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Abstract: The epistemic uncertainty in coronavirus disease (COVID-19) model-based predictions
using complex noisy data greatly affects the accuracy of pandemic trend and state estimations.
Quantifying the uncertainty of COVID-19 trends caused by different unobserved hidden variables
is needed to evaluate the accuracy of the predictions for complex compartmental epidemiological
models. A new approach for estimating the measurement noise covariance from real COVID-19
pandemic data has been presented based on the marginal likelihood (Bayesian evidence) for Bayesian
model selection of the stochastic part of the Extended Kalman filter (EKF), with a sixth-order nonlinear
epidemic model, known as the SEIQRD (Susceptible–Exposed–Infected–Quarantined–Recovered–
Dead) compartmental model. This study presents a method for testing the noise covariance in cases
of dependence or independence between the infected and death errors, to better understand their
impact on the predictive accuracy and reliability of EKF statistical models. The proposed approach is
able to reduce the error in the quantity of interest compared to the arbitrarily chosen values in the
EKF estimation.

Keywords: Bayesian model selection; nested sampling; skew-normal distributions; Bayesian evidence;
extended Kalman filter (EKF)

1. Introduction

During the COVID-19 pandemic, there have been various mathematical modelling ap-
proaches used to forecast the behaviour of the pandemic, including different stochastic and
deterministic compartmental models, in order to achieve greater predictive accuracy. De-
spite all these efforts, there is a large uncertainty associated with the nature of COVID-19’s
spreading dynamics. This uncertainty could be due to modelling errors; hidden or un-
known factors; incomplete, missing or delayed reporting of data; and other unknown
disturbances. In our previous work [1], we fitted a deterministic model called SEIQRD
(Susceptible–Exposed– Infected–Quarantined–Recovered–Dead) using the COVID-19 data
from Saudi Arabia to predict the evolution of the number of active cases and fatal cases.
We used the nested sampling algorithm [2] to fit the epidemiological model’s parameters
to obtain the multivariate posterior mean of the parameters for simulation. However, we
observed a difference between the mean of the deterministic model and the measured
data. This difference lies within the modelled uncertainty or error bounds derived from
the posterior samples. This has motivated us to further focus on modelling the noise (i.e.,
the aleatoric uncertainty) to fit this difference or the noise to the best possible probability
distribution, which may not necessarily be symmetric in nature. Therefore, in this paper, we
aim to identify the distribution that best describes the noise between a smooth deterministic
model and the real-world fluctuations in COVID-19 data. To achieve this, we have fitted the
parameters of the noise or residuals (i.e., the difference between real data and deterministic
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SEIQRD model output), which may help to frame a Kalman filtering (KF) problem with
greater precision.

Previously, in [1], for the state estimation results using the EKF with pre-assumed
system error covariance (Ξ) and measurement error covariance (Ω) matrices, the noise
distributions were empirical since the accurate values of the noise covariances are generally
unknown in many applications. Several methods have been proposed to solve the issue
of estimating noise covariances, such as using the least-squares methods, as described
in [3–5]. Hence, we aim to address this gap from a different perspective by fitting the
parameters of the noise distribution to obtain an accurate measurement of the covariance
error (Ω) to be used in the EKF state estimation algorithm. This mainly aims to characterize
the error of COVID-19 data to better describe the aleatoric uncertainty in addition to the
previously tackled epistemic uncertainty and their propagation in state estimation using a
nonlinear compartmental pandemic model, called SEIQRD with reinfection. Subsequently,
we have proposed a method to resolve an open scientific question from the stochastic data
modelling perspective; i.e., within Kalman filtering framework, can we assume that the data-
fitting exercise adapts to normality assumptions, or is it strictly applicable to the normal
distribution only? We also investigate the consequences of these assumptions of normality
and correlation between errors in different variables or using skewed distributions with
correlations, etc., in the Kalman filtering framework. In order to address these open
questions, we will consider Gaussian and non-Gaussian distributions to represent the
errors and fit the residuals between the fitted deterministic model response and real
COVID-19 spread data in Saudi Arabia, using generalized Bayesian inference under the
Bayesian model selection framework. For linear systems with non-Gaussian noise, the KF
remains an optimal state estimator, as described in [6]. This refutes the claims made in
much of the published literature, indicating that the KF is not optimal unless the noise is
assumed to be Gaussian. Furthermore, the KF in a Gaussian approximation framework
only estimates the mean and covariance of the states, which may neglect other valuable
information of the underlying distributions, as discussed in [7]. Since many real-world
state estimation problems exhibit non-Gaussian patterns, especially when the data are
highly skewed or heavy-tailed, it is necessary to consider asymmetric distributions instead
of assuming normality.

In recent years, there has been a great deal of interest in skewed distributions and
their properties, as demonstrated by [8], who discussed these distributions in detail along
with their various applications. Skewed distributions may be necessary to better describe
the behaviour of COVID-19 modelling errors in the presence of asymmetric measurement
noise. Kalman filtering has also been used in a few studies to estimate the COVID-19
outbreak. Zhu et al. [9] considered a stochastic SEIR model based on EKF to analyse the
spread of COVID-19 and quantify the uncertainty with good accuracy as compared to the
deterministic model. The ensemble Kalman filter (EnKF) in [10] has been used to estimate
the time-varying model parameters with good performance close to the reported data.
Developing the EKF to analyse the dynamics of COVID-19 based on maximum likelihood
estimation (MLE) for the model parameters has been presented in [11]. Tracking the repro-
duction number (R0) with confidence bounds based on the KF has been introduced in [12].
In addition, some literature has compared the performance of COVID-19 prediction with
different types of KFs, e.g., fractional-order EKF with an SEIR model [13], switching KF
with time-series models [14], cubature KF with the SEIRRPV model (Susceptible–Exposed–
Infected–Recovered from exposure–Recovered from infection–Passed away–Vaccinated)
in [15] and Quadratic KF with SEIR/ARIMA (AutoRegressive Integrated Moving Average)
models [16]. The novelty of this work as opposed to the existing Kalman filtering works
on COVID-19 data is that it reports a thorough benchmarking of the state estimation per-
formances using four alternative formations of the EKF with and without correlated noise
and skewed distribution based on the residual of the deterministic model and real data.
We do not use the traditional COVID-19 data-driven ARMA family of time series models
or other machine learning methods such as neural networks for pandemic modelling since
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they are mostly black-box models which are difficult to interpret. In contrast, the simple
nonlinear deterministic compartmental model is well-studied in the context of epidemic
modelling in different scales, and each of the measured or estimated states have meaningful
interpretation as opposed to black-box machine learning models. Although recurrent
neural networks (RNNs) and other non-parametric time-domain models have been used
for the prediction of COVID-19 data, state estimation using compartmental models is a
different research direction which has not been addressed in most the contemporary ma-
chine learning applications for COVID-19. One of the key motivations here is to estimate
the hidden state variables of the compartmental model such as the susceptible, exposed,
quarantined, and recovered populations, which is not possible with traditional time-series
models as opposed to differential equation-based mechanistic models.

The rest of this paper is organized as follows. In Section 2, we provide a brief review
of the KF prediction and the deterministic/stochastic model. In Section 3, the method is
outlined. The investigation and the discussion of model comparison results are presented
in Section 4, and Section 5 concludes the paper with future research directions.

2. Kalman Filtering and the Pandemic Model

we recall the state space model equations without giving the detailed derivation of the
EKF algorithm as follows:

Xt+1 = f (Xt) + ξt, System equation,

yt = HXt + ωt, Measurement equation,
(1)

Here, f is the nonlinear function; ξt is the system noise which is assumed to be
Gaussian with a zero mean and covariance matrix Ξ; yt is the measurement sequences
for the observed data; H is the measurement matrix, with measurement noise ωt which
is Gaussian-distributed with a zero mean and covariance matrix Ω. The deterministic
SEIQRD model in [1] divides the population into six classes: susceptible S(t), exposed E(t),
infected I(t), quarantined Q(t), recovered R(t) and dead D(t). The compartments were
modelled using the system of nonlinear differential equations, as illustrated in the first
block in Figure 1. The EKF estimation based on the deterministic SEIQRD model for the
active cases and death cases is updated with the new data in this study, as presented in
Figure 2. The data are collected from the Saudi Health Ministry available online [17] with
daily measurements from 15 March 2020 to 19 October 2022. The variations between the
posterior mean (the output of SEIQRD model) and reported data are clear in both observed
cases, as shown for active cases in Figure 2a and for death cases in Figure 2b, along with
the EKF estimation, which is very close to the reported data.

Figure 1. COVID-19 data analysis pipeline with deterministic and stochastic compartments.

Now, let us convert this model from the deterministic case to a stochastic case by
adding the residuals between the mean posterior response of states I and D. This will help
to capture the randomness in the dynamics of disease spreading model that have been
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studied in, e.g., [18–20] in order to develop more realistic models matching with the real
pandemic data. Then, the deterministic SEIQRD system becomes a stochastic model after
adding the noise terms as follows:

dS
dt

= −βIS + αR,

dE
dt

= βIS− εE,

dI
dt

= εE− γI − qI − dI + wI ,

dQ
dt

= qI − qtQ− dQ,

dR
dt

= γI + qtQ− αR,

dD
dt

= dI + dQ + wD.

(2)

(a)

(b)

Figure 2. The estimation results of the active cases and death cases using the deterministic model and
the EKF. (a) Comparison of active cases between the reported data, posterior mean and the proposed
EKF; (b) Comparison of death cases between the reported data, posterior mean and the proposed EKF.
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The unknown model parameters {β, γ, ε, q, qt, α and d} are non-negative and defined
as the infection rate, recovery rate, incubation rate, quarantine rate, quarantine period,
reinfection rate and death rate, respectively. Additionally, wI and wD are the noise terms
that we investigated in this work which are the residuals between the reported data and
the fitted deterministic model reported in our earlier work [1]. We can now express the
infected and death residuals, i.e., wI and wD as:

wI = yI − ŷI , wD = yD − ŷD. (3)

We take into account that wI and wD may be independent or may also be correlated
while aiming to estimate their trends with the EKF using different noise distributions.
Writing these components in a vector format yields:

W =
[
wI wD

]T . (4)

Next, as shown in Figure 1, yI and yD present the binned frequencies of the error
signals since the errors are first binned by turning them into a histogram and the differences
in the bins are compared using the new likelihood function. Here, ŷ is the binned version
of the response of the deterministic SEIQRD model. We examine the residuals W with two
different distributions. Firstly, we examine a multivariate normal (MVN ) distribution in
two cases with correlation and without correlation between the parameters in the covariance
matrix. Secondly, we examine the multivariate skew-normal (MSN ) distribution in two
cases with correlation and without correlation between the parameters in the covariance
matrix. The dependence between the two components of the error is modelled by the
matrix Σ.

Multivariate Distributions

Now, consider W ∼ MVN (0, Σ) with zero mean vector and covariance matrix Σ
with strictly positive diagonal elements as follows:

Σ =

[
σ̂1 σ̂12
σ̂21 σ̂2

]
. (5)

The likelihood of theMVN distribution can be written as:

L(θ) = (2π)−n/2|Σ|−1/2 exp

{
−1

2

n

∏
i=1

(yj − ŷj(θ))
TΣ−1(yj − ŷj(θ))

}
, (6)

where n = 32 is the number of bins for the residual data which is the square root of the
number of samples chosen as a standard approach for selecting the number of bins. Then,
these differences in the bin count are compared in the likelihood function as shown in
Equation (6). Taking the log-likelihood function `(θ) for Equation (6) where individual bins
of the histogram are summed up yields:

`(θ) = −n
2

log(2π)− 1
2

log |Σ| − 1
2

{
n

∑
j=1

(yj − ŷj(θ))
TΣ−1(yj − ŷj(θ))

}
, (7)

where θ = (σ̂1, σ̂2, σ̂12).
The second distribution that we fit the residuals on is theMSN distribution proposed

in [21]. The n-dimensional random vector y-distributedMSN distribution with skewness
vector α has a probability density function (pdf) given by:

f (y) = 2φn(y)Φ
(

αTy
)

, y ∈ Rn, α ∈ Rn, (8)
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where φ(·) and Φ(·) are the pdf and the standard normal cumulative distribution function
(cdf) of the n-dimensional standard normal distribution N (0, I), respectively. When α = 0,
the Equation (8) reduces to Nn(0, In).

Now consider W ∼MSN (0, Σ, α) with zero mean vector, covariance matrix Σ and
skewness vector α and following [22]. The log-likelihood function `(θ) of the Equation (8)
can be written as:

`(θ) = −n
2

log |Σ| − n
2

tr
(

Σ−1V
)
+

n

∑
j

log[Φ
(

αTΣ
−1
2 (yj − ŷj(θ))

)
], (9)

where

V = n−1
n

∑
j

(
yj − ŷj(θ)

)(
yi − ŷj(θ)

)T. (10)

The components of the skewness vector α are expressed as:

α =
[
α̂1 α̂2

]T (11)

and θ = (σ̂1, σ̂2, σ̂12, α̂1, α̂2).

3. Methodology for Model Parameters and Uncertainty Estimation

In Bayesian inference methods, the Bayesian evidence or marginal likelihood (Z) is
commonly used for model selection and hypothesis testing, as discussed in various studies,
e.g., [23–25]. A recent survey [26] extensively explored the computation of marginal
likelihood using alternative methods. Many methods have been suggested to compute the
marginal likelihood and normalizing constants, as summarized in [27–30]. Among these
methods, we used the nested sampling algorithm proposed in [2] due to its simplicity and
efficiency in approximating the marginal likelihood for even large-scale Bayesian inference
problems, as shown by [31], in comparison to other methods. The nested sampling and
efficient Bayesian inference algorithms have been successfully applied in various fields,
including cosmology [32,33], epidemiology [1,34], spatio-temporal inference problems in
geophysics [35], material science [36] and other such fields where Bayesian inferences are
traditionally applied to fit data with mechanistic models.

Nested sampling is considered to be a generic and efficient Bayesian inference engine that
provides the posterior samples for the unknown parameters as a by-product while calculating
the marginal likelihood or Bayesian evidence Z . Nested sampling aims to integrate the
product of likelihood function L(θ) and prior probability π(θ) over the entire prior parameter
space. In Bayesian inference, the posterior probability distribution of the model parameters is
normalized by the constant Bayesian evidence Z and can be expressed as:

p(θ) =
L(θ)π(θ)

Z . (12)

The denominator in Equation (12) is known as the Bayesian evidence and is utilized
for model comparison to choose the best model or probability distributions where the
parameters have to be estimated. The Bayesian evidence Z in this study for the residuals
W and models M(θ) with parameters θ is given by:

Z = p(W|M(θ)) =
∫
L(θ) · π(M(θ))dθ. (13)

The main advantage of nested sampling can perform well with high dimensional
integration, which is sampled from the prior range towards higher likelihood regions as
well as from the multimodal likelihood shape [37]. Once the estimates of the measurement
error of Equation (3) are computed by the aforementioned distributions, we will be able to
produce the posterior samples and the marginal likelihood Z for each of them. The number
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of sampled points and the range of the uninformative prior are shown explicitly with
numerical values in Section 4.2. Figure 3a,b show the frequency of the infected error and
the frequency of the death error, which are the differences between the deterministic model
fit and the real data, where the distributions are constructed by the kernel density estimate
(KDE). The number of bins for both the infected and death error data has been selected using
the square root of the number of reported data points, which we also use while calculating
the likelihood function. Hence, for accurate characterization of the errors, we need to
estimate the parameters of the probability distributions. The Bayesian evidence calculated
from the nested sampling helps in selecting the right model for the error distribution, which
in turn leads to more accurate state estimation using the EKF. Additionally, the nested
sampling provides the posterior samples to estimate the covariance matrices for modelling
the correlations between the two error variables, i.e., the infected and death errors.

(a) (b)

Figure 3. Histogram of the infected and death errors of the output of Equation (3). (a) Histogram of
the wI ; (b) histogram of the wD.

4. Results and Discussions
4.1. Bayesian Inference Results and Error Distributions

In the Bayesian inference framework, choosing the appropriate prior range is not
a trivial task in the absence of expert knowledge of the range of possible values of each
unknown parameter. In this context, we assumed the uninformative prior of the underlying
parameters of the noise distributions to be uniform distributions with specified bounds.
We considered the models that assume the quantity of interest is symmetrically and asym-
metrically distributed. Since skewness is the key parameter in the skewed distributions,
choosing the range of the skewness parameter should be selected carefully in order to
obtain the right posterior inference. A discussion about the sensitivity of prior distribution
in the asymmetric distributions can be found in [38–40]. We examine the skewness index of
the residuals of the infected and death cases by using the sample coefficient of skewness,
which is an unbiased estimator for the third central moment obtained by dividing the third
central moment over the cubed standard deviation as follows:

skewness = E
[
(y− µ)3

]
/σ3 (14)

where µ presents the sample mean and the σ is the sample standard deviation [41,42].
The skewness values calculated using Formula (14) are wI = 1.84 and wD = −0.1325,
which indicate that the residual data have departed from normality. Even with the small
deviations from normality in death cases where all cases are different from 0, it is significant
to be considered, as pointed out in [43]. Selecting the skewness range has been debated
in much of the statistics literature; e.g., Ref. [44] describes that if the skewness is greater
than 1 in the absolute value, then the data are highly skewed, while skewness between
0.5 and 1 is moderately skewed and skewness between 0 and 0.5 is fairly symmetrical.
In addition, Ref. [45] suggested the range of skewness is ±1.5 and ±2, as also described
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in [46]. To evaluate the magnitude of skewness of the quantity of interest (the residuals),
Figure 4 detects the skewness between samples fitted by the skew-normal distribution
versus those fitted by a Gaussian distribution using a QQ-plot. Subsequently, from the
distributional view of the residual data in Figure 4, the dispersion from normality is clearly
identified. However, the prior boundaries in this study are chosen based on the associated
data, shown in Table 1, where the prior assigns the same range across different models to
make the comparison fair and consistent. Furthermore, two different model comparison
approaches are illustrated in the next Section 4.2.

Figure 4. Quantile–Quantile plot of COVID-19 error predictions for infected and death residuals.

4.2. Assumptions on the Error Distributions

In this section, we aim to calculate the evidence of the aforementioned distributions
with four different models:

• TheMVN distribution with a full covariance matrix Σ between I and D;
• TheMVN distribution with no correlation between I and D, i.e., diagonal covariance

matrix Σ;
• TheMSN distribution with a full covariance matrix, Σ, between I and D;
• TheMSN distribution with no correlation between I and D, i.e., diagonal covariance

matrix, Σ.

Conventionally, the first assumption is denoted by Model 1, the second assumption by
Model 2, the third assumption by Model 3 and the last assumption by Model 4.

4.3. Sampling from the Posterior of the Unknown Noise Parameters Using Nested Sampling

A set of samples are drawn from the prior distributions for the above statistical models
and the prior range is decreased iteratively as the live points navigate towards higher
likelihood regions. Thus, during each iteration, the lowest likelihood value is identified
and replaced with a new point randomly drawn from the prior distribution subject to
the constraint that the newly sampled point must have a likelihood greater than the
discarded point. This process continues until the difference in the evidence calculated
from the samples gathered by all live points become smaller than a specified threshold
(∆log(Z) < 0.001). At this point, the nested sampling algorithm terminates and returns the
final estimate of the log-evidence log(Z), along with its confidence interval. The posterior
distribution of the unknown noise parameters is calculated as a by-product of the evidence
calculation process. The posterior represents the multivariate probability distribution of
the unknown model parameters, given the observed data, and can be used for model
comparison, prediction and inference.
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For Model 1, the posterior distribution is shown in Figure 5, which shows the cor-
related samples under theMVN distribution. The main diagonal in Figure 5 shows the
1D marginal likelihood and provides the maximum a posteriori (MAP) estimate for the
parameters σ̂1, σ̂2 and σ̂12. The upper triangular part in Figure 5 shows the scatter plots of
the parameters coloured at each point by the log-likelihood values to analyse the corre-
lation between the parameters. Moreover, the lower triangular part shows the marginal
bivariate posterior distributions in 2D, estimated by the Gaussian KDE. For the posterior
distribution of Model 2, the covariance matrix is diagonal under theMVN distribution
is shown in Figure 6. For theMSN distribution, the posterior of Model 3 is shown in
Figure 7, and the posterior of Model 4 is shown in Figure 8. Furthermore, Figures 5–8 all
have similar interpretations in terms of the upper/lower diagonal parts with additional
skewness parameters α̂1 and α̂2 in theMSN distribution cases.

Figure 5. Posterior distribution of Model 1 for the infected and death errors with the correlated
covariance matrix.

Figure 6. Posterior distribution of Model 2 for the infected and death errors with no correlation in the
covariance matrix.
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Figure 7. Posterior distribution of Model 3 for the infected and death errors with correlation in the
covariance matrix.

Figure 8. Posterior distribution of Model 4 for the infected and death errors with no correlation in the
covariance matrix.

Table 1. The uninformative prior distribution for the proposed models.

Model σ̂1 σ̂2 σ̂12 α̂1 α̂2

MVN with correlation U [100, 1000] U [100, 1000] U [−1, 1] - † - †

MVN without correlation U [100, 1000] U [100, 1000] - † - † - †

MSN with correlation U [100, 1000] U [100, 1000] U [−1, 1] U [−2, 2] U [−2, 2]
MSN without correlation U [100, 1000] U [100, 1000] - † U [−2, 2] U [−2, 2]

† does not exist for the given distribution.

4.4. Bayesian Model Comparison for Selecting the Best Noise Distribution

Table 2 shows the summary of the number of live points (Nlive), which is a set of points
in the prior range which are used to calculate the evidence while navigating towards the
high likelihood regions and explore the shrinking prior space efficiently, along with the total
number of the likelihood function evaluations (Nlike) and the log-evidence (logZ) for each
chosen noise distribution obtained by run MultiNest sampling [47] from the multimodal
likelihood for all the generated samples. The average number of the Nlive iterations is
proportional to the number of dimensions of the corresponding model, and in this study,
we chose Nlive = 20× dimensions for the unknown PDF parameters. The Nlive can be
user-defined to make a trade-off between the computational cost and the accuracy of the
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calculated evidence and posterior distribution. The tolerance between successive iterations
is chosen as ∆ log(Z) < 0.001. A higher log Z value is associated with the best-fitted
distribution, which is the model MVN with correlation, followed by the MSN with
correlation, which reflects a linear relationship between the infected sample and the death
sample. Despite the tiny difference in the log Z values between Model 1 and Model 3,
we can justify that theMVN model is a better choice over theMVN model since the
skewness index is fairly large for death cases and can be in an approximately normal scope
for our data. However, for highly skewed data, it is likely that the statistical model selection
based on the associated log Z values will tend towards the asymmetric distributions.
Now, we calculate the mean posterior of these fitted statistical models in the measurement
covariance matrix Ω of the EKF in order to optimize the state estimates of the hidden or
unmeasured variables, which has been shown in the Section 4.5.

The comparison between two different models can be evaluated using the Bayes factor,
as suggested in the literature, e.g., [48–50], to measure the relative strength of evidence for
one model over another. The Bayes factor ρ provides the posterior odds, which is the ratio
of the marginal likelihoods multiplied by the model prior P(Model) given by the observed
data W. Jeffrey’s scale [51] provides a qualitative interpretation of the Bayes factor values
that can be used to assess the strength of the evidence of one model with respect to another
model. Thus, the degree or strength of evidence can be determined by Jeffrey’s scale. It
suggests an index to distinguish between the models, with 1 < ρ < 2.5 being substantial,
2.5 < ρ < 5 being strong and ρ > 5 being decisive, as reported in [32]. According to Table 2,
the higher logZ is associated with Model 1, then computing the Bayes factor for this model
versus other models can be presented as:

ρ1 = log
[

P(Model-1 |W)

P(Model-2 |W)

]
= log

P(W | Model-1) · P(Model-1)
P(W | Model-2) · P(Model-2)

= log
[
ZModel-1
ZModel-2

]
(15)

= log[ZModel-1]− log[ZModel-2] = 3.7253, strong evidence.

Table 2. Bayesian evidence for each error distribution along with the number of live points Nlive and
the number of likelihood function evaluations Nlike.

Model Nlive log Z Nlike

Model-1:MVN with correlation 60 −263.215 ±
0.329 715

Model-2:MVN without correlation 40 −266.940 ±
0.403 463

Model-3:MSN with correlation 100 −263.546 ±
0.265 1239

Model-4:MSN without correlation 80 −263.548 ±
0.297 989

This provides evidence that the data are more likely to be under Model 1 than Model
2. Now,

ρ2 = log
[

P(Model-1 |W)

P(Model-3 |W)

]
== log

P(W | Model-1) · P(Model-1)
P(W | Model-3) · P(Model-3)

= log
[
ZModel-1
ZModel-3

]
(16)

= log[ZModel-1]− log[ZModel-3] = 0.331, weak evidence.

In addition, for Model 4, we obtain:

ρ3 = log
[

P(Model-1 |W)

P(Model-4 |W)

]
== log

P(W | Model-1) · P(Model-1)
P(W | Model-4) · P(Model-4)

= log
[
ZModel-1
ZModel-4

]
(17)

= log[ZModel-1]− log[ZModel-4] = 0.333, weak evidence.

From the comparative results obtained from ρ2 and ρ3, it suggests that Model 3 and
Model 4 are equally likely, since their log Z values are close to each other.
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4.5. State Estimation Using Extended Kalman Filters with the Estimated Noise Distributions

The aim of this subsection is to show the fine-tuning of the EKF with different measure-
ment error covariances Ω and distributions given from the mean posterior of the samples,
as shown in Table 3, as compared to the value in the last row, i.e., the EKF5, which is a
pre-assumed noise covariance reported in [1]. The root mean squared error (RMSE) for
each case between the performance of EKFs and the reported data is presented using:

RMSE =

√
1
n

n

∑
i=1

(
Xreported I,D − XEKFs,I,D

)2
,

=

√
1
n

n

∑
i=1

e2
i .

(18)

Table 3 shows that the EKF2 using MVN with no correlation has a lower RMSE,
as compared to the other EKF variant-based RMSE values. This indicates that the EKF2
predictions are closer to the actual values and have the best accuracy among those models.
Furthermore, from Table 3, we observe that EKF1, EKF2, EKF3 and EKF4 all are able to
reduce the prediction errors as compared to EKF5, which uses the pre-assumed covariance
reported in [1], for the infected cases, while there are slight differences in the death cases.
Consequently, using more accurate noise covariance in the stochastic model will enhance
the EKF’s prediction performance and provide further optimal results in EKF-based state es-
timation. Furthermore, our methodology focuses on noise model validation using Bayesian
evidence and the RMSE score between the predicted and reported infected/death cases.
Fitting the deterministic component of the EKF was reported previously in [1], and here, we
report the estimated parameters with longer-term historic data. The RMSE has been used
as a standard metric to quantify the prediction results in pandemic modelling. However, it
is worth mentioning that all the results shown in this paper are subjected to the structure
of the underlying nonlinear differential equation, i.e., the structure of the chosen SEIQRD
model with reinfection. Since there are several epidemic models reported in the literature
with different levels of complexity, if the deterministic model is changed to fit the raw data
and generate residuals while including more compartments, geospatial distributions or
age/social groups, the ranking of the EKF’s performance may be different than the results
reported in this paper. The simulations of EKFs have been performed for the number of
active cases, as shown in Figure 9, and for the death cases in Figure 10, along with the four
hidden states (Susceptible–Exposed–Recovered–Quarantined) in Figure 11. Moreover, we
visualize the differences between the individual EKF’s performance in the semi-log plot for
the infected cases in Figure 12 and for the death cases in Figure 13.

Table 3. Root Mean Square Errors (RMSEs) of the proposed EKFs with different noise distributions
and covariance matrices.

EKF Covariance Matrices Infected RMSE Death RMSE

EKF1MVN with correlation Ξ = 500 × I6×6, Ω =
[

93.81 0.1001
0.1001 995.91

]
67.1907 26.9871

EKF2MVN without correlation Ξ = 500 × I6×6, Ω = diag[82.017, 989.20] 61.2482 26.6587

EKF3MSN with correlation Ξ = 500 × I6×6 , Ω =
[

92.53 0.13469
0.13469 994.59

]
66.5684 26.9649

EKF4MSN without correlation Ξ = 500 × I6×6, Ω = diag[93.17, 994.56] 66.8042 26.9032

EKF5 Ξ = 500 × I6×6, Ω = diag[100, 1000], Ref. [1] 70.1258 27.0861
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Figure 9. Temporal comparison of the EKFs’ performances for the active cases along with the reported
data and posterior mean response.

Figure 10. Temporal comparison of the EKFs’ performances for the death cases along with the
reported data and posterior mean response.

The mean posterior estimates of the SEIQRD model parameters for the long-term
Saudi Arabia COVID-19 data are reported in Table 4, which is an improved version over [1]
with the most updated data.

Table 4. Mean Posterior estimates of the SEIQRD model parameters for the long-term Saudi Arabia
COVID-19 Data.

Parameter
Description

Parameter Value

Mean Standard Deviation

β infection rate 3 ×10−8 4.4 × 10−9

α reinfection rate 0.0028 1.4 × 10−5

ε incubation period 0.0353 0.00361
q quarantine rate 0.9593 0.0033
qt quarantine period 0.5939 0.0521
d death rate 4 × 10−3 2.7 × 10−5

γ recovery rate 0.9586 0.0031



Sensors 2023, 23, 4734 14 of 19

Figure 11. EKFs’ performances for the unobserved hidden states, i.e., Susceptible, Exposed, Quaran-
tined, Recovered cases, as compared to the posterior mean response.

Figure 12. Semi-log plot of the infected cases for the proposed EKFs.

Figure 13. Semi-log plot of the death cases for the proposed EKFs.
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5. Conclusions

This paper presents a new method for modelling the uncertainty in the epidemiologi-
cal SEIQRD model considering dependence and independence in the observation noise.
The method is based on the Bayesian inference method called nested sampling, and we
provide an extensive analysis to quantify the uncertainty of the noise distributions and feed
it back into the Kalman filtering framework for state estimation. We examined the full co-
variance as well as the diagonal case for each model since it is unknown which model is the
best for state estimation. We have shown through simulation studies a comparison between
the multivariate normal distribution and the multivariate skew normal distributions for
the observation error. We have compared our method using five alternative formulations
of the EKF with different noise distributions and manually tuned noise covariance matrices
in order to make a fair comparison between different methods. Our main objective here is
to obtain accurate state estimation for unmeasurable or hidden states in the epidemiologi-
cal model and not just forecasting measurements, unlike black-box, non-parametric time
series models.

5.1. Main Contributions and Limitations

The main contribution of the proposed approach is to fine-tune the EKFs, including the
nonlinear epidemiological SEIQRD model with reinfection, using different structures of the
measurement error distribution and covariance Ω in a more systematic way as compared to
the previous work in [1]. The previous work in [1] assumed that Ω can take an arbitrary value
and can be manually tuned, and despite that, we obtained decent prediction performance
using the EKF. In this paper, we further fine-tune all the noise parameters in EKF based on the
Bayesian evidence criterion and we conclude that all the examined four noise distributions are
better than the pre-assumed or hand-tuned noise covariance, based on the RMSE criterion of
the predictions of two measured variables-infected and death cases. Moreover, this generalized
method can be performed regardless of which type of EKF is used including being agnostic on
the chosen deterministic compartmental model structure. The second major contribution of
this paper is to estimate the hidden states of COVID-19 dynamics from the chosen SEIQRD
model, i.e., the susceptible, exposed quarantine and recovered cases, along with their respective
uncertainty bounds, which is a non-trivial task, using standard time-series models. Such esti-
mation is crucial to supporting decision making for pandemic management by the government.
However, in this study, we do not tune the system covariance Ξ due to the high computational
burden since our goal is to match the realistic measurement error in I and D.

There have been numerous studies on pandemic modelling based on a single country
or even smaller regional data in different states or counties. However, parameter estimation,
comparing the deterministic and stochastic parts of models and designing state estimation
algorithms using nonlinear models are not straightforward tasks. Therefore, our study was
based on only Saudi Arabian data, and we plan to extend it to other countries in future
works. Although many countries have published COVID-19 data, mostly their cumulative
death records, data on actives cases (different from daily new cases and confirmed and
cumulative infected data) which is traditionally used in pandemic models are very hard
to obtain. Moreover, the range of estimated parameters changes with the infrastructure of
different countries, which motivated us to develop the methodology for a single country
initially and extend it in the future by modifying the prior range. However, for better
reproducibility, we report the estimated SEIQRD model parameters in Table 4 before noise
modelling in the EKF algorithm.

5.2. Future Work

Several extensions of the reported work are possible:

• This work can be further extended with other, more complex nonlinear epidemiologi-
cal compartmental models under the EKF framework with more experimental evidence.

• Another possible future direction is to include more model comparisons within dif-
ferent skewness distribution families using similar approaches such as the class of
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skewness distributions presented in [52]. However, the challenge with this class is
dealing with the extra parameters as well as prior range selection, which should be
carried out carefully as there is a lack of interpretability in the literature which needs
further investigation.

Overall, there is still a risk of a global pandemic like the one experienced during
COVID-19, which is assumed in the SEIQRD model, and adopting various protective mea-
sures to prevent the transmission can significantly minimise that risk. It is fundamental
to stay informed using recent scientific research and to continue to follow the guidance
of public health organizations in order to protect ourselves and others. We are currently
in the stage of living with COVID-19 after the substantial effort of developing successful
treatments and effective vaccines, although there may be different variants of the virus
that have not been discovered yet. Forecasting and developing predictive state estimation
strategies for potential future pandemics is a challenging task for any government and has
not been discussed well in the contemporary scientific literature since it requires interdisci-
plinary research involving epidemiology, public health, medicine, applied mathematics
and statistics. In [53], the authors discussed some future pandemic threats associated with
changes in the biosphere, such as climate change, loss of biodiversity and deforestation.
However, this pandemic made the world vigilant and more prepared for other global
crises. Consequently, we can analyse other potential future pandemics which are related
to infectious diseases and pathogens that could threaten public health. Investigation into
possible future pandemics may be classified into a few categories as follows:

• Unknown microbes or microorganisms that arrive from space, which are called
panspermia, as discussed in [54,55]; however, there is a lack of evidence for this
hypothesis and microbial data collection in space is limited due to the high cost, the
complexity of the experimental setup and the high level of risk involved. As there
are no clear findings of microorganisms coming from asteroids, comets or spacecraft,
the evidence of possible infection is rather low. COVID-19 data can help in improving
modelling of unknown pandemics from outer space.

• The outbreak of experimental microbes in scientific laboratories, due to accidents or
poor management practices, can result in infections such as Brucella abortus, which
can cause foetal death in pregnant women. Moreover, the origin of COVID-19 is still
unknown, and whether it emerged through natural spillover, trans-species migration or a
laboratory accident is still uncertain. However, a laboratory accident cannot be excluded
as a potential risk for similar or even larger future pandemics, as discussed in [56,57].

• Future pandemics may also be caused by anthropogenic roots such as political con-
flicts or wars between countries, continents and specific genotypes, which can be
modelled and controlled using the COVID-19 data as a test scenario [58,59]. This may
also include manipulating the birth rate and other constants between the model com-
partments related to the health system’s infrastructure, such as the hospital capacity,
quarantine period and reinfection rate in a country or region.

We have learnt a lesson from the COVID-19 pandemic, which had the largest number of
deaths in recent history. We developed robust combat policies and controlled public fear and
uncertainty affecting quality of life, the economy and education to name a few amongst many
social aspects [60]. Most modern epidemiological studies in humans, animals and plants utilize
a wide range of mechanistic compartmental models as well as real-world data to accurately
characterize the evolution of an epidemic through estimation algorithms and to assess risk
levels for possible future pandemics which may cause wider-scale disruptions in daily life.
Therefore, our modelling and state estimation results using the Saudi Arabian COVID-19 data
can be seen as a generalized framework for systematically estimating the deterministic and
stochastic components of a pandemic within an extended Kalman filtering framework utilizing
the SEIQRD and even more complex compartmental models.
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