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ABSTRACT 12 

With the availability of real-time monitoring data, leakage detection for water distribution 13 

networks (WDNs) based on data-driven methods has received increasing attention in recent 14 

years. Accurate forecasts based on historical data could provide valuable information about the 15 

condition of the WDN, and abnormal events could be detected if the observed behaviour is 16 

substantially different from the typical behaviour. Therefore, an accurate forecast model is 17 

essential for prediction-based leakage detection methods. While most data-driven methods 18 

focus on burst detection, it is also important to develop an early warning system for gradual 19 

leakage events as they will cause more water loss due to a longer time to awareness. Therefore, 20 

a real-time early leakage detection technique based on a multistep forecasting strategy is 21 

proposed in this study. A multistep flow forecasting model is introduced to capture the diurnal, 22 

weekly and seasonal patterns in the historical data. The generated multistep forecasting is 23 

further compared with the observed measurements, and residuals are calculated based on cosine 24 

distance. Based on the analysis of the residual vector, the gradual leakage event could be 25 
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detected in a timely manner. The proposed method is applied to the L-town datasets containing 26 

one year of real-life flow monitoring data. The results prove the superiority of the proposed 27 

multistep prediction model-based method over the traditional one-step prediction model for 28 

gradual leakage detection. In addition, the results show that the proposed methodology can 29 

detect small gradual leakage events within just a few days while generating no false alarms. 30 

The method is further applied to a real-life network and showed consistent results. 31 

INTRODUCTION 32 

Pipeline leakage is likely to have several negative influences on water distribution networks 33 

(WDNs): i) enormous economic loss (Wan et al. 2022a); ii) wasted energy consumption from 34 

pumping  (Puust et al. 2010) ; iii) water quality contamination by introducing infection during 35 

hydraulic transients (Colombo et al. 2009). Therefore the problem of detecting and resolving 36 

leaks is of great concern to water companies and authorities. The international water 37 

association (IWA) has set four leakage management strategies to reduce real losses from 38 

WDNs (Farley 2003), namely: 1) active leakage control (ALC); 2) pressure management; 3) 39 

speed and quality of repairs; 4) Targeted renewal of infrastructure. Active leakage control plays 40 

a vital role in proactive leakage management, as it involves regular surveys and continuous 41 

monitoring of the distribution system partitioned into district metered areas (DMAs). One of 42 

the benefits of DMAs is that flows and pressures can be monitored in DMAs, and unreported 43 

bursts and leaks could be detected. The quicker the water utility can analyse the flow and 44 

pressure data of a DMA, the faster bursts or leaks can be located, and the volume of water lost 45 

can be reduced (Charalambous et al. 2014). 46 

Leakage detection for WDN has become a growing field of interest that plays a vital role in 47 

water asset management. Various methods have been explored and proposed for leakage 48 

detection in WDNs. Zaman et al. (2020) provide a comprehensive review of leakage detection 49 

strategies for pressurised pipeline systems. These methods can be categorised into hardware-50 



based methods and software-based methods. Since most hardware-based methods require 51 

technicians to interpret the results and have higher installation costs than software-based 52 

methods, the hardware-based methods are mainly used for regular inspections rather than 53 

continuous monitoring (Romano et al. 2012). However, software-based methods can overcome 54 

the aforementioned inability to realise the long-term real-time monitoring of a large-scale water 55 

distribution network (Wan et al., 2022a). 56 

In recent years, data-driven methods have received considerable attention due to the 57 

development of wireless sensor networks (WSN) (Moridi et al. 2018). The application of WSN 58 

for water distribution networks allows continuous measuring and collecting of hydraulic 59 

measurements, and the representation of the conditions in the distribution system can be 60 

continuously updated. The update frequency is depended on the adopted method. For the 61 

hydraulic model-based leak detection method, the update frequency is usually depending on 62 

the organization’s need and they will adjust the model as necessary, since hydraulic model 63 

calibration is one of the most difficult and most important parts of modelling (Zimoch and 64 

Bartkiewicz 2018).  In the case of the availability of an extensive amount of monitoring data 65 

from the real-life network, data-driven methods have provided an alternative solution for leak 66 

detection in a cost-effective way without the need for a well-calibrated hydraulic model (Fu et 67 

al. 2022). Based on the analysis of pressure, flow, consumer demand or acoustic data collected 68 

from supervisory control and data acquisition (SCADA) systems, data-driven methods can 69 

extract useful information from the ample amount of monitoring data that are too numerous 70 

and complicated for humans to handle. 71 

A popular approach to detect leaks based on pressure or flow monitoring data is based on 72 

prediction or regression models (Wan et al., 2022a). By mining the historical data collected 73 

under a no-leak situation, the prediction models can learn the historical data pattern or data 74 

variation. The well-trained model will be used to predict future pressure or flow values, and 75 



the prediction value will be regarded as a reference and compared with the observed 76 

measurements. If the prediction value is substantially different from observed measurements, 77 

there is likely an abnormal situation in the system, and inspections may need to be conducted. 78 

Ye and Fenner (2011) estimated the normal flow and pressure data based on the Kalman filter, 79 

and detected burst events based on the difference between the estimated flow and the measured 80 

flow. Mounce and Machell (2006) proposed a leakage detection system based on artificial 81 

neural networks and Mounce et al. (2011) used support vector regression for novelty detection 82 

on flow and pressure data for a WDN. Wang et al. (2020) applied the long short-term memory 83 

(LSTM) model to make more accurate flow data predictions and achieve higher burst detection 84 

probability. 85 

All previous studies are based on the one-step prediction strategy, which means that they 86 

only focus on making the inference for the system condition of the next time slot. If a burst 87 

event happens in the WDN, a significant difference between the measurement value and the 88 

predicted value will be observed, and the residual of the prediction model will exceed certain 89 

threshold values. The one-step prediction strategy is effective for burst detection. However, 90 

this strategy is insufficient for gradual leakage detection, where the events gradually develop 91 

from small seeps or weeps to noticeable leak events, unlike burst events that are characterised 92 

by sudden changes in a short period. As shown in Fig. 1, the gradual leakage events could last 93 

for weeks or even months, and the slowly changing pattern makes it more challenging before 94 

detection. The traditional one-step forecasting strategy might not work for gradual leakage 95 

detection because it cannot adapt to the slowly changing pattern of gradual leakage and will 96 

not generate a large residual, which is essential for leakage detection.  97 

There are limited studies that consider gradual leakage events during leak detection, and 98 

aforementioned studies are all focused on burst detection. BattleDIM (Vrachimis et al. 2020) 99 

has provided a good assessment of leakage detection methods for gradual leakage events, burst 100 



events, background leakages and simultaneous leakages. Among the methods proposed for 101 

BattleDIM, Most of them  detected leakages based on the results of hydraulic model calibration. 102 

Steffelbauer et al. (2022) proposed a so-called dual approach that use additional virtual valves 103 

and reservoirs to translate pressure head drops to leakage outflows. Ma et al. (2022) and Huang 104 

et al. (2022) detected leakages based on the analysis of the difference between measurements 105 

and calibrated values. The accuracy of the calibrated hydraulic model plays an important role 106 

in these model-based methods. However, well-calibrated hydraulic models are usually not 107 

widespread in water companies (Wan et al., 2022a). Other candidates have proposed data-108 

driven leakage detection methods. Marzola et al. (2022) detected leakages by visually 109 

analysing the monitoring data. Li et al. (2022) identified burst and gradual leakage events based 110 

on Seasonal and Trend decomposition using Loess (STL decomposition) and the k-means 111 

clustering method. The flow and pressure data were firstly decomposed into three components 112 

by STL, and then the gradual leakage events were identified by clustering the trend components 113 

based on k-means clustering. However, the STL decomposition is an offline method and batch 114 

algorithm, which works on the entire dataset and do not have online mechanism and cannot 115 

work on sequential data (Mishra et al. 2022), which means that post event information has been 116 

used to identify the leak. Wan et al. (2022b) proposed a method for gradual leakage detection 117 

based on statistical analysis. The flow data was transformed into normalised scores and then 118 

analysed by exponential weighted moving average (EWMA) to detect gradual leakages. 119 

To address the aforementioned issue, this paper proposed a real-time gradual leakage 120 

detection method for WDSs based on a multistep forecasting strategy. A window of data has 121 

been predicted at once to include more information so that the trend variation caused by gradual 122 

leakage events could be captured. Multistep forecasting is a challenging extension of traditional 123 

one-step forecasting. When the prediction horizon is extended from a single point to a time 124 

window, various problems will be introduced to the forecasting, such as error accumulation, 125 



reduced accuracy, and increased uncertainty (Ben Taieb et al. 2012). Artificial neural networks 126 

(ANN), which provide direct support for multistep forecasting, are adopted in this paper for 127 

predicting multiple steps forward.  128 

In the proposed methodology, the observed flow data is predicted in the long-term using the 129 

ANN model first. Next, the comparison between the observed vector and the predicted vector 130 

is calculated based on cosine distance. Finally, the EWMA is used to smooth residual vectors 131 

to reduce the influence of noises and uncertainties. A threshold is set for the smoothed residual 132 

vectors and raises alarms during leakage events. The proposed method is applied to a case study 133 

called L-Town which contained one year of real-life flow monitoring data in an online manner. 134 

The results demonstrate the applicability of the proposed method for gradual leakage detection 135 

and proves its effectiveness by detecting small gradual leakage events within just a few days 136 

while generating no false alarms. The proposed method doesn’t require information such as 137 

smart meter readings and hydraulic models that are usually not widespread in water companies. 138 

METHODOLOGY 139 

The traditional one-step prediction models accurately detect burst events characterised by 140 

abrupt changes in monitoring datasets (decreasing in pressure and increasing in flow) but miss 141 

the scenario that some leakage events gradually develop over time. This paper proposes a novel 142 

methodology for detecting gradual leakage events using an ANN-based multistep forecasting 143 

approach to consider a window of data simultaneously. A residual value is generated at each 144 

timestamp to represent the distance between the predicted time window and the observed time 145 

window. Based on the analyses of the generated residual vector, gradual leakage events could 146 

be detected. Fig. 2 shows the flowchart of the proposed gradual leakage detection method. 147 

There are two major steps in the proposed algorithm, namely the prediction stage and the 148 

classification stage, and the steps of the proposed problem-solution algorithm are listed as 149 

follows: 150 



Step 1. Collect real-time monitoring data from sites; 151 

Step 2. Specify the topology of the ANN model based on grid search, and train the multistep 152 

forecasting model with months of leak-free historical data; 153 

Step 3. Compute the difference between the output vector and the observed measurements 154 

based on cosine distance; 155 

Step 4. Compute the EWMA score of the residual vector; 156 

Step 5. Compute the threshold value in leakage-free historical data; 157 

Step 6. Detect if the system contains any leakage events based on the comparison of the 158 

threshold value and the EWMA score. 159 

Multistep Forecasting Strategy 160 

A multistep ahead time series forecasting task means predicting the next 𝐻  value 161 

[𝑥𝑁+1, 𝑥𝑁+2, … , 𝑥𝑁+𝐻]  based on a historical time series [𝑥1, 𝑥2, … , 𝑥𝑁] composed of 𝑁 162 

observations (Ben Taieb et al. 2012). This is a challenging task because of the potential for 163 

error accumulation. There are several ways of carrying out the multistep prediction, and three 164 

well-known approaches (Andrawis et al. 2011) are: the recursive approach, the direct approach, 165 

and the multi-input multi-output (MIMO) approach. The mechanism of the three approaches 166 

for multistep prediction is shown in Fig. 3. The grey line in Fig. 3 represents the historical data 167 

used for predicting future data, and the blue lines and dots represent the predicted data. 168 

The recursive approach makes predictions based on one-step-ahead prediction. The 169 

predicted values will be used as input variables for the next prediction. To forecast h steps 170 

ahead, it takes the preceding output as input to forecast the next value and continues in this 171 

manner. Suppose I is the length of the input, and Q is the length of the output. The input 172 

sequence is represented as 𝐗 = {𝑥1, 𝑥2, … , 𝑥𝐼}, the predicted output sequence is represented as 173 

𝐗̂ = {𝑥̂𝐼+1, 𝑥̂𝐼+2, … , 𝑥̂𝐼+𝑂} , and 𝑓(𝑥)  represents the forecasting model. Eq. (1) shows the 174 

process of the recursive strategy. 175 



𝑥̂𝐼+ℎ = {
𝑓(𝑥1, 𝑥2, … , 𝑥𝐼)                                                   ℎ = 1
𝑓(𝑥ℎ, 𝑥ℎ+1, … , 𝑥𝐼, 𝑥̂𝐼+1, … , 𝑥̂𝐼+ℎ−1 )      1 < ℎ ≤ 𝐼 
𝑓(𝑥̂ℎ, 𝑥̂ℎ+1, … , 𝑥̂𝐼+ℎ−1 )                            𝐼 < ℎ ≤ 𝑄

                              (1) 176 

Due to its iterative nature, the output error will accumulate as the prediction moves forward 177 

(Li et al. 2019).  178 

The direct strategy uses the same features to predict different target variables. Multiple 179 

models are trained with different targets, one for each forecast step. Eq. (2) shows the process 180 

of the direct strategy. 181 

𝑥̂𝐼+ℎ = 𝑓ℎ(𝑥1, 𝑥2, … , 𝑥𝐼)                                                          (2) 182 

The direct strategy is also based on a one-step forecasting model, but uses different models 183 

to forecast each horizon independently, where each model is trained separately (Sahoo et al. 184 

2020). The number of models is equivalent to the length of the output vector, which means that 185 

each added predictive time step is an extra computational demand and maintenance burden, 186 

especially when the number of output variables is not trivial. Moreover, this approach considers 187 

each prediction horizon independently. Therefore, the dependencies and correlations between 188 

the predictions are ignored and cannot be considered during prediction.  189 

In contrast, the MIMO approach learns the mapping function between multiple inputs and 190 

multiple outputs directly. Eq. (3) shows the process of the direct strategy. 191 

{𝑥̂𝐼+1, 𝑥̂𝐼+2, … , 𝑥̂𝐼+𝑂} = 𝑓(𝑥1, 𝑥2, … , 𝑥𝐼)                                              (3) 192 

The MIMO model's performance depends on the model's capacity. MIMO doesn't suffer 193 

from error accumulation. In addition, MIMO outputs all variables at once, which makes it more 194 

computationally efficient than direct strategy. The comparative studies (Ben Taieb et al., 2012; 195 

Li et al., 2019) proved that the MIMO approach gives the best performance among the three 196 

approaches mentioned before. Therefore, the MIMO approach is adopted in this study.  197 

Artificial Neural Network  198 



Classical time series forecasting methods, such as autoregressive moving average (ARMA) 199 

(Kadri et al. 2016), autoregressive integrated moving average (ARIMA) (Yaacob et al. 2010), 200 

generalized autoregressive conditional heteroscedasticity (GARCH) (Maharaj et al. 2019) have 201 

several limitations that limit their applications. For example, classical methods such as ARIMA 202 

assume a linear relationship and do not consider more complex joint distributions (Jason 2018). 203 

Most importantly, they are focused on one-step prediction and don't support multiple outputs 204 

directly, which makes them not suitable for MIMO long-term forecasting. However, ANN 205 

could provide direct support for multivariate forecasting by simply increasing the number of 206 

neurons in the output layer. Moreover, based on the comparison studies conducted by many 207 

researchers (De Nadai and Van Someren 2015; Siami-Namini et al. 2019), ANN models 208 

showed better performance than classical statistical methods. Moreover, the inference time of 209 

machine learning methods is much faster than some commonly used statistical methods such 210 

as ARIMA (Braei and Wagner 2020). Inference time measures the time a model needs to 211 

generate outputs, which is important for real-time monitoring. Therefore, ANN has been widely 212 

applied in financial marketing (Tealab et al. 2017), energy management (Ahmad et al. 2014), 213 

etc. A typical and powerful neural network, multilayer perceptron (MLP), is used in this study 214 

to approximate the mapping function to link input variables with output variables.  215 

An ANN can be regarded as a network of "neurons", which are layered and connected. As 216 

shown in Fig. 4(a), the simplest network contains no hidden layers and can process only linearly 217 

separable functions. The nodes, namely neurons, are linked through connections. The weight 218 

of each connection is adjusted iteratively using a "learning algorithm" that minimises a "cost 219 

function" such as mean squared error (MSE). Once we add hidden layers between the input 220 

layer and the output layer, the neural network becomes nonlinear, as shown in Fig. 4(b). The 221 

numbers of hidden layers, connections, and neurons of an ANN depend on the data's 222 

complexity (Grekousis 2019). The more complex the data, the more likely the ANN will need 223 



additional hidden layers and neurons. Due to its flexibility, the ANN can be configured to 224 

support a defined number of inputs and outputs in the mapping function, as shown in Fig. 4(c). 225 

The mathematical relationship between inputs and outputs can be expressed as: 226 

𝒀𝑗 = 𝑓(𝜃𝑗 + ∑ 𝑤𝑗𝑖𝑿𝑖
𝑛
𝑖=1 )                                                       (4) 227 

where 𝑿𝑖 is the ith input variable; 𝒀𝑗  is the jth output variable; 𝜃𝑗  is the bias in the hidden layer; 228 

n is the number of neurons in the hidden layer; 𝑤𝑗𝑖 is the connection weight; 𝑓 is the transfer 229 

function.  230 

The MLP used in this paper has been designed to make multistep predictions for flow 231 

monitoring data. The topology of the MLP was defined based on the grid search strategy. The 232 

algorithm searched in the grid of parameters and across all points to get the optimal 233 

combination. The optimal combination of hyperparameters was selected based on the 234 

performance metrics using cross-validation (Yasin et al. 2016).  235 

Residual Comparison 236 

The traditional residual vector generated by a one-step prediction model can be expressed 237 

as: 238 

𝑟𝑡 = 𝑥𝑡 − 𝑥̂𝑡                                                             (5) 239 

where 𝑥𝑡 is the observed value at time t; 𝑥̂𝑡 is the predicted value at time t; 𝑟𝑡 is the residual 240 

at time t.  241 

It describes the difference between two single values. The detection of leakage events using 242 

the residual calculated in Eq. (5) is based on the assumption that the difference between the 243 

predicted value and observed value during the leakage scenario will be substantially larger than 244 

those in the normal situation. Therefore, it is useful when one needs to identify the sudden, 245 

instantaneous behaviour in the system, which refers to burst events. However, it could be 246 

challenging for gradual leakage detection, because there is no memory contained in the residual. 247 



Furthermore, gradual leakage events don't generate sudden outflow in WDNs, which makes it 248 

more difficult to be detected based on Eq. (5). 249 

Therefore, in this paper, a memory-contained residual is generated based on the multistep 250 

prediction model. The residual represents the difference between the predicted time window 251 

and the observed time window. There are three commonly-used approaches to describe the 252 

distance of two time series: Manhattan distance, Euclidean distance and cosine distance.  253 

𝑑𝑚𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛(𝑿, 𝑿̂) = ‖𝑿 −  𝑿̂‖
1

= ∑ |𝑥𝑖 − 𝑥̂𝑖|𝑙
𝑖=1                                     (6) 254 

𝑑𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑿, 𝑿̂) = ‖𝑿 −  𝑿̂‖
2

= √∑ (𝑥𝑖 − 𝑥̂𝑖)2𝑙
𝑖=1                                  (7) 255 

𝑑𝑐𝑜𝑠𝑖𝑛𝑒(𝑿, 𝑿̂) = 1 − 𝑿∙𝑿̂
‖𝑿‖‖𝑿̂‖

= 1 − ∑ 𝑥𝑖𝑥̂𝑖
𝑙
𝑖=1

√∑ 𝑥𝑖
2𝑙

𝑖=1 √∑ 𝑥̂𝑖
2𝑙

𝑖=1

                                  (8) 256 

where 𝑿 and 𝑿̂ represent the observed data vector and the predicted data vector, respectively; 257 

l represents the length of the output vector.  258 

Manhattan distance represents the sum of the absolute difference in a time window. 259 

Euclidean distance measures the distance between two vectors. Cosine distance is a metric to 260 

evaluate the angular distance between two vectors and is the approach used here. The 261 

superiority of cosine distance will be proved in the results section. 262 

EWMA-Based Event Detection 263 

At each time step, a residual 𝑟𝑡 calculated based on Eq. (8) is obtained and appended to a 264 

one-dimensional vector of residuals: 265 

 𝐑 = [𝑟𝑡−𝑙, 𝑟𝑡−𝑙+1, … , 𝑟𝑡]                                                     (9) 266 

where l is the number of historical data that are used to set up the threshold and evaluate current 267 

residuals.  268 

In order to further reduce the probability of false alarms, the vector of residuals is then 269 

smoothed to dampen spikes in residuals that frequently occur due to noises in the data 270 



(Hundman et al. 2018). Exponentially-weighted moving average (EWMA) is used to calculate 271 

the smoothed residuals. EWMA exponentially weighted the average of prior data as: 272 

𝑟𝑖
𝑠 = 𝜆𝑟𝑖 + (1 − 𝜆)𝑟𝑖−1

𝑠                                                   (10) 273 

where 𝑟𝑖
𝑠 is the smoothed value of 𝑟𝑖, and 𝑟0

𝑠 = 𝑟0; 𝜆 is a weighting factor and 0 < 𝜆 < 1. 274 

Therefore, a smoothed residual vector 𝑹𝑠 = [𝑟𝑡−ℎ
𝑠 , 𝑟𝑡−ℎ+1

𝑠 , … , 𝑟𝑡
𝑠] is obtained.  275 

To determine whether there is a leakage event happened in the distribution system, a 276 

threshold is set to classify the normal situation and the abnormal situation. The threshold 𝜖 is 277 

determined based on the analysis of historical residual vectors, and calculated as: 278 

𝜖 = 𝜇(𝑟𝑠) + 𝑧𝜎(𝑟𝑠)                                                     (11) 279 

where 𝜇(∙) is the mean value of a time series; 𝜎(∙) is the standard deviation of a time series. 280 

Values for z depend on the context, the rule of thumb of z is 2, 2.56, 3, 3.5 etc. (Wang et al. 281 

2020). The most common rule used for z is 3, which is equivalent to a false alarm rate of 0.27% 282 

(Harrou et al. 2020), and this value is used in this paper to set the threshold in an unsupervised 283 

way. If users could have information about existing leakage event, they could tune the threshold 284 

based on the historical event.  285 

Performance Evaluation 286 

Different metrics are used to evaluate the accuracy and effectiveness of the two stages (the 287 

prediction stage and the classification stage) of the proposed gradual leakage event detection 288 

method.  289 

For the prediction stage, mean absolute percentage error (MAPE), root mean squared error 290 

(RMSE), and the coefficient of determination (𝑅2) are used to measure the prediction accuracy 291 

of the prediction model. MAPE calculates the mean of the ratio of absolute differences between 292 

the actual values and the predictions. RMSE represents a quadratic score of the average 293 

magnitude of the absolute differences. 𝑅2 explains the level of variability of the predicted value 294 

can be caused by the actual value. The calculation of MAPE, RMSE and 𝑅2 are represented as 295 



MAPE = 1
𝑛

∑ |𝑥𝑡−𝑥̂𝑡
𝑥𝑡

|𝑛
𝑡=1                                                (12) 296 

RMSE = √1
𝑛

∑ (𝑥𝑡 − 𝑥̂𝑡)2𝑛
𝑡=1                                            (13) 297 

𝑅2 = 𝑛 ∑ 𝑥𝑦−(∑ 𝑥)(∑ 𝑦)
√[𝑛 ∑ 𝑥2−(∑ 𝑥)2][𝑛 ∑ 𝑦2−(𝑦)2]

                                        (14) 298 

For the classification stage, true positive rate (TPR), false positive rate (FPR), detection 299 

accuracy (DA), and detection time (DT) are three metrics used to evaluate the accuracy of event 300 

detection. The definition of TPR and FPR are: 301 

TPR = 𝑇𝑃
𝑇𝑃+𝐹𝑁

                                                    (15) 302 

FPR = 𝐹𝑃
𝐹𝑃+𝑇𝑁

                                                    (16) 303 

where TP is true positive, which means the number of data points during a leakage event that 304 

have been flagged as abnormal correctly; TN is true negative, which means the number of data 305 

points during a leakage event that did not trigger the alarm; FP is false positive, which means 306 

the number of data points during normal situations that triggered the alarm wrongly; FN is false 307 

negative, which means the number of data points during normal situations that did not raise the 308 

alarm correctly. TPR reflects how much of the data during the leakage event has been identified 309 

correctly, and FPR reflects the rate of false alarms during the detection process. 310 

DA represents how many leakage events among all leakage events have been detected, 311 

calculated as: 312 

DA = 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑙𝑒𝑎𝑘𝑎𝑔𝑒 𝑒𝑣𝑒𝑛𝑡𝑠 
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑙𝑒 𝑙𝑒𝑎𝑘𝑎𝑔𝑒 𝑒𝑣𝑒𝑛𝑡𝑠

                               (17) 313 

When an alarm is raised during a leakage event, the leakage event could be regarded as 314 

correctly identified. In order to further evaluate the accuracy of the detection methodology, the 315 

DT is used to evaluate the effectiveness of a leakage detection method, especially for gradual 316 

leakage detection. As gradual leakage events will always become apparent, provided enough 317 

time has passed for the rate of leakage to build up. The detection time is defined as the elapsed 318 



time from the start of a leakage event to the time when the event is first detected. Detection 319 

time reflects how quickly the leakage detection algorithm responds, and the volume of water 320 

saved.  321 

SYNTHETIC CASE STUDY 322 

Description of Study Area 323 

The case study L-Town water distribution network was provided by the organizers of 324 

BattLeDIM (Vrachimis et al. 2020). The graphical representation of L-Town is represented in 325 

Fig. 4. This hydraulic model is based on a real WDN located in Cyprus with around 10,000 326 

consumers. This L-Town WDN consists of 905 pipes with a total length of 42.6 km, and 782 327 

junctions. Two reservoirs are responsible for providing clean water with a pressure head of at 328 

least 20m to all water consumers. As shown in Fig. 4, L-Town can be divided into three distinct 329 

hydraulic areas: (1) Area A, which is the main area and receives water from two reservoirs; (2) 330 

Area B, located downstream of Area A, a pressure reduction valve (PRV) has been installed to 331 

reduce the water pressure in Area B; (3) Area C, located in an area with higher elevation, and 332 

receiving water from a water tank located between Area A and Area C.  333 

There are three types of consumers in L-Town, which are residential, commercial and 334 

industrial. All consumers' behaviour patterns are well-modelled in the hydraulic model with a 335 

sampling rate of 5 minutes, allowing researchers to have a more reliable and realistic tool for 336 

generating monitoring data and testing the ability of leakage detection methods. In this paper, 337 

only flow data at the exits of water resources are recorded. As represented by the red triangle 338 

in Fig. 5, three flow sensors are assumed to be equipped in the WDN. Two flow sensors are 339 

located at the exits of two reservoirs, and one flow sensor is located at the exit of the water 340 

tank.  341 

Dataset Generation 342 

EPANET simulation 343 



There are two types of hydraulic analysis methods: demand-driven analysis (DDA) and 344 

pressure-driven analysis (PDA). DDA assumes that nodal demands are known and satisfied 345 

regardless of the available pressure at nodes. In comparison, PDA prioritises the pressure 346 

requirements at nodes than demand requirements. It is known that PDA could provide more 347 

realistic representation of the pressure-leakage relationship (Baek et al. 2010). Thus, this paper 348 

adopts PDA as the approach to generating synthetic flow data.  349 

The original BattleDIM dataset contains lots of simultaneous leakages. For data-driven 350 

leakage detection methods, the situation of simultaneous leakages is still a difficulty. Most of 351 

the time, the existence of multiple leakages is still based on expert annotation (Daniel et al. 352 

2022; Marzola et al. 2022). Therefore, the original dataset has been changed to suit the single 353 

leakage assumption of the proposed method. The “real” hydraulic model published by 354 

Vrachimis et al. (2022) is used in this paper to generate a monitoring dataset to maintain the 355 

uncertainties caused by time-varying consumer demand patterns.  356 

Simulation of gradual leakages 357 

Water network tool for resilience (WNTR) (Klise et al. 2017) is used in this paper to 358 

simulate gradual leakage events in the L-Town. Leakages are modelled by splitting the pipe 359 

into two sections and adding a junction, and additional outflow is added to the leak junction. 360 

For leak scenario i, the flow rate is assumed to follow the orifice outflow formula (Zhou et al. 361 

2019) as: 362 

𝑞𝑙𝑒𝑎𝑘,𝑖 = 𝐶𝑖𝐴𝑖√2𝑔ℎ𝑖                                                    (18) 363 

where 𝑞𝑙𝑒𝑎𝑘,𝑖 is the leak flow rate; 𝐶𝑖 is the discharge coefficient with default value of 0.75 364 

(assuming turbulent flow) (Lambert 2001); ℎ𝑖 is the head; 𝑔 is the acceleration of gravity; and 365 

𝐴𝑖 is the area of the hole.  366 

The leakage area 𝐴𝑖 is assumed to increase linearly as the time increases: 367 

𝐴𝑖(𝑡) = 𝐴𝑖,𝑚𝑎𝑥
𝑇𝑖

𝑡                                                       (19) 368 



where 𝑇𝑖 is the growing duration that the ith gradual leakage needed to reach its maximum 369 

value 𝐴𝑖,𝑚𝑎𝑥.  370 

Leakage events with different growth rates are simulated, and 𝐴𝑖,𝑚𝑎𝑥/𝑇𝑖  determines the 371 

growth rate of a leakage event. To model different growth rates, each gradual leakage event 372 

has the same growing duration T, which is 30 days, but with different maximum leak flow rates 373 

controlled by the maximum leak area in the pipeline. The maximum leak flow ranges from 374 

around 5 𝑚3/ℎ to around 60 𝑚3/ℎ. It should be noted that the maximum leak flow is used to 375 

control the daily leak increasing rate. The larger the daily leak increasing rate, the easier the 376 

leak could be detected. Therefore, it is important to evaluate when the algorithm raises the 377 

alarm and how early could the leakage be detected.  378 

As shown in Table 1, six different leaking levels are modelled in the dataset, based on the 379 

percentage of the increase in the daily leakage rate to the average daily water flow rate. Six 380 

leak levels corresponding to six different daily leak increasing rates, ranged from 0.1-1% of 381 

daily average demand. From Table 1, it can be seen that even though the leakage flow rate of 382 

level 6 has reached over 47 𝑚3/ℎ after 30 days, the daily increase of leakage flow rate is only 383 

1.57 𝑚3/ℎ, which only accounts for 1% of the average daily water demand. This minor flow 384 

rate increase could be easily regarded as a normal increase in water consumption. As the 385 

leakage rates become smaller, detecting those leakages will be more challenging.  386 

As shown in Fig. 6, a total number of 600 leakage events are modelled with different leak 387 

levels. Each leaking level contained 100 sets of monitoring data with different leak magnitudes 388 

and locations, and the locations of leakages were randomly selected in the network. Each 389 

dataset contained a half-year of monitoring data, from 1 January to 1 July, with a sampling rate 390 

of 5 minutes. The leakage happened from 15 April to 15 May, and gradually increased from 0 391 

to its designated maximum leakage outflow. Fig. 7 shows the plot of the flow monitoring 392 

datasets when the system contained no leakage, a level 1 leakage, and a level 6 leakage. The 393 



grey area shows the time window that contained a leakage event. It could be seen that the 394 

gradual leakage event does not show sudden spikes in the data. The dataset with level 1 leakage 395 

almost shows no difference from the dataset with no leakage.  396 

Uncertainties of sensor accuracy 397 

It should be noted that the “real” hydraulic model here is only used to generate monitoring 398 

dataset. Since the proposed method is a data-driven method, which means that the detection is 399 

purely based on data mining, the uncertainties of pipe roughness or pipe diameters do not have 400 

major influence the detection results. The uncertainties of pump scheduling, demand 401 

uncertainties have been considered during model construction. However, the uncertainties 402 

related to the sensor accuracy should be considered. Sensor uncertainties refer to the errors or 403 

deviations that exist in the measurements taken by a sensor. It is important to consider sensor 404 

uncertainties when using the simulated sensor data. The accuracy of a sensor is usually 405 

specified by the manufacturer, and modern flow meters typically publish error of ±2% . 406 

Therefore, after collecting the monitoring data generated from hydraulic model, a random 407 

number which follows a uniform distribution of ±2% is added to each datapoint.  408 

Multistep Prediction VS Single-Step Prediction 409 

In this section, the reason why traditional single-step prediction cannot be used to detect 410 

gradual leakage events will be demonstrated. Two ANN models are developed in this section, 411 

and the hyperparameters of both models are chosen based on the results of the grid-search 412 

method.   413 

Based on the result of the grid search, the MIMO ANN model consists of: (1) input of 7 414 

days of monitoring data, which is 7 × 288 data points as the sampling interval is 5 minutes, (2) 415 

two hidden layers of size 350, 300, (3) output of one day of data, which corresponds to 288 416 

data points. The activation function of the first and second layers and between hidden layers 417 

was rectified linear unit (ReLU), and the activation function of the hidden layer to the output 418 



layer was linear. The learning rate was set as 0.01, and the batch size was 256. The parameters 419 

of the one-step-prediction ANN model are mostly the same as the MIMO ANN model, except 420 

that the one-step-prediction ANN model only contained a single hidden layer with two neurons. 421 

It should be noted that one can always use a model with stable performance instead of 422 

restricting it to this specific topology. The first three months of flow monitoring data are used 423 

to train ANN models, and the last three months of data are used as test data. 424 

Fig. 8 shows the residual vectors generated by the one-step forecasting model and the 425 

multistep forecasting model on datasets that contain different levels of leakage. It can be 426 

observed that the residual generated by the one-step forecasting model can barely reveal the 427 

existence of any leakage events. This is because of the slowly-developing nature of the gradual 428 

leakage events. Furthermore, the one-step forecasting model evaluates a single data point at 429 

each time, with no memory contained in the detection process. Thus, the one-step forecasting 430 

model will regard the slowly-growing trend of leakage as a normal consumer demand 431 

increasing and adapt to this trend gradually.  432 

In contrast, multistep forecasting generates large residuals during leakage duration that are 433 

essential for detection. The multistep model incorporates the information within a day of a time 434 

window, and the residual clearly shows the existence of most of the leakage events. As the 435 

growth rate of leakage becomes faster, it becomes clearer to detection algorithm. The 436 

comparison clearly shows the superiority of the multistep forecasting strategy for gradual 437 

leakage event detection. 438 

Prediction Performance Evaluation 439 

There are three different forecasting approaches mentioned in the methodology, which are 440 

recursive, direct, and MIMO. The prediction horizon designated in this paper for leakage 441 

detection is a day of flow demand, which means the model will predict 288 data points at once. 442 

For the direct approach, it is very computationally demanding to develop 288 ANN models at 443 



once, not to mention the considerable amount of time and resources to tune the parameters for 444 

all 288 ANN models. Since it is almost impossible to apply this approach in real-life, this 445 

approach will not be assessed in this paper.  446 

The prediction results of water flow data based on the recursive approach and MIMO 447 

approach with different prediction horizons (6 hours, 12 hours, 24 hours and 48 hours) are 448 

reported in Table 2. For the recursive approach, the one-step ANN model is used recursively 449 

to predict forward until the end of the prediction horizon. For the MIMO approach, four 450 

different ANN models were trained to generate results. As shown in Table 2, the MIMO 451 

approach is superior to the recursive approach among all prediction horizons.  452 

In order to take a closer view of the prediction accuracy of each output, Fig. 9 shows the 453 

performance of the MIMO-ANN-24h and the recursive-ANN-24h at each prediction step. It 454 

could be observed that the MIMO approach achieves the most stable performance in the whole 455 

prediction horizon. In comparison, as the forecast moves forward, the forecast performance of 456 

recursive-ANN deteriorates. This is because error accumulation due to noise is unavoidable in 457 

the recursive approach.  458 

Influence of Prediction Horizon 459 

One of the key parameters set for the proposed algorithm is the prediction horizon. The 460 

length of the prediction window determines how much information should be included to reveal 461 

the deviation of the trend component in the data. The prediction horizon used in this paper is 462 

one day of flow data. In this section, the performance of the proposed method with different 463 

prediction horizons is tested. Table 3 presents the proposed ANN-based method's detection 464 

time with different prediction horizons. It could be observed that when the time window is 465 

small, such as 6 hours and 12 hours, the information contained in the time window is not 466 

enough to reveal the abnormal behaviour caused by small leakages in level 1 and level 2. When 467 

the window becomes larger, leakage with a small size could be detected. However, it should 468 



be noted that as the prediction horizon becomes larger, the difficulty of developing such a 469 

MIMO model will also increase, making it more difficult to maintain the model. Therefore, a 470 

balance should be considered, and in this paper, one day of information is enough for decision-471 

making. As shown in the table, daily forecasting is enough to detect all the gradual leakage 472 

events. 473 

Residual Analysis 474 

After the prediction values are obtained from the prediction model, a comparison should be 475 

conducted between the prediction values and the true measurements. This comparison statistic 476 

is called residual. This section compares the performance of gradual leakage detection based 477 

on the three different residual analysis approaches (Manhattan distance, Euclidean distance, 478 

and cosine distance).  479 

Fig. 10 shows the plots of the residuals generated based on those three approaches. The 480 

residuals generated by Manhattan distance and Euclidean distance show a growing trend. This 481 

is because there are general trends in the monitoring data caused by the regular consumer 482 

demand increasing from winter to summer. This general trend needs further analysis so that it 483 

can be eliminated and prepared for the threshold setting, and unnecessary computational 484 

demand should be invested in the threshold setting. In contrast, the residual generated by cosine 485 

distance shows a more stable behaviour, and the threshold could be set more easily. 486 

Results of Gradual Leak Detection 487 

The threshold should be set for the residual statistics. If the threshold is set with a large 488 

value, the probability of generating false alarms will be reduced, but it will also reduce the 489 

ability to detect a possible leakage event, and vice versa. Therefore, a ROC curve plotted by 490 

connecting TPR and FPR points is used to evaluate the performance of the proposed 491 

methodology.  492 



Fig. 11 shows the ROC curves on datasets with different levels of leakage events. As shown 493 

in Fig. 11, for the leakage in level one, the best TPR is 0.556 while FPR is 0.008. For the 494 

leakage in level 6, the best TPR reaches 0.848 while FPR is 0.006. The data points used to plot 495 

each ROC curve is obtained based on the results calculated based on various threshold value 496 

that is calculated based on Eq. (11). A higher threshold value will assign more tolerance of data 497 

noise and results in lower FPR but will decrease the TPR, and vice versa. The red star sign 498 

represents the results based on the three-sigma rule, which is very close to the optimum TPR-499 

FPR point. The results also prove the eligibility of the unsupervised threshold-setting strategy.   500 

From Fig. 11, it could be observed that for the leakage in level six, the best TPR reach over 501 

80%, and FPR is 0%, which means no false alarms exist. As the growth rate of the leakage 502 

increases, the best TPR is closer to 100%, and the optimum TPR-FPR point is closer to the 503 

ideal point. Higher TPR means more parts of the leakage events could be detected. As the 504 

growth rate of the leakage becomes smaller, it will be more difficult for a detection method to 505 

distinguish a leakage event from normal consumer consumption. It should be noted that the 506 

beginning stage of leakage could be extremely difficult to be detected because the growth rate 507 

and amplitude of the water loss are too small, and this part of undetected data points will reduce 508 

the TPR value. Therefore, an additional metric, namely detection time, should be used to 509 

evaluate how early it could be to detect a gradual leakage.  510 

Table 4 shows the results of the detection time regarding each level of leakage. Compared 511 

with the statistical method proposed by Wan et al. (2022b), the ANN-based method could 512 

successfully detect leakage events with lower growth rates, which shows the superiority of the 513 

proposed method. In addition, the ANN-based method shows a higher detection probability 514 

than the statistical method. For the small leakages in levels 1-4, the detection time of the ANN-515 

based method is around 1-2 weeks, but the statistical method failed to detect these leakages 516 

with such small growth rates. For the relatively large leakages in level 5-6, the statistical 517 



method could raise alarm quicker than the proposed method. This is might because in the early 518 

stage of a leakage, the ANN model is still regarding the trend in the data as normal growing 519 

trend and did not generate large residuals. Therefore, it is recommended to combine the 520 

statistical method and machine learning method in the future to have better performance.  In 521 

general, the proposed method shows more robustness than the statistical method. 522 

The amount of water loss by the time the leakage has been detected is also presented in 523 

Table 4. It could be observed that the proposed algorithm could save much more water 524 

resources than the statistical method, which is the first goal of a leakage detection algorithm. 525 

Even though the maximum leak flow rate reaches 60 𝑚3/ℎ, all the leakage events have been 526 

detected when the leak flow rate is less than 7 𝑚3/ℎ , which falls into the category of 527 

background leakage determined in (Vrachimis et al. 2022). The results proved the early 528 

detection capability of the proposed method. 529 

Results of Monitoring Data with Different Sampling Rates 530 

In reality, the data might be collected with different sampling intervals, such as 15 minutes, 531 

30 minutes or more. Flow data are usually reported as average values (Wan et al., 2022a), and 532 

it could be smoother with a high sampling interval, which might introduce a benefit for leakage 533 

detection, but, in doing so, might lose informative components. Mounce et al. (2012) conducted 534 

an analysis of the influence of sampling rate on event detection in WDN. The results showed 535 

that a sampling interval of 5 minutes does not greatly improve the detection results for burst 536 

detection. Similarly, this section investigates the influence of the sampling interval on the 537 

gradual leakage detection based on the proposed methodology. 538 

Table 5 shows the detection results of datasets with different sampling intervals (i.e. 15 539 

minutes, 30 minutes, and 60 minutes) based on the proposed method. The results showed that 540 

the proposed method benefits from higher sampling frequencies. The best detection results are 541 



obtained for the dataset with 5 minutes interval, and the performance are deteriorating as fewer 542 

data points are obtained from sites.  543 

REAL CASE STUDY 544 

In order to further demonstrate the application of the proposed method to a real-life water 545 

distribution system, monitoring data collected from a DMA in a real-life water distribution 546 

network in the UK is presented in this section. The DMA has a total of 1939 properties, which 547 

contain 1889 household properties and 50 non-household properties. The average night 548 

pressure is 37.74 m. The pressure data were collected from the SCADA system over a period 549 

of two months, from October 3 to December 04, 2021. The pressure data were measured every 550 

15 minutes. The water company has provided information about some events recorded during 551 

this period. Fig. 12 shows the profile of the pressure recording during the whole period. Despite 552 

some burst events, it could be observed that the pressure gradually decreased starting around 553 

November 22 or 23, and becomes obvious in the data profile from manual observation on 554 

November 27. The event is reported on November 30. 555 

In order to reduce the influence of burst events, based on the customer report, the events on 556 

November 11 and November 17 have been deleted from the dataset. The first month is used as 557 

the training dataset and the second month which contains a gradual leakage event is used as the 558 

testing dataset. Two ANN models have been developed for this dataset. One is the traditional 559 

single-step prediction model and another is the proposed MIMO model. Two models have used 560 

the same ANN hyperparameters as mentioned in the synthetic dataset except for the number of 561 

neurons in the hidden layers has been reduced to 300 and 200 since a higher sampling interval 562 

is used, i.e. 15 minutes in the real dataset. 563 

Fig. 13 shows the residual vectors generated by the single-step model and the MIMO model 564 

that are smoothed by EWMA. The blue and yellow vertical lines are the time when the alarm 565 

was raised by the single-step model and the MIMO model separately. The results show that the 566 



single-step model detects the event when it reaches a relatively large size at 16:45 on November 567 

27, and the proposed MIMO model captured the growing trend in the dataset and detects the 568 

leakage event at 15:00 on November 26, before the leakage becomes a burst event. Moreover, 569 

the residual generated by the single-step model shows more volatility and uncertainties, thus 570 

requiring more careful threshold tuning to reduce the number of false alarms.  571 

DISCUSSION 572 

Most of the previous data-driven leakage detection methods were focused on burst events 573 

and did not evaluate the performance of their methods on gradual leakage detection. Among 574 

the limited research that considers the existence of gradual leakage events, most methods 575 

developed for the BattleDIM problem are tailored for the problem only since they used various 576 

information such as AMR, pressure values, well-calibrated hydraulic model, and flow values. 577 

Therefore, this paper proposed a method that is more practical for a water company that doesn’t 578 

have much information and is able to detect gradual leakage events in an online manner based 579 

on the flow data only.   580 

There are three main assumptions behind this methodology. The first assumption is that the 581 

prediction model is trained with flow monitoring data under fault-free conditions. This is 582 

because detecting leakage events relies on the difference between the prediction and the 583 

observed measurements. If there are leakage events exist in the historical data, those historical 584 

events should be eliminated based on historical customer reports or data preprocessing 585 

techniques such as statistical process control (Romano et al. 2014) so that the model could learn 586 

the normal behaviour more accurately. Same to other prediction-classification leakage 587 

detection methods (Romano et al. 2014; Wang et al. 2020; Ye and Fenner 2011), the main 588 

limitation of the proposed method is that it cannot be directly applied to the situation when the 589 

distribution system experiencing local changes (e.g., isolation of pipe segments, expansion of 590 

network) as changing operation condition will introduce different pattern in the flow data that 591 



hasn’t been learnt by the ANN model. Under such conditions, the ANN model should be 592 

retrained or updated to learn the new pattern of the monitoring data.    593 

The second assumption is that the model needs to be reset after the leakage events detection. 594 

The reset time depends on the length of the input vectors. For example, the input vector is a 595 

week of data, and thus the reset time is a week. This is because just after the leakage events, 596 

the input vector cannot represent the normal situation of the distribution system. Thus, the 597 

prediction model will continue to generate abnormal output until there are enough input data.   598 

The third assumption is that the system operation condition doesn't change during detection. 599 

If the operation condition changed after the model developed from historical data, a separate 600 

model needs to be developed for the changed situation. For example, if there is a pressure 601 

reduction valve installed in the system, the system behaviour will follow another pattern, and 602 

the old model cannot be applied after the installation.  603 

CONCLUSION 604 

In this work, a method is proposed to detect gradual leakage events. The proposed method 605 

contains two main stages: prediction and detection. In the prediction stage, a MIMO-ANN is 606 

trained on the historical dataset to model the system behaviour under healthy conditions, and 607 

then the residual vector is obtained by comparing the output vector with the observed 608 

measurements based on cosine distance. In the classification stage, the EWMA is used to 609 

smooth the residuals and eliminate spikes caused by noises. Then, leakage could be detected 610 

by comparing the residual values against a user-designated threshold. The proposed method 611 

has been tested on the L-Town distribution network. 612 

The reason why a multi-step forecasting approach is needed for gradual leakage detection 613 

has been illustrated. This is because the residual vector obtained from the one-step prediction 614 

model doesn’t contain any memory of the historical data. However, by extending the prediction 615 

horizon, the multi-step model presented in this paper successfully detected all the leakage 616 



events. The superiority of the MIMO approach against the recursive prediction strategy has 617 

been proved. The MIMO reaches the most stable performance and the highest accuracy. 618 

Furthermore, the machine learning technique supports multiple outputs in its nature, and 619 

provides a more convenient technique to design a MIMO model.  620 

Compared with Manhattan distance and Euclidean distance, the cosine distance used in this 621 

paper can generate more stationary residuals, and is thus more suitable for the detection stage. 622 

Compared with the statistical method proposed by Wan et al. (2022b), the detection results 623 

showed that the proposed method could detect gradual leakage events with a lower level of 624 

growth rate with higher detection probability and, thus save more water loss caused by leakage. 625 

The results showed that the proposed method has the capability of detecting gradual leakage 626 

events with a small growth rate. All the leakage events could be detected before it reaches 7 627 

m3/h, which is categorized as background leakage in the BattleDIM. For leakage with a large 628 

increasing rate, the statistical method shows quicker detection time. However, the proposed 629 

method has higher detection accuracy and is more robust than the statistical method. It is 630 

recommended to combine the statistical method and machine learning method in the future.   631 

The proposed method has been demonstrated on a pressure data from a real-life DMA. The 632 

results showed that the proposed method showed superior performance than traditional one-633 

step-prediction model.. In practical application, it can be applied for real-time monitoring of 634 

pressure or flow data. The training dataset should be pre-processed based on statistical process 635 

control rules or historical customer report to satisfy the assumption of the proposed method. 636 

For the real-time streaming data, the machine learning model could be updated when new data 637 

comes so that the model could be adapted to the non-stationary characteristics of the online 638 

data.  639 
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Table 1. Leak information with different levels 
Leaking 

level 
Leak 

duration 
Maximum leak 
flow (𝑚3/ℎ) 

Average daily leak 
increase (𝑚3/ℎ/day) 

Percentage of daily leakage to 
average daily water demand 

1 1 month < 9.4  0.33 < 0.2% 
2 1 month 9.4 - 18.8  0.33-0.63 0.2%< 0.4% 
3 1 month 18.8 - 28.2  0.63-0.94 0.4%< 0.6% 
4 1 month 28.2 – 37.6  0.94-1.25 0.6%< 0.8% 
5 1 month 37.6 - 47  1.25-1.57 0.8%< 1% 
6 1 month > 47  >1.57 > 1% 
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Table 2. Performance of models on testing data 

Model 
MAPE  RMSE R2 

6 h 12 h 24 h 48 h 6 h 12 h 24 h 48 h 6 h 12 h 24 h 48 h 

Recursive-ANN 0.13 0.15 0.16 0.37 7.13 8.12 8.96 28.66 0.85 0.76 0.81 0.05 

MIMO-ANN 0.05 0.05 0.06 0.05 0.70 0.57 0.80 0.46 0.97 0.97 0.96 0.97 
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Table 3. Detection time of the proposed method with different prediction horizons 

Leakage level 
Detection time (days) 

ANN – 6 h ANN – 12h ANN – 24 h ANN – 48 h 

1 - - 13.96 10.69 

2 - - 12.11 8.76 

3 27.14 24.77 6.53 6.58 

4 21.67 19.56 5.60 5.90 

5 18.88 13.46 5.17 5.21 

6 16.03 11.88 4.67 5.16 
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Table 4. Detection results of the proposed method and Wan et al. (2022b) 

Leakage 
level 

Detection probability Average detection 
time (days) 

Leakage flow rate 
when detected (𝑚3/ℎ) 

Water loss when 
detected (𝑚3) 

The 
proposed 
method 

The 
statistical 
method 

The 
proposed 
method 

The 
statistical 
method 

The 
proposed 
method 

The 
statistical 
method 

The 
proposed 
method 

The 
statistical 
method 

1 100% 0% 13.96 -- 3.13 -- 529.83 -- 

2 100% 0% 12.11 -- 5.10 -- 776.92 -- 
3 100% 0% 6.53 -- 3.92 -- 375.76 -- 
4 100% 39.2% 5.60 5.24 5.10 4.96 348.53 311.88 
5 100% 100% 5.17 5.00 5.84 7.03 371.60 421.80 
6 100% 100% 4.67 2.21 6.15 3.84 367.50 101.84 
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Table 5. Detection results of datasets with different sampling intervals (SI) based on the 

proposed method 

Leakage 

level 

Detection probability Average detection time (days) 

SI=5min SI=15min SI=30min SI=60min SI=5min SI=15min SI=30min SI=60min 

1 100% 100% 0% 0% 14.59 23.21 -- -- 

2 100% 100% 100% 100% 12.71 12.93 12.93 26.14 

3 100% 100% 100% 100% 7.98 12.58 12.62 18.69 

4 100% 100% 100% 100% 5.72 11.92 12.19 12.93 

5 100% 100% 100% 100% 5.30 8.45 11.84 12.39 

6 100% 100% 100% 100% 4.83 5.76 9.55 11.79 
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