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Abstract

Neural mass models (NMMs) are important for helping us interpret observations of brain

dynamics. They provide a means to understand data in terms of mechanisms such as syn-

aptic interactions between excitatory and inhibitory neuronal populations. To interpret data

using NMMs we need to quantitatively compare the output of NMMs with data, and thereby

find parameter values for which the model can produce the observed dynamics. Mapping

dynamics to NMM parameter values in this way has the potential to improve our understand-

ing of the brain in health and disease.

Though abstract, NMMs still comprise of many parameters that are difficult to constrain a

priori. This makes it challenging to explore the dynamics of NMMs and elucidate regions of

parameter space in which their dynamics best approximate data. Existing approaches to

overcome this challenge use a combination of linearising models, constraining the values

they can take and exploring restricted subspaces by fixing the values of many parameters a

priori. As such, we have little knowledge of the extent to which different regions of parameter

space of NMMs can yield dynamics that approximate data, how nonlinearities in models can

affect parameter mapping or how best to quantify similarities between model output and

data. These issues need to be addressed in order to fully understand the potential and limi-

tations of NMMs, and to aid the development of new models of brain dynamics in the future.

To begin to overcome these issues, we present a global nonlinear approach to recover-

ing parameters of NMMs from data. We use global optimisation to explore all parameters of

nonlinear NMMs simultaneously, in a minimally constrained way. We do this using multi-

objective optimisation (multi-objective evolutionary algorithm, MOEA) so that multiple data

features can be quantified. In particular, we use the weighted horizontal visibility graph

(wHVG), which is a flexible framework for quantifying different aspects of time series, by

converting them into networks.

We study EEG alpha activity recorded during the eyes closed resting state from 20

healthy individuals and demonstrate that the MOEA performs favourably compared to single

objective approaches. The addition of the wHVG objective allows us to better constrain the

model output, which leads to the recovered parameter values being restricted to smaller

regions of parameter space, thus improving the practical identifiability of the model. We then

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010985 March 24, 2023 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Dunstan DM, Richardson MP, Abela E,

Akman OE, Goodfellow M (2023) Global nonlinear

approach for mapping parameters of neural mass

models. PLoS Comput Biol 19(3): e1010985.

https://doi.org/10.1371/journal.pcbi.1010985

Editor: Andrea E. Martin, Max Planck Institute for

Psycholinguistics, NETHERLANDS

Received: October 26, 2022

Accepted: March 1, 2023

Published: March 24, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1010985

Copyright: © 2023 Dunstan et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All code used in this

study is given in a toolbox and is made publicly

available and maintained as a GitHub repository

(https://github.com/domdunstan/

NerualMassModellingToolbox). Processed data are

https://orcid.org/0000-0003-1973-1404
https://doi.org/10.1371/journal.pcbi.1010985
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010985&domain=pdf&date_stamp=2023-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010985&domain=pdf&date_stamp=2023-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010985&domain=pdf&date_stamp=2023-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010985&domain=pdf&date_stamp=2023-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010985&domain=pdf&date_stamp=2023-04-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010985&domain=pdf&date_stamp=2023-04-05
https://doi.org/10.1371/journal.pcbi.1010985
https://doi.org/10.1371/journal.pcbi.1010985
http://creativecommons.org/licenses/by/4.0/
https://github.com/domdunstan/NerualMassModellingToolbox
https://github.com/domdunstan/NerualMassModellingToolbox


use the MOEA to study differences in the alpha rhythm observed in EEG recorded from 20

people with epilepsy. We find that a small number of parameters can explain this difference

and that, counterintuitively, the mean excitatory synaptic gain parameter is reduced in peo-

ple with epilepsy compared to control. In addition, we propose that the MOEA could be used

to mine for the presence of pathological rhythms, and demonstrate the application of this to

epileptiform spike-wave discharges.

Author summary

EEG is a useful tool to study large scale brain activity. Mathematical models have been

developed to help improve the understanding of the generation of signals recorded from

the EEG during different brain states. The dynamics of these models are dependent on

their inputs (or parameters) and hence it is important to explore the parameter combina-

tions that result in model dynamics that approximate data. This allows us to better under-

stand how the data were generated. However, due to the relative complexity of these

models, finding the parameter combinations that explain data can be a cumbersome task

and hence many studies make simplifications about how model and data are compared.

In this study, we introduce methods that do not require these simplifying assumptions.

Using these methods we demonstrate that different choices in the way we compare models

and data can lead to differences in what we infer about the underlying mechanisms. How-

ever, we find that combining different choices into the same algorithm allows us to better

approximate features of the data and better constrain model parameters. We apply our

method to try to understand differences observed in the resting EEG between patients

with epilepsy and controls. We find that the model explains these differences predomi-

nately by a reduced excitatory synaptic gain in patients with epilepsy. We also demon-

strate the potential of this method to “mine” for different kinds of dynamics in high

dimensional models.

Introduction

Mathematical models are crucial for understanding the complex dynamics that emerge in the

brain. Since the majority of recordings of human brain dynamics are derived from the macro-

scopic scale (i.e. generated in relatively large regions of tissue), macroscopic models that

describe these dynamics have been extensively studied [1]. They are derived from a mixture of

empirical observations [2] and simplifying assumptions about how the dynamics of large pop-

ulations (ensembles, or masses) of neurons emerge [3]. They are popular as they provide a use-

ful balance between being able to generate a number of features of electrographic recordings

in health and disease [4–6] and their comparative simplicity [1]. They also offer the potential

to understand large-scale dynamics in terms of physiological mechanisms [7–9], though more

work is required to link “macroscopic mechanisms” to our understanding of the brain at the

cellular and cellular network level [10].

Studies using macroscopic models vary depending upon whether and how they incorporate

data. On the one hand, model parameters can be varied and changes in model dynamics quan-

tified, for example, using parameter sweeps or numerical continuation [4, 9, 11, 12]. Model

output under different parameter settings can then be compared qualitatively with aspects of

the dynamics of real data post hoc. This kind of approach has proven useful in understanding
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principles underlying the generation of healthy and pathological brain dynamics [4, 5, 13]. At

the other extreme are methods that aim to link model output directly to data. This approach of

“inverting” or “calibrating” the model from data allows us to describe (or quantify) the data

directly in terms of the parameters of the model. Dynamic causal modelling (DCM) is a well-

known example of this kind of approach, having at its core the use of mathematical models to

interpret recordings of brain dynamics [14]. In all of these approaches, the underpinning idea

is that the dynamics of the model change as parameter values are varied, and we try to find

parameter values for which model output closely resembles or “fits” the data. In most studies

of ongoing brain dynamics, and some studies of evoked responses, it is the frequency spectrum

of the data and model that are compared. However, some studies, particularly those aiming to

understand nonlinear brain dynamics in disorders like epilepsy, have incorporated other prop-

erties of signals, such as the distribution of amplitudes [8, 15].

Although macroscopic brain models provide a simplified, or abstract view of the mecha-

nisms of the brain, nevertheless they comprise of many parameters, the values of which can be

difficult to constrain. A classic example is the widely used Jansen and Rit neural mass model

(NMM), which treats neuronal populations as input to output converters; afferent input causes

a linear impulse response in the population membrane potential, which is converted nonli-

nearly into an outgoing firing density [6]. The mathematical equations chosen to model these

mechanisms have 9 free parameters in their simplest form. The Liley model [16], which

extends the Jansen and Rit model to include synaptic and membrane reversal potentials, has

22 parameters in its simplest form. These parameters, when varied, give NMMs the flexibility

to produce different kinds of rhythms and evoked responses; i.e. at different locations in

parameter space the model can produce different dynamics. Mathematically, this is due to

changes in the vector field as parameters are varied. In nonlinear NMMs, this inevitably

includes the presence of bifurcations, which can result in nearby parameter values giving rise

to qualitatively different dynamics (see e.g. [13]).

It is extremely challenging to characterise the variability in dynamics systematically in more

than a few dimensions, and certainly in the>8 dimensions which is typically the case for

NMMs. Therefore, existing approaches for recovering the values of parameters of NMMs from

data make simplifying assumptions. These include fixing or constraining the values of many

parameters a priori, therefore essentially working in a lower dimensional space [15, 17, 18],

and linearising the output of the model so that it can be evaluated quickly, facilitating a rapid

exploration of parameter space [19, 20]. However, it is important to consider retaining the

nonlinearities in NMMs for several reasons [21], which include theories for resting brain

dynamics assuming proximity to bifurcations [22]; the potential importance of nonlinear

mechanisms for producing dynamics of common brain rhythms (e.g. the alpha rhythm [23])

and the requirement of nonlinear mechanisms to produce pathological dynamics like those

seen in epilepsy [12].

Exploring constrained regions of parameter space means that any inferences made from

the model are only valid in the reduced regions of parameter space explored, i.e. naturally,

results are only valid in the context of the prior assumptions made. Unless there is a high

degree of confidence in the prior constraints, it is important to check whether different conclu-

sions could have been drawn if we had worked in other plausible regions of parameter space.

However, prior assumptions on the values of NMM parameters are not certain: their values

can be difficult to constrain given our lack of understanding of how macroscopic brain

dynamics are generated. Parameters of NMMs are often assumed to be analogous to parame-

ters at the microscopic scale, where we have more knowledge. Examples are the time scales of

synaptic responses, where commonly used parameter values have arisen from values identified

at the microscopic scale [8]. In reality, the “corresponding” impulse responses in NMMs are
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abstractions, and are produced in tissue containing many different cells communicating by

many different mechanisms (as highlighted in, for example, [2, 8, 16]). We might therefore

expect the parameters of neural mass postsynaptic potentials (PSPs) to have different values to

the parameters of neuronal PSPs.

Fortunately, tools are available to search large, complex parameter spaces for model dynam-

ics that match data. In particular, nondeterministic search heuristics such as evolutionary algo-

rithms (EA) or particle swarm have been used previously to recover parameters of NMMs

from data [15, 20, 24]. These algorithms incorporate objective functions that quantify the dif-

ference between simulations and data, and search parameter space to find parameter values

that minimise this difference. Crucially, methods like EAs do not solely rely on local gradients;

rather they incorporate mechanisms by which new parameter sets can be generated in dispa-

rate regions of parameter space. This is important for nonlinear models with bifurcations,

where information about where is best to explore in parameter space may not necessarily be

available locally. In addition, these methods are not based inherently on propagating probabil-

ity distributions, so simplifying assumptions on the shape of these distributions, such as Gaus-

sianity, which is unlikely in nonlinear models, do not have to be made. Here we focus on EAs,

which have shown promise in parameter mapping for NMMs [15, 18, 25].

Central to the use and performance of EAs (and other parameter inference methods like

DCM) is the definition of objective functions, which define how we measure the difference

between model output and data. The choice of objective function can vary depending on the

features of the data that we deem to be most important. It is common to quantify differences

in frequency spectra [4, 20], but more nuanced properties of the data, for example, amplitude

distributions or the presence of pre-defined features can also be used [15, 18]. This choice

determines where local or global minima are positioned in parameter space, and this dictates

which parameter values are deemed to yield model output that resembles the data. It is there-

fore important to begin to investigate the effect that different choices of objective functions

have. When multiple data features are of interest, composite objective functions can be formed

[15], though this can lead to local minima in which only one aspect of the objective is mini-

mised. An alternative is to use multi-objective optimisation, in which the goodness of fit of

model output is assessed on each objective individually [18, 26, 27]. This approach can better

ensure that trade-offs between the different objectives are explored, while also allowing for a

rank-based objective sorting during the optimisation. This is crucial when one does not have

any a priori knowledge of how the objectives interact.

To begin to advance the tools that are available to recover parameters of NMMs and to

address the above issues, herein we present a global optimisation approach that allows the

exploration of all parameters of nonlinear NMMs simultaneously, in a minimally constrained

way. We use multi-objective optimisation (multi-objective evolutionary algorithm, MOEA) so

that features beyond the power spectrum can be incorporated. For the latter, we use the

weighted horizontal visibility graph (wHVG), which incorporates aspects of the amplitude dis-

tribution (see Fig 1 herein), but has also been shown to be capable of distinguishing between

different kinds of noise [28] and subtle features of nonlinear brain rhythms [29]. The (w)HVG

transforms a time series into a network, where each time point is mapped to a node, and two

time points (nodes) are connected by (weighted) edges only if a straight line connecting the

amplitudes at those time points does not pass through the time series at an intermediate point

(see Fig 1). In addition to the favourable properties mentioned above, this opens up the possi-

bility of measuring the dynamics of time series in different ways within the same framework,

using different graph theoretical measures [30]. Here we focus on the distribution of node

degrees, which is the simplest such measure.
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In order to test this approach, we use the MOEA to recover parameters of a NMM from

resting EEG recorded from 20 healthy individuals. We demonstrate that the MOEA performs

favourably compared to single objective evolutionary algorithms (SOEAs) in terms of finding

model parameters for which the model well approximates the data. We also show that in using

the wHVG as an objective, the MOEA is able to constrain other features of the data, namely

the relative amplitude distribution and Hurst exponent. By mapping plausible NMM parame-

ters in a global way, we demonstrate that seemingly subtle differences in the way in which

model and data are compared can lead to substantial differences in the values of parameters

that are recovered.

To demonstrate a potential use of the algorithm, we further apply it to resting EEG recorded

from 20 people with epilepsy. We find that the resulting parameter distributions are largely the

same as control, except for a small number of parameters that display differences. The largest

difference found was for the mean excitatory synaptic gain parameter. Counterintuitively, we

find this to be reduced in people with epilepsy, which hints at a potential protective mecha-

nism at play during non-seizure epochs, or an effect of antiepileptic medication. It also pro-

vides evidence of the ability to recover mechanistic differences in the brain of people with

epilepsy, from recordings that do not show seizure rhythms. Finally, we demonstrate the use of

Fig 1. Illustration of the objective calculations used to compare model output to data. A) shows an exemplar z-scored EEG 5s time series (note that

the actual data used in this work are 20s segments). A fast Fourier transform is applied to convert the time series into the frequency domain. B) shows

the normalised power in the 2–20Hz range. This is used to calculate the objective for the SOEA20 and the first objective for the MOEA20. C) shows the

normalised power after pre-whitening (see Methods). This is used to calculate the objective for the SOEA45 and the first objective for the MOEA45. D)

shows the amplitude of 5 consecutive time points from the data in A), plotted as a bar chart. These time points have a resolution of 3.9ms. The

conversion of the time series into the wHVG distribution for this section of the time series is shown (note that the whole time series is used to calculate

the wHVG distribution in practice). The resulting network from this transformation is given in E). The sum of node weights of the wHVG is then used

in the calculation of the second objective for the MOEA20 and MOEA45 approaches.

https://doi.org/10.1371/journal.pcbi.1010985.g001
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this approach to uncover the existence of pathological dynamics in NMMs. We apply our algo-

rithm to data comprising a classic epileptiform rhythm, the spike-wave discharge (SWD), and

demonstrate that the Liley model can approximate the dynamics of this rhythm.

In summary, we present a global and nonlinear method for recovering NMM parameters

from data. We demonstrate its ability to uncover differences in mechanisms of different brain

states and to mine NMMs for the presence of different kinds of dynamics. Our results high-

light the need to carefully consider how models and data are compared, as even subtly different

approaches can lead to different inference.

Methods

Liley neural mass model

To model EEG, we apply the local spatially homogeneous version of the mean-field model first

described in [31]. For a detailed breakdown of the model derivation, see [16, 32]. In short, the

model describes the dynamics of a cortical macrocolumn in terms of the interaction between

distinct populations of excitatory and inhibitory neurons. Each population is considered to be

connected to both itself and the other population, with the assumption of fast-acting synapses.

Subsequently, for t 2 [0, T] with T 2 R>0, the model is comprised of the following set of cou-

pled first and second-order differential equations:

te
dheðtÞ
dt
¼ hreste � heðtÞ þ

heqe � heðtÞ
j heqe � hreste j

IeeðtÞ þ
heqi � heðtÞ
j heqi � hreste j

IieðtÞ; ð1Þ

ti
dhiðtÞ
dt
¼ hresti � hiðtÞ þ

heqe � hiðtÞ
j heqe � hresti j

IeiðtÞ þ
heqi � hiðtÞ
j heqi � hresti j

IiiðtÞ; ð2Þ

d2IeeðtÞ
dt2

þ 2gee
dIeeðtÞ
dt
þ g2

eeIeeðtÞ ¼ Gegee expð1ÞðN
b

eeSeðheðtÞÞ þ pðtÞÞ; ð3Þ

d2IeiðtÞ
dt2

þ 2gei
dIeiðtÞ
dt
þ g2

eiIeiðtÞ ¼ Gegei expð1ÞðN
b

eiSeðheðtÞÞ þ peiÞ; ð4Þ

d2IieðtÞ
dt2

þ 2gie
dIieðtÞ
dt
þ g2

ieIieðtÞ ¼ Gigie expð1ÞðN
b

ieSiðhiðtÞÞÞ; ð5Þ

d2IiiðtÞ
dt2

þ 2gii
dIiiðtÞ
dt
þ g2

iiIiiðtÞ ¼ Gigii expð1ÞðN
b

ii SiðhiðtÞÞÞ; ð6Þ

where S(�) is a nonlinear sigmoid function that provides a transformation of the mean postsyn-

aptic membrane potential into a mean firing rate. This mapping is defined as,

SjðhjðtÞÞ ¼
Smaxj

ð1þ expð�
ffiffiffi
2
p ðhjðtÞ � mjÞ

sj
ÞÞ

;
ð7Þ

for subscripts j = e, i representing the excitatory and inhibitory populations, respectively. Eqs 1

and 2 describe the temporal evolution of the mean soma membrane potentials. Furthermore,

Eqs 3–6 describe the dynamics of the synaptically induced currents in response to afferent fir-

ing. For notation Ilk, the subscripts lk correspond to synapses of type l acting on neurons of

type k. The terms ðheql � hkðtÞÞ=ðh
eq
l � hrestk Þ, for l = e, i and k = e, i, incorporate that the mean
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magnitude of postsynaptic current flow, in response to synaptic activity, will be dependent on

the mean soma membrane potential [16]. The function p : ½0;T� ! R is modelled by a sto-

chastic Gaussian process with a mean and variance given by parameters pee and ξ, respectively,

which accounts for extrinsic inputs to the neural mass (i.e. inputs from other unmodelled

brain regions).

As established previously (for example, see [16, 31]), the mean soma membrane potential

of the excitatory population (he(t)) is then taken to be the model output and is assumed to be

linearly proportional to the EEG. Additionally, as in [20, 33], we assume γee = γei = γe and γie =

γii = γi. Finally, all other parameters are detailed in Table 1, along with physiological interpreta-

tions, typically chosen values and typically used bounds [16, 24].

EEG data

Three data sets were used in total for this work. The first and the second were subsets of data

from a previous study [35], and each consist of 20s epochs of EEG alpha activity recorded dur-

ing the eyes closed resting state. The first set consisted of 20 healthy adults and the second set

consisted of 20 adults diagnosed with focal epilepsy (FE). In the cohort that these were taken

from, 56% were left lateralised. Further information can be found in [35] and at https://osf.io/

f2vya/. All of these EEG recordings were taken on a NicoletOne system at 256Hz from 19

channels positioned according to the international 10–20 system, with two reference electrodes

attached to the ear lobes. Data were re-referenced to the common average. For the purpose of

studying the alpha rhythm, we restrict our analyses to the mean of the occipital electrodes. Fur-

thermore, a 2Hz high-pass Butterworth filter was applied to the data, in order to

remove low frequency components. The third data set used was a single scalp EEG recording

taken from a patient with absence epilepsy at Inselspital Bern, Switzerland. This recording

exhibited a clear SWD pattern. A 2Hz high-pass Butterworth filter was also applied to

this data to remove low frequency components. Additionally, all data sets were z-score

normalised.

Model simulation

In order to numerically solve the model, Eqs 1–6 were converted into a set of ten first-order

stochastic differential equations (SDEs). The Euler–Maruyama method was then used to

numerically solve this set of SDEs, with zero initial conditions. A time step of 0.0125ms was

Table 1. Parameter values with physiological interpretation, a typical chosen value and typically used bounds [16, 34].

Parameter Interpretation Typical Value Range

hreste ; hresti Mean excitatory/inhibitory membrane potential at rest −70mV, −70mV [−80mV, −60mV], [−80mV, −60mV]

Nb
ee, N

b
ei, N

b
ie,

Nb
ii

Number of excitatory—excitatory/excitatory—inhibitory/inhibitory—excitatory/inhibitory

—inhibitory synaptic connections

4000, 3034, 536,

536

[2000, 5000], [2000, 5000], [100,

1000], [100, 1000]

Γe, Γi Excitatory/inhibitory mean synaptic gain 0.4mV, 0.8mV [0.1mV, 2mV], [0.1mV, 2mV]

γe, γi Excitatory/inhibitory postsynaptic potential rate constant 0.3/ms, 0.065/ms [0.1/ms, 1/ms], [0.01/ms, 0.5/ms]
τe, τi Passive excitatory/inhibitory membrane time constant 10ms, 10ms [5ms, 150ms], [5ms, 150ms]
Smaxe , Smaxi Maximum mean firing rate of excitatory/inhibitory population 0.5/ms, 0.5/ms [0.05/ms, 0.5/ms], [0.05/ms, 0.5/ms]
μe, μi Excitatory/inhibitory firing rate thresholds −50mV, −50mV [−55mV, −40mV], [−55mV, −40mV]

σe, σi Excitatory/inhibitory firing threshold standard deviation 5mV, 5mV [2mV, 7mV], [2mV, 7mV]

heqe ; h
eq
i Excitatory/inhibitory mean reversal potential - [−20mV, −10mV], [−90mV, −65mV]

pee, pei Rate of excitatory-excitatory/excitatory-inhibitory input - [0/ms, 10/ms], [0/ms, 10/ms]
ξ Standard deviation of noise perturbation - [0, 10]

https://doi.org/10.1371/journal.pcbi.1010985.t001
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used to ensure accurate convergence. Each model output was calculated to match the EEG

epoch length (20s for resting data, 2.3s for SWD data). To account for transient dynamics, a

further 5s was calculated at the start of the model simulation and then removed. Note that we

compare the model output he(t) directly to the EEG because in this study we are neglecting

contributions from other sources and therefore do not use a forward model. In future work

with multiple sources, an appropriate forward model will need to be used.

The model was run using MATLAB’s MEX interface [36]. This enables the implementation

of C functions directly from MATLAB, providing enhanced computational efficiency com-

pared to MATLAB functions alone. The authors would like to acknowledge the use of the Uni-

versity of Exeter’s high-performance computing facility in carrying out this work.

Multi-objective optimisation

Multi-objective optimisation aims to minimise F(x) = (f1(x), f2(x), . . ., fd(x)), given a set of con-

straints on the inputs x = (x1, x2, . . ., xg). F(x) forms the d-dimensional objective space and x

forms the g-dimensional decision space. Here, the decision space is the parameter space

bounded within the ranges specified in Table 1. In the case d = 1, the problem becomes that of

a single objective optimisation and hence an optimal solution can be defined as one that mini-

mises the objective, given the constraints. For d> 1 the concept of optimality is more ambigu-

ous, since solutions can exist whereby performance in one objective cannot be improved

without hindering the performance of another objective. Such solutions are said to be Pareto

optimal. Subsequently, we use an optimiser that employs the common approach of generating

a set of points that satisfy the above condition, known as the non-dominated set of points. A

decision vector x strictly dominates another decision vector y iff,

faðxÞ � faðyÞ 8a ¼ 1; . . . ; d and

faðxÞ < faðyÞ for some a:

A genetic algorithm (GA) is a commonly used evolutionary global search heuristic which

aims to determine a set of parameters that, upon simulation of the model, provide an output

that recreates certain characteristics (or objectives) of the data. In this study, we utilise

MATLAB’s global optimisation toolbox to fit the model to the EEG data, by varying all the

model parameters. Specifically, we use the gamultiobj function, which implements the

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [37]. A central

reason for using NSGA-II is because of the complex bifurcation structure that is known to

exist in a NMM [38]. These bifurcations cause sudden changes in the objectives upon small

parameter perturbations, which would render the ability of gradient-based optimisers to

explore decision space, inadequate.

To formulate a GA, one must construct a fitness function based on objectives that the

model is aimed to recreate, compared to the data. The GA then goes through a series of itera-

tions (or generations) for which the model is simulated for an ensemble of parameter sets (the

population). In this study, the initial population is obtained through a random Latin hyper-

cube sampling of the parameters within their given physiological bounds. At each generation,

every individual in the population is assigned a fitness score, based on how well that individual

recreates the preassigned objectives. Each individual is then given a rank obtained from the

fitness scores. Based on these ranks, the algorithm subsequently uses a tournament selection

process, along with a crossover and mutation function, to create the population for the subse-

quent generation [37]. We use MATLAB’s default values for the mutation and selection
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function. However, we apply the scattered crossover function (as opposed to the default inter-

mediate crossover), as we found this allowed for a better exploration of the feasible solutions

in parameter space. As model simulations are stochastic, we simulate the model and calculate

the objective function five times, and then assign the mean value obtained from these repeats

as the objective for that parameter set.

To compare model output of the MOEA and SOEA approaches, we selected a single point

from the non-dominated set obtained from the MOEAs. This point was chosen as the point

that maps to the smallest Euclidean distance in objective space from the origin, after normali-

sation of the objectives. The normalisation applied was the division of the objective values by

the mean value obtained from all points that were in the non-dominated set. This provided a

single output from each MOEA that had a good balance between each objective. Due to sto-

chasticity in the GA themselves, we ran 100 replicates of the algorithms for a fixed 50 genera-

tions and with a population size of 500. We found that this termination criterion was sufficient

to find a parameter set that had converged. We quantified this by comparing the hypervolume

indicator and best Euclidean distance point over different population sizes and generations

[26, 27, 39] (see S1 Fig).

Objective functions

We consider three different objectives when comparing the model output to data. Each algo-

rithm we test uses either one (SOEA) or two (MOEA) of these. The first objective is the mean

squared error (MSE) between the normalised power spectral density (PSD) in linear space:

MSESOEA20 ¼
X

o1

ðm
o1

data � m
o1

modelÞ
2
; ð8Þ

where m
o1

data gives the data PSD at frequency ω1 and m
o1

model gives the mean model PSD at fre-

quency ω1. Here, ω1 ranges between 2 and 20Hz with a resolution of 0.125Hz [20].

For the second objective, the frequency range was widened to 2–45Hz (ω2) and the 1/f back-

ground noise removed by performing linear regression, using robust fitting, on the log-log

spectra and subtracting this linear component [21, 40]. We then calculated the MSE difference

in natural log space:

MSESOEA45 ¼
X

o2

ðlogðmo2

dataÞ � logðmo2

modelÞÞ
2
: ð9Þ

The third objective, applied only in the MOEA approaches, is based on the HVG, which is a

mapping from a time series to an undirected graph (network) [41]. Let G = (V, E) be a graph

with V a set of vertices (or nodes) and E a set of edges. Furthermore, let {xi}i = 1, . . .., N be a time

series of N data points. Then the HVG algorithm assigns each time point to a node in the

HVG, V = {1, . . ., N}. Nodes i and j are then connected by an edge if xi, xj> xk 8 i< k< j. This

means that an edge is drawn between two nodes in the graph if it is possible to trace a horizon-

tal line between the two data points, without intersecting an intermediate point. Lacasa and

Luque also proposed a useful extension of the standard HVG, known as the weighted HVG

(wHVG) [42]. In this case, if there exists an edge between two nodes, then that edge is given a

weighted value as the difference in amplitude between the two time points (latter time point

minus former time point). See Fig 1 for an example of the calculation of the wHVG. In [28],

the authors showed using information theory that the wHVG is capable of characterising

dynamical systems with significantly less data than that of other commonly used metrics from

HVG, such as the degree distribution. Furthermore, the authors in [43] were able to use the

wHVG to classify epileptic seizures from healthy dynamics with a near 100% accuracy. In this
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study, we use the two-sample Kolmogorov-Smirnov test statistic on the wHVG degree distri-

bution to compare model and data. For F : R! ½0; 1� and G : R! ½0; 1� representing the

wHVG sum of node weights cumulative distribution function of the data and model simula-

tion respectively, and y 2 R, the third objective is defined as,

D ¼ sup
y
j FðyÞ � GðyÞ j : ð10Þ

Throughout this work, to visualise differences between wHVG distributions (and also

amplitude distributions), we calculate a density approximation of the distribution using 100

equally sized bins. We refer the reader to Fig 1 for the calculation of the objectives in each

method.

Jensen-Shannon Divergence

The Jensen-Shannon divergence (JSD) is a measure of the similarity between two probabil-

ity distributions. It is a symmetrised and smoothed version of the Kullback-Leibler diver-

gence. Given probability distributions P and Q in domain O and Shannon entropy Hs(P) =

−∑x2O P(x)log(P(x)), then,

JSDðP;QÞ ¼ Hs
P þ Q

2

� �

�
1

2
HsðPÞ �

1

2
HsðQÞ: ð11Þ

Here, we estimate probabilities using 100 equally sized bins. We apply the JSD in two ways.

First, to estimate the deviation of a parameter’s marginal distribution from a uniform distribu-

tion (which approximates the prior that the optimisation started from). This enables us to

quantify the practical identifiability of a given parameter, with the higher JSD implying a

greater deviation from uniform and hence improved practical identifiability [20]. Second, JSD

is used to estimate the discrepancy between parameter distributions recovered from control

and FE subjects, with higher JSD implying a greater deviation in the recovered parameters

between the cohorts.

Results

Comparing model dynamics recovered using different objective functions

We investigate different ways to quantify the similarity between model output and data, and

explore the effect these might have on parameter mapping. Following previous studies [20], we

map parameters of the Liley model [16] from resting EEG. To do this, we utilise four different

global optimisation approaches, as described in Methods. Briefly, we use two different objec-

tive functions to quantify similarity in the frequency spectrum: 1) the sum of squared differ-

ences between model PSD and data PSD in the 2–20Hz range [20] and 2) the sum of squared

differences between model PSD and data PSD in the log-transformed and linearly detrended

2–45Hz range (e.g. [21]). Our other objective function is the Kolmogorov-Smirnov test statis-

tic on the wHVG degree distributions (see Methods). Our four different EAs are therefore sin-

gle objective EAs using either of the frequency spectra objectives (SOEA20 and SOEA45), and

multi-objective EAs combining these with the wHVG objective (MOEA20 and MOEA45).

Fig 1 illustrates the calculation of these objectives.

Fig 2 shows exemplar data from two subjects, along with simulations of the model using the

optimal parameters found. In the case of the MOEAs, “optimal” refers to the parameters that

yield simulated objective values with the smallest Euclidean distance to the origin (see Meth-

ods). In Fig 2A it can be seen that the different algorithms yield qualitatively different dynam-

ics, and recapitulate different aspects of the data for subject 13. For example, the SOEA20
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yields a very rhythmic output, and the output from the MOEA45 appears to contain more spo-

radic bursts than the other methods. The SOEA45 and the MOEA20 produce a waxing and

waning of the alpha rhythm. Fig 2B shows a close up of the normalised PSD around the domi-

nant alpha rhythm. The SOEA20 and the MOEA20 provide the closest match to the peak here,

whereas the SOEA45 and MOEA45 have broader peaks. Examining the PSD in the broader

2–45Hz range, and using a log-transform, all algorithms except the SOEA20 have captured the

over-riding “1/f” trend, and all have picked up on a second peak around 20Hz (Fig 2C). There-

fore, comparing the MOEA20 to the SOEA20, the addition of the wHVG objective has led to

adjustments in the power spectrum beyond the 2–20Hz range that is not explicitly quantified

in the PSD objective. In the MOEA20, this is not at the expense of a reduction in the quality of

fit to the predominant alpha rhythm. The SOEA45 and MOEA45, on the other hand, have pro-

duced broader and slightly shifted alpha peaks as a result of explicitly fitting to data in the

higher frequencies.

Fig 2D shows that the wHVG degree distribution of the data is closely matched by the out-

put of the MOEA20 and MOEA45, but less closely matched by the output of the SOEA20 and

Fig 2. Two exemplar data sets and model output using optimal parameters derived from each algorithm. Optimal refers to the smallest Euclidean

distance from the origin in objective space. A) time series from data (black) and model simulations from each algorithm (colours as per legend). The

corresponding PSD for the data and each simulation is shown for B) the dominant alpha rhythm and C) the broadband spectrum. To better

differentiate between the signals, the baseline of the normalised power is shown with an offset for each algorithm. D) and E) show the corresponding

wHVG and amplitude distributions from each simulation against the data, respectively. In each case, these signals show a density approximation of the

distribution, calculated from 100 equally sized bins (see Methods). F-J) shows the equivalent of A-E) for a second subject.

https://doi.org/10.1371/journal.pcbi.1010985.g002
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SOEA45. In particular, the latter are skewed to the right and do not have as much density at

high wHVG degree values. This demonstrates that the wHVG is capturing aspects of the data

not accounted for by focusing on the PSD in either the 2–20Hz or the 2–45Hz range. Interest-

ingly, Fig 2E shows that the amplitude distribution is largely conserved across all algorithms

apart from the SOEA20. This confirms that the wHVG is quantifying properties of the ampli-

tude distribution. The fact that the SOEA45 closely matches the amplitude distribution but not

the wHVG distribution confirms that the wHVG is additionally quantifying aspects of the data

beyond the amplitude distribution. Fig 2F–2J shows the data and model simulations for a dif-

ferent subject. For this subject, the alpha rhythm occurs in shorter bursts. Inspecting the time

series, initially all algorithms appear to reproduce model simulations with similar dynamics to

the data. However, here too the SOEA20 and MOEA20 provide better approximations to the

alpha power peak in the data (Fig 2G). Furthermore, applying the MOEA20 and MOEA45 has

resulted in model simulations that subtly better capture the wHVG degree distribution of the

data (Fig 2I), with all algorithms largely capturing the amplitude distribution for this subject

(Fig 2J). These findings are presented for all 20 subjects in S2 Fig.

To further examine the role of the wHVG, in Fig 3 we analyse shorter segments of the time

series of Fig 2A. Initially, the time series of all algorithms apart from the SOEA20 appear simi-

lar (Fig 3A). However, the wHVG distribution of the SOEA45 differs from that of the data and

the MOEAs. Similarly to the wHVG degree distribution of the whole segment shown in Fig

2D, the SOEA45 wHVG degree distribution is skewed to the right, and here contains most

density at values between 0 and 0.5. To better understand this, in Fig 3C we re-plot the time

series of the data alongside the simulations from the SOEA45 and MOEA20, with each time

point colour coded according to its wHVG degree (normalised between -1 and 1, to exclude

outliers). Fig 3C demonstrates that for this subject, differences in the wHVG degree distribu-

tion are largely determined by the shape of oscillations. The data and the MOEA20 contain

waveforms in which the rise phase has very high wHVG degree (white areas in time series of

Fig 3C). In contrast, the SOEA45 has waveforms in which the decay phase of the oscillation

has very low wHVG degree (dark areas in the time series of Fig 3C). The data and MOEA20

also contain some periods of more symmetric oscillations, for which the SOEA45 does not. In

summary, for this subject, applying the MOEA20 algorithm has maintained a good approxi-

mation to the alpha rhythm peak (in contrast to the MOEA45) whilst avoiding dynamics that

are too periodic (in contrast to the SOEA20) or of a different shape to the data (in contrast to

the SOEA45).

Fig 4 summarises these findings across all 20 subjects. It shows the distribution of differ-

ences in the normalised median objective values, considering the MOEA20 as a reference

point. Fig 4A shows that the MOEA20 and MOEA45 clearly perform best in approximating

the wHVG of the data across all subjects. The MOEA20 also better approximates the PSD in

the 2–20Hz range compared to the SOEA45 and MOEA45; the fit of the MOEA20 to the alpha

peak in the 2–20Hz range is indistinguishable from the SOEA20 in the majority of subjects

(Fig 4B). Taken together, this indicates that the MOEA20 is performing well at capturing an

optimal trade-off between PSD fit to the dominant rhythm in the alpha range and the wHVG.

In performing this trade-off, the MOEAs also produce parameter values for which simulations

approximate the 2–45Hz log-transformed frequency spectrum well. This can be seen in Fig

4C, in which the SOEA45 performs only marginally better than the MOEAs on the whole. We

note that the use of log-transformed and detrended 2–45Hz band as an objective in the

SOEA45 yields outliers with very poor fits to the dominant alpha peak, as seen in the example

of S3 Fig. S4 Fig shows an alternative representation of these findings, demonstrating that the

MOEA20 produces simulations with the lowest Euclidean distance from the origin in either 2

or 3-dimensional objective space. In addition, S5 Fig shows that, in general, the results of the
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MOEAs better approximate the amplitude distribution and the Hurst exponent than the

SOEA20 and SOEA45.

Comparing parameter values recovered using different objective functions

We have shown that the choice of objective function can alter the dynamics that are generated

by the model. These changes in dynamics can be major (such as the SOEA20 producing spikes,

as shown in Fig 2) or more subtle (such as the difference in waveform between the MOEA20

and SOEA45 encapsulated by the wHVG, as shown in Fig 3). A natural question that arises is,

to what extent this will affect the values of the parameters that are recovered. Fig 5 demon-

strates that the differences can be substantial. These results are derived from each of the sub-

jects analysed in Fig 2. For the first subject, Fig 5A shows that the MOEA20 and MOEA45

algorithms have resulted in a narrowing of the distributions of some of the parameters com-

pared to the SOEA approaches. Specifically, γe and γi are more constrained to the lower end of

Fig 3. Illustration of wHVG distributions derived from the data presented in Fig 2A. A) 1.5s segments of data and model simulations at the optimal

parameter set (colours as per legend). Optimal refers to the smallest Euclidean distance from the origin in objective space. B) the corresponding wHVG

distributions derived from the time series segments in A). These histograms give the wHVG frequency from 100 equally sized bins (see Methods). C)

the time series from the data, SOEA45 and MOEA20 simulations, as shown in A), with time points (i.e. wHVG nodes) coloured according to their node

weight (normalised between -1 and 1 to remove outliers).

https://doi.org/10.1371/journal.pcbi.1010985.g003
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the ranges explored, whereas σe is more constrained to the higher end of the range explored.

Conversely, for the second subject analysed, Fig 5B shows that using the different algorithms

can result in vastly different recovered parameter values. This is particularly apparent for

parameter γe. Here, the SOEA20 yields γe values across the whole range, SOEA45 towards the

upper end, MOEA20 predominantly at the lower end and MOEA45 mainly around the middle

of the range. For this subject, the SOEA20 approach additionally deviates from the other algo-

rithms for parameters γi and σe.
To visualise and quantify differences with respect to the full parameter space, we calculated

the normalised Euclidean distance between parameter sets recovered from each algorithm in

the full space and then map this to 2 dimensions using multi-dimensional scaling. Parameters

in the same location in the full space would map to the same position in this 2-d space. Four

pairwise algorithm comparisons for the position of the N = 100 repeats in this space are colour

coded and shown in Fig 5C and 5D. The algorithms partially separate into clusters, although

there is a large degree of overlap. We quantified this effect by calculating the silhouette score,

considering points from different algorithms as different clusters. The scores are shown in the

titles of the subplots for the 2-d space comparison, with the values in the full space given in

brackets. For the first subject analysed, the largest silhouette score is for the MOEA20 com-

pared to the SOEA20 (Fig 5C). For the second subject analysed, Fig 5D shows all the algo-

rithms largely separate into distinct clusters with all silhouette scores in the 2-d space�0.24.

We followed this same procedure to quantify differences in the location of recovered parame-

ter sets produced by each of the 4 algorithms across all 20 control subjects. The silhouette

score from the 2-d space, for each comparison, is shown in Fig 6, along with the means over all

20 subjects. In addition, S6–S9 Figs give the parameters in the 2-d space across all the subjects

that these scores were derived from. The average silhouette scores are around 0.18 for all com-

parisons considered, except for the MOEA20 compared to the MOEA45, which is approxi-

mately 0.09. Considering the silhouette scores in the subjects analysed in Fig 5, we see that

even for low values of the silhouette score, large differences in the distributions of one or more

parameters can exist. For example, as shown in Fig 5C, the MOEA20 compared to the

SOEA45 has a below mean silhouette score of 0.15. However, it can be seen in Fig 5A that for

the MOEA20, in comparison to the SOEA45, the parameter σe alone is much more constrained

to the higher end of the range explored.

Fig 4. Normalised median objective scores from all fits to data and across each algorithm, with the MOEA20 as a reference. Each scatter point

represents a median objective score from a single subject. The median is calculated from the distribution of normalised Euclidean distances from the

origin. This is shown for the A) wHVG B) PSD 2–20Hz and C) log-transformed PSD 2–45Hz objectives. A distribution above (below) the MOEA20 line

indicates a better (worse) score was obtained from that algorithm on that objective, compared to the MOEA20.

https://doi.org/10.1371/journal.pcbi.1010985.g004
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We next examined the distributions of parameters recovered from each algorithm, across

all subjects combined. Histograms for all parameters are shown in S10–S13 Figs. On the

whole, we found that for many of the parameters, feasible values were present across the whole

range explored. However, many parameters also displayed modes, i.e. higher densities at cer-

tain values. To quantify this effect, we calculated the JSD between the distribution of parame-

ters recovered from control subjects, compared to a uniform distribution (see Methods). We

found that in at least one of the algorithms, 5 of the 22 parameters had distributions signifi-

cantly different from uniform. These parameter distributions are displayed in Fig 7. It can be

seen that the synaptic time scale parameters, γi and γe, have the largest deviation from uniform,

and are peaked at low values. However, for the SOEA20 and SOEA45, the distribution of these

parameters contain additional density at high values. This is reflected in the lower values of the

JSD for these algorithms. The distributions of the other parameters in Fig 7 in general can also

Fig 5. Example distributions of parameter values recovered from two subjects, using each algorithm. A) and B) show the distribution of 3

parameters (γe, γi and σe) that were recovered from subjects 13 and 4, respectively. These were the same two subjects analysed in Fig 2. The parameter

bounds are set to those used in the optimisation (see Table 1). For these subjects, C) and D) show the projection of each parameter set into the 2-d space

found by applying a multi-dimensional scaling to the full parameter space. Each scatter point represents the optimal position in parameter space found

by a single run of the optimisation algorithm. Optimal refers to the smallest Euclidean distance from the origin in objective space. The separation of

these points in 2-d space is quantified by the silhouette score, with the silhouette score in the full space given in brackets.

https://doi.org/10.1371/journal.pcbi.1010985.g005
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be seen to have been somewhat “filtered” or “trimmed” by each of the MOEA approaches, and

the MOEA20 approach in particular. This is quantified by the MOEA20 having a significantly

larger JSD than both the SOEA20 and SOEA45 for parameters γe, γi, σe and pee. This indicates

that, in addition to the MOEA20 recovering parameter values that are different from the other

algorithms, it has the added benefit that these values are less dispersed in parameter space.

Having quantified differences in the dynamics recovered under different objective func-

tions, we explored whether these were reflected in the nature of the invariant objects that orga-

nise these dynamics in phase space. For simplicity, and since most relevant dynamics resulted

from the deterministic part of the model being at steady state, we focused on recovered param-

eter sets for which the model had a stable fixed point. Fig 8 shows the distribution of real parts

of the dominant eigenvalue for these fixed points, across each algorithm. It can be seen that the

distributions for the MOEA20 and MOEA45 are much more constrained than those of the

SOEAs, and reside at values closer to zero. Thus, an additional effect of the MOEA approaches

is to recover fixed points that attract nearby trajectories more slowly and are potentially more

proximal to bifurcations. We note that for 2 of the 20 subjects studied, the majority of parame-

ter sets recovered placed the deterministic part of the model in a limit cycle regime for all algo-

rithms. Limit cycle dynamics are only possible when simulating the full nonlinear model. The

type of attracting state reached for a given parameter set was quantified by the eigenvalue spec-

trum. The proportion of parameter sets giving rise to noise-driven fixed points and noise-

driven limit cycles are shown in Fig 9A. Fig 9B and 9C provide an example model simulation

in phase space from an attracting noise-driven fixed point and an attracting noise-driven limit

cycle, respectively.

Additionally, we tested the different algorithms on signals simulated by the model. This

allowed the distribution of parameters recovered from the algorithms to be compared to a

ground truth value. S14 Fig shows, across the same parameters as those considered in Fig 7,

the Euclidean distance to the ground truth from 3 simulated time series. S14 Fig also shows the

histograms of parameter values from one of these simulated time series. Across all 3 simulated

time series, compared to the other algorithms, we found that the MOEA20 approach was either

Fig 6. Silhouette scores quantifying differences in parameters recovered from different algorithms. The parameter values are mapped via multi-

dimensional scaling to a 2-d space and silhouette scores calculated for pairs of algorithms. A) SOEA20 v SOEA45, B) SOEA20 v MOEA20, C) SOEA45 v

MOEA20 and D) MOEA20 v MOEA45 comparisons. In each case, horizontal dashed lines give the mean silhouette score across subjects for the

corresponding pairwise comparison.

https://doi.org/10.1371/journal.pcbi.1010985.g006
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insignificant from, or significantly closer to, the original ground truth value used to run the

simulated data.

Using MOEAs to explain alpha power shifts in epilepsy

Our results thus far show that the MOEA20 is better than the other algorithms at capturing rel-

evant features of the data. We exclude the SOEA20 due to the spiking limit cycle behaviour it

can give rise to (Fig 2); the SOEA45 due to it giving rise to waveforms of a different shape to

the data (Fig 3) and the MOEA45 as it detracts from dominant alpha rhythms (Fig 2). Essen-

tially, the MOEA20 provides the best algorithm to capture the alpha rhythm PSD plus the wax-

ing and waning, as well as the shape of the waveform (as shown in S4 Fig). We therefore focus

on the MOEA20 and apply it to the problem of understanding differences that have been

Fig 7. Parameter distributions recovered from all control data sets. A) shows the distributions of 5 of the parameters that were recovered from 100

repeats of each algorithm on all subjects (coloured as per the legend). These 5 parameters represent the biggest deviation from a uniform distribution in

at least one of the algorithms (see Methods). The parameter bounds in these plots are set to those used in the optimisation (see Table 1). B) shows the

JSD of the marginal distributions, when compared to a uniform distribution. These are shown as violin plots over subjects. P-values were obtained from

a Mann-Whitney U test, with Bonferroni correction.

https://doi.org/10.1371/journal.pcbi.1010985.g007
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observed in the dynamics of resting EEG in people with epilepsy versus healthy controls [35].

In particular, a shift in the alpha power of epileptic patients to lower frequencies has previously

been reported [35]. Fig 10A and 10B show the PSD in the 2–20Hz range and the wHVG distri-

bution for controls and people with FE, respectively. The FE shift towards lower frequencies

can be seen, as can a small increase in the peak of the modal wHVG for the FE subjects. Fig

10C and 10D show the PSD and wHVG distributions of simulations of the model at parameter

sets recovered via the MOEA20, respectively. It can be seen that the simulations accurately rec-

reate the power spectra and wHVG of both cohorts and the differences between them.

Using the MOEA20, we next compared the distribution of parameter values that were

recovered from the control and FE data. The comparison of all parameters can be seen in S15

Fig. It is apparent that many of the parameters have values across the full range explored, and

in many cases, there are no differences between the distributions derived from people with epi-

lepsy and healthy controls. Of notable exception is the parameter Γe, which quantifies the

mean excitatory synaptic gain. We found the density of this parameter to be shifted to higher

values in healthy subjects compared to people with epilepsy. In order to quantify any other sys-

tematic differences in the distributions of parameter values between the cohorts, we calculated

the effect sizes (Cohen’s d) and JSD between the marginal distributions. Fig 11 shows the dis-

tributions of the 4 parameters with the largest differences according to both measures. In addi-

tion to Γe, these were the inhibitory postsynaptic rate constant, γi, the reversal potential for the

membrane on inhibitory neurons, heqi and the excitatory postsynaptic rate constant, γe.

Fig 8. Distributions of the mean real part of the dominant eigenvalue for each subject across algorithms. Each

point is derived from the optimal parameter set recovered from a single data set. Optimal refers to the smallest

Euclidean distance from the origin in objective space. Parameters yielding unstable fixed points are excluded. P-values

were obtained from a Mann-Whitney U test, with Bonferroni correction.

https://doi.org/10.1371/journal.pcbi.1010985.g008
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To understand the effect that these parameter changes would have on the underlying activ-

ity of the modelled neural masses, we calculated the membrane potential and firing rate that

were obtained in simulations at the parameter values recovered from controls and FE subjects.

S16 Fig shows that the differences in recovered parameters map onto a significant increase in

both the membrane potential and firing rate in controls, in comparison to FE, for both the

excitatory and inhibitory neural populations.

Optimising model dynamics to spike-wave discharges

Having successfully applied the MOEA20 algorithm to resting EEG, we sought to test whether

it would be a useful tool to uncover the presence of nonlinear dynamics in the model. We

therefore applied the MOEA20, and additionally the SOEA20, SOEA45 and MOEA45 for

comparison, to a time series containing spike-wave discharges (SWDs), which is an archetypal,

nonlinear epileptiform rhythm. Fig 12 shows that the MOEA20 is able to find parameter values

for which the model generates an approximation to the SWD, in terms of visual appearance,

PSD and wHVG. This is in contrast to the single objective algorithms we tested, which can

match the PSD but do not yield an appropriate waveform, as can be seen in Fig 11. We note

that this analysis was performed using the deterministic (noise-free) simulation of the model.

S17 Fig shows the distribution of parameters recovered from the SWD using the MOEA20

approach.

Discussion

In this study, we presented a new approach for recovering parameters of neural mass models

(NMMs) from data. We combined the simulation of nonlinear NMMs with global exploration

Fig 9. Comparison of the attracting state reached by model simulations. A) gives the percentage of model simulations that consisted of noise-driven

fixed dynamics (as opposed to noise-driven limit cycle dynamics) for each algorithm and across all subjects. Subject-algorithm combinations that were

predominantly described by noise-driven limit cycle dynamics are given in bold. B) gives an example simulation in phase space of noise-driven fixed

point dynamics. Here, due to the stochasticity, the model oscillates around a stable fixed point. C) gives an example simulation in phase space of noise-

driven limit cycle dynamics. In this case, the stochastic model simulations oscillate around a stable limit cycle.

https://doi.org/10.1371/journal.pcbi.1010985.g009
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of parameter space via a MOEA and used the wHVG as an additional measure to quantify the

similarity of model output and data. Comparing this approach to SOEAs, we highlighted that

different choices of objective function can affect the model dynamics and parameter values

that are recovered. For example, we demonstrated that substantial differences in parameter

values could emerge from the same data, depending on whether the PSD was quantified in the

2–20Hz or the log-transformed 2–45Hz band, which are different strategies that have previ-

ously been employed [20, 40]. We found that the addition of the wHVG and the use of the

MOEA was able to restrict the kind of dynamics that were recovered; limit cycles were ruled

out where not appropriate, and fixed points with a narrow range of dominant eigenvalue real

parts were preferentially found. This was accompanied by parameters being mapped to differ-

ent regions of parameter space. These are important findings because quantifying differences

between model output and data is integral to any parameter inference method, including prob-

abilistic frameworks like dynamic causal modelling (DCM) or Kalman filtering. In such meth-

ods, recursive updates to posterior distributions depend upon the difference between model

predictions and data [44, 45], which could evolve differently if the model and data are trans-

formed, for example, between the time and frequency domain [46]. Care must therefore be

taken to caveat inferences, or to check whether they are robust to methodological choices.

Qualitatively different dynamics can yield the same PSD, for example, due to differences in

amplitude or phase distributions [23]. Thus, when comparing nonlinear models to data via the

PSD, spurious limit cycle dynamics may be recovered, as shown in Fig 2. We found that this

issue was mitigated by the addition of the wHVG objective, since it constrained the amplitude

distribution and shape of the dynamics of the model. Additionally, we found that the wHVG

objective can help to capture subtleties in the waveform of the data, which were not captured

Fig 10. Comparison of data and optimal model simulations for control and FE subjects. A) shows the mean and standard deviation of the PSD

across control and FE subjects. B) shows the mean and standard deviation of the wHVG distribution across control and FE subjects. C) and D) give the

PSD and wHVG distribution from model simulations at optimal parameter values. Optimal refers to the smallest Euclidean distance from the origin in

objective space. Colours as per legend.

https://doi.org/10.1371/journal.pcbi.1010985.g010
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when using the PSD alone (Fig 3). In 2 out of 20 subjects, we found nonlinear dynamics in the

form of noise-perturbed limit cycles (rather than noise-driven fixed points) to be the most

appropriate model. This is in line with previous findings that some recordings of alpha

rhythms show features of nonlinear dynamics [23]. [23] estimated the percentage of alpha

rhythm recordings showing nonlinearity to be 1.25%, which is lower than the 10% found here.

However, they studied more data (4 epochs from each of 60 subjects), and shorter time seg-

ments (2.5s). To quantify nonlinearity, [23] used phase-randomised surrogates derived directly

from time series and used a NMM to demonstrate that limit cycle dynamics were correctly

assigned as nonlinear by their method. The algorithm we presented herein provides an alterna-

tive, mechanistic approach for detecting nonlinearities. The model with nonlinearities is fit

directly to the data, with the possibility that stable steady states or limit cycles provide the best

representation of the data. It can also be used to generate artificial EEG data with specific prop-

erties of interest.

Another potential use for our method is to search for the presence of different kinds of

dynamics in NMMs. We demonstrated this by applying our method to SWD data. Notably, we

were able to find relevant SWD dynamics in the Liley NMM, which to our knowledge have not

been previously reported. In modelling studies of brain rhythms, traditionally, the dynamics of

NMMs have been explored by varying a few parameters around default values in simulation

Fig 11. Comparison of parameter values recovered from control and FE data using the MOEA20 algorithm. A) shows the distribution of 4

parameters that were recovered from control and FE data (colours as per legend). The bounds of these parameters were set to those used in the

optimisation (see Table 1). The 4 parameters chosen are those with the largest Cohen’s d effect size for differences between the groups, as shown in B).

C) shows the JSD between the parameter distributions recovered from each cohort. This represents an alternative measure of dissimilarity between the

distributions. The comparison between all parameters in the model can be seen in S15 Fig. The insets for parameters γi and γe provide a close up of the

most populated part of the distributions, showing only the bottom 20% of each parameter range.

https://doi.org/10.1371/journal.pcbi.1010985.g011
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studies or using numerical continuation and examining the emergence of instabilities or dif-

ferent kinds of limit cycles [4, 9, 12, 13, 17, 18, 47], though more global approaches have also

been used [8, 15]. Our approach is less constrained since we allow all parameters to vary, and

the model output is compared quantitatively to the data as part of the algorithm. It could there-

fore be a useful tool for the development of NMMs in the future, since the repertoire of

dynamics of any (new) model can be readily checked against the repertoire of dynamics of the

brain in its natural states or in experimental manipulations (which are important for the devel-

opment of new models [10]). Using a global approach allows us to comprehensively map the

presence of different kinds of rhythms, and examine their relative position in parameter space.

In future, we believe this approach could help to uncover a repertoire of possible mechanisms

by which NMMs can transition from a resting to pathological state, thus providing insight into

the mechanisms of epilepsy.

We consider four different objective functions when comparing model output to data. The

choice of objective function to use will ultimately be informed by the properties of the EEG

one is interested in recapitulating in the model. For the data we analysed, the MOEA20 pro-

vided the best way to recreate the PSD of the alpha rhythm, whilst also simulating realistic

characteristics in the temporal domain, such as fluctuating amplitudes and the shape of oscilla-

tions. We therefore focused on applying the MOEA20 method to study the mechanisms

Fig 12. MOEA algorithms can uncover the presence of a SWD rhythm in the model. A) shows a segment of EEG

displaying spike-wave dynamics, along with simulations of the model at the optimal parameters recovered using each

algorithm (colours as per legend). Optimal refers to the smallest Euclidean distance from the origin in objective space. B)

shows the corresponding wHVG distribution for the data and model simulations using the optimal parameters recovered

from each algorithm. These signals show a density approximation of the distribution, calculated from 100 equally sized

bins (see Methods). C) and D) show the corresponding PSD in the 2–20Hz and log-transformed 2–45Hz range,

respectively. To better differentiate between the signals, the baseline of the normalised power is shown with an offset for

each algorithm. The SWD data was recorded from frontal scalp EEG electrodes from a patient with absence epilepsy at

Inselspital Bern, Switzerland.

https://doi.org/10.1371/journal.pcbi.1010985.g012
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underlying differences seen in the frequency spectrum of resting EEG in people with epilepsy

versus healthy controls [35]. Analysing the differences in terms of univariate parameter distri-

butions, we found that one parameter in particular stood out as having a visibly different dis-

tribution between the two cohorts: Γe, which quantifies the average synaptic gain for the

excitatory population. Interestingly, the bulk of this distribution was found to be shifted to

lower values in people with epilepsy, indicating a reduced excitatory synaptic effect in that

cohort overall, at the macroscopic level of the neural mass. It is interesting and non-trivial that a

synaptic gain parameter would be implicated in the shifts in the power spectrum observed.

Since the peak alpha rhythm exists at lower frequencies in people with epilepsy, it might be

expected to be explained in the NMM by an adjustment to the time scale parameters. Indeed,

we did find a difference in the parameters γi and γe. However, the effect size of these was

smaller than that of Γe. The differences that we observed in parameter values between the two

cohorts resulted in a net increase in the membrane potential and firing rate in controls, com-

pared to people with epilepsy. It is interesting to be able to map dynamics recorded in the rest-

ing state, without the presence of epileptiform activity, onto mechanisms that capture notions

of “excitability”. Due to small differences found in the average synaptic gain for the inhibitory

population, these differences observed in Γe map onto a lower resting state excitation/inhibi-

tion ratio in FE subjects, compared to control. Interestingly, other work has provided evidence

for an increase in this ratio in epilepsy patients during the start of a seizure (for example, see

[48]). Mechanistically, we therefore speculate the presence of a homeostatic mechanism in the

brains of people with epilepsy that leads to reduced excitability in the non-seizure state. This

could be innate or due to antiseizure medication and would be an interesting avenue for future

investigation.

A potential issue when mapping parameters of models of biological systems is that they are

inevitably non-identifiable, or sloppy [49]. This means that many different parameter values,

in potentially disparate regions of parameter space, could equally well account for the dynam-

ics observed in data. Here, we demonstrated that the practical identifiability of model parame-

ters is dependent upon the method used to quantify the similarity between data and model

output (Fig 7). In particular, we found γe as well as γi to be constrained to a small range of val-

ues when using the MOEA approaches, as opposed to the other methods. Our SOEA20 uses

the same objective function employed by [20], in which γi was found to be the only identifiable

parameter. The distributions of some other parameters also deviated further from uniform

when using the MOEAs, compared to the SOEA20. Our findings, therefore, suggest that

NMMs may be more identifiable than previously reported [20, 50].

In addition, we applied our algorithms to model simulations, in order to understand the

relationship of recovered parameters with respect to a ground truth. As described above, the

notion of “ground truth” should incorporate large regions of parameter space. That is, as we

demonstrated in S14 Fig, given a choice of model parameters to simulate from, the optimisa-

tion algorithms will recover large regions of parameter space that yield equivalent, or quantita-

tively similar, dynamics. Thus the “ground truth” may not be a single value, rather a non-

trivial set, or collection of values in a high dimensional space. It is important to be able to map

these regions in order to understand the repertoire of dynamics of NMMs. The algorithms we

provided herein offer the means to do this, and in particular the MOEA20 provides a more

accurate map.

Any inference made from models of course depends on the choice of model, and several

different types of NMMs exist (for example, see [1]). Although we focused on the Liley model

here, future work will examine the application of the MOEA approach to other NMMs, such

as those that contain different types of inhibitory interneurons [4, 12, 51]. We believe the

PLOS COMPUTATIONAL BIOLOGY Global nonlinear approach for mapping parameters of neural mass models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010985 March 24, 2023 23 / 28

https://doi.org/10.1371/journal.pcbi.1010985


MOEA proposed could provide a better data-driven quantitative analysis of the importance of

including different mechanisms in NMMs.

The problem of deciding how to compare model output to data is non-trivial. Future work

will further probe the potential benefits of comparing model output to data in different ways.

One benefit of using the wHVG is that it opens up the possibility of quantifying time series

using a suite of different methods from graph theory [30, 52]. It will be interesting to examine

how measures relating to clustering or centrality, for example, affect the results of mapping

model parameters from data. The wHVG algorithm has also previously been successfully used

to delineate between different types of dynamics, including detecting seizure activity in EEG

[53]. We believe that using the wHVG as an objective, and the MOEA to fit mathematical

models to data, could be a crucial tool to extend these analyses to better understand the mecha-

nisms responsible for generating different dynamics.

The method we propose is different from probabilistic approaches such as DCM, Kalman

filtering, or approximate Bayesian computation [21, 44, 45]. These methods optimise probabil-

ity distributions for parameters given the data. As described in the introduction, these methods

(as is the case for any approach) rely on certain simplifying assumptions, for example, Gaus-

sianity in the case of DCM, and are not explicitly designed to search large parameter spaces.

Though our method is designed for the latter, it is not a probabilistic framework, therefore the

results here should also be carefully interpreted. The univariate parameter distributions we

presented quantify where in parameter space non-dominated solutions were found, when

starting from initial populations covering the whole space. Since the results are derived from

multiple repeats of the EA, these distributions provide an approximation to the probability of

finding parameters for which the model output closely approximates the data, given the algo-

rithm used. The latter includes mechanisms such as mutation and crossover, which facilitate

efficient exploration of parameter space. We propose it will be useful in the future to extend

our approach into a probabilistic framework, for example, by incorporating uncertainties in

the objective function evaluations into the calculation of dominance [54, 55]. Furthermore, we

believe an additional potential use of the algorithm we present is to complement probabilistic

schemes like DCM by using the output of the MOEA20 to formulate priors that are informa-

tive from a model dynamics perspective.
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11. Spiegler A, Kiebel SJ, Atay FM, Knösche TR. Bifurcation analysis of neural mass models: Impact of

extrinsic inputs and dendritic time constants. NeuroImage. 2010; 52(3):1041–1058. https://doi.org/10.

1016/j.neuroimage.2009.12.081 PMID: 20045068

12. Goodfellow M, Schindler K, Baier G. Intermittent spike–wave dynamics in a heterogeneous, spatially

extended neural mass model. NeuroImage. 2011; 55(3):920–932. https://doi.org/10.1016/j.

neuroimage.2010.12.074 PMID: 21195779

13. Grimbert F, Faugeras O. Bifurcation Analysis of Jansen’s Neural Mass Model. Neural Comput. 2006;

18(12):3052–3068. https://doi.org/10.1162/neco.2006.18.12.3052 PMID: 17052158

14. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage. 2003; 19(4):1273–1302.

https://doi.org/10.1016/S1053-8119(03)00202-7 PMID: 12948688

PLOS COMPUTATIONAL BIOLOGY Global nonlinear approach for mapping parameters of neural mass models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010985 March 24, 2023 26 / 28

https://doi.org/10.1371/journal.pcbi.1000092
https://doi.org/10.1371/journal.pcbi.1000092
http://www.ncbi.nlm.nih.gov/pubmed/18769680
https://doi.org/10.3389/fncom.2020.581040
http://www.ncbi.nlm.nih.gov/pubmed/33469424
https://doi.org/10.1046/j.1460-9568.2002.01985.x
https://doi.org/10.1046/j.1460-9568.2002.01985.x
http://www.ncbi.nlm.nih.gov/pubmed/12028360
https://doi.org/10.1186/2190-8567-3-17
https://doi.org/10.1186/2190-8567-3-17
http://www.ncbi.nlm.nih.gov/pubmed/23945016
https://doi.org/10.1007/BF00199471
https://doi.org/10.1007/BF00199471
http://www.ncbi.nlm.nih.gov/pubmed/7578475
https://doi.org/10.1016/j.neuroimage.2011.08.020
http://www.ncbi.nlm.nih.gov/pubmed/21924363
https://doi.org/10.1371/journal.pcbi.1006009
https://doi.org/10.1371/journal.pcbi.1006009
http://www.ncbi.nlm.nih.gov/pubmed/29499044
https://doi.org/10.1016/j.neuroimage.2003.07.015
http://www.ncbi.nlm.nih.gov/pubmed/14642484
https://doi.org/10.3389/fnetp.2022.907995
https://doi.org/10.3389/fnetp.2022.907995
http://www.ncbi.nlm.nih.gov/pubmed/36926061
https://doi.org/10.1016/j.neuroimage.2009.12.081
https://doi.org/10.1016/j.neuroimage.2009.12.081
http://www.ncbi.nlm.nih.gov/pubmed/20045068
https://doi.org/10.1016/j.neuroimage.2010.12.074
https://doi.org/10.1016/j.neuroimage.2010.12.074
http://www.ncbi.nlm.nih.gov/pubmed/21195779
https://doi.org/10.1162/neco.2006.18.12.3052
http://www.ncbi.nlm.nih.gov/pubmed/17052158
https://doi.org/10.1016/S1053-8119(03)00202-7
http://www.ncbi.nlm.nih.gov/pubmed/12948688
https://doi.org/10.1371/journal.pcbi.1010985


15. Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F. Interictal to ictal transition in human

temporal lobe epilepsy: insights from a computational model of intracerebral EEG. J Clin Neurophysiol.

2005; 22(5):343–356. PMID: 16357638

16. Liley DT, Cadusch PJ, Dafilis MP. A spatially continuous mean field theory of electrocortical activity.

Netw. Comput. Neural Syst. 2002; 13(1):67–113. https://doi.org/10.1080/net.13.1.67.113 PMID:

11878285

17. Blenkinsop A, Valentin A, Richardson MP, Terry JR. The dynamic evolution of focal-onset epilepsies—

combining theoretical and clinical observations. Eur. J. Neurosci. 2012; 36(2):2188–2200. https://doi.

org/10.1111/j.1460-9568.2012.08082.x PMID: 22805064

18. Nevado-Holgado AJ, Marten F, Richardson MP, Terry JR. Characterising the dynamics of EEG wave-

forms as the path through parameter space of a neural mass model: Application to epilepsy seizure evo-

lution. NeuroImage. 2012; 59(3):2374–2392. https://doi.org/10.1016/j.neuroimage.2011.08.111 PMID:

21945471

19. Kiebel SJ, Garrido MI, Moran R, Chen CC, Friston KJ. Dynamic causal modeling for EEG and MEG.

Hum. Brain Mapp. 2009; 30(6):1866–1876. https://doi.org/10.1002/hbm.20775 PMID: 19360734

20. Hartoyo A, Cadusch PJ, Liley DTJ, Hicks DG. Parameter estimation and identifiability in a neural popu-

lation model for electro-cortical activity. PLoS Comput. Biol. 2019; 15(5):e1006694. https://doi.org/10.

1371/journal.pcbi.1006694 PMID: 31145724

21. West TO, Berthouze L, Farmer SF, Cagnan H, Litvak V. Inference of brain networks with approximate

Bayesian computation–assessing face validity with an example application in Parkinsonism. Neuro-

Image. 2021; 236:118020. https://doi.org/10.1016/j.neuroimage.2021.118020 PMID: 33839264

22. Deco G, Kringelbach ML, Jirsa VK, Ritter P. The dynamics of resting fluctuations in the brain: metasta-

bility and its dynamical cortical core. Sci. Rep. 2017; 7(1):3095. https://doi.org/10.1038/s41598-017-

03073-5 PMID: 28596608

23. Stam CJ, Pijn JPM, Suffczynski P, Lopes da Silva FH. Dynamics of the human alpha rhythm: evidence

for non-linearity? Clin Neurophysiol. 1999; 110(10):1801–1813. PMID: 10574295

24. Hartoyo A, Cadusch PJ, Liley DTJ, Hicks DG. Inferring a simple mechanism for alpha-blocking by fitting

a neural population model to EEG spectra. PLoS Comput. Biol. 2020; 16(4):e1007662. https://doi.org/

10.1371/journal.pcbi.1007662 PMID: 32352973

25. Cona F, Zavaglia M, Massimini M, Rosanova M, Ursino M. A neural mass model of interconnected

regions simulates rhythm propagation observed via TMS-EEG. NeuroImage. 2011; 57(3):1045–1058.

https://doi.org/10.1016/j.neuroimage.2011.05.007 PMID: 21600291

26. Avramidis E, Akman OE. Optimisation of an exemplar oculomotor model using multi-objective genetic

algorithms executed on a GPU-CPU combination. BMC Syst. Biol. 2017; 11(40). https://doi.org/10.

1186/s12918-017-0416-2 PMID: 28340582

27. Laiou P, Avramidis E, Lopes MA, Abela E, Müller M, Akman OE, et al. Quantification and selection of

ictogenic zones in epilepsy surgery. Front. Neurol. 2019; 10. https://doi.org/10.3389/fneur.2019.01045

PMID: 31632339
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