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1. INTRODUCTION 

The ability for individuals to express natural patterns of 
behaviour is one of the five freedoms of animal welfare [1], [2]. 
In extensively managed livestock, such as sheep, it could be 
assumed that animals have the space to behave naturally without 
hindrance [3], but in fact, there are still behavioural constraints 
from the physical environment and management techniques [4]. 
A further challenge in extensive management systems is the 
ability to reliably measure the full range of behaviours that an 
animal might need to express. Without these measures, it is not 
possible to characterise behavioural patterns or shifts in those 
patterns that could indicate welfare states, changes in welfare, or 
changes in the managed environment from which welfare 
changes may result. Many aspects of animal welfare can be 
assessed with discrete observations of the environment (access 
to water, food, or shelter) and the animals themselves (freedom 
from pain, discomfort, disease, or distress). In livestock, these 
observations are highly effective and efficient at a typical 
granularity of every 24 hours (as often required by regulation). In 
contrast, assessing behavioural dimensions of animal welfare 

requires different approaches. Behaviours change at every 
moment of the day in response to a wide range of varying 
external and internal stimuli, with the presence of a human 
observer being an important influence [5]. 

Continuous measurement with bio-logging devices allows the 
passive collection of data over long periods while animals are in 
their normal physical environment subject to their normal 
management regime. A range of sensors have been used 
successfully in sheep behavioural research, for example, GPS for 
absolute location [6] and Bluetooth proximity for social contact 
[7]. In particular, small accelerometers that measure relative 
movement, and posture with long battery lives have proved to 
be a practical and accurate method of identifying many physical 
behaviours in sheep [8], [9]. However, the quantification of 
physical behaviours in sheep is currently largely dependent on 
many small-scale studies with different breeds and methods, 
reliant on time-consuming and subjective human observations. 
There are opportunities for data-driven approaches to create 
more replicable and generalisable methods and results that can 
be applied to large numbers of animals outside research contexts. 
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In this study, we analysed collar-mounted accelerometer data 
from 84 pedigree-recorded ewes over two 14-day periods 
alongside detailed information about their environmental 
conditions. Data-driven analysis approaches were used to 
identify sequences of distinct behavioural events expressed by 
individuals without relying on observer-based classification 
models. The patterning of daily behaviour was characterised 
using compositional analysis to create phenotypic profiles. Linear 
mixed-effects models were then fitted to the data to investigate 
associations with the managed and natural aspects of their 
environment. Finally, detailed pedigree information was 
integrated into linear mixed-effects models, allowing us to 
determine the heritability of the behavioural traits detected. 

The aim of our study was to assess how the patterns of 
behaviour in extensively managed sheep are influenced by natural 
environmental conditions, management approaches, and 
individual preferences. The repeatability and heritability of the 
derived behavioural phenotypes provide an indication of an 
individual’s ability to express natural patterns of behaviour. A 
further objective was to establish a repeatable, objective, data-
driven approach to the extraction of distinct behavioural events 
from acceleration measured on a collar. 

Our hypothesis was that data-driven, event-based analysis of 
continuous bio-logging sensor data can reflect the underlying 
behaviour of animals with repeatable daily phenotypic profiles; 
that these phenotypic profiles are dependent on environmental 
conditions; and that the phenotypic profiles are heritable. 

2. METHODS 

All data were collected under ethics approval from the 
University of Exeter (eCLESPsy000541). 

2.1. Data collection 

Data were collected on a commercial sheep-breeding farm 
during the summer of 2018 in the South West of England near 
Exeter at an elevation of 240 m above sea level and a latitude of 
51° 56' N. A total of 84 pregnant ewes were assessed in two 
separate deployments, each lasting 2 weeks. The sheep were 
pedigree, performance-recorded Poll Dorsets. The first 
deployment started at the beginning of July and the second at the 
beginning of August. Pedigree information, collected on 
breeding farms for over 20 years, was accessed through the UK’s 
Agriculture and Horticulture Development Board. 

2.2. Sensors 

At the beginning of the first deployment, the ewes were 
weighed and had GENEActiv tri-axial accelerometers 
(Activinsights Ltd, Kimbolton, UK) fitted on a neck collar. As 
well as measuring raw acceleration, with sampling set to 50 Hz, 
the GENEActiv units recorded near-body temperature and 
ambient light levels. Each GENEActiv device was fixed to a 
standard plastic sheep collar (Kvikk) with an adhesive-backed 
hook'n'loop fastener and then further secured with electrical 
tape. The gold contact pins were orientated towards the tail (y-
axis) and the collar was free to rotate around the sheep's neck (x 
and z axes). The total collar mass was approximately 100 g and 
so below the 5 % of body mass limit for attached bio-logging 
sensors [10]. At the end of each 2-week deployment, the collars 
were removed, and raw data was extracted using GENEActiv PC 
software v2.6. 

An internet-enabled weather station (Davis Vantage Connect) 
recorded weather and environmental conditions on the farm 
every 15 minutes during the second deployment. 

2.3. Data analysis 

All data analyses were completed in R [11]. The tri-axial 50 
Hz accelerometer output was processed using the R packages 
GENEAread, to extract the data, and GENEAclassify, to create a 
contiguous stream of distinct behavioural events. The 
GENEAclassify package combines the acceleration outputs to 
create elevation (y-axis) and rotation (x and z axes) signals. It then 
utilises the Pruned Exact Linear Time (PELT) changepoint 
detection method [12] within the Changepoint R package to 
identify changes in the acceleration signals and characterise the 
variable-length segments between them. The elevation signal is 
independent of collar rotation and, in this study, we 
downsampled this to 1 Hz for each day before finding 
changepoints using the mean and variance. 

The PELT algorithm requires a penalty value to be selected 
for changepoint analysis with a higher value identifying fewer 
changepoints and, therefore, segments in a given time period. 
Over-segmentation of the data risks returning multiple, 
sequential behavioural events of the same type while under-
segmentation risks combining different behaviours into the same 
event. In both cases, the probability of adjacent events having 
different characteristics is reduced. This reduction of difference 
can be measured as the entropy or information content of the 
event sequence [13], [14]. To choose an optimal penalty value, 
we analysed a random day from each animal for changepoints to 
create a sequence of mean absolute gravity-subjected acceleration 
values (a measure of activity intensity) at different penalty values. 
An entropy value for each sequence was calculated using the 
TSEntropies R package and we selected the penalty value with the 
highest mean sequence entropy (a value of 450). 

Once daily sequences of variable-length events had been 
created for each animal, we classified each event by the mean and 
variance of the elevation signal with a rudimentary clustering 
approach. These two signal measures can be directly translated 
as the average neck elevation of the ewe and the amount of neck 
movement. We identified local minima in the distributions of 
each of these measures and used them as thresholds to develop 
a 2-dimensional clustering of all physical behavioural events into 
a small number of behavioural states. Clusters that represented 
less than 1 % of the total were combined with the nearest logical 
neighbouring cluster. 

We then combined the total time in each behavioural state for 
each animal into daily summaries. These aggregated data are 
compositional in nature, so closure normalisation followed by an 
isometric log ratio (ILR) transform was completed to move the 
data from simplex to real space [15]. 

Finally, we applied principal component analysis (PCA) with 
oblique rotation and Kaiser normalisation to the ILR-
transformed daily summaries, extracting two principal 
components whose scores represent the daily phenotypic profile 
for each animal. 

The local weather measurements taken on the farm 
throughout deployment 2 were used to calculate daily measures 
of rainfall, temperature-humidity index (THI), and wind chill 
index (WCI) [16]. The daylight hours were calculated from the 
latitude and time of year. As weather measurements were only 
available for deployment 2, all subsequent analysis is performed 
on PC scores from deployment 2 only. 

We implemented repeated-measures animal models using a 
residual maximum likelihood (REML) approach (R package 
ASReml-R) to estimate the repeatability, narrow-sense 
heritability, and permanent environment effects of the daily 
phenotypic profiles [17]. Repeatability (R) is defined as the 
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proportion of phenotypic variance (VP) explained by among-
individual variance Vind and can be interpreted as a measure of 
the consistency of phenotypes [18]. Repeatability sets the upper 
limit for heritability. We portioned the among-individual 
variance into the additive genetic variation (Va) and non-additive 
additive contributions referred to as permanent environment 
effects (Vpe). We then calculated the heritability (h2), defined as 
the proportion of phenotypic variance (VP) explained by the 
additive genetic component. 

We also included random intercepts of day and dam as 
random effects to account for non-independence and tested their 
significance using log-likelihood ratio tests (with the appropriate 
degrees of freedom), which compared full models to reduced 
models with the random effect being tested removed. We 
assumed twice the absolute difference in model log-likelihoods 
is distributed as chi-square with 1 degree of freedom, denoted as 
X2. Only significant random effects were retained in the model. 
We specified the following fixed factors; age in years, body mass, 
number of daylight hours, total amount of rainfall, WCI, and 
THI. Statistical significance of fixed effects was assessed using 
conditional Wald F-tests with Satterthwaite-corrected degrees of 
freedom; however, all effects were included regardless of 
significance due to biological relevance. 

We used linear mixed-effects modeling (in R package lme4) to 
predict variation in the daily phenotypic profiles as a function of 
environmental conditions and animal characteristics, always 
including random intercepts to account for non-independence 
among repeated measurements from the same animal and among 
measurements from different animals on the same day. We also 
included random slope terms for some predictors if this 
significantly improved the fit of the model. All continuous 
predictors were converted to z-scores (subtracting the mean and 
dividing by the standard deviation) prior to analysis, to aid model 
fitting and comparison between the estimated effects of different 
predictors. Parameters were estimated using REML and the 
significance of fixed effects was assessed using likelihood-ratio 
tests, based on the change in deviance between models that 
included or omitted that predictor. 

3. RESULTS 

We retrieved data from all the collars for both deployments 
with no lost or damaged units to give 2,408 sheep days of data to 
analyse. The farm raised no welfare concerns associated with the 
use of collars over extended periods. The mean temperatures 
during the two deployments were 18 °C and 16 °C respectively. 

3.1. Behavioural event detection 

A total of 2,239,917 distinct behavioural events were 
identified for all animals over all days with a mean duration of 93 
seconds. We found the distribution of event durations to 
approximate closely to the log-normal (µ = 3.9, s.e. = 0.0007 & 
σ = 1.1, s.e. = 0.0005). 

3.2. Daily phenotypic profiles 

The distribution of neck elevation variance is shown in 
Figure 1A, with lower-movement behaviours to the left and 
active to the right. The distribution shows three peaks, so we 
selected variance thresholds at 1 and 30 deg2 to create three 
variance categories: Low, Medium, and High. 

The distribution of mean neck elevations is shown in 
Figure 1B, where 0° indicates a level neck position as measured 
by the collar; positive values indicate higher neck elevations and 
negative are lower. The distribution again shows three peaks, so 
we selected thresholds at −18.5° and 8.5° to create three 
elevation categories: Head-down, Head-level, and Head-up. 

Figure 1C shows neck elevation mean and variance combined 
to create a 2-dimensional cluster map with the threshold limits 
of each cluster. The Head-down clusters for Low and Medium 
movement are very lightly populated, so we merged them with 
the respective Head-level clusters. Table 1 shows the resulting 
clusters and their descriptive statistics.  

We found that the cleanest PCA output (Table 2) was 
obtained by using the Medium Head-up cluster as the reference 
for the ILR transform. The two extracted principal components, 
PC1 and PC2, together captured 64% of the variation in the ILR-

 

Figure 1. Individual animal distributions of neck elevation variance (A), mean (B) by duration, and resulting heatmap (C) with category thresholds. 
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transformed data. Higher daily values of PC1 are driven by more 
time in Low Head-up, High Head-up and High Head-down and 
less time in Medium Head-level. Higher daily values of PC2 are 
driven by more time in Low Head-level and less in High Head-
level. 

3.3. Repeatability and heritability 

Table 3 summarises the contribution of additive genetic and 
non-genetic effects on the daily behavioural variation captured 
by PC1 and PC2 in deployment 2. 

THI was omitted from the final models presented here 
because of strong collinearity (> 0.9) with WCI. The scores for 
both components were moderately repeatable (PC1: R = 0.582 
± 0.058; PC2: R = 0.532 ± 0.054). 

A portion of PC1 among-individual variance was attributed 
to non-genetic effects (29.2 % ± 17.8 % of the total phenotypic 
variance) and a small portion of the variance was attributed to 
additive genetic effects (X2

1 = 2.2, p = 0.138) with a heritability 
estimate of 0.291 ± 0.200 (although this was non-significant). 

For PC2, almost all of the among-individual variance was 
attributed to an additive genetic effect (X2

1 = 16.9, p < 0.001), 
with a heritability estimate of 0.532±0.151. 

3.4. Environmental and animal effects 

Table 4 summarises the estimated effects of each predictor on 
the daily behavioural variation captured by PC1 and PC2 in 
deployment 2.  

PC1 was most strongly associated with the wind chill index 
(Figure 2), and its effect varied significantly among individual 
ewes (random slope term: X2

2 = 83.9, p < 0.001). PC2 was 
associated most strongly with day length (Figure 3), with this 
effect varying significantly among individual ewes (X2

2 = 61.7, p 
< 0.001), and to a lesser extent with WCI and ewe age (driven by 
an effect in older animals). 

4. DISCUSSION 

Our results show that we can derive objective and repeatable 
phenotypic profiles from collar-mounted accelerometer data in 
sheep without the need for human observations. The 

Table 1. Behavioural cluster descriptions. 

Behavioural cluster Time Spent (%) 
Mean Event 

Duration (s.e.) 

Low Head-up 6.5 59 s (0.10) 

Low Head-level 7.8 83 s (0.17) 

Medium Head-up 27.7 77 s (0.10) 

Medium Head-level 11.6 71 s (0.14) 

High Head-up 4.3 39 s (0.10) 

High Head-level 8.8 65 s (0.21) 

High Head-down 33.3 319 s (1.10) 

Table 2. Loadings of principal components of daily time spent in behavioural 
clusters. 

Behavioural cluster PC1 PC2 

Low Head-up 0.66 0.33 

Low Head-level −0.07 0.80 

Medium Head-up ILR reference ILR reference 

Medium Head-level −0.92 0.10 

High Head-up 0.66 −0.34 

High Head-level −0.09 −0.79 

High Head-down 0.77 0.14 

Table 3. Parameter estimates of additive genetic and non-genetic effects. 

 Effect Estimate s.e. X2
1 p 

PC1 

Day 0.11 0.05 255.3 < 0.001 

Additive genetic 
component (Va) 

0.24 0.18 2.2 0.138 

Permanent environment 
effects (Vpe) 

0.25 0.14 3.0 0.085 

Among-animal & residual 
variance (Vr) 

0.25 0.01 NA NA 

PC2 

Day 0.04 0.02 99.1 < 0.001 

Additive genetic 
component (Va) 

0.35 0.13 16.9 < 0.001 

Permanent environment 
effects (Vpe) 

0.01 0.08 0.02 0.896 

Among-animal & residual 
variance (Vr) 

0.25 0.01 NA NA 

Table 4. Parameter estimates from a linear mixed-effects model of daily 
phenotype profile measures for deployment 2. 

 Fixed effect Estimate s.e. X2
1 p 

PC1 

Wind chill index −0.63 0.13 13.850 < 0.001 

Rainfall −0.01 0.10 0.021 0.884 

Day length 0.09 0.13 0.008 0.931 

Body mass −0.08 0.07 1.284 0.257 

Age −0.06 0.07 0.654 0.378 

PC2 

Wind chill index −0.24 0.10 8.296 0.004 

Rainfall −0.10 0.07 1.500 0.229 

Day length −0.66 0.19 14.070 < 0.001 

Body mass −0.04 0.06 0.403 0.526 

Age 0.13 0.06 4.571 0.033 

 

Figure 2. The association of PC1 with WCI during deployment 2. 

 

Figure 3. The association of PC2 with day length during deployment 2. 
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visualisation of raw sensor data clearly demonstrates both 
variations of movement profiles between animals and 
consistency in the general patterns of behavioural events with 
similar neck movements. The clustering of these events supports 
a data-driven approach to summarising daily physical behaviours. 
We have found these daily phenotypic profiles to be heritable 
and influenced by weather and age. The data return rate was 
excellent and the method of deployment, using easily fitted 
collars, was of minimum burden to both farm and animals. 

The aim of the study was to assess how patterns of behaviour 
are influenced by environment and individual preference and 
genetics, rather than validate a specific behavioural prediction 
model with the inherent challenges of generalisability. Therefore, 
we did not attempt to validate the objective measurements 
against field-based observations of physical behaviour. 
Nonetheless, the results of the physical measurements can be 
interpreted and compared to previous work. 

The lack of head-down data points in the low and medium 
variance categories strongly suggests that these categories are 
generated by a lying posture. The posture, movement, and time 
spent (28 %) in the ‘medium head-up’ cluster indicate this is 
ruminating, while the low variance clusters represent resting.  

We consider the ‘high head-down’ cluster to be grazing, based 
on the head-down posture, higher levels of movement, and time 
spent (33 %). The other high variance clusters are likely to 
represent behaviours such as walking and running. The roughly 
even split between high and lower movement behaviours is 
comparable with other studies [19] as is the time spent resting, 
ruminating, and grazing [20].  

In the context of this behavioural interpretation, the ILR 
transform and principal component analysis holds a ‘ruminating’ 
constant. PC1 is then driven by increased grazing and head-up 
(more alert) postures while PC2 is driven by more time resting 
and less time in the non-grazing, high variance clusters. 

Our estimates of phenotypic profile repeatability were 
moderate and in the range of previous estimates, with studies on 
a wide range of behaviours and taxa reporting an average 
repeatability of 0.37 [21], and studies on sheep behaviour in an 
arena test reporting R values of 0.10 - 0.71 [5], [22]. Sheep have 
also been shown to demonstrate repeatable grazing and 
rumination behaviour [21], [23], [24]. 

The modelling reveals that PC1 is influenced by both non-
genetic effects and slight additive genetic effects and has a strong 
negative association with wind the chill index. It is likely to be 
measuring the animals’ response to poorer weather as they seek 
shelter and graze less. Other work has also failed to find a strong 
genetic component in sheep grazing and ruminating behaviour 
[24]. 

We found PC2 to be strongly associated with day length 
which reduced during the deployments. PC2 also had strong 
additive genetic effects, indicating it is heritable. Our heritability 
estimate was relatively high, indicating this could be a useful trait 
for selective breeding as the response to selection will be 
relatively fast. Other behavioural traits in sheep have been shown 
to have a genetic component, with heritability estimates ranging 
from 0.13 - 0.39 for sheep temperament traits [25]. Heritability 
estimates for production traits such as growth, carcass, and meat 
traits are also lower, ranging from 0.04 - 0.42 [26]. Day lengths 
direct the reproductive cycle and the Poll Dorset sheep in this 
study have the desirable capability of out-of-season lambing. 
Other studies [27] have attempted to understand the heritability 
of this trait and a behavioural perspective may support this work. 

Variability in melatonin blood levels in ewes is also under strong 
genetic influence [28]. 

Bio-logging enables the measurement of behaviour-based 
welfare states continuously over long periods of time. While 
objective measures can only ever be indirect indices of subjective 
welfare experiences [29], the data-driven framework we have 
presented here ensures that these measures provide a detailed 
and accurate reflection of the animal's moment-to-moment 
experiences. Continuous data are key to capturing the expression 
of rewarding behaviours and the impact of fluctuating 
environmental conditions. In addition, chronic and progressive 
conditions, subclinical disease states, and complex 
environmental interactions all become more detectable with 
long-term bio-logging data. The ease of deployment and low-risk 
nature of a collar measurement system can support wide-scale 
research and commercial adoption. 

A limitation of our study is the simplicity of the clustering 
approach, which may have inflated the misclassification of 
behaviour for animals of differing morphologies. Advanced 
clustering and domain adaptation techniques could improve 
behaviour assessment accuracy while also improving 
generalisability across individual animals, breeds, and species. 

The framework could be further optimised by including more 
complex accelerometry features that would reveal other 
behaviours (e.g. panting) and by including sensor data from other 
modalities (e.g. proximity tags for recording social contact). The 
analysis approach could be further extended to examine within-
day variation in behavioural patterns such as bout lengths, 
temporal expression, event sequencing, and fragmentation. 

While the removal of observer bias through data-driven 
analysis is a strength of this work, the addition of observation 
data with semi-supervised learning techniques, such as label 
propagation, would deliver better explainability and applicability 
of the results. An additional limitation is the availability of data 
from a single deployment. A deeper understanding of the 
repeatability of phenotypic profiles, genetics, and environmental 
influences could be gained through the analysis of additional data 
collected at other times of the year and in a wider range of 
weather conditions. 

5. CONCLUSIONS 

Our findings in this study show that daily patterns of 
behaviour in sheep are influenced by their physical environment 
and genetics. We achieved these results using easily deployed bio-
logging devices and the data-driven analysis of accelerometer 
signals. 

In the context of animal welfare, our ability to qualify the 
detailed expression of natural behaviours is relevant for future 
research. The heritability of behavioural traits may provide 
opportunities for selection to improve welfare. More broadly, the 
analysis framework delivers a method for the objective 
measurement of welfare interventions. 

We have also demonstrated a highly generalisable approach 
to assessing behavioural phenotypic profiles and the 
determinants of behaviour. This approach is independent of 
breed or species and does not require human observations. 
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