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Abstract 1 

This paper explores the use of ‘conditional convolutional generative adversarial networks’ 2 

(CDCGAN) for image-based leak detection and localization (LD&L) in water distribution 3 

networks (WDNs). The method employs pressure measurements and is based on four pillars: (1) 4 

hydraulic model-based generation of leak-free training data by taking into account the demand 5 

uncertainty, (2) conversion of hydraulic model input demand-output pressure pairs into images 6 

using kriging interpolation, (3) training of a CDCGAN model for image-to-image translation, and 7 

(4) using the structural similarity (SSIM) index for LD&L. SSIM, computed over the entire 8 

pressure distribution image is used for leak detection, and a local estimate of SSIM is employed 9 

for leak localization. The CDCGAN model employed in this paper is based on the pix2pix 10 

architecture. The effectiveness of the proposed methodology is demonstrated on leakage datasets 11 

under various scenarios. Results show that the method has an accuracy of approximately 70% for 12 

real-time leak detection. The proposed method is well-suited for real-time applications due to the 13 

low computational cost of CDCGAN predictions compared to WDN hydraulic models, is robust 14 

in presence of uncertainty due to the nature of generative adversarial networks, and scales well to 15 

large and variable-sized monitoring data due to the use of an image-based approach.  16 

Keywords: Leak; anomaly detection; generative adversarial networks; image-to-image translation; 17 

structural similarity index.  18 

1. Introduction 19 

With the rapid development of supervisory control and data acquisition (SCADA) technologies, 20 

real-time monitoring of hydraulic parameters is becoming increasingly commonplace in many 21 

water distribution networks (WDNs) (Zhou et al., 2019). Monitoring is often performed by 22 

installing pressure and flow sensors in the transmission mains, allowing for an improved 23 

understanding of system behavior, and diagnosis of anomalous events, the most notable of which 24 

is pipe leaks. In this context, diagnosis of leakage often includes at least two aspects: (a) ‘leakage 25 

detection’, which is to detect if leakage has occurred, and usually ends with binary results (i.e. leak 26 

alarm on or off), or fuzzy values and probabilities between 0 to 1 to represent the likelihood of a 27 

leakage event in the system (Mounce et al., 2010). (b) ‘Leak localization’ (or isolation) is the 28 

process of narrowing down the potential location of a leak to a specific area or district. The latter 29 
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is a precursor to finding the leaky pipe(s) and then pinpointing the exact leakage location (Al 30 

Qahtani et al. 2020).  31 

1.1. Literature Review  32 

Several past studies (e.g. Kang et al., 2017; Guo et al., 2021) rely on auxiliary data such as acoustic 33 

and vibration signals, for more accurate LD&L in presence of nuisance factors. Despite the 34 

effectiveness, obtaining such data is labor intensive, and the quality of these data can be affected 35 

by background noise and other events in the system or its environment (Wu and Liu, 2017). 36 

Leakages in pipeline systems can also be detected using transient analysis by relying on the 37 

principle of pressure transient wave reflection. A comprehensive overview of these methods was 38 

provided by Abdulshaheed et al. (2017). However, the effectiveness of transient analysis-based 39 

detection techniques is heavily influenced by pipe characteristics and external factors (Kammoun 40 

et al., 2022). Furthermore, this approach is unsuitable for detecting leaks over long pipe distances 41 

since pressure waves only propagate short distances. Additionally, implementing this technique 42 

often requires intricate mathematical algorithms and substantial computational resources (Wan et 43 

al., 2022). 44 

Pressure and flow sensors have the advantage of being easy to install, enabling real-time 45 

monitoring, and being sensitive to leakage events. Therefore, leakage detection and localization 46 

(LD&L) using pressure/flow data has received increasing attention in the past decades. LD&L 47 

using pressure/flow data can be done through one of the following two groups of methods. The 48 

distinguishing factor between the two is whether a hydraulic model is used or not (Wan et al., 49 

2022). 50 

A. ‘Data-driven’ methods rely on historical monitoring data and involve spatial analysis of 51 

changes across a WDN, or temporal pattern analysis of time series data. Methods in this 52 

group may involve: (1) defining control limits by calculating some statistical characteristic 53 

(e.g. exponentially weighted moving average) of historical measurements and defining data 54 

that is outside these limits as potential leaks (e.g. Jung et al., 2015; Loureiro et al., 2016). 55 

These methods often rely on assumptions such as the Gaussianity of data distribution and 56 

the uncorrelation of errors. (2) Using historical data to train a predictor model that learns 57 

the expected behavior of the system in leak-free circumstances, and comparing the 58 

residuals between the observed and predicted value with a threshold to identify leaks. A 59 

variety of machine learning tools, such as support vector machines and classic neural 60 
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networks have been employed in this context (e.g. Mounce et al., 2011; Romano et al., 61 

2012; Tijani et al., 2022; Tariq et al., 2022). (3) Reframing the spatial/temporal pattern 62 

recognition as a classification problem (using e.g. Bayesian classifiers) (e.g. Wu et al., 63 

2016). This method requires labeled data, i.e. an indication of whether a chosen data 64 

instance pertains to a leak or not. (4) Formulating LD&L as a clustering problem by 65 

grouping similar data into different clusters, and identifying leaks as those that are 66 

dissimilar to normal cluster(s) (e.g. Wu and Liu, 2020).  67 

B. ‘Model-based’ methods, also known as physically-based or process-based methods, rely 68 

on the comparison of measured data with those of a calibrated WDN hydraulic model. 69 

Model-based methods include: (1) formulating LD&L as an inverse modeling problem 70 

using an optimization algorithm, and one or multiple objective function(s) (e.g. Sanz et al., 71 

2016). (2) Relying on sensitivity-to-leak analysis (e.g. Perez et al., 2014), where model-72 

generated pressure disturbances caused by all possible leak locations and magnitudes are 73 

stored in a leak-sensitivity matrix and matched against the difference between measured 74 

and simulated data (Soldevila et al., 2017). (3) Generating pressure or pressure residual 75 

maps of each leakage scenario using the hydraulic model, employing the resulting data to 76 

train a classifier, and finally utilizing the trained classifier for LD&L. The latter is 77 

sometimes referred to as a mixed model-based/data-driven approach (Soldevila et al., 78 

2016). 79 

Both data-driven and model-based methods have their advantages and limitations, and it is 80 

unfeasible to draw a conclusion about which method is universally superior (Wan et al., 2022). 81 

Data-driven approaches directly incorporate experimental data, and hence don’t require a deep 82 

knowledge of the system operation and physical equations. Data-driven methods are best suited 83 

for WDNs with a long-term monitoring dataset and were found to be effective in leak detection. 84 

However, their performance in leak localization is debated (Wu and Liu, 2017). It is generally 85 

difficult to obtain enough correct labeled data to train a high-accuracy model in a supervised 86 

manner (Zhang et al., 2020); therefore data-driven LD&L methods often rely on unsupervised or 87 

semi-supervised training. Many commonly used tools within the context of the data-driven 88 

approach have limitations in learning complex features and using them requires the manual design 89 

of suitable feature extractors (Zhou et al., 2019). Data-driven methods are particularly vulnerable 90 

to missing or faulty data (Hu et al., 2021).  91 
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Model-based methods are preferred when limited historical data is available, but come at the cost 92 

of building and calibrating a hydraulic model. Moreover, the high computation demand of 93 

hydraulic models often hinders achieving real-time LD&L. A common challenge for both model-94 

based and data-driven methods is that pressure and flow rate can be affected by other factors apart 95 

from leakages, such as variability and stochasticity in demand and random errors in sensor 96 

measurements. These are often difficult to distinguish from leaks. For model-based methods, the 97 

effect of input parameter uncertainty on the model output flow and pressure, adds to this 98 

complexity (Menapace et al., 2018; Sun et al., 2019). Hence model-based methods do not perform 99 

well in larger WDNs where the models' output uncertainty is often higher compared to smaller 100 

WDNs (Zhou et al., 2019). The performance of the model-based sensitivity-to-leak analysis 101 

method is particularly well-known to decrease due to the nodal demand uncertainty and noise in 102 

the measurements (Cugueró-Escofet et al., 2015).  103 

The above-described challenges have forced previous LD&L studies to focus mainly on 104 

hypothetical burst events in simple WDNs (Wan et al., 2022). As highlighted by recent review 105 

papers (e.g. Gupta and Kulat, 2018; Chan et al., 2018; Wan et al., 2022), more effort is needed to 106 

solve these challenges by developing novel methods that are: (a) robust in presence of various 107 

forms of uncertainty, (b) can scale to very large monitoring datasets, (c) can learn complex features 108 

from raw data, (d) rely less on manual design, and (e) are well-adapted to a limitation in labeled 109 

training data. 110 

A promising approach to achieve this objective is to exploit deep neural networks (DNNs). DNNs 111 

rely on hierarchical projections of the input space into increasingly low-dimensional latent 112 

representations (Goodfellow et al., 2016), enabling them to learn complex features from large 113 

amounts of data without the need for developing manual features by domain experts (Chalapathy 114 

and Chawla, 2019). In recent years, several DNN-based anomaly detection methods have been 115 

introduced for a variety of applications, demonstrating significantly better performance than 116 

conventional anomaly detection with an increase in the scale of data and complexity of the problem 117 

(Pang et al., 2021). Example applications of DNNs in LD&L include the use of convolutional 118 

neural networks (CNNs) for burst localization based on data from short-duration pressure 119 

observations (Zhou et al., 2019); supervised training of a CNN using hydraulic model-generated 120 

samples of all possible leaks for leak localization (Javadiha et al., 2019). These approaches, like 121 

many older methods, require a well-calibrated hydraulic model to generate synthetic data that 122 
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accurately represent real-life situations for training a deep learning model. However, acquiring and 123 

maintaining a well-calibrated hydraulic model can be challenging for water companies.  124 

Regression analysis has been used as an alternative method to learn the data patterns representing 125 

the healthy state of a WDN from historical monitoring data instead of a hydraulic model. As an 126 

example, Ye and Fenner (2011) utilized the Kalman filter to fit historical flow measurements and 127 

identify burst events by comparing predicted and observed values, while also employing the 128 

weighted least squares regression to model the data. However, these approaches treat each data 129 

point of a day independently, and thus, they do not fully consider the autocorrelation of the time 130 

series data. 131 

Mounce et al. (2010) employed a neural network to learn the normal flow behavior from 132 

monitoring data and detect leaks based on prediction errors. A key limitation of their approach is 133 

the inability to share features across different steps of a time series, whereas temporal pattern 134 

recognition requires the ability to process evolving patterns. To address this problem, recurrent 135 

neural networks such as long short-term memory (LSTM) networks have been explored for 136 

leakage detection (Wang et al., 2020; Xu et al., 2020). While the results of these LSTM-based 137 

methods have shown high detection accuracy, there are still some limitations that need to be 138 

addressed. Specifically, these methods are often restricted to univariate time series analysis, which 139 

only allows for the analysis of data from a single sensor at a time. However, it's known that data 140 

from sensors in the same network are spatially correlated, and considering topology information 141 

and the spatial relation of the sensors is essential for accurate leak detection. 142 

1.2. Study Objectives  143 

Recent research progress has demonstrated the effectiveness of DNNs in solving LD&L problems, 144 

and it is becoming increasingly clear that DNNs present an opportunity for improving current 145 

practice. In this work, we will be leveraging some of the most recent advances in DNNs, to develop 146 

a robust methodology for achieving accurate real-time LD&L in complex settings. Our 147 

methodology is based on the use of ‘conditional convolutional generative adversarial networks’ 148 

(CDCGAN) for image-based anomaly detection. Partially similar methods have been used in other 149 

applications for anomaly detection (e.g. Ezeme et al., 2020; Luo et al., 2021; Qiu et al., 2022), but 150 

to the best of our knowledge, this method has not been applied to leak detection in WDNs.  151 

Relying on flow measurements for LD&L is often easier than pressure measurements, because 152 

flow data allows for the use of simple mass balance relations, and pressure data is less sensitive to 153 
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leak events, especially when the pressure sensor is located far from the leak location (Ye and 154 

Fenner, 2011). However, pressure meters are easier to install and less costly than flow meters 155 

(Zhou et al., 2019; Sun et al., 2019), provide instantaneous data, and are better for LD&L in WDNs 156 

where there is a dense mesh of pipes with only flow measurements at the entrance of each DMA 157 

(Soldevila et al., 2017). Hence, this work focuses on the use of pressure data for LD&L.  158 

The rest of the paper is organized as follows. Section 2 presents the background of semi-supervised 159 

anomaly detection (SSAD) and CDCGANs. Section 3 presents the proposed methodology for 160 

LD&L. Section 4 details the application of the method to a WDN, followed by a discussion of the 161 

main findings. Finally, Section 5 draws the main conclusions of the work and introduces some 162 

potential extensions. 163 

2. Theoretical Background 164 

2.1. Semi-Supervised Deep Anomaly Detection 165 

Leaks result in anomalous pressure observations, and most notably, a contextual anomaly. 166 

Therefore, LD&L in WDNs can be described as a particular case of the general problem of 167 

anomaly detection and isolation in dynamic systems (Soldevila et al., 2016). Most problems in this 168 

context suffer from the limited availability of labeled anomalous data (Schlegl et al., 2019). For 169 

LD&L, this is mostly because (a) historical monitoring data on leak events is often scarce and may 170 

be unreliable, (b) full-scale physical experiments (using e.g. fire hydrants) are very costly, and (c) 171 

model-generated leak data are limited to the specifications of the model, and comprehensive 172 

evaluation of all possible leak locations and magnitudes is often computationally unfeasible. 173 

Supervised anomaly detection is limited to already known anomalies, hence lack of labeled 174 

anomalous data severely limits its value (Wan et al., 2022). SSAD is a way to employ a large set 175 

of unlabeled data alongside limited labeled data to construct a classifier with good generalization 176 

ability (Tu et al., 2018).  In SSAD, easier-to-obtain samples of normal (i.e. leak-free) data are 177 

given, and the model learns a discriminative boundary around the normal instances. New data 178 

instances that don’t belong to the normal class are identified as anomalous. SSAD methods rely 179 

on the assumption that points which are close to each other in the learned feature space are more 180 

likely to share the same label (Chalapathy and Chawla, 2019).  181 

2.2. Generative Adversarial Networks  182 
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GANs trained in a semi-supervised manner have shown great promise, even with few labeled data 183 

(Mu et al., 2021). The GAN architecture, in its basic form, is composed of a generator (𝐺) and a 184 

discriminator (𝐷) neural network (Goodfellow et al., 2014). A random input latent space 𝑧~𝑝𝑧 185 

(often sampled from a normal or uniform probability distribution, e.g. 𝑧~𝒩(0,1)) is mapped to 186 

the data space 𝜙 by the generator, which tries to generate new examples that are ideally identical 187 

to the training dataset 𝑝𝑑𝑎𝑡𝑎. The discriminator is responsible for classifying a given generator 188 

output 𝜙 as either real (i.e. indistinguishable from the training dataset 𝑝𝑑𝑎𝑡𝑎) or fake (non-identical 189 

to the training dataset) (Wang et al., 2017). These models are trained together in a zero-sum 190 

manner, also called min-max and adversarial, such that improvements in the discriminator come 191 

at the cost of reduced capability of the generator, and vice versa (Arjovsky and Bottou, 2017; Gui 192 

et al., 2021). This can be represented by the following objective function (Zheng et al., 2020): 193 

min
𝐺

max
𝐷

𝔼𝜙~𝑝𝑑𝑎𝑡𝑎[𝑙𝑜𝑔𝐷(𝜙)] + 𝔼𝑧~𝑝𝑧[log⁡(1 − 𝐷(𝐺(𝑧)))] (1) 

GANs have several key advantages: (a) GANs are well-adapted to SSAD, eliminating the need for 194 

the often time-consuming, cumbersome, and sometimes unfeasible task of providing labeling for 195 

anomalous data (Singh and Raza, 2021), (b) Markov chains and inference are not needed during 196 

learning, and only backpropagation is used to obtain gradients (Goodfellow et al., 2014; Mirza and 197 

Osindero, 2014), and (c) GANs are capable of learning many noise types and mimicking complex 198 

(including very sharp) data distributions (Wunderlich and Sklar, 2022).  199 

GANs allow for the synthesis of novel images, videos, numeric and audio data, or text from a 200 

random input (Al Qahtani et al., 2021). Hence, GANs are commonly used for data synthesis to 201 

facilitate the training of other ML models when data is insufficient or to correct the overtraining 202 

of a DNN (Zamora et al., 2021). For image data, the generator and discriminator frequently take 203 

the form of deep CNNs (see Radford et al., 2015 as a pioneering work). The resulting architecture 204 

is often referred to as deep convolutional GAN (DCGAN).  205 

2.3. Conditional Training  206 

GAN models generate new plausible examples of a given dataset, but their outputs are practically 207 

random and uncontrollable. There is no way to control the outputs other than discovering the 208 

complex relationship between the input latent space and the GAN-generated outputs, which is 209 

generally difficult and often unfeasible (Wang et al., 2018). However, GANs can be conditioned 210 

on auxiliary inputs, allowing for the targeted generation of outputs. This can be done by hot-211 



9 
 

encoding the conditioning data and concatenating it to the input of the generator (noise input) as 212 

well as the discriminator (generated data) (Denton et al., 2015; Qasim et al., 2020). Conditional 213 

GANs are considered semi-supervised models (Zhang et al., 2019). In a conditional GAN, both 214 

the generator and the discriminator models are conditioned, and hence the trained generator model 215 

can be used as a standalone model to generate data in the domain of interest. The most common 216 

strategy is to condition GANs on class labels (i.e. class-conditional GANs), but GANs can also be 217 

conditioned on the auxiliary image(s) in the context of image-to-image translation tasks 218 

(Brownlee, 2019). The conditional training of a DCGAN-based model is referred to as CDCGAN.  219 

3. Methodology 220 

The proposed methodology employs a CDCGAN in the context of SSAD to identify and locate 221 

leaks in a WDN. The methodology is based on four pillars: (1) hydraulic model-based generation 222 

of training data, (2) conversion of hydraulic model input-output pairs into images, (3) semi-223 

supervised training of a CDCGAN model for image-to-image translation, and (4) using the 224 

structural similarity (SSIM) index for LD&L. These pillars are described in the following 225 

subsections. A flowchart of the proposed methodology is provided in Fig. 1. 226 

 227 

 228 

Fig. 1. Flowchart of the proposed methodology. 229 
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 230 

3.1. Hydraulic Model-Based Generation of Training Data 231 

In a hypothetical leak-free condition, it is subjectively assumed that the uncertain demand in node 232 

𝑖 and time step 𝑡 (denoted by 𝑑𝑖,𝑡) is represented by a normal distribution with a mean (𝜇(𝑑𝑖,𝑡)) 233 

equal to the field data (or estimates) of demand, and a standard deviation of⁡𝜎(𝑑𝑖,𝑡) = 0.1𝜇(𝑑𝑖,𝑡) 234 

(Soldevila et al., 2017). We employ Latin hypercube sampling (LHS) to produce a variety of 235 

random, plausible values for pipe parameters and demand time series and feed them to the 236 

EPANET model to obtain the resulting pressure time series in the observation nodes. We refer to 237 

data obtained from hydraulic simulations as ‘model-generated data’. 238 

3.2. Transforming Demand and Pressure Data to Images 239 

Demand and pressure values at various observation points (OPs) in a single time step are employed 240 

to create images of demand and pressure. This results in the creation of two ‘image time series’ 241 

for the entire duration of interest. These images are created by interpolating pointwise values using 242 

the kriging method with a Gaussian variogram model. Kriging is a popular choice for interpolating 243 

data points to a continuous spatial field (Kleijnen, 2017), and has been previously used in several 244 

studies including Javadiha et al. (2019) for pressure and/or demand interpolation in WDNs. The 245 

kriging method is implemented here using the PyKrige python library (Murphy, 2014). The 246 

resulting interpolated values are then scaled into the interval 0 and 255 to generate rectangular 247 

greyscale images with 256 × 256 pixels.  248 

3.3. CDCGAN for Image-to-image Translation 249 

The demand-pressure image pairs are subsequently employed for training a CDCGAN, to learn 250 

how certain demand distribution maps to the associated leak-free pressure distribution. The 251 

CDCGAN model employed in this work is based on the pix2pix architecture (Isola et al., 2017). 252 

Pix2pix is composed of a generator and a discriminator network, as portrayed in Fig. 2. The 253 

generator is an encoder-decoder CNN (ED-CNN) based on a modified U-Net architecture 254 

(Ronneberger et al. 2015). The ED-CNN consists of (a) an encoder subnetwork that receives the 255 

input image, passes it through a contracting process in which features of increasing semantic depth 256 

and decreasing spatial resolution are learned from the input image, and outputs feature maps, and 257 

(b) a decoder which receives the feature maps and employs deconvolution and up-sampling to 258 
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constructed an output image with the same spatial resolution as the original input (Rajabi et al., 259 

2022). The encoder is made of several blocks, where each block consists of a convolutional layer 260 

proceeded by batch normalization and leaky Rectified linear unit (ReLU) activation function. 261 

Blocks of the decoder consist of a transposed convolutional layer, followed by batch 262 

normalization, dropout (applied only to the first 3 blocks), and ReLU activation function. Skip 263 

connections are employed between the encoder and decoder. The discriminator in pix2pix is a 264 

convolutional PatchGAN classifier that maps each generator output to a 70 × 70 square patch of 265 

the input image. The patches overlap to cover the 256 × 256-pixel image. The discriminator is 266 

made of several blocks with each block consisting of a convolution layer, batch normalization, and 267 

Leaky ReLU activation function. The objective function in pix2pix training is the sum of the GAN 268 

loss, a binary cross-entropy, and an L1 norm between the generated image and the ground truth 269 

(Isola et al., 2017). In this work, the pix2pix-based CDCGAN is developed using the open-source 270 

python library TensorFlow and is trained on Google Colab.  271 

 272 

Fig. 2. The architecture of CDCGAN and how it is trained with demand-pressure image pairs 273 

 274 

3.4. Leak Detection and Localization   275 

After the model is trained, the CDCGAN generator is fed with new demand images (for which 276 

some are associated with leaks in the WDN) and outputs the pressure distribution image which 277 
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represents what is expected in leak-free conditions. The SSIM index is then used for measuring 278 

the similarity between the ground truth (either field or model-generated data), and the CDCGAN-279 

predicted pressure images. SSIM is a perceptual metric that quantifies the difference between two 280 

images from the same image capture and has been used in many image quality assessment 281 

applications (Chen and Bovik, 2011). SSIM is calculated on various windows of an image. The 282 

measure between two windows 𝑥 and 𝑦 of common size 𝑁⁡ × ⁡𝑁 is a weighted combination of 283 

three comparative measures, namely luminance (𝑙(𝑥, 𝑦)), contrast (𝑐(𝑥, 𝑦)), and structure (𝑠(𝑥, 𝑦)) 284 

which are defined as follows (Wang et al., 2004):   285 

𝑙(𝑥, 𝑦) =
2𝜇𝑥𝜇𝑦 + 𝑐1

𝜇𝑥2 + 𝜇𝑦2 + 𝑐1
 (2) 

𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝑐2

𝜎𝑥2 + 𝜎𝑦2 + 𝑐2
 (3) 

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦 + 𝑐3

𝜎𝑥𝜎𝑦 + 𝑐3
 (4) 

Where 𝜇𝑥 and 𝜇𝑦 are the average of 𝑥 and 𝑦 respectively, 𝜎𝑥 and 𝜎𝑦 are their standard deviations, 286 

and 𝜎𝑥𝑦  is their covariance. 𝑐1 , 𝑐2  and 𝑐3  are variables included to avoid instability when the 287 

denominator is close to zero. SSIM  ranges between 0 to 1, where 1 denotes a perfect match 288 

between the reconstructed and original images. Here, SSIM is multiplied by 100 to give a 289 

percentage score. SSIM can be estimated locally (which we denote by 𝑆𝑆𝐼𝑀𝑙) or computed over 290 

the entire image (represented by 𝑆𝑆𝐼𝑀𝑜). 291 

Due to factors such as demand uncertainty, the target, and CDCGAN predicted pressure images 292 

are not expected to perfectly match even in leak-free conditions. Therefore the mean and standard 293 

deviation of 𝑆𝑆𝐼𝑀𝑜 in absence of a leak, is first estimated by employing an independent set of 294 

leak-free demand-pressure image pairs. The resulting values are then employed to derive a 295 

threshold that differentiates between leak-free and leak conditions. We choose this threshold 296 

(𝑇𝑆𝑆𝐼𝑀𝑜
) to be mean minus three times the standard deviation of 𝑆𝑆𝐼𝑀𝑜. This choice is based on 297 

the three-sigma rule, which is widely used in statistics and quality control to identify outliers or 298 

abnormal values in a dataset. This rule assumes that the data follows a normal distribution and that 299 

approximately 99.7% of the data will fall within three standard deviations of the mean (Panda and 300 

Khilar, 2015). However, the appropriateness of this rule depends on the characteristics of the data 301 

and the specific needs of the analysis. A more conservative threshold value, such as mean minus 302 
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four or five times the standard deviation, may reduce the risk of false alarms but increase the risk 303 

of missed detections.  304 

Furthermore, it is well-known that one abnormal data point cannot signify a leakage event, while 305 

continuous disruptive data is more suitable to indicate the occurrence of a leak (Wan et al., 2022). 306 

In this study, if the 𝑆𝑆𝐼𝑀𝑜 obtained from comparing the ground truth and the CDCGAN predicted 307 

pressure is less than 𝑇𝑆𝑆𝐼𝑀𝑜
 for 5 consecutive time steps (i.e. snapshots of pressure observation), 308 

we conclude that there is a leak somewhere in the WDN. The selection of the number of 309 

consecutive time steps is dependent on the sensitivity of the detection method and the noise level 310 

in the system. A smaller number of time steps may produce false alarms due to measurement noise, 311 

while a larger number of time steps may delay the detection of leaks. A balance between the risk 312 

of false alarms and missed detections is often sought in practice, and five consecutive time steps 313 

may be a suitable choice. If a leak is identified, leak localization is then carried out by using the 314 

local SSIM (𝑆𝑆𝐼𝑀𝑙). For leak localization, the area with the lowest value of 𝑆𝑆𝐼𝑀𝑙  across the 315 

pressure map at each time step is identified as the most probable leak location.  316 

4. Application  317 

4.1. Description of the Case Study 318 

We analyze the effectiveness and accuracy of the proposed methodology using the L-Town 319 

benchmark problem (Vrachimis et al., 2020). The L-Town problem for LD&L is founded on a 320 

transient hydraulic model that mimics the characteristics of a real-world water distribution system. 321 

This model is designed to simulate changes in flow and pressure in the pipes over time, which are 322 

influenced by a variety of factors, including variations in demand and pump operations. 323 

Additionally, the L-Town problem accounts for different types of leaks, ranging from small to 324 

large leaks, and introduces them at different times during the simulation to create transient 325 

conditions.  326 

This case study encompasses a surface area of 3 × 2.6 km2 and a total pipe length of 42 km. There 327 

are 782 junctions, 2 reservoirs, 1 tank, 905 pipes, 1 pump, and 3 pressure-reducing valves in the 328 

WDN  (see Fig. 3). The network is monitored using 33 pressure sensors. Sensor measurements are 329 

assumed to be accurate, with no time delay, and are reduced to two decimal points. The 330 

measurement dataset is one year in length and has 5-minute time steps.  331 
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 332 

Fig. 3. Map of the WDN used as our case study. 333 

 334 

An EPANET-based model of the L-Town benchmark problem (Vrachimis et al., 2022) is 335 

employed for data generation. This hydraulic model utilizes a pressure-driven analysis method to 336 

simulate the network.  The model was calibrated based on field measurements obtained from the 337 

original water distribution system in L-Town (Steffelbauer et al., 2020). To facilitate iterative 338 

model simulations, we couple this model with an EPANET-compatible Python library, named 339 

Water Network Tool for Resilience (WNTR) (Klise et al., 2018) (available on GitHub: 340 

https://github.com/USEPA/WNTR). WNTR has an application programming interface (API) that 341 

allows for changes to the network operations and simulation of disruptive incidents such as leaks 342 

and bursts (Klise et al., 2020).  343 

4.2. Generating the Training Data 344 

Data for CDCGAN training is generated using the leak-free EPANET model (Vrachimis et al., 345 

2020), following the scheme described in sub-sections 3.1 and 3.2. In this context, 365 daily 346 

demand patterns with a time step of 5 minutes have been generated, taking into account demand 347 

uncertainty. This results in 105,120 pairs of demand-pressure images, which are divided into 348 

training and testing data by an 80%-20% split. This procedure is first done using pressure 349 

observations in 780 nodes in the WDN (two nodes close to the reservoirs, which have exceptionally 350 

high pressures, have been omitted from the original 782 nodes of the case study), and then repeated 351 

by only incorporating the 33 locations for which pressure sensors are available (see Fig. 3).  352 

https://github.com/USEPA/WNTR
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In the process of generating pressure distribution images, since the temporal variations are small 353 

compared to the spatial variations, we divided the WDN into four zones based on the range of 354 

observed pressures (i.e. 𝑧𝑜𝑛𝑒1: 𝑃 < 33 m, 𝑧𝑜𝑛𝑒2: 33 < 𝑃 < 40 m, 𝑧𝑜𝑛𝑒3: 40 < 𝑃 < 50 m, and 355 

𝑧𝑜𝑛𝑒4: 𝑃 > 50 m), and then separately scaled pressure values into the interval 0 and 255 for each 356 

zone. As an example of the leak-free images obtained from Kriging interpolation, Fig. 4 depicts 357 

demand and pressure distributions in randomly chosen time steps, obtained from 780 (Figs. 4a, 358 

4b) and 33 OPs (Figs. 4d, 4e). As the demand in various nodes may serve different purposes, such 359 

as residential, commercial, or industrial, reducing the number of data nodes (from 780 to 33) has 360 

a greater impact on the interpolated demand maps than on the pressure maps. 361 

4.3. CDCGAN Training and Validation  362 

Two separate CDCGANs are trained using images obtained from 780 and 33 OPs. We refer to 363 

these two as CDCGAN780 and CDCGAN33 respectively. For both models, 30,000 epochs are 364 

sufficient to reach a stable solution. Details of the hyper-parameter settings are presented in Table 365 

1. The mean absolute percentage error (MAPE) is used to measure and quantify the prediction 366 

errors. Fig. 5 illustrates the MAPE histogram of the trained CDCGANs. The average MAPEs are 367 

1.42%, and 0.67% for CDCGAN780 and CDCGAN33 respectively. Fig. 5 and the average MAPEs 368 

show that the prediction error of the CDCGAN33 is lower than those of CDCGAN780. This can be 369 

attributed to the fact that more OPs result in more complex pressure maps that should be learned 370 

by the model. For both CDCGANs, the error distribution is not uniform or normal and is skewed 371 

to the right.  372 

 373 
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 374 

Fig. 4. Comparison of the numerical model and CDCGAN metamodel outputs (i.e. pressure distribution) for the same input image (i.e. demand 375 

distribution), randomly chosen from the test dataset, for (a, b, c) 780, and (d, e, f) 33 observations points. In these images, the demand and pressure 376 

are unitless and normalized through division by the respective maximum values.377 
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 378 

Fig. 5. Histogram of MAPE for the CDCGANs trained based on pressure images obtained from (a) 780, 379 

and (b) 33 observation points.  380 

  381 

 382 

 383 

 384 

Table 1. Hyper-parameters values for the CDCGAN. 385 

Name Optimal choice 

Optimizer Adam 

Learning rate 2 × 10−4 

The exponential decay rate for the 1st-moment 

estimates 
0.5 

Epochs 30,000 

Normalization type Batch 

Weight of L1 loss in the generator objective 100 

Weight initialization method Normal 

Number of generator filters in the last conv layer 256 

Number of discriminator filters in the first conv layer 256 

 386 

 387 

Based on the trained CDCGANs, the SSIM is estimated for the test dataset using the method 388 

described in sub-section 3.4. To account for diurnal variations in demand and pressure, the leak 389 

detection threshold (𝑇𝑆𝑆𝐼𝑀𝑜
) is then calculated on an hourly basis for 24 hours. The resulting 390 

thresholds are presented in Fig. 6. As demonstrated, hourly 𝑇𝑆𝑆𝐼𝑀𝑜
 values are consistently larger 391 

for CDCGAN33 compared to CDCGAN780, because the prediction errors are also lower and the 392 

model-generated pressure maps more closely resemble the data.   393 
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 394 

 395 

Fig. 6. Hourly thresholds of SSIM for leak detection. 396 

 397 

 398 

4.4. Leak Detection and Isolation 399 

Two sets of leakage scenarios, described in the following sub-sections, are employed to analyze 400 

the performance of the trained CDCGAN model in LD&L. In all scenarios, if leakage occurs and 401 

data points during the leak period are identified as anomalies by the CDCGAN model, the outcome 402 

is identified as a true positive (TP). On the other hand, if there is no leak in the WDN, and the 403 

model doesn’t classify data points during the leak as anomalous, the outcome is a true negative 404 

(TN). The detection method can also fail. In this case, if the model fails to identify leaks, it results 405 

in a false negative (FN), and if it identifies leak-free conditions as anomalous, the outcome is a 406 

false positive (FP). Based on these concepts, several key metrics are calculated to evaluate the 407 

effectiveness of leak detection (Wan et al., 2022): 408 

1. The true positive rate (TPR), is defined as: 409 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

2. The true negative rate (TNR), is estimated as: 410 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (6) 

3. Accuracy (ACC) is defined as: 411 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (7) 

For a TP, the detection time (DT) is employed to express the time interval between the actual start 412 

time of leakage and the time when a method successfully identifies an anomaly (i.e. CDCGAN 413 
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predicted pressure is less than 𝑇𝑆𝑆𝐼𝑀𝑜
 for 5 consecutive time steps). In practice, it is highly 414 

favorable to have the least DT to minimize water loss and its collateral damages. To quantify the 415 

accuracy of leak localization, the graphical distance between the estimated leak location (i.e. 416 

location with the minimum 𝑆𝑆𝐼𝑀𝑙), and the actual leak location, is employed. We denote this by 417 

GDRL.  418 

4.4.1. Hypothetical Single Leak Scenarios  419 

For the hypothetical single leaks, EPANET simulations are performed assuming that a single leak 420 

has occurred in the WDN. Three different leak rates (with leak areas (LAs) equal to 0.0005, 0.005, 421 

and 0.05 m2), and eight alternative leak locations are simulated, resulting in a total of 24 422 

hypothetical single leak scenarios. Two leaks are selected to represent each of the four leak-free 423 

pressure intervals defined in Fig. 7: one at the junction of 2 and the other at the junction of 3 pipes. 424 

The leak area (𝐴𝐿) is related to the leak flow rate (𝑞𝐿) through the following equation (Crowl and 425 

Louvar, 2001): 426 

𝑞𝐿 = 𝐶𝐿𝐴𝐿√2𝑔ℎ𝐿 (8) 

Where 𝐶𝐿 is the discharge coefficient with a default value of 0.75, ℎ𝐿 is the head, and 𝑔 is the 427 

acceleration of gravity. We assume that the leaks occur in a stepwise manner (with 10 equally 428 

spaced steps) as demonstrated in Fig. 8, and are hence expected to cause a similarly stepwise 429 

pressure drop in parts of the network. The simulation period pertains to the WDN conditions in 430 

the first week of 2018, and the time steps are 5 minutes. For each scenario, this results in the 431 

generation of 2,016 pairs of demand-pressure images. The generation of pressure images is once 432 

done using 780 observations, and then again for 33 OPs, to assess how the performance of the 433 

proposed approach is affected by the number of observation locations. For all hypothetical 434 

scenarios, the leak starts at 0:00 of day five and ends at 24:00 of the same day.  435 

 436 

 437 
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Leak 

location* 

Pressure 

Range 

Junction of 

2 pipes 3 pipes 

P-40 
<30 m 

  

P-151   

P-151 
[30-40) m 

  

P-253   

P-880 
[40-50) m 

  

P 900   

P-224 
≥50 m 

  

P-888   
 

  

* The numbers represent the node numbers in the L-Town WDN (Vrachimis et al., 2020) 438 

Fig. 7. Location of hypothetical and real-time leaks in the WDN.  439 

  440 

 441 

 442 

 443 

Fig. 8. Stepwise increase in leak rate for the hypothetical single leak scenarios.   444 

 445 

 446 

As an example of the images acquired through Kriging interpolation, Fig. 9 compares pressure 447 

maps of a no-leak condition with one of the hypothetical single leakage scenarios (𝐿𝐴 = 0.05 m2) 448 

in the same time step. Both images are obtained using the EPANET numerical model using 780 449 

Ops. This exemplary figure demonstrates that the pressure maps significantly differ between the 450 

two cases, especially in the vicinity of the leak location. In our proposed leak identification 451 

methodology, this difference is quantified using the SSIM index.  452 
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a) 

 

b) 

 

 453 

Fig. 9. Examples of how leaks appear in pressure image: (a) no-leak, and (b) leaky conditions. The red 454 

circle has been overlaid on the right image to show the location of the leak. 455 

 456 

Fig. 10 illustrates the 𝑆𝑆𝐼𝑀𝑜 times series obtained from CDCGAN780 for the hypothetical leak at 457 

P-40, based on three different leak rates. For the highest leak rate (𝐿𝐴 = 0.05 m2), 𝑆𝑆𝐼𝑀𝑜 drops 458 

below the hourly leak detection threshold (𝑇𝑆𝑆𝐼𝑀𝑜
) as soon as the leak starts, and increases back to 459 

its normal range as the leak ends (Fig. 10a). Hence, the model is perfectly capable of identifying 460 

this burst with minimal DT. 461 

To demonstrate how the proposed method identifies the leak location, Fig. 11 shows the 𝑆𝑆𝐼𝑀𝑙 462 

map for three different time steps during the leak. The location of the minimum 𝑆𝑆𝐼𝑀𝑙 and the 463 

actual leak location is also shown in the figure. During the leak, 𝑆𝑆𝐼𝑀𝑙 significantly drops in the 464 

vicinity of the leak location, forming a zone of low 𝑆𝑆𝐼𝑀𝑙 values around the leak location. The 465 

extent of this zone increases with increasing leakage rates. The estimated location of the leak 466 
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(pertaining to the minimum value of 𝑆𝑆𝐼𝑀𝑙) gradually converges to the actual leak location with 467 

an increased leakage rate.  Fig. 12a shows how GDRL varies after the identification of the leak. GDRL 468 

starts from about 12m and decreases with increasing leakage rate until it converges to 4 m. This is a 469 

relatively highly accurate estimation compared to previous studies (see the review paper, by Wan 470 

et al., 2022).  471 

For the middle value of leak rate (𝐿𝐴 = 0.005 m2),  𝑆𝑆𝐼𝑀𝑜  becomes smaller than 𝑇𝑆𝑆𝐼𝑀𝑜
⁡with 472 

delay (DT ≅ 16 hours), and after the leak rate has increased beyond 0.002⁡m2  (Fig. 10b). Fig. 12b 473 

demonstrates how GDRL varies after the leak is identified. GDRL starts from around 140 m, and 474 

then sharply drops to about 12 m after a few hours. For the smallest value of leak rate (𝐿𝐴 =475 

0.0005 m2), DT equals about 21 hours, and the leak is identified only when the leak rate nears its 476 

maximum value (Fig. 10c). GDRL is approximately 96 m in this scenario.  477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 
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 491 

Fig. 10. SSIMo time series the for the hypothetical leak at P-40, based on: (a) 𝐿𝐴 = 0.05 m2, (b) 𝐿𝐴 =492 

0.005 m2, and (c) 𝐿𝐴 = 0.0005 m2. 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 504 
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 505 

Fig. 11. The 𝑆𝑆𝐼𝑀𝑙 map for the hypothetical single leak at times: (a) 𝑡 = 100, (b) 𝑡 = 110,  and (c) 𝑡 =506 

120  hours since the start of the synthetic leak simulations.  507 

 508 

  509 

Fig. 12. GDRL time series for the hypothetical leak at P-40 based on: (a) 𝐿𝐴 = 0.05 m2, and (b) 𝐿𝐴 =510 

0.005 m2 511 

 512 

Fig. 13 provides the TPRs and TNRs obtained from applying the proposed methodology to all 513 

hypothetical single leak scenarios. As demonstrated in Fig. 13a, b the TPR is close to the ideal 514 

value of one for 𝐿𝐴 = 0.05 m2, highly decreases with decreasing leak rates,  and approaches zero 515 
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for 𝐿𝐴 = 0.0005 m2. Detail analysis of the SSIMo time series for the hypothetical single leak scenarios  516 

(an example of which was presented in Fig.10) shows that the detectable threshold representing 517 

the minimum detectable leak rate is between 0.0001-0.0005 m2 for the various scenarios. The 518 

maximum standard deviation of TPR is observed for the middle value of leak rate (𝐿𝐴 = 0.005 519 

m2). The TNR is generally high for all scenarios (Fig. 13c, d). Comparison of TPR and TNR values 520 

obtained from incorporating 780 (Fig. 13a, c) and 33 (Fig. 13b, d) OPs, shows a minor difference 521 

between the two, with the average TPR for 780 OPs 0.02 higher than 33 OPs. The average ACC 522 

across all scenarios is 0.91 and 0.90 for 780 and 33 OPS, respectively.  523 

 524 

 525 

Fig. 13. TPR and TNR for various hypothetic leak scenarios.  526 

 527 

 528 

Fig. 14 compares TPR and TNR values obtained for leaks in various locations. Based on this figure, 529 

there seems to be no correlation between the leak location or pressure range and the associated 530 

TPR and TNR. This is observed for both 780 and 33 OPs.  531 

 532 

 533 

 534 
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 535 

Fig. 14. TPR and TNR for leaks in various locations. The associated pressure ranges are shown for each 536 

leak location.  537 

 538 

 539 

Fig. 15 provides the DT and minimum GDRL (GDRLmin) values obtained for various leak 540 

locations and two different leak rates. It can be seen that DT is significantly lower for the larger 541 

leak rate. For 𝐿𝐴 = 0.005 m2
,
 DT is constantly below 17 hours, and for 𝐿𝐴 = 0.05 m2 DT is 542 

generally less than an hour. GDRLmin for the larger leak rate is equal to or less than the associated 543 

values of the smaller leak, indicating that, as expected, larger leaks can more accurately be 544 

localized. For 𝐿𝐴 equal to 0.05 and 0.005 m2, GDRLmin is lower than 11 and 35 m, respectively. 545 

There is no correlation between leak location and either DT or GDRLmin.  546 

 547 
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 548 

Fig. 15. GDRL and DT for leaks in various locations. The associated pressure ranges are shown for each 549 

leak location. 550 

 551 

4.4.2. Real-time Leak Detection for a One-Year Dataset 552 

Six real-time leaks in the L-Town WDN provided by the Battle of Leakage Detection and Isolation 553 

Methods (BattLeDIM) (Vrachimis et al., 2022), are also assessed. These leaks occur at different 554 

times during the year 2018 (with no concurrency) and involve a gradual increase in the outflow 555 

rate. The leak locations and magnitudes are presented in Table 2. All six leaks have smaller peak 556 

values of leak rate compared to the hypothetical scenarios described in the previous sub-section. 557 

A single one-year EPANET simulation is performed by incorporating these leaks, and the results 558 

are used to create pairs of demand-pressure images for each 5-minute time step. Only 33 OPs (of 559 

the sensor locations) are employed to create the pressure images. These images are incorporated 560 

in the LD&L algorithm, and the resulting SSIMo time series for the entire year is presented in Fig. 561 

16. Except for the leak 𝑅𝐿6 (which has the shortest duration among the six leaks), the other five 562 

leaks (𝑅𝐿1  to 𝑅𝐿5) are detected by the proposed methodology. Generally, leak detection only 563 

becomes possible near the peak leak rate. For the entire year, the accuracy of leak detection is 564 

70%. GDRLmin ranges between 160 to 185 m for the five identified leaks.   565 
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Table 2. Summary of the real-time leak detection scenarios. 566 

Scenario 𝑹𝑳𝟏 𝑹𝑳𝟐 𝑹𝑳𝟑 𝑹𝑳𝟒 𝑹𝑳𝟓 𝑹𝑳𝟔 

Leak position p232 p673 p866 p183 p158 p427 

Leak area at the 

peak (m2) 
0.00032 0.00024 0.00031 0.00041 0.00028 0.00031 

Leak type incipient incipient abrupt incipient incipient abrupt 

Start (date, time, 

time step) 

2018-05-01, 

02:35, 35,167 

2018-06-20, 

15:45, 49,725 

2018-08-03, 

07:00, 62,292 

2018-08-28, 

10:35, 69,535 

2018-10-06, 

02:35, 80,671 

2018-12-15, 

13:00, 100,956 

End (date, time, 

time step) 

2018-05-17, 

09:20, 39,856 

2018-07-10, 

10:25, 55,421 

2018-08-03, 

11:00, 62,340 

2018-09-15,  

17:30, 74,802 

2018-11-15, 

13:35, 92,323 

2018-12-15, 

17:00, 101,004 

Peak (date, time, 

time step) 

2018-05-12, 

16:05, 38,497 

2018-07-06, 

15:45, 54,333 

2018-08-03, 

07:00, 62,292 

2018-09-10,  

02:45, 73,185 

2018-11-10, 

02:35, 88,867 

2018-12-15, 

13:00, 100,956 

Mean daily 

discharge 

(m3/hour) 

4.11 3.01 3.98 5.27 3.6 3.99 

  567 

 568 

 569 

Fig. 16. SSIMo time series a one-year simulation based on the real-time leaks of L-Town570 
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5. Conclusion  571 

Previous studies in different settings have shown that GANs are a promising tool for anomaly 572 

detection and localization (Xia et al., 2022). Due to their ability in mapping complex non-linear 573 

relationships, robustness in presence of uncertainty, and adaptability to limited data, GANs can 574 

theoretically overcome many key challenges of LD&L. In this paper, we exploit the use of a 575 

particular GAN architecture and develop an LD&L methodology around it.  Our key contributions 576 

can be summarized as follows: 577 

 We develop a conditional GAN architecture based on pix2pix to predict the pressure 578 

distribution resulting from a known demand distribution in the context of image-to-image 579 

translation. The GAN model is trained using hydraulic model-generated data of leak-free 580 

conditions and learns a discriminative boundary around the normal, leak-free instances. 581 

New data instances that don’t belong to this normal class are identified as anomalous.  582 

 We propose the use of the SSIM index for LD&L. In this framework, the SSIM index is 583 

computed over the entire pressure distribution image for leak detection, and a local estimate 584 

of SSIM is employed for leak localization. 585 

 We analyze the effectiveness and accuracy of the proposed methodology using the L-Town 586 

WDN case study. Besides the six real-time leaks provided by BattLeDIM, several 587 

hypothetic leak scenarios are also defined and analyzed to assess the minimum detectable 588 

leak, and the correlation between leak rate and location with key metrics such as TPR, 589 

TNR, ACC, DT, and GDRL.   590 

The L-Town benchmark problem has several key underlying assumptions, allowing for simplified 591 

modeling and LD&L. However, these assumptions may not reflect the actual circumstances in a 592 

WDN. Specifically, the assumptions include (1) the network's homogeneity, where pipes, nodes, 593 

and other components are assumed to have similar properties and behave uniformly; (2) the 594 

absence of leaks or defects at the start of the simulation; and (3) a fully-piped network, which does 595 

not include open channels, and (4) no changes in pipe characteristics and system configuration 596 

over time. Additionally, in developing our LD&L methodology, we assume that both demand 597 

uncertainty and measurement error are normally distributed, which may or may not reflect the 598 

actual circumstances in a WDN. Although the normal distribution is commonly used in this 599 

context, there are other distribution models, such as the lognormal, gamma, and Weibull 600 

distributions, which are also widely used to model demand uncertainty or measurement error in 601 
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WDNs. The choice of distribution should be based on the data and the specific needs of the 602 

analysis.  603 

Various architectures of GANs, such as f-AnoGAN (Schlegl et al., 2019), BiGAN (Kaplan and 604 

Alptekin, 2020), etc., have been proposed for anomaly detection and localization in other settings, 605 

and we suggest future studies consider these various architectures to improve LD&L in WDNs.  606 

Future investigations could focus on exploring the robustness of GAN-based methods across 607 

different operational scenarios and evaluating the impact of the WDN's size and complexity on the 608 

accuracy of the method. Additionally, conducting a comprehensive analysis of the effect of 609 

simultaneous leaks and observation location on the model's accuracy and reliability may also be a 610 

valuable avenue for further research. 611 

References 612 

Abdulshaheed, A., Mustapha, F., & Ghavamian, A. (2017). A pressure-based method for 613 

monitoring leaks in a pipe distribution system: A Review. Renewable and Sustainable Energy 614 
Reviews, 69, 902-911. 615 

Al Qahtani, H., Kavakli-Thorne, M., & Kumar, G. (2021). Applications of generative 616 
adversarial networks (gans): An updated review. Archives of Computational Methods in 617 
Engineering, 28(2), 525-552. 618 

Al Qahtani, T., Yaakob, M. S., Yidris, N., Sulaiman, S., & Ahmad, K. A. (2020). A review on 619 

water leakage detection method in the water distribution network. Journal of Advanced Research 620 
in Fluid Mechanics and Thermal Sciences, 68(2), 152-163. 621 

Arjovsky, M., & Bottou, L. (2017). Towards principled methods for training generative 622 

adversarial networks. arXiv preprint arXiv:1701.04862. 623 

Brownlee, J. (2019). Generative adversarial networks with python: deep learning generative 624 
models for image synthesis and image translation. Machine Learning Mastery. 625 

Chan, T. K., Chin, C. S., & Zhong, X. (2018). Review of current technologies and proposed 626 
intelligent methodologies for water distributed network leakage detection. IEEE Access, 6, 78846-627 
78867. 628 

Chalapathy, R., & Chawla, S. (2019). Deep learning for anomaly detection: A survey. arXiv 629 

preprint arXiv:1901.03407. 630 

Chen, M. J., & Bovik, A. C. (2011). Fast structural similarity index algorithm. Journal of Real-631 
Time Image Processing, 6(4), 281-287. 632 

Crowl, D. A., & Louvar, J. F. (2001). Chemical process safety: fundamentals with applications. 633 
Pearson Education. 634 

Cugueró-Escofet, P., Blesa, J., Pérez, R., Cuguero-Escofet, M. A., & Sanz, G. (2015). 635 
Assessment of a leak localization algorithm in water networks under demand uncertainty. IFAC-636 
PapersOnLine, 48(21), 226-231. 637 



31 
 

Denton, E. L., Chintala, S., & Fergus, R. (2015). Deep generative image models using a￼ 638 

laplacian pyramid of adversarial networks. Advances in neural information processing systems, 639 
28. 640 

Ezeme, O. M., Mahmoud, Q. H., & Azim, A. (2020). Design and development of AD-CGAN: 641 
Conditional generative adversarial networks for anomaly detection. IEEE Access, 8, 177667-642 
177681. 643 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. 644 

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, 645 

Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27. 646 

Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2021). A review on generative adversarial networks: 647 
Algorithms, theory, and applications. IEEE Transactions on Knowledge and Data Engineering. 648 

Guo, G., Yu, X., Liu, S., Ma, Z., Wu, Y., Xu, X., ... & Wu, X. (2021). Leakage detection in 649 
water distribution systems based on time–frequency convolutional neural network. Journal of 650 
Water Resources Planning and Management, 147(2), 04020101. 651 

Gupta, A., & Kulat, K. D. (2018). A selective literature review on leak management techniques 652 
for water distribution system. Water resources management, 32(10), 3247-3269. 653 

Hu, X., Zhang, H., Ma, D., & Wang, R. (2021). Hierarchical pressure data recovery for pipeline 654 

network via generative adversarial networks. IEEE Transactions on Automation Science and 655 
Engineering. 656 

Isola, P., Zhu, J. Y., Zhou, T., & Efros, A. A. (2017). Image-to-image translation with 657 
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and 658 

pattern recognition (pp. 1125-1134). 659 

Javadiha, M., Blesa, J., Soldevila, A., & Puig, V. (2019, April). Leak localization in water 660 

distribution networks using deep learning. In 2019 6th International Conference on Control, 661 
Decision and Information Technologies (CoDIT) (pp. 1426-1431). IEEE. 662 

Jung, D., Kang, D., Liu, J., & Lansey, K. (2015). Improving the rapidity of responses to pipe 663 

burst in water distribution systems: a comparison of statistical process control methods. Journal 664 
of Hydroinformatics, 17(2), 307-328. 665 

Kammoun, M., Kammoun, A., & Abid, M. (2022). Leak detection methods in water distribution 666 
networks: a comparative survey on artificial intelligence applications. Journal of Pipeline Systems 667 
Engineering and Practice, 13(3), 04022024. 668 

Kang, J., Park, Y. J., Lee, J., Wang, S. H., & Eom, D. S. (2017). Novel leakage detection by 669 

ensemble CNN-SVM and graph-based localization in water distribution systems. IEEE 670 
Transactions on Industrial Electronics, 65(5), 4279-4289. 671 

Kaplan, M. O., & Alptekin, S. E. (2020). An improved BiGAN based approach for anomaly 672 

detection. Procedia Computer Science, 176, 185-194. 673 

Kleijnen, J. P. (2017). Regression and Kriging metamodels with their experimental designs in 674 
simulation: a review. European Journal of Operational Research, 256(1), 1-16. 675 



32 
 

Klise, K., Hart, D., Bynum, M., Hogge, J., Haxton, T., Murray, R., & Burkhardt, J. (2020). 676 

Water Network Tool for Resilience (WNTR). User Manual, Version 0.2. 3 (No. SAND-2020-677 
9301R; EPA/600/R-20/185). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States). 678 

Klise, K.A., Murray, R., Haxton, T. (2018). An overview of the Water Network Tool for 679 
Resilience (WNTR), In Proceedings of the 1st International WDSA/CCWI Joint Conference, 680 
Kingston, Ontario, Canada, July 23-25, 075. 681 

Loureiro, D., Amado, C., Martins, A., Vitorino, D., Mamade, A., & Coelho, S. T. (2016). Water 682 
distribution systems flow monitoring and anomalous event detection: A practical approach. Urban 683 

Water Journal, 13(3), 242-252. 684 

Luo, J., Huang, J., & Li, H. (2021). A case study of conditional deep convolutional generative 685 
adversarial networks in machine fault diagnosis. Journal of Intelligent Manufacturing, 32(2), 407-686 

425. 687 

Menapace, A., Avesani, D., Righetti, M., Bellin, A., & Pisaturo, G. (2018). Uniformly 688 
distributed demand EPANET extension. Water resources management, 32(6), 2165-2180. 689 

Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint 690 
arXiv:1411.1784. 691 

Mounce, S. R., Mounce, R. B., & Boxall, J. B. (2011). Novelty detection for time series data 692 

analysis in water distribution systems using support vector machines. Journal of hydroinformatics, 693 
13(4), 672-686. 694 

Mounce, S. R., Boxall, J. B., & Machell, J. (2010). Development and verification of an online 695 
artificial intelligence system for detection of bursts and other abnormal flows. Journal of Water 696 
Resources Planning and Management, 136(3), 309-318. 697 

Mu, H., Sun, R., Yuan, G., & Wang, Y. (2021). Abnormal Human Behavior Detection in 698 

Videos: A Review. Information Technology and Control, 50(3), 522-545. 699 

Murphy, B. S. (2014, December). PyKrige: development of a kriging toolkit for Python. In 700 
AGU fall meeting abstracts (Vol. 2014, pp. H51K-0753). 701 

Panda, M., & Khilar, P. M. (2015). Distributed self fault diagnosis algorithm for large scale 702 
wireless sensor networks using modified three sigma edit test. Ad Hoc Networks, 25, 170-184. 703 

Pang, G., Shen, C., Cao, L., & Hengel, A. V. D. (2021). Deep learning for anomaly detection: 704 
A review. ACM Computing Surveys (CSUR), 54(2), 1-38. 705 

Perez, R., Sanz, G., Puig, V., Quevedo, J., Escofet, M. A. C., Nejjari, F., ... & Sarrate, R. (2014). 706 
Leak localization in water networks: A model-based methodology using pressure sensors applied 707 

to a real network in Barcelona [applications of control]. IEEE control systems magazine, 34(4), 708 
24-36.Qasim, A. B., Ezhov, I., Shit, S., Schoppe, O., Paetzold, J. C., Sekuboyina, A., ... & Menze, 709 
B. (2020, September). Red-GAN: Attacking class imbalance via conditioned generation. Yet 710 

another medical imaging perspective. In Medical Imaging with Deep Learning (pp. 655-668). 711 
PMLR. 712 

Qiu, Y., Misu, T., & Busso, C. (2022). Driving Anomaly Detection Using Conditional 713 
Generative Adversarial Network. arXiv preprint arXiv:2203.08289. 714 



33 
 

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep 715 

convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. 716 

Rajabi, M. M., Javaran, M. R. H., Bah, A. O., Frey, G., Le Ber, F., Lehmann, F., & Fahs, M. 717 

(2022). Analyzing the efficiency and robustness of deep convolutional neural networks for 718 
modeling natural convection in heterogeneous porous media. International Journal of Heat and 719 
Mass Transfer, 183, 122131. 720 

Romano, M., Kapelan, Z., & Savic, D. (2012). Automated detection of pipe bursts and other 721 
events in water distribution systems. American Society of Civil Engineers. 722 

Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for 723 
biomedical image segmentation. In International Conference on Medical image computing and 724 
computer-assisted intervention (pp. 234-241). Springer, Cham. 725 

Sanz, G., Pérez, R., Kapelan, Z., & Savic, D. (2016, September). Leak detection and localization 726 
through demand components calibration. American Society of Civil Engineers. 727 

Schlegl, T., Seeböck, P., Waldstein, S. M., Langs, G., & Schmidt-Erfurth, U. (2019). f-728 

AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Medical 729 
image analysis, 54, 30-44. 730 

Singh, N. K., & Raza, K. (2021). Medical image generation using generative adversarial 731 

networks: A review. Health informatics: A computational perspective in healthcare, 77-96. 732 

Soldevila, A., Fernandez-Canti, R. M., Blesa, J., Tornil-Sin, S., & Puig, V. (2017). Leak 733 

localization in water distribution networks using Bayesian classifiers. Journal of Process Control, 734 
55, 1-9. 735 

Soldevila, A., Blesa, J., Tornil-Sin, S., Duviella, E., Fernandez-Canti, R. M., & Puig, V. (2016). 736 
Leak localization in water distribution networks using a mixed model-based/data-driven approach. 737 

Control Engineering Practice, 55, 162-173. 738 

Steffelbauer, D., Deuerlein, J., Gilbert, D., Piller, O., & Abraham, E. (2020, September). Dual 739 
Model for Leak Detection and Localization. In CCWI/WDSA 2020. 740 

Sun, C., Parellada, B., Puig, V., & Cembrano, G. (2019). Leak localization in water distribution 741 
networks using pressure and data-driven classifier approach. Water, 12(1), 54. 742 

Tariq, S., Bakhtawar, B., & Zayed, T. (2022). Data-driven application of MEMS-based 743 
accelerometers for leak detection in water distribution networks. Science of The Total 744 
Environment, 809, 151110. 745 

Tijani, I. A., Abdelmageed, S., Fares, A., Fan, K. H., Hu, Z. Y., & Zayed, T. (2022). Improving 746 

the leak detection efficiency in water distribution networks using noise loggers. Science of the 747 
Total Environment, 821, 153530. 748 

Tu, Y., Lin, Y., Wang, J., & Kim, J. U. (2018). Semi-supervised learning with generative 749 

adversarial networks on digital signal modulation classification. Comput. Mater. Continua, 55(2), 750 
243-254. 751 

Vrachimis, S. G., Eliades, D. G., Taormina, R., Kapelan, Z., Ostfeld, A., Liu, S., ... & 752 
Polycarpou, M. M. (2022). Battle of the leakage detection and isolation methods. Journal of Water 753 
Resources Planning and Management, 148(12), 04022068. 754 



34 
 

Vrachimis, S. G., Eliades, D. G., Taormina, R., Ostfeld, A., Kapelan, Z., Liu, S., ... & 755 

Polycarpou, M. M. (2020). BattLeDIM: Battle of the leakage detection and isolation methods. In 756 
Proc., 2nd Int. CCWI/WDSA Joint Conf. 757 

Wan, X., Kuhanestani, P. K., Farmani, R., & Keedwell, E. (2022). Literature Review of Data 758 
Analytics for Leak Detection in Water Distribution Networks: A Focus on Pressure and Flow 759 
Smart Sensors. Journal of Water Resources Planning and Management, 148(10), 03122002. 760 

Wang, X., Guo, G., Liu, S., Wu, Y., Xu, X., & Smith, K. (2020). Burst detection in district 761 

metering areas using deep learning method. Journal of Water Resources Planning and 762 

Management, 146(6), 04020031. 763 

Wang, Y., Yu, B., Wang, L., Zu, C., Lalush, D. S., Lin, W., ... & Zhou, L. (2018). 3D conditional 764 
generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage, 765 

174, 550-562. 766 

Wang, K., Gou, C., Duan, Y., Lin, Y., Zheng, X., & Wang, F. Y. (2017). Generative adversarial 767 

networks: introduction and outlook. IEEE/CAA Journal of Automatica Sinica, 4(4), 588-598. 768 

Wang, Z., Lu, L., & Bovik, A. C. (2004). Video quality assessment based on structural 769 

distortion measurement. Signal processing: Image communication, 19(2), 121-132. 770 

Wu, Y., & Liu, S. (2020). Burst detection by analyzing shape similarity of time series 771 

subsequences in district metering areas. Journal of Water Resources Planning and Management, 772 

146(1), 04019068. 773 

Wu, Y., & Liu, S. (2017). A review of data-driven approaches for burst detection in water 774 

distribution systems. Urban Water Journal, 14(9), 972-983. 775 

Wu, Y., Liu, S., Wu, X., Liu, Y., & Guan, Y. (2016). Burst detection in district metering areas 776 

using a data driven clustering algorithm. Water research, 100, 28-37. 777 

Wunderlich, A., & Sklar, J. (2022). Learning Noise with Generative Adversarial Networks: 778 
Explorations with Classical Random Process Models. arXiv preprint arXiv:2207.01110. 779 

Xia, X., Pan, X., Li, N., He, X., Ma, L., Zhang, X., & Ding, N. (2022). GAN-based anomaly 780 

detection: A review. Neurocomputing. 781 

Xu, Z., Ying, Z., Li, Y., He, B., & Chen, Y. (2020). Pressure prediction and abnormal working 782 
conditions detection of water supply network based on LSTM. Water Supply, 20(3), 963-974. 783 

Ye, G., & Fenner, R. A. (2011). Kalman filtering of hydraulic measurements for burst detection 784 
in water distribution systems. Journal of pipeline systems engineering and practice, 2(1), 14-22. 785 

Ye, G., & Fenner, R. A. (2014). Weighted least squares with expectation-maximization 786 
algorithm for burst detection in UK water distribution systems. Journal of Water Resources 787 

Planning and Management, 140(4), 417-424. 788 

Zamora, Y. M., Hernández-Callejo, L., Duque-Pérez, O., & Alonso-Gómez, V. (2021). 789 
Diagnosis of Broken Bars in Wind Turbine Squirrel Cage Induction Generator: Approach Based 790 
on Current Signal and Generative Adversarial Networks. Applied Sciences, 11(15), 6942. 791 



35 
 

Zhang, H., Hu, X., Ma, D., Wang, R., & Xie, X. (2020). Insufficient data generative model for 792 

pipeline network leak detection using generative adversarial networks. IEEE Transactions on 793 
Cybernetics. 794 

Zhang, Y. Y., Shen, C. M., Feng, H., Fletcher, P. T., & Zhang, G. X. (2019). Generative 795 
adversarial networks with joint distribution moment matching. Journal of the Operations Research 796 
Society of China, 7(4), 579-597. 797 

Zheng, M., Li, T., Zhu, R., Tang, Y., Tang, M., Lin, L., & Ma, Z. (2020). Conditional 798 
Wasserstein generative adversarial network-gradient penalty-based approach to alleviating 799 

imbalanced data classification. Information Sciences, 512, 1009-1023. 800 

Zhou, X., Tang, Z., Xu, W., Meng, F., Chu, X., Xin, K., & Fu, G. (2019). Deep learning 801 
identifies accurate burst locations in water distribution networks. Water research, 166, 115058. 802 


