge, and so

this has to be controlled for. Any diamond whose centre is closer to the centre-line of the cell than the edge

of the cell is categorised as in the centre. If the diamond centre is closer to the edge, it is categorised as on the

edge. If any of the diamond footprint is outside of the cell, it is categorised as being in the cleft between cells.

and an additional mask was drawn around the microdiamond. The diamond mask was

used to exclude the region from intensity measurements as it scatters the light signifi-

cantly resulting in a darker region, which can been seen in Fig. 3.2, as well as providing

information about the centre point from which to search for increased PEN3-GFP signal.

Due to the curvature of the epithelial hypocotyl cells, which are normally approximately

cylindrical, only diamonds in the centre of the cell width were considered. When sand-

wiched between the slide and cover slip, the centre of the cells makes good contact, but the

curvature means that pressure is reduced near the cell edges, reducing the chances of an

immune response from a physical stimulus. This method behind position categorisation

is explained further in Fig 3.3.

To determine whether the cell had responded to the stimulus provided by the dia-

mond, the local region around the diamond was compared to a background measurement

of the cell intensity. A circle was drawn around the diamond, centred on the centroid of

the diamond mask, with a radius of 50 pixels (4.75 µm). This radius was chosen based

upon initial, by-hand, estimates of some PEN3 responses. It was made slightly smaller

than the measurements to reduce the chance of false positives, as a few bright pixels av-

eraged over the whole cell has a much less significant effect than a few dark pixels in the

circle region of interest (ROI). If the circle ROI would extend outside of the cell mask, it
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Figure 3.4: Determining a PEN3 Response: The cell background is measured in the green region, which is

the cell mask minus the diamond mask (in blue) and the 50 pixel radius ROI (in grey) centred around the

diamond. An immune response has been deemed to have occurred if the mean intensity of the grey region

is brighter than 75% of the green region. These masks are from one of the images used in this data set.

was cropped to match the edge of the cell, and the diamond mask was also removed from

the ROI due to it scattering the light from the PEN3-GFP. The various regions are depicted

in Fig. 3.4. If the mean of the circle ROI was greater than the 75
th

percentile of the back-

ground cell, the diamond was deemed to have induced an immune response. The 75
th

percentile was chosen through visual inspection of multiple cells.

As the immune response frequency is a binomial distribution, the response fre-

quency 𝑝 was calculated as the number of detected immune responses divided by the

total number of sites imaged 𝑁 . Assuming this response frequency is equal to the re-

sponse probability for a given genotype, the probability of getting 𝑘 immune responses

from 𝑁 sites is given by,

𝑃(𝑘) = 𝑁 !

(𝑁 − 𝑘)!𝑝
𝑘(1 − 𝑝)𝑁−𝑘 . (3.1)

Sampling 𝑁 times from this probability distribution with a pseudo-random number gen-

erator (pRNG) produced a continuous variable output estimating the distribution of re-

sponse frequencies for each genotype, each with its own value of 𝑁 and 𝑝.

For the cells that were determined to have initiated an immune response, the size

of the PEN3 disk was measured. First, to remove some of the background noise and

correct any uneven illumination, the morphological opening of the image with a 35 pixel
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radius disk was subtracted from the image. Next, to remove any salt and pepper noise

still present, a median filter was applied to the image. From here, the 80
th

percentile of

the cell mask minus the diamond mask (leaving the green and grey regions in Fig 3.4) was

measured and used as a threshold to create a binary image. This value was chosen to be

suitable for rejecting objects which were not of interest, while still correctly identifying

the PEN3 response in terms of position and size. Despite the filtering process, it was

possible that several binary objects would be present. To pick the one that represented

the PEN3 response, the objects were labelled and the labelled object which overlapped

with the diamond mask was kept as the PEN3 response. An ellipse which encompassed

this chosen binary object was fitted and its properties were measured: major (𝑟maj) and

minor (𝑟min) axis size, orientation and position. The orientation of the cell mask was also

measured such that the angle of the response relative to the cell could be determined. The

eccentricity 𝜖 of the ellipse was determined from the radii using,

𝜖 =

√
1 −

(
𝑟min

𝑟maj

)
2

, (3.2)

with 𝑟maj ≥ 𝑟min, and the relationship is shown in Fig. 3.5. The effective radius 𝑟 is defined

as the radius of a circle with the same area as the ellipse, and is calculated by taking the

geometric mean of 𝑟maj and 𝑟min such that,

𝑟 =
√
𝑟maj𝑟min. (3.3)

Finally, a visual inspection was performed on every result to ensure no problems had

arisen.

3.3 Results

The response frequency, defined as the number of artificial infection sites which had a

visible PEN3 enrichment patch divided by the total number of sites, is shown in Fig. 3.6A.

Just under 68% of the 28 infection sites had a visible response in the wildtype while 79% of

the 24 arp2-1 sites responded. Nearly 83% of the 41 formin4/7/8 triple mutant sites showed

an immune response 20 minutes after the diamond made contact, significantly higher than
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Figure 3.5: Eccentricity of an Ellipse: A visual depiction of the eccentricity of an ellipse highlights that

objects still look fairly circular until eccentricity reaches close to 0.75, as the ratio between the radii (𝑟maj/𝑟min)

becomes greater than 1.5.

the wildtype (Chi-squared test, p = 0.0388). This may be explained by a link between actin

mutants and elevated systemic acquired resistance in a possible feedback loop with the

salicylic acid pathway (Matoušková et al. 2014; Kalachova et al. 2020). The arp2-1 appeared

to have a slightly higher occurrence of dead or dying cells compared to the formin4/7/8,

which combined with the randomness of the diamond locations on the cover slips resulted

in the arp2-1 mutant having a smaller sample size. While this had a small effect on the Chi-

squared test, it is not the reason significant differences between wildtype and arp2-1 were

not found. Preliminary testing was also done on diamonds which fell into the edge of cleft

categories, but the response frequency was very low and therefore no differences could

be found. This, alongside difficulties of measuring a response size and shape when it is

confined by the cell shape, is the reason that only central diamonds were considered for

any ellipse fitting and response measurements. Statistical testing the response frequency

was performed using the original binary data, instead of the output sampled from their

binomial distribution which is shown in Fig. 3.6. This is because the assumption that the
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measured outcome probability is completely biologically accurate is unlikely to hold, and

that probability was used as fact to generate the binomial distribution, therefore drawing

statistical conclusions from an uncertain assumption would not be robust.

Figure 3.6: Artificial Stimulation of the Immune Response. The accumulation of PEN3 in the membrane

of A. thaliana hypocotyl epidermal cells was imaged 20 minutes after the physical stimulus of the microdi-

amond was applied and this response was quantified in a range of ways. Wildtype (Col-0) was compared

to loss-of-function mutants of arp2-1 and formin4/7/8 and a treatment of Latrunculin B for actin cytoskeleton

depolymerissation. Samples sizes from wildtype, arp2-1 and formin4/7/8 were 28, 24, and 41 respectively. (A)

The fraction of diamond sites which had a measurable PEN3 response 20 minutes after diamond contact,

estimated from a binomial distribution with probability equal to the fraction of PEN3 responses. (B) The

geometric mean of the major and minor axis radii, which yields the correct area using the formula for area of

a circle. (C) The eccentricity of the response regions, calculated using Eq. 3.2. (D) The angle of the major axis

of the response ellipse relative to the long axis of the hypocotyl epidermal cell, in the range [0,90].Statistical

testing of (A) was performed using a Chi-Squared test on the original binary data set, where the asterisk

denotes 𝑝 < 0.05. ANOVA testing of (B)-(D) was performed and yielded no significance.

The effective radius of the PEN3 response, calculated from fitting an ellipse to the

image and using Eq. 3.3, is shown in Fig. 3.6B. The size of the response regions was consis-

tent between the genotypes, with a radius of 6.8±1.6 µm for the wildtype, 7.3±1.3 µm for
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the arp2-1 mutant and 7.1 ± 1.8 µm for formin4/7/8. No significant differences were found

in the eccentricity of the response, shown in Fig. 3.6C. The mean eccentricity ranged from

0.72 ± 0.15 in the wildtype to 0.74 ± 0.17 in the arp2-1 and 0.79 ± 0.13 in the formin4/7/8

triple mutant.

All the immune responses were elliptical and most had their major axis aligned

with the long axis of the hypocotyl epidermal cells, as shown in Fig. 3.6D. This may be

due to the polarity of cytoplasmic streaming and the direction of travel of PEN3 vesicles,

as the cytoskeleton also tends to align with the long axis of the cell. To emphasise the

critical role of the underlying cytoskeleton in the role of PEN3 transport, the network

was depolymerised using Latrunculin, and not a single infection site showed an immune

response. Despite the possible impact of the loss-of-function mutants on the cytoskeleton,

the immune response sites remained relatively unchanged. Even the formin4/7/8 triple

mutant, with its increased sensitivity and immune response frequency, had very similar

response properties, showing the resiliency of the initial stages of the immune response

and possibly the actin cytoskeleton.

3.4 Discussion

The measured outputs of the script were visually inspected to ensure any suspect data

was flagged and removed. Occasionally, either the entire cell edge had accumulated PEN3

(more frequent in the mutants as might be expected, and can be seen in panel (d) of Fig. 3.7)

or the cytoplasmic stream was very bright and running through the middle of the enriched

zone, shown in panel (c) of Fig. 3.7. This meant that any thresholding was likely to include

these regions when they were not relevant to the size, shape or orientation measurements

we were interested in. Any such cases were flagged and in the case of this analysis had

been removed from all results except frequency of response. I am confident that these do

have a response, but additional noise and signal has made automating the extraction of the

region impossible. Manual segmentation of these images could be performed the extra

data or power was required for the experiments, but these were excluded to minimise bias

in this case. Only 10-15% of all responses suffer from this problem, while most of the time

the fitting works as intended, as shown in panels (a) and (b) of Fig. 3.7.
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Figure 3.7: Ellipse Fitting Issues: A visual inspection was performed on each ellipse fitting to the PEN3

response, and erroneous fits were excluded from the analysis. (a) shows a correctly fit ellipse of an immune

response which is aligned with the long axis of the cell. (b) also shows a correct ellipse fitting, but the response

orientation is slightly off-axis. (c) shows an example of a small immune response which is tangential to a bright

cytoplasmic stream. As the response is no brighter than the stream and the two objects are touching, creating

a single binary object, the thresholding cannot separate them, resulting in erroneous fitting. This result is

omitted from the immune response properties that have been reported. (d) shows a case where increased

cell sensitivity and possible cell wall damage have resulting in PEN3 accumulation all along one edge of the

cell, which overlaps with an immune response from a diamond. As the responses overlap, it is not possible

to filter them out and separate them, resulting in an inaccurate fitting. This response has also been omitted.
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Despite the differences in the response frequency of the wildtype relative to the

arp2-1 and formin4/7/8 mutants, the similarity of the PEN3 distributions may point to these

distributions being fundamental to the efficacy of the immune response. One possibility

is that passive diffusion of PEN3 in the membrane is responsible for the consistency in

response size. With a sufficient rate of diffusion, delivery could be highly localised to the

central point of the infection. This would simplify the requirements of the underlying actin

network while still providing fairly consistent PEN3 distributions, which may explain how

the impaired actin mutants are so similar.

Another possibility is that the PEN3 distribution is chosen by design to be most

effective for the given scenario. This could be achieved through the architecture of the

actin patch, tightly controlling delivery of the PEN3 vesicles, or it could be done via a

chemical signalling region for the delivery of these vesicles. It has been shown that a ROS

burst can be detected within minutes of the cell being treated with a microbial elicitor

(Sang and Macho 2017), and that apoplastic ROS regulates localised callose deposition

(Daudi et al. 2012), which is likely regulated through actin remodelling - an outcome of

the pattern-triggered ROS burst (Li et al. 2015; Li et al. 2017). Activation of RBOHD,

which can generate these ROS bursts, relies on the activation of several calcium-dependent

protein kinases (CPKs) (Boudsocq et al. 2010) through a rapid increase in the local Ca
2+

concentration, also triggered from pattern-recognition. Many of these proteins are critical

in the immune response, as mutations in RBOHD lead to a near complete loss in pattern-

triggered ROS (Qi et al. 2017), likely affecting the signalling systems of salicylic acid and

cytosolic Ca
2+

. Any of the molecules in this signalling cascade could be responsible for

controlling the size and/or shape of the PEN3 enrichment region. As ROS have been

proposed to act as local or secondary messengers which can trigger additional immune

response functions (Kadota et al. 2015) the use of a ROS biosensor alongside PEN3-GFP

could provide useful insight here. Alongside this, a calcium biosensor should be tested

due to the ubiquity of Ca
2+

in plant cell signalling.
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3.5 Conclusion

We developed a novel method for separating the physical and chemical stimuli of an im-

mune response, and used this method to consistently measure the PEN3 accumulation of

a focal immune response. Images were taken 20 minutes after the microdiamonds made

forceful contact with the A. thaliana hypocotyl epidermal cells, and image analysis soft-

ware I developed was used to determine whether an immune response has occurred, as

well as quantifying the size and shape of the response.

We saw a statistically significant increase in the frequency that a response occurred

in the formin4/7/8 loss-of-function mutant relative to the wildtype, whereas the arp2-1 mu-

tant showed no measurable difference. For the measured responses in the wildtype and

both of the mutants, no differences were seen in their size (through their effective radius),

nor the eccentricity of the response, or the alignment of that response relative to the long

axis of the cell. We discussed whether the lack of differences here are down to the response

shape being a size effect of diffusion, or whether one of the many signalling chemicals vital

to the focal immune response play a role in designating the delivery zone.

Actin depolymerisation using Latrunculin B showed that actin is critical for the im-

mune response, despite the actin mutants showing no reduction in immune competency.

The fact that the statistical difference was not biologically relevant suggested that the sys-

tem is very robust. It is therefore possible that actin nucleation doesn’t contribute directly

to this early stage of the response, and instead global, cell-wide PEN3 transport on actin

is more important that local dynamics in this case.
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Chapter 4

Image Analysis: Testing and

Development

4.1 Introduction

The role of actin in plant cells was introduced in 1.6, and the importance of the cytoskele-

ton in plant function and immunity cannot be overstated. Being able to extract spatial

networks composed of one-dimensional structures, from road networks to sub-cellular

biological filaments, is a recurring theme throughout many research areas. Nowhere is

this more important than for the cytoskeleton, where resolution-limited imaging data can

make network extraction extremely difficult. In addition, this problem is by far the most

acute for actin, the narrowest element of the cytoskeleton, which is ubiquitous throughout

eukaryotic cells.

This research aimed to design, create, test and validate a tool which is able to extract

and quantify the cytoskeletal network from microscopy images. This tool needed to be

simple, fast and fairly robust, while enabling a more detailed picture and understanding

than was previously available from other tools in the area.
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4.1.1 Analysing the Actin Network Structure

Being able to observe and quantitatively measure the structure of the cytoskeleton is im-

portant for understanding wild-type behaviour, mutant phenotypes, the effect of drug

treatments, and the cellular response to external stimuli such as pathogen attack. The fact

that the cytoskeleton is highly adaptive and versatile, rapidly responding to changes when

required, only makes this task more difficult, not least because some small perturbations

(such as HopW1 from Pseudomonas syringe (Kang et al. 2014)) are able to cripple the entire

network and, by extension, the cell itself.

Typically, progress in this area requires significant amounts of data. This has be-

come increasingly viable due to the development of genetically encoded probes (e.g. GFP-

Lifeact and GFP-Fimbrin) which can be used across a range of imaging modalities to give

significant insight into the actin network structure and its turnover. Analysing such large

datasets by hand is undesirable for at least three reasons: subconscious bias can skew

results, human error is hard to avoid, and the time required can be prohibitive. What is

needed instead is a consistent, automatic, reproducible, objective method that can quickly

and quantitatively analyse network changes.

The constant remodelling and treadmilling of the actin cytoskeleton poses a prob-

lem for any analysis method. Live-cell imaging can be limited by exposure times that

lead to motion-blur of highly dynamic features. Cell fixation methods can alleviate this,

but only give a single snapshot in time and are prone to artefacts from the fixation pro-

cess. Modalities ideal for capturing highly dynamic actin networks such as Total Internal

Reflection (TIRF) microscopy can be limited in their ability to capture the complete three-

dimensional network. This can be better achieved by forms of confocal microscopy, but

here too there can be limitations such as poor Z resolution. No imaging system will be

able to perfectly capture every detail of the actin network, which makes maximising the

information available from current methods a priority. The algorithm we develop here is

a step towards achieving this.
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4.1.2 Previous Work in this Direction

The importance of the cytoskeleton across many areas of cell biology has resulted in sig-

nificant interest in automatic methods that enable visualisation and extraction of the net-

work. We review those that are most relevant to our work here. For a recent review that

summarises many of these tools and the different methods they employ, see Özdemir and

Reski 2021.

One of the most common methods utilised for cytoskeletal extraction is based on

open active contour models (Xu et al. 2011; Li et al. 2009a; Li et al. 2009b). These examine

changes in the intensity gradient of an image in order to find ridges, which form the back-

bone of actin filaments. These backbones (often called “snakes”) are defined in terms of

the energy of their contour, which is minimised in the gradient field in order to generate

the filament segmentation. This process can be computationally expensive depending on

the number of iterations required to achieve accuracy, but the results tend to be impres-

sive in terms of accuracy (precision and recall) (Xu et al. 2019). Several tools are available

which use these models, including imageJ plugins like JFilament (Smith et al. 2010) and

standalone programs such as SOAX (Xu et al. 2015) and TSOAX (Xu et al. 2019). Depending

on the implementation, one drawback of these methods is that they often require signifi-

cant human input to aid in the labelling of filaments and discern crossings. This has to be

done separately for each image, which diminishes the utility of automatic methods. The

more automated methods, such as SOAX, provide the option for batch processing and

therefore require reduced input from start to finish. The number and sensitivity of the in-

put parameters, however, make it difficult to achieve consistently accurate results across

a variety of images, cell types and scenarios. While the input parameters can be adjusted

on a per-image bases, this may interfere with the validity of any comparisons and could

introduce bias into the results.

A complementary approach, based on the molecular mechanisms that govern actin

network formation and dynamics, was developed by Schaub et al., and involves simu-

lating the network itself and comparing the output to experimental images to determine

the network properties (Schaub et al. 2007). Comparison between simulation results and

experiments required knowledge of the imaging system point spread function, the reso-
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lution of the charge-coupled device (CCD), any non-uniform responses from pixels, and

the magnification and numerical aperture (NA) of the lens. These methods were able

give a good estimate of the underlying network, but only under the assumption that the

simulation correctly captures the true underlying network dynamics. At present, with

current knowledge of actin biophysics, this may not be the case. Further, fitting a many-

parameter simulation to experimental data can both be time consuming and experience

problems of model identifiability (where significantly different parameter values lead to

similar network structures).

Several approaches have been developed for other imaging modalities, as well as

software designed to identify other structures linked to the cytoskeleton. CellArchitect

(Faulkner et al. 2017) is a tool designed to extract automatically plant microtubule data

from large quantities of confocal microscopy data using Gaussian filters and local thresh-

olding to segment the network from the background. From here, two-dimensional mea-

sures such as length, density and width can be extracted. SIFNE (Zhang et al. 2017)

is a tool designed to extract simple quantitative data (such as filament length and den-

sity) from the microtubule array imaged with single-molecule-localisation microscopy.

ANNA-PALM (Strack 2018) is another super-resolution-based tool that can reconstruct

microtubule arrays, either via PALM or DNA-PAINT microscopy (Ouyang et al. 2018).

BundleTrac (Sazzed et al. 2018) and Actin Segmentation (Rigort et al. 2012) both extract

the network of actin filaments from Cryo-Electron Tomography images. BundleTrac re-

quires manual input of “seed points” to start filament identificiation, while Actin Segmen-

tation is fully automated with analysis of the resulting networks yielding measurements

of filament lengths, orientations and densities. Finally, FIESTA (Ruhnow et al. 2011) and

TipTracker (Prahl et al. 2014) use epifluorescence microscopy to locate microtubules, with

the former being shown to also work with TIRF microscopy (as does MTrack (Kapoor et

al. 2019)).

Segmentation and analysis can be extended to additional biopolymers such as the

endoplasmic reticulum. The MATLAB software AnalyzER (Pain et al. 2019) takes fluores-

cent labelled ER images from a confocal microscope (up to multi-channel 4D time-series

data), enhances the tubular structures and then performs segmentation and skeletonisa-
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tion. The skeleton is converted to a graph representation with nodes at junctions (con-

taining data such as degree and branch angles) connected by edges (which also described

length and average width). This approach was able to quantify the effects on the mor-

phology of the ER under different drug treatments and abiotic stresses.

Depending on the assay, biopolymer of interest and imaging requirements, there

are a range of techniques tested and available (Özdemir et al. 2018; Xia et al. 2019; Had-

jidemetriou et al. 2008; Tsugawa et al. 2016; Park 2020; Nanguneri et al. 2019; Lavoie-

Cardinal et al. 2020). However, most of these solutions are tailored to specific forms of

biological network and research questions, consequently they do not integrate a broad

categorisation or quantification of individual network properties.

4.2 Results

4.2.1 Algorithm Development

Using an initial set of 20 images of GFP-Lifeact (Smertenko et al. 2010) labelled actin in

wild-type A. thaliana (obtained as described in the Methods), we first developed our al-

gorithm for automatically extracting the actin skeleton from either a single 2D image or a

3D stack of images. We decided to base this in MATLAB due to the power of the image

processing toolbox. MATLAB also has excellent backwards as well as forwards compati-

bility, ensuring easy adoption both by users with older versions and by future users with

as yet unreleased versions.

Our algorithm follows five sequential steps (see Methods and the Supporting In-

formation for full details): initial preparation, skeletonisation, image rotation, skeleton

labelling and property measuring. We discuss the first four steps here, leaving the last for

the next subsection.

For the first image preparation step, the images were filtered to reduce noise and

eliminate uneven background illumination. Any filtering process will result in the loss

of information, but is necessary to facilitate extraction of the true actin signal. A range of

filters and algorithms were tested, each with a range of parameters, in order to determine

the most suitable option. Best results were found by using a top-hat filter with a spherical
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structuring element. A top hat filter subtracts the morphological opening (an erosion

followed by a dilation) of the image from the original image. This is similar to the rolling

ball background filter in ImageJ, a commonly-used approach to analyse biological images.

This aids in noise removal as well as correcting non-uniform illumination. A radius much

larger than the width of the thickest filament was found to be suitable (between 2 to 3 times

the width), otherwise filament signal may be removed or contrast at the edges may be lost.

A Gaussian filter was also tested, but proved less successful as the filament edges were

not preserved, making subsequent enhancements of tubular structures more difficult and

measurements of thickness unreliable.

The second step was to convert the filtered image to a binary image of the skele-

tonised network, attempting to keep the filaments without any of the background. Simply

applying a threshold to the raw image led to poor results (either struggling with detect-

ing finer filaments or failing to adequately remove noise), so we first enhanced tubular

structures using the MATLAB function fibermetric as shown in Fig. 4.1B. This works by

calculating the Hessian of the image, determining its eigenvalues and searching for pixels

with a small intensity change in one direction and a large change in the other (Frangi et

al. 1998). Pixels satisfying this signify a tubular structure and so have their signal boosted.

The benefit of this function is that it automatically adapts to various filament sizes, remov-

ing the need for any additional parameter tuning.

With the desired structures enhanced, we then created a binary image by using a

threshold, shown in Fig. 4.1C. We tested both an adaptive and fixed threshold. For the

adaptive threshold we used both the MATLAB default neighbourhood of around 1/8
th

of

the image size as well as smaller sizes. However, this failed to perform any better than a

fixed threshold, while being significantly more computationally expensive and requiring

an additional parameter. It is possible that by fine tuning the neighbourhood size and

the sensitivity, an adaptive threshold will produce an improved binary for some data sets,

but this would require specific tuning for each image, something that would compromise

comparisons between images. We therefore decided to use a fixed threshold, with the

threshold value determined as a specific percentile of the image intensity distribution.

We believe this approach reduces the sensitivity of the threshold parameter, enabling it to
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work better across multiple images and data sets, although it is worth noting that it is still

the most sensitive parameter of our algorithm. A threshold intensity of between the 87
th

and 92
nd

percentile of the resultant image worked well in various scenarios, so we settled

on 90% for the parameter value from this point forward.

Despite filtering and parameter tuning there was still some remaining noise in the

binary image. It was possible to remove some of this, before skeletonisation, by deleting

objects with an area below some critical value. This critical value strongly depends on the

imaging conditions and modality, and so would likely need to be determined indepen-

dently for each given dataset.

The final part of the second step was the skeletonisation itself. To do this, pixels

were removed from the perimeter of all binary objects, through a medial axis transform

(Lee et al. 1994), until removing more would have altered the topology or Euler number

(the number of objects in an image minus the number of holes). This yielded a single-

pixel-thick line that represents the backbone of the actin network.

The third step involved image rotation. To simplify downstream analysis, images

were rotated such that the long axis of the cell (or ROI) was parallel to the horizontal axis

of the image. The rotation angle was determined by fitting an ellipse around the image

mask and calculating the orientation of its major axis. When rotating discrete pixels, some

positional accuracy is inevitably lost. If the rotation is performed before the binary stage,

then this can be remedied by using a smoothing algorithm. However, if performed after

skeletonisation then, as with a Gaussian filter, this would smooth the edges we have tried

to preserve. The best solution we found to this was to implement the rotation step both

before and after skeletonisation, and then combine the two outputs via a pixel-wise OR,

as shown by the parallel workflows of Fig. 4.1. If after this step any filaments were thicker

than one pixel, they were skeletonised again.

The fourth step was to label the skeleton so that individual filaments were identified

by distinct positive integers and is shown in Fig. 4.1E. This required significant testing and

development in order to eliminate edge cases. The details of each step taken to achieve this

are described in detail in the Supporting Information. In brief, to leverage the flood-fill
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Figure 4.1: Skeletonisation Algorithm. Two parallel pathways are taken from the initial image (A) after

background removal and filtering. The image had vessels enhanced (B) before thresholding into a binary

image (C) before being skeletonised and rotated (D). Alongside this, the initial image was separately rotated

before vessel enhancement (Brt) and thresholding (Crt) followed by skeletonisation (D). The skeleton results

were combined to ensure no loss of information occurred in the rotation steps. From the combined skeleton,

the labelling and relabelling processes were applied (E) to identify each filament and branch for further anal-

ysis

labelling algorithms in MATLAB, the filaments first had to be broken apart at every branch

point so that branching filaments were given a different label ID to the main filament. It

was found to be easier to also fragment the main filament in the process, and then rebuild

and relabel afterwards. This was achieved by determining the labels around all (now

removed) branch points, looking at the angles relative to each other, and rejoining the two

that formed the straightest line.

4.2.2 Quantitative Measures

Once the actin skeleton had been extracted and correctly labelled, the fifth and final step

involved extracting quantitative measures that described key properties of the network. It

is these measures that can be used to characterise the actin cytoskeleton, providing a way

of (i) understanding the underlying nature of the network and (ii) comparing different
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image sets (e.g. across cell types, mutants or drug treatments) in order to determine if

there are significant differences. Seventeen types of measure are defined for 3D data and

these are summarised in Table 4.1 and Fig. 4.2, as well as being described in detail in the

Supporting Information. These measures are split into five different categories: whole

cell properties, overall network properties, individual filament properties, curvature and

branching properties, each of which is described below. Additional measures can easily

be added if required at a later date.

Figure 4.2: Network quantification. A visualisation of several of the measurements we are able to make in

order to quantify the cytoskeletal network. The cell or ROI size was measured as the area encompassed by

the black line of the outer bounding box and was used in the calculation of any densities, such as the skeleton

or branch point density. The orientation was measured as the angle of that box relative to the horizontal axis

prior to the rotation that ensured they were both in alignment. The curvature, both signed and unsigned,

was averaged over the whole length of each filament and was measured as a series of three points separated

by a characteristic length scale, 𝜆. The deviation measured the average distance between a filament and a

straight line connecting the end points. Filament widths were averaged over their whole length and filament

orientation 𝜃 𝑓 was measured relative to the major cell axis, and the same was done relative to the imaging

plane to estimate the 3D filament length from a 2D projection. The branch angle 𝜃𝑏 was measured at every

branch point, both in 2D and 3D. The branch ratio was simply the number of branch points divided by the

number of labelled filaments. The total length of every structure was measured, such that statistics like the

mean could be calculated.

Whole cell properties. The cell size is measured by counting the number of pixels

in the ROI mask. This can then be used for density calculations in order to give quantities

that are independent of the cell size. The cell orientation relative to the horizontal axis is

measured by fitting the ROI to an ellipse and measuring the angle the ellipse makes to

the horizontal axis. This measurement can then be used to align all cells to the horizontal

axis to make further measurements more easily comparable.

Overall network properties. The skeleton density is measured as the total skeleton

length in pixels divided by the cell area and can be used to highlight how tightly packed

the network is. While many of the networks in our data sets were typically connected
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to each other, new disconnected filaments and structures could form. To measure this,

we calculate the number of these structures and the mean structure size. A significant

change in this value may indicate, for example, disruption to severing activity. Network

branching frequency is measured using the branch ratio, calculated as the average number

of branches per labelled filament, while the branch point density is calculated as the total

number of branch points divided by the ROI area.

Individual filament properties. We also calculate a range of filament descriptors,

including orientation, length and width. Filament width is defined as the average width

in pixels and will provide information about bundling activity. The filament lengths in 2D

are measured by counting the number of pixels in the filament and adding (
√

2 − 1) for

every diagonal connection, then converting from pixels to physical length. For filament

lengths in 3D these lengths are then scaled by cos𝜃𝑧 where 𝜃𝑧 is the angle of displacement

of the filament from the imaging plane. Changes in filament lengths may be indicative of

growth, depolymerisation, or severing activity. The filament angles in 2D are obtained by

calculating the angle relative to the horizontal axis of the line connecting the two filament

end points. For filament angles in 3D the angle relative to the imaging plane is measured.

The z-position of the filament end points is estimated by determining the position in the

stack that contains the brightest pixel, which then allows the true angle to be measured.

Finally, the average filament length is calculated as the mean of the 3D filament lengths.

Curvature properties. The curvature and non-linearity (deviation) of filaments are

measured and represented by three different values. The curvature is measured over a

fixed length scale 𝜆 in order to make the results independent of pixel size. For our data we

chose 𝜆 = 475 nm, which is equivalent to five pixels. This is large enough that individual

noise at the pixel level does not adversely affect the results, and small enough that the

calculated value is a good estimate of the local curvature. Further, this value should work

for a range of common imaging modalities and resolutions. For all non-end points in a

filament, a point either side is chosen as close to𝜆 away as possible. These three points then

have their Menger curvature calculated. The signed filament curvature is the absolute value

of the average of these curvatures (including their signs). The unsigned filament curvature

is the mean of the magnitudes of the curvatures (ignoring their signs). The non-linearity
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of the filament, referred to as the deviation from linear, was measured by calculating the

absolute value of the mean distance between the filament and a straight line connecting

the end points.

Branching properties. The branch angles in 2D are measured as the angle that a

myosin motor would have to deviate to take the branch path instead of remaining on

the main filament. This measurement is not calculated in the case that no branches are

available. Finally, the branch angles in 3D is similar to the 2D measurement, but with the

additional information of the z-position of the end points determined from the image

stack. The distances between each pair of points are then calculated and used to determine

the branch angle in 3D.

4.2.3 Algorithm Testing and Validation

Although testing the output of our algorithm against manual network segmentation gives

some confidence that the algorithm can correctly extract the underlying actin network, it

of course suffers from the problem that the human extraction may itself be faulty or biased.

Rectifying this requires knowing the ground truth for a given network. To address this,

we generated over 1,300 200x200 px artificial images where the locations and shapes of

all filaments were known perfectly in advance. Individual filaments were generated by

drawing a smoothing spline between two randomly generated points and their midpoint,

which was shifted from the middle by a random amount to ensure a curve was formed.

In order to accurately represent various filament thicknesses, each image dimension was

scaled by a factor of 19, reducing pixel size from 95 nm
2

(the pixel size in our microscopy

assay) to 5 nm
2

such that F-actin can be represented by a pixel-thick line. A Gaussian blur

was then applied to match the diffraction limit of our of microscopy assay, before the image

was downscaled back to 200x200 pixels by taking the mean of each 19x19 block of pixels.

To adjust the signal-to-noise ratio (SNR), the filament brightness was scaled to a desired

value, then salt and pepper noise added and randomly (via a uniform distribution) scaled

up to a maximum parameter value depending on the SNR level that was targeted. Finally,

a Gaussian blur matching the diffraction limit was applied to the noise before the image of

the filaments and noise were combined, yielding a simulated microscopy image. Several
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Category Name Type Code Description

Whole cell

properties

Cell size N cellSize Total number of pixels in the

region of interest (ROI)

Cell orientation N orientation Angle in radians that the im-

age is rotated by such that the

long axis of the cell is parallel

to the x axis

Overall

network

properties

Skeleton density N skelDensity Number of pixels in the skele-

ton divided by cell size

Structure size L Structures Number of pixels in struc-

tures

Branch ratio N branchRatio The number of branch points

divided by the number of fil-

aments

Branch point density N cellBPDensity Number of branch points in

the ROI divided by cell size

Individual

filament

properties

Filament width L filWidth Average width of each fila-

ment

Filament lengths in 2D L filLenXY Length of each filament in

2D, accounting for angles and

curvature

Filament lengths in 3D L filLenXYZ Length of each filament in 3D

(the 2D length divided by the

cosine of the filament angle

relative to the imaging plane)

Filament angles in 2D L filamentAng.angXY Angle of each filament rela-

tive to the x-axis

Filament angles in 3D L filamentAng.angZ Angle of each filament rel-

ative to the confocal imag-

ing plane; roughly estimated

from endpoints and limited z-

resolution

Average filament length N avgLen Mean of the 3D filament

lengths

Curvature

properties

Signed filament curvature L curvatureSigned Average signed curvature of

each filament, measured over

length scale 𝜆

Unsigned filament curvature L curvature Average unsigned curvature

of each filament, measured

over length scale 𝜆

Deviation L deviation Average distance of each pixel

in a filament from a straight

line joining the endpoints

Branch

properties

Branch angles in 2D L branchAng.angXY Angle between main filament

and a branch in 2D

Branch angles in 3D L branchAng.angZ Angle between main filament

and a branch in 3D

Table 4.1: Quantitative network measures. The seventeen quantitative measures that we calculate for each

extracted network,along with a description of each. Full details are given in the Supporting Information.

N=single number, L=list of numbers.
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of the parameters throughout these steps were varied in order to mimic changes in the

quality of the data or differences. This allowed us to test the robustness of the network

extraction process. For more detail of this process, see the Supporting Information.

In order to quantify algorithm performance, two metrics were used: sensitivity and

precision. These are calculated using the frequencies of true positives (TP), true nega-

tives (TN) and false negatives (FN). Sensitivity, also known as the true positive rate (TPR),

describes the proportion of the network that is correctly detected and is given by TPR =

TP/(TP + FN). Precision, also known as the positive predictive value (PPV), measures the

positional accuracy of the identified network and is given by PPV = TP/(TP + FP). This

showed the limitations of the algorithm in low quality data, resulting in significant drops

in sensitivity. It also highlighted the trade off between sensitivity and precision that can

be adjusted through the threshold parameter.

The same was repeated on real data using manual segmentation of the image for

comparison and yielded a precision of 96% with a sensitivity of 72%.

First, by adjusting the maximum noise and filament brightness values, the signal-

to-noise ratio (SNR) was varied. Because there is randomness associated with the image

generation process, a range of SNR values correspond to a parameter set, and scaling

between the parameters and SNR is non-linear. Three different noise levels were generated

(each with 100 images), each containing 10 filaments (see Fig. 4.3A). Precision remained

at or above 97% across the three SNR levels, while the sensitivity drops from 89% at an

SNR average of 7.3 to 86% at an average SNR of 4.3. For the low SNR group (average of

3.4) the sensitivity drops significantly to 57% for an average SNR of 3.4, highlighting the

point of limitation for the algorithm and the data. Although our algorithm was designed

to attempt to try to keep both precision and sensitivity as high as possible, it is possible to

optimise for one of these by adjusting the binary threshold and/or the minimum filament

size as explained below.

Second, to test the effect of network density, a range of filament numbers (in a fixed

size image) were considered. This noise value was chosen to be around the point where

the algorithm performance changes rapidly, so that differences could be seen more easily.
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Figure 4.3: Testing network extraction performance. Artificially generated data was analysed with our

algorithm and the results compared with the known ground truth. (A) To measure the effect of different

signal-to-noise ratios, images were generated with three different levels of signal and noise intensities (100

each), showing that a critical SNR value of at least 4 is required to extract the most from the data in this

assay. (B) To measure the effect of network density, images were generated with 5, 10 and 15 filaments (100

images for each), showing increased network density reduces sensitivity. (C) To explore the effect of the

threshold parameter, four different threshold values were tested (100 images for each), highlighting the trade

off between sensitivity and precision and that the optimal range is 87-92. (D) Finally, to investigate the effect

of the numerical aperture (NA) of the lens, images were generated with a range of point-spread functions

(100 for each), showing that even with high quality data, a minimum NA of 0.7-0.9 is required to achieve the

resolution required.

As shown in Fig. 4.3B, increased network density leads to a drop in sensitivity while pre-

cision remains relatively unchanged. This is because of the high default threshold value,

chosen to ensure minimal noise is measured for high quality data. While a reduction in the

total number of filaments reduces the chances of filament crossover and close-proximity,

it does not remove these possibilities, as can be seen for the precision outliers with only

five filaments. A lower network density leads to a reduced network size and therefore any

errors will constitute a larger percentage error.

Third, to measure the impact of the algorithm threshold parameter (the most sen-

sitive parameter), this parameter value was varied from its default value of the 90
th

per-
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centile of the intensity distribution of the image. The results, shown in Fig. 4.3C, highlight

the trade off between sensitivity and precision. A higher threshold ensures greater preci-

sion, but at the cost of sensitivity. Conversely, dropping the threshold increases sensitivity,

but beyond a point the precision falls and noise begins to adversely effect the output. De-

pending on the structures of interest, the resolution available and the experimental assay

used, this value will need to be adjusted by the user to achieve the desired results.

Finally, to test the effect of the microscopy assay and resolution, the point spread

function was varied to mimic various numerical apertures (NA) relevant to confocal mi-

croscopy. The results, shown in Fig. 4.3D, were tested using a high signal-to-noise ratio as

all other tests were done on the point spread function mimicking the high NA lens setup,

allowing the changes purely due to resolution to be clearly seen. For high quality data, we

found a critical NA of 0.7-0.9, where the resolution becomes too poor and the sensitivity

of the algorithm suddenly decreases. When designing and testing a microscopy assay, it

is important to know where this limitation lies in order to ensure the extraction algorithm

performs well. This may be particularly important for light-sheet microscopy where NA

is limited by the physical configuration of the modality.

For high quality data, the sensitivity only drops when multiple filaments cross or

are in close enough proximity that they begin to blur together and the tube-enhancing fil-

ter cannot distinguish them. The filaments here are drawn as 5 nm thick and then blurred

to match the resolution of our microscopy assay. Any filaments that fall within about 200

nm of each other are likely to be nearly indistinguishable in accordance with the Rayleigh

criterion. This also means that any crossings, even those that are completely perpendicu-

lar, are likely to be seen as globular instead of filamentous and may therefore drop below

the threshold. In the cases where they do not, the lack of resolution and the skeleton-

isation process will represent the crossing poorly, typically appearing more as an ’h’ or

’x-wing’ shape (see SI for details).

In order to assess algorithm suitability to intermediate filaments and microtubules,

we also tested the effect of filament thickness. We used supersampling to create filaments

of width 5 nm (F-actin), 15 nm (intermediate filaments) and 25 nm (microtubules) and

downscaled to fit a 95 nm
2

pixel size (which matches our microscope assay). No differ-
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ences were found in the success metrics of our algorithm, as expected for objects signifi-

cantly smaller than the available resolution. This demonstrates that our algorithm is likely

to be easily adaptable to deal with other elements of the cytoskeleton.

4.3 Discussion

In this study we have developed a novel software algorithm, the DRAGoN tool, that can

automatically extract and quantify multiple characteristics of complex actin networks,

with particular focus on plant cells. Our software is designed to work with both 2D and

3D (i.e. stacks of 2D images used to estimate 3D structure) data. We have demonstrated

its utility by establishing that it can accurately extract the large-scale actin structure for a

range of cell types and mutants.

Our tool provides seventeen distinct quantitative measures of actin networks (see

Table 4.1), including properties of the overall network (such as skeleton density and branch

ratio), individual filament properties (such as filament widths, lengths, directions and

curvatures) and branching properties (such as branch angles). The code can easily be

extended to include additional measures as required by the user.

We validated our algorithm in a number of ways. This involved generating arti-

ficial networks (where the ground truth was perfectly known) consisting of individual

filaments with various properties, including a number of edge cases. The length, cur-

vature and deviation of these filaments were measured with the algorithm and shown

to have high (>90%) precision and sensitivity with parameters corresponding to typical

imaging modalities. This process was then repeated with various branch angles, again

with similarly high detection rates.

To facilitate further development or optimisation for particular data sets, we have

made the DRAGoN software freely available and open source: DRAGoN. The flexibility

and non-specificity of this tool is one of its main advantages and should enable it to be

useful in a range of organisms, mutants, tissues, cell types and environments. A number

of key parameters (particularly those for the filtering and skeletonisation steps) can be

adjusted to best fit a given image modality and labelling method.

https://github.com/JordanHembrow5/DRAGoN
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4.4 Conclusion

The actin cytoskeleton is essential in eukaryotes, not least in the plant kingdom where it

plays key roles in cell expansion, cell division, environmental responses and pathogen de-

fence. Yet, the precise structure-function relationships of properties of the actin network

in plants are still to be unravelled, including details of how the network configuration

depends upon cell type, tissue type and developmental stage. Part of the problem lies

in the difficulty of extracting high-quality, three-dimensional, quantitative measures of

actin network features from microscopy data. To address this problem, we have devel-

oped DRAGoN, a novel image analysis algorithm that can automatically extract the actin

network across a range of cell types, providing seventeen different quantitative measures

that describe the network at a local level. This algorithm has been tested and benchmarked

against both real and artificially generated such that its performance can be quantified and

used to analyse new data.

4.5 Methods

4.5.1 Plant Growth and Imaging

Arabidopsis thaliana ecotype Colombia-0 (Col-0) with GFP-Lifeact were grown as the wild

type. A. thaliana seeds were sterilised with Cl2 for 4-5 hours in a sealed container by mixing

100 ml of bleach with 3 ml of 37% HCl. Sterilised seeds were suspended in molecular

biology grade water and stored in the dark at 3°C for a minimum of 5 days. To produce

the extended hypocotyls, seeds were dark grown in a humid growth chamber at 21°C
for 5 days. 100 µl half-concentration Murashige and Skoog (MS) growth medium with

Gamborg’s Vitamins containing 0.8% w/v agar was used as the growth medium, upon

which the seeds were placed. 500 µl centrifuge tubes were used to contain the medium

and support the hypocotyls.

Images were taken with a spinning disc confocal microscope, equipped with a 60x

lens and NA of 1.35. A laser power of 7 mW at a wavelength 488 nm was used for imaging

GFP-Lifeact. Images were taken with 200 ms exposure and z-stacks had a separation of

0.55 µm.
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4.5.2 Image Analysis Algorithm

We break our network extraction algorithm into a number of sequential stages—initial

steps, skeletonisation, image rotation, skeleton labelling and measuring properties—which

we discuss in turn. For full details of our method, see the Supporting Information section

4.6.

4.5.2.1 Initial steps

The initial step involves background filtering. While a Gaussian blur or median filter

can smooth and modulate noise, they do not preserve edges (Zhang and Allebach 2007),

which are critical in filament detection. Conversely certain non-linear techniques, such as

the rolling ball algorithm, are able to preserve edges and features whilst removing noise

and non-linear illumination (Cannistraci and Alessio 2016). Therefore, based on a rolling

ball method, our raw images are first filtered to remove background noise and uneven

illumination through a top-hat filter with a sphere shaped structuring element (via the

imtophat function in MATLAB). The disk should be wider than the structures that must be

preserved. However, since the algorithm time roughly scales with the square of the disk

radius, there is a necessary balance between accuracy and speed. A radius of 15 pixels

(approximately 1.4 µm in our images) was chosen as optimal for the actin structures we

encountered.

4.5.2.2 Skeletonisation

The resultant image then has fibrous structures enhanced by using a Hessian-based multi-

scale filter (via the fibermetric function in MATLAB). No thickness values were passed to

this filter as actin bundles vary in thickness and we wish to preserve all of them. The re-

sulting significant contrast between filaments and the background then allowed a simple

threshold to produce a binary image. We found a value of the 90
th

percentile of the fluo-

rescence intensity produced reliable results for our data. Any elements containing fewer

than 20 pixels are then removed, and the binary was eroded by the bwskel function, which

removes pixels from the perimeter of objects until a single pixel thick skeleton remains.
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4.5.2.3 Image rotation

Images are then rotated so that the long axis of the cell aligned with the horizontal axis.

We tried rotating both before and after the skeletonisation step, finding that rotation first

can lose some information due to the discrete nature of the pixels, while rotating the skele-

ton afterwards can result in fragmentation of areas. In the end, we found the best result

involved performing the image rotation both before and after the skeletonisation process,

with the results then combined with pixel-wise OR logic. The results are then eroded

away again to ensure each filament is only one pixel thick.

4.5.2.4 Skeleton Labelling

We label each filament in the skeleton with its own unique integer, such that only the pix-

els within that filament have that number. To avoid connected branches having the same

label, we first temporarily remove the branch points using the bwmorph MATLAB func-

tion. Next, we flood-fill all the components of the network to label the different isolated

filaments, using a combination of bwconncomp and labelmatrix. A side effect of this pro-

cess is that long filaments with multiple branches are broken into distinct pieces between

branch points. To rectify this we use a custom joining algorithm to re-join filaments (see

Supporting Information for details) so that, at each branch point, the two filaments that

are closest in direction are joined. This is done for every branch point and a final pass

ensured that the labelling is continuous for all filaments.

4.5.2.5 Measuring Properties

After every filament is uniquely labelled along with a list of start and end points, a num-

ber of quantitative measures can be calculated. First, filament length in two dimensions is

found by counting the number of pixels with a given filament label with diagonal connec-

tions weighted by an additional factor of

√
2 (see SI for details). If three-dimensional data

(i.e. multiple z-stacks) is available, the filament length is extended to three dimensions.

To do this, the location of the brightest pixel in the image stack is used to determine the

z-position at each point in the skeleton, from which the mean angular displacement of

the filament relative to the image plane can be calculated. The 2D projection length then

gives an estimate of the real 3D length (see SI).
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Second, filament width is estimated by measuring the local direction of a filament

and then measuring the length of the binary image (before erosion for skeletonisation)

perpendicular to that direction. This is repeated for every pixel along the length of the

filament and averaged to find the mean filament width.

Third, filament angles are defined relative to the major axis of the cell. Using the

MATLAB regionprops function, the binary mask that was initially used to remove all data

outside of the cell can be used to determine the cell orientation relative to the horizontal

axis. The image can then be rotated such that the major axis is parallel to the horizontal

axis. This is not necessary for cells without any polarity. Once the image is rotated, all

labelled filaments have their 2D orientation determined by finding the displacement in 𝑥

and 𝑦 between their endpoints and using the inverse tangent. As no information is typi-

cally available about the direction of the individual filaments, their angle is only defined

in the range [−𝜋
2
, 𝜋

2
]. The same can be repeated in 3D by calculating the displacement and

therefore the angle relative to the image plane.

Fourth, filament curvature is defined using the Menger curvature: the inverse of

the radius of the circle that passes through three points (Léger 1999). Each internal pixel

(no curvature is defined at the endpoints) in a filament is chosen as a central point. Then

the adjacent points a characteristic length 𝜆 away are determined. For pixels closer than 𝜆

to an endpoint, the largest possible distance is chosen (i.e. the endpoint itself is used). The

curvature is measured for these three pixels, iterating along the filament and averaging

to determine the average curvature of a filament. The deviation of a filament is defined

as the average distance between each pixel in the filament and the straight line joining the

two endpoints.

Finally, calculation of the branch angle requires a branch point and two or three

labelled filaments connected to it. The filament end points not connected to the branch

point are determined and used in conjunction with the branch point itself. Each unique

pair of end points (three in total) are combined with the branch point in the middle to

produce three different angle pairs. The angles with the smallest deviation travelling

from one filament to the branch was taken to be the main filament, with the middle angle

then defined as the branch angle. The branch ratio is a measure of how much a network
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system branches, defined as the total number of branch points divided by the number of

individual filaments.

All of the available measures can be found in table 4.1

4.6 DRAGoN Supporting Information

4.6.1 Algorithm Design

Properties of individual filaments are determined by iterating through filament labels

and creating a binary image of each filament. Label numbers are contiguous from 1 to the

number of filaments, so the filaments are first separated into their own binary images by

only keeping the pixels with the number equal to that of the filament label. This enables

measurements to be made more easily, without interference with other filaments and al-

lows the easy storage of data in an array, where the index corresponds to the filament

label. This process allows the leverage of powerful tools built-in to MATLAB, such as bw-

morph for manipulating binary images and skeletons through a range of morphological

operations.

4.6.1.1 Filament Orientation

Filament orientations in the two-dimensional imaging plane, frequently referred to in the

program as the XY plane, are relative to the major axis of the cell. The major axis is found by

fitting an ellipse to the cell mask which has an angle from the x-axis to the major axis of the

ellipse with the same second-moments as the cell mask, via the regionprops function. The

image is then rotated by this angle such that the major axis is now aligned with the x-axis,

allowing easier comparisons between cells. Filament orientation doesn’t use regionprops

however, but instead takes the line joining the end points, which are found via bwmorph,

and calculates the angle relative to the x-axis via the inverse of the tangent function. This

ensures the ultimate direction of cargo travelling along the network is measured, despite

any kinks in the filament due to microtubule movement or long curves around organelles

or even curved walls and membranes. As the 2D image used for extracting the network is

a maximum projection of a stack of 2D images at a range of 𝑧-positions, this stack is used

to estimate the 3D position of the filaments. For each pixel in the skeleton, the intensity
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of the corresponding pixel in each image of the stack is measured and compared, with

the plane of the greatest intensity being reported. While resolution in 𝑧 is much poorer

than in the imaging plane, an estimate of the filament orientation can be made based upon

stack separation and these maximum pixel values. The cosine rule is used to estimate the

angle of the filament in 3D relative to the filament in the maximum projection.

4.6.1.2 Filament Labelling

Figure 4.4: Filament Labelling: Flood fill algorithms used for labelling filaments require disconnects at

branches to function as desired, otherwise every pixel in the skeletons shown would have the same label, mak-

ing the process redundant. This fragmentation process can cause issues, however, as remaining 8-connected

filaments can connect the network incorrectly in some cases. Additional checks and relabelling have been

implemented in the right-most column to address this infrequent issue.

Correctly labelling each filament enabled all of the measurements made in the anal-

ysis tool. This process was done in stages, further refining the labelling at each stage to

accurately represent the network. Fragmentation of the network was the first step, to give
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each filament, between branch points, and on branches, a unique label via a flood-fill algo-

rithm. This was achieved by determining the branch points with bwmorph and removing

them from the skeleton. Multiple passes had to be made to ensure that filaments con-

nected horizontally or vertically weren’t still connected diagonally after the initial branch

point removal. As this process split filaments at every branch point, these points were

checked in order to determine how to rejoin the network with the branch getting one la-

bel and the main filament another. Comparing the orientations of different filament pairs

connected to the branch point allowed the straightest pairing to be giving a single label

and rejoined, while the branch was left with a different label. A parameter for the char-

acteristic length away from a branch point was used for the filament orientation, as long

cables are free to bend and change orientation far from the branch and this shouldn’t in-

fluence the choices made. As this process resulted in a label number being unused, these

numbers were stored and once the process was complete, the highest number labels were

replaced with these missing values. This ensures that for 𝑛 filaments, the labels are always

from 1 to 𝑛. In some cases, the branch point removal only resulted in two filament labels,

but had the labelling still incorrect, as shown in figure 4.4. Relabelling these filaments is

more problematic, and this only occurs when a branch point has two 4-connected pixels

and one 8-connected pixel, albeit only some of the time. All of these cases are checked,

with the 4-connected pixels removed in order to yield 3 fragments, with another flood fill

process occurring to separate the labels. The same algorithm as described above can be

used to determine the correct labelling, with the extra step of replacing those previously

removed 4-connected pixels, and converting the new label numbers (always 1,2,3) back to

whatever the original pair of labels were. This process only had two labels to begin with,

so no renumbering was required.

4.6.1.3 Filament Length

Filament lengths in the XY plane are determined by their number of pixels 𝑁px and the

way these pixels are connected. A fixed number of pixels orientated horizontally or diag-

onally will have a different length, and filaments which are not linear cannot be measured

by calculating the distance between endpoints. The distance between 4-connected pixels

(horizontally or vertically) is equal to the size of a pixel, but the distance between any
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diagonally connected pixels is larger by a factor of

√
2. To determine the number of diago-

nal connections, each filament is relabelled, but this time with a restriction that filaments

can only be 4-connected. Therefore the number of labels 𝑁lbl is equal to the number of

diagonal connections plus one. From here, the filament length 𝑙 is calculated as,

𝑙 = 𝑁px + (𝑁lbl − 1)(
√

2 − 1). (4.1)

For 3D length calculations, the average angle of the filament relative to the imaging plane is

first calculated (the 3D filament orientation), then the 2D length is scaled by the reciprocal

of the cosine of that angle.

4.6.1.4 Branch Angles

At a branch point, there are three possible pairs of filament directions that could be used

to define branch angles: the angle of the main filament relative to itself before and after

the branch as well as the angle between the branch and the main filament, both before

and after the branch. If the main filament isn’t perfectly straight, this gives three different

angles. First, to measure the angles, a length scale is defined in order to avoid any kinks or

deviations far from the branch in longer filaments. From here, the filaments are temporar-

ily cut, and the three end points determined via bwmorph. The three ends form 3 unique

pairs of ends, with the branch point being the third point of the triangle. These three

angles are calculated via the cosine rule, and the middle angle is selected as the branch.

This is because a small angle would be associated with going backwards down the main

filament and having to change direction significantly to follow the branch, while a large

angle is likely to be continuing down the main filament. The selected angle is then taken

away from 𝜋 such that the final angle is actually a measure of the deviation a molecular

motor would have to take in order to follow the branch instead of continuing on the main

filament.

4.6.1.5 Filament Width

Filament widths are determined by the average width at every point along a filament. For

every pixel in a filament, the direction of the filament is found, such that the perpendic-
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ular direction can be calculated in order to determine the width. A parameter is used to

determine the length scale over which to determine the direction, as longer lengths can be

more accurate in the case of a straight filament but can be erroneous for curved filament,

therefore a length of approximately 0.5 µm was chosen to be suitable here. The binary

image before skeletonisation is used to measure the width, as the filtering and threshold-

ing process is consistent and provides a good estimate for filament width. The algorithm

moves pixel-by-pixel along the width until the binary image yields a false value, then does

the same in the negative direction, in case the skeleton isn’t perfectly central. These two

distances are added to give the width at this point, and this is repeated for every pixel to

yield an average width.

4.6.1.6 Curvature and Deviation

Almost all filaments in the networks analysed were not completely straight, so these de-

viations and the curvature needed to be characterised and measured. The deviation is a

very simple measure in which a straight line was drawn between the filament endpoints,

and the distance between this line and each pixel in the filament was measured, such that

an average could be taken. The distance for the point (𝑝𝑥 , 𝑝𝑦) away from the line defined

by (𝑒1,𝑥 , 𝑒1,𝑦), (𝑒2,𝑥 , 𝑒2,𝑦) is given by

𝑟 =
|(𝑒2,𝑥 − 𝑒1,𝑥)(𝑒1,𝑦 − 𝑝𝑦) − (𝑒1,𝑥 − 𝑝𝑥)(𝑒2,𝑦 − 𝑒1,𝑦)|√

(𝑒2,𝑥 − 𝑒1,𝑥)2 + (𝑒2,𝑦 − 𝑒1,𝑦)2
. (4.2)

The curvature of a filament, while always being defined as positive as it’s the reciprocal

of the radius, was made up of measurements of the curvature at every pixel, and there-

fore these individual components could be signed. Two separate measures are used here,

where the components are summed as is, or the magnitude is always taken, before finding

the mean and taking the absolute value of the final result. To measure the curvature at a

given point, the position of the filament at a characteristic length 𝜆 away from the point is

chosen, in both directions. The triangle formed from these three points (𝑎, 𝑏, 𝑐) was used

to measure the Menger curvature with

𝑐(𝑎, 𝑏, 𝑐) = 1

𝑅
=

4𝐴

|𝑎𝑏 | |𝑏𝑐 | |𝑐𝑎 | , (4.3)
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where the triangle area is determined by

𝐴(𝑎, 𝑏, 𝑐) = 1

2

|(𝑥𝑎 − 𝑥𝑐)(𝑦𝑏 − 𝑦𝑎) − (𝑥𝑎 − 𝑥𝑏)(𝑦𝑐 − 𝑦𝑎)|, (4.4)

and the side lengths are

|𝑎𝑏 | =
√
(𝑥𝑏 − 𝑥𝑎)2 + (𝑦𝑏 − 𝑦𝑎)2; |𝑏𝑐 | =

√
(𝑥𝑐 − 𝑥𝑏)2 + (𝑦𝑐 − 𝑦𝑏)2;

|𝑐𝑎 | =
√
(𝑥𝑎 − 𝑥𝑐)2 + (𝑦𝑎 − 𝑦𝑐)2.

(4.5)

The choice of 𝜆 affects the result of the curvature due to the coastline paradox, and was

used to uncouple the relationship between pixel size and curvature. The length defined

here, is the maximum distance (always chosen if possible) between each point in the tri-

angle. This process is repeated for all filament pixels not located at endpoints.

4.6.2 Algorithm Validation

4.6.2.1 Length, Curvature and Deviation

Figure 4.5 shows three filaments which contain the same number of pixels with substan-

tially different lengths and curvatures. Each filament has its length measured, its average

Menger curvature calculated, and the average distance from each pixel to the straight line

joining endpoints determined. The curvature is determined on a length scale suitable to

the resolution of the image and the capture device (up to 5 px between sampled points

in this case) and is calculated both in signed and unsigned variants, before the absolute

value being taken. Filament a has the shortest length of 23 pixels, with filament b being

the longest at 32.1 pixels and filament c is 27.1 pixels long. Filament a has no curvature or

deviation, whereas filament b has the greatest unsigned curvature with a smaller devia-

tion than c. For signed curvature, c has greater curvature due to its consistent direction

relative to b.

Additional testing of curvature was performed on unit circles and alongside manual

calculations for three given points, all of which were accurate.
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Figure 4.5: Describing Filaments: Various arrangements of 23 pixels represent filaments with different

lengths, curvatures, and deviations from being linear. A range of statistics describing the different prop-

erties of these filaments is used to classify and differentiate them.

4.6.2.2 Branch Angles

A range of different angle cases were tested and are shown in figure 4.6. The scenarios

were made to test a range of different edge cases, with straight lines between known co-

ordinates of ends and branch points used to calculate the expected result accurately. As

the algorithm uses a length scale over which to determine the angle, and the pixel net-

work is discretised and therefore the lines are not perfectly represented, small errors in

the calculated angle are expected. The errors measured here range from 0.05% to 1.25%

and therefore are perfectly valid in the scope of the project. The benefit of testing branch

angles is that it encompasses testing filament angle measurements as well, and these must

therefore also be accurate.

Figure 4.6: Branch Angle Validation: A range of different branch scenarios were tested, with known angles

being compared to those measured. Small deviations from expected measurements are due to branch point

estimates being a pixel out in some cases, or imperfect representation of lines onto discrete pixels, as well as

small errors from not measuring the full filament length. Largest error is 1.25% and the smallest is 0.05%.
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4.6.3 Skeletonisation Testing

4.6.3.1 Superscaling

Sampling data more frequently (spatial, temporal or both) than the desired output and

averaging over several data points to achieve higher resolution has been used for a wide

range of applications. As the targeted microscopy assay for the testing has a pixel size of

95nm
2

and the filaments to be sampled started at 5 nm thick, we employed this technique

spatially when artificially generating filament data. To achieve the 5 nm size, the pixels

were cut into 19 subpixels in each dimension, resulting in a 19
2

increase in array size

(200x200 -> 3800x3800). Any filaments were reconstructed in the new array with their

positional co-ordinates being scaled by 19 and the desired thickness based upon filament

width. From here a Gaussian blur with standard deviation matching the point-spread

function of our microscope was applied to the array, with the pixel size scaled by 19 to

match the new pixel size. From here, each 19x19 block of subpixels in the image was

combined and averaged to reform the 200x200 image.

Figure 4.7: Skeletonisation In An Artificial Data Set: The initial image is shown on the left, with the skeleton

that was extracted, roughly following the centre-line of the filaments, superimposed over the image on the

right.

4.6.3.2 SNR Variation

The images generated for skeletonisation testing were 200x200 unsigned 8-bit integer ar-

rays (uint8, range: 0-255). Two random points in this array were chosen as the filament

ends, by uniform random number generation of values between 1 and 200, for both co-
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Figure 4.8: Crossing Issues: Two filaments intersecting frequently results in their skeletons combining for

several pixels around their crossing. This makes evaluating branching and crossing very challenging.

ordinates. The midpoint of the line connecting these end points was calculated by taking

their mean, and both the co-ordinates of this midpoint were shifted by a random amount

between 0 and 15 to add curvature. 10 filaments were generated independently of each

other and added to the image. These filaments were 3 pixels thick and had varying bright-

ness depending on the signal-to-noise ratio being targeted. For high SNR, the filaments

had an intensity of 80, while the medium and low SNR groups had an intensity of 60 and

50 respectively. A binary image of the filament-only image was also generated to give

the mask for SNR calculations. To generate the noise, another 200x200 uint8 array was

generated with salt and pepper noise, resulting in 40% of the values being 1 and the re-

maining 60% being 0. Each element of the array was scaled by a random number, ranging

from 0 to the maximum noise value parameter, which varied depending on the SNR level

being targeted. This was 80 at high SNR, with 120 and 140 being used for the middle and

low SNR images. The noise array was added to the array containing the filaments, and a

Gaussian blur (0.9 pixel radius) was applied to obtain the final image. The SNR is defined

in equation 4.6. The mean value of the signal 𝜇sig was measured as the mean value of

all the true pixels in the filament-only binary image, while the standard deviation of the

noise 𝜎noise was simply the standard deviation of all of the remaining pixels.
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Figure 4.9: Various SNR Levels: Example images of artificially generated data at different SNR levels. As

the SNR drops below 4, the amplitude of the noise eclipses the filament signal and any filaments in proximity

of each other are indiscernible.

SNR =
𝜇sig

𝜎noise

(4.6)

4.6.3.3 Numerical Aperture

For a zero mean Gaussian distribution, we derive the full width at half maximum (FWHM)

to determine the relationship between the minimum resolvable distance and the Gaussian

standard deviation 𝜎. A zero-mean Gaussian is given by

𝑓 (𝑥) = 1

𝜎
√

2𝜋
𝑒
− 𝑥2

2𝜎2 . (4.7)

If 𝑥0.5 is the point that the Gaussian amplitude reduces to half it’s maximum value, then

the FWHM is defined as 2𝑥0.5 due to the symmetry about the mean of zero, therefore we

can write

𝑓 (𝑥0.5) =
1

2𝜎
√

2𝜋
=

1

𝜎
√

2𝜋
𝑒
−

𝑥2

0.5

2𝜎2 . (4.8)

By cancelling the common amplitude constants and applying a natural logarithm, we

arrive at

ln

1

2

= − ln 2 = −
𝑥2

0.5

2𝜎2

. (4.9)

Rearranging and solving for 𝑥0.5 we see that

𝑥0.5 = ±𝜎
√

2 ln 2 ≈ ±1.177𝜎 (4.10)
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and therefore the minimum distance between two objects which can be resolved is ≈

2.355𝜎. We can set this equal to the FWHM resolution limit to get

2𝜎
√

ln 4 = 0.51

𝜆
NA

. (4.11)

We can solve for 𝜎 and get

𝜎 =
0.51𝜆

2

√
ln 4NA

≈ 0.217

𝜆
NA

, (4.12)

which, for the optimum GFP emission detection at 510nm, we arrive at

𝜎 ≈ 110

NA

nm, (4.13)

highlighting that NA and resolution are inversely proportional. From here, we have an

equation which can directly influence the size of the Gaussian blur that we apply to ac-

count for the effects of microscopy, such that we can test various NA values of different

lenses. For our microscopy assay, we have a lens with NA of 1.35, giving a blur radius of

82nm, around 90% of the CCD pixel size.



85

Chapter 5

Image Analysis: Results and

Findings

5.1 Introduction

The aim of this chapter of research was to use the DRAGoN tool on real, experimental data

to display its ability to detect subtle differences in the network, highlighting its usefulness

and robust nature. Three hypotheses were tested, and these are split into relevant sections

in the results. Our first hypothesis states that any cytoskeletal differences in the actin

mutants (arp2-1 and formin4/7/8) compared to the wildtype will be subtle, due to their mild

phenotype, but should still be detectable and quantifiable with sufficient data. This was

tested on wildtype hypocotyls, prepared identically to Chapter 3, just with GFP-Lifeact

labels and no immune responses. The next hypothesis stated that cell geometry and tissue

types play a significant role in cytoskeletal design and structure. The hypocotyls from

before were compared to older leaf tissue cells, which are different sizes, shapes, and

in a different developmental stage, to give a sizeable shift in cytoskeletal requirements.

The final hypothesis stated that the cytoskeletal requirements for pathogen invasion are

different to normal cell function, therefore the properties of the network are expected to

change. This was tested on leaf cells which had undergone a real, 48 hour infection under

a powdery mildew.
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5.2 Results

5.2.1 Application 1: Arabidopsis Hypocotyl Cells

Figure 5.1: Comparison of the actin network in hypocotyls of the wild type, formin mutant and Arp2 mu-
tant. Four measures (structure density, skeleton density, average signed curvature and mean actin width)

showed significant changes between the wild type and formin4/7/8 triple mutant. One of these (average

signed curvature) also showed a significant difference between the wild type and arp2-1 mutant and another

(skeleton density) displayed a significant difference between the arp2-1 and formin4/7/8 mutants. Pairwise

testing was performed with Tukey HSD after a MANOVA test. Single/double/triple asterisks represents

𝑝 < 0.05, 0.01, 0.001 respectively. Sample size is 20 for the wildtype, 20 for the arp2-1, and 19 for the formin4/7/8.

Wild-type (Col-0) Arabidopsis hypocotyl epidermal cells with GFP-Lifeact were im-

aged and the actin network extracted as described above. These were compared to cells

with loss-of-function mutations either in Arp2 (Mathur et al. 2003) or in three formin

genes (Formins 4, 7 and 8 (Sassmann et al. 2018)). These were chosen as they are both

mutants of actin filament nucleation regulators with stress-response phenotypes. First,

a MANOVA (multivariate analysis of variance) test was used to determine if significant

differences existed based on eleven dependent variables (skeleton density, branch point

density, 2D filament angle, structure size and number density, filament width, deviation,

signed and unsigned curvature, branch ratio and average 3D filament length). Only these
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eleven measures were used, rather than the full set of seventeen, because they either were

unimportant (cell orientation), used in other measures (cell size, filament angle from imag-

ing plane), redundant (2D equivalents of the 3D measurements) or unsuitable for the data

(branching angles are pointless if no branches are detected and this reduces power). The

MANOVA test uses a linear combination of the dependent variables to create a single

combination variable that is then tested against the genotypes. This showed significant

differences between the three genotypes (𝑝 < 0.001), although it cannot reveal exactly

where these differences lie. Next, to determine the variables most responsible for this

significant difference, the Tukey honest squares difference (HSD) post hoc test was used,

which identified a number of key differences between the wild-type, arp2-1 and formin4/7/8

plants.

First, a statistically significant difference was found in the density of cytoskeletal

structures (see Fig. 5.1A). While the arp2-1 knockout showed no significant difference to

either the wild-type or the formin mutant, the formin4/7/8 mutant displayed a statistically-

significantly increased structure density compared to the wild type (𝑝 = 0.046), with an

average increase in density of 31%. Given that no differences were found in the average size

of these structures, this suggests that the formin mutant cells may have more filamentous

actin, leading to a higher network density.

Second, the skeleton density was also significantly greater in the formin4/7/8 mutant

compared to both the wild type (𝑝 < 0.001) and the arp2-1 mutant (𝑝 = 0.012), while the

arp2-1 mutant was similar to the wild type (see Fig. 5.1B). This again suggests a more tightly

packed network in formin4/7/8 deficient cells, perhaps due either to increased filamentous

actin content or increased cytoplasmic volume per unit cell surface area. A reduction in

coupling of the network to the cell membrane is unlikely to significantly reduce the cell

surface tension, however, due to its relatively small contribution compared to the internal

turgor pressure.

Third, compared to the wild type, the average signed curvature of filaments was in-

creased in both the arp2-1 (𝑝 = 0.029) and formin4/7/8 (𝑝 = 0.020) knockouts (see Fig. 5.1C).

As the Arp2/3 complex and formins are involved in coupling the cytoskeletal network to

the membrane, a reduction in coupling could result in a drop in filament tension. It is
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plausible that this tension creates more linear filaments, so that a reduction in tension

would lead to more curved bundles in the mutants.

Finally, the mean width of actin bundles was higher in the formin4/7/8 knockout

compared to the wild type (𝑝 = 0.0075) whereas no statistical significance was found with

the arp2-1 mutant (see Fig. 5.1D). While the difference in thickness is smaller than our

pixel size (32 nm versus 95 nm), this is an average over filaments, which are then averaged

over their length, meaning that small differences can be detected. This may not seem

surprising given the greater network density measured in formin4/7/8 knockout cells, but

some formins have been shown to have a function related to bundling and thicker bundles

tend to be present in hyper-elongated cells, whereas the formin4/7/8 mutant phenotype in

hypocotyls showed slower elongation and smaller cells. This suggests that these cells may

already be adapting in order to try to reduce these deficiencies.

5.2.2 Application 2: Comparing Hypocotyl and Leaf Cells

We next examined the actin cytoskeleton in epidermal cells across two tissues: hypocotyl

and leaves. To do this, all hypocotyl experiments described above were repeated on 4-6-

week-old Arabidopsis leaves, their actin networks were extracted and then compared. The

MANOVA test was used again, this time with an additional independent variable (cell

type). Inclusion of leaf cells rendered the combined tissue genotype less statistically sig-

nificant (𝑝 = 0.056), whereas the cell type itself showed significant differences (𝑝 < 0.001).

Hypocotyls and leaves have epidermal cells with distinct morphologies and different rates

of cell expansion, which may be the dominant reason for differing cytoskeletal characteris-

tics. For example, hypocotyl cells exhibit accelerated directional growth (these cells must

rapidly expand and elongate to reach the soil surface in order to have access to light). This

rapid growth needs to be supported by the cytoskeleton (Sampathkumar et al. 2011) and

therefore a lack of important actin binding proteins may impact this growth rate and result

in more exaggerated differences between the genotypes in the hypocotyl cells.

Given this MANOVA result, the Tukey HSD post-hoc tests were then performed on

only the wild-type data in order to minimise any confounding variables. All genotypes

are shown in Fig. 5.2 for completeness, which highlights the subtlety of the phenotype in
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Figure 5.2: Effect of cell tissue on actin cytoskeleton. Four (branch ratio, skeleton density, branchpoint den-

sity, average deviation) out of eleven measures showed significant differences between wild-type hypocotyl

and leaf cells. Significant differences are only shown between wild-type cells, although similar significance

values were found between most genotype pairs. Pairwise testing performed with a Tukey HSD test after

a MANOVA test. A double asterisk represents 𝑝 < 0.01 and a triple asterisk denotes 𝑝 < 0.001. Error bars

show one standard deviation from the mean. Sample size for the wildtype is 20 hypocotyls and 23 leaves, for

arp2-1 it is 20 hypocotyls and 21 leaves, and the formin4/7/8 has 19 hypocotyls and 20 leaves.

the mutants compared to the significant differences between cell type.

The branch ratio and branch point density, shown in Fig. 5.2A and Fig. 5.2C respec-

tively, were both significantly higher in wild-type leaf cells than hypocotyls (𝑝 = 0.0043

and 𝑝 < 0.001 respectively). The increased branching in leaves may be partly due to the

less restrictive nature of the cell shape, allowing the network to form crossover junctions

closer to perpendicular angles. This is likely to also be influenced by the large levels of

cytoplasmic streaming that are observed in the long, thin hypocotyl cells. This streaming

is generated through myosin motors on the actin filaments and bundles. Because the di-

rection of motor assisted transport is defined by the structure of the cytoskeleton, these

filaments are mostly aligned in the direction of the cytoplasmic flow (Goldstein and Meent

2015).
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The skeleton density of wild-type leaf cells was lower in leaf cells compared to

hypocotyl cells (𝑝 = 0.0020), shown in Fig. 5.2B. While the formin4/7/8 knockout was signif-

icantly different to the wild type in hypocotyls, the leaf cells appear much more consistent

across genotypes. This difference in tissues is again likely down to the different cell shape

and size constraints: perhaps more space afforded by wider cells and a smaller vacuole,

as well as less reliance on cytoplasmic streaming, reduces the need for such an organised,

polarised network in leaves.

Finally, the average deviation of filaments and bundles from linear is significantly

different (𝑝 < 0.001) between cell types, with greater deviation in leaf cells compared to

hypocotyls (see Fig. 5.2D). As with the other differences, this is possibly due to a different

set of requirements for the cytoskeletal network due to differences in cell shape and devel-

opmental stage. For optimal cytoplasmic streaming in the long and narrow hypocotyls,

the actin network needs to be highly parallel to the major cell axis and straight. This is

in contrast to the highly irregular shapes of leaf cells, which have a width much closer to

their length. The curved cell membrane and cell wall impart significant deviations in the

linearity of actin filaments near the cell edges.

5.2.3 Application 3: Blumeria Infections

Wild type, arp2-1 and formin4/7/8 knockout leaves were all infected with Blumeria graminis

(Bgh) and imaged at 48 hours post infection. MANOVA testing showed no significant

changes due to genotype (𝑝 = 0.25), pathogen (𝑝 = 0.079), or a combination of the two

(𝑝 = 0.086). Despite this, it is possible that some combination of measures could still show

a significant difference. To test this, a principal component analysis (PCA) was performed,

which scales, shifts and combines all variables into an alternative, yet equivalent, set of

principal components. The aim of this is to encapsulate as much of the variation in the data

as possible using only a subset of the principal components. This variance as a function

of the principal component number is shown in Fig. 5.3, with the dotted line showing

the mean percentage of variance over all principal components. The first four principal

components contribute more than this mean, containing between them 77% of the total

variation. By selecting only these four components and performing another MANOVA
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Figure 5.3: Principal component analysis (PCA) of Blumeria graminis-infected and uninfected leaves.
Shown is the percentage of the variance that is explained by each of the principal components. The dot-

ted line shows the mean percentage of variance over all principal components. The first four components

contribute more than or equal to this mean and are therefore kept for future analysis. Sample includes 20

uninfected leaf cells and 5 infected cells.

test, genotype (𝑝 = 0.037), pathogen (𝑝 = 0.0020) and their combination (𝑝 = 0.033) were

all significant.

Bgh was chosen as a pathogen due to its reported ability to perturb the actin network

and direct trafficking during non-host immune responses (Takemoto et al. 2006). Cell wall

reinforcement and successful defence have been shown to be dependent upon actin dy-

namics (Yun et al. 2003). These effects are however highly localised and their impact upon

the overall properties of the cytoskeleton across the cell is likely to be subtle. However,

it is promising that, despite this, our algorithm is still able to identify significant differ-

ences between infected and non-infected cells (albeit without allocating these to specific

descriptors). With a larger sample size or higher resolution images, a better understand-

ing of the filamentous actin around the infection site would likely be achievable by using

our algorithm at the sub-cellular level to compare local network properties.
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5.3 Discussion

In this study we applied our code to several real examples from Arabidopsis thaliana. First,

we examined how the actin cytoskeleton differed in wild-type cells compared to two null

mutants: arp2-1 and formin4/7/8. We found that, in hypocotyl cells, both mutants showed

significant differences relative to the wild type in four separate measures, including fila-

ment curvature and width. The signed curvature was greater in both mutants compared

to the wild type, while the average actin width was larger in the formin4/7/8 mutant than

the wild type. Both mutants had a higher skeleton density than the wild type, but only

formin4/7/8 had an increased structure density. This possibly points to the reduction of

membrane anchoring points for the cytoskeleton, one function of formins (Cvrčková 2013),

reducing tension and support in the network, which may result in adaptions being made

in order to bolster strength.

Next, we examined hypocotyl versus leaf cells, finding significant difference in branch-

ing (leaves have a higher branch point density) and network density (hypocotyls have

higher density). The detection of these significant differences between tissues highlights

the different requirements of leaf and hypocotyl cells. It is plausible that the difference

arises since hypocotyl cells require much of the network to run parallel to the cell’s long

axis to aid with transport, increasing packing density of the cables and reducing the need

for branching. This may further be reinforced by reduced deviation of the filaments in

hypocotyl cells.

Finally, we examined the response of Arabidopsis leaf cells to infection by Blumeria.

Identifying significant differences were more difficult in this case, although was possible

by using PCA analysis. By taking the four principle components that contributed more

than the mean total variance, we showed that Bgh has a detectable impact on the actin

network, although we were unable to identify the particular microscopic network differ-

ences at play. Our analysis only considered the actin network of the whole cell. Since

Bgh infection may only modify the cytoskeletal network close to the point of infection, we

may have missed local network changes. This could be remedied by optimising data ac-

quisition to analyse the network of the region around the infection site. This would need

to be performed at diffraction-limited resolution and at high time resolution to prevent
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dynamic filament smearing in projected images.

The ability to identify differences in specific parameters can indicate the action of

specific classes of actin binding proteins and their associated signalling pathways in tissue

differentiation. The measured changes across genotypes shows that even more subtle

differences can be detected and measured, which should allow even better insight into

the mechanisms underlying the cytoskeletal processes. While we were unable to quantify

the differences in the network induced by pathogen invasion, the fact a difference could be

found using principal component analysis suggests that as yet undefined ratios of network

properties characterise the response to pathogen assault. The changes in proximity to the

appressorium are often highly visible, whereas the rest of the network appears to remain

similar. It is possible that changes occur here, but they will be very subtle, therefore most

of the changes are going to occur in a small region and measurements across the whole cell

will only change by a very small amount. A much larger data set or perhaps an artificial

stimulation of the immune response (e.g. a microneedle assay (Hardham et al. 2008)) may

help in discerning these changes in more detail.

The dynamic nature of the actin cytoskeleton and the noisy nature of microscopy

means that a perfect network extraction tool cannot exist. Our tool has a number of limi-

tations. First, we focus on extracting actin bundles rather than the finer F-actin structure

(which was motivated by the nature of our training data but precluded analysis of highly

dynamic filament populations). Second, while the code has support for 3D data sets and

measurements, these are currently implemented in only a simple manner by estimating

z-positions from stack intensities. In future, better isolation of the filament position in 3D

would enable additional information to be gathered on measurements such as curvature

and branch angles, as well as enable new types of 3D measurements. Third, our tool is

designed to work at single time points. A future extension could involve frame-by-frame

filament tracking. This would allow network remodelling to be analysed in greater de-

tail, and the network in nearby time points could be used to inform and improve filament

detection, providing more information than is possible by using single images in isolation.

While the software was designed using data from A. thaliana, particularly images

from leaf and hypocotyl cells, we have aimed to create a general resource that is easily



94 CHAPTER 5. IMAGE ANALYSIS: RESULTS AND FINDINGS

adaptable to other cell types and organisms. For example, quantifying the network struc-

ture in other plant tissues and cell types, such as roots and root tips, would likely be

straightforward. Further, we expect our algorithm (with suitable parameter changes) will

also perform well on other organisms, including animal cells. Structures other than actin

are likely to be analysable with only minor modifications. For example, extracting the

microtubule network is a substantially easy task than that for actin due to their increased

and more-consistent thickness. However, it is worth pointing out that there will be signif-

icantly more crossing events for microtubules and so an improved method of network re-

construction (perhaps by more fully utilising every image in a 3D stack) would be needed.

Finally, it will be worth investigating whether out approach can be used to extract multi-

ple different networks from single images. For example, since filament width is already

on output of our algorithm, it may be relatively straightforward to add a method that

segments the cytoskeleton into F-actin, intermediate filaments and microtubules (given

sufficient labelling and resolution to distinguish between them).

In addition to the points mentioned above, there are a number of further ways that

our tool could be extended in future. First, we have used the 3D data provided by z-

stacks only to estimate 3D filament lengths and angles. More fully reconstructing the full

3D network could have a number of important applications, particularly in animal cells

where the lack of a central vacuole increases the importance of the full three-dimensional

actin structure. Second, we currently analyse images at single time points. Identifying

the network at neighbouring time points (with, for example, some modified Hungarian

algorithm) could lead to both an improved accuracy of network extraction and a way to

quantify dynamic network changes (for example, in response to fungal attack). Third, pre-

vious work in this area utilised analysis of the actin structure to measure organelle motility

(Breuer et al. 2017). With our algorithm, this could naturally be extended by using the im-

proved network quantification that our software yields. By including measurements such

as curvature, matching organelle movement to actin tracks is likely to be more accurate

and provide additional data to explore mechanisms and design mathematical models.

Fourth, since analysis of a single frame takes only a couple of seconds with our algorithm,

network extraction could be performed in real time, with results instantly fed back to the

microscope user. Near real-time analysis could inform which areas of the cell to probe for
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an immune response or for how long to apply a perturbation (such as in the nanoindenta-

tion experiments that have been used to test for actin remodelling to a physical stimulus

(Branco et al. 2017)). Further, for laser dissection experiments, immediate and detailed

information and statistics of the actin network could suggest which cables to sever.

Our DRAGoN tool demonstrates that accurate extraction of the actin network struc-

ture can be accomplished with only minimal human interaction. Further, the same general

algorithm will be relevant across cell types, tissues, organisms and network types. Ap-

plications of this work are widespread and range from basic biological understanding to

global crop security. As a result it is likely that such tools will become increasing common

and important in biology as improved methods of imaging the fine detail of actin and

other cytoskeletal elements become available.

5.4 Conclusion

Using the DRAGoN algorithm, we studied a number of cases in Arabidopsis thaliana, in-

cluding several different tissues, a variety of actin-affected mutants, and cells responding

to powdery mildew. In many cases we found statistically-significant differences in actin

network properties. In addition to these results, our algorithm is designed to be easily

adaptable to other tissues, mutants and plants, and so will be a valuable asset for the

study and future biological engineering of the actin cytoskeleton in globally-important

crops.

5.5 Methods

The DRAGoN algorithm was used to analyse images of the cytoskeleton using GFP-Lifeact

infused A. thaliana hypocotyl and leaf cells, as described in 4.5.

5.5.1 Plant and Pathogen Growth

5.5.1.1 Plant Material

Arabidopsis thaliana ecotype Colombia-0 (Col-0) with GFP-Lifeact were grown as the wild

type, alongside loss-of-function mutations in Arp2 (SALK SALK_003448) or three formin
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genes (Formins 4, 7 and 8) as described in Sassmann et al. 2018.

5.5.1.2 Arabidopsis Hypocotyls

A. thaliana seeds were sterilised with Cl2 for 4-5 hours in a sealed container by mixing

100 ml of bleach with 3 ml of 37% HCl. Sterilised seeds were suspended in molecular

biology grade water and stored in the dark at 3°C for a minimum of 5 days. To produce

the extended hypocotyls, seeds were dark grown in a humid growth chamber at 21°C
for 5 days. 100 µl half-concentration Murashige and Skoog (MS) growth medium with

Gamborg’s Vitamins containing 0.8% w/v agar was used as the growth medium, upon

which the seeds were placed. 500 µl centrifuge tubes were used to contain the medium

and support the hypocotyls.

5.5.1.3 Arabidopsis Leaves

10-15 A. thaliana seeds were sown onto F2 soil with sand, mixed with vermiculite in a 3:1

ratio. The seeds were left in the dark at 3-5°C for a week, then transferred to a growth

cabinet (16 h light, 8 h dark) at 21°C. After 1-2 weeks more, plants were transferred to a

new pot as to grow uncontested.

5.5.1.4 Blumeria Graminis

Blumeria graminis (Bgh) was cultivated on “Golden Promise” barley (16h light, 8h dark) at

17°C by weekly infection of three-week old barley plants.

5.5.1.5 Blumeria Infection

After 7 days of cultivation on barley, Bgh spores were sprinkled on whole plants for the

elongated hypocotyls; they were placed back in the dark at 17
◦
C for 24 hours and remained

in their centrifuge tubes. For leaf infections, 4-6 week old A. thaliana plants were cut at

the base of the petiole and placed on damp filter paper in a petri dish before spores were

sprinkled on the adaxial (dorsal) surface. This assay was left in the dark for 48 hours at

17°C before imaging.
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5.5.2 Imaging Methods

Images were taken with a spinning disc confocal microscope, equipped with a 60x lens

and NA of 1.35. A laser power of 7 mW at a wavelength 488 nm was used for imaging

GFP-Lifeact. Images were taken with 200 ms exposure and z-stacks had a separation of

0.55 µm. Entire hypocotyls were mounted while 5x5 mm squares of leaf were cut, away

from the central vascular tissue, in order to keep everything as flat as possible.
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Chapter 6

Mathematical Modelling of PEN3

Distributions

6.1 Introduction

The role and function of PEN3 was discussed in detail in 1.5 and briefly reviewed in 3.1.

The occurrence and distributions of the zones of PEN3 enrichment in response to artificial

stimulation were measured in 3.3 and discussed in 3.4. Here we will take a deeper look into

these distributions and the possible mechanisms that generate them through the use of

mathematical modelling. The required parameters relating to diffusion were determined

through experimental methods and matching to models.

The aim of this chapter of research was to estimate the diffusion regime of PEN3 in

the membrane (under normal conditions) and use this to explore the effect of various PEN3

delivery zone sizes on the shape of the PEN3 immune response. This was to enable testing

of the hypothesis that the size of the PEN3 enrichment region is a product of diffusion in

the membrane.

6.1.1 Theory of Extracting the Diffusion Constant

Once PEN3 has been transported to the membrane and secreted, it is free to diffuse in

two dimensions. A range of methods exist in biological contexts to determine the prop-
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erties associated with this diffusion, such as fluorescence recovery after photobleaching

(FRAP) and single particle tracking (Saxton 1997; Shen et al. 2017). Single particle tracking

provides a fairly simple analysis pipeline for the extraction of 𝐷 through the relationship

described in Eq. 2.10. For normal diffusion, a single particle with 𝜂 degrees of freedom

will travel a mean squared distance ⟨𝑟2⟩ of,

⟨𝑟2⟩ = 2𝜂𝐷𝑡. (6.1)

For our 2D membrane, simply fitting a line to ⟨𝑟2⟩ vs 𝑡 and extracting the gradient will

provide the diffusion constant. The process of tracking a single particle; however, can be

challenging, require specialist equipment, and carefully selected fluorescent probes (Alcor

et al. 2009).

The FRAP method is much more accessible, as it requires looking at an entire en-

semble of particles. By damaging the fluorescent label of a species in a relatively small

region of interest (ROI), the exchange of fluorescing and non-fluorescing particles can be

measured as a change in fluorescence intensity in the ROI (Shen et al. 2017). The cal-

culations and measurements only require analysis of raw images and as many confocal

microscopes are able to perform photobleaching, this is technique available to most. The

downside of using FRAP is that analysis is based upon the average movement of many

particles, therefore a more limited set of information is available and as such larger data

sets may be needed.

A range of models mapping FRAP data to the diffusion constant are available, each

with varying assumptions and complexities. One commonly used is the Soumpasis equa-

tion, which relates the radius of the bleached spot 𝑟 to the characteristic diffusion half-

recovery time 𝜏
1/2 (Wu et al. 1977; Bryers and Drummond 1998; Leddy and Guilak 2003).

This half-recovery time is defined as the time it takes for the mean fluorescence intensity

of the bleach ROI to reach halfway between the post-bleach 𝐹0 and the steady state value

𝐹∞. This requires finding the value of 𝑡 that satisfies

𝐹(𝑡 = 𝜏
1/2) = 𝐹

1/2 =
𝐹0 + 𝐹∞

2

. (6.2)
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With these values, the constant of diffusion is calculated as,

𝐷 = 0.224

𝑟2

𝜏
1/2

. (6.3)

This is very simple, but is based upon the assumption that the bleaching laser is uniform

and effectively instantaneous (i.e. diffusion during bleaching is negligible) (Soumpasis

1983) such that the edges of the bleached regions can be represented by a step function.

As many systems violate these assumptions to varying degrees, adjustments need to be

made. An extensive comparison of models and methods was performed by Kang et al.

with extensions made such that the nominal and effective bleach radii are both taken into

account (Kang et al. 2012). Full derivation and analysis can be seen in the Kang paper, but

the main point is as follows: The nominal radius 𝑟𝑛 , which is used to tell the laser where

to bleach and the size of the spot to analyse for fluorescence recovery and 𝜏
1/2 calculation,

is always smaller or equal to the effective radius 𝑟𝑒 of the bleach ROI. As every laser has

an effective spot size, and many have a Gaussian profile, this must be taken into account.

Using Eq. 6.3 with 𝑟𝑛 gives a lower bound estimate of 𝐷 while using 𝑟𝑒 gives an upper

bound. Kang derived a measurement for the isotropic diffusion constant taking both of

these measurements into account and found that

𝐷 =
𝑟2

𝑛 + 𝑟2

𝑒

8𝜏
1/2

, (6.4)

which in the case of 𝑟𝑒 = 𝑟𝑛 gives near-agreement with Soumpasis.

For diffusion in a membrane, where the surface area is much greater than the bleach

spot size, the membrane can be treated as an infinite, two-dimensional plane (R2
). A

Gaussian laser profile is often used for the bleaching, which has an intensity profile 𝐼𝑟𝑛

given by

𝐼𝑟𝑛 (𝑟) =
2𝐼0

𝜋𝑟2

𝑛

exp

(
− 2𝑟2

𝑟2

𝑛

)
, (6.5)

where 𝑟2 = 𝑥2 + 𝑦2
. If using circular bleach ROIs and assuming isotropic diffusion, it

makes sense to use a coordinate system that matches the geometry, therefore any angular

terms in Eq. 2.9 will disappear due to symmetry. Assuming that the concentration of the
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fluorescent protein satisfies Eq. 2.9 then the fundamental solution for 𝜌(®𝑟, 𝑡) is given by,

𝜌(®𝑟, 𝑡) = 1

4𝜋𝐷𝑡
exp

(
− 𝑟2

4𝐷𝑡

)
. (6.6)

While it has been shown empirically that the shape of a FRAP bleach spot can be

described as a function of a constant minus a Gaussian (Bryers and Drummond 1998), this

is only true for spot sizes that are similar to the radius of the bleaching laser. For larger

spots, a sigmoidal function can be employed instead. One option for a sigmoidal function

is a cumulative function of a Gaussian, which will ensure that the sloped edges of the

bleach will match the profile of the laser, but with a flat base near the centre as expected

for a larger bleach ROI, which can be see in Fig. 6.1. This function is described as

𝐼(𝑟) = 𝐼− +
𝐼Δ

1 + exp (𝑚(𝑟 − 𝑟𝑒))
, (6.7)

where 𝐼− is the intensity of the bleached ROI and 𝐼Δ is the intensity difference inside and

outside the bleached ROI. The parameter 𝑚 describes the slope at the edge of the bleached

region and 𝑟𝑒 is the effective size of the bleach. In polar co-ordinates, 𝑟 is defined as always

positive so bleach profiles will need to be radial (2D, averages over concentric circles from

bleach centre) rather than 1D lines bisecting the ROI.

All parameters can be simply extracted (using fitting techniques for 𝑟𝑒 and linear

interpolation or function fitting for 𝜏
1/2) that are required for Eq. 6.4 and the diffusion

constant can be determined.

While using image analysis of FRAP is a simple and powerful tool for measuring

diffusion, it does not always tell the whole story. Many biological systems are incredibly

cramped, contain barriers or gates which restrict movement or have species with domains

that extend outside of the cell (Saxton and Jacobson 1997; Schütz et al. 1997; Nicolau et

al. 2007; Krapf 2015). PEN3 is membrane bound and has domains which extend outside

of the membrane (Meyer et al. 2009), and as plants cells have cell walls, the extracellu-

lar domains of these membrane proteins may bump into the wall and affect its ability to

diffuse freely. As secretion of PEN3 into the membrane involves the addition of mem-
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Figure 6.1: Sigmoidal Radial Bleach Profiles. By using a cumulative Gaussian to fit the bleach profile, the

shape of the laser (with a Gaussian profile) is taken into account, while the flat bottom of a large bleach ROI

is also present. The baseline of the bleached region is expected to be lower than the single spot bleach due to

overlapping of the Gaussian tails as the bleach spot is moved.

brane material from vesicles into the PM, active external forces will likely also influence

the movement of PEN3. These factors can result in the linear relationship between mean

squared displacement and time no longer being true, therefore traditional FRAP meth-

ods are insufficient, thus the introduction of mathematical modelling can provide deeper

insight into the movement and distribution of these key defence proteins.

More recent advances in mapping FRAP data to diffusion have enabled more de-

tailed measurements of the diffusion constant, and even theoretically enable measure-

ments of a time-dependent diffusion constant. By converting the equation which describes

the fluorescence recovery over time (Kang et al. 2012) into a linear model, the resulting

function 𝑔(𝑡) can give the half time of recovery using a single time point (Kang 2022). As

can be seen from the equation,

𝑔(𝑡) = 𝐹data(𝑡) − 𝐹0

𝐹∞ − 𝐹data(𝑡)
=

8𝐷

𝑟2

𝑒 (1 + 𝛾2)
𝑡 , (6.8)

where 𝛾 is 𝑟𝑛/𝑟𝑒 , this linear relationship becomes very susceptible to noise as 𝐹(𝑡) → 𝐹∞
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as the denominator becomes very small, so the data used for the linear fit should be cut

off before this happens. By noting that 𝑔(𝑡 = 𝜏
1/2) = 1 and 𝑔(𝑡 = 𝜏

2/3) = 2, you can cut

the data at 𝑡 = 𝜏
2/3, fit a linear model and use the single data point at 𝜏

1/2 to estimate

𝐷. The benefit of this method is that you can choose the cut off at any point, and use

your data to calculate the diffusion constant at any point in time. Doing multiple linear

fits and analysing at different time points gives information about any changes in 𝐷 over

time, which can be used to (given enough high-quality, low SNR data) estimate anomalous

diffusion properties. This method still requires fitting of the bleach profile to estimate 𝑟𝑒 ,

and requires a long enough imaging session to determine 𝐹∞, which for very slow diffusive

systems can lead to issues of photobleaching and phototoxicity.

All of the previously described methods rely on imprecisely fitting a diffusion pro-

file, therefore estimating diffusion parameters can be prone to noise and errors. By exciting

a fluorescent sample with patterned illumination and taking measurements in the spatial

Fourier domain, knowledge of the post-bleach profile or the PSF are not required (Geiger

et al. 2020). Fourier analysis in the spatial domain yields a single exponential decay for nor-

mal diffusion, and analysis of multiple harmonics over several length scales can provide

information of anomalous diffusion parameters. This method can yield highly detailed

and accurate estimates of diffusion parameters, but requires a complex, non-conventional

microscopy assay which we do not have access to.

Several tools exist to analytically or numerically simulate diffusion and match it to

experimental data (Schaff et al. 2009; Rapsomaniki et al. 2012; Blumenthal et al. 2015) but

many are simplistic or prone to errors. PyFRAP has been developed and benchmarked

against many of these available models, and showed significant improvements in accu-

racy on simulated data (Bläßle et al. 2018). One issue with this model, however, is that it

assumes that 𝐷 is constant over time. This makes it unsuitable for testing for anomalous

diffusion, and therefore I had to develop software to numerically analyse our FRAP data.



104 CHAPTER 6. MATHEMATICAL MODELLING OF PEN3 DISTRIBUTIONS

6.2 Methods

6.2.1 Experimental Techniques

A. thaliana ecotype Columbia-0 (Col-0) with PEN3-GFP were grown as described in 3.2.1.

As photobleaching can cause cell wall damage, and PEN3 is trafficked to these damaged

sites, drugs which arrested myosin-mediated active transport (Pentabromopseudilin) and

depolymerised the cytoskeleton (Latrunculin B) were used to ensure that any recovery

of PEN3 in the bleach site was through membrane diffusion only. 30 minutes prior to

imaging, each drug treatment was added to separate A. thaliana hypocotyls, at 10 mM

concentration with DMSO, and a control with only 10 mM DMSO was also included.

To determine the parameters associated with diffusion, FRAP experiments were

used alongside model fitting. The entire 5-day old plant was mounted with a standard

glass slide and cover slip of thickness 0.13-0.17 µm. A spinning disc confocal microscope,

with 60x lens and 1.35 NA (oil immersion) was used for image acquisition. A 488 nm

laser set at 10.5 mW power was used to excite and image the PEN3-GFP with a 200 ms

exposure. Stacks of 11 images with 0.55 µm separation were taken every 20 seconds for

15 minutes, immediately after a 20 pixel (∼1.9 µm) radius photobleach event using an 405

nm laser at 30 mW power. This energy density was chosen to enable a clean bleach while

removing or minimising any of the downstream changes associated with cell wall damage

or phototoxicity.

As the FRAP region was circular and therefore rotationally symmetric, alongside

the assumption that diffusion was consistent in all directions, radial distributions of the

FRAP region were measured. This time series of images was projected in z (maximum

z-projection) before being aligned in Fĳi is just ImageJ (Fĳi) program, using a rigid body

transformation, to ensure the position of the FRAP region was constant. Due to the re-

peated imaging, a simple ratio photobleach correction was applied to the series of images

also in Fĳi. To determine the radial profile of the FRAP region, concentric circles with

regular intervals in 𝑟 had their mean intensities measured at every time point. These dis-

tributions were used as input and comparison to diffusion models in order to determine

the parameters associated with diffusion.
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6.2.2 Diffusion Model Fitting

As it is unknown whether diffusion of PEN3 in the membrane is based upon Fick’s Law

(Fick 1855), shown in Eq. 2.9, or whether the diffusion is anomalous, traditional methods

of determining the diffusion constant through purely experimental means were insuffi-

cient. To overcome this, a diffusion model was built in which the initial conditions of a

FRAP experiment could be used as a starting point. From here, each time step with an

equivalent experimental time point for comparison was used to determine how well the

model matched the data. A range of diffusion parameters were tested such that the best

fitting parameters could be found.

Anomalous diffusion can be characterised by the parameter 𝛼 describing the power

relationship between mean squared displacement and time, seen in Eq. 2.10. Barriers,

obstacles and cramped environments can result in 𝛼 < 1 which is known as subdiffusion,

whereas active transport can result in superdiffusion with 𝛼 > 1. Modelling anomalous

behaviour and fitting it to observations allows us to determine which diffusive regime

the protein moves under, and to what degree. Anomalous diffusion is defined using a

adapted version of 2.9 with fractional derivatives corresponding to the value of 𝛼, but

these are very tricky to implement numerically and require knowledge of all previous

time steps, which is highly memory intensive and not very physical. Instead, it is possible

to just scale the diffusion constant in such a way that it produces the same result. At each

time point, the coefficient of diffusion is updated to be

𝐷 = 𝐷0𝛼𝑡
𝛼−1 , (6.9)

were 𝐷0 is the rate of diffusion at 𝑡 = 0 seconds. You can see in Eq. 6.9 that for 𝛼 = 1 you

obtain the standard diffusion constant 𝐷 = 𝐷0 again, as required.

The protein is membrane-bound and the FRAP region is circular, therefore the obvi-

ous choice of a co-ordinate system is 2D polar. Expanding the Laplacian on the right hand

side of Eq. 2.9 and realising that the system is circularly symmetric (i.e. all derivatives in
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angular terms are zero) yields,

𝜕𝜌(®𝑟, 𝑡)
𝜕𝑡

= 𝐷∇2𝜌(®𝑟, 𝑡) = 𝐷

(
𝜕2𝜌(®𝑟, 𝑡)

𝜕𝑟2

+ 1

𝑟

𝜕𝜌(®𝑟, 𝑡)
𝜕𝑟

)
. (6.10)

There are many options for converting the above into a numerical method, but one of the

simplest and most common is the forward Euler method. This uses a forward step in time

Δ𝑡 and a central step in space Δ𝑟 (FTCS) for the differentials. Rewriting Eq. 6.10 using

FTCS results in,

𝜌𝑡+Δ𝑡
𝑟 − 𝜌𝑡

𝑟

Δ𝑡
= 𝐷

(
𝜌𝑡
𝑟−Δ𝑟 − 2𝜌𝑡

𝑟 + 𝜌𝑡
𝑟+Δ𝑟

(Δ𝑟)2 +
𝜌𝑡
𝑟+Δ𝑟 − 𝜌𝑡

𝑟−Δ𝑟
𝑟(2Δ𝑟)

)
. (6.11)

The central difference in space means that for the first-order partial differential term, con-

centrations either side of the current point are used and thus the distance between them

is 2Δ𝑟. Rearranging this to make the concentration at the new time point the subject of

the equation gives,

𝜌𝑡+Δ𝑡
𝑟 = 𝜌𝑡

𝑟 + 𝐷Δ𝑡

(
𝜌𝑡
𝑟−Δ𝑟 − 2𝜌𝑡

𝑟 + 𝜌𝑡
𝑟+Δ𝑟

(Δ𝑟)2 +
𝜌𝑡
𝑟+Δ𝑟 − 𝜌𝑡

𝑟−Δ𝑟
𝑟(2Δ𝑟)

)
, (6.12)

which allows us to evolve the system through time given some starting conditions 𝜌𝑡=0

𝑟

and compare to experimental results. The second term in the brackets is due to the system

being 2D, and while it contributes close to the centre (where 𝑟 ≈ Δ𝑟) it quickly diminishes

in size as 𝑟 increases.

One limitation of the forward Euler method is stability. Both Δ𝑟 and Δ𝑡 have to be

chosen in such a way as to maintain the following relation (Puwal and Roth 2007),

𝐷
Δ𝑡

(Δ𝑟)2 ≤ 0.5. (6.13)

This relationships shows that an increase in spatial resolution by a factor 𝑛 (and thus a

decrease in Δ𝑟 by the same factor of 𝑛) requires an increase in temporal resolution of

𝑛2
. In our case, we are using experimental FRAP data as the start point and as points of

comparison, therefore Δ𝑟 is fixed by the resolution of the microscope and the pixel size

of the CCD. This means Δ𝑡 had to be chosen to be small enough for stability but also
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needed to be a integer divisible value of the time step between sequential experimental

data points, such that comparisons can be made. As we tested a range of values of 𝐷0 and

𝛼, the largest value tested needed to still conform to Eq. 6.13.
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Figure 6.2: All roads lead to Rome. With identical starting conditions and only fitting to a single time point,

there are an infinite number of pairs of 𝛼 and 𝐷
0

which have a minimised fit. By fitting to additional time

points, the chance of a significantly incorrect pairing having a minimised fit value decreases, therefore we fit

to every time point we have available, each with equal weighting.

A range of values of 𝐷0 and 𝛼 were simulated (101 of each parameter for 10201

simulations in total for every FRAP experiment) using Eq. 6.12 in MATLAB. The starting

distribution was taken from the first image post-bleach in the FRAP experiments, then

the simulated distribution at each time point (e.g. 𝑡 = 20 s, 40 s, . . . ) was compared to

the distribution measured experimentally. The fit, which determined the quality of the

parameter pairing, was measured as the sum of the difference in 𝜌 at every position per

time point, then summed over every time point. This ensured that every position and

time point was weighted equally, as the changes in 𝐷 due to 𝛼 can otherwise introduce

issues as shown in Fig. 6.2.
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Figure 6.3: Diffusion and Imaging in ATIS. A) The distance Δ𝑟 a membrane-bound protein travels in a

given time step Δ𝑡 is related to the diffusion coefficient 𝐷. The direction of travel is random, sampled from a

uniform distribution of all possible angles in a circle, which yields Brownian motion. B) Each protein object

is iterated through to determine which pixel it is located within, which is needed for exporting an image of

the system. C) For the highlighted (green) protein in panel B, intensity values are added to the pixels in a 3x3

neighbourhood. For a Gaussian PSF of max intensity 4, the non-diagonal pixels have a rounded intensity of

2, and the diagonal pixels have a rounded intensity of 1. This is correct to the nearest integer, as the image

being taken is 16-bit.

6.2.3 Modelling PEN3 in A. thaliana

In contrast to the distribution-based diffusion model used to determine the diffusion co-

efficient, the model of PEN3 transport and distribution in A. thaliana immune responses

was particle based. This enabled trivial exchange of these proteins between the membrane

and cytoplasmic stream populations as was required, and also removed the requirement

of a rotationally symmetric 2D distributions which was no longer true. The Arabidopsis

thaliana Immune Simulation (AtIS) was built in C++17 due to the potential computational

complexity and intensive memory requirements, and snapshots of various time points

were exported to reflect the image acquisition process that would be undertaken experi-

mentally. The code in its entirety can be found in Appendix A.

The AtIS PEN3 model contained two distinct components and distributions: the

protein in the membrane was free to diffuse (normally, 𝛼 = 1) in two dimensions, and

the protein being actively transported within the cell was fixed in its drifting trajectory

(referred to as the stream from now on). To model diffusion of individual particles, they

were moved by a distance determined with Eq. 6.1 where 𝑡 = Δ𝑡 (the size of the time

step), and an angle randomly generated from the uniform distribution [0, 2𝜋), shown in

Fig. 6.3A. While sampling the distance from a normal distribution with a mean from Eq. 6.1

may be more biologically accurate, this should yield near-identical distributions over our

20 minute time-scale.
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A single stream of actively transported protein travels in a straight line along the

length of the cell, intersecting or running proximal to the site of infection. The proteins

are normally distributed perpendicular to this line of transport, and all move at a constant

speed biologically estimated to be 5 µm s
−1

, a typical speed for vesicular transport in A.

thaliana. A zone of delivery, centred on the infection site, which was varied in order to

explore the change to the size and shape of the PEN3 enrichment zone, was used for net

transport of protein from the stream into the membrane. This delivery zone was highly

customised through the use of various zone diameters, heterogeneous delivery proba-

bilities and zones influenced by membrane conditions. Many options were tested and

a homogeneous, circular zone with decreased probabilities based upon PEN3 membrane

density was chosen as it is biologically sensible and produced visually appropriate results.

Each protein in the model was an object with various properties describing its po-

sition, fluorescent properties, and ability to diffuse. An array of these objects was stored

for the membrane and a second array for the stream, such that these could be handled

separately for movement without additional checks, and so that images with and with-

out each component could be taken if desired. To image the system, a grid of pixels was

drawn over the simulation, and every protein within each pixel contributed to increasing

the intensity of the pixels in a 3x3 grid around them, as shown in Fig. 6.3 panels B and C

respectively. Repeating this for every pixel produced a matrix of intensities, which was

exported as a TIFF file using the TIFF library. Exporting the data as an image instead of

a table or numbers enabled downstream processing pipelines to remain near identical to

experimental data for qualitative and potential quantitative analysis.

Many of the parameters in the simulation associated with protein density and bright-

ness are related due to the relative nature of the background and response regions of the

cell. The density of the proteins in the membrane before any immune response is fairly

irrelevant as the simulation has no interaction between them for diffusion. The require-

ment, based upon measurements in experimental data, was that the intensity of the re-

sponse region was approximately two to three times greater than the cell background.

While matching the intensity of these regions of the simulation to experimental data is

possible and fairly trivial, such as through the use of an intensity gain or changing the
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Name Symbol Value
Diffusion Constant 𝐷0 0.0025 µm

2
s
−1

Diffusion Regime 𝛼 1.0

Background Concentration 𝜌𝑏𝑔 536 µm
−2

Stream Concentration 𝜌𝑠 1.29𝜌𝑏𝑔 = 691 µm
−2

Stream Velocity 𝜈𝑠 5 µm s
−1

Base Delivery Chance Γ 0.651

Delivery Reduction Factor 𝜆𝑚 1.2

Protein Delivery Limit 𝐿𝑝 100 s
−1

Pixel Size 𝑙𝑝𝑥 0.095 µm

Peg Radius 𝑅𝑝 6𝑙𝑝𝑥 = 0.54 µm

Table 6.1: AtIS Parameters. The parameters in the AtIS model were either directly fitted or estimated from

biological observations, with exceptions in the pixel size (determined by our microscope) and the peg radius

(large enough to be visible without impacting the result significantly). Many of these parameters are related,

therefore changing one would require refitting several others.

protein density, it was not required and the latter option would have a significant impact

on computational time. For this reason, the chance for a protein to be delivered to the site

of infection, by being transferred from the stream population to the membrane popula-

tion, decreased as the protein density increases, through a relationship which achieved

the two-to-three ratio of background to response that was required over the 20 minute

period. The chance of a protein being delivered 𝑃𝑑 to the membrane is

𝑃𝑑 = Γ𝑒−𝜌𝑚/𝜆𝑚 , (6.14)

where 𝜌𝑚 is the current, local density of proteins at the point of delivery, measured in

µm
−2

, and 𝜆𝑚 is the decay factor, modulating the decrease of delivery probability. Γ is a

global scale factor which ensures that the stream doesn’t immediately dump all its con-

tents upon reaching the infection site. A limit to the total number of proteins that can be

delivered every second is also applied, as in reality the delivery is not instantaneous and

the resources for exocytosis are not infinite. For higher density backgrounds; however,

these parameters will need to be adjusted.

While PEN3 can be produced during an immune response, it also undergoes en-

docytic recycling from the membrane to the site of infection. To mimic this removal far

from the site of infection, any proteins which move beyond the edge of the simulation are

removed.
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A series of simulations were run in AtIS with varied delivery zone diameters 𝐷𝑝

which were chosen as a scale factor of the penetration peg size (1, 2.5, 4, 5.5), in order to

explore whether delivery is localised to the infection site or whether a zone is designated

through a signalling pathway. The stream was at a fixed angle of 4.72
◦

below the horizontal

(and cell) axis, but was shifted by the radius of the penetration peg ±𝑅𝑝 from passing

through the centre of the delivery zone such that the effect of position and direction of the

stream on the resultant distribution could be observed, especially for the smaller delivery

zones. All parameters are shown in Tab. 6.1.

6.3 Results

6.3.1 Diffusion Model Fitting

The radial distributions of PEN3 FRAP regions were extracted at every time point and fed

into the simulation, where the value of 𝐷0 was tested in the range [0.001, 0.011] µm s
−1

and 𝛼 in the range [0.75, 1.25], each with 101 different values. Those which had the best

fit against the limit of the 𝐷0 range were run again with extended limits, and this was

done to increase overall throughput. The distribution of the 𝐷0 and 𝛼 parameter pairs

is shown in Fig. 6.4A, where all drug treatments were similarly distributed, with a single

pentabrompseudilin data point as an outlier in the lower left. The curved relationship

between𝐷0 and 𝛼 is expected, and this is further shown in Fig. 6.4B, where the contour plot

of the fit parameter has a similar shape. Away from this dark band the fit rapidly becomes

worse, therefore the point of best fit was highlighted with a white cross. This consistent,

deep fitting valley, means that a smarter way of sampling various parameter value pairs,

such as using a binary search algorithm or gradient based optimisation (Sancibrian et

al. 2004), would significantly reduce search time without the risk of finding local minima.

The distributions of 𝛼 across treatment groups is shown in Fig. 6.4C, with no sig-

nificant differences found between these groups using ANOVA (p=0.379). To determine

if any of the treatments had a mean 𝛼 value different from 1, a students t-test was used

for the DMSO and pentabromopseudilin groups, and the non-parametric Mann-Whitney

test for latrunculin B treated samples (normality was tested for using the Shapiro Wilks

test). Corrections were applied for repeated testing (see 2.2.2 for further details). None of
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Figure 6.4: Fitting diffusion parameters to FRAP data. Control (DMSO, 𝑛 = 12) A. thaliana cells were

used alongside an actin depolymerising drug (Latrunculin B, 𝑛 = 12) and a myosin inhibitor (pentabro-

mopseudilin, 𝑛 = 12) to determine the rate and modality of diffusion of PEN3 in the membrane. A) The

simulated parameter pair (𝐷
0

and 𝛼) which fit best to the experimental FRAP data. Smaller point sizes show

a better (minimised) fit to the experimental data, further highlighting the issues with the outlier in pentabro-

mopseudilin. B) A surface plot of the fitting parameter for one simulation of an experimental FRAP region.

The better the fit parameter, the darker the colour, with the minimum (best fit) marked by a white cross. C)

The distribution of 𝛼 parameters across the three treatment groups, where no significance was found between

groups or compared to a distribution with mean of one and variance the same as experimentally measured.

D) The distribution of 𝐷
0

parameters, which also found no significant differences between groups. Statistical

tests were performed using an ANOVA.

the treatments were found to have a mean 𝛼 parameter significantly different to one with

the same variance and a mean of 1.0, therefore in this instance we can assume a normal

diffusive regime.

The 𝐷0 parameter, shown in Fig. 6.4D, had no significant differences between treat-

ment groups either. The latrunculin B treatment should have depolymerised the cy-

toskeleton, therefore cortical actin should not restrict movement of the membrane-bound

PEN3 proteins. The lack of any difference in diffusive transport of the control and latrun-

culin B treated cells suggests that cortical actin does not provide a barrier to PEN3 diffu-
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Figure 6.5: Artificial Simulation of the Immune Response. Each unique combination of delivery diameter

and stream offset was run and analysed once, for a total sample size of 12. A) The effective diameter of the

immune response for various delivery diameters, calculated as the geometric mean of the major and minor

axis lengths of the ellipse fitted to the image. B) The eccentricity of the PEN3 response ellipse for various

delivery diameters, calculated with Eq. 3.2. C) The angle the major axis of the fitted ellipse relative to the

long axis of the cell. The horizontal dashed line represents the angle of the PEN3 delivery stream, which

we hypothesised was a factor in the shape and orientation of response. Delivery diameters are chosen as

multiples of the penetration peg radial size 𝑅𝑝 = 6px = 0.57 µm

sion in the membrane, whereas these structures have been shown to influence membrane-

bound proteins in animal cells (Andrews et al. 2008).

As the simulations resulted in a distribution of 𝛼 not significantly different from

a mean of 1, the simulations of PEN3 delivery and immune responses assumed normal

diffusion, with a mean 𝐷0 value of 0.0025 µm
2

s
−1

, taken from the best fit with a fixed

𝛼 = 1. This mean was taken with just DMSO data, as it best reflects the environment and

state of the cell we were simulating.

6.3.2 Modelling PEN3 Response

For consistency with my previous work, the AtIS images at 𝑡 = 20 minutes, obtained with

the parameters in Tab. 6.1, were extracted and quantified with the same PEN3 response

analysis pipeline, described in 3.2.2. The simulations were set up to have a 100% response

frequency and the analysis pipeline was in agreement. The quantitative results are shown

in Fig. 6.5 where changing the size of the PEN3 delivery zone was tested and compared

to experimental data.

The size of the immune response increased with a larger delivery diameter, shown

in Fig. 6.5A. Although all were larger than even the largest delivery diameter, suggesting
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that diffusion does contribute to an increased disc size, but is not the only factor. All but

one of the response sizes were within one standard deviation of the wildtype mean size

found in 3.3, with the 0.57 µm offset of the small delivery diameter (1.14 µm) being below.

While the threshold value of the analysis script was changed to be more appropriate for

these data, the consistency of the simulation data outside of the response site, using the

intensity distribution to determine a threshold is likely less appropriate here. The smaller

delivery zones were much dimmer in their response, which is not seen experimentally,

as we were testing this to an apparent non-realistic extreme, and therefore a fixed inten-

sity value for the threshold may be more appropriate. The simulation was designed to

target a certain density of PEN3 in the membrane before a response, therefore this region

can easily be quantified and rejected, which is not true in reality. The stream offset had a

more significant impact in the response size for the smallest delivery zone, which was to

be expected as the stream proteins are distributed with a Gaussian distribution that has

a standard deviation equal to the smallest delivery diameter. By offsetting the stream,

much of it never passed through the delivery zone and reduced the response size. Ex-

perimentally; however, the stream is often not fixed and therefore this would likely have

minimal influence on the result, and with larger (and more biologically relevant) delivery

zones this is already the case.

The eccentricity of the response increased with the delivery diameter, shown in

Fig. 6.5B, as might be expected given the width of the stream relative to the response

region. Experimentally, the wildtype response eccentricity was 0.72±0.15, and for the

largest delivery diameter, the mean eccentricity was approximately equal to this, with the

smaller 4.56 µm delivery diameter just within one standard deviation below the mean. The

two smallest delivery zones were significantly lower, which may suggest a larger delivery

zone is present in these plant cells. There are many assumptions and simplifications in

the delivery process; however, which may result in underestimations of the eccentricity.

The issue with the threshold for measuring the response region may have also had an

influence on the result.

The angle of the long axis of the response ellipse relative to the long axis of the cell

is shown in Fig. 6.5C, with a decreasing difference in angle for larger delivery diameter.
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Figure 6.6: Reanalysis of AtIS with updated thresholding. Each unique combination of delivery diameter

and stream offset was run and analysed once, for a total sample size of 12. A comparison of AtIS model outputs

against experimental data, with the experimental mean being shown as a dashed line and one standard

deviation being covered by the grey shading. A) The effective diameter of the PEN3 immune response shows

that a small delivery zone is unlikely to be realistic, and this is backed up by the eccentricity of the response,

found in (B). C) The orientation of the major axis of the response ellipse relative the to long axis of the cell.

The dashed line shows the angle the delivery stream makes, and the larger, more eccentric responses tend to

cluster around this angle.

The angle the stream makes relative to the cell is shown by the dashed line, with two

largest delivery diameters having mean angles just above and just below this value. While

the stream direction and orientation is likely in part responsible for the orientation of the

response ellipse, the stream would normally move and change angle over the time period.

Any initial offset between stream and cell angle is therefore likely to change and perhaps

even disappear over extended time periods.

Due to the uniformity of the background signal of the AtIS images, it was possible

to alter the thresholding method to better detect the PEN3 response across the extremes

being simulated. The model was designed to match the 2-3x increase in intensity for the

PEN3 response region, therefore the threshold was adapted to be 2x the median of the

background region and the analysis redone. The results are shown in Fig. 6.6, with a

dotted line showing the mean experimentally measured value from 3.3, and the shaded

region denoting one standard deviation from the mean. The dashed line in Fig. 6.6C, is

the angle of the delivery stream, as is the case in Fig. 6.5C. From these results, it is clear

that the smaller delivery zones are unlikely to be realistic. A delivery diameter of 4.56 µm

appears to be best for predicting the effective size; however, this size underestimates the

eccentricity of the response, while the 6.27 µm diameter is much better in this case. It is
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therefore likely that the correct delivery diameter is somewhere in between these values,

and a mean of 5.4 µm would be a sensible prediction based upon the simulations.

6.4 Discussion

Through the use of FRAP experiments and modelling, we were able to deduce that the

diffusion regime of PEN3 in the membrane of A. thaliana epidermal hypocotyl cells was

normal (Fickian) diffusion. Fitting the diffusion model to the data yielded the diffusion

constant of 0.0025 µm
2

s
−1

which we used in a model (AtIS) of PEN3 in an immune re-

sponse. AtIS had several other parameters based upon biological observations, such as

the velocity of actively transported PEN3 vesicles and the rate of delivery to the membrane,

and all parameters are shown in Tab. 6.1. We tested various delivery diemeters and stream

positions, running the simulation for 20 minutes such that the same downstream analysis

from 3.2.2 could be used and the results were compared. The larger delivery zones re-

sulted in increased response eccentricity and better alignment to the cell and the stream,

which is seen experimentally. These larger zones gave response sizes that were between

the mean and the upper bound of experimental sizes, however. Due to the nature of AtIS,

a change to the analysis method likely resulted in a more accurate representation of the

response, but prior knowledge of current results and those in 3.3 made it difficult to not

introduce bias for a desired outcome, although this was minimised by making choices

based upon experimental data.

The properties of the plasma membrane, as well as the size of PEN3, resulted in the

diffusion constant being small. A slower rate of diffusion makes conventional FRAP ex-

periments difficult, as the time required to reach a steady state equilibrium of fluorescence

is long, which can cause issues with photobleaching and phototoxicity, while also signifi-

cantly reducing throughput. By fitting the experimental data to a model, throughput was

increased and anomalous diffusion regimes could be tested. This should be applicable

to any 2D diffusive system with rotational symmetry (i.e. Diffusion is uniform in all di-

rections) and a circular bleach spot. For systems with unknown behaviour, an improved

search algorithm for parameters would be beneficial, significantly reducing analysis time

(∼60-70 minutes for a single time-series with 101x101 parameter pairs), although limits
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on 𝐷0 and 𝛼 would need to be imposed to ensure stability. This could be sidestepped by

adjusting Δ𝑡 based upon Eq. 6.13 and the current parameter pair, although it was decided

that for consistency it was best to keep all other variables constant.

Figure 6.7: AtIS images at t=20 minutes. Each unique combination of delivery diameter and stream offset

was run and analysed once, for a total sample size of 12. The distributions of PEN3 around the penetration

peg (represented by the dark region, 1.17 µm diameter) are influenced by the size of the delivery zone 𝐷𝑝 and

the position of the delivery stream. The offset of the stream from the centre of the peg Δ𝑆 shows the whole

response region being shifted up when the stream is also shifted up (e.g. Δ𝑆 < 0) and down when the stream

is shifted down (Δ𝑆 > 0). Larger delivery diameters result in increased eccentricity of the response region as

well as brighter responses. The proteins which are in the stream are not fluorescing in this image as this can

affect downstream analysis. The long axis of the cell is parallel to the horizontal axis.

The output images from AtIS, which were analysed to give the results in Fig. 6.5,

are shown in Fig. 6.7. The issues with using a percentile of the intensity distribution for

thresholding the response region should be more apparent comparing between the small-

est and largest delivery zones. Any choice of value will result in either overestimating the

small distributions or underestimating the larger ones, therefore the same analysis method

between experimental data and AtIS could not be used. In order to make a prediction of

the delivery zone size, the analysis method had to be adjusted. To minimise any bias of

reanalysis, the new threshold was chosen based upon experimental observations and AtIS

design, and a quick visual inspection afterwards showed that it was appropriate. Due to
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the issues the delivery stream can cause on this analysis method experimentally, shown

in Fig. 3.7C, any proteins in the simulation which were in the stream were not included in

the image. A quick test with the stream included showed that it impacted measurements

for the smallest delivery zones, as expected.

6.5 Conclusion

A combination of FRAP experiments and diffusion model fitting enabled both the diffu-

sion constant and the diffusive regime to be determined in A. thaliana hypocotyl epider-

mal cells. A simple, 2D simulation of the immune response to an artificial stimulus was

developed, such that the distribution of PEN3 in the membrane could be explored and

compared to the experimental findings in 3.3. Many of the parameters were explicitly fit

to experimental data, while others were biologically appropriate estimates or determined

relative to each other. The effect of various sizes of delivery zones was measured, and the

outcome on both size and shape of distribution was quantified, alongside the effect of the

position of the delivery stream. I found that a delivery zone smaller than the observed

PEN3 enrichment size would be likely to reproduce our experimental results. This zone

is still expected to be around 5.4 µm in diameter; however, which is approximately 80% of

the observed PEN3 size and 64% of its area.
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Chapter 7

General Discussion

Crops are a significant food and fuel source for most people, yet a changing climate and

growing population requires an increase in the volume of crop produced all while using

the same or even a reduced area of land. As large numbers of crops are lost to disease

every year, much research has been done to produce crop genotypes with specific, host

resistance, as well as the development of fungicides, pesticides and the like, but these so-

lutions tend to be short-lived in the arms race between crop and pathogen. Plants have

a basal immune response, which is non-specific and therefore is able to respond to a va-

riety of pathogens, yet many of its mechanisms and pathways are not well understood.

This research has begun to probe some of these mechanisms, particularly around the cy-

toskeleton and PEN3, in order to learn more about how plants defend themselves against

the unknown.

7.1 Summary of Research

I have developed a novel method for stimulating the immune response of plant cells. By

partially embedding microdiamonds into a thin layer of PMMA on the surface of a cover

slip, small protrusions which exert localised pressure on the cell wall when the system

was mounted on a microscope stimulated the initial stages of an immune response. This

mimicked the physical aspect of a potential pathogen attack, and a common molecular

pattern which included chitin, chitinase and drislase was added for the chemical compo-
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nent. These aspects were combined to observe the initial 20 minutes of the plant immune

response, and images were taken of A. thaliana PEN3-GFP fusion plant cells, such that

the local PEN3 enrichment could be quantified. I developed an analysis pipeline for the

PEN3-GFP images which would determine whether an immune response had occurred,

as well as quantified the shape, size and orientation of this response. Similar response fre-

quencies were found in the wildtype (Colombia-0) and an Arp2 loss-of-function mutant,

whereas an increased number of responses was found in a Formin4/7/8 triple loss-of-

function mutant. No differences were found across the wildtype or mutants in relation

to the size of the PEN3 enrichment zone, its shape or its orientation relative to the cell

long axis. To test the critical role the actin cytoskeleton plays in the immune response, the

experiment was repeated with the addition of Latrunculin B 30 minutes before imaging,

to depolymerise the network, and not a single immune response was observed.

With the knowledge that the cytoskeleton is vital for the initial stages of the plant im-

mune response, I began to develop methods for extracting and quantifying this network.

I imaged A. thaliana hypocotyl epidermal cells with GFP-Lifeact to develop the methods

of segmenting the network from the rest of the cell. From here, I developed a method of

labelling the different filaments and bundles, through the use of branch points and end

points, such that each component of the network could be measured and quantified. I

designed 17 different metrics for the network, spanning from filament lengths and branch

angles to bundle widths and various curvatures. I designed various test cases to validate

these different measures, with an aim to cover edge cases as well. I also designed a way to

artificially generate simple data sets, with image properties akin to those from the micro-

scope I use, including resolution and pixel size. These data sets had their filament density

changed, as well as the noise levels, the threshold for network extraction and the numer-

ical aperture of the lens used for imaging. Comparing to the ground truth, I quantified

the sensitivity and precision of the algorithm at segmenting the network and highlighted

the working range available without a single tweak to the code, in order to demonstrate

how flexible the algorithm was.

Next, with the analysis algorithm—DRAGoN—developed and tested, I moved onto

extracting and quantifying the network in various A. thaliana hypocotyl and leaf cells with
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GFP-Lifeact. These cells had the same loss-of-function mutants as the previous PEN3 ex-

periments, as these were designed to alter or impair the cytoskeleton. For the hypocotyl

cells, four cytoskeleton metrics were significantly different between the wildtype and the

formin4/7/8 triple mutant, whereas only one was different for the arp2-1 mutant. This is

consistent with the findings in the PEN3 artificial immune stimulation experiments, where

the formin triple mutant showed a slightly impaired immune response, whereas the arp2-1

did not. It appears as if the combination of formin4/7/8 loss-of-function has a more crip-

pling impact on the cytoskeleton and therefore on the immune response (at least, in terms

of PEN3 enrichment). Next, I compared between hypocotyl and leaf cells in A. thaliana

to find a further four statistically different metrics, including network and branch point

densities, which are perhaps a little more noticeable visually compared to the previous ap-

plication. The ability of DRAGoN to discern both the obvious and more subtle differences

is promising for future applications. Finally, it was applied to leaf cells which had been

infected with Bgh; cells were chosen that were still alive and had clearly had a penetration

attempt, so that the cytoskeleton would have had to locally remodel. Whole cell aver-

ages of the various metrics had to be taken, because artificially sampling smaller regions

can introduce bias and place restrictions on certain properties of the network. Differences

couldn’t be detected using the specific metrics, but by applying principle component anal-

ysis a difference could be seen between infected and healthy cells, suggesting that using

a subset of measures or a much larger data set is needed to see the changes. The remod-

elling due to infection is highly localised, so averaging over the whole cell means the shift

is subtle, therefore a large amount of data is needed.

After correlation between the significant changes in the actin network and the PEN3

distribution of A. thaliana hypocotyl epidermal, I built a simulation to explore the shape

and size of the PEN3 distribution further. Doing this required fitting several parameters

associated with transport and delivery, and the key component was diffusion. Without

knowledge of the diffusion regime (e.g. normal or anomalous), using conventional FRAP

experiments wasn’t possible and single particle tracking wasn’t feasible. Instead, I built

a circularly symmetric 2D distribution-based diffusion model in order to test the diffu-

sion parameter and the regime. A. thaliana cells with PEN3-GFP had small, circular spots

bleached and imaged every 20 seconds, while the model was given the starting bleach
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distribution and simulated with over 10,000 different parameter pairs. The model was

compared against the experimental images at every time point to determine the parame-

ter pair with the closest fit. To ensure the bleaching laser had not damaged the cell wall

and caused an immune response, wildtype cells were compared against those treated

with Latrunculin B (an actin depolymerising drug) and pentabromopseudilin (a myosin

inhibitor) to arrest PEN3 transport outside of membrane diffusion. No differences were

found between treatments, and the regime was deemed to be normal, so the mean value

of 𝐷0 was calculated. With this, and measurements of the ratio between background and

PEN3 response intensities, the basic model of PEN3 accumulation in the membrane was

could be run. I used a single delivery stream of PEN3, with delivery probability decreas-

ing as membrane concentration increased, to show that the size of the immune response

increases with a larger delivery radius, using the same analysis pipeline as the previ-

ous PEN3 immune response research. Diffusion had contributed to the response size,

as all responses were larger than the delivery zone size. The larger delivery zones; how-

ever, had eccentricity and response orientations which matched better to the experimental

data, with PEN3 enrichment zones that were less than one standard deviation above the

mean size. While this model was very simple and was based upon many assumptions, it

suggests that the cells have a defined delivery zone, which may come from an upstream

signalling molecule. An improved analysis pipeline, better suited to AtIS data, was used

to reanalyse the data such that a prediction of the delivery zone size could be made.

A combination of previous knowledge, findings and predictions from my research

have been assembled into a simplified diagram of the immune response, shown in Fig. 7.1.

Based upon analysis of PEN3 distributions and the rapid remodelling of the cytoskeleton

under the infection site, I hypothesise at least one upstream signalling molecule desig-

nating the zone of remodelling and PEN3 delivery. This may be multiple molecules, or

multiple pulses for the different phases, but the first would likely occur near instanta-

neously after peg pressure. It is also unknown whether the signalling molecule would

occupy the cytosol or the apoplastic space. The shortest time of experimental assembly

(i.e. initial peg contact) to imaging of the artificial peg assay that I was able to achieve

was 26 seconds, and the cytoskeleton had already undergone significant remodelling be-

low the site of infection. Although it remains dynamic after this, the largest changes had
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Figure 7.1: Immune Response Summary. This simplified overview is made from combining previous knowl-

edge and results across my research. Observation of actin filaments reacting to a physical stimulus visually

revealed that actin remodelling can occur within 30 seconds or less. Various analyses of PEN3 have resulted

in an at least one upstream signalling delivery molecule being hypothesised to designate delivery of PEN3

and perhaps other immune proteins.
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already occurred, therefore upstream signalling is likely to occur within a few seconds.

After approximately 30 minutes, we know that PEN3 has been enriched at the infection

site, and FORMIN4 also gets delivered, the two proteins occupying separate domains. A

full, successful response often sees a callose deposit forming in the apoplast.

7.2 Spanning Disciplines and Techniques

I have explored various aspects of the immune response in A. thaliana using novel exper-

imental techniques as well as in depth image analysis and modelling. It is clear that the

initial stages of the response to suspected pathogens are heavily reliant on the dynamics

and remodelling of the actin cytoskeleton in order to achieve timely delivery of key de-

fence proteins. My network extraction tool has provided greater insight into properties of

the cytoskeleton than was previously available. The interaction between the cytoskeleton

and PEN3 vesicles has been shown to give rise to some of the properties of the PEN3 en-

richment zone, but additional signalling molecules are possibly responsible for the shape

and size of this response.

Combining mathematics, physics, biology, experiments and modelling has proven

fruitful for exploring the early stages of a plant immune response. Several aspects of

my work would have been prohibitively difficult or even near-impossible without being

able to model the system, whereas the models would’ve been useless without relying on

experimental data and observations. The feedback between modelling and experiments,

shown in Fig. 7.2, is mutually beneficial and often results in knowledge greater than the

sum of its parts. By doing both components myself, the model building forces me to

formulate hypotheses and design experiments more carefully, such that outcomes can

be properly quantified and tested. Interacting with the biological system and trying to

image it enables a better understanding of the underlying science, which aids in framing

any models in a more biological context, often resulting in a more useful model. Using a

mathematical background and perspective on the system enables me to quantify the data

and any outcomes in a more robust and repeatable manner, a critical facet of any research.

Controlling every aspect of my work also gives me assurance in the models I build and

the direction it takes me.
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Figure 7.2: Experiment-Modelling Cycle. With a pilot experiment (or previous knowledge) and a hypothesis,

a model can be built and used to explore the hypothesis. Knowledge gained from this can be used to improve

experiment design as well as hone in on the aspects of the system that need to be tested. The results gathered

from experimentation can be used to improve the model, in terms of parameters, design, and mechanics,

which can again give direction to further experimental design. The feedback can be used to explore and test

multiple hypotheses, while the model can be used to determine which new hypotheses to test in a much

shorter time scale than could be done experimentally.

7.3 Next Steps

Our understanding of the basal immune response in plants is severely lacking, and while

my work has begun to probe deeper into certain aspects of it, much still remains unknown.

With the ability to analyse the shape of the PEN3 response, one possible aspect to observe

is the way this region grows, looking at how its size, shape and intensity changes over

time. If the delivery zone is designated through an upstream signalling molecule, then

perhaps the shape and size of the zone will change over time as these molecules diffuse,

or as additional signalling pulses are received. High temporal resolution data could elu-

cidate aspects of this, and this is likely to provide better insight into the PEN3 enrichment

process, which would be useful to improve the delivery mechanisms in AtIS, especially

Eq. 6.14. We had observed that multiple, simultaneous focal responses could occur, there-

fore it would be interesting to explore if there is a minimum separation required between
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responses, or if the responses are different when the cell is dealing with more than one

compared to dealing with a single one. Extending beyond 20 minutes may see this region

grow larger, remain in a state of equilibrium, or perhaps even reduce as the physical pres-

sure from the microdiamond has decreased (after the initial ’punch’). For significantly

longer observations, the differences between the artificial and natural immune responses

are likely to increase significantly, as a pathogen will fight back using an arsenal of ef-

fector proteins, as opposed to a static, inert peg. For cells with a clearly visible delivery

stream, using a kymograph or any other method to analyse the stream direction and orien-

tation compared to the cell axis could provide insight into the orientation of the immune

response, as the AtIS response aligned with stream direction. As PEN3 undergoes en-

docytotic recycling, it is possible that equilibrium is established and there is a constant

turnover of PEN3 at the infection site. A photoswitching fluorescent protein could be

used to observe this, by switching fluorescence and observing if PEN3 diffuses away or

is recycled. The AtIS model already has the ability for FRAP or photoswitching experi-

ments, so this could emulated or order to be able to accurately quantify any endocytotic

recycling.

Several other proteins are localised to the infection site, including FORMIN4, so the

same experimental setup and analysis pipeline could be used for FORMIN4-GFP cells.

It has been shown that FORMIN4 and PEN3 occupy distinct nanodomains (Sassmann et

al. 2018), so any differences in the shape or size could prove insightful, and a dual labelled

line would be able to achieve that. Any differences could be attributed to a different sig-

nalling molecule used to designate the delivery zone, which may be expected considering

the segregation of the proteins on the membrane. A different signalling molecule may be

required for temporally separated signals or unique signalling pathways. Unpublished

data shows that FORMIN4 is transported with a similar mechanism to PEN3, support-

ing (Sassmann et al. 2018), and while it doesn’t arrive before PEN3, it is still not known

whether its delivery is on a similar time scale to PEN3. The increase in membrane inten-

sity is proportionally similar to PEN3, albeit just a much dimmer signal in general. As

FORMIN4 is also a membrane-bound protein, the methods used to quantify the diffusion

constant of PEN3 and simulate its accumulation in the membrane should be reusable,

albeit with a different set of parameters.
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A whole host of additional experiments that use the DRAGoN algorithm were dis-

cussed in 5.3, as well as potential algorithm development to extract more data relating

to the cytoskeleton. Perhaps the most pertinent of those, in the context of the rest of the

work discussed here, is using more high-throughput methods of stimulating the immune

response to generate significant amounts of data where the network has been locally dis-

rupted. Artificially stimulating the immune response with the microdiamond cover slip

assay from 3.2.1 with GFP-Lifeact A. thaliana cells would remove some of the complex-

ity and variability of using multiple organisms, and would also likely eliminate the issue

of the cell hypersensitive response which plagued the Bgh experiments. The increased

throughput and potentially improved consistency would likely yield a significant increase

in statistical power. While it would not enable the quantification of the network in more

mature responses, knowledge of the changes 1-20 minutes after contact may provide addi-

tional insight into PEN3 and FORMIN4 transport, as well as any other immune response

proteins. Quantifying the changes across multiple time points would likely benefit from

data with a high temporal resolution and a very large data set, where filament tracking

could be implemented, such that changes to both the whole network and individual fila-

ments or structures could be quantified.

One of the major limitations of AtIS was the simplified delivery stream, with its

fixed position and fairly uniform protein density. One improvement in this area would

be to have a more complex network for transport, where the delivery stream has direc-

tional choices to make at branched regions. Even with a static network, this would add

a degree of variability and randomness to the protein delivery that would be a more re-

alistic experience, as long as the network had realistic properties. Using DRAGoN in the

context discussed above, a distribution of network parameters could be determined, and

AtIS could be extended to generate a transport network which fits those parameter dis-

tributions. It could also be simplified to only include bundles with sufficient capacity

for endosome transport. While it would not be representative at 𝑡 = 0, the network re-

models in response to a physical stimulus within seconds, therefore it should be fairly

representative for most of the simulation. Using DRAGoN with high temporal resolution

data could provide insight into the changes which the network undergoes, but as dis-

cussed previously, a large volume of data would be needed and it would add additional
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complexity to AtIS while likely not providing significant additional insight. Moving AtIS

beyond hypocotyl cells should be feasible, as the cell is currently just given boundaries

of a rectangle, although it was designed with hypocotyl cells in mind and therefore some

assumptions may have been made.

7.4 Long-Term Research

While scientific innovation has driven advancements in technology, the reverse is also true;

improvements to spatial and temporal resolutions, gene editing techniques, and compu-

tational power, amongst a plethora of other technologies, has pushed the boundaries of

knowledge in science forwards. As PEN3 is membrane bound, it is transported in the

membrane of endosomes, and is meant to be deposited into the membrane through exo-

cytosis. The limited axial resolution in confocal microscopy makes it almost impossible

to discern between a cluster of PEN3 in the membrane, a cluster of PEN3 endosomes par-

tially fused to the membrane, and a cluster of PEN3 endosomes bouncing between the

membrane and the cortical actin in the cytoskeleton. It may be possible to see more detail

of these membrane structures using a series of light sheet fluorescent microscopy (LSCM)

images with the angle of the light sheet rotated, then using computational methods to

achieve a single, higher resolution reconstructed image (Huisken and Stainier 2007). TIRF

microscopy can enable high resolution images of membrane structures, but the additional

thickness of our microdiamond cover slips, or the presence of a pathogen on the cell wall

will likely result in a minuscule field of view, or a system too far from the cover slip surface

to be imaged effectively. Many of the super resolution techniques require either fixation,

and therefore the dynamics cannot be observed, or can use high enough laser power to

induce phototoxicity or cell wall damage, interrupting the dynamics.

While PEN3 and FORMIN4 have similar transport mechanisms, and perhaps de-

livery timing, they do not share vesicles and are localised in a distinct manner (Sassmann

et al. 2018). The differences do not end there: PEN3 is distributed in the membrane al-

ways and is localised mainly through endocytotic recycling, whereas FORMIN4 is under

tight transcription control. Several organelles are transported closer to the site of infection

to reduce trafficking time, and it is possible that FORMIN4 is translated either on site or
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in close proximity, and the vesicles of FORMIN4 are just those that have not localised to

the membrane. Tracking of vesicles or the use of a photoswitching fluorescent dye may

enable further insight into the mechanisms of FORMIN4.

I explored PEN3 diffusion while using Latrunculin B and Pentabromopseudilin at

a fixed concentration based upon previous research, and the Latrunculin was also used to

show that the cytoskeleton was vital in PEN3 transport to the site of infection. Using an

additional suite of drug treatments, such as those which inhibit certain signalling path-

ways, cytoskeletal activity or transport mechanisms may provide additional insight into

the initial stages of the immune response. A microfluidics assay would enable imaging

of the system before, during and after a washout drug treatment, which could be used

to temporarily interrupt signalling pathways or transport mechanisms in order to probe

for critical pathways in the immune response. It can be seen that high concentrations of

latrunculin B can freeze the cytoskeleton in place almost immediately, before causing it to

snap due to network tension, therefore altering the concentration over time may enable

allow better control of various mechanisms and cellular functions without wasting time

on trial-and-error.

Some pathogen effectors have been shown to target vesicle trafficking pathways

(Personnic et al. 2016) in order to influence or break the recycling or early and late endo-

somes which are shuttled between the trans-Golgi network and endoplasmic reticulum.

The loss of key defence proteins (e.g. PEN3) can make a plant cell much more susceptible

to pathogen entry, and therefore a better understanding of the pathogenic manipulation of

critical signalling and trafficking pathways could aid in improving plant defence systems.

Including these effectors, at various concentrations, in the microdiamond assay could be

used to see which transport pathways are effected and by how much.

The diamond assay has shown that the plant is able to respond, at least initially, to

multiple potential sites of infection simultaneously. These responses visually appear to

have no discernible difference from a typical, single-site response, for the 20 minute time

frame observed. It would be interesting and insightful to pursue this further, to determine

the number of simultaneous responses a cell could handle before having to give priority to

some. Exploring how close to adjacent sites of infection have to be before they are treated
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as one may also be interesting, or if that would ever happen. By tagging key organelles,

such as mitochondria or the Golgi, and observing which sites these organelles travel to,

would perhaps show the cell prioritising certain responses, and determining how it does

this would be important in gaining further insight into the signalling systems the plant

deploys in an immune response.

The PEN1-3 genes have been hypothesised to rely on a defence pathway that func-

tionally overlaps with the MLO-based (Mildew Resistance locus o) powdery mildew re-

sistance (Humphry et al. 2006). Loss-of-function mutants in MLO have broad-spectrum

resistance to nearly every known Bgh isolate (Acevedo-Garcia et al. 2014). These mutant

alleles have been bred and used for more than 40 years, significantly longer than any spe-

cific induced R gene resistance. MLO appears to calm the immune response of plant cells,

and powdery mildew has been found to exploit this; without this pathway, the pathogen

is unable to colonise the cell, and a lack of MLO results in upregulation of myosin, a key

protein in the trafficking of defence proteins during an immune response. Exploring the

role of MLO further, including how it determines when and how to modulate aspects

of the immune response and how pathogens are able to manipulate that, could result in

conferring resistance to other pathogens.

Many of the aspects of the immune response both explored and discussed so far

are downstream of some of the initial signalling molecules. One perplexing aspect of sig-

nalling pathways in plant cells is the ability for calcium (Ca
2+

) to enable and control a

vast array of downstream effects. It would be insightful to explore the activation, trans-

port and diffusive nature of Ca
2+

in response to the diamond assay, if it is involved at all;

other signalling candidates are most likely reactive oxygen species (ROS) such as H2O2, or

amino acids such as glutamate. Combining measurements of the timing, size, and shape

of the signalling molecule, through the use of an appropriate biosensor, alongside the

same measurements of PEN3 transport and distribution could provide knowledge of the

required upstream signalling molecule. It would also inform us of the delivery site size,

a key component of AtIS.
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7.5 Wider Impact of This Research

We are currently living in a time of significant population growth, which reached over

8 billion worldwide in recent weeks, as well as a global climate emergency. Together,

these phenomena are a threat to food security, not just with increased weather extremes

such as floods and droughts, but through the movement of pathogens. Even with many

high throughput genetic technologies and vast amounts of plant pathology knowledge,

many of the techniques which protect our crops are regularly and repeatedly beaten by

evolving pests. Exploring the plant basal response to pathogens, learning how they deal

with new and unknown threats, gives us a chance to discover how to better adapt to these

accelerating changes.

Not only has my research explored some of these defence pathways in more detail,

but I have developed assays, software and algorithms which are able to probe and quan-

tify different systems. This ability to quantify changes and analyse specific behaviour

in response to pathogens enables a better understanding of the basal response, and will

hopefully continue to provide insight in the future.



132

Chapter 8

Conclusions

8.1 Summary

As populations grow and temperatures rise, the demand for food across the world contin-

ues to increase. Plant pathogens continue to wreck havoc on crops, resulting in billions of

pounds of lost crop every year. Global food security will not be possible without finding

ways to better protect the worlds crops from disease, and the use of specific genetic resis-

tance only provides short-lived relief from a single pathogen. The basal, generic resistance

pathways in plants is not well understood, but may provide a long-term, robust method

of reducing disease incidence in crops.

I have helped to develop a novel assay to probe the immune response of plant cells,

without the use of pathogens, in such a way that the physical and chemical aspects of

the immune response could be studied. This was used to look at the accumulation of

PEN3, a key immune defence protein, in the membrane surrounding a physical stimulus.

I have quantified several aspects of this response, 20 minutes after contact was made, to

show that this method works, and that the response is consistent in a couple different

loss-of-function mutants responsible for cytoskeletal development.

The cytoskeleton has been shown to be key in transporting immune defence proteins

to the site of infection, and we showed this was the case. I developed a new algorithm

which segments images of the cytoskeletal network and measures a range of its properties.
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I used this algorithm to highlight the exact differences in the loss-of-function mutants from

the PEN3 experiments. It was also able to detect a subtle difference in the network after

infection with a powdery mildew, albeit with less precision.

With the knowledge of the cytoskeleton and the PEN3 response, I built a simulation

of the first 20 minutes of this response; microscopy-like images were taken at 20 minutes

after infection such that a comparison could be made to my initial experiments. This

was achieved by measuring several key biological parameters of the system, such as the

diffusion constant, through the combination of experiments and modelling. The size of the

region for which PEN3 could be added to the membrane was varied, in order to estimate

the presence and distribution of an upstream signalling molecule.

8.2 Future Steps

Almost every aspect of my work could be extended; the simulations of PEN3 in the mem-

brane would benefit from a much better description of the cytoskeleton, which can be

achieved with my network extraction algorithm. Many of the methods and simulations

used could be extended to other immune proteins, especially membrane bound proteins

such as FORMIN4. It would be interesting to move away from the model organism A.

thaliana and test these findings in some key crops as it is likely these systems will be more

complex. While much of the interest was focused on the initial stages of the immune re-

sponse, the upstream signalling mechanisms, which trigger the cytoskeleton remodelling

and transport of PEN3, are still unknown, and therefore exploring this might prove in-

sightful.

8.3 Concluding Remarks

I am hopeful that not only will my research and findings on PEN3 and the cytoskeleton

prove useful, but the methodologies and algorithms will be beneficial to others too. My

network extraction algorithm is open source, and measures the network to a much greater

detail than was previously available, therefore it will likely be beneficial as a tool or even

inspiration to others in the field. Experiments and analyses were designed with quantifi-
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cation in mind; I hope that this will aid reproducibility and clarity in my results, as well

as provide tools to better test, compare and quantify immune responses in future.
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Appendix A

Arabidopsis Thaliana Immune

Simulation - AtIS

Here I present every file from the A. thaliana Immune Simulation (AtIS). During devel-

opment, at least two to three years prior to thesis submission, unit tests were performed

with Google’s gtest system. Recompiling now required adjusting how this works, due

to updates as well as changes to MacOS, and therefore the unit testing code has been

commented out. No functional differences were added in this time, just the alteration of

parameters that required recompiling the program.

A.1 AtIS Parameters, Main and Enumerators

EnumFlags.hpp:

1 //

2 // Created by Jordan Hembrow on 2019−03−18.

3 //

4

5 # i fnde f ATIMMUNESIMULATION_ENUMFLAGS_H

6 # def ine ATIMMUNESIMULATION_ENUMFLAGS_H

7

8
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9 typedef enum coords { X , Y , N_COORDS } Coords ;

10 typedef enum bleachstate { BLEACHED , RED , GREEN } BleachState ;

11 typedef enum mobility { FIXED , FREE } Mobility ;

12

13 # endi f //ATIMMUNESIMULATION_ENUMFLAGS_H

Parameters.hpp:

1 //

2 // Created by Jordan Hembrow on 2019−03−18.

3 //

4

5 # i fnde f ATIMMUNESIMULATION_PARAMETERS_HPP

6 # def ine ATIMMUNESIMULATION_PARAMETERS_HPP

7

8 # include <cmath>

9 # include < t i f f i o . hxx>

10 # include <array >

11 # include <EnumFlags . hpp>

12

13 const double diffusion_const = 0 . 0 0 2 5 ; //measured exper imenta l ly

14 const i n t time_to_run = (20∗60) ; // (10∗60) + (20∗60) ;

15 const double DT = 0 . 2 ;

16

17 const i n t px_width = 696 ;

18 const i n t px_height = 1040/6;

19 const double img_width = 6 6 . 1 2 ;

20 const double img_height = 9 8 . 7 9 / 6 . 0 ;

21 const std : : array<double , N_COORDS> micron_to_px = { px_width/img_width , ←↪

px_height/img_height } ;

22 const double px_to_micron = 2 . 0/ ( micron_to_px [ X ] + micron_to_px [ Y ] ) ;

23

24 const double movement_per_step = sqrt ( N_COORDS ∗2.0∗ diffusion_const∗DT ) ;

25 //const unsigned i n t bleach_r_px = 17 ;

26 const unsigned i n t bleach_r_px = 50 ;

27 const unsigned i n t FRAP_time = (20∗60) ;

28 //const unsigned i n t steps_per_img = 5/DT;
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29 const unsigned i n t steps_per_img = 30/DT ;

30 const std : : array<unsigned int , N_COORDS> peg_pos = { px_width/2 , px_height←↪

/ 2 } ;

31

32 const std : : array<unsigned int , N_COORDS> stream_start = { 0 , 6 0 } ;

33 const i n t global_stream_shift = 0 ; // px s h i f t of stream from ←↪

appressorium cent re

34 const double stream_vel = 5 . 0 ; //um per second

35 const unsigned i n t stream_width = 5 ;

36 const unsigned i n t stream_delivery_rate = 100 ; //pro te ins per second

37 //const std : : array <double , N_COORDS> stream_del ivery_stddev = {2∗6∗←↪

px_to_micron , 2∗6∗px_to_micron } ;

38 const std : : array<double , N_COORDS> stream_delivery_stddev = {9∗ px_to_micron ,←↪

3∗px_to_micron } ;

39 //const std : : array <double , N_COORDS> stream_del ivery_centre = { img_width /2.0←↪

+ 0 . 5 , img_height / 2 . 0 } ;

40 const std : : array<double , N_COORDS> stream_delivery_centre = { img_width /2 .0 , ←↪

img_height / 2 . 0 } ;

41 const double reduction_per_proteins = 1 . 2 ; // I f there are t h i s many ←↪

pro te ins in a pixe l , reduce the chance of de l ivery by 50%

42 const double stream_delivery_radius = 1 . 0 ; // s i z e of de l ivery radius , ←↪

sca led by peg s i z e

43

44 /∗ Prote in Concentrat ions ( pc ) in number per sq_microns ∗/

45 const double pc_cytoplasm = 3 . 5∗ 1 5 3 . 1 ;

46 //const double pc_stream = 0 . 1 ;

47 const double pc_stream = 1.29∗ pc_cytoplasm ;

48

49 /∗ Image S e t t i n g s ∗/

50 const uint16 bits_per_sample = 16 ;

51 const uint16 samples_per_pixel = 1 ;

52 const uint16 photometric = 1 ;

53 const uint16 intensity_gain = 1 ;

54

55 const bool show_peg = true ;

56 const unsigned i n t peg_rad_px = 6 ;

57 const i n t peg_light_attenuation = 3 ; // only 1/3rd of l i g h t ge ts through ←↪

the a r t i f i c i a l peg
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58

59 const std : : array<unsigned int , N_COORDS> upstream_bleach = { peg_pos [ X ]/2 − ←↪

25 , peg_pos [ Y ] −15} ;

60 const std : : array<unsigned int , N_COORDS> downstream_bleach = {3∗ peg_pos [ X ]/2←↪

+ 25 , peg_pos [ Y ] + 1 5 } ;

61 const unsigned i n t radial_dist_size = 50 ;

62

63 # endi f //ATIMMUNESIMULATION_PARAMETERS_H

main.cpp:

1 // TODO: Separate Stream prote ins completely such tha t I can e a s i l y add a ←↪

second stream

2 // −> Sor t of done but a l so l o t s of func t ions requi re a s ing l e stream ( and ←↪

one stream angle ? )

3 // TODO: Add FRIEND_TEST ( ) to the header f i l e s of c l a s s e s to allow t e s t i n g ←↪

of pr iva te func t ions

4 // −> Avoid as much as poss ib le , but sometimes t h i s i s required

5

6

7 # def ine DEBUG_ON f a l s e

8 # i f !DEBUG_ON

9 # def ine un i tTes t s ( . . . ) ;

10 # endi f

11

12

13 # include <iostream >

14 # include <Pro te ins/Pro te ins . hpp>

15 # include <Imaging/Img . hpp>

16 # include <Transport/Transport . hpp>

17 # include <Rad ia lD i s t r i bu t ion/Radial . hpp>

18 # include <vector >

19 //# include <UnitTest . hpp>

20

21

22 i n t main ( i n t argv , char ∗argc [ ] ) {

23 // i f ( un i tTes t s ( argv , argc ) ) s td : : cout << " Unit t e s t ( s ) f a i l e d . " << std : :←↪
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endl ;

24 std : : vector<Proteins> membrane , stream ;

25 const double stream_ang = Transport : : setupSystem ( membrane , stream ) ;

26 Radial : : getDists ( Img : : TakeImage ( membrane , stream , 0 ) , 0 ) ;

27

28 const auto t_max = ( unsigned i n t ) ( time_to_run/DT ) ;

29 f o r ( unsigned i n t t = 1 ; t <= t_max ; t++) {

30 Transport : : ProgressBar ( t , t_max ) ;

31 Transport : : CytoStream ( membrane , stream , stream_start , stream_ang ) ;

32 Transport : : Diffusion ( membrane ) ;

33 i f ( t == FRAP_time/DT ) {

34 Transport : : Photoswitch ( peg_pos [ X ] , peg_pos [ Y ] , bleach_r_px , ←↪

membrane ) ;

35 Transport : : Photoswitch ( upstream_bleach [ X ] , upstream_bleach [ Y ] , ←↪

bleach_r_px , membrane ) ;

36 Transport : : Photoswitch ( downstream_bleach [ X ] , downstream_bleach [ Y←↪

] , bleach_r_px , membrane ) ;

37 Transport : : Photoswitch ( peg_pos [ X ] , peg_pos [ Y ] , bleach_r_px , ←↪

stream ) ;

38 Transport : : Photoswitch ( upstream_bleach [ X ] , upstream_bleach [ Y ] , ←↪

bleach_r_px , stream ) ;

39 Transport : : Photoswitch ( downstream_bleach [ X ] , downstream_bleach [ Y←↪

] , bleach_r_px , stream ) ;

40 }

41 i f ( ( t % steps_per_img ) == 0) {

42 Radial : : getDists ( Img : : TakeImage ( membrane , stream , t/←↪

steps_per_img ) , ( i n t ) ( t/steps_per_img ) ) ;

43 }

44 }

45 re turn 0 ;

46 }

A.2 AtIS Classes

A.2.1 Imaging

Img.hpp:
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1 //

2 // Created by Jordan Hembrow on 2019−04−04.

3 //

4

5 # i fnde f ATIMMUNESIMULATION_IMG_HPP

6 # def ine ATIMMUNESIMULATION_IMG_HPP

7

8 # include < t i f f i o . hxx>

9 # include <Parameters . hpp>

10 # include <Pro te ins/Pro te ins . hpp>

11 # include <Matrix/Mat . hpp>

12 # include <EnumFlags . hpp>

13 # include <vector >

14

15 c l a s s Img {

16 pr iva te :

17 s t a t i c TIFF∗ TIFFOpenSafe ( const std : : string &filename , const std : : string←↪

&permissions ) ;

18 s t a t i c void SaveImage ( const std : : string &filename , const Mat<uint16> &←↪

px_data ) ;

19 s t a t i c std : : string GetFilename ( i n t time_step , i n t fluorescence ) ;

20 s t a t i c bool inDetectorRange ( const std : : array<int , N_COORDS> &pos ) ;

21 s t a t i c void fluorescencePSF ( Mat<uint16> &ccd , const std : : array<int , ←↪

N_COORDS> &pos ) ;

22 s t a t i c void proteinComponent ( const std : : vector<Proteins> &p , Mat<uint16>←↪

&px_grn , Mat<uint16> &px_red ) ;

23 s t a t i c unsigned i n t absDistance ( const std : : array<unsigned int , N_COORDS>←↪

&pos , const std : : array<unsigned int , N_COORDS> &centre ) ;

24 s t a t i c void displayPeg ( bool peg_displayed , Mat<uint16> &px_grn , Mat<←↪

uint16> &px_red ) ;

25 publ ic :

26 s t a t i c Mat<uint16> TakeImage ( const std : : vector<Proteins> &membrane , ←↪

const std : : vector<Proteins> &stream , i n t time_step ) ;

27 } ;

28

29

30 # endi f //ATIMMUNESIMULATION_IMG_HPP
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Img.cpp:

1 //

2 // Created by Jordan Hembrow on 2019−04−04.

3 //

4

5

6

7 # include " Img . hpp"

8 # include <Matrix/Mat . cpp>

9 //# include <UnitTest . hpp>

10

11 TIFF∗ Img : : TIFFOpenSafe ( const std : : string &filename , const std : : string &←↪

permissions ) {

12 TIFF∗ tif = TIFFOpen ( filename . c_str ( ) , permissions . c_str ( ) ) ;

13 i f ( ! tif ) {

14 std : : cerr << " F i l e not found ! " << std : : endl ;

15 exit ( 2 ) ;

16 }

17 re turn tif ;

18 }

19

20 void Img : : SaveImage ( const std : : string &filename , const Mat<uint16> &px_data )←↪

{

21 TIFF∗ img_out = TIFFOpenSafe ( filename , "w" ) ;

22 TIFFSetField ( img_out , TIFFTAG_IMAGEWIDTH , ( uint16 ) px_width ) ;

23 TIFFSetField ( img_out , TIFFTAG_IMAGELENGTH , ( uint16 ) px_height ) ;

24 TIFFSetField ( img_out , TIFFTAG_BITSPERSAMPLE , bits_per_sample ) ;

25 TIFFSetField ( img_out , TIFFTAG_SAMPLESPERPIXEL , samples_per_pixel ) ;

26 TIFFSetField ( img_out , TIFFTAG_PHOTOMETRIC , photometric ) ;

27 auto ∗buf = ( uint16 ∗ ) _TIFFmalloc ( px_width∗ s i z e o f ( uint16 ) ) ;

28 f o r ( uint32 row = 0 ; row < px_height ; row++) {

29 fo r ( uint32 col = 0 ; col < px_width ; col++) {

30 buf [ col ] = intensity_gain∗px_data [ row ] [ col ] ;

31 }

32 TIFFWriteScanline ( img_out , buf , row ) ;

33 }
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34

35 _TIFFfree ( buf ) ;

36 TIFFClose ( img_out ) ;

37 }

38

39 bool Img : : inDetectorRange ( const std : : array<int , N_COORDS> &pos ) {

40 i f ( pos [ X ] < 0 or pos [ X ] > px_width ) re turn f a l s e ;

41 re turn ! ( pos [ Y ] < 0 or pos [ Y ] > px_height ) ;

42 }

43

44 /∗
45 ∗ Takes in to account the Point Spread Function of a s ing l e f l u o r e s c e n t ←↪

prote in

46 ∗ The p i x e l s c l o s e s t to the cen t re ( l e f t , r ight , up , down) get ha l f the ←↪

c e n t r a l br ightness

47 ∗ The p i x e l s on the diagonal get a quarter of the c e n t r a l br ightness

48 ∗
49 ∗ The i f s tatements here could be made more e f f i c i e n t but i t would look ←↪

l e s s e legant

50 ∗/

51 void Img : : fluorescencePSF ( Mat<uint16> &ccd , const std : : array<int , N_COORDS> ←↪

&pos ) {

52 f o r ( i n t i = pos [ Y ] − 1 ; i < pos [ Y ] + 1 ; i++) {

53 f o r ( i n t j = pos [ X ] − 1 ; j < pos [ X ] + 1 ; j++) {

54 i f ( inDetectorRange ( { j , i } ) ) {

55 i f ( i − pos [ Y ] == 0 and j − pos [ X ] == 0) ccd [ i ] [ j ] += 4 ; ←↪

// Centra l p i xe l

56 e l s e i f ( i − pos [ Y ] == 0 or j − pos [ X ] == 0) ccd [ i ] [ j ] += 2 ; ←↪

// Adjacent

57 e l s e ccd [ i ] [ j ] += 1 ; ←↪

// Diagonal

58 }

59 }

60 }

61 }

62

63 /∗
64 ∗ Determines the p ixe l data of a s ing l e prote in c o l l e c t i o n ( i . e . membrane , ←↪
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cytoplasmic stream e t c . )

65 ∗/

66 void Img : : proteinComponent ( const std : : vector<Proteins> &p , Mat<uint16> &←↪

px_grn , Mat<uint16> &px_red ) {

67 std : : array<double , N_COORDS> curr_pos_microns = { 0 } ;

68 std : : array<int , N_COORDS> curr_pos_px = { 0 } ;

69 f o r ( const auto &ele : p ) {

70 curr_pos_microns = ele . GetPos ( ) ;

71 fo r ( i n t i = 0 ; i < N_COORDS ; i++) {

72 curr_pos_px [ i ] = ( i n t ) ( curr_pos_microns [ i ] ∗ micron_to_px [ i ] ) ;

73 }

74 switch ( ele . GetBleach ( ) ) {

75 case BLEACHED : break ;

76 case RED : fluorescencePSF ( px_red , curr_pos_px ) ; break ;

77 case GREEN : fluorescencePSF ( px_grn , curr_pos_px ) ; break ;

78 de fau l t : std : : cerr << " Unable to determine s t a t e of ←↪

bleaching " << std : : endl ; break ;

79 }

80 }

81 }

82

83 /∗ Cast to long to avoid any i s sues with unsigned i n t e ge r s and negat ive ←↪

numbers ∗/

84 unsigned i n t Img : : absDistance ( const std : : array<unsigned int , N_COORDS> &pos ,←↪

const std : : array<unsigned int , N_COORDS> &centre ) {

85 i n t diff = 0 ;

86 f o r ( i n t i = X ; i < N_COORDS ; i++) {

87 diff += ( i n t ) std : : pow ( ( long ) pos [ i ] − ( long ) centre [ i ] , 2 . 0 ) ;

88 }

89 re turn ( unsigned i n t ) std : : sqrt ( diff ) ;

90 }

91

92 void Img : : displayPeg ( const bool peg_displayed , Mat<uint16> &px_grn , Mat<←↪

uint16> &px_red ) {

93 i f ( peg_displayed ) {

94 fo r ( unsigned i n t i = peg_pos [ Y ] − peg_rad_px ; i < peg_pos [ Y ] + ←↪

peg_rad_px ; i++) {

95 f o r ( unsigned i n t j = peg_pos [ X ] − peg_rad_px ; j < peg_pos [ X ] + ←↪
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peg_rad_px ; j++) {

96 i f ( absDistance ( { j , i } , peg_pos ) < peg_rad_px ) {

97 px_grn [ i ] [ j ] /= peg_light_attenuation ;

98 px_red [ i ] [ j ] /= peg_light_attenuation ;

99 }

100 }

101 }

102 }

103 }

104

105 /∗
106 ∗ We only care about the green ( main ) channel fo r r a d i a l d i s t r i b u t i o n s

107 ∗ The red channel i s j u s t bas i c d i f fu s i on so i s t r i v i a l

108 ∗/

109 Mat<uint16> Img : : TakeImage ( const std : : vector<Proteins> &membrane , const std←↪

: : vector<Proteins> &stream , const i n t time_step ) {

110 Mat<uint16> px_grn ( 0 , px_height , px_width ) ;

111 Mat<uint16> px_red ( 0 , px_height , px_width ) ;

112 proteinComponent ( membrane , px_grn , px_red ) ;

113 //proteinComponent ( stream , px_grn , px_red ) ;

114

115 /∗ Peg blocks most l i g h t f luorescence from being detected ∗/

116 displayPeg ( show_peg , px_grn , px_red ) ;

117

118 SaveImage ( GetFilename ( time_step , RED ) , px_red ) ;

119 SaveImage ( GetFilename ( time_step , GREEN ) , px_grn ) ;

120 re turn px_grn ;

121 }

122

123 std : : string Img : : GetFilename ( const i n t time_step , const i n t fluorescence ) {

124 std : : string name = " ATIS_Frap_ " , extension = " . t i f " ;

125 std : : string folder , colour , number ;

126 switch ( fluorescence ) {

127 case GREEN : folder = " Output/Green/" ; colour = " g_t " ; break ;

128 case RED : folder = " Output/Red/" ; colour = " r _ t " ; break ;

129 de fau l t : std : : cerr << "No f luorescence " << std : : endl ; break ;

130 }

131
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132 i f ( time_step < 10) number = " 000 " + std : : to_string ( time_step ) ;

133 e l s e i f ( time_step < 100) number = " 00 " + std : : to_string ( time_step ) ;

134 e l s e i f ( time_step < 1000) number = " 0 " + std : : to_string ( time_step ) ;

135 e l s e number = std : : to_string ( time_step ) ;

136

137 re turn folder + name + colour + number + extension ;

138 }

139

140

141

142 /∗ === Unit Test ing === ∗/

143 /∗TEST_F ( Img , DetectorRangeCheck ) {

144 std : : array <double , 2> x_too_high = { img_width + 1 , img_height / 2 } ;

145 EXPECT_FALSE( Img : : inDetectorRange ( x_too_high ) ) ;

146 }∗/

A.2.2 Matrix

Mat.hpp:

1 //

2 // Created by Jordan Hembrow on 2019−03−18.

3 //

4

5 # i fnde f ATIMMUNESIMULATION_MATRIX_H

6 # def ine ATIMMUNESIMULATION_MATRIX_H

7

8 template < c l a s s T>

9 c l a s s Mat {

10 pr iva te :

11 unsigned i n t nn ;

12 unsigned i n t mm ;

13 T ∗∗data ;

14 publ ic :

15 Mat ( ) ;

16 Mat ( unsigned i n t n , unsigned i n t m ) ;

17 Mat ( const T& val , unsigned i n t n , unsigned i n t m ) ;
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18 Mat & operator =( const Mat &rhs ) ;

19 i n l i n e T∗ operator [ ] ( unsigned i n t i ) ;

20 i n l i n e const T∗ operator [ ] ( unsigned i n t i ) const ;

21 i n l i n e unsigned i n t nrows ( ) const ;

22 i n l i n e unsigned i n t ncols ( ) const ;

23 ~Mat ( ) ;

24 } ;

25

26

27 # endi f //ATIMMUNESIMULATION_MATRIX_H

Mat.cpp:

1 //

2 // Created by Jordan Hembrow on 2019−03−18.

3 //

4

5 # include "Mat . hpp"

6

7 template < c l a s s T>

8 Mat<T > : : Mat ( ) : nn ( 0 ) , mm ( 0 ) , data ( 0 ) { }

9

10 template < c l a s s T>

11 Mat<T > : : Mat ( unsigned i n t n , unsigned i n t m ) : nn ( n ) , mm ( m ) , data (new T∗ [n ] ) ←↪

{

12 data [ 0 ] = new T [ m∗n ] ;

13 f o r ( unsigned i n t i = 1 ; i < n ; i++) {

14 data [ i ] = data [ i−1] + m ;

15 }

16 }

17

18 template < c l a s s T>

19 Mat<T > : : Mat ( const T& val , unsigned i n t n , unsigned i n t m ) : nn ( n ) , mm ( m ) , ←↪

data (new T∗ [n ] ) {

20 data [ 0 ] = new T [ m∗n ] ;

21 f o r ( unsigned i n t i = 1 ; i < n ; i++) {

22 data [ i ] = data [ i−1] + m ;
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23 }

24 f o r ( unsigned i n t i = 0 ; i < n ; i++) {

25 fo r ( unsigned i n t j = 0 ; j < m ; j++) {

26 data [ i ] [ j ] = val ;

27 }

28 }

29 }

30

31 template < c l a s s T>

32 Mat<T> & Mat<T > : : operator =( const Mat<T> &rhs ) {

33 i f ( t h i s != &rhs ) {

34 i f ( nn != rhs . nn or mm != rhs . mm ) {

35 i f ( data != nullptr ) {

36 de le t e [ ] ( data [ 0 ] ) ;

37 de le t e [ ] ( data ) ;

38 }

39 nn = rhs . nn , mm = rhs . mm ;

40 data = new T∗ [ nn ] ;

41 data [ 0 ] = new T∗ [ nn∗mm ] ;

42 }

43 fo r ( unsigned i n t i = 1 ; i < nn ; i++) {

44 data [ i ] = data [ i−1] + mm ;

45 }

46 fo r ( unsigned i n t i = 0 ; i < nn ; i++) {

47 f o r ( unsigned i n t j = 0 ; j < mm ; j++) {

48 data [ i ] [ j ] = rhs [ i ] [ j ] ;

49 }

50 }

51 }

52 re turn ∗ t h i s ;

53 }

54

55

56 template < c l a s s T>

57 T∗ Mat<T > : : operator [ ] ( const unsigned i n t i ) {

58 re turn data [ i ] ;

59 }

60
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61 template < c l a s s T>

62 const T∗ Mat<T > : : operator [ ] ( const unsigned i n t i ) const {

63 re turn data [ i ] ;

64 }

65

66 template < c l a s s T>

67 unsigned i n t Mat<T > : : nrows ( ) const {

68 re turn nn ;

69 }

70

71 template < c l a s s T>

72 unsigned i n t Mat<T > : : ncols ( ) const {

73 re turn mm ;

74 }

75

76 template < c l a s s T>

77 Mat<T > : :~ Mat ( ) {

78 i f ( data != nullptr ) {

79 de le t e [ ] ( data [ 0 ] ) ;

80 de le t e [ ] ( data ) ;

81 }

82 }

A.2.3 Proteins

Proteins.hpp:

1 //

2 // Created by Jordan Hembrow on 2019−03−18.

3 //

4

5 # i fnde f ATIMMUNESIMULATION_PROTEINS_H

6 # def ine ATIMMUNESIMULATION_PROTEINS_H

7

8 # include <array >

9 # include <EnumFlags . hpp>

10
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11

12 c l a s s Proteins {

13 pr iva te :

14 std : : array<double , N_COORDS> pos ;

15 i n t fluorescence ;

16 i n t mobility ;

17 publ ic :

18 Proteins ( ) ;

19 Proteins ( double x , double y ) ;

20 Proteins ( double x , double y , i n t mob ) ;

21 void SetPos ( double x , double y ) ;

22 std : : array<double , N_COORDS> GetPos ( ) const ;

23 void SetBleach ( i n t bleach_status ) ;

24 void SetMobility ( i n t mob ) ;

25 i n t GetBleach ( ) const ;

26 bool isDiffusable ( ) const ;

27 ~Proteins ( ) ;

28 } ;

29

30

31 # endi f //ATIMMUNESIMULATION_PROTEINS_H

Proteins.cpp:

1 //

2 // Created by Jordan Hembrow on 2019−03−18.

3 //

4

5 # include " Pro te ins . hpp"

6 # include <cmath>

7 # include <Parameters . hpp>

8 # include <iostream >

9

10 Proteins : : Proteins ( ) : pos { 0 } , fluorescence ( GREEN ) , mobility ( FREE ) { }

11

12

13 Proteins : : Proteins ( const double x , const double y ) : pos { x , y } , fluorescence (←↪
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GREEN ) , mobility ( FREE ) { }

14

15

16 Proteins : : Proteins ( const double x , const double y , const i n t mob ) : pos { x , y←↪

} , fluorescence ( GREEN ) , mobility ( mob ) { }

17

18 void Proteins : : SetPos ( const double x , const double y ) {

19 th i s −>pos [ X ] = x ;

20 th i s −>pos [ Y ] = y ;

21 }

22

23 std : : array<double , N_COORDS> Proteins : : GetPos ( ) const {

24 re turn th i s −>pos ;

25 }

26

27 void Proteins : : SetBleach ( const i n t bleach_status ) {

28 i f ( bleach_status <= GREEN ) {

29 th i s −>fluorescence = bleach_status ;

30 } e l s e {

31 std : : cerr << "Unknown Fluorescence Se t t i ng when c a l l i n g SetBleach ( ) "←↪

<< std : : endl ;

32 }

33 }

34

35 void Proteins : : SetMobility ( const i n t mob ) {

36 th i s −>mobility = mob ;

37 }

38

39 i n t Proteins : : GetBleach ( ) const {

40 re turn th i s −>fluorescence ;

41 }

42

43 bool Proteins : : isDiffusable ( ) const {

44 re turn ( th i s −>mobility == FREE ) ;

45 }

46

47

48 Proteins : : ~ Proteins ( ) = de fau l t ;
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A.2.4 Radial Distribution

Radial.hpp:

1 //

2 // Created by Jordan Hembrow on 2019−03−29.

3 //

4

5 # i fnde f ATIMMUNESIMULATION_RADIAL_H

6 # def ine ATIMMUNESIMULATION_RADIAL_H

7

8 # include <Matrix/Mat . hpp>

9 # include <EnumFlags . hpp>

10 # include <vector >

11 # include <s t r ing >

12 # include < t i f f i o . hxx>

13 # include <array >

14

15

16 typedef s t r u c t {

17 unsigned i n t intensity_sum = 0 ;

18 unsigned i n t px_counted = 0 ;

19 } RadialDist ;

20

21 c l a s s Radial {

22 pr iva te :

23 s t a t i c unsigned i n t DistFromCentrePx ( const std : : array<int , N_COORDS> &←↪

pos , const std : : array<unsigned int , N_COORDS> &centre ) ;

24 s t a t i c const std : : string createFilename ( const i n t num , const std : : string←↪

&folder ) ;

25 s t a t i c std : : vector<RadialDist> calcDist ( const Mat<uint16> &px_intensity ,←↪

const std : : array<unsigned int , N_COORDS> &pos ) ;

26 s t a t i c void outputDist ( const std : : vector<RadialDist> &rd , const i n t ←↪

current_step , const std : : string &folder ) ;

27

28 publ ic :

29 s t a t i c void getDists ( const Mat<uint16> &px_intensity , const i n t num ) ;

30 } ;
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31

32

33 # endi f //ATIMMUNESIMULATION_RADIAL_H

Radial.cpp:

1 //

2 // Created by Jordan Hembrow on 2019−03−29.

3 //

4

5 # include <fstream >

6 # include " Radial . hpp"

7 # include " Parameters . hpp"

8 # include " Matrix/Mat . hpp"

9 # include " Matrix/Mat . cpp "

10

11

12 unsigned i n t Radial : : DistFromCentrePx ( const std : : array<int , N_COORDS> &pos , ←↪

const std : : array<unsigned int , N_COORDS> &centre ) {

13 double temp_sum = 0 ;

14 f o r ( i n t i = 0 ; i < N_COORDS ; i++) {

15 temp_sum += std : : pow ( pos [ i ] − centre [ i ] , 2 . 0 ) ;

16 }

17 re turn ( unsigned i n t ) std : : round ( std : : sqrt ( temp_sum ) ) ;

18 }

19

20 std : : vector<RadialDist> Radial : : calcDist ( const Mat<uint16> &px_intensity , ←↪

const std : : array<unsigned int , N_COORDS> &centre ) {

21 std : : vector<RadialDist> rd ;

22 rd . resize ( radial_dist_size ) ;

23 f o r ( i n t row = centre [ Y ] − radial_dist_size ; row < centre [ Y ] + ←↪

radial_dist_size ; row++) {

24 f o r ( i n t col = centre [ X ] − radial_dist_size ; col < centre [ X ] + ←↪

radial_dist_size ; col++) {

25 unsigned i n t radial_dist = DistFromCentrePx ( { col , row } , centre ) ;

26 i f ( radial_dist < radial_dist_size ) {

27 unsigned i n t arr_idx = radial_dist ;
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28 rd [ arr_idx ] . intensity_sum += px_intensity [ row ] [ col ] ;

29 rd [ arr_idx ] . px_counted++;

30 }

31 }

32 }

33 re turn rd ;

34 }

35

36 /∗ I might be able to use cases here with th ings f a l l i n g through and ←↪

appending an ex t ra zero ? ∗/

37 const std : : string Radial : : createFilename ( const i n t num , const std : : string &←↪

folder ) {

38 std : : string prefix = " Output/Radial/" + folder + "/RadialDistGrn_t " ;

39 std : : string extension = " . csv " ;

40 std : : string number ;

41 i f ( num < 10) {

42 number = " 000 " + std : : to_string ( num ) ;

43 }

44 e l s e i f ( num < 100) {

45 number = " 00 " + std : : to_string ( num ) ;

46 }

47 e l s e i f ( num < 1000) {

48 number = " 0 " + std : : to_string ( num ) ;

49 }

50 e l s e {

51 number = std : : to_string ( num ) ;

52 }

53 re turn prefix + number + extension ;

54 }

55

56 void Radial : : outputDist ( const std : : vector<RadialDist> &rd , const i n t ←↪

current_step , const std : : string &folder ) {

57 std : : string output_filename = createFilename ( current_step , folder ) ;

58 std : : ofstream file ;

59 file . open ( output_filename ) ;

60 file << " r , I n t e n s i t y " << std : : endl ;

61 unsigned i n t mean_intensity ;

62 f o r ( i n t i = 0 ; i < rd . size ( ) ; i++) {
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63 mean_intensity = ( unsigned i n t ) std : : round ( ( double ) rd [ i ] .←↪

intensity_sum/( double ) rd [ i ] . px_counted ) ;

64 file << i∗px_to_micron << " , " << mean_intensity << std : : endl ;

65 }

66 file . close ( ) ;

67 }

68

69 void Radial : : getDists ( const Mat<uint16> &px_intensity , const i n t num ) {

70 std : : vector<RadialDist> rd = calcDist ( px_intensity , peg_pos ) ;

71 outputDist ( rd , num , " Peg " ) ;

72

73 rd = calcDist ( px_intensity , upstream_bleach ) ;

74 outputDist ( rd , num , " Upstream " ) ;

75

76 rd = calcDist ( px_intensity , downstream_bleach ) ;

77 outputDist ( rd , num , "Downstream" ) ;

78 }

A.2.5 Transport

Transport.hpp:

1 //

2 // Created by Jordan Hembrow on 2019−03−29.

3 //

4

5 # i fnde f ATIMMUNESIMULATION_TRANSPORT_HPP

6 # def ine ATIMMUNESIMULATION_TRANSPORT_HPP

7

8 # include <Pro te ins/Pro te ins . hpp>

9 # include <Matrix/Mat . hpp>

10 # include <Matrix/Mat . cpp>

11 # include <Rad ia lD i s t r i bu t ion/Radial . hpp>

12 # include <Imaging/Img . hpp>

13 # include <array >

14 # include <random>

15 # include < t i f f i o . hxx>
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16 # include <Parameters . hpp>

17 # include <EnumFlags . hpp>

18

19

20 c l a s s Transport {

21 pr iva te :

22 s t a t i c unsigned i n t proteinsToAdd ( double len , double width , double conc )←↪

;

23 s t a t i c bool insideBoundaries ( const std : : array<double , N_COORDS> &pos ) ;

24 s t a t i c std : : array<double , N_COORDS> streamStartPoint ( const std : : array<←↪

unsigned int , N_COORDS> &start_point , double width_offset ) ;

25 s t a t i c double SetupStream ( std : : vector<Proteins> &p , const std : : array<←↪

unsigned int , N_COORDS> &start_point ) ;

26 s t a t i c void BounceOffWalls ( std : : array<double , N_COORDS> &pos ) ;

27 s t a t i c double gaussian ( const std : : array<double , N_COORDS> &pos , const ←↪

std : : array<double , N_COORDS> &mean , const std : : array<double , N_COORDS←↪

> &stddev ) ;

28 s t a t i c Mat<uint16> getFrequency ( const std : : vector<Proteins> &membrane ) ;

29 s t a t i c const bool streamDelivers ( const std : : array<double , N_COORDS> &pos←↪

, double rng , const Mat<uint16> &curr_freq ) ;

30 s t a t i c void streamUpdatePos ( std : : vector<Proteins> &stream , double theta )←↪

;

31 s t a t i c void streamAddNew ( std : : vector<Proteins> &stream , double theta , ←↪

const std : : array<unsigned int , N_COORDS> &start_point ) ;

32 s t a t i c void streamDepositMembrane ( std : : vector<Proteins> &membrane , std : :←↪

vector<Proteins> &stream ) ;

33 publ ic :

34 s t a t i c double absDistance ( const std : : array<double , N_COORDS> &pos , const←↪

std : : array<double , N_COORDS> &centre ) ;

35 s t a t i c void Diffusion ( std : : vector<Proteins> &p ) ;

36 s t a t i c void CytoStream ( std : : vector<Proteins> &membrane , std : : vector<←↪

Proteins> &stream , const std : : array<unsigned int , N_COORDS> &←↪

start_point , double theta ) ;

37 s t a t i c void Photoswitch ( unsigned i n t x , unsigned i n t y , unsigned i n t r , ←↪

std : : vector<Proteins> &p ) ;

38 s t a t i c void ProgressBar ( unsigned i n t current_step , unsigned i n t max_step←↪

) ;

39 s t a t i c const double setupSystem ( std : : vector<Proteins> &membrane , std : :←↪
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vector<Proteins> &stream ) ;

40 } ;

41

42

43 # endi f //ATIMMUNESIMULATION_TRANSPORT_H

Transport.cpp:

1 //

2 // Created by Jordan Hembrow on 2019−03−29.

3 //

4

5 # include " Transport . hpp"

6 # include <algorithm >

7 # include < P a r a l l e l . hpp>

8 # include < U t i l i t y /U t i l . hpp>

9 //# include <UnitTest . hpp>

10

11 s t a t i c std : : random_device rd ;

12 s t a t i c std : : mt19937 mt ( rd ( ) ) ;

13

14 unsigned i n t Transport : : proteinsToAdd ( const double len , const double width , ←↪

const double conc ) {

15 re turn ( unsigned i n t ) ( conc∗len∗width ) ;

16 }

17

18 bool Transport : : insideBoundaries ( const std : : array<double , N_COORDS> &pos ) {

19 i f ( pos [ X ] < 0 or pos [ X ] > img_width ) re turn f a l s e ;

20 re turn ! ( pos [ Y ] < 0 or pos [ Y ] > img_height ) ;

21 }

22

23 std : : array<double , N_COORDS> Transport : : streamStartPoint ( const std : : array<←↪

unsigned int , N_COORDS> &start_point , const double width_offset ) {

24 std : : array<double , N_COORDS> pos = { 0 } ;

25 double shift = ( start_point [ Y ] + global_stream_shift )∗px_to_micron + ←↪

width_offset ;

26
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27 i f ( start_point [ X ] == 0) pos [ Y ] += shift ;

28 e l s e pos [ X ] += shift ;

29 re turn pos ;

30 }

31

32 /∗
33 ∗ We assume tha t the appressorium i s always in the cen t re

34 ∗ This means the stream always t r a v e l s a l l the way from x/y = 0 to x/y = ←↪

x_max/y_max

35 ∗
36 ∗ peg_pos and s t a r t _ p o i n t are in px , whereas p . pos i s in microns

37 ∗/

38 double Transport : : SetupStream ( std : : vector<Proteins> &p , const std : : array<←↪

unsigned int , N_COORDS> &start_point ) {

39 double theta = std : : atan2 ( peg_pos [ Y ] − start_point [ Y ] , peg_pos [ X ] − ←↪

start_point [ X ] ) ;

40 double stream_len = 0 . 0 ;

41 double dx , dy ;

42 i f ( start_point [ X ] == 0) {

43 dx = peg_pos [ X ] ;

44 dy = std : : fabs ( peg_pos [ Y ] − start_point [ Y ] ) ;

45 } e l s e {

46 dx = std : : fabs ( peg_pos [ X ] − start_point [ X ] ) ;

47 dy = peg_pos [ Y ] ;

48 }

49 stream_len = 2∗px_to_micron∗sqrt ( pow ( dx , 2 . 0 ) + pow ( dy , 2 . 0 ) ) ;

50 double micron_stream_width = px_to_micron∗stream_width ;

51 double to_x = cos ( theta ) , to_y = sin ( theta ) ; //cos ( ) and s in ( ) are ←↪

slow −> p r e c a l c u l a t e

52

53 std : : normal_distribution<> RNG_width { 0 , micron_stream_width } ;

54

55 p . resize ( proteinsToAdd ( stream_len , micron_stream_width , pc_stream ) ) ;

56 f o r ( auto &ele : p ) {

57 ele . SetMobility ( FIXED ) ;

58

59 double width_offset = RNG_width ( mt ) ;

60 std : : array<double , N_COORDS> pos = streamStartPoint ( start_point , ←↪
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width_offset ) ;

61

62 double length_offset = Util : : rng ( 0 , stream_len ) ;

63 pos [ X ] += length_offset∗to_x , pos [ Y ] += length_offset∗to_y ;

64 i f ( ! insideBoundaries ( pos ) ) BounceOffWalls ( pos ) ;

65 ele . SetPos ( pos [ X ] , pos [ Y ] ) ;

66 }

67 re turn theta ;

68 }

69

70 /∗
71 ∗ Generates the s t a r t point ( t =0) fo r the plant c e l l

72 ∗ Inc ludes s e t t i n g up the random d i s t r i b u t i o n of d i f f u s i v e prote in and the ←↪

cytoplasmic stream

73 ∗ Returns the angle between the stream and the hor izon ta l ax i s

74 ∗/

75 const double Transport : : setupSystem ( std : : vector<Proteins> &membrane , std : :←↪

vector<Proteins> &stream ) {

76

77 /∗ Pick the l a r g e s t dimension as the l i m i t fo r RNG ∗/

78 double rng_max = ( img_height > img_width ) ? img_height : img_width ;

79

80 /∗ Randomly Di s t r i bu t e PEN3 throughout the cytoplasm/membrane ∗/

81 std : : array<double , N_COORDS> test_pos = { 0 } ;

82 membrane . resize ( proteinsToAdd ( img_height , img_width , pc_cytoplasm ) ) ;

83 f o r ( auto &ele : membrane ) {

84 do {

85 test_pos [ X ] = Util : : rng ( 0 , rng_max ) , test_pos [ Y ] = Util : : rng ( 0 , ←↪

rng_max ) ;

86 } while ( ! insideBoundaries ( test_pos ) ) ;

87 ele . SetPos ( test_pos [ X ] , test_pos [ Y ] ) ;

88 }

89

90 re turn SetupStream ( stream , stream_start ) ;

91 }

92

93 /∗
94 ∗ Cel l wall causes r e f l e c t i o n a t the upper and lower edges .
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95 ∗ Simulat ion assumes i n f i n i t e l y long c e l l length , such tha t no r e f l e c t i o n ←↪

occurs a t l e f t or r i g h t edge

96 ∗ −> Requires checking elsewhere fo r pro te ins tha t are outs ide of the l e f t←↪

or r i g h t boundary

97 ∗/

98 void Transport : : BounceOffWalls ( std : : array<double , N_COORDS> &pos ) {

99 i f ( pos [ Y ] < 0 . 0 ) {

100 pos [ Y ] ∗= −1;

101 }

102 e l s e i f ( pos [ Y ] > img_height ) {

103 pos [ Y ] = ( 2 . 0∗ img_height ) − pos [ Y ] ;

104 }

105 }

106

107 double Transport : : gaussian ( const std : : array<double , N_COORDS> &pos , const ←↪

std : : array<double , N_COORDS> &mean , const std : : array<double , N_COORDS> &←↪

stddev ) {

108 double normalisation = 1 . 0 / ( 2 . 0∗ M_PI∗stddev [ X ]∗ stddev [ Y ] ) ;

109 double x_component = pow ( pos [ X ] − mean [ X ] , 2 . 0 ) / (2 .0∗ pow ( stddev [ X ] , 2 . 0 )←↪

) ;

110 double y_component = pow ( pos [ Y ] − mean [ Y ] , 2 . 0 ) / (2 .0∗ pow ( stddev [ Y ] , 2 . 0 )←↪

) ;

111 re turn normalisation ∗ exp (−(x_component + y_component ) ) ;

112 }

113

114 /∗
115 ∗ Determines the number of pro te ins per p ixe l

116 ∗ Does not care about bleach s t a t u s

117 ∗/

118 Mat<uint16> Transport : : getFrequency ( const std : : vector<Proteins> &membrane ) {

119 Mat<uint16> membrane_density ( 0 , px_height , px_width ) ;

120 std : : array<unsigned int , N_COORDS> px_pos = { 0 } ;

121 f o r ( const auto &ele : membrane ) {

122 std : : array<double , N_COORDS> micron_pos = ele . GetPos ( ) ;

123 i f ( insideBoundaries ( micron_pos ) ) {

124 f o r ( unsigned i n t i = 0 ; i < N_COORDS ; i++) {

125 px_pos [ i ] = ( unsigned i n t ) ( micron_pos [ i ]∗ micron_to_px [ i ] ) ;

126 }
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127 membrane_density [ px_pos [ Y ] ] [ px_pos [ X ] ] + + ;

128 }

129 }

130 re turn membrane_density ;

131 }

132 /∗
133 const bool Transport : : s t reamDel ivers ( const std : : array <double , N_COORDS> &pos←↪

, const double rng , const Mat<uint16 > &curr_ f req ) {

134 std : : array <unsigned int , N_COORDS> idx = { ( unsigned i n t ) ( pos [X]∗←↪

micron_to_px [X ] ) , ( unsigned i n t ) ( pos [Y]∗micron_to_px [Y ] ) } ;

135 i n t reduction_power = curr_ f req [ idx [Y ] ] [ idx [X] ]/ reduct ion_per_prote ins ;

136 double reduced_chance = std : : pow( 0 . 5 , reduction_power ) ;

137 //double del ivery_prob = gaussian ( pos , s t ream_del ivery_centre , ←↪

stream_del ivery_stddev ) ;

138 //double del ivery_prob = ( absDistance ( pos , s t ream_del ivery_centre ) < ←↪

1 .0∗ peg_rad_px∗px_to_micron ) ? 1 . 0 : 0 . 0 ; //I could j u s t use the ←↪

bool and c a s t to a double on the next l i n e ?

139 //return ( del ivery_prob∗reduced_chance > rng ) ;

140 bool del ivery_prob = absDistance ( pos , s t ream_del ivery_centre ) < ←↪

s t ream_del ivery_radius∗peg_rad_px∗px_to_micron ;

141 re turn ( ( double ) del ivery_prob∗reduced_chance > rng ) ;

142 }

143 ∗/

144 const bool Transport : : streamDelivers ( const std : : array<double , N_COORDS> &pos←↪

, const double rng , const Mat<uint16> &curr_freq ) {

145 std : : array<unsigned int , N_COORDS> idx = { ( unsigned i n t ) ( pos [ X ]∗←↪

micron_to_px [ X ] ) , ( unsigned i n t ) ( pos [ Y ]∗ micron_to_px [ Y ] ) } ;

146 double reduction_power = ( double ) curr_freq [ idx [ Y ] ] [ idx [ X ] ]/←↪

reduction_per_proteins ;

147 double reduced_chance = std : : exp(−reduction_power ) ;

148 bool delivery_prob = absDistance ( pos , stream_delivery_centre ) < ←↪

stream_delivery_radius∗peg_rad_px∗px_to_micron ;

149 re turn ( ( double ) delivery_prob∗reduced_chance > rng ) ;

150 }

151

152 double Transport : : absDistance ( const std : : array<double , N_COORDS> &pos , const←↪

std : : array<double , N_COORDS> &centre ) {

153 double diff = 0 ;
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154 f o r ( i n t i = X ; i < N_COORDS ; i++) {

155 diff += std : : pow ( pos [ i ] − centre [ i ] , 2 . 0 ) ;

156 }

157 re turn std : : sqrt ( diff ) ;

158 }

159

160 /∗
161 ∗ Bas ic d i f fu s i on :

162 ∗ − The dis tance to move i s determined by the r e l a t i o n s h i p from Fick ' s←↪

Law

163 ∗ − <r^2> = 2Dt fo r each degree of freedom , thus : dr = sq r t (4D∗dt )

164 ∗ − A random angle i s generated in the range [ 0 , 2 pi ) to make the ←↪

movement random .

165 ∗/

166 void Transport : : Diffusion ( std : : vector<Proteins> &p ) {

167 std : : uniform_real_distribution<> RNG ( 0 , 2∗M_PI ) ;

168 std : : array<double , N_COORDS> pos = { 0 } ;

169 double theta ;

170 f o r ( auto &ele : p ) {

171 i f ( ele . isDiffusable ( ) ) {

172 theta = Util : : rng ( 0 . 0 , 2 .0∗ M_PI ) ;

173 pos = ele . GetPos ( ) ;

174 pos [ X ] += movement_per_step∗cos ( theta ) , pos [ Y ] += ←↪

movement_per_step∗sin ( theta ) ;

175 BounceOffWalls ( pos ) ;

176 ele . SetPos ( pos [ X ] , pos [ Y ] ) ;

177 }

178 }

179 /∗
180 p a r a l l e l _ f o r (p . s i z e ( ) , [&] ( i n t s t a r t , i n t end ) {

181 f o r ( i n t i = s t a r t ; i < end ; i ++) {

182 auto &e l e = p[ i ] ;

183 i f ( e l e . i s D i f f u s a b l e ( ) ) {

184 //the ta = RNG(mt ) ;

185 the ta = U t i l : : rng ( 0 , 2∗M_PI ) ;

186 pos = e l e . GetPos ( ) ;

187 pos [X] += movement_per_step∗cos ( the ta ) , pos [Y] += ←↪

movement_per_step∗ s in ( the ta ) ;
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188 BounceOffWalls ( pos ) ;

189 e l e . SetPos ( pos [X] , pos [Y ] ) ;

190 }

191 }

192 } ) ; ∗/

193 }

194

195 /∗ Delete those pro te ins tha t go outs ide of the s imulat ion boundary ∗/

196 /∗ Loop backwards to avoid going o f f the end of the array a f t e r de l e t i on ∗/

197 void Transport : : streamUpdatePos ( std : : vector<Proteins> &stream , double theta )←↪

{

198 double to_x = cos ( theta ) , to_y = sin ( theta ) ; //cos ( ) and s in ( ) are ←↪

slow −> p r e c a l c u l a t e

199 const double dist_to_move = stream_vel ∗ DT ;

200

201 auto ele = stream . begin ( ) ;

202 while ( ele != stream . end ( ) ) {

203 i f ( ! ele−>isDiffusable ( ) ) {

204 std : : array<double , N_COORDS> pos = ele−>GetPos ( ) ;

205 pos [ X ] += dist_to_move∗to_x , pos [ Y ] += dist_to_move∗to_y ;

206 i f ( ! insideBoundaries ( pos ) ) {

207 ele = stream . erase ( ele ) ;

208 } e l s e {

209 ele−>SetPos ( pos [ X ] , pos [ Y ] ) ;

210 ele++;

211 }

212 }

213 }

214 }

215

216 /∗ Add new pro te ins to the s t a r t of the stream ∗/

217 void Transport : : streamAddNew ( std : : vector<Proteins> &stream , const double ←↪

theta , const std : : array<unsigned int , N_COORDS> &start_point ) {

218 const double micron_stream_width = px_to_micron∗stream_width ;

219 const double dist_to_move = stream_vel ∗ DT ;

220 double to_x = cos ( theta ) , to_y = sin ( theta ) ; //cos ( ) and s in ( ) are ←↪

slow −> p r e c a l c u l a t e

221 std : : normal_distribution<> RNG_width { 0 , micron_stream_width } ;
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222

223 /∗ c a l c u l a t i o n of how many to add based on vol of stream moved ( width∗←↪

dist_to_move ) and conc of stream ∗/

224 unsigned i n t number_added = proteinsToAdd ( dist_to_move , ←↪

micron_stream_width , pc_stream ) ;

225 f o r ( unsigned i n t i = 0 ; i < number_added ; i++) {

226 double width_offset = RNG_width ( mt ) ;

227 std : : array<double , N_COORDS> pos = streamStartPoint ( start_point , ←↪

width_offset ) ;

228 double len_shift = Util : : rng ( 0 , dist_to_move ) ;

229 pos [ X ] += len_shift∗to_x , pos [ Y ] += len_shift∗to_y ;

230 BounceOffWalls ( pos ) ;

231 Proteins new_p ( pos [ X ] , pos [ Y ] , FIXED ) ;

232 stream . push_back ( new_p ) ;

233 }

234 }

235

236 /∗ Delivery from the stream to the i n f e c t i o n s i t e −> stream prote in now in ←↪

membrane ∗/

237 void Transport : : streamDepositMembrane ( std : : vector<Proteins> &membrane , std : :←↪

vector<Proteins> &stream ) {

238 const double gaussian_amp = 1 . 0 / ( 2 . 0∗ M_PI∗stream_delivery_stddev [ X ]∗←↪

stream_delivery_stddev [ Y ] ) ;

239 Mat<uint16> protein_freq = getFrequency ( membrane ) ;

240 unsigned i n t delivery_counter = 0 ;

241

242 auto ele = stream . begin ( ) ;

243 while ( ele != stream . end ( ) ) {

244 i f ( streamDelivers ( ele−>GetPos ( ) , Util : : rng ( 0 , gaussian_amp ) , ←↪

protein_freq ) ) {

245 ele−>SetMobility ( FREE ) ;

246 membrane . push_back (∗ ele ) ;

247 ele = stream . erase ( ele ) ;

248 delivery_counter++;

249 i f ( delivery_counter >= stream_delivery_rate∗DT ) re turn ;

250 } e l s e { ele++; }

251 }

252 }
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253

254 void Transport : : CytoStream ( std : : vector<Proteins> &membrane , std : : vector<←↪

Proteins> &stream , const std : : array<unsigned int , N_COORDS> &start_point ,←↪

double theta ) {

255 /∗ 1 . Move stream along and de le t e pro te ins tha t go outs ide of the ←↪

s imulat ion boundary ∗/

256 streamUpdatePos ( stream , theta ) ;

257

258 /∗ 2 . Add new pro te ins to the s t a r t of the stream ∗/

259 streamAddNew ( stream , theta , start_point ) ;

260

261 /∗ 3 . Del ivery from the stream to the i n f e c t i o n s i t e −> stream prote in ←↪

now in membrane ∗/

262 streamDepositMembrane ( membrane , stream ) ;

263

264 }

265

266 /∗ Note tha t the area i s square , so a block of ( x−r )−>(x+r ) and ( y−r )−>(y+r )←↪

∗/

267 void Transport : : Photoswitch ( const unsigned i n t x , const unsigned i n t y , ←↪

const unsigned i n t r , std : : vector<Proteins> &p ) {

268 std : : array<double , N_COORDS> centre = { x/micron_to_px [ X ] , y/micron_to_px←↪

[ Y ] } ;

269 const double bleach_range = ( 2 . 0∗ r ) /(micron_to_px [ X ] + micron_to_px [ Y ] ) ;

270 f o r ( auto &ele : p ) {

271 std : : array<double , N_COORDS> pos = ele . GetPos ( ) ;

272 i f ( fabs ( centre [ X ] − pos [ X ] ) < bleach_range and fabs ( centre [ Y ] − pos [←↪

Y ] ) < bleach_range ) {

273 ele . SetBleach ( RED ) ;

274 }

275 }

276 }

277

278 void Transport : : ProgressBar ( const unsigned i n t current_step , const unsigned ←↪

i n t max_step ) {

279 i n t bar_width = 70 ;

280 double progress = ( double ) current_step/( double ) max_step ;

281
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282 std : : cout << " [ " ;

283 i n t pos = ( i n t ) ( bar_width ∗ progress ) ;

284 f o r ( i n t i = 0 ; i < bar_width ; ++i ) {

285 i f ( i < pos ) std : : cout << "=" ;

286 e l s e i f ( i == pos ) std : : cout << ">" ;

287 e l s e std : : cout << " " ;

288 }

289 std : : cout << " ] " << i n t ( progress ∗ 1 0 0 . 0 ) << " %\r " ;

290 std : : cout . flush ( ) ;

291 }

292

293

294

295 /∗ === Unit Test ing === ∗/

296 /∗
297 TEST ( tes tTranspor t , absDis tTes t ) {

298 std : : array <double , N_COORDS> pos1 = { 0 . 0 , 0 . 0 } ;

299 std : : array <double , N_COORDS> pos2 = { 3 . 0 , 4 . 0 } ;

300 EXPECT_DOUBLE_EQ( Transport : : absDistance ( pos1 , pos2 ) , 5 . 0 ) ;

301 } ∗/

A.2.6 Utility

Util.hpp:

1 //

2 // Created by Jordan Hembrow on 2019−05−09.

3 //

4

5 # i fnde f ATIMMUNESIMULATION_UTIL_HPP

6 # def ine ATIMMUNESIMULATION_UTIL_HPP

7

8 # include <array >

9

10 c l a s s Util {

11 pr iva te :

12 s t a t i c double randGen ( i n t &idum ) ;
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13 publ ic :

14 s t a t i c double rng ( double min , double max ) ;

15 s t a t i c double rngMT ( double min , double max ) ;

16 } ;

17

18

19 # endi f //ATIMMUNESIMULATION_UTIL_HPP

Util.cpp:

1 //

2 // Created by Jordan Hembrow on 2019−05−09.

3 //

4

5 # include " U t i l . hpp"

6 //# include <UnitTest . hpp>

7 # include <random>

8

9 s t a t i c i n t rand_gen_seed = −1; // Don ' t change t h i s ! Ensures seed i s ←↪

c o r r e c t l y picked .

10

11 /∗
12 ∗ This should be ca l l e d with seed < 0 to i n i t i a l i s e the seed and s h u f f l e ←↪

t a b l e

13 ∗ After that , make no fur the r changes to the seed

14 ∗ Modified from ' Numerical Recipes in C++ − Second Edi t ion '
15 ∗ This i s a combination of two generators and a s h u f f l e to ensure ←↪

n e g l i g i b l e l i n e a r c o r r e l a t i o n s

16 ∗ Gives output in the range [ 0 . 0 , 1 . 0 )

17 ∗/

18 double Util : : randGen ( i n t &idum ) {

19 const i n t IM1 = 2147483563 , IM2 = 2147483399 ;

20 const i n t IA1 = 40014 , IA2 = 40692 , IQ1 = 53688 , IQ2 = 52774 ;

21 const i n t IR1 = 12211 , IR2 = 3791 , NTAB=32 , IMM1 = IM1 − 1 ;

22 const i n t NDIV = 1 + ( IMM1/NTAB ) ;

23 const double EPS = 3 . 0 e−16 , RNMX = 1 . 0 − EPS , AM = 1 .0/ ( double ) IM1 ;

24 s t a t i c i n t idum2 = 123456789 , iy = 0 ;
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25 s t a t i c std : : array<int , NTAB> iv ;

26 i n t j , k ;

27 double temp ;

28

29 i f ( idum <= 0) {

30 idum = ( idum == 0) ? 1 : −idum ; // Ensure p o s i t i v e idum

31 idum2 = idum ;

32 fo r ( j = NTAB + 7 ; j >= 0 ; j−−) { // Load s h u f f l e t a b l e ( a f t e r 8 ←↪

warmups )

33 k = idum/IQ1 ;

34 idum = IA1 ∗ ( idum − k∗IQ1 ) − k∗IR1 ;

35 i f ( idum < 0) idum += IM1 ;

36 i f ( j < NTAB ) iv [ j ] = idum ;

37 }

38 iy = iv [ 0 ] ;

39 }

40

41 k = idum/IQ1 ; // S t a r t here i f not ←↪

i n i t i a l i s i n g

42 idum = IA1 ∗ ( idum − k∗IQ1 ) − k∗IR1 ; // Compute idum = ( IA1∗idum) % ←↪

IM1 without overflows using Schrage ' s method

43 i f ( idum < 0) idum += IM1 ;

44 k = idum2/IQ2 ;

45 idum2 = IA2 ∗ ( idum2 − k∗IQ1 ) − k∗IR2 ; // Compute idum2 = ( IA2∗idum2 ) %←↪

IM2 l ikewise

46 i f ( idum2 < 0) idum2 += IM2 ;

47 j = iy/NDIV ; // Wil l be in range 0 . . NTAB −←↪

1

48 iy = iv [ j ] − idum2 ; // Here idum i s shuf f l ed ; idum ←↪

and idum2 are combined

49 iv [ j ] = idum ;

50 i f ( iy < 1) iy += IMM1 ;

51 i f ( ( temp = AM∗iy ) > RNMX ) re turn RNMX ; // Don ' t expect endpoint values

52 re turn temp ;

53 }

54

55 /∗
56 ∗ Using randGen ( ) gives a repeat length of >2x10^18 − p e r f e c t fo r monte ←↪
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ca r l o

57 ∗/

58 double Util : : rng ( const double min , const double max ) {

59 double range = max − min ;

60 double ret_val = ( randGen ( rand_gen_seed ) ∗ range ) + min ;

61 re turn ret_val ;

62 }

63

64 double Util : : rngMT ( const double min , const double max ) {

65 s t a t i c std : : mt19937_64 gen ( std : : random_device { } ( ) ) ;

66 std : : uniform_real_distribution<> dis ( min , max ) ;

67 re turn dis ( gen ) ;

68 }

69 /∗
70 TEST ( Tes tUt i l , rngSeeding ) {

71 rand_gen_seed = −1;

72 U t i l : : rng ( 0 . 0 , 1 . 0 ) ;

73 EXPECT_GT( rand_gen_seed , 0 ) ; // seed should be i n i t i a l i s e d to←↪

a p o s i t i v e ( non−zero ) value

74 }

75

76 TEST ( Tes tUt i l , rngRange ) {

77 const double min = −0.5;

78 const double max = 0 . 5 ;

79 f o r ( i n t i = 0 ; i < 3 ; i ++) {

80 double random_no = U t i l : : rng ( min , max) ;

81 EXPECT_GE( random_no , min ) ; // Note : range i s always [ min , ←↪

max)

82 EXPECT_LT( random_no , max) ;

83 }

84 }

85 ∗/
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