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ABSTRACT
Understanding leakage is an important challenge within the water
sector to minimise waste, energy use and carbon emissions. Every
Water Distribution Network (WDN) has leakage, usually approx-
imated as Minimum Night Flow (MNF) for each District Metered
Area (DMA). However, not all DMAs have instruments to monitor
leakage directly, or the main dynamic factors that contribute to
it. Therefore, this article will estimate the leakage of a DMA by
using the recorded features of its pipes, making use of readily avail-
able asset data collected routinely by water companies. This article
interprets this problem as a feature construction task and uses a
multi-objective multi-gene strongly typed genetic programming
approach to create a set of features. These features are used by a
linear regression model to estimate the average long-term leakage
in DMAs and Shapley values are used to understand the impact and
importance of each tree. The methodology is applied to a dataset
for a real-world WDN with over 700 DMAs and the results are com-
pared to a previous work which used human-constructed features.
The results show comparable performance with significantly fewer,
and less complex features. In addition, novel features are found that
were not part of the human-constructed features.

CCS CONCEPTS
• Computing methodologies → Genetic programming; Super-
vised learning by regression; Cross-validation; • Applied comput-
ing → Physical sciences and engineering.
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1 INTRODUCTION
Leakage within Water Distribution Networks (WDNs) is a perva-
sive and important challenge for water companies which has an
economic, environmental and sustainability impact [28]. In the UK
alone around 3bn litres of water are lost to leaks every day [27].
These losses of clean water increase pumping and treatment costs
for companies, and therefore the costs for consumers, as well as
energy consumption and CO2 emissions. Minimum Night Flow
(MNF), which is the lowest flow rate during the night (usually be-
tween 12am-4am), is a commonmethod of estimating and analysing
leakage in WDNs [5]. Flow is measured using meters at all entry
and exit points of smaller sub-networks, forming what are called
District Metered Areas (DMAs). The sum of all meter measure-
ments, where negative if water is leaving the DMA and positive if
water is entering, is the total demand or consumption of the DMA.
Using the MNF as an approximation of leakage is based on the
assumption that water usage is lowest at night, thus, most of the
water use measured during this period is leakage.

Leakage is commonly separated into bursts and reported leakage
– large events which have interrupted service or where water has
come to the surface –, and unreported and background leakage
– smaller numerous weeps, seeps and leaks in the infrastructure
which are very difficult to detect [7]. Unreported and background
leakage can lead to bursts due to weather changes and abnormal
pressure events, and small leaks can grow over time due to wear
[28]. Therefore, background and unreported leakage, when ignored,
can lead to further issues.

The focus of this article is on long-term unreported and back-
ground leakage. This is measured in this article by taking the lowest
MNF during a week (Weekly MNF). This filters out the effects of
any bursts or reported leaks that last less than a week. This is
averaged over a long period of time to create the Average of the
Weekly MNF (AWM) [12]. This gives a measure of the long-term
unreported and background leakage of a DMA, and is the target
variable for this regression task. The aim of this work is to create
a model that can predict the AWM of a DMA solely based on its
physical infrastructure. The methodology is trained and tested on
real-world DMAs from a WDN, where the AWM can be observed.
However, the final model and features presented below can estimate
the AWM of theoretically any DMA using only knowledge of the
characteristics of the pipes within it. Therefore, the trained model
can be used to predict the leakage of meterless networks.

In real-world DMAs there are numerous factors that effect the
total amount of leakage. Pressure, pipe age, pipe material, weather
conditions, time of year, and pipe condition are some commonly
described factors amongst many others [28]. Some of these factors
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mainly concern bursts and the extent to which they affect back-
ground and unreported leakage is uncertain. In this article, only
the physical properties of pipes are considered. This constitutes
the simplest version of the problem and is reliant on data that is
widely available for water companies. The accuracy of the final
model will tell us how much of the variation in leakage between
different DMAs can be solely attributed to the physical properties
of the pipes.

In this problem, a DMA is defined by its pipes. Each pipe can
only be part of one DMA at a time and is defined by five variables:
length, diameter, age, volume, and material. Volume is calculated
from the length and diameter, based on the assumption that the
pipes are cylinders. The material of a pipe is grouped into one of
three categories: metal, plastic, and other. Every DMA can contain
any number of pipes; in practice this can range from the hundreds
to several thousand. Therefore, a method is needed which can take
a variably sized set of pipes as input. A DMA, X, can be given as a
matrix:

X =


𝑥11 𝑥12 𝑥13 𝑥14 𝑥15
𝑥21 𝑥22 𝑥23 𝑥24 𝑥25
... ... ... ... ...

𝑥𝑚1 𝑥𝑚2 𝑥𝑚3 𝑥𝑚4 𝑥𝑚5


=
[
X𝑙𝑒𝑛𝑔𝑡ℎ X𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 X𝑎𝑔𝑒 X𝑣𝑜𝑙𝑢𝑚𝑒 X𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

]
(1)

where the columns of X represent the different pipe variables and
the value of𝑚 represents the number of pipes and varies for every
DMA, i.e. the size of X varies between DMAs.

This paper is organised as follows: In Section 2 a brief literature
review is given, focusing on methodologies for similar problems.
In Section 3 the methodology used in this article is described and
explained. Section 4 presents the results of the evolutionary process
and the best solution found. Finally, Section 5 discusses the results
and Shapley values are used as part of an analysis of the individual
trees.

2 BACKGROUND AND RELATED WORK
As described above, the problem presented here requires a method
which can handle variably sized matrices or sets of objects. Few
methods can do this directly, instead needing this data to be sum-
marised into a number of features. First, methods which can be
used to summarise data in this way are discussed. This is followed
by a discussion of graph-based methods as an alternative approach.
Finally, an overview of other leakage prediction work is given.

2.1 Genetic Programming
Genetic Programming (GP) is a flexible methodology that can evolve
computer programs, mathematical formulae, rule-based systems
and other types of expressions. Encoding solutions as trees allows
GP to solve a wide variety of problems. Multi-Gene Genetic Pro-
gramming (MGGP) [30], also called multi-tree genetic program-
ming, differs from standard GP by changing the representation
from a single tree to a set of trees. GP has been used for feature
construction with classification [3, 10, 32, 33]. However, this tends
to be the construction of new features from existing ones, rather
than the construction of features from a matrix of data for each
sample, as is required here.

The use of GP for feature extraction on images may be better
aligned with the requirements of this approch, as images are gener-
ally processed as matrices of pixel values. In [31] multi-objective GP
is used to perform feature construction on images for classification.
In this work a single GP tree is evolved, where each subtree of the
root node is a separate feature. The authors used an SVM to do the
final classification, with the resulting error rate as one objective
and the number of nodes as the other objective. In [4] an additional
level of complexity is added, where the classifier is also evolved
along with the set of features. Both works found good results, but
with relatively complex trees.

Evolutionary Polynomial Regression (EPR) [9] is a method which
combines some of the advantages of genetic programming and nu-
merical regression. The method is capable of finding polynomial
formulae of various levels of complexity, and has seen numerous
applications in the field of hydroinformatics. EPR employs a ge-
netic algorithm to find a matrix of exponents that define a set
of expressions. These expressions form the variables for a linear
model. However, EPR is not applicable to this problem directly for
several reasons. Firstly, the matrix of exponents that it considers
must be applied to numerical data, and would require an encoding
of categorical variables such as material. Secondly, the matrix of
exponents is of a fixed size. EPR could be modified such that the
matrix of exponents and the operators are appropriate for vectors,
since this problem has a fixed number of columns in the matrix.
However, such a modification is outside of the scope of this article.

2.2 Graph Regression
DMAs can be represented as graphs since they are networks of con-
nected physical pipes [13]. Therefore, graph regression techniques
such as those common to chemical analysis [11] are applicable
to this problem. In other fields, graph kernels, random walks, and
graph convolutional neural networks have been applied to a variety
of problems [21]. In water systems, graph-based approaches have
primarily been used to assess resilience [8, 13], model DMAs [19], or
to divide WDNs into DMAs to reduce and improve the monitoring
of leakage [24, 25]. Graph-based representation of water networks
have been used to detect or locate leakage [1, 29] or reconstruct
pressure for leak detection [35]. However, these methods are often
restricted to simulated systems. In addition, as far as the authors
are aware, graph regression methods have not been directly applied
to predicting leakage in DMAs.

2.3 Leakage Prediction
The prediction of leakage levels or similar metrics will often include
data on some of the other important factors previously mentioned:
pressure, weather, time of year, etc. The rate of leakage is estimated
in [15–17] in a case study of over 150 DMAs from a city in South
Korea. These studies found that pipe length was the most important
factor by far. However, the overall accuracy of the models were
low, potentially due to the limited number of samples. Leakage
rates were also predicted in [20] with more success. These stud-
ies primarily used neural networks to predict these values. The
main disadvantage with this method is its black-box nature which
can make these methods less applicable in the real-world where
decisions are required to be explained.
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Several other studies have predicted leakage, bursts, or pipe
risk. For example, demand characteristics have been used to assess
background leakage levels in a quantitative analysis [34]. An ag-
gregation of the physical properties of pipes was used in [18] to
predict pipe bursts using EPR. The optimal time to replace pipes
was estimated in [14] based on physical properties and pressure
using a different neural network for each pipe material. Finally, in
[12], the authors used a set of human-defined features to predict
AWM for real-world DMAs. One of the aims of the current article is
to produce a simpler set of features with similar, or better accuracy.

3 MULTI-OBJECTIVE MULTI-GENE GP
In this article, an approach using multi-objective multi-gene genetic
programming is taken. In multi-gene genetic programming (MGGP)
[30] each individual consists of several genes, where each gene is
a separate tree. The output of this model is the weighted linear
combination of the outputs of each tree. Ridge linear regression is
used to determine the weights for each tree. The resulting model
takes the form of Equation (2):

𝑦 = 𝑐0 +
𝑚∑︁
𝑗=1

𝑐 𝑗 · 𝑓𝑗 (X) (2)

where 𝑦 is the estimate of the target variable (AWM in this article),
𝑐0 is the bias,𝑚 is the number of trees in an individual, 𝑓𝑗 is the
function resulting from the 𝑗th tree of an individual, and X is a
matrix representation of a DMA.

Multi-gene genetic programming was chosen over ’single gene’
genetic programming because the aim of the work is to find a set
of features, which together can be used by a linear model. A single
complex tree is undesirable in this application because explainabil-
ity is important. Therefore, a method is needed to create multiple
simple trees. ’Single gene’ genetic programming could still be used
in this context. However, explicit mechanisms for forcing diversity
would be needed to prevent the population from converging on the
same feature. Multi-gene genetic programming circumvents this
problem.

In MGGP, crossover has two modes of operation: ‘high level’
and ‘low level’. In high level crossover, whole trees are exchanged
between individuals similarly to uniform crossover. In low level
crossover, random trees from each parent are selected for GP sub-
tree crossover [30]. High and low level crossover are chosen at
random with an equal probability. During mutation, there is a uni-
form probability for each gene to undergo point mutation, where a
random subtree is replaced by a newly generated random subtree.

The desired output for this application is a single scalar value
from each tree, but the input is a matrix (the collection of pipes and
their features). Therefore, the strongly typed genetic programming
[23] method is applied, which enforces data-type constraints on
the functions (primitives) that make up the trees. This not only
reduces the size of the search space [23], but ensures the trees are
valid expressions. Figure 1 shows the different data types used, and
how they relate to each other through the different primitives.

The multi-objective evolutionary algorithm used is NSGA-II [2]
which uses binary tournament selection for crossover, and Pareto
dominance and crowding distance to select individuals for the next

Figure 1: Graph showing data types and how the primitives
transition between them. The arrows show the input and out-
put data types for the different primitives. Types are shown
in grey: a box indicates this type can be provided by a ter-
minal while a diamond indicates that it cannot. Primitives
are shown in white boxes. The tree argument/input type is
shown by *. The tree output type is shown by **.

generation. The particular implementation of the methodology in
this article was done using DEAP [6].

3.1 Objectives
During each fitness evaluation, k-fold cross validation is performed
on the training set. The training set is made up of 70% of the DMAs
in the dataset, which are randomly selected. During k-fold cross
validation, the training data is split into k evenly sized segments or
folds. Each fold is used as a validation set to test the linear model,
which is trained on the remaining folds. The validation 𝑅2 of the
model is recorded for each fold. Five folds (𝑘 = 5) are used and the
mean 𝑅2 over all folds is used as an objective. Two objectives are
defined:

To maximise: 𝑔1 (Z) =
∑𝑘
𝑖=1 𝑅

2
𝑖

𝑘

To minimise: 𝑔2 (Z) =
𝑚∑︁
𝑗=1

|Z𝑗 |
(3)

where𝑚 is the number of trees in an individualZ, |Z𝑗 | is the number
of nodes in the 𝑗th tree, 𝑘 is the number of k-folds in the cross-
validation, and 𝑅2

𝑖
is the validation 𝑅2 of the 𝑖th fold. Therefore, 𝑔1

is the validation 𝑅2 and 𝑔2 is the total tree size.
The test set, made of the remaining 30% of DMAs, is held back

to evaluate the final models. Once the evolutionary process is com-
plete, each individual on the Pareto front is evaluated by training a
new linear model on the evolved features using the entire training
set. The 𝑅2 of the models on the test set (test 𝑅2) indicates the true
fitness of the evolved features and is used to evaluate the solutions.
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(a) Sum of pipe length (b) Max of pipe length multiplied by age

Figure 2: Two example trees. These trees can be expressed as
Equation (4) and (5) respectively.

3.2 Primitives
As shown in Figure 1, the ‘Select’ primitive takes as input a matrix
and a column value, indicating which column of the matrix to select
(age, diameter, etc.), then outputs a vector. This primitive forms a
bottleneck between the input type (matrix) and output type (float)
of the trees. Two primitives are used to filter the matrix by material.
The ‘Exclude’ primitive is used to filter out a particular material,
while the ‘Only’ primitive is used to filter out every other material.
These primitives take as input a matrix and a material value (metal,
plastic, etc.) and output a new matrix filtered by that material.
The relationships between each data type and all the primitives
is shown in Figure 1. There are two numerical terminals; 𝜋 and 𝑒 ,
and two ephemeral constants; any real number in [−1, 1], and any
integer number in [−10, 10]. The use of strongly typed GP results
in overlap in function between some of the primitives. For example,
multiplication, division, subtraction and addition each appear as
element-wise operators (for two vectors), scalar operators (for a
vector and a real number), and numerical operators (for two real
numbers).

Two example trees are shown in Figure 2. Example tree (a) can
be expressed as:

𝑓 (X) =
𝑚∑︁
𝑖=1

X𝑖,𝑙𝑒𝑛𝑔𝑡ℎ (4)

where X is a DMA, i.e. a set of pipes. Similarly, example tree (b) can
be expressed as:

𝑓 (X) = max
1≤𝑖≤𝑛

(X𝑖,𝑙𝑒𝑛𝑔𝑡ℎ · X𝑖,𝑎𝑔𝑒 ) (5)

Example tree (a) shows a minimally sized ‘active’ tree, with four
total nodes. The smallest possible tree is a numerical terminal or
ephemeral constant, which constitutes an ‘inactive’ tree, meaning it
does not respond to changes in input, and can therefore be ignored.
This allows an individual in the population to effectively have fewer
features than the number of genes it has. By optimising along the
total size of all trees, as per Equation (3), it should be expected that
individuals with a range of solutions with a different number of
active trees will be seen. The minimum depth of an active tree is
the shortest path on the graph shown in Figure 1, from the input
type to the output type. In this case the minimum depth is three.

When generating a random tree, there are many more potential
primitives which transform from a vector into another vector than
there are to transform from a vector to a float, as can be seen in

Figure 1. This can result in significant bloat in the best case or an
infinite loop of branching primitives that never finishes in the worst
case. To solve this problem, Dijkstra’s algorithm is used to find the
shortest path to the nearest terminal. Each primitive is represented
as an edge in a directed multigraph, similar to Figure 1. The cost of
edges related to the same primitive are equal, and primitives which
lead to duplicate inputs of the same type are heavily penalised.
Once a random tree has depth greater than or equal to a max depth,
the graph-based algorithm is used to add primitives or terminals
to quickly complete the tree. This addition helps to control bloat
within the algorithm.

4 RESULTS
The real-world dataset consists of 750 UK DMAs from a single
WDN. Together, these DMAs represent over 11 million metres of
pipe, ranging from dense urban networks to huge sparse rural net-
works. Generally, the DMAs in this dataset do not contain trunk
mains, which distribute large amounts of water to numerous DMAs
throughout a region. However, some DMAs in this dataset receive
water from trunk mains but distribute a large proportion to other
DMAs further downstream. Due to the commercially sensitive na-
ture of the data used in this article, it cannot be made publicly
available.

Historic Weekly MNF records cover 2018-2022 for each DMA.
However, many DMAs have missing data. On average, each DMA
is missing roughly 1.5% of its Weekly MNF records. All DMAs have
at least half of their total records, but some only have a handful
of records for certain years. However, every DMA has at least one
Weekly MNF record for each year. The Average of the Weekly MNF
(AWM) is simply the average of all Weekly MNFs for each DMA
across the entire time period. As discussed in Section 1, this filters
out the effects of any bursts or reported leaks that last less than a
week to reflect background leakage rather than these unpredictable
events. This focuses the problem onto background and unreported
leakage. The AWM is the target variable that this method is going
to predict.

The parameters of this experiment are shown in Table 1. These
values were chosen after considering the literature referenced in
this article and through limited trial and error. The number of genes
was chosen based on the maximum number of features desired. The
maximum depth of a random subtree was chosen based on the
maximum shortest path from terminals to output type, as shown
in Figure 1. The actual depth of a random subtree can be greater
than this, see Section 3.2. However, no further optimisation of

Table 1: Parameters of the experiments.

Parameter Value

Population 40
Number of genes 9
Max generations 400
Crossover probability 0.9
High-level crossover: Uniform probability 0.1
Mutation: Uniform probability 0.1
Random subtree: Max depth 4
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Figure 3: Normalised hypervolume of the populations of 11
runs over time. The nadir point for the normalised hypervol-
ume is defined as [0, 324], with [0.7, 9] as the utopia.

Figure 4: Final population positioned in objective space i.e.
𝑔1 and 𝑔2 from Equation (3). The colour (test 𝑅2) is the perfor-
mance of an evolved solution on the test set after evolution
has finished. Not shown on the front is an individual with
𝑔1 ≈ 0 and 𝑔2 = 9. At around 𝑔2 = 40, test 𝑅2 begins to decrease
even as 𝑔1 increases, likely due to overfitting. The ‘best’ solu-
tion that was selected for further analysis is labelled as A.

these parameters was undertaken due to computational resource
limitations.

In total, 11 runs (varying the random seed across runs) of the
methodology were undertaken to assess its validity. Figure 3 shows
the mean normalised hypervolume of all populations over time, as
well as the minimum and maximum at each generation. This num-
ber of runs was selected due to computational resource limitations.
This figure indicates that the population has converged over the
Pareto front. However, some improvements were found late in the
evolutionary process by a single run. Extending the maximum num-
ber of generations was outside of the limits of the computational
and time budget for this article. The utopia point was chosen to

Table 2: Table of results comparing the solutions from the
final population and the approach presented in [12]. Com-
plexity is measured in nodes, or an estimation of the number
of nodes that would be needed for the previous work.

Model Features Complexity Test 𝑅2

A 5 28 0.651
Elastic Net [12] 24 >324 0.680

be [0.7, 9] where; 9 is the smallest multi-gene individual possible,
and, while 1.0 is the perfect 𝑅2, this real-world data problem has a
practical 𝑅2 ceiling of 0.7. A single run near the mean normalised
hypervolume was selected for further analysis.

Figure 4 shows the Pareto front of the final population from the
selected run. This figure demonstrates how increasing the size of
the tree after a certain point leads to overfitting, as the test 𝑅2 starts
to decrease. The test 𝑅2 is generally higher than the validation 𝑅2

(𝑔1) because the final model is trained on more data (see Section
3.1). The ‘best’ solution, labelled A and taken from the ‘knee-point’
on the front, has a size (𝑔2) of 28 nodes, a validation 𝑅2 (𝑔1) of 0.57,
and a test 𝑅2 of 0.651. This solution contains four inactive genes
and, therefore, provides a set of five features. The solution contains
three minimally sized active genes with four nodes each, and two
genes with six nodes. Figure 5 shows the trees of this solution.
These genes can be expressed as:

𝑓1 (X) =
𝑚∑︁
𝑖=1

X𝑖,𝑙𝑒𝑛𝑔𝑡ℎ

𝑓2 (X) =
𝑚∑︁
𝑖=1

S𝑖,𝑎𝑔𝑒

where S = {𝑥 ∈ X𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 |𝑥 = 𝑃𝑙𝑎𝑠𝑡𝑖𝑐}

𝑓3 (X) =
𝑚∑︁
𝑖=1

S𝑖,𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

where S = {𝑥 ∈ X𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 |𝑥 ≠ 𝑀𝑒𝑡𝑎𝑙}
𝑓4 (X) = max(X𝑎𝑔𝑒 )
𝑓5 (X) = min(X𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 )

(6)

where X is a DMA, and𝑚 is the number of pipes in X.
Table 2 compares the results for the best solution and the ap-

proach presented in [12]. The human-defined features described
in [12] include equivalents of 𝑓1, 𝑓4, and 𝑓5. The best solution pre-
sented here contains new novel features, i.e. 𝑓2 and 𝑓3. The linear
model of the best solution, as per Equation 2 in expanded form, is
as follows:

𝑦 = 1.41 + 2.12𝑓1 + 1.81𝑓2 + 1.34𝑓3 + 0.93𝑓4 − 0.70𝑓5 (7)

where all features except 𝑓5 have positive coefficients.

5 DISCUSSION
Shapley values can be used to measure the effect of including a
feature on a model [22]. Machine learning models aim to minimise
the error between their predictions and the observed values. As
a result, the expected output of a model over an entire problem
is usually very close to the mean of the observed values. Shapley
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(a) 𝑓1 (b) 𝑓2 (c) 𝑓3 (d) 𝑓4 (e) 𝑓5

Figure 5: The active trees of the best solution, labelled A in Figure 4. The remaining four genes were inactive, i.e. composed of
numerical constants. These trees can be expressed as in Equations (6).

Figure 6: Summary plot of the features of the best solution. Each point is a DMA, the width indicates the density of points. The
colour indicates whether the value of the feature is higher or lower. The Shapley value indicates how each feature changes the
prediction with relation to the expected output of the model.

values describe, on a prediction by prediction level, the impact of
including a feature. For a particular prediction, the Shapley value
represents the deviation from the model’s expected output that
a feature causes. SHAP [22] is used to analytically calculate the
Shapley values for the linear models used in this article. By using
Shapley values, the individual contribution and impact of each tree,
i.e. feature, can be assessed. This is shown in Figure 6 where the
Shapley value indicates the impact of a feature with respect to
the expected output of the model. This figure shows the features
from Equation 6 sorted by total absolute Shapley value, with the
highest-impact feature at the top.

Features 𝑓4 and 𝑓5 show distinct bands in their distribution. This
is strongest in 𝑓5 and is a result of how pipes come in discrete
diameters with older pipes measured in inches and newer pipes
measured in millimetres (all converted into mm in this dataset). For
𝑓4 this suggests that many of the DMAs were constructed in waves
of expansion, and that this is evident from the oldest pipes in each
DMA.

Figure 6 shows that 𝑓1, 𝑓2, 𝑓3, and possibly 𝑓5, have distributions
similar to a lognormal distribution. This is logical given that AWM
is lognormally distributed as well. The coefficients for 𝑓1, 𝑓2, and
𝑓3, as shown in Equation 7, are positive. However, for many DMAs
the value of these features is small enough that they effectively
decrease the predicted AWM from the average observed value. This

is inverted for 𝑓5 where most values are small, and tend to increase
the predicted AWM from the average observed value. Although
𝑓4 is clustered into distinct bands, this feature appears normally
distributed with the mean value of 𝑓4 causing no deviation in the
expected output.

From Figure 6 and Equations (6), 𝑓1 indicates that a DMA with
more pipe has more leakage. This suggests that some part of back-
ground and unreported leakage is uniformly distributed across all
pipes. The quantification of the amount of variation in leakage
between DMAs which is attributable to this feature is discussed
later in this section.

From Figure 6 and Equations (6), 𝑓2 indicates that a higher gross
age of all plastic pipes increases long-term background and unre-
ported leakage. This suggests that plastic pipes may deteriorate
more compared to other materials, and leads to an increase in the
long-term background and unreported leakage over time. The im-
pact of soil may be important to consider; the soil in the area from
which the DMAs in this study originate is generally acidic. However,
the installation of piping often includes a backfill material, such as
gravel or sand, though the specifics of the backfill material could
also be a cause of corrosion [26]. Alternatively, plastic pipes might
degrade quicker due to other factors, such as ground movement,
pressure, hydraulic transients or water quality, for example.
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From Figure 6 and Equations (6), 𝑓3 indicates that a higher gross
diameter of all non-metal pipes increases long-term background
and unreported leakage. This suggests that in general larger diame-
ter pipes contribute more to long-term background and unreported
leakage. This is an expected relationship. However, this feature
filters out metal pipes, potentially suggesting that metal pipes con-
tribute less in this fashion.

From Figure 6 and Equations (6), 𝑓4 indicates that the age of the
oldest pipe is indicative of long-term background and unreported
leakage. This feature represents an expected relationship between
overall age of infrastructure and its condition. Pipes will deterio-
rate over time and their propensity to leak will therefore increase.
Features 𝑓4 and 𝑓2 are different in two important ways. First, 𝑓2
only considers plastic pipes while 𝑓4 considers all materials. Second,
𝑓2 sums the ages while 𝑓4 finds the maximum age. The presence
of these features and their differences suggests that leakage does
not increase linearly with pipe age. It also suggests that a set of
old pipes may have the same impact on long-term background and
unreported leakage regardless of the age of the rest of the network.
This further suggests that metrics such as average age could be
misleading when trying to understand leakage in DMAs.

From Figure 6 and Equations (6), 𝑓5 indicates the minimum di-
ameter of all pipes in a DMA increases long-term background and
unreported leakage when this value is smaller. The minimum di-
ameter of all pipes in a DMA may be indicative of other factors.
In particular, pressure may be important. As high pressure water
travels from a larger diameter pipe to a smaller diameter pipe, the
pressure decreases and the velocity of the water increases. In order
to service customers, water companies in the UK are required to
keep water pressure above a threshold. Therefore, in order to main-
tain service level pressure across a DMA, there may be a higher
overall pressure in DMAs where 𝑓5 is small compared to where 𝑓5
is larger. Alternatively, this may suggest that the smallest diameter
pipes in DMAs may be more prone to leakage themselves, for ex-
ample due to hydraulic transients causing more wear and tear over
time, in part also because of the increased velocity.

In summary, the factors described by Equations (6) and their
impacts as shown by Figure 6 are explainable and grounded in this
real-world application. However, the Shapley values alone may not
be sufficient to truly understand the importance of each feature
in relation to each other. The Pareto front provides an alternative
means of exploring the importance of each feature. Table 3 shows
the consistent presence of the different features throughout the set
of solutions that are smaller, in terms of 𝑔2, than the best solution.
Every solution contains 𝑓1. Features 𝑓2 and 𝑓4 are also present in
many of the solutions, indicating that these feature are important
genes across the Pareto front. The smallest solution shown in Table
3 consists of only 𝑓1. The 𝑅2 of this smaller solution suggests that
the uniform distribution of background and unreported leakage
accounts for 54.4% of the variation of long-term leakage (measured
by AWM) between DMAs. The combination of all five features
accounts for 65.1% of the variation of long-term leakage between
DMAs.

The solutions shown in Table 3 contain very little bloat. Largely,
this will be due to the multi-objective optimisation. However, the
cross-validation will reduce the overfitting on the training set,
which may also reduce bloat to some degree. Additionally, the

Table 3: Shows the presence of Equations (6) in solutions of
decreasing size along the Pareto front shown in Figure 4. The
best solution (A in Figure 4) is shown in bold. The presence
of a tree not part of Equations (6) is indicated by *

𝑔1 𝑔2 Trees 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 Test 𝑅2

0.57 28 5 ✓ ✓ ✓ ✓ ✓ 0.651
0.56 27 4* ✓ ✓ ✓ 0.601
0.55 23 4 ✓ ✓ ✓ ✓ 0.598
0.54 20 3 ✓ ✓ ✓ 0.581
0.49 17 2 ✓ ✓ 0.565
0.44 15 2 ✓ ✓ 0.556
0.39 12 1 ✓ 0.544

graph-based tree completion may also contribute to this by reduc-
ing the complexity of the randomly added trees. Solutions that are
larger than those shown in Table 3 often contain some degree of
bloat, for example a tree which multiplies two numerical constants
together. This indicates that there would be some benefit to con-
tinuing the evolution beyond the number of generations shown
here. However, as stated before, this was outside of limits of the
computational resources and time available for this article.

6 CONCLUSION
This article has applied a novel multi-objective multi-gene genetic
programming approach to the problem of feature construction for
the prediction of long-term leakage quantities in water distribution
networks. The resulting machine learning model performed well
and was significantly less complex than the previous human-made
model, both in terms of the number of features, and the complexity
of those features. In addition, new features which were not previ-
ously considered were found. This demonstrates the value of using
evolutionary approaches on real-world problems.

The results found five features which together accounted for 65%
of the variation in long-term background and unreported leakage
between different real-world DMAs. The individual impact of each
feature was analysed using Shapley values. The derived model can
accurately predict the average long term minimum night flow with
low computational complexity for DMAs. Finally, this may allow
companies to direct their maintenance efforts towards areas of
the network that are likely to be the largest contributors towards
consistent leakage.
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