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Abstract 15 

Current conservation policy has been shaped by the expectation, that for many species, 16 

places with suitable climate will lie outside their current range thus leading to predictions of 17 

numerous extinctions. Here we show that the magnitude of range shifts is often overestimated 18 

as climate data used does not reflect the microclimatic conditions that many organisms 19 

experience. We model the historic (1977-1995) distributions of 244 heathland and grassland 20 

plant taxa using both macro- and microclimate data and project these distributions to present 21 

day (2003-2021). Whereas macroclimate models predicted major range shifts (median 14 km 22 

shift), microclimate models predicted localised shifts into favourable microclimate, generally 23 

of less than 1 km, that more closely match observed patterns of establishment and extirpation. 24 

Thus, improving protection of refugial populations within species’ existing geographic range 25 

may, for species living in environments exposed to sunlight, be more effective than assisted 26 

translocations and overhaul of protected area networks. 27 
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 28 

Main text 29 

It is widely predicted that places with suitable climate will soon lie outside the current range of 30 

many species that cannot adapt1-3, such that survival will depend on how rapidly populations 31 

can move4-6.  Many organisms are thought to face insurmountable range-shift barriers, leading 32 

to the conclusion that the only viable option to prevent extinctions is to translocate them to 33 

places where the climate is suitable7, or create habitat corridors that allow them to get there 34 

of their own accord8. However, the expectation that species will have to undergo major range 35 

shifts to avoid range loss is founded on the assumption of strong and smooth geographic 36 

gradients in climate. These gradients would mean that temperature or precipitation changes 37 

make swathes of species’ current ranges unsuitable and create swathes of suitable habitat 38 

elsewhere. While clear climatic gradients occur at coarse spatial resolution, at finer resolutions 39 

topography, soil and vegetation exert great influence on local climatic conditions, resulting in 40 

considerable microclimate heterogeneity, particularly near the ground9,10. These fine-41 

resolution variations can exceed the variability that occurs over continents in coarse-resolution 42 

climate, and greatly exceed the magnitude of climate change expected over the next 100 43 

years11.  For the most part organisms experience climate at these local resolutions, which are 44 

orders of magnitude finer than the scales at which shifts are measured and modelled12. 45 

Despite this, there is little consensus on the extent to which microclimate matters for species 46 

range shifts. On the one hand, it has been proposed that macroclimate data may overestimate 47 

the thermal tolerances of species, and hence under-estimate the loss of suitable climate by 48 

failing to capture warm microclimates in which species are driven to extinction13. Conversely, 49 

it has also been suggested that cool microclimates may buffer species against climate change 50 

by providing suitable microrefugia6,14,15  51 

Understanding of the importance of microclimate on projected range shifts has been 52 

hampered by an inability to quantify microclimate over extents and durations relevant to 53 

species range shifts. Here we exploit recent advances in microclimate modelling9,11,16 to test 54 

whether macroclimate data over-estimate range shifts in comparison to microclimate. We 55 
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define macroclimate as conditions interpolated from weather stations at 1.5 – 2 m above-56 

ground and at grid resolutions of 1 km or more. We define microclimate as the climatic 57 

conditions that organisms experience at finer resolution, often closer to the ground.  58 

 59 

Why range shifts may be overestimated 60 

To illustrate the mechanism by which ranges may or may not be over-estimated by 61 

macroclimate data, we first consider two hypothetical examples (Fig. 1). Firstly, we imagine a 62 

situation in which the geographic range of a species with a true thermal tolerance of 8 - 12°C 63 

is assessed at coarse resolution. We assume that each grid cell has ±5°C of microclimatic 64 

heterogeneity and any coarse grid cells with at least some suitable microclimate is occupied.  65 

Consequently the thermal tolerance of the species, estimated from macroclimate data, is over-66 

estimated. When warming of 2°C is applied, under the assumption of perfect coupling, grid 67 

cells predicted by macroclimate data to become climatically unsuitable are also those that lose 68 

all suitable microclimate. Predictions based on microclimate and macroclimate are thus 69 

identical (Fig. 1a).  70 

 71 

Alternatively, we consider a species with the same geographic distribution as in the first 72 

example and hence the same apparent thermal tolerance estimated by macroclimate data. 73 

However, here we assume that near-ground temperatures are decoupled from macroclimate 74 

across latitudes: at the species’ warmer range margins ground temperatures are hotter than 75 

air temperatures. This phenomenon is widely observed, and arises because the ground 76 

absorbs more solar radiation at lower latitudes (though the degree of decoupling is also 77 

affected by snow and vegetation cover, and may not be so pronounced under forest 78 

canopies)9. Thus a species living in the same fine-scale grid-cells must have a broader thermal 79 

tolerance than in example 1a, in our case 8.6-16.4°C. Since solar radiation does not increase 80 

in line with climate change, the broader thermal tolerance means that species may remain in 81 

coarse grid cells that macroclimate predicts to become unsuitable (Fig. 1b).  82 

 83 
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Our illustration shows that the major flaw in using macroclimate is not necessarily the climate 84 

grid size per se. Rather, across the distribution of a species associated with open habitats, 85 

there is a greater range of near-ground than macroclimate temperatures and the space-for-86 

time substitution used to estimate range-shifts thus breaks down under future climates. Given 87 

that the greater spatial heterogeneity in near-ground temperature, means that range shifts 88 

may not follow smooth latitudinal gradients, the resulting effects on projected range shifts 89 

could be profound. Here we test whether this is the case.  90 

 91 

Tests of how microclimate affects range shifts 92 

We modelled associations between multiple climate variables and the distributions of 244 93 

higher plant taxa (Table S1). For each taxon, species distribution models (SDMs) were 94 

constructed and projected at three grid resolutions: across Europe at 0.5° (~50 km), Great 95 

Britain at 5 km, and the Lizard Peninsula, in the southwest of Great Britain at 100 m. For 96 

the 100 m resolution analyses, variables were derived from estimates of temperature at 5 97 

cm above ground using a recently developed microclimate model16. For the other two sets 98 

of analyses, existing climate products were used17,18, representative of measurements 99 

obtained by standard weather stations.  Plant distribution records were sourced from 100 

GBIF19, the Botanical Society of the British Isles20 and the Environmental Records in 101 

Cornwall Automated database21. Because our hypothesis may not apply to forest species, 102 

we restrict our analyses to smaller plants and shrubs associated with open habitats. We 103 

thus assigned grid cells with >50% forested cover as being unsuitable when projecting 104 

distributions, though results without forest masking are presented in supporting information 105 

(Extended Data Fig. 1; Tables S1-2). To allow independent validation of which climate data 106 

best predicted observed range shifts, we modelled associations between historic species 107 

distributions and climate (1977-1995), projected distributions to the present day (2003-108 

2021), and compared projected climate suitability at each spatial resolution to current 109 

distributions.  110 

 111 
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At each spatial resolution, we quantified range shifts in three different ways. First, as a 112 

measure of the shift required to track climate change, for each taxon we calculated the mean 113 

of the distances between each grid cell predicted to be occupied historically and the nearest 114 

climatically suitable grid cell under recent conditions (setting this to zero if a grid cell was 115 

suitable in both periods). Second, for comparison, we also calculated the converse 116 

measure: the distance between each grid cell predicted to be occupied currently and the 117 

nearest location with suitable climate historically. Lastly, to enable calculation of the direction 118 

of shift, we computed the suitability-weighted centroid of each species’ range in the two 119 

periods and calculated the magnitude and direction of the centroid shift. 120 

 121 

Overall, while macroclimate models predicted major range shifts, the predicted shift required 122 

to track microclimatic changes was low and likely within the dispersal capability of the 123 

majority of species.  To track climate change at 0.5° resolution across Europe, species 124 

would have had to shift on average between 3.7 and 62.4 km, with a median of 14.0 km 125 

(Fig. 2a; Tables 1 and S1). At 5 km resolution across Great Britain, species would have had 126 

to shift between 28.6 m and 52.1 km, with a median of 5.2 km (Fig. 2b; Tables 1 and S1). 127 

At 100 m resolution across the Lizard Peninsula, however, species would have had to have 128 

shifted between just 0 m and 8.1 km, with a median of just 114 m, equating to just 4.4 m 129 

per year (Fig. 2c; Table S1). The distance between each grid cell predicted to be suitable 130 

currently and the nearest location with suitable climate historically was similarly affected by 131 

resolution (Extended Data Fig. 2; Table S1).  There were similar discrepancies in the 132 

predicted centroid shifts. Determined from 0.5° resolution models, shifts ranged from 2.9 to 133 

163.9 km with a median of 46.5 km and in a predominantly northerly direction (Fig. 2d; 134 

Tables 1 and S2). Determined from 5 km resolution models, shifts ranged from 850 m to 135 

80.1 km with a median of 15.7 km, again in a predominately northerly direction (Fig. 2e; 136 

Tables 1 and S2). By contrast, shifts determined using 100 m microclimate data, ranged 137 

from 36.3 to 2,580 m with a median of 679 m, equating to just 25 m per year and shift 138 
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direction was inconsistent, reflecting the lack of strong latitudinal gradients in climate (Fig. 139 

2f; Tables 1 and S2).   140 

 141 

To ensure our results were not biased by restricting our fine-scale model calibration to a 142 

small geographic area, meaning that taxa’s full climate tolerances may not have been 143 

adequately captured, we also constructed models using historic records and near-ground 144 

temperature from across Europe at 0.5° grid resolution. We then projected the present day 145 

distributions of these taxa across the Lizard Peninsula at 100 m resolution. These models 146 

resulted in even more pronounced discrepancies with the macroclimate models. The 147 

median distance required to track climate was just 24 m (Extended Data Fig. 3c; Tables 1 148 

and S1) and the median centroid shift was just 65 m (Extended Data Fig. 3g; Tables 1 and 149 

S2).  150 

 151 

To ensure our results were not biased by peculiarities of the climate of the Lizard Peninsula, 152 

we modelled, at 100 m resolution, the historic and current distributions of Erica tetralix 153 

(Cross-leaved Heath), at 73 geographically and climatically disparate localities across 154 

Europe, each 40 x 40 km in size. This species was selected as it is a keystone species of 155 

European heathland, its range is almost entirely confined to Europe and adequate data 156 

were available for model validation at each of the selected sites.  Again shifts predicted by 157 

microclimate models were lower than those predicted by macroclimate models. Whereas 158 

macroclimate models predicted shifts of 16.2 km (at 0.5° resolution) and 2.0 km (at 5 km 159 

resolution), the median shift predicted by microclimate models was 244 m. Similarly, while 160 

the centroid shift predicted by macroclimate models was 33.7 km (at 0.5° resolution) and 161 

5.2 km (at 5 km resolution), the median shift predicted using microclimate data was just 818 162 

m (Tables 1 and S3).  163 

 164 

Why microclimate affects range shifts 165 
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To investigate why the use of microclimate data might affect range shifts, particular in relation 166 

to the climate niche of species, we evaluated how the three sets of models affected the 167 

predicted probability of species persisting across the Lizard Peninsula. To ensure model 168 

outputs were comparable at all three resolutions, we resampled (effectively smoothing) the 169 

coarse-resolution model outputs to 100 m and quantified the maximum projected suitability in 170 

any given 100 m grid cell.  171 

 172 

At all three resolutions, the maximum projected suitability across the Lizard Peninsula in the 173 

historic and current periods were closely correlated such that when recent climate was 174 

predicted to be more suitable for a taxon, the historic climate was also more suitable (Fig. 3; 175 

Extended Data Fig. 4). Macroclimate suitability was in general lower than microclimate 176 

suitability in the recent period implying that, when modelled using microclimate data, species 177 

have a higher predicted probability of persistence (medians: 0.5° 0.639, 5 km 0.717, 100 m 178 

0.870).  Additionally, the slope of the relationship between recent and historic microclimate 179 

suitability was shallower than that for macroclimate suitability such that the discrepancy was 180 

most marked for those species for which macroclimate suitability was low (0.5°: F1,242
 = 181 

572.4, P < 0.0001, slope = 0.775; 5 km:  F1,237
 = 907.8, P < 0.0001, slope = 0.997; 100 m: 182 

F1,243
 = 71.9, P < 0.0001, slope = 0.624), implying that for those species with low predicted 183 

probability of occurrence the likelihood of persisting was predicted to be much lower when 184 

predicted using macroclimate data. Resultantly, models constructed using 0.5° resolution 185 

data predicted the extirpation of six species from the Lizard Peninsula, including two 186 

keystone heathland species, Calluna vulgaris and Erica vagans, for which the Lizard 187 

Peninsula received its Natura 2000 designation and which certainly persist currently (Fig. 188 

4). Models constructed using 5 km resolution data predicted the extirpation of one species: 189 

Viola lactea. By contrast, models constructed using 100 m resolution near-ground data 190 

predicted that all 244 taxa would remain extant. As recent distribution records21 suggest 191 

that all taxa remain relatively common, there is strong evidence that the use of 192 

macroclimate data over-estimates the risk of extirpation.  193 
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The smaller range shifts and retention of species predicted by microclimate models also 194 

appear to be more accurate than predictions of macroclimate models. Despite high turnover 195 

in occurrence records between the two periods, extirpations were predicted with far greater 196 

accuracy by microclimate models, performing significantly (P < 0.05) better than would be 197 

expected by chance for all except two taxa. By contrast, extirpations predicted by 5 km data 198 

were predicted with greater accuracy than a random model for only 52% of taxa, and 199 

extirpations predicted by 0.5° models, performed worse than a random model (Table S5). 200 

Scale-discrepancies in the ability of the models to accurately predict establishments were 201 

less pronounced, but nevertheless microclimate models still performed better (Table S5).  202 

 203 

Relative importance of scale and near-ground temperature 204 

In our hypothetical example we proposed that the major flaw when using macroclimate data 205 

was not necessarily resolution per se, but rather the discrepancy between near-ground and 206 

ambient air temperature, which may be exacerbated by data resolution. To test this further, 207 

we carried-out two additional sets of analyses. First, we constructed 0.5° resolution SDMs 208 

for Europe using estimates of temperature 5 cm above ground. Both the distance needed 209 

to track climate across Europe and the shift in the centroid of the potential distribution were 210 

predicted to be moderately but significantly lower when using near-ground coarse 211 

temperature than above-ground coarse (macroclimate) temperatures (suitable cell shift: 212 

12% lower, paired t1,242
 = 2.37, P< 0.05; centroid shift: 37% lower, paired t1,242

 = 10.98, P< 213 

0.0001, Tables 1 and S1-4). Second, we constructed 100 m resolution SDMs for the Lizard 214 

Peninsula using temperatures representative of those obtained by weather stations, 1.5 - 2 215 

m above ground.  97 (39%) of the taxa were predicted to be extirpated from the Lizard 216 

Peninsula using these high-resolution, above-ground temperatures. For the remaining taxa, 217 

however, the predicted range shifts was lower than predicted using near-ground 218 

microclimate data (suitable cell shift: paired t1,148 = 2.42, P < 0.05; centroid shift paired t1,148 219 

= 2.23, P < 0.05; Table 1). These analyses suggest that height above ground is a major flaw 220 
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of macroclimate models, but that height is not particularly important once temperature is 221 

measured at a biologically-relevant resolution. 222 

 223 

It is possible that we found such a striking difference between macro- and microclimate 224 

projections because we selected species associated with open habitats, for which the 225 

greater effects of solar irradiance on near-ground temperatures are particularly 226 

pronounced. In forests, the canopy functions as a thermal insulator and buffers sub-canopy 227 

microclimatic conditions22, even though forest understories also have high microclimate 228 

heterogeneity23,24.  Nevertheless, for the taxa studied, our hypothesis was supported. 229 

Projections of species range shifts made using macroclimate data systematically over-230 

estimate range shifts, partially because spatial gradients in temperature were 231 

underestimated and hence thermal tolerances over-estimated. Coupled with the existence 232 

of fine-resolution heterogeneity in climate, the resulting effects on projected range shifts is 233 

substantial. This raises the question of why it is still commonly perceived that large range 234 

shifts are necessary, to which there are several possible answers.  235 

 236 

First, observed range shifts are generally assessed using coarse-resolution data4,25 such that 237 

all populations must go extinct from a region for that grid cell to become newly unoccupied, 238 

whereas the occurrence of just one new individual is enough to ensure that it would be 239 

considered as newly occupied. In consequence, range expansion at coarse resolutions would 240 

appear to be much faster than range contraction, and long-distance movement will appear to 241 

be a common response to climate change. Given the disproportionate number of studies that 242 

document range expansions relative to range retractions4, the magnitude and scale-243 

dependency of observed range shifts is rather uncertain5,6. Second, the perception of a need 244 

for large range shifts may be disproportionally influenced by early studies on animals in which 245 

large range shifts were documented26. More recent and comprehensive assessments of 246 

climate-induced species redistributions5, point to more idiosyncratic responses, particularly 247 

among plant species. Comparing our modelled projections to observed shifts for the same 248 
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taxa (Table S6) would seem to support this contention. Our predicted magnitudes of range 249 

shifts, when modelled using microclimate, are much closer to the magnitude of observed shifts 250 

than our predictions based on macroclimate data. Likewise, as with our range shifts modelled 251 

using microclimate data, there is very little consistency in direction. Third, where observed 252 

range shifts and extirpations have not matched the predictions of macroclimatic changes, 253 

this is often attributed to a lagged-response27, and thus potentially an extinction debt that 254 

has yet to be paid28. Fourth, the majority of projected shifts to date have used climatic and 255 

biological data with grid cell sizes much larger than those used in this study12. It is only 256 

recently that methods for generating fine-resolution climate datasets have been 257 

developed29, and very rarely have these been used to project species range shifts15,25,30. 258 

Last, where projections have been made they are often poorly tested, inevitably because the 259 

intention is often to predict future changes. Thus, the most common way to test the 260 

performance of SDMs is to use cross-validation techniques within species current, observed 261 

distributions. Such approaches suffer from the problems associated with autocorrelation, 262 

thereby potentially overestimating model performance31. This issue is illustrated well with our 263 

own coarse-scale models. Despite an inability to accurately predict extirpations, standard 264 

cross-validation metrics suggested good performance (Table S7). 265 

 266 

Conclusions 267 

Our findings do not suggest that climate does not pose a threat to species. Despite marked 268 

differences in predicted range shift distances, turnover in microclimate suitability was higher 269 

than macroclimate suitability and approximately half of taxa were predicted to lose suitable 270 

climate space irrespective of the resolution of climate data used. Rather our results suggest 271 

that many species distribution changes in responses to climate are likely to be localised and 272 

difficult to infer using coarse-resolution data. These localised shifts could fragment 273 

populations, alter demography and affect community composition and ecosystem function. 274 

We caution against assuming long-distance range shifts will occur as an immediate response 275 

to climate, and hence that the redesign of protected area networks32 and assisted 276 
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colonisations7 are the most pressing conservation priorities. Finite conservation resources and 277 

competing land-uses in many instances render such approaches impractical, emphasising the 278 

need for robust measures for carrying-out conservation in situ33. Rather, we emphasise the 279 

need to implement measures that sustain viable populations of species within their current 280 

geographic range. Conservation of areas that retain suitable microclimate could provide a 281 

practical and cost-effective means of reducing extinction threat because this can be targeted 282 

at specific locations.  283 
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Tables 298 

Table 1. Range shifts predicted by each of the models between the two study periods: 1977-1995 and 2003-299 
2021. Suitable cell shifts refer to the mean distances between each grid cell predicted to be occupied historically 300 
and the nearest climatically suitable grid cell under recent conditions (and vis-versa). Centroid shifts refer to 301 
the magnitude and direction of the shift in the suitability-weighted centroid of predicted. For the first six models, 302 
the median values across taxa are shown. For models 7-9 the estimated values for Erica tetralix are shown. 303 
For the 10th model, median values across 73 sites are shown. For model 6, the 73 taxa predicted to be 304 
extirpated are excluded in the calculation of median suitable cell shifts. Values for individual taxa are shown in 305 
Tables S1-4. 306 

Model description Suitable cell shift (km) Centroid shift 

Historic to 
recent 

Historic to 
recent 

Magnitude 
(km) 

Direction (°) 

1. Europe (constructed and projected at 0.5° 
grid resolution using temperatures 1.5-2m 
above ground) 

14.0  
 

7.2  46.5  
 

347   
 

2. Great Britain (constructed and projected at 5 
km grid resolution using temperatures 1.5-2m 
above ground) 

5.2  
 

2.1  15.7  
 

.343  
 

3. Lizard Peninsula (constructed and projected 
at 100m grid resolution using temperatures 5 
cm above ground) 

0.1 
 

0.1  0.6 
 
 

145  
 

4. Europe (constructed and projected at 0.5° 
grid resolution using temperatures 5 cm above 
ground) 

6.1 0.4 29.3 96 

5. Lizard Peninsula (constructed using 5 cm 
above ground temperatures across Europe at 
0.5° grid resolution and projected at 100 m 

resolution) 

0.0 0.0 0.1 20 

6. Lizard Peninsula (constructed and projected 
at 100m grid resolution using temperatures 1.5 
m above ground) 

0.0 0.0 0.8 138 

7. Erica tetralix Europe (constructed and 
projected at 0.5° grid resolution using 

temperatures 1.5-2m above ground) 

16.2 11.7 33.7 324 

8. Erica tetralix Great Britain (constructed and 
projected at 5 km grid resolution using 
temperatures 1.5-2m above ground) 

2.0 1.2 5.2 2 

9. Erica tetralix Lizard Peninsula (constructed 
and projected at 100m grid resolution using 
temperatures 5 cm above ground) 

0.0 0.3 1.8 334 

10. Erica tetralix 73 sites across Europe 
(constructed and projected at 100 m grid 
resolution using temperatures 5 cm above 
ground) 

0.3  0.2  0.8 67 

 307 
 308 
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 387 

Methods 388 

Climate data 389 

Monthly global gridded 0.5 degree climate data for the period 1979-2021 were obtained from 390 

the Climatic Research Unit17 and the data for Europe and surrounding nearby land areas 391 

(32°W - 50°E, 27°N - 83°N) extracted from this. Monthly 1 km gridded climate data for Great 392 

Britain were obtained from the Met Office18 and coarsened to a grid resolution of 5 km to match 393 

the resolution of plant distribution data. Monthly 100 m gridded temperature data for the Lizard 394 

Peninsula were obtained by aggregating the hourly outputs from a microclimate model, 395 

microclima, previously developed for the study region16. Using this approach, mesoclimatic 396 

effects (cold-air drainage, coastal exposure and elevation) are determined from the coarse-397 

resolution climate surfaces using thin-plate spline models, with coastal exposure and elevation 398 
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included as predictors. Differences between mesoclimate (𝑇𝑚𝑒𝑠𝑜) microclimate temperatures 399 

(𝑇𝑚𝑖𝑐𝑟𝑜), in this case for 5 cm above ground, are then determined from terrain, vegetation and 400 

ground properties using energy balance equations such that 401 

 402 

𝑇𝑚𝑖𝑐𝑟𝑜 − 𝑇𝑚𝑒𝑠𝑜 =
𝑟𝐻𝑅
𝜌𝑐𝑝

(𝑅𝑛𝑒𝑡 − 𝐿 − 𝐺) 403 

Where 𝑅𝑛𝑒𝑡 is the net radiation flux, 𝐿 is the latent heat flux, 𝐺 the ground heat flux, 𝑟𝐻𝑅 404 

resistance to heat loss, 𝜌 the density of air and 𝑐𝑝 the specific heat of air at constant pressure. 405 

Assuming ρ and cp to be approximately constant and L and G to be relatively small and 406 

proportional to net radiation16, 𝑇𝑚𝑖𝑐𝑟𝑜 − 𝑇𝑚𝑒𝑠𝑜 is thus a linear function of Rnet, the gradient of 407 

which is a measure of the thermal coupling of the surface to the atmosphere, which varies as 408 

a function of both the structure of the vegetation and wind speed, and in this instances, fitted 409 

using 89,250 field measurements of temperature obtained using data-loggers deployed at 35 410 

locations across the study site11.  411 

 412 

To derive 100m resolution temperature data for the 73 Erica tetralix locations across Europe, 413 

we used the R34 package microclima16,35, which automatically downscales sub-daily climate 414 

data from the National Centres for Environmental prediction36, using high-resolution digital 415 

elevation data. Here, instead of field calibration data to determine the relationship between 416 

temperature and net radiation, an entirely from first principles microclimate model, 417 

NicheMapR37 is used to derive the slope for a point location at the centre of each study area, 418 

and the same slope then applied across the study area, but with wind speed and radiation 419 

altered by terrain. The same approach was used to generate microclimate temperatures 5 cm 420 

above ground across Europe at 0.5° resolution, but here mesoclimatic effects are not modelled 421 

(see online code38). To derive 100m resolution macroclimate temperature measurements for 422 

the Lizard Peninsula, we used microclima16 to model the mesoclimatic effects, but omitted the 423 

further step of modelling near-ground temperatures.  424 

 425 
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Monthly 100m gridded rainfall data for the Lizard Peninsula were derived by spatially 426 

interpolating 5 km gridded rainfall data using a thin-plate spline, with 100m resolution elevation 427 

data included as an additional covariate. Interpolation was performed using the fields 428 

package39 for R34. The same procedure was used to downscale rainfall at 73 locations across 429 

Europe, though using rainfall data the Climatic Research Unit.  At all scales, monthly data 430 

were used to reconstruct, for two study periods: 1977-1995 and 2003-2021, the 19 widely 431 

used “Bioclim” variables presented in Hijmans et al39, following the Anuclim method40.  432 

 433 

Species distribution data 434 

Records of vascular plants across the Lizard Peninsula were obtained from Environmental 435 

Records in Cornwall Automated (ERICA) database, a compilation of verified local biodiversity 436 

records curated by members of the Cornwall and Isles of Scilly Federation for Biological 437 

Recorders21. Records georeferenced to a precision of >100m were removed and the 438 

remaining data used to determine the presence of species within each 100m grid cell in each 439 

of two study periods. The 244 taxa present in at least 20 grid cells in the historic period and 440 

associated with heathland and grassland were selected for all subsequent analysis (Table 441 

S1). For the same taxa, occurrence records from across Great Britain were obtained from the 442 

Botanical Society of the British Isles20, and their presence in 5 km grid cells determined in the 443 

same two periods. Plant records from across Europe and surrounding land masses (32°W - 444 

50°E, 27°N - 83°N) were downloaded from the Global Biodiversity Information Facility 445 

(GBIF)19. For the fine-resolution E. tetralix analyses, only records georeferenced to ≤100 m 446 

were used. At each of the three resolutions plant distribution records are recorded in a similar 447 

way: they represent the presence of a taxa at any given location recorded by volunteer citizen 448 

scientists, but absences are not recorded.  449 

 450 

Modelling distributions 451 

We used species distribution models42 to predict distribution shifts for each taxon at each of 452 

the three spatial resolutions. In each instance we constructed the model using historic 453 
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distribution and climate data and projected distributions forward to the present day, thus 454 

permitting robust empirical validation. Because the ‘bioclim’ variables were correlated with one 455 

another, and to ensure greater transferability between regions or time periods43, we performed 456 

Principal Components Analyses (PCA), and used the first 7 components, which together 457 

explained >99% of the variance, as climatic predictors of species distributions. To do so, the 458 

bioclim variables from both periods were averaged prior to performing the PCA and then 459 

predicted separately for both periods, thereby ensuring that relationships between bioclim 460 

variables and principal components were identical in both periods. The relationship between 461 

principal components and bioclim variables is shown in Table S8. 462 

 463 

To account for spatial biases in recording effort44,45, which is particularly pronounced in the 464 

European datasets (with a paucity of records from Eastern Europe), we subsampled the data 465 

in a manner proportional to the log-transformed number of visits to each square such that 466 

presences were less likely to be generated from grid cells with high visit coverage, whereas 467 

pseudo-absences were more likely to be generated from grid cells with high coverage. The 468 

number of visits to each square was calculated as the number of unique date, species and 469 

record ID combinations in each grid cell and thus represents the total observer effort of all 470 

analysed taxa. For each species, pseudo-absences were generated from within the convex 471 

hull of occurrences geographically, to avoid over-representing climates that fall outside a 472 

species’ geographic range46.  473 

 474 

To account for methodological uncertainties in models, we generated species distribution 475 

using three varied, but widely used model classes, namely Maxent47, General Additive 476 

Models48 and random forests49. To account for possible spatial autocorrelation in model 477 

coefficients, we spatially-kriged the residuals of each distribution model using inverse-distance 478 

squared weightings and creating new distribution models with same sub-sampled distribution 479 

data, but with this variable included as an autocovariate50.  The results reported are from a 480 
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final probabilistic weighted (by cross-validation True Skill Statistic, TSS) ensemble distribution 481 

each species and period, constructed using the ‘sdm’ package51 for R34.  482 

 483 

We investigated whether our results could be biased because 100m resolution models, based 484 

only on data from the Lizard Peninsula, might underestimate species’ full climate envelope. 485 

To do so, we fitted models using historic 0.5° resolution plant and climate data from the 486 

European region, here using temperature estimates for 5 cm above ground. For all taxa, we 487 

then projected the models in both periods at 100 m resolution across the Lizard Peninsula. To 488 

compare the relative importance of resolution and the use of near-ground data, we also fitted 489 

and projected species distribution models at 0.5° across Europe using near-ground estimates 490 

of climate, and across the Lizard Peninsula at 100 m resolution using estimates of climate for 491 

1.5-2 m above ground.  492 

 493 

As the taxa for which analyses were performed were associated with open habitats, we 494 

masked areas with 50% forest cover as unsuitable in the ensemble distribution predictions, 495 

though results without masking are also presented in supporting information.  Forest cover 496 

data in each 0.5° grid cell across Europe were sourced from CORINE52 and for Great Britain 497 

and the Lizard Peninsula, from the UKCEH Land Cover Map 202053. 498 

 499 

Model validation 500 

We independently evaluated the ensemble models within the time period for which they were 501 

projected using the Boyce index using the ‘ecospat’ package for R54. We also determined the 502 

proportion of number that establishments and extirpations between the two time periods were 503 

accurately predicted. Probabilistic ensemble projections of distributions were thus converted 504 

to binary outputs using a predicted probability of occurrence threshold set separately for each 505 

taxa that ensured that 90% of observed presences occurred in grid cells with suitable climate. 506 

To account for incomplete observer coverage, and hence the likelihood that an apparent 507 
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absence in either period is a false absence, we computed the fraction of apparent 508 

establishment and extinction (in both periods) that were predicted by each ensemble model. 509 

For each taxa, we then generated an equivalent number of historic and more recent records 510 

randomly and assessed model performance in the same way. The randomisation process was 511 

repeated 1000 times, and the proportion of times the model performed better than random 512 

assessed.  513 

  514 

Range shifts 515 

We quantified range shifts in three different ways. First, we computed the suitability-weighted 516 

centroid of each species’ climatically suitable range in the two periods and calculated the 517 

magnitude and direction of the centroid shift. Prior to doing so, we converted the distributions 518 

to a Lambert Azimuthal equal area projection (EPSG:3035) to avoid over-weighting suitability 519 

at higher latitudes. The centroids were then converted to the World Mercator projection 520 

(EPSG: 3395), for calculating the direction of the shift. The magnitude of the shift was then 521 

calculated using the ‘spDists’ function associated with R package ‘sp’55, which calculates true 522 

Euclidian distance irrespective of projection geometry. Second, we converted the probabilistic 523 

projections of species distributions to binary output using the procedure described above. 524 

Then, for each historically occupied grid cell, we calculated the centre-to-centre distance 525 

between that grid cell and the nearest climatically suitable location under present day 526 

conditions, setting this distance at zero if the grid cell was suitable in both periods. 527 

Calculations were performed using the spDists’ function to account for projection geometry. 528 

Third, for comparison, we also calculated the distance between each grid cell predicted to 529 

be occupied currently and the nearest location with suitable climate historically.  530 

 531 

Data availability 532 

The global gridded 0.5 degree climate dataset is available from 533 

https://crudata.uea.ac.uk/cru/data/hrg/. The UK gridded climate dataset is available from 534 

https://www.metoffice.gov.uk/research/climate/maps-and-data/data/haduk-grid/datasets. 535 

https://crudata.uea.ac.uk/cru/data/hrg/
https://www.metoffice.gov.uk/research/climate/maps-and-data/data/haduk-grid/datasets
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Datasets required to generate the 100m resolution gridded climate dataset for the Lizard 536 

Peninsula are included with R package microclima16 available from 537 

https://github.com/ilyamaclean/microclima. Plant distribution datasets required to run the 538 

models are published online38. Forest cover datasets are publically available from UKCEH53 539 

and https://land.copernicus.eu/pan-european/corine-land-cover 540 

 541 

Code availability 542 

All data and code used for the analysis are available on request from the corresponding 543 

author and are published online38. The microclima16 R package is available from 544 

https://github.com/ilyamaclean/microclima.  545 
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Figures 599 

Fig. 1. Microclimate and range shifts. Latitudinal gradients in macroclimate, microclimate, species’ current 600 
occupancy and predicted occupancy under projected future climate.  Coarse grid cells represent macroclimate, 601 
fine grid-cells represent microclimate. The outline colour of the coarse grid-cells and the labels in large font above 602 
them give macroclimate mean annual temperature. The fill colour of the fine grid-cells indicate microclimate mean 603 
annual temperature and the text in small font below each coarse grid-cell shows the range of microclimate 604 
temperatures within each coarse grid-cell. Microclimatic temperatures within each coarse grid cell range from -5 to 605 
+5°C from the macroclimate temperature. Crosses indicate which coarse grid-cells are projected to be suitable 606 
using macroclimate. Points indicate which fine grid-cells are currently occupied or will be suitable under warming, 607 
based on the species’ true thermal tolerance. In (a) a hypothetical species with a true thermal tolerance range of 8 608 
to 12°C occupies all grid coarse cells with suitable microclimate (top row). Microclimate is coupled with microclimate 609 
and increases as latitude decreases towards the equator. Although macroclimate over-estimates the species’ 610 
thermal tolerances, when uniform warming of 2°C is applied to all cells (bottom row), coarse- and fine resolution 611 
data yield exactly the same predicted range shift. This is because grid-cells predicted to be climatically unsuitable 612 
by macroclimate data, are also those that lose suitable microclimatic conditions. In (b) a hypothetical species with 613 
the same current geographic distribution as in (a) is shown (top row). Here, microclimate is decoupled from 614 
microclimate and increases by a greater amount than macroclimate as latitude decreases towards the equator, as 615 
might be expected as latitudinal gradients are driven by solar radiation. Here the macroclimate thermal tolerance 616 
is again estimated as 4-17°C, but the true thermal tolerance is greater than in the first example. The decoupling 617 
between macro and microclimate decreases with climate change. Consequently, coarse- and fine resolution data 618 
yield different predicted range shifts, with fine-scale data predicting that species persists at its warm range margin. 619 
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Fig. 2. Range shifts predicted using macro- and microclimate data. Top: how far taxa would need to move 620 
in order to track climatic changes. Here the mean distances between each grid cell predicted to be occupied 621 
historically (1977-1995) and the nearest location with climatically suitable conditions under recent condition 622 
(2003-2021) is predicted using (a) 0.5° and (b) 5 km grid resolution macroclimate data and (c) 100 m grid 623 
resolution microclimate data for each of 244 plant taxa. Bottom: here the magnitude and direction of the shift 624 
in the suitability-weighted centroid of each taxa’s distribution is shown, modelled at (d) 0.5°, (e) 5 km and (f) 625 
100 m resolution. 626 
 627 
  628 
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Fig. 3. Suitability predicted using macro- and microclimate. Here the relationship between the maximum 629 
current (2003-2021) and historic (1977-1995) predicted probability of occurrence on the Lizard Peninsula is 630 
shown for all taxa, demonstrating that when microclimate (green) data are used, the relationship is shallo wer 631 
than when macroclimate (purple) data are used. In consequence, when modelled using microclimate data, 632 
fewer extirpations are predicted. The green and purple dashed lines are the line-of-best fit for the modelled 633 
relationship for microclimate and macroclimate respectively. In (a) macroclimate occurrence is derived from 634 
0.5° grid resolution models and in (b) from 5 km grid resolution models. 635 
 636 
  637 
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 638 
Fig. 639 

4. 640 

Shifts in climatically suitable conditions predicted using macro- and microclimate data. In (a) the historic 641 
(1977-1995) and recent (2003-2021) probability of occurrence of Calluna vulgaris is modelled across Europe 642 
using 0.5° grid resolution species distribution models and in (b) outputs from this model are resampled 643 
projected to the Lizard Peninsula (50.1°N, 5.2°E) showing that mean suitability of macroclimate is reduced from 644 
0.507 to 0.461 and would therefore become extirpated from the Lizard Peninsula. In (c) the historic (1977-645 
1995) and recent (2003-2021) probability of occurrence of C. vulgaris is modelled across the Lizard Peninsula 646 
at 100 m grid resolution using microclimate estimates of temperature for 5 cm above ground. The species is 647 
predicted to retain suitable microclimate and therefore persist in places that broadly match those in which it 648 
currently occurs, as shown by the red squares on the maps, which are localities from which there are historic 649 
(left) and recent (right) records. The grey shaded polygons cover grid cells with >50% woodland cover, which 650 
were masked out for analyses reported upon in the main text. Note that few data from Eastern Europe were 651 
available for training the models. It is thus possible that true range of C. vulgaris extends further east across 652 
Europe than is implied by our models.   653 


