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A B S T R A C T 

Hydrodynamical numerical methods that converge with high-order hold particular promise for astrophysical studies, as they 

can in principle reach prescribed accuracy goals with higher computational efficiency than standard second- or third-order 
approaches. Here we consider the performance and accuracy benefits of Discontinuous Galerkin (DG) methods, which offer 
a particularly straightforward approach to reach extremely high order. Also, their computational stencil maps well to modern 

GPU devices, further raising the attractiveness of this approach. However, a traditional weakness of this method lies in the 
treatment of physical discontinuities such as shocks. We address this by invoking an artificial viscosity field to supply required 

dissipation where needed, and which can be augmented, if desired, with physical viscosity and thermal conductivity, yielding a 
high-order treatment of the Navier–Stokes equations for compressible fluids. We show that our approach results in sub-cell shock 

capturing ability, unlike traditional limiting schemes that tend to defeat the benefits of going to high order in DG in problems 
featuring many shocks. We demonstrate exponential convergence of our solver as a function of order when applied to smooth 

flows, such as the Kelvin–Helmholtz reference problem of Lecoanet et al. We also demonstrate excellent scalability of our 
GPU implementation up to hundreds of GPUs distributed on different compute nodes. In a first application to driven, subsonic 
turbulence, we highlight the accuracy advantages of high-order DG compared to traditional second-order accurate methods, and 

we stress the importance of physical viscosity for obtaining accurate velocity power spectra. 

Key words: hydrodynamics – shock waves – turbulence – methods: numerical. 
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 I N T RO D U C T I O N  

omputational fluid dynamics has become a central technique in
odern astrophysical research (for re vie ws see e.g. Trac & Pen 2003 ;
ogelsberger et al. 2020 ; Andersson & Comer 2021 ). It is used in
umerical simulations to advance the understanding of countless
ystems, ranging from planet formation (e.g. Nelson et al. 2000 ) o v er
he evolution of stars (e.g. Edelmann et al. 2019 ), and the interplay of
as, black holes, and stars in galaxy formation (e.g. Weinberger et al.
017 ), up to extremely large scales involving clusters of galaxies (e.g.
olag et al. 2009 ) or the filaments in the cosmic web (e.g. Mandelker

t al. 2019 ). 
This wide breadth of scientific applications is also mirrored in

 be wildering di v ersity of numerical discretization schemes. Ev en
o the underlying equations for thin, non-viscous gases – the Euler
quations – are the same in a broad class of astrophysical studies,
he commonly applied numerical methods come in many different
a v ours, and are sometimes based on radically different principles.
t a basic level, one often distinguishes between Lagrangian and
ulerian discretization schemes. The former partition the gas into
lements of (nearly) constant mass, as done for example in the
opular smoothed particle hydrodynamics (SPH) approach (e.g.
 E-mail: cernetic@mpa-garching.mpg.de 
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Pub
onaghan 1992 ) and its many deri v ati ves. In contrast, the latter
iscretize the volume using a stationary (often Cartesian) mesh (e.g.
tone & Norman 1992 ), such that the fluid is represented as a field.
ybrid approaches, which for example use an unstructured moving-
esh (Springel 2010 ) are also possible. 
For mesh-based codes, finite-volume and finite-element methods

re particularly popular. In the finite-volume approach, one records
he averaged state in a cell, which is updated in time by the
umerical scheme. This approach combines particularly nicely with
he conserv ati ve character of the Euler equations, because the updates
f the conserved quantities in each cell can be expressed as pair-
ise fluxes through cell boundaries, yielding not only a manifestly

onserv ati ve approach but also a physically intuitive formulation
f the numerical method. In finite-element approaches one instead
xpands the fluid state in terms of basis functions. In spectral
ethods, the support of the basis functions can be the full simulation

omain, for example if Fourier series are used to represent the system.
Discontinuous Galerkin (DG) approaches (first introduced for non-

inear problems by Cockburn & Shu 1989 ), which are the topic of
his paper, are a particular kind of finite-element approaches in which
 series expansion for the solution is carried out separately within
ach computational cell (which can have a fairly general shape).
nside a cell, it is thus simply a truncated spectral method. The
olutions for each of the cells are coupled with each other, ho we ver,
t the surfaces of the cells. Interestingly, high-order accuracy of
© 2023 The Author(s) 
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lobal solutions can be obtained simply through the high order of
he spectral method applied inside a cell, while it does not require
ontinuity of the solutions at the cell interfaces. This makes it
articularly straightforward to extend DG schemes to essentially 
rbitrarily high order, because this does not make the coupling at cell
nterfaces any more complicated. This is quite different from high- 
rder finite volume schemes, where the reconstruction step requires 
rogressively deeper stencils at high order (Janett et al. 2019 ). 
Another advantage of the DG approach is that it allows in principle

ells of different convergence order to be directly next to each other
Schaal et al. 2015 ). This makes a spatially varying mesh resolution,
r a spatially varying expansion order, more straightforward to 
mplement than in high-order extensions of finite volume methods, 
here typically the high-order convergence property is compromised 

t resolution changes unless preserved with special treatments. 
Despite these advantages, DG methods have only recently begun to 

e considered in astrophysics. First implementations and applications 
nclude Mocz et al. ( 2014 ); Schaal et al. ( 2015 ); Kidder et al.
 2017 ); Velasco Romero et al. ( 2018 ); Guillet et al. ( 2019 ), as well
s more recently Lombart & Laibe ( 2021 ); Deppe et al. ( 2022 );
arkert, Walch & Gassner ( 2022 ). We here focus on exploring a new

mplementation of DG that we developed from the ground up for use
ith graphical processing units (GPUs). The recent advent of exas- 

ale supercomputers has been enabled through the use of graphical 
rocessing units (GPUs) or various other types of accelerator units. 
he common feature of these accelerators is the capability to e x ecute
 large number of floating point operations at the expense of lower
emory bandwidth and total memory per computing unit (few MBs 

ompared to few GBs on an ordinary compute node) compared to the
PU. Another peculiarity of accelerators is that the y hav e hundreds
f computing units (roughly equi v alent to CPU cores) which e x ecute
perations in a single instruction, multiple data (SIMD) mode. Since 
any of the newest and largest supercomputers use such accelerators, 

t becomes imperative to either modify existing simulation codes for 
heir efficient use, or to write new codes optimized for this hardware
rom scratch. 

While there are already many successes in the literature for both 
pproaches (e.g. Schneider & Robertson 2015 ; Ocvirk et al. 2016 ;
ibking & Krumholz 2022 ), most current simulation work in the 

strophysical literature is still being carried out with CPU codes. 
ertainly one reason is that large existing code bases are not easily
igrated to GPUs. Another is that not all numerical solvers easily 
ap to GPUs, making it hard or potentially impossible to port certain

imulation applications to GPUs. 
Ho we ver, there are also numerous central numerical problems 

here GPU computing should be applicable and yield sizable speed- 
ps. One is the study of hydrodynamics with uniform grid resolutions, 
s needed for turbulence. In this work, we thus focus on developing a
ew implementation of DG that is designed to run on GPUs. We base
ur implementation of DG on Schaal et al. ( 2015 ) and Guillet et al.
 2019 ), with one critical difference. We do not apply the limiting
chemes described in these studies as they defeat the benefits of
igh-order approaches when strong shocks are present. Rather, we 
ill revert to the idea of deliberately introducing a small amount of

rtificial viscosity to capture shocks, i.e. to add required numerical 
iscosity just where it is needed, and ideally with the smallest amount
ecessary to suppress unphysical oscillatory solutions. As we will 
how, with this approach the high-order approach can still be applied 
ell to problems involving shocks, without having to sacrifice all 
igh-order information on the stake of a slope limiter. 
This paper is structured as follows. In Section 2 , we detail the
athematical basis of the Discontinuous Galerkin discretization 
f hydrodynamics as used by us. In Section 3 , we generalize the
reatment to include source terms which involve deri v ati ves of the
uid states, such as needed for the Navier–Stokes equations, or for
ur artificial viscosity treatment for that matter. We then turn to a
iscussion of shock capturing and oscillation control in Section 4 .
he following Section 5 is devoted to elementary tests, such as
hock tubes and convergence tests for smooth problems. In Section 6
e then show results for ‘resolved’ Kelvin–Helmholtz instabilities, 

nd in Section 7 , we give results for driven isothermal turbulence
nd discuss to what extent DG methods improve the numerical 
ccurac y and efficienc y of such simulations. Implementation and 
arallelization issues of our code, in particular with respect to using
PUs, are described in Section 8 , while in Section 9 , we discuss the
erformance and scalability of our new GPU-based hydrodynamical 
ode. Finally, we give a summary and our conclusions in Section 10 .

 D I S C O N T I N U O U S  G A L E R K I N  

I SCRETI ZATI ON  O F  T H E  EULER  E QUAT I O N S  

he Euler equations are a system of hyperbolic partial differential 
quations. They encapsulate the conservation laws for mass, momen- 
um, and total energy of a fluid, and can be expressed as 

∂ u 

∂ t 
+ 

d ∑ 

α= 1 

∂ f α( u ) 

∂ x α
= 0 , (1) 

here the sum runs o v er the d dimensions of the considered problem.
he state vector u holds the conserved variables: density, momentum 

ensity, and total energy density: 

 = 

⎡ 

⎣ 

ρ

ρv 

e 

⎤ 

⎦ , e = ρu + 

1 

2 
ρv 2 . (2) 

To make our system complete we need an equation of state which
onnects the hydrodynamics pressure p with the specific internal 
nergy u . If γ is the adiabatic index, i.e. the ratio of the specific heat
f the gas at a constant pressure C p to its specific heat at a constant
olume C v , the ideal gas equation of state is 

 = ρu ( γ − 1 ) . (3) 

We also need to specify the second term of equation ( 1 ). The fluxes
f α( u ) in three dimensions are: 

f 1 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ρv x 
ρv x v x + p 

ρv x v y 
ρv x v z 

( ρe + p) v x 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, f 2 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ρv y 
ρv x v y 

ρv y v y + p 

ρv y v z 
( ρe + p) v y 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, 

f 3 = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ρv z 
ρv x v z 
ρv y v z 

ρv z v z + p 

( ρe + p) v z 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. (4) 

y summarizing the flux vectors into F = ( f 1 , f 2 , f 3 ), we can also
rite the Euler equations in the compact form 

∂ u 

∂ t 
+ ∇ · F = 0 , (5) 

hich highlights their conserv ati ve character. Numerically solving 
his set of non-linear, hyperbolic partial differential equations is at 
he heart of computational fluid dynamics. Here we shall consider 
MNRAS 522, 982–1008 (2023) 
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he specific choice of a high-order Discontinuous Galerkin (DG)
ethod. 

.1 Representation of conser v ed v ariables in DG 

n the Discontinuous Galerkin approach, the state vector u 

K ( x , t) in
ach cell K is expressed as a linear combination of time-independent,
ifferentiable basis functions φK 

l ( x ), 

u 

K ( x , t) = 

N ∑ 

l= 1 

w 

K 

l ( t) φK 

l ( x ) , (6) 

here the w 

K 

l ( t) are N time dependent weights. Since the expansion
s carried out for each component of our state vector separately, the
eights w 

K 

l are really vector-valued quantities with five different
alues in 3D for each basis l . Each of these components is a single
calar function with support in the cell K . 

The union of cells forms a non-o v erlapping tessellation of the
imulated domain, and the global numerical solution is fully specified
y the set of all weights. Importantly, no requirement is made that
he piece-wise smooth solutions within cells are continuous across
ell boundaries. 

We shall use a set of orthonormal basis functions that is equal
n all cells (apart from a translation to the cell’s location), and we
pecialize our treatment in this paper to Cartesian cells of constant
ize. The DG approach can ho we ver be readily generalized to other
esh geometries, and to meshes with variable cell sizes. Also, we
ill here use a constant number N of basis functions that is equal for

ll cells, and determined only by the global order p of the employed
cheme. In principle, ho we ver, DG schemes allo w this be varied from
ell to cell (the so-called p -refinement). 

.2 Time evolution 

o derive the equations governing the time evolution of the DG
eights w 

K 

l , we start with the original Euler equation from equation
 5 ), multiply it with one of the basis functions and integrate over the
orresponding cell K : ∫ 
K 

φK 

l 

∂ u 

∂ t 
d x + 

∫ 
K 

φK 

l ∇ F d x = 0 . (7) 

ntegration by parts of the second term and applying the divergence
heorem leads to the so-called weak formulation of the conservation
aw: ∫ 

K 

φK 

l 

∂ u 

∂ t 
d x + 

∫ 
∂ K 

φK 

l F d n −
∫ 

K 

∇ φK 

l F d x = 0 , (8) 

here | K | stands for the volume of the cell (or area in 2D). 
If we now insert the basis function expansion of u and make use

f the orthonormal property of our set of basis functions, ∫ 
K 

φK 

l ( x ) φK 

m 

( x )d x = δl,k | K| , (9) 

e obtain a differential equation for the time evolution of the
eights: 

 K| d w 

K 

l 

d t 
= 

∫ 
K 

∇ φK 

l F d x −
∫ 
∂ K 

φK 

l F 

� ( u 

+ , u 

−) d n . (10) 

ere we also considered that the flux function at the surface of cells
s not uniquely defined if the states that meet at cell interfaces are
iscontinuous. We address this by replacing F ( u ) on cell surfaces
ith a flux function F 

� ( u 

+ , u 

−) that depends on both states at the
nterface, where u 

+ is the outwards facing state relative to n (from
NRAS 522, 982–1008 (2023) 
he neighbouring cell), and u 

− is the state just inside the cell. We
ill typically use a Riemann solver for determining F 

� , making this
kin to Godunov’s approach in finite volume methods. In fact, the
ame type of exact or approximate Riemann solvers can be used here
s well. We use for ordinary gas dynamics a simplified version of
he Riemann HLLC solver by Toro ( 2009 ) as implemented in the
REPO code (Springel 2010 ; Weinberger, Springel & Pakmor 2020 ).
e have also included an exact Riemann solver in case an isothermal

quation of state is specified. 
What remains to be done to make an e v aluation of equation ( 10 )

ractical is to approximate both the volume and surface integrals
umerically, and to choose a specific realization for the basis
unctions. We shall briefly discuss both aspects below. Another
ngredient is the definition of the weights for the initial conditions.
hanks to the completeness of the basis, they can be computed by
rojecting the state vector u ( x ) of the initial conditions onto the basis
unctions φK 

l of each cell: 

 

K 

l = 

1 

| K| 
∫ 

K 

u φK 

l d V . (11) 

f a finite number N of basis functions is used to approximate the
umerical solution, the total approximation error is then 

 1 = 

1 

| K| 
∫ 

K 

∣∣∣∣∣ u ( x ) −
N ∑ 

l= 1 

w 

K 

l φK 

l ( x ) 

∣∣∣∣∣ d V . (12) 

e shall use this L1 norm to examine the accuracy of our code when
nalytic solutions are known. 

.3 Legendre basis function 

ollowing Schaal et al. ( 2015 ), we select Legendre polynomials P l ( ξ )
o construct our set of basis functions. They are defined on a canonical
nterval [ − 1, 1] and can be scaled such that they form an orthogonal
asis with normalization chosen as: ∫ 1 

−1 
P l ( ξ ) P m 

( ξ )d ξ = 2 δl,m 

. (13) 

ote that the 0-th order Legendre polynomial is just a constant term,
hile the 1-st order features a simple pure linear dependence. In
eneral, P l ( ξ ) is a polynomial of degree l . 
Within each cell, we define local coordinates ξ ∈ [ −1 , 1 ] d . The

ranslation between global coordinates x to local cell coordinates ξ
s: 

K = 

2 

h 

(
x − x K 

c 

)
, (14) 

ith h being the cell size in one dimension, and x K 

c is the cell centre
n world coordinates. Multidimensional basis functions are simply
efined as Cartesian products of Legendre polynomials, for example
n three dimensions as follows: 

K 

l ( x ) = P 

3D 
l [ ξK ( x )] , (15) 

ith 

 

3D 
l [ ξK ] ≡ P l x 

(
ξK 

x 

) · P l y 

(
ξK 

y 

) · P l z 

(
ξK 

z 

)
, (16) 

here the generalized index l enumerates different combinations of
egendre polynomials l x ( l ), l y ( l ), and l z ( l ) in the different directions.

n practice, we truncate the expansion at a predefined order n , and
iscard all tensor products in which the degree of the resulting
olynomial exceeds n . This means that we end up in 3D with 

 

3D ( n ) = 

1 

6 
( n + 1)( n + 2)( n + 3) (17) 
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asis functions, each a product of three Legendre polynomials of 
rders l z, y , z ∈ { 0, . . . , n } . In 2D, we have 

 

2D ( n ) = 

1 

2 
( n + 1)( n + 2) , (18) 

nd in 1D the number is N 

1D ( n ) = n + 1. The expected spatial
onvergence order due to the leading truncation error is in each case
 = n + 1. From now on we will refer to p as the order of our DG
cheme, with n = p − 1 being the highest degree among the involved
egendre polynomials. 
In Fig. 1 , we show an example of approximating a smooth function

ith Legendre polynomials of different order and with a different 
umber of cells, but keeping the number of degrees constant. In this
ase, the approximation error tends to be reduced by going to higher
rder, even when this implies using fewer cells. 

.4 Gaussian quadrature 

n integration of a general function f ( x ) o v er the interval [ − 1, 1]
an be approximated by Gaussian quadrature rules, as ∫ 1 

−1 
f ( x) d x � 

n g ∑ 

j= 1 

g j f ( x j ) (19) 

or a set of e v aluation points x j and suitably chosen quadrature
eights g j . We use ordinary Gaussian quadrature with internal points
nly. The corresponding integration rule with n g e v aluation points is
xact for polynomials up to degree 2 n g − 1. If we use Legendre
olynomials up to order n , we therefore should use at least n g 

( n + 1)/2 integration points. Note, ho we ver, that the non-linear
ependence of the flux function on the state vector u means that we
ctually encounter rational functions as integrands and not just simple 
olynomials. As a result, we need unfortunately a more conserv ati ve
umber of integration points for sufficient accuracy and stability in 
ractice. A good heuristic is to take the number of basis functions
sed for the 1D case as a guide, so that one ef fecti vely employs at
east one function e v aluation per basis function. This means we pick
 g = n + 1 in what follows. 
Multidimensional integrations, as needed for the surface and 

olume integrals in our Cartesian setup, can be carried out through 
ensor products of Gaussian integrations. We denote the corre- 
ponding function e v aluation points as ξ vol 

j = ( x j 1 , x j 2 , x j 3 ) and
aussian weights as g vol 

j = g j 1 · g j 2 · g j 3 for the combination j =
 j 1 , j 2 , j 3 ) of Gaussian quadrature points needed for integrations
 v er the cell volume in 3D. For surface integrations over our
ubical cells, we correspondingly define ξ sur 

k ,x+ 

= ( + 1 , x k 1 , x k 2 ), and
sur 
k ,x− = ( −1 , x k 1 , x k 2 ) for e v aluation points on the right and left
urface in the x -direction of one of our cubical cells, with k = ( k 1 , k 2 )
nd likewise for the y - and z-directions. The corresponding Gaussian 
uadrature weights are given by g sur 

k = g k 1 · g k 2 . 
Putting everything together, we arrive at a full set of discretized 

volutionary equations for the weights. For definiteness, we specify 
his here for the 3D case: 

d w 

K 

l 

d t 
= 

1 

4 

3 ∑ 

α= 1 

∑ 

j ∈ 
[1 ,n g ] 3 

⎧ ⎨ 

⎩ 

f α
[ 

u K 

(
ξvol 

j 

)] 
·
∂P 

3D 
l 

(
ξvol 

j 

)
∂ξα

⎫ ⎬ 

⎭ 

g vol 
j 

− 1 

8 

3 ∑ 

α= 1 

∑ 

k ∈ 
[ 1 ,n g ] 2 

{
P 

3D 
l 

(
ξ sur 

k ,α+ 
)

f � α
[
u K,α+ (ξ sur 

k ,α−
)
, u K 

(
ξ sur 

k ,α+ 
)]

− P 

3D 
l 

(
ξ sur 

k ,α+ 
)

f � α
[
u K 

(
ξ sur 

k ,α−
)
, u K,α− (

ξ sur 
k ,α+ 

)]}
g sur 

k . (20) 
ere the notation u 

K,α+ and u 

K,α− refer to the state vectors e v aluated
or the right and left neighbouring cells of cell K in the direction of
xis α, respectively. The state vector e v aluations themselves are given
y 

 

K ( ξ ) = 

N ∑ 

l= 1 

w 

K 

l P 

3D 
l ( ξ ) . (21) 
MNRAS 522, 982–1008 (2023) 
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ote that the pre-factor 1/ | K | in front of the surface integral terms in
quation ( 20 ) turns into 1/8 as a result of the change of integration
ariables mediated by equation ( 15 ). The volume integral acquires a
actor of 2/ h from the coordinate transformation, thus the final pre-
actor becomes 1/4. The numerical computation of the time deri v ati ve
f the weights based on a current set of weights is in principle
traightforward using equation ( 20 ), but evidently becomes more
laborate at high-order, involving numerous sums per cell. 

In passing we note that instead of just counting the number of
ells per dimensions, both the storage effort and the numerical work
eeded is better measured in terms of the number of degrees of
reedom per dimension. A fixed number of degrees of freedom (and
hus storage space) can be achieved with different combinations of
ell size and expansion order. The hope in using high-order methods
s that the y deliv er better accuracy for a fixed number of degrees of
reedom, or arguably even more importantly, better accuracy at fixed
omputational expense. 

.5 Time integration 

ith 

˙  ≡ d w 

K 

l 

d t 
(22) 

n hand, standard ODE integration methods such as the broad class
f Runge–Kutta integrations can be used to advance the solution
orward in time. We follow standard procedure and employ strongly
ositivity preserving (SPP) Runge–Kutta integration rules as defined
n Schaal et al. ( 2015 , Appendix D). Note that when higher spatial
rder is used, we correspondingly use a higher order time integration
ethod, such that the time integration errors do not start dominating
 v er spatial discretization errors. The highest time integration method
e use is a 5 stage 4-th order SSP RK method. 
The time-step size 
 t is set conserv ati vely as 

t max = f CFL 
h 

2 p 

(
c s , max + v max 

) , (23) 

here h is the cell size, f CFL is the Courant–Friedrichs–Lewy factor,
 s , max denotes the global maximum sound speed, and v max is the
lobal maximum kinematic v elocity, respectiv ely. We use a f CFL of
.5 for all problems except the shock tube, Sedov blast wave, and
ouble blast wave where a more conserv ati ve 0.3 was used instead. 
For high order runs ( p > 4) we did not see time integration errors

o start dominating o v er the spatial discretization errors, despite
mploying only a 4-th order RK scheme. We attribute this to our use
f a low Courant factor and to including global maximum velocities
n the time-step criterion. Once the errors from time integration would
tart to dominate at high order, we could reco v er sufficient accurac y
f our time integration scheme by appropriately scaling the time-step
ize as h r /4 . 

 T R EATMEN T  O F  V I S C O U S  S O U R C E  TERMS  

s we will discuss later on, our approach for capturing physical
iscontinuities (i.e. shocks and contact discontinuities) in gas flows
eviates from the classical slope-limiting approach and instead relies
n a localized enabling of artificial viscosity. Furthermore, we will
eneralize our method to also account for physical dissipative terms,
o that we arrive at a treatment of the full compressive Navier–Stokes
quations. 

To introduce these methods, we start with a generalized set of
uler equations in 3D that are augmented with a diffusion term in all
NRAS 522, 982–1008 (2023) 
uid variables, 

∂ u 

∂ t 
+ ∇ · F = ∇ · ( ε∇ u ) , (24) 

here u and F are the state vector ( 6 ) and the flux matrix ( 4 ),
espectively. 

The crucial difference between the normal Euler equations ( 1 )
nd this dissipative form is the introduction of a second deri v ati ve
n the right-hand side, which modifies the character of the problem
rom being purely hyperbolic to an elliptic type, while retaining
anifest conversation of mass, momentum, and energy. This second

eri v ati ve can ho we ver not be readily accommodated in our weight
pdate equation obtained thus far. Recall, the reason we applied
ntegration by parts and the Gauss’ theorem going from equation ( 5 )
o equation ( 8 ) was to eliminate the spatial deri v ati ve of the fluxes.
f we apply the same approach to ∇ · ( ε∇ u ) we are still left with one
-operator acting on the fluid state. 

.1 The uplifting approach 

n a seminal paper, Bassi & Rebay ( 1997 ) suggested a particular treat-
ent of this second deri v ati ve inspired by how one typically reduces

econd (or higher) order ordinary differential equations (ODEs) to
rst order ODEs. Bassi & Rebay ( 1997 ) reduce the order of equation
 24 ) by introducing the gradient of the state vector, S ≡ ∇ u , as
n auxiliary set of unknowns. This yields a system of two partial
ifferential equations: 

S − ∇ u = 0 , (25) 

∂ u 

∂ t 
+ ∇ · ( F − εS ) = 0 . (26) 

nterestingly, if we consider a basis function expansion for S for
ach cell in the same way as done for the state vector, then the weak
ormulation of the first equation can be solved with the DG formalism
sing as input only the series expansion of the current state u . This
ntails again an integration by parts that yields volume and surface
ntegrations for each cell. To compute the latter, one needs to adopt
 surface state u 

� for potentially discontinuous jumps u 

+ and u 

−

cross the cell boundaries. Bassi & Rebay ( 1997 ) suggest to use the
rithmetic mean u 

� = [ u 

− + u 

+ ] / 2 for this, so that obtaining the
eries expansion coefficients for S is straightforward. One can then
roceed to solve equation ( 26 ), with a largely identical procedure than
or the Euler equation, except that the ordinary flux F is modified
y subtracting the viscous flux F visc = εS . At cell interfaces one
urthermore needs to define the viscous flux uniquely somehow,
ecause S can still be discontinuous in general at cell interfaces. Here
assi & Rebay ( 1997 ) suggest to use the arithmetic mean again. 
A clear disadvantage of this procedure, which we initially imple-
ented in our code, is that it significantly increases the computational

ost, memory requirements, and code complexity, because the
omputation of S involves the same set of volume and surface
ntegrals that are characteristic of the DG approach, except that it
ctually has to be done three times as often than for u in 3D, once for
ach spatial dimension. But more importantly, we have found that
his method is prone to robustness problems, in particular if the initial
onditions already contain large discontinuities across cells. In this
ase, the estimated deri v ati ves inside a cell can reach unphysically
arge values by the jumps seen on the outer sides of a cell. 

In hindsight, this is perhaps not too surprising. For a continuous
olution, there is arguably little if anything to be gained by solving
quation ( 25 ) with the DG algorithm if a polynomial basis is in use.
ecause this must then return a solution identical to simply taking
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Figure 2. Two cells K 

− and K 

+ that meet at a joint face. The corresponding 
polynomial solutions u − and u + are in general discontinuous at the interface. 
To unambiguously define a joint solution and its gradient on the interface, we 
construct an interpolant solution on a domain K ∗ placed symmetrically around 
the interface. In the normal direction, a fraction f of both cells is co v ered (we 
pick either f = 3/4 or f = 1 in practice), in the transverse direction(s), the cells 
are co v ered in full. 
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he deri v ati ves of the basis functions (which are analytically known)
nd retaining the coefficients of the expansion. On the other hand, 
f there are discontinuities in u at the boundaries, the solution for S 
ensitively depends on the (to a certain degree arbitrary) choice made 
or resolving the jumps in the computation of the surface integrals 
or S . In particular, there is no guarantee that using the arithmetic
ean does not induce large oscillations or unphysical values for S 

n the interior of cells in certain cases. 
For all these reasons we have ultimately abandoned the Bassi & 

ebay ( 1997 ) method, because it does not yield a robust solution
or the diffusion part or the equations in all situations, and does not
onverge rapidly at high order either. Instead, we conjecture that the 
ey to high order convergence of the dif fusi ve part of the PDE system
s the availability of a consistently defined continuous solution across 
ell boundaries. 

.2 Surface deri v ati v es 

or internal e v aluations of the viscous flux (which in general may
epend on u and ∇ u ) within a cell, we use the current basis function
xpansion of the solution in the cell and simply obtain the deri v ati ve
y analytically differentiating the basis functions. We argue that this 
s the most natural choice as the same interior solution u is used for
omputing the ordinary hydrodynamical flux. 

The problem, ho we ver, lies with the surface terms of the viscous
ux, as here neither the value of the state vector nor the gradient are
niquely defined, and unlike for the hyperbolic part of the equation, 
here is no suitable ‘Riemann solver’ to define a robust flux for the
iffusion part of the equation. Simply taking arithmetic averages of 
he two values that meet at the interface for the purpose of e v aluating
he surface viscous flux is not accurate and robust in practice. 

We address this problem by constructing a new continuous solution 
cross a cell interface by considering the current solutions in the two
djacent cells of the interface, and projecting them onto a new joint
olynomial expansion in a rectangular domain that co v ers part (or
ll) of the two adjacent cells. This approach is similar to the reco v ery
ethod proposed by van Leer & Nomura ( 2005 ) in their work on

olving the diffusion equation in DG. This interpolated solution 
inimizes the L 2 difference to the original (in general discontinuous) 

olutions in the two cells, but it is continuous and differentiable at
he cell interface by construction. The quantities u and ∇ u needed 
or the e v aluation of the viscous surface flux are then computed by
 v aluating the new basis function expansion at the interface itself. 

A sketch of the adopted procedure is shown in Fig. 2 . The two
olutions in the two adjacent cells are given by 

 

K 

−
( x ) = 

N ∑ 

l= 1 

w 

K 

−
l φK 

−
( x ) . (27) 

nd 

 

K 

+ 
( x ) = 

N ∑ 

l= 1 

w 

K 

+ 
l φK 

+ 
( x ) . (28) 

e now seek an interpolated solution in terms of a set of new basis
unctions ψ 

K 

� 
defined on the domain K 

� , i.e. 

˜  K 

� 

( x ) = 

N � ∑ 

l= 1 

q K 

� 

l ψ 

K 

� 

( x ) . (29) 

n order to a v oid a degradation of accuracy if the solution is smooth,
nd to provide sufficient accuracy for the gradient, we adopt order 
 + 1 for the polynomial basis of ˜ u 

K 

� 

. As for ordinary cells, the
eneralized index l enumerates different combinations [ l x ( l ), l y ( l ),
 z ( l )] of Legendre polynomials and their Cartesian products in the
ultidimensional case. If, for example, the two cells are oriented 

long the x -axis, we define 

 

K 

� 

l ( x ) = P l x 

(
ξK 

� 

x 

)
· P l y 

(
ξK 

y 

) · P l z 

(
ξK 

z 

)
, (30) 

here now the mapping of the x -extension of the domain K 

� into the
tandard interval [ − 1, 1] is correspondingly modified as 

K 

� 

x = 

1 

f h 

( 

x − x K 

−
c + x K 

+ 
c 

2 

) 

, (31) 

here f is the fraction of o v erlap of each of the two cells (see Fig. 2 ).
he coefficients q K 

� 

l can then be readily obtained by carrying out the
rojection integrals 

 

K 

� 

l = 

1 

| K 

� | 
∫ 

K 

� 

u ( x ) ψ 

K 

� 

l ( x ) d V 

= 

1 

| K 

� | 
N ∑ 

m = 1 

[
w 

K 

−
m 

∫ 
K 

−
φK 

−
m 

ψ 

K 

� 

l d V + w 

K 

+ 
m 

∫ 
K 

+ 
φK 

+ 
m 

ψ 

K 

� 

l d V 

]
. 

(32) 

he projection is a linear operation, and the o v erlap inte grals of the
egendre basis functions can be pre-computed ahead of time. In fact,
any e v aluate to zero due to the orthogonality of our Legendre basis.

n particular, this is the case for the transverse basis functions if their
rder is not equal, so that the projection ef fecti vely becomes a sparse
atrix operation that expresses the new expansion coefficients in the 

ormal direction as a sum of one or several old expansion coefficients
n the normal direction. This can be more explicitly seen by defining
e gendre o v erlap inte grals as 

 

−
m,l = 

∫ 0 

−1 
P m 

(2 f x + 1) P l ( x ) d x , (33) 

 

+ 

m,l = 

∫ 1 

0 
P m 

(2 f x + 1) P l ( x ) d x . (34) 

hen the new coefficients can be computed as follows 

 

K 

� 

( l x ,l y ,l z ) = 

1 

2 f 

l x ∑ 

m x = 0 

[ 
A 

−
m x ,l x 

w 

K 

−
( m x ,l y ,l z ) + A 

+ 

m x ,l x 
w 

K 

+ 
( m x ,l y ,l z ) 

] 
. (35) 

ote that for transverse dimensions, only the original Legendre 
olynomials contribute, hence the ne w coef ficients are simply linear
MNRAS 522, 982–1008 (2023) 
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ombinations of coefficients that differ only in the order of the
egendre polynomial in the x -direction. Also note that for the

ransverse dimensions, the highest Legendre orders l y and l z that
re non-zero are the same as for the original coefficients, i.e. the
act that we extend the order to n + 1 becomes only rele v ant for the
irection connecting the two cells. 
Another point to note is that the basis function projection can be

arried out independently for the left-hand and right-hand side of
n interface (corresponding to the first and second part of the sum
n equation 35 ), each yielding a partial result that can be used in
urn to e v aluate partial results for ˜ u ∇ ̃  u at the interface. Adding up
hese partial results then yields the final interface state and interface
radient. This means that this scheme does not require to send the
oefficients w 

K 

±
to other processors in case K 

− and K 

+ happen to
e stored on different CPUs or GPUs, only ‘left’ and ‘right’ states
or ˜ u and ∇ ̃  u need to be exchanged (which are the partial results that
re then summed instead of taking their average), implying the same
ommunication costs as, for example, methods that would rely on
aking arithmetic averages of the values obtained separately for the
 

− and K 

+ sides. 
Finally, we choose f = 3/4 for the size of the o v erlap re gion for n
2, but f = 1 for higher order n > 2. For the choice of f = 3/4, the

stimate for the first deri v ati ve of the interpolated solution ends up
eing 

 ̃  u = 

u 

+ − u 

−

h 

n , (36) 

or piece-wise constant states, where h is the cell spacing, n is the
ormal vector of the interface, and u 

± are the average states in the
wo cells. This intuitively makes sense for low order. In particular,
his will pick up a reasonable gradient even if one starts with a piece-
ise constant initial conditions, and even if n = 0 (corresponding to
G order p = 1) is used. We also obtain the expected convergence
rders for diffusion problems (see below) with this choice when n

2 is used. On the other hand, we have found that it is necessary
o include the full available information of the two adjacent cells by
dopting f = 1 for still higher order in order to obtain the expected
igh-order convergence rates for diffusion problems also for n > 2. 

.3 The Navier–Stokes equations 

hile we will use the abo v e form of the dissipative terms for our
reatment of artificial viscosity (see below), we also consider the full
avier–Stokes equations. They are given by: 

∂ u 

∂ t 
+ ∇ · F = ∇ · F NS , (37) 

here now the Navier–Stokes flux vector F NS is a non-linear function
oth of the state vector u and its gradient ∇u . We pick the canonical
orm 

F NS = 

⎛ 

⎝ 

0 
� 

v · � + χ ( γ − 1) ρ∇u 

⎞ 

⎠ , (38) 

ith a viscous tensor 

 = νρ

(
∇ v + ∇ v T + 

2 

3 
∇ · v 

)
(39) 

hat dissipates shear motions with viscosity ν. We also include
ptional heat conduction with thermal dif fusi vity χ . Note that the
eri v ati ves of the primitive variables can be easily obtained from the
eri v ati ves of the conserv ati ve v ariables when needed, for example
NRAS 522, 982–1008 (2023) 
v = [ ∇( ρv ) − v ∇ρ] /ρ, and one can thus express the velocity
radient ∇v in terms of ∇u and u . 

.4 P assi v e tracer 

inally, for later application to the Kelvin–Helmholtz problem, we
ollow Lecoanet et al. ( 2016 ) and add a passiv e, conserv ed tracer
ariable to the fluid equations. The density of the tracer is c ρ, with
 being its dimension-less relative concentration. It can be added as
 further row to the state vector u . Since the tracer is conserved and
imply advected with the local velocity, the corresponding entry in
he flux vector is cρv . Further, we can also allow for a diffusion of
he tracer with dif fusi vity η, by adding ηρ∇c in the corresponding
ow of the Navier–Stokes flux v ector. The go v erning equation for the
assive tracer dye is hence 

∂ ( cρ) 

∂ t 
+ ∇ · ( cρv ) = ∇ ( ηρ∇ c) . (40) 

 S H O C K  C A P T U R I N G  A N D  OSCI LLATI O N  

O N T RO L  

.1 Artificial viscosity 

igh-order numerical methods are prone to oscillatory behaviour
round sharp jumps of density or pressure. Such physical disconti-
uities arise naturally at shocks in supersonic fluid motion, and they
re an ubiquitous phenomenon in astroph ysical g as dynamics. In
act, the Euler equations have the interesting property that perfectly
nitial conditions can evolve with time into states that feature real
iscontinuities. The physical dissipation that must happen in these
umps is implicitly dictated by the conservation laws, but discrete
umerical methods may not al w ays produce the required level of
issipation, such that post-shock oscillations are produced that are
eminiscent of the Gibbs phenomenon in Fourier series expansion
round jump discontinuities. 

Our DG code produces these kinds of oscillations with increasing
rominence at higher and higher order when discontinuities are
resent. And once the oscillations appear, they do not necessarily
et quickly damped because of the very low numerical dissipation of
igh-order DG. Shocks, in particular, seed new oscillations with time,
ecause inside cells the smooth inviscid Euler equations are evolved
in which there is no dissipation at all. Thus the entropy production

equired by shocks is simply not possible. Note that the oscillations
re not only physically wrong, they can even cause negative density
r pressure fluctuations in some cells, crashing the code. 
One approach to prevent this are the so-called slope limiters. In

articular, the family of min-mod slope limiters is highly successfully
sed in second-order finite volume methods. While use of them
n DG methods is possible, applying them in high order settings
y discarding the high-order expansion coef ficients whene ver the
lope limiter kicks in (see Schaal et al. 2015 ; Guillet et al. 2019 )
s defeating much of the effort to going to high order in the first
lace. Somehow constructing less aggressive high-order limiters that
an a v oid this is a topic that has seen much effort in the literature,
ut arguably only with still limited success. In fact, the problem
f coping with shocks in high-order DG is fundamentally an issue
hat still awaits a compelling and reasonably simple solution. Recent
dvanced treatments had to resort to replacing troubled cells with
nite volume solutions computed on small grid patches that are then
lended with the DG solution (e.g. Zanotti et al. 2015 ; Markert,
assner & Walch 2021 ). 
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We here return to the idea that this problem may actually be
est addressed by resurrecting the old idea of artificial viscosity 
Persson & Peraire 2006 ). In other inviscid hydrodynamical methods, 
n particular in the Lagrangian technique of smoothed particle 
ydrodynamics, it is evident and long accepted that artificial viscosity 
ust be added to capture shocks. Because the conservation laws 

ltimately dictate the amount of entropy that needs to be created 
n shocks, the exact procedure for adding artificial viscosity is not 
 v erly critical. What is critical, ho we ver, is that the there is a channel
or dissipation and entropy production. It is also clear that shocks
n DG can be captured in a sub-cell fashion only if the required
issipation is provided somehow, either through artificial viscosity 
hat is ideally present only at the place of the shock front itself where
t is really needed, or by literally capturing the shock by subjecting
he ‘troubled cell’ to a special procedure in which it is, for example,
emapped to grid of finite volume cells. 

Persson & Peraire ( 2006 ) suggested to use a discontinuity (or rather
scillation) sensor to detect the need for artificial viscosity in a given
ell. F or this, the y proposed to measure the relativ e contribution
f the highest order Legendre basis functions in representing the 
tate of the conserved fields in a cell. A solution of a smooth
roblem is expected to be dominated by the lower order weight 
oefficients, and statistically the low order weights should be much 
arger than their high order counterparts. In contrast, for highly 
scillatory solutions in a cell (which often are created as pathological 
ide-effects of discontinuities), the high order coefficients are more 
trongly expressed. 

We adopt the same discontinuity sensor as Persson & Peraire 
 2006 ). F or ev ery cell K , we can calculate the conserved variables
 ( x ) using either the full basis in the normal way, 

 ( x ) = 

N( p) ∑ 

i= 1 

w 

K 

l φl 

r by omitting the highest order basis functions that are not present
t the next lower expansion order, as 

ˆ  ( x ) = 

N( p−1) ∑ 

i= 1 

w 

K 

l φl 

he discontinuity/oscillatory sensor S K in cell K can now be defined 
s 

 

K = 

∫ 
K 

( u − ˆ u )( u − ˆ u )d V ∫ 
K 

u ( x ) u ( x ) d V 

, (41) 

here we restrict ourselves to one component of the state vector, 
he density field. Note that due to the orthogonality of our basis
unctions, this can be readily e v aluated as 

 

K = 

∑ N p 
l= N p−1 

[
w 

K 

l 

]2 

∑ N p 
l= 1 

[
w 

K 

l 

]2 (42) 

n terms of sums o v er the squared expansion coefficients. While we
ave 0 ≤ S K ≤ 1, we expect S K to generally assume relatively small
 alues e ven if significant oscillatory behaviour is already present in K ,
imply because the natural magnitude of the expansion coefficients 
eclines with their order rapidly. Persson & Peraire ( 2006 ) argue
hat the coefficients should scale as 1/ p 2 in analogy with the scaling
f Fourier coefficients in 1D, so that typical values for S K in case
scillatory solutions are present may scale as 1/ p 4 . Our tests indicate
 somewhat weaker scaling dependence, however, for oscillatory 
olutions developing for identical ICs, where the troubled cells scale 
pproximately as S K ∼ 1/ p 2 as a function of order. 
In the approach of Persson & Peraire ( 2006 ), artificial viscosity
s invoked in cells once their S K value exceeds a threshold value,
bo v e which it is ramped up smoothly as a function of S K to a pre-
efined maximum value. While this approach shows some success 
n controlling shocks in DG, it is problematic that strong oscillations
eed to be present in the first place before the artificial viscosity is
njected to damp them. In a sense, some damage must have already
appened before the fix is applied. 
For capturing shocks we therefore argue it makes more sense to

esort to a physical shock sensor which detects rapid, non-adiabatic 
ompressions in which dissipation should occur. We therefore pro- 
ose here to adapt ideas widely used in the SPH literature (Morris
 Monaghan 1997 ; Cullen & Dehnen 2010 ), namely to consider
 time-dependent artificial viscosity field that is integrated in time 
sing suitable source and sink functions. Adopting a dimension-less 
iscosity strength α( x , t), we propose the evolutionary equation 

∂ α

∂ t 
= α̇shock + α̇wiggles − α

τ
(43) 

or steering the spatially and temporarily variable viscosity. For the 
oment we use a simple shock sensor α̇shock = f v max (0 , −∇ · v )

ased on detecting compression, where f v ∼ 1.0 can be modified 
o influence how rapidly the viscosity should increase upon strong 
ompression. In the absence of sources, the viscosity decays expo- 
entially on a time-scale 

= f τ
h 

p c s 
, (44) 

here h / p is the expected ef fecti ve spatial resolution at order p , c s is
he local sound speed, and f τ ∼ 0.5 is a user-controlled parameter for
etting how rapidly the viscosity decays again after a shock transition. 

Finally, the term α̇wiggles in equation ( 43 ) is a further source term
dded to address the occurrence of oscillatory behaviour away from 

hocks. In fact, this typically is seeded directly ahead of strong
hocks, for example when the high-order polynomials in a cell with
 shock trigger oscillations in the DG cell directly ahead of the shock
hrough coupling at the interface. Another typical situation where 
scillations can occur are sharp, moving contact discontinuities. Here 
he shock sensor would not be ef fecti ve in supplying the needed
iscosity as there is no shock in the first place. We address this
roblem by considering the rate of change of the oscillatory senor
 

K as a source for viscosity, in the form 

˙wiggles = f w max 

(
0 , 

d log S K 

d t 

)
, (45) 

or S K > S onset , otherwise α̇wiggles = 0. When dlog S K /d t is positive
nd large, oscillatory behaviour is about to grow and the cell is on
ts way to become a troubled cell, indicating that this should better
e prevented with local viscosity. In this way, oscillatory solutions 
an be much more ef fecti vely controlled than waiting until they
lready reached a substantial size. It is nevertheless prudent to restrict
he action of this viscosity trigger to cells that hav e S K abo v e a

inimum value S onset , otherwise the code would try to suppress even
iny wiggles, which would invariably lead to very viscous behaviour. 
n practice, we set S onset = 10 −4 / p 2 , and we compute dlog S K /d t based
n the time deri v ati ves of the weights of the previous time-step. 
We add α as a further field component to our state vector u ,
eaning that it is spatially variable and is expanded in our set of

asis functions. We do not advect the α field with the local flow
elocity as to allow it to fall behind moving discontinuities and to
ully suppress any excited oscillations there. Also, advecting the α
eld at high order would require a limiting scheme for this field itself.
MNRAS 522, 982–1008 (2023) 
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Figure 3. Zoom into a Mach number M = 4 shock that is simulated with 
order p = 9. The upstream gas has unit density and unit pressure. Individual 
mesh cell boundaries are indicated with dotted lines. The density field 
obtained with artificial viscosity included is shown as a solid blue, while the 
result without artificial viscosity is shown as a grey line in the background. 
The artificial viscosity field itself is shown as orange line (scale on the right). 
The analytic shock position at the displayed time is at x = 0.5, in the middle 
of one of the mesh cells. The circles mark the locations where the density has 
reached 20 and 80 per cent, respectively, of the shock’s density jump. We use 
the distance 
 x shock of the corresponding points as a measure of the shock 
width. 
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Figure 4. Shock width in units of the cell size as a function of the order 
p of our DG code, for a Mach number M = 4 shock that runs into gas 
at rest. The dashed line marks a 
 x shock ∝ 1/ p power law, which accurately 
describes our measurements, except for the lowest order result with piece- 
wise constant states, which is so highly dif fusi ve that it does not require any 
artificial viscosity. 
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ote that in the post-/pre-shock region we can assume the first term
f equation ( 43 ) to be unimportant. Once the wiggles are suppressed
he second term disappears as well, so that then the default choice
f parameters suppresses any existing α field to percent level in
 handful of time-steps. Only the shock sensor source function is
ctually variable in a cell, whereas our oscillatory sensor affects the
iscosity throughout a cell. 
Finally, the actual viscosity applied in the viscous flux of equation

 37 ) is parametrized as 

= αc s 
h 

p 

, (46) 

nd we impose a maximum allowed value of αmax = 1, primarily
s a means to prevent overstepping and making the scheme violate
he the von Neumann stability requirement for explicit integration
f the diffusion equation, which would cause immediate numerical
nstability. Since our time-step obeys the Courant condition, this
s fortunately not implying a significant restriction for ef fecti vely
pplying the artificial viscosity scheme, but it imposes an upper
ound that can be used safely without making the time-integration
nstable. 
We have found that the abo v e parametrization works quite reliably,

njecting viscosity only at discontinuities and when spurious oscilla-
ions need to be suppressed, while at the same time not smoothing out
olutions e xcessiv ely. Fig. 3 shows an e xample for a Mach number

 = 3 shock that is incident from the left on gas with unit density
nd unity pressure, and adiabatic index γ = 5/3. The simulation has
een computed at order p = 9, and at the displayed time, the shock
osition should be at x = 0.5, for a mesh resolution of h = 1.0/21. We
how our DG result as a thick blue line, and also give the viscosity
eld α( x ) as a red line. Clearly, the shock is captured at a fraction
NRAS 522, 982–1008 (2023) 
f the cell size, with negligible ringing in the pre- and post-shock
e gions. This is achiev ed thanks to the artificial viscosity, which
eaks close to the shock centre, augmented by additional weaker
iscosity in the cell ahead of the shock, which would otherwise show
ignificant oscillations as well. This becomes clear when looking at
he solution without artificial viscosity, which is included as a grey
ine in the background. 

The blue circles in Fig. 3 mark the places in which the solution has
eached 20 and 80 per cent of the height of the shock’s density jump.

e can operationally define the difference in the corresponding x -
oordinates as the width 
 x shock with which the shock is numerically
esolved. In Fig. 4 we show measurements of the shock width for
he same set-up, except for varying the employed order p . We see
hat the shock width declines with higher order, accurately following
he desired relationship 
 x shock ∝ 1/ p , except for the lowest order p
 1, which deviates towards broader width compared to the general

rend. The importance of this result for the DG approach can hardly
e o v erstated, giv en that it has been a nagging problem for decades to
eliably capture shocks at sub-cell resolution in DG without having
o throw away much of the higher resolution information. The result
f Fig. 4 essentially implies that shocks are resolved with the same
idth for a fixed number of degrees of freedom, independent of the

mployed order p . Whereas using higher order at a fixed number of
egrees of freedom is thus not providing much of an advantage for
aking shocks thinner compared to using more cells, it at least does

ot degrade the solution. But smooth parts of a solution can then still
enefit from the use of higher order. 
In total our artificial viscosity method uses five parameters, one

or each of the three terms of equation ( 43 ), a further general scaling
actor α which is applied to the total viscous flux as defined in
quation ( 46 ), and an onset threshold S onset . In this way we are able
o individually control the suppression of shocks, wiggles, and the
ecay time of the viscous field as well as the total magnitude of

art/stad1043_f3.eps
art/stad1043_f4.eps


High-order DG with sub-cell shock capturing 991 

v
t  

S

4

W  

i
s
r  

w  

l
fl  

c
S  

l  

t
d  

t
s

e  

u
(  

i
d  

i
s  

o  

c
 

c
f  

a  

c

1  

{  

i
o  

d
I
a
a

w

T
c  

a  

fl

h
s  

o
a
p

n
n
d
k  

o

s
s

5

I  

t  

p
d
t  

e  

a  

a
e
a  

o
t
i

5

T  

Y  

v  

h
o
S  

s  

[

v

v

u

ρ

w  

d
u  

e  

a  

t  

e  

v  

e  

r
 

o  

t  

p  

e  

p  

o
p

 

t  

T  

e  

c
d  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/1/982/7111340 by U
niversity of Exeter user on 24 M

ay 2023
iscous flux. The default values we adopted for these parameters 
hroughout this work are α = 1.0, f v = 2.5, f τ = 0.5, f w = 0.2, and
 onset = 10 −4 . 

.2 Positivity limiter 

ith our artificial viscosity approach described abo v e we intend to
ntroduce the necessary numerical viscosity where needed, such that 
lope limiting becomes obsolete. Ho we ver, for further increasing 
obustness of our code, it is desirable that it also runs stably if a too
eak or no artificial viscosity is specified, or if its strength is perhaps

ocally not sufficient for some reason in a particularly challenging 
ow situation. To prevent a breakdown of the time evolution in this
ase, we consider an optional positivity limiter following Zhang & 

hu ( 2010 ) and Schaal et al. ( 2015 ). This can be viewed as a kind of
ast line of defense against the occurrence of oscillations in a solution
hat ventures into the regime of unphysical values, such as negative 
ensity or pressure. The latter can happen even for arbitrarily small
ime-steps, especially when higher order methods are used where 
uch robustness problems tend to be more acute. 

Finite-element and finite-volume hydrodynamical codes typically 
mploy procedures such as slope limiters to cope with these sit-
ations, this means they locally reduce the order of the scheme 
ef fecti vely making it more dif fusi ve) by discarding high-order
nformation. A similar approach is followed by the positivity limiter 
escribed here, which is based on Schaal et al. ( 2015 ), with an
mportant difference in how we select the evaluation points. We 
tress ho we ver that the positi vity limiter is not designed to pre vent
scillations, only to reduce them to a point that still allows the
alculation to proceed. 

For a given cell, we first determine the average density ρ in the
ell, which is simply given by the 0-th order expansion coefficient 
or the density field of the given cell, and we likewise determine the
verage pressure p of the cell. If either ρ or p is ne gativ e, a code
rash is una v oidable. 

Otherwise, we define a lowest permissible density ρbottom 

= 

0 −6 ρ̄. Next, we consider the full set of quadrature e v aluation points
 x i } rele v ant for the cell, which is the union of the points used for
nternal volume integrations and the points used for surface integrals 
n the outer boundaries of the cell. We then determine the minimum
ensity ρmin occurring for the field expansions among these points. 
n case ρmin < ρbottom 

, which includes the possibility that ρmin is neg- 
tive, we calculate a reduction factor f = ( ρ̄ − ρbottom 

) / ( ρ̄ − ρmin ) 
nd replace all higher order weights of the cell with 

 

′ K 

l = f w 

K 

l for l > 1 . (47) 

his limits the minimum density appearing in any of the discrete 
alculations to ρbottom 

. By applying the correction factor f to all fields
nd not just the density, we a v oid to potentially amplify relative
uctuations in the velocity and pressure fields. 
We proceed similarly for limiting pressure oscillations, except that 

ere no simple reduction factor can be computed to ensure that p min 

tays abo v e p bottom 

, due to the non-linear dependence of the pressure
n the energy, momentum, and density fields. Instead, we simply 
dopt f = 0.5 and repeatedly apply the pressure limiter until p min ≥
 bottom 

. 
In our test simulations the positivity limiter, as expected, does 

ot trigger for inherently smooth problems and thus is in principle 
ot needed. Ho we ver, when starting simulations with significant 
iscontinuities in the initial conditions, the positivity limiter usually 
icks in at the start for a couple of time-steps, especially for high
rder simulations, until the artificial viscosity is able to tame the 
purious oscillations, making the positivity limiter superfluous in the 
ubsequent evolution. 

 BA SIC  TESTS  

n this section, we consider a set of basic tests problems that establish
he accuracy of our new code both for smooth problems, as well as for
roblems containing strong discontinuities such as shocks or contact 
iscontinuities. We shall begin with a smooth hydrodynamic problem 

hat is suitable for verifying code accuracy for the inviscid Euler
quations. We then turn to testing the diffusion solver of the code,
s an indirect means to test the ability of our approach to stably and
ccurately solve the viscous diffusion inherent in the Navier–Stokes 
quations. We then consider shocks and the supersonic advection of 
 discontinuous top-hat profile to verify the stability of our high-
rder approach when dealing with such flow features. Applications 
o Kelvin–Helmholtz instabilities and driven turbulence are treated 
n separate sections. 

.1 Isentropic vortex 

he isentropic vortex problem of Yee, Sandham & Djomehri ( 1999 ),
ee, Vinokur & Djomehri ( 2000 ) is a time-independent smooth
ortex flow, making it a particularly useful test for the accuracy of
igher order methods, because they should reach their theoretically 
ptimal spatial convergence order if everything is working well (e.g. 
chaal et al. 2015 ; Pakmor et al. 2016 ). We follow here the original
etup used in Yee et al. ( 1999 ) by employing a domain with extension
 − 5, 5] 2 in 2D and an initial state given by: 

 x ( r ) = −βy 

2 π
exp 

(
1 − r 2 

2 

)
(48) 

 y ( r ) = 

βx 

2 π
exp 

(
1 − r 2 

2 

)
(49) 

 ( r ) = 1 − β2 

8 γπ2 
exp 

(
1 − r 2 

)
(50) 

( r ) = [( γ − 1) u ( r )] 
1 

γ−1 , (51) 

here we choose γ = 1.4, and β = 5. We evolve the vortex with
ifferent DG expansion order n and different mesh resolutions N 

2 
grid 

ntil time t = 10, and then measure the resulting L1 approximation
rror of the numerical result for the density field relative to the
nalytic solution (which is identical to the initial conditions). In order
o make the actual measurement of L 1 independent of discretization
ffects, we use n + 2 Gaussian quadrature for e v aluating the
olume integral appearing in equation ( 12 ). Likewise, we use this
le v ated order when projecting the initial conditions onto the discrete
ealization of DG weights of our mesh. 

In Fig. 5 we show measurements of the L1 error as a function
f grid resolution N grid , for different expansion order from p = 1
o p = 8. The left-hand panel shows that the errors decrease as
ower laws with spatial resolution for fixed n , closely following the
 xpected conv ergence order L 1 ∝ N 

−p 

grid in all cases (except for the
 = 1 resolution, which exhibits slightly worse behaviour – but this
rder is never used in practice because of its dismal convergence 
roperties). 
Interestingly, the data also shows that for a given grid resolution,

he L1 error goes down exponentially with the order of the scheme.
his is shown in the right-hand panel of Fig. 5 , which shows the L1
rror in a log-linear plot as a function of order p , so that exponential
onvergence manifests in a straight decline. This particularly rapid 
ecline of the error with p for smooth problems makes it intuitively
MNRAS 522, 982–1008 (2023) 
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Figur e 5. Conver gence of the Yee et al. ( 1999 , 2000 ) v ortex when ev olved for t = 10.0 time units. The left-hand panel shows the error norm in the density 
fields as a function of spatial grid resolution, for eight different orders p of our DG scheme. The measured convergence orders for L 1 (coloured lines) are close 
to the expected L 1 ∝ N 

−p 
c power laws (dashed grey lines). The actually achieved convergence orders (fitted power laws, shown as dotted lines) are typically 

even slightly better than e xpected, e xcept for the lowest order p = 1. The panel on the right-hand side shows the same data, but as a function of DG order p , 
using a log-linear plot. For fixed grid resolution, the error declines exponentially with the order p of the scheme, highlighting the very fast impro v ement of 
accuracy when the DG order is increased. We note that the imposed periodic boundaries for the chosen box size of 10 lead to an edge effect which puts the 
lower boundary of the L1-norm to ∼10 −11 . 
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lear that it can be advantageous to go to higher resolution if the
roblem at hand is free of true physical discontinuities. 

.2 Diffusion of a Gaussian pulse 

o test our procedures for simulating the diffusion part of our
quations, in particular our treatment for estimating surface gradients
t interfaces of cells, we first consider the diffusion of a Gaussian
ulse, with otherwise stationary gas properties. For simplicity, we
onsider gas at rest and with uniform density and pressure, and we
onsider the evolution of a small Gaussian concentration of a passive
racer dye under the action of a constant dif fusi vity. 

For definiteness, we consider a tracer concentration c ( x , t ) given
y 

( x , t) = c b + 

∑ 

j 

c g 

2 πσ 2 
exp 

(
− ( x − j ) 2 

2 σ 2 

)
, with σ 2 = 2 ηt, (52) 

laced in a unit domain [ − 0.5, 0.5] 2 in 2D with periodic boundary
onditions. Here the sum o v er j ef fecti vely accounts for a Cartesian
rid of Gaussian pulses spaced one box size apart in all dimensions
o properly take care of the periodic boundary conditions. If we adopt
NRAS 522, 982–1008 (2023) 
 fixed dif fusi vity η and initialize c ( x , t ) at some time t 0 , then the
nalytic solution of equation ( 40 ) tells us that equation ( 52 ) will also
escribe the dye concentration at all subsequent times t > t 0 . 
For definiteness, we choose η = 1/128, c b = 1/10, c g = 1, and t 0 
 1, and examine the numerically obtained results at time t = t 0 +
 = 4 by computing their L1 error norm with respect to the analytic
olution. In the top panel of Fig. 6 , we show the convergence of
his diffusion process as a function of the number of grid cells used,
or the first fiv e DG e xpansion orders. Reassuringly, the L1 error
orm decays as a power law with the cell size, in each case with
he expected theoretical optimum L 1 ∝ N 

−p 

cells . This shows that our
reatment of the surface deri v ati ves is not only stable and rob ust, b ut
s also able to deliver high-order convergence. 

The bottom panel of Fig. 6 shows that this also manifests itself in
n e xponential conv ergence as function of DG expansion order when
he mesh resolution is kept fix ed. F or this result, we adopted N cells =
 and went all the way to 10-th order. 
While these results do not directly pro v e that our implementation

s able to solve the full Navier–Stokes equations at high-order, they
epresent an encouraging pre-requisite. Also, we note that both the
ersion without viscous source terms (i.e. the Euler equations), as
ell as the viscous term itself when treated in isolation converges

art/stad1043_f5.eps
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Figur e 6. Conver gence of the diffusion process of a Gaussian profile when 
started from a smooth state. The top panel shows results for runs carried out 
at different mesh resolution N c and DG expansion order p , as labelled. For 
fix ed e xpansion order, the L1 error declines as a power law as a function 
of the spatial grid resolution, with the slope of the expected convergence 
rate. In the bottom panel, we show the error as a function of order at a fixed 
grid resolution of N c = 8. In this case, the error declines exponentially as a 
function of the expansion order. 

Figure 7. Double blast wave problem at fixed spatial resolution, but for 
increasing DG order. This shows clearly that our new artificial viscosity 
method can cope with strong shocks, and that adding higher order information 
is still worthwhile in treating problems with strongly interacting shocks. For 
reference, a high resolution result with N c = 10 000, p = 1 is shown as thin 
black line. 
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t high order. We will later on compare to a literature result for the
elvin–Helmholtz instability in a fully viscous simulation to back 
p this further and to test a situation where the full Navier–Stokes
quations are used. 

.3 Double blast wave 

o test the ability of our DG approach to cope with strong shocks,
articularly at high order, we look at the classic double blast wave
roblem of Woodward & Colella ( 1984 ). The initial conditions are
efined in the 1D domain [0,1] for a gas of unit density and adiabatic
ndex γ = 7/5, which is initially at rest. By prescribing two regions
f very high pressure, P = 1000 for x < 0.1, and P = 100 for x
 0.9, in an otherwise low-pressure P = 0.1 background, the time

volution is characterized by the launching of very strong shock 
nd raref action w aves that collide and interact in complicated ways.
ecause of the difficulty of this test for shock-capturing approaches, 

t has often been studied in previous work to examine code accuracy
nd robustness (e.g. Stone et al. 2008 ; Springel 2010 ). 

In order to highlight differences due to different DG orders, we
ave run deliberately low-resolution realizations of the problem, 
sing 100 cells of equal size within the region [0,1]. We have then
volved the initial conditions with order p = 2, p = 4, or p = 8.
urthermore, we examine a run done with four times as many cells
arried out at order p = 2. This latter simulation has the same number
f degrees of freedom as the p = 8 simulation, and thus should have a
imilar ef fecti v e spatial resolution. F or comparison purposes, we use
 simulation carried out with 10 000 cells at order p = 2, which can be
aken as a result close to a converged solution. All simulations were
un with our artificial viscosity implementation using our default 
ettings for the method (which do not depend on order p ). 

In Fig. 7 , we show the density profile at the time t = 0.038, as
one in many previous works, based on our 100 cell runs. Clearly,
he shock fronts and contact discontinuities of the problem are quite
eavily smoothed out for the p = 2 run with 100 cells, due to the
ow resolution of this setup. However, the quality of the result can be
rogressiv ely impro v ed by going to higher order while keeping the
MNRAS 522, 982–1008 (2023) 
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Figure 8. Double blast wave problem at fixed number of degrees of freedom 

for two different combinations of order and spatial resolution. This shows 
that for strong shocks the total number of degrees of freedom determines 
accuracy of our solution. For reference, a high resolution result with N c = 

10 000, p = 1 is shown as thin black line. 
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umber of cells fixed, as seen by the results for p = 4 and p = 8. This
s in itself important. It shows that even problems dominated by very
trong physical discontinuities are better treated by our code when
igher order is used. The additional information this brings is not
liminated by slope-limiting in our approach, thanks to the sub-cell
hock capturing allowed by our artificial viscosity technique. 

Finally, in Fig. 8 we compare the p = 7, 100 cell result to the p =
 result using 400 cells. Recall that the order of the method is p +
 and the total number of degrees of freedom of the two simulations
s therefore the same. We find essentially the same quality of the
esults, which is another important finding. This demonstrates that to
rst order only the number of degrees of freedom per dimension is

mportant for determining the ability of our DG code to resolve
hocks. Putting degrees of freedom into higher expansion order
nstead of into a larger number of cells is thus not problematic
or representing shocks. At the same, it also does not bring a
lear advantage for such flow structures. This is because shocks
re ultimately al w ays broadened to at least the spatial resolution
imit. Real discontinuities therefore only converge with first order
n spatial resolution, and high-order DG schemes do not provide
 magic solution for this limitation as their ef fecti ve resolution
s set by the degrees of freedom. Still, as our results show, DG
an be straightforwardly applied to problems with strong shocks
sing our artificial viscosity formulation. When there is a mixture
f smooth regions and shocks in a flow, the smooth parts can still
enefit from the higher order accuracy while the shocks are rendered
ith approximately the same accuracy as done with a second-order
ethod with the same number of degrees of freedom. 
It is interesting to compare our results to other results in the

iterature. First we compare to an older DG implementation with
 moment limiter by Kri vodonov a ( 2007 ). At lo w orders their mode
y mode limiter performs marginally better than our implementation,
ut as it was pointed by Vilar ( 2019 ) the mode by mode limiting does
NRAS 522, 982–1008 (2023) 
ot work well for higher orders. In contrast, our method remains
table and offers steadily improving results as the order is increased.
ilar ( 2019 ) uses a DG implementation with a posteriori limiting
here troubled cells are detected at the end of the time-step and then

ecomputed using a finite-volume method and flux reconstruction.
heir approach is also able to resolve the complicated interactions
f shocks and rarefaction waves and yields a steadily improving
esult with higher resolution as well. To demonstrate that our DG
mplementation is competitive with state-of-art weighted essentially
on-oscillatory (WENO) schemes we compare our results with those
eported by Zhao et al. ( 2017 ). They simulated this problem using
n 8-th order WENO scheme with 400 grid cells. The WENO
mplementation performs here somewhat better at a given number
f degrees of freedom compared to our DG method. Note that
he number of degrees of freedom in a WENO scheme is order
ndependent and therefore our p = 7 run at at 100 cells has twice the
umber of degrees of freedom as their 8-th order run with 400 cells,
et their result is closer to the ground truth than ours. 

.4 Advection of a top-hat pulse 

ext we consider the problem of supersonically advecting a strong
ontact discontinuity in the form of an o v erdense square that is
n pressure equilibrium with the background. This tests the ability
f our code to cope with a physical discontinuity that is not self-
teeping, unlike a shock, i.e. once the contact discontinuity is
e xcessiv ely) broadened by numerical viscosity, it will invariably
etain the acquired thickness. In fact, the advection errors inherently
resent in any Eulerian mesh-based numerical method will continue
o slowly broaden a moving contact discontinuity with time, in
ontrast to Lagrangian methods, which can cope with this situation
n principle free of any error. 

A problem that starts with a perfectly sharp initial discontinuity
urthermore tests the ability of our DG approach to cope with a
ituation where strong oscillatory behaviour is sourced in the higher
rder terms, an effect that is especially strong if the motion is super-
onic and the system’s state is characterized by large discontinuities.
ere any naive implementation that does not include any type of

imiter or artificial viscosity terms will invariably crash due to the
ccurrence of unphysical values for density and/or pressure. The
quare advection problem is thus also a sensitive stability test for our
igh-order Discontinuous Galerkin method. 
In our test we follow the setup-up of Schaal et al. ( 2015 ), but

ee also Hopkins ( 2015 ) for a discussion of results obtained with
article-based Lagrangian codes. In 2D, we consider a domain [0,
] 2 with pressure P = 2.5 and γ = 7/5. The density inside the central
quare of side length 0.5 is set to ρ = 4, and outside of it to ρ = 1. A
elocity of v x = 100 is added to all the gas, and in the y -direction we
dd v y = 50. We simulate until t = 1.0, at which point the pulse has
een advected 100 times through the periodic box in the x -direction
nd half that in the y -direction, and it should have returned exactly to
here it started. We have also run the same test problem generalized

o 3D, with an additional velocity of v z = −25 in the z-direction, and
s well in 1D, where only the motion in the x -direction is present.
n general, the multidimensional tests behave very similarly to the
D tests, with the size of the o v erall error being determined by the
argest v elocity. F or simplicity, we therefore here restrict ourselves
n the following to report explicit results for the 1D case only. 

In Fig. 9 , we show the density profile of the pulse at t = 1.0 when 10
ells per dimension are used, for different DG expansion orders p . A
econd-order accurate method, p = 1, which is equi v alent or slightly
etter than common second-order accurate finite volume methods
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Figure 9. Top panel: Square advection problem at t = 1.0 for different 
expansion orders p using 64 grid cells in each case. At this time, the top 
hat profile has been advected 100 times through the box. The initial profile, 
which is the analytic solution in this case, is shown as a solid grey line in the 
background. Different numerical results are given for polynomial orders p = 

0, 1, 2, and p = 9, as well as for p = 9 with a higher artificial viscosity setting 
for stronger wiggle suppression. Bottom panel: Square advection problem at 
t = 0.01 for p = 9 using 10 grid cells. The profile has been advected through 
the box once. The dotted vertical lines indicate grid cell borders. Sub-cell 
shock capturing can be observed. 
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Figure 10. Time evolution of the L1 error norm for the density in the square 
advection problem, calculated for polynomial orders p = 0 to p = 9 (from top 
to bottom) using 64 grid cells in each case. The individual measurements for 
numerical outputs are shown with filled circles, the lines are power-law fits 
L 1 ∝ t n . Note that not only the absolute error at any given time declines with 
increasing order p , also the slopes n become progressively shallower. This 
means that the numerical dif fusi vity of the code becomes smaller for higher 
order, reducing advection errors substantially. The measured slopes n for the 
p = 0 to p = 9 cases are in that sequence: 0.427, 0.335, 0.172, 0.056, 0.054, 
0.049, 0.048, 0.046, 0.039, and 0.028. In the p = 0 case, only the first three 
points were used to measure the slope. 
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see also Schaal et al. 2015 ) has already washed out the profile
ubstantially at this time. Already order p = 2 does substantially 
etter, with p = 3 results starting to resemble a top hat profile. The
0th order run with p = 9 is able to retain the profile very sharply,
lbeit with a small amount of ringing right at the discontinuities. 
imilarly to our results for shocks, we thus find that our code is
ble to make good use of higher order terms if they are available in
he expansion basis. Applying simple limiting schemes such as min- 

od in the high-order case is in contrast prone to lose much of the
enefit of high-order when string discontinuities are present in the 
imulation, simply because these schemes tend to discard sub-cell 
nformation beyond linear slopes. We also show a p = 9 order run
ith higher artificial viscosity injection in regions with wiggles by 
sing a lower S onset = 10 −6 . Spurious oscillations get dampened at
he cost of a slightly wider shock front. 

Comparing our results in the bottom part of Fig. 9 to the DG
mplementation with posteriori correction by Vilar ( 2019 , their figs 5
nd 7a), we can see that both methods successfully capture the sharp
ransition in a sub-cell fashion. For this comparison it is worth noting
hat in our case the shock is resolved within one cell, while in the
etup of Vilar ( 2019 ) the discontinuity occurs at the border of two
ells. 

To look more quantitatively at the errors, we show in Fig. 10 the
1 error norm of the density field as a function of time, for all orders

rom p = 0 to p = 9. We see that the lowest order does very poorly
n this problem, due to its large advection errors. In fact, p = 0
oses the profile completely after about 10 box transitions, yielding a
niform average density throughout the whole box. When one uses 
igher order, both the absolute error at any given time but also the
ate of residual growth of the error with time drop progressively.
he latter can be described by a power law L 1 ∝ t n , with a slope n

hat we measure to be just 0.028 for p = 9, while it is still 0.335
or a second-order, p = 1 method. The longer a simulation runs, the
MNRAS 522, 982–1008 (2023) 
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arger the accuracy advantage of a high-order method o v er lower
rder methods thus becomes. 

 K E L  V I N – H E L M H O L  TZ  INSTABILITIES  

imulations of the Kelvin–Helmholtz (KH) instability have become
 particularly popular test of hydrodynamical codes (e.g. Price 2008 ;
ha, Inutsuka & Nayakshin 2010 ; Junk et al. 2010 ; Springel 2010 ;
alcke et al. 2010 ; Berlok & Pfrommer 2019 ; Tricco 2019 ; Borrow
t al. 2022 ), arguably initiated by an influential comparison of
PH and Eulerian codes by Agertz et al. ( 2007 ), where significant
iscrepancies in the growth of the perturbations in different numerical
ethods had been identified. One principal complication, ho we ver,

s that for initial conditions with an arbitrarily sharp discontinuity the
on-linear outcome is fundamentally ill-posed at the discretized level
e.g. Robertson et al. 2010 ; McNally, Lyra & Passy 2012 ), because
or an ideal gas the shortest wa velengths ha ve the fastest growth rates,
o that one can easily end up with KH billows that are seeded by
umerical noise at the resolution limit, rendering a comparison of the
on-linear evolution between different methods unreliable. Further-
ore, in the inviscid case, the non-linear outcome is fundamentally

ependent on the numerical resolution so a converged solution does
ot even exist. 
Lecoanet et al. ( 2016 ) have therefore argued that using smooth

nitial conditions across the whole domain combined with an ex-
licit physical viscosity is a better choice, because this allows in
rinciple converged numerical solutions to be reached. We follow
heir approach here, and in particular compare to the reference
olution determined by Lecoanet et al. ( 2016 ) using the spectral
ode DEDALUS (Burns et al. 2020 ) at high resolution. 

Specifically, following Lecoanet et al. ( 2016 ) we adopt as initial
onditions a shear flow with a smoothed density and velocity
ransition: 

ρ( x , y ) = 1 + 


ρ

ρ0 

1 

2 

[
tanh 

(
y − y 1 

a 

)
− tanh 

(
y − y 2 

a 

)]
, 

 x ( x , y ) = u flow 

[
tanh 

(
y − y 1 

a 

)
− tanh 

(
y − y 2 

a 

)
− 1 

]
, (53) 

ith u flow = 1, a = 0.05, y 1 = 0.5, and y 2 = 1.5 in a periodic domain
ith side length L = 2. This is perturbed with a small velocity

omponent in the y -direction to seed a KH billow on large scales: 

 y ( x , y ) = A sin (2 πx) 

[
exp 

(
− ( y − y 1 ) 

2 

σ 2 

)

+ exp 

(
− ( y − y 2 ) 

2 

σ 2 

)]
, (54) 

here A = 0.01 and σ = 0.2 is chosen. The pressure is initialized
verywhere to a constant value, P ( x , y ) = P 0 , with P 0 = 10. With
hese choices, the flow stays in the subsonic regime with a Mach
umber M ∼ 0 . 25. 
The free parameter 
ρ/ ρ0 describes the presence or absence of

 density ‘jump’ across the two fluid phases that stream past each
ther. By adding a passive tracer field 

( x , y ) = 

1 

2 

[
tanh 

(
y − y 2 

a 

)
− tanh 

(
y − y 1 

a 

)
+ 2 

]
(55) 

o the initial conditions, we can study the KH instability also easily
or the case of a vanishing density jump. In fact, we shall focus on
he case 
ρ/ ρ0 = 0 here as it is free of the particularly subtle inner
ortex instability in the late non-linear evolution of the KH problem
Lecoanet et al. 2016 ), which further complicates the comparison of
ifferent codes. 
NRAS 522, 982–1008 (2023) 
To realize the abo v e initial conditions we e v aluate them within
ach cell of our chosen mesh at multiple quadrature points in
rder to project them onto our DG basis. We perform this initial
rojection using a Gauss integration that is 2 orders higher than that
mployed in the run itself. This ensures that integration errors from
he projection of the initial conditions onto our DG basis are sub-
ominant compared to the errors incurred by the time evolution, and
re thus unimportant. 

We choose identical values for shear viscosity ν, thermal diffusiv-
ty χ , and dye dif fusi vity η. Belo w, we mostly focus on discussing
esults for a Reynolds number Re = 10 5 for which we set ν = χ

 η = 2 u flow /Re = 2 × 10 −5 . We have also carried out simulations
ith a higher Reynolds number Re = 10 6 , obtaining qualitatively

imilar results, although these simulations require higher resolution
or convergence and thus tend to be more expensive. 

.1 Visual comparison 

 visual illustration of the time evolution of the dye concentration for
 simulation with Re = 10 5 and 
ρ/ ρ0 = 0 is shown in Fig. 11 . In this
alculation, 64 DG cells were used to co v er the x -range [0,1], which
s the rele v ant number to compare to the resolution information in
ecoanet et al. ( 2016 ). Expansion order p = 6 has been used in this
articular run. It is nicely seen that the KH billow seeded in the initial
onditions is amplified in linear evolution until a time t ∼ 1 − 2, then
t rolls up multiple times in a highly non-linear evolution, before
nally strong mixing sets in that progressively washes out the dye
oncentration throughout the vortex. 

Upon visual inspection, this time evolution compares very closely
o that reported by Lecoanet et al. ( 2016 ). In Fig. 12 we make this
omparison more explicit by showing results obtained for different
rder p at a number of times ‘f ace-to-f ace’ with their reference
imulation. In each of the panels, the left half of the picture contains
he DEDALUS result at resolution 3096 × 6144, while the right
alf gives our results at 64 × 128 resolution, but with different
rders p . We have deliberately chosen this modest resolution for this
omparison in order to allow some differences to be seen after all.
hey show up clearly only at second-order in the top row, while at
 = 4 they are only discernible at times t = 4 and t = 6 as faint
iscontinuities at the middle of the images, where the result from
EDALUS meets that from our DG code. Already by p = 5, visual

nspection is insufficient to identify clear differences. We note that for
igher DG grid resolutions, this becomes rapidly extremely difficult
lready for lower orders. 

.2 Dye entropy 

n interesting more quantitative comparison of our simulations to
hose of Lecoanet et al. ( 2016 ) can be carried out by considering the
volution of the passive scalar ‘dye’ in some detail. The technical
mplementation of this passive tracer is described in Section 3.4 . 

A dye entropy per unit mass can be defined as s = −c ln c , and its
olume integral is the dye entropy 

 = 

∫ 
ρs d V , (56) 

hich can only monotonically increase with time. The dye entropy
an be viewed as a useful quantitative measure for the degree of
ixing that occurs as a result of the non-linear KH instability. To

uarantee an accurate measurement of the dye entropy, we perform
he inte gral abo v e at two times higher spatial order than employed in
he actual simulation run. We also note than when computing the dye
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Figure 11. Time evolution of the dye concentration in a Kelvin–Helmholtz simulation using 64 DG-cells along the x -range [0,1], at order p = 5, using a 
viscosity setting of Re = 10 5 and 
ρ/ ρ0 = 0. 

Figure 12. Dye concentration in Kelvin–Helmholtz simulations, using Re = 10 5 and 
ρ/ ρ0 = 0, compared at fixed grid resolution but different times t and 
order p . Each of the nine panels shows the high-resolution DEDALUS reference result (Lecoanet et al. 2016 ) in the left half, and our DG result (at different 
order p as labelled) in the right half. All DG simulations were done with N c = 64 grid cells. 
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Figure 13. Volume integrated dye entropy as a function of time. We show 

our DG simulation results with 64 cells using orders p = 1 to p = 3, and a 
calculation with 128 cells and order p = 7. All simulations were ran with Re 
= 10 5 and a density jump 
ρ/ ρ0 = 0. Already the run with 64 cells and p = 

3 shows an essentially converged result; still better resolutions yield perfect 
agreement with the very high resolution results obtained by Lecoanet et al. 
( 2016 ) with the DEDALUS and ATHENA codes. 
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Figure 14. Volume-averaged L 2 -error norm of the difference in the dye 
concentration relative to a high-resolution spectral result as a function of 
time, for a set of DG simulations carried out with 64 cells and different 
expansion order p = 1 to p = 4 (as labelled), for Re = 10 5 and a density 
jump 
ρ/ ρ0 = 0. The DG results are presented with filled circles at the four 
available output times of the spectral simulation, the connecting lines are 
there simply to guide the eye. Similarly, we include SPH results by Tricco 
( 2019 ) as triangles at two different resolutions. Finally, the dashed line refers 
to the result obtained by Lecoanet et al. ( 2016 ) using the finite-volume code 
ATHENA with 2048 cells. 
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ntropy we use our entire simulation domain (although left and right
alv es giv e identical values), and we then normalize to half of the
olume to make our values directly comparable to those of Lecoanet
t al. ( 2016 ). 

In Fig. 13 , we show measurements of the dye entropy evolution
or several of our runs, compared to the converged results obtained
y Lecoanet et al. ( 2016 ) consistently with the DEDALUS and
THENA codes. We obtain excellent agreement already for 64 cells
nd order p = 4, corresponding to 256 degrees of freedom per
imension. Our underresolved simulations with fewer cells and/or
egrees of freedom show an excess of mixing and higher dye entropy,
s expected. 

We note that Tricco ( 2019 ) have also studied this same reference
roblem using SPH. Interestingly, they find that simulations that
re carried out at lower resolution than required for (approximate)
onvergence show an underestimate of dye mixing, marking an
mportant qualitative difference to the mesh-based computations.
he SPH simulations also require a substantially higher number of

esolution elements to obtain an approximately converged result.
ricco ( 2019 ) get close to achieving this for the dye concentration
y using 2048 particles per dimension, but even then the dye entropy
f their result falls slightly below the converged result at t = 8. 

.3 Error norm 

inally, we consider a direct comparison of the dye entropy fields
btained in our simulations to the DEDALUS reference solution
ade publicly 1 available by Lecoanet et al. ( 2016 ) at a grid resolution

f 3096 × 6144 points. To perform a quantitative comparison, we
NRAS 522, 982–1008 (2023) 
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onsider the L 2 -norm of the difference in the dye fields, defined as 

 2 = 

[
1 

V 

∫ 
( c DG − c Lecoanet ) 

2 d V 

]1 / 2 

. (57) 

In Fig. 14 we show first the time evolution of the L 2 -norm, for
G simulations carried out with 64 cells and orders p = 2 to p =
. We also include results reported by Lecoanet et al. ( 2016 ) for
he ATHENA mesh code at a resolution of 1024 cells, as well as
PH results by Tricco ( 2019 ) at particle resolutions of 256 and 2048,
espectively. Our p = 4 results with 64 cells are already as good
s ATHENA with 2048 cells, demonstrating that far fewer degrees
f freedom are sufficient when a high order method is used for this
mooth problem. In contrast, a relatively noisy method such as SPH
eally struggles to obtain truly accurate results. Even at the 2048
esolution, the errors are orders of magnitude larger than for the
esh-based methods, and the sluggish convergence rate of SPH will
ake it incredibly costly, if possible at all, to push the error down

o the level of what our DG code, or ATHENA, comparably easily
chieve. 

In Fig. 15 , we examine the error as a function of the employed DG
 xpansion order. F or a fix ed number N c = 64 of cells, we show the
 2 error at time t = 4, for orders p = 1 up to p = 9. It is reassuring

hat we again find exponential convergence for this problem, where
he error drops approximately linearly with p on this log-linear plot.
his demonstrates that we can fully retain the ability to converge
t high-order for our compressible Navier–Stokes solver, which is
dditionally augmented with thermal and dye diffusion processes.
e consider this to be a very important validation of our numerical
ethodology and actual code implementation. 
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Figure 15. Volume-averaged L 2 error norm of the dye concentration field 
as a function of DG order p for a set of simulations with Re = 10 5 and a 
density jump 
ρ/ ρ0 = 0 at t = 4. The circles show simulations with N c = 64 
cells with progressively increasing order p (the run with p = 8 is shown with 
a cross symbol while still being a member of the sequence of simulations 
with circles). The crosses highlight three simulations with the same number 
of degrees of freedom, reached with different combinations of N c and p . The 
dotted line is a fit showing the rapid convergence we achieve with increasing 
order p at N c = 64. The dashed line indicates the convergence rate for three 
simulations with equal number of degrees of freedom, as we increase the 
order. Among the three runs with an equal number of degrees of freedom, the 
one with the highest order p achieves the lowest L 2 -norm. 

h
n
w  

=  

o
h  

1  

1  

t  

i  

a
r

7

T
r  

o  

fl  

t
h
E
e
i  

s  

a
F

v  

K  

i

m
t
t  

t  

a  

c
s
3  

d
a
s
t  

t
s
a

 

i
B  

l  

r  

c  

t  

a
f
e
e  

p
 

i
d  

t  

n
w  

t
i  

a  

f  

b

7

T  

d  

t  

e
s  

c
 

t  

t  

a  

fi  

n  

f  

d
u  

t  

T  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/522/1/982/7111340 by U
niversity of Exeter user on 24 M

ay 2023
Another interesting comparison is to consider simulations that 
ave an equal number of degrees of freedom, but different cell 
umbers and expansion orders. In the figure (marked with crosses), 
e also include results for the three cases N c = 64/ p = 8, N c = 128/ p
 4, and N c = 256/ p = 2, which all have the same number of degrees

f freedom per dimension. Strictly speaking, the higher order ones 
ave actually slightly less, given that the number N 

2D ( p ) = p ( p +
)/2 of degrees of freedom per cell is slightly less than p 2 for p >
, see equation ( 18 ). Regardless, the run with N c = 64 clearly has
he lowest error. This confirms once more that for a smooth problem
t is typically worthwhile in terms of yielding the biggest gain in
ccuracy to invest additional degrees of freedom into higher order 
ather than additional cells. 

 D R I V E N  SUB-SONIC  T U R BU L E N C E  

he phenomenon of turbulence describes the notion of an unsteady, 
andom flow that is characterized by the o v erlap of swirling motions
n a variety of scales (e.g. Pope 2000 ). In 3D, one finds that if
uid motion is excited on a certain scale (the injection scale) it

ends to decay into complex flow features on ever smaller scales, 
elped by fluid instabilities such as the Kelvin–Helmholtz instability. 
ventually, the vortical motions become so small that they are 
liminated by viscosity on the so-called dissipation scale. If the 
njection of kinetic energy on large scales persists and is quasi-
tationary, a fully turbulent state develops which ef fecti v ely e xhibits
 transport of energy from the injection to the dissipation scale. 
or incompressible isotropic, subsonic turbulence, the statistics of 
elocity fluctuations in such a turbulent flow are described by the
olmogoro v v elocity power spectrum, which has a power-law shape

n the inertial range, and a universal shape in the dissipative regime. 
For astrophysics, turbulence plays a critical role in many environ- 
ents, including the intracluster medium, the interstellar medium, or 

he buoyantly unstable regions in stars. Numerical simulations need 
o be able to accurately follow turbulent flows, for example in order
o correctly describe the mixing of different fluid components, or the
mplification of magnetic fields. Ho we ver, this is often a significant
hallenge as the scale separation between injection and dissipation 
cales in astrophysical settings can be extremely large, while for 
D simulation codes it is already difficult to resolve even a moderate
ifference between injection and dissipation scales. In addition, most 
strophysical simulations to date rely on numerical viscosity exclu- 
ively instead of including an explicit physical viscosity, something 
hat can in principal modify the shape of the dissipative part of
he turbulent power spectrum, thereby creating turbulent velocity 
tatistics that differ from the expected universal form because they 
re directly affected by aspects of the numerical method. 

Of course, the general accuracy of a numerical method is also
mportant for how well turbulence can be represented. For example, 
auer & Springel ( 2012 ) have pointed out that the comparatively

arge noise in SPH makes it difficult for this technique to accurately
epresent subsonic turbulence. While this can in principle be o v er-
ome with sufficiently high numerical effort, it is clear that methods
hat have a low degree of numerical viscosity combined with the
bility to accurately account for physical viscosity should be ideal 
or turbulence simulations. Our DG approach has these features, and 
specially in the regime of subsonic turbulence, where shocks are 
xpected to play only a negligible role, the DG method should be
articularly powerful. 
This moti v ates us to test this idea in this section by considering

sothermal, subsonic, driven turbulence in periodic boxes of unit 
ensity. The subsonic state refers to the average kinetic energy of
he flow in units of the soundspeed, as measured through the Mach
umber. Instead of directly imposing an isothermal equation of state, 
e simulate gas with a normal ideal gas equation of state and reset

he temperature every time-step such that a prescribed sound speed 
s retained. We have checked that this does not make a difference for
ny of our results, but this approach allows us to use our approximate,
ast HLLC Riemann solver instead of having to employ our exact,
ut slower isothermal Riemann solver. 

.1 Driving 

o create the turbulence, we drive fluid motions on large scales. To
o this consistently at high order, we add a source function s ( x , t)
o the right-hand side of the Euler equations, both in the momentum
quation and as work function s · v in the energy equation. These 
ource terms have to be integrated with Gaussian quadrature o v er
ell volumes to retain the high-order discretization. 

For setting up the driving field s ( x , t), we follow standard
echniques as implemented in Bauer & Springel ( 2012 ), which in
urn are directly based on Schmidt, Niemeyer & Hillebrandt ( 2006b )
nd Federrath, Klessen & Schmidt ( 2008 , 2009 ). The acceleration
eld is constructed in Fourier space by populating modes in the
arrow range 2 π / L ≤ k ≤ 2 × 2 π / L , with amplitudes scaled to
ollow ∝ k −5/3 o v er this range. The phases of the forcing modes are
rawn from an Ornstein–Uhlenbeck process. They are periodically 
pdated whenever a time interval 
 t has elapsed, while keeping a
emporal correlation o v er a time-scale t s with the previous phases.
his ef fecti vely yields a smoothly v arying, random dri ving field.
MNRAS 522, 982–1008 (2023) 
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Figure 16. Cumulative injected and dissipated energy, as well as global Mach 
number, as a function of time in one of our driven turbulence simulations. 
The gas is initially at rest, and put into motion by the driving. Eventually, 
energy injection is balanced by dissipation in a time-averaged fashion, and the 
difference between the cumulative injected and dissipated energy is reflected 
in the kinetic energy as measured by the Mach number. 
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ur specific settings for update frequency, coherence time-scale,
nd distribution function for drawing the driving phases are as in
auer & Springel ( 2012 , their table 1, left-hand column). 
We here also restrict ourselves to include only solenoidal driving,

.e. we project out all compressive modes in Fourier space by a
elmholtz decomposition. Specifically, if s is the principal acceler-

tion field constructed in the abo v e fashion, we project it as 

ˆ s ( k ) = 

(
δij − k i k j 

k 2 

)
s ( k ) (58) 

n Fourier space to end up with an acceleration field ˆ s that is free
f compressive modes, which would only produce a spectrum of
dditional sound waves in our subsonic case. 

.2 Results for subsonic turbulence 

ll our turbulence simulations are started with gas of uniform density
t rest. We monitor the average kinetic energy, as well as the total
umulative injected kinetic energy and the total cumulative dissipated
nergy, allowing us to verify the establishment of a quasi-stationary
tate. An example for this is shown in Fig. 16 , where we illustrate
he build-up of the turbulent state in terms of the total energies.
here is an initial ramp up phase of the turbulence until t ∼ 5,
uring which the Mach number grows nearly linearly to its final
uasi-stationary time-averaged value of M � 0 . 47 . The cumulative
njected energy grows approximately linearly with time, whereas
he dissipated energy tracks it with a time lag, because the initial
volution until t ∼ 2.5 does not yet show any significant dissipation.
he difference between the injected and dissipated energies is the
urrent kinetic energy of the gas, and thus is ef fecti vely gi ven by the
ach number. 
In Fig. 17 , we show a visual example of the quasi-stationary

urbulent state established after some time, here simulated with N c 

 128 cells and order p = 4. The slice through the magnitude of
he velocity field illustrates the chaotic structures characteristic of
NRAS 522, 982–1008 (2023) 
urbulence. Even though there are some steep gradients in the velocity
eld, the velocity varies smoothly overall, reflecting the absence of
trong shock waves in this subsonic case. 

To statistically analyse the turbulent state, we turn to measuring
ower spectra of the velocity field at multiple output times, and
hen consider a time-average spectrum to reduce the influence of
ntermittency. To calculate the final power spectrum of a simulation,
e av erage o v er 64 v elocity power spectrum measurements o v er the

ime interval 5.12 < t < 20.48. 

.2.1 Inviscid treatment of gas 

he behaviour of inviscid gas is described by the Euler equations of
quation ( 2 ). Because of the simplicity of this model and the desire
o run simulations with as little viscosity as possible to maximize the
nertial range of the turbulence, it is a popular choice for the study of
urbulence. F or e xample, the largest driv en turbulence simulation to
ate by Federrath et al. ( 2016 ) were performed using inviscid gas, as
ell as many other studies in the field (e.g. Schmidt, Hillebrandt &
iemeyer 2006a ; Federrath et al. 2008 ; Federrath et al. 2010 ; Price
 Federrath 2010 ; Bauer & Springel 2012 ; Bauer et al. 2016 ). 
In the top two panels of Fig. 18 , we show such simulations carried

ut with our DG code. In all such simulation, the energy injected
t large scales follows the Kolmogorov spectrum and cascades from
arge to small scales. This part of the spectra is called the inertial
ange and it follows the k −5/3 Kolmogorov spectrum closely, even
hough our gas is compressible and the density fluctuations for our

ach number are not ne gligible an y more. Note that all our plots are
ompensated with a k 5/3 factor, such that the Kolmogorov spectrum
orresponds to a horizontal line. The extent of the inertial range is
rimarily determined by the total number of degrees of freedom in
n inviscid simulation. Ho we ver, as we transition from the inertial
ange to the dissipation portion of the spectra, a noticeable bump can
e seen in which the spectrum significantly exceeds the power-law
xtrapolation from larger scales. As energy is being transferred from
arger to smaller scales, creating ever smaller eddies, it eventually
eaches scales at which the code cannot resolve smaller eddies any
ore. This leads to a build-up of an energy excess at this characteristic

cale, until the implicit numerical viscosity terms become strong

art/stad1043_f16.eps
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Figure 18. Compensated velocity power spectra of driven turbulence simulations as a function of wavenumber for varying numbers of cells, and varying spatial 
order. The panels in the top row show simulations where the Euler equations were solved, whereas the bottom two panels give results where the full compressible 
Navier–Stokes equations with a prescribed physical viscosity were used. The region marked with a red shade is the driving range. 
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nough to dissipate away the arriving energy flux. This effect is
ommonly known in numerical studies of turbulence and referred to 
s the ‘bottleneck’ effect. It should be pointed out that experimental 
eterminations of turbulent velocity spectra also show a weak form 

f this effect (see Verma & Donzis 2007 , and references therein).
 ̈uchler, Bewley & Bodenschatz ( 2019 ) later even measured the

elation between the amplitude of the bump and R λ of the flow. The
roblem of numerical simulations of inviscid gas is ho we ver that
he shape of the bump is determined by numerical details of the
ydrodynamic code and that it is usually e xcessiv ely pronounced. 

The bottleneck effect cannot be fixed by using higher resolution, 
r higher order for that matter. Indeed, in the top two panels of
ig. 18 we can see that the bottleneck mo v es to ev er smaller scales
ith increasing cell number at a fixed spatial order, and similarly it
o v es towards smaller scales if we increase the spatial order of our
ethod at a fixed number of cells. While both avenues of adding
urther degrees of freedom successfully widen the inertial range and 
ush the dissipative regime to smaller scales, they unfortunately 
annot eliminate the ‘bump’ in the bottleneck, or address the equally
ncorrect detailed shape of the dissipation regime itself. This detailed 
hape changes slightly as we vary the order p because the precise
ay of how numerical dissipation interacts with the flow is modified
y this, while in contrast increasing the number of cells leaves the
hape unchanged, because this just mo v es the dissipation re gime to
maller scales in a scale-invariant fashion. 

The only way around this and to get closer to velocity spectra seen
n experimental studies of turbulence is to solve the full compressible
avier–Stokes equation, where the dissipative regime is set not by 
umerics, but by the physical viscosity of the gas itself. If this
iscosity is large enough, it will ef fecti vely dissipate energy at scales
arger than our numerical viscosity. We consider this case in the
ollowing subsection. 
MNRAS 522, 982–1008 (2023) 

art/stad1043_f18.eps


1002 M. Cernetic et al. 

M

Figure 19. Compensated velocity power spectra as a function of wavenum- 
ber for a similar number of degrees of freedom, but varying the spatial order 
and the number of cells. The total wall-clock time for the simulation runs 
128 3 | p = 2, 128 2 | p = 3, and 64 3 | p = 4 on 16 A100 GPUs were 0.9, 3.9, and 
1.8 h, respectively. We note that one can keep the converged result obtained 
with N c = 128 and p = 3 by going to fewer cells and higher order (the N c = 

64 and p = 4 run), while still achieving a speed-up. 
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2 While our code is written from scratch for GPUs, its first version has been 
heavily inspired by the code TENET of Schaal et al. ( 2015 ), hence we named 
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.2.2 Viscous treatment of gas 

e now consider driven turbulence results akin to the simulations
ust discussed, with the only difference being that we are now
olving the full compressible Navier–Stokes equations as described
n Section 3.3 . In the bottom two panels of Fig. 18 , we display
ompensated velocity power spectra with physical viscosity added.
uch full Navier–Stokes simulations exhibit the proper behaviour
f the ‘bottleneck’ effect, as the location and shape of the bump
ecome resolution-independent and do not depend on numerical code
etails any more. Such simulations are in the literature referred to as
direct numerical simulations’ or DNS. Our code can achieve DNS
or turbulence by either increasing the resolution or the spatial order,
s is evident in the bottom two panels of Fig. 18 . 

To determine if increasing the order of our method or its resolution
s more beneficial, we compare three simulations with approximately
he same number of degrees of freedom, but different resolutions
nd orders in Fig. 19 . The orange line shows a run we can consider
 converged DNS result with N c = 128 and p = 3. A simulation
ith identical N c but lower p in blue fails to fully converge. On

he other hand, the green dashed line shows a simulation with eight
imes fewer total number of cells, but at a higher spatial order. It
as as many degrees of freedom as the simulation shown in blue,
nd yet its power spectra matches that of the simulation shown in
range. We can therefore conclude that running driven turbulence at
igher order is preferable to increasing the cell resolution. Or to put
t another way, if there is a limited number of degrees of freedom that
an be represented due to memory constraints, it is better to ‘spend’
he memory on higher p than N c . In the present case, a comparison of
he wall-clock time between the high cell resolution and high order
uns shows an about 2 × faster calculation time at high order versus
sing a higher cell resolution. For even high order, this CPU-time
dvantage may not persist, but the memory advantage will. Given
NRAS 522, 982–1008 (2023) 
hat turbulence simulations tend to be memory-bound, this in itself
an already be a significant advantage. 

 C O D E  DETA ILS  

.1 Parallelization strategy 

odern supercomputers consist by now of thousands to millions
f computing cores, a trend which is bound to continue. Recently,
o we ver, the most significant gains in computational performance
measured in floating point operations per second – FLOPS) have
ame from dedicated accelerator cards. These are most commonly,
ut not al w ays, graphics processing units (GPUs) that have been
epurposed to do general computational work. Accelerators achieve
 large number of FLOPS by foregoing large, per-core caches and
dvanced control circuitry for single compute units, while at the same
ime they are able to e x ecute large sets of threads concurrently in a
ata-parallel fashion. 
Current GPU-accelerated computers typically consist of normal,

PU-equipped compute nodes that are outfitted with attached GPU
ards. Utilizing the power of both, CPUs and GPUs, efficiently with
uch heterogeneous machines is challenging. It requires not only
 suitable subdivision of the work, but often also an algorithmic
estructuring of the computations such that they can be mapped
fficiently onto the massively parallel execution model of GPUs, as
ell as prescriptions for data placement and mo v ement between the

eparate memory of CPU and GPUs. The problem becomes even
arder when multiple compute nodes with distributed memory, each
ith their own GPUs, are supposed to work together on a tightly

oupled problem. Efficient and scalable massively parallel codes for
uch machines must decompose the problem into multiple parts,
istribute the parts among the available compute units, and only
xchange data between various parts when really needed. 

In the present version of our code TENETGPU, 2 we address this by
n implementation that can e x ecute a given hydrodynamical problem
exibly either on one or several GPUs, on one or multiple CPU cores,
r a mixture thereof. Independent on how GPUs and CPU-cores are
istributed onto different compute nodes, TENETGPU can in this
 ay mak e use of whatever is available, up to extremely powerful

ystems such as the first exascale supercomputers that are presently
ut into service (which are GPU-accelerated, such as ‘Frontier’,
ank ed the f astest in the w orld according to the Top500 list released
022 May 30). 
To achieve this flexibility, we split the mesh along the x -axis into

ifferent slabs, which can have different thickness, if desired. Each
lab is either computed by a different GPU, or by one CPU core. The
ommunication between slabs, which is realized with the Message
assing Interface (MPI), thus needs to happen along the x -dimension
etween neighbouring slabs only, as all the needed data along the
ther two axes is locally available for the corresponding slab. The
ata that is communicated consists of surface states or surface fluxes
t Gauss points needed for inte grations o v er cell areas. F or driving
he GPU computations, each GPU requires a separate CPU core as
ell. F or e xample, if one has a compute node with 32 cores and 2
PUs as accelerator cards, a simulation with 256 3 mesh cells could
e run by assigning slabs with a thickness of 98 cells to each of the
PUs, while letting the remaining 30 compute cores each work on
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labs with a thickness of 2 cells each. Of course, this particular mixed
 x ecution e xample w ould only mak e sense if each of the GPUs w ould
e around ∼50 times faster than a single CPU core. In practice, the
peed difference is typically considerably larger, so most of the work 
hould typically be assigned to GPUs if those are available. 

We also note that for the moment our code supports only meshes
ith uniform and fixed resolution. Ho we ver, a more general domain
ecomposition than just a slab-based decomposition is planned for 
he future and in principle straightforward. This can, in particular, 
emo v e the obvious scaling limitation of our current approach, where
he number of cells per dimension sets the maximum number of GPUs 
r CPU cores that could be employed. 

.2 GPU computing implementation 

he abo v e parallelization strate gy makes it clear that our code
s neither a plain CPU code nor a pure GPU code. Rather, it
mplements its core compute functionality where needed twice, in 
 CPU-only version and in a GPU-only version. Both versions can 
e interchangeably used for any given slab taken from the global 
omputational mesh, and they produce the same results. While this 
pproach evidently requires some extra coding, we have found that 
his is actually quite helpful for code validation, as well as for
uantifying the relative performance of CPU and GPU versions. 
urther, the extra coding effort can be greatly alleviated by using
herever possible functions that can be compiled and executed both 
y GPUs and CPUs based on a single implementation. 
For the GPU code, we have used the CUDA programming model 

vailable for Nvidia GPU devices. All our code is written in low
evel C ++ , and we presently do not make use of programming
odels such as OPENACC , special GPU-accelerated libraries, or new 

 ++ language features that allow GPU-based e x ecution of standard
ibraries via e x ecution policies. Our programming model is thus best
escribed as MPI-PARALLEL C ++ , accelerated with CUDA 

3 when 
PUs are available. If no GPUs are available, the code can still be

ompiled into a CPU-only version. 
For storing static data such as coefficients of Legendre polyno- 
ials or Gaussian quadrature weights, we try to make use of the

pecial constant memory on GPUs, which offers particularly high 
erformance, also in comparison to the ordinary general memory. 
ikewise, for computing parallel reductions across individual cells, 
e make use of the special shared memory. Ho we ver, the size of the

orresponding memory spaces is quite limited, and varies between 
ifferent GPU hardware models. This can necessitate adjustments 
f the used algorithms at compile time, depending on code settings
uch as the expansion order and on which e x ecution platform is used.
e address this by defining appropriate compile-time switches, such 

hat these adjustments are largely automatic. 
We note that the data of slabs that are computed with GPUs need to

t completely on GPUs as we refrain from transmitting the data from
he front end host computer to the GPU on every time-step. Instead,
he data remains on the GPU for maximum performance, and only 
hen a simulation is finished or a temporary result should be output

o disc it is copied back from the GPU to the front end host. Wherever
uch transfers are needed, we use pinned memory on the front end
o achieve maximum bandwidth between the host and GPUs. GPUs 
 We presently use the CUDA toolkit version 11.4, th E GNU G ++ 11 compiler 
nd the C ++ 17 standard. For message passing, we prefer the OpenMPI- 
 library, for Fourier transforms we use FFTW-3 and for random number 
eneration we rely on GSL 2.4 . 

s
K  

o  

o  

t  

m  
an access such pinned memory directly, without going through the 
ost CPU first. The problem sizes we are able to efficiently tackle
ith GPUs are therefore limited by the total combined GPU memory

vailable to a run. Modern GPUs typically have some 10 GBs of main
emory, but the detailed amount can vary greatly depending on the
odel, and is course a matter of price as well. The communication

etween adjacent slabs is organized such that communication and 
omputation can in principle o v erlap. This is done such that first the
urface states are computed and a corresponding MPI exchange with 
he neighbouring slabs is initiated. While this proceeds, the volume 
ntegrals for slabs are carried out by the GPU, and only once this is
ompleted, the work continues with the received surface data. 

Because slabs that are computed on GPUs need to be e x ecuted in
 massively thread-parallel fashion with shared-memory algorithms, 
ome changes in the e x ecution logic compared to the ef fecti vely serial
PU code are required. For example, to a v oid race-conditions in our
PU code without needing to introduce explicit locks, we process the
esh in a red-black checkerboard fashion. Finally, we note that we

lso implemented a scheme that makes our results binary identical 
hen the number of mesh slabs is changed. This ultimately relates

o the question about how the wrap-around between the leftmost and
ightmost planes of the mesh in our periodic domain is implemented.
ere the order in which fluxes from the left and right neighbouring

ells is added to cells needs to be unique and independent of the
ocation and number of slabs in the box in order to a v oid that different
oating point rounding errors can be introduced when the number of
labs is changed. 

.3 Memory usage 

efore closing this section, it is perhaps worthwhile to discuss the
emory need of our DG simulations, as this is ultimately determining

he maximum size of simulations that can be done for a given number
f GPUs. To represent a scalar field such as the density ρ at order
 , we need for every cell a certain number of basis function weights
 

d D ( p ), were d is the number of spatial dimensions, see equations
 17 ) and ( 18 ). When multiplied with the number of cells, we obtain
he number of degrees of freedom, which is identical to the number
f floating point variables needed to stored the full density field. If
e write the total number of cells as ( N c ) d , then the total number of
ariables that need to be stored for the DG weight vector is 

 w = (2 + d)( N c ) 
d N 

dD ( p) . (59) 

ere we assumed that we simulate the plain Euler equations without
iscosity, where we need (2 + d ) conserved fields to describe the flow.
f we account for our artificial viscosity field, which will al w ays be
equired for problems involving shocks, this number goes up by one
urther unit, yielding 

 w = (3 + d)( N c ) 
d N 

dD ( p) . (60) 

 passive tracer field, if activated, would add a further unit in the
re-factor. In 2D and 3D, a conserv ati ve upper bound for N 

d D ( p ) is
 

d , but this is not particularly tight. Already for p = 2, N 

3D is lower
han p 3 by a factor of 2, for p = 4 this grows to a factor 3.2, and for
 = 10 the difference is more than a factor 4.5. 
Another significant source of memory need lies in our time- 

tepping algorithm. At present we use stability preserving Runge–
utta schemes that require a temporary storage of the time deri v ati ves
f the weights, e v aluated at se veral dif ferent points in time, depending
n the order of the Runge–Kutta scheme, which we adjust according
o the chosen p . The required temporary storage space N ẇ is thus a

ultiple of N w , with a pre-factor that depends on the chosen order p ,
MNRAS 522, 982–1008 (2023) 
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Table 1. Minimum memory need for our DG code 
when a 3D simulation is assumed with ( N c ) 3 cells and 
expansion order p , including allowing for an artificial 
viscosity field. Here double precision with 8 bytes per 
floating point number has been assumed. 

N c p min. memory need 

128 1 512 MB 

128 2 1440 MB 

128 3 3520 MB 

128 5 9856 MB 

128 9 37.81 GB 

2048 1 2048 GB 

2048 2 5760 GB 

2048 3 13.75 TB 

2048 5 38.5 TB 

2048 9 151.3 TB 
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4 The current version of the GPU part of the code can only run if N c and the 
number of slabs in the x -direction per rank are even. This and the fact that N c 

has to be an integer in any case prevents ideal doubling of problem size. The 
correction factors we apply are: 128 3 : 1.0, 160 3 : 0.977, 200 3 : 0.954, 256 3 : 
1.0, 320 3 : 0.977, and 512 3 : 1.0. 
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.e. 

 ẇ = f t ( p) N w . (61) 

ere f t ( p ) depends on the number of stages in the Runge–Kutta
cheme. Presently, we use a setup where f t ( p ) = p for p ≤ 3, and f t ( p )
 5 otherwise. The minimum amount of total storage (in terms of

eeded floating point numbers) required by the code is thus 

 w = [3 + d + f t ( p )]( N c ) 
d N 

dD ( p ) . (62) 

During e x ecution of our code using multiple GPUs or CPU cores,
ome temporary buffer space is furthermore required to hold, in
articular, send and receive buffers for fluid states or fluxes along
lab surfaces orthogonal to the x -direction. These tend to be sub-
ominant, ho we ver, compared to the memory requirements to store
he weights and their time deri v ati v es themselv es. The latter thus
epresent the quantities that need to be primarily examined to decide
bout the feasibility of a simulation in terms of its memory needs.
hen we use the oscillatory sensor for controlling artificial viscosity,

ome further temporary storage is needed as well, but since this is
gain small compared to N w since only two scalar quantities per
ell are needed, this conclusion is not changed. Note that our DG
pproach does not need to store gradient fields for any of the fields,
hich is different from many finite volume methods such as, for

xample, AREPO . Also, use of the Navier–Stokes solver instead of
imulating just the Euler equations does not increase the primary
emory needs in any significant way. 
In Table 1 , we give a few examples of the memory need for a small

et of simulation sizes and simulation orders, which illustrates the
emory needs of the code, and which can be easily scaled to other

roblem sizes of interest. A single Nvidia A100 GPU with 40 GB
f RAM could thus still run a N c = 128 problem at order p = 9, or
 512 3 problem at quadratic order p = 1. For carrying out a 2048 3 

imulation at p = 1, a cluster offering at least 52 such devices would
lready be necessary. 

 C O D E  P E R F O R M A N C E  

n order to fully utilize large parallel supercomputers, a code has to
e able to run efficiently not only on a single core on one CPU, but
lso on hundreds to thousands of cores on many CPUs. The degree
o which this can accelerate the total runtime of a computation is
ncapsulated by the concept of parallel scalability . Similarly , for a
PU-accelerated code it is of interest to what extent the use of a GPU

an speed up a computation compared to using an ordinary CPU. If
NRAS 522, 982–1008 (2023) 
ore than a single GPU is used, one is furthermore interested in
hether a code can efficiently make simultaneous use of several,
erhaps hundreds of GPUs. In this section, we examine these aspects
nd present results of weak- and strong scaling tests of our new code.

.1 Weak scaling 

eak scaling performance describes a situation where a set of
imulations of increasing size is run and compared, but where the
oad per computational unit, be it a CPU core or a GPU in our case, is
ept constant. The time to perform a single time-step should remain
onstant in this case, increasing only due to communication-related
 v erhead, through work-load imbalances, or through other types of
arallelization losses, for example if a code contains residual serial
ork that scales with the problem size. 
Weak scaling results of our code are shown in Fig. 20 . We run a

D box with constant density and pressure using the Navier–Stokes
quations, the positivity limiter, and artificial viscosity. This setup is
omputationally very close to problems we are running in production.
e consider problem sizes of 128 3 , 160 3 , 200 3 , 256 3 , 320 3 , and 512 3 

ells, forming a sequence that approximately doubles in size, with
 factor of 64 enlargement from the smallest to the largest runs. To
ompensate for the fact that the problem size does not exactly double
very time, we increase the number of cells, we apply a correction
actor to the timing results at each resolution. 4 Correspondingly, we
 x ecute these problems with one Nvidia A100 GPU for the smallest
esh size, and 64 GPUs for the largest mesh size, keeping the load

er GPU roughly constant. The results are shown in the left-hand
anel of Fig. 20 . For comparison, we also measure the e x ecution
peed if instead every GPU is replaced by four CPU cores of Intel
eon-6138 processors. The corresponding results are shown in the

ight-hand panel of Fig. 20 . Finally, we repeat these measurements
or different DG expansion orders p = 0 − 5. 

The results in the figure show generally good weak scalability,
ut also highlight some performance losses for large problem sizes.
hese arise in part because our domain is split into slabs and not
ubes. Larger problems lead to ever thinner slabs with a larger
urface-to-volume ratio and thus more communication between
ifferent slabs. We also see the influence of enhanced communication
n weak scalability when data needs to be transferred across node
oundaries. At higher orders the weak scaling is generally better,
s the compute-to-communicate time ratio shifts strongly to the
ompute side. 

.2 Strong scaling 

trong scaling is a test where one runs a problem of given size on an
ver increasing number of compute units. Contrary to weak scaling,
he load per compute unit decreases in this test, and the time to
erform a single time-step should decrease in inverse proportion to
he increasing computational power applied to solve the problem. 

We show a strong scaling result in Fig. 21 , again carried out
or a 3D box with constant density and pressure using the Navier–
tokes equations, the positivity limiter and artificial viscosity. For
efiniteness, we use a simulation with 256 3 cells, and consider orders
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Figure 20. Weak scaling of TENETGPU for a 3D test problem. The y -axis shows the time taken to compute one time-step averaged over a small number 
of time-steps. The left-hand panel shows results for GPU e x ecution when the problem size N 

3 
c , measured in terms of the number of cells N c per dimension, 

increases in several steps by close to a factor of two from N c = 128 to N c = 512 cells, and when between 1 and 64 GPUs are applied to the problem. In 
contrast, the right-hand panel gives results when the problems are e x ecuted on CPUs instead, using from 4 to 256 cores, again keeping in each case the load per 
computational element constant. We carry out the measurements for different expansion order, from p = 0 to p = 5. Ideal weak scaling corresponds to horizontal 
lines (dashed). The dotted vertical line marks the transition between using CPU cores or GPUs associated with a single compute node of our cluster, and the use 
of multiple nodes in which MPI data exchange via the Intel Omni-Path takes place. The missing measurement at p = 5 is due to the large memory required to 
store communication buffers, which make the N c = 512 problem not fit onto 64 GPUs. The missing data points at N c = 400 are due to 400 not being divisible 
by 32, as this would lead to uneven distribution of work across the GPUs we did not consider these runs. 

Figure 21. Strong scaling of TENETGPU for a 3D test problem of size 256 3 cells. The y -axis shows the average time taken to carry out one time-step. The 
left-hand panel shows timing results when between 1 and 16 Nvidia A100 GPUs are used, while the right-hand panel gives results when between 1 and 256 
ordinary Intel Xeon-6138 cores are used. Ideal strong scalability corresponds to the dashed lines indicated in the panels. Missing data points at high orders and 
low number of compute devices are due to the fact that such large problems do not fit on a single GPU/node. 
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Figure 22. Ratio of time taken to calculate one time-step of test simulations 
with the Navier–Stokes solver on GPUs or CPUs, based on our weak scaling 
test runs. The left vertical scale shows results when we normalize them to the 
speed ratio for using 4 Nvidia A100 GPUs versus 40 Intel Xeon 6138 CPU 

cores, while the right scale normalizes the speed results to a comparison of 1 
GPU versus 1 CPU core. 
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 = 0 to p = 5. The left-hand panel of Fig. 21 shows the average
 x ecution time for a single step when 1, 2, 4, 8, or 16 Nvidia A100
PUs are used. In contrast, the right-hand panel of Fig. 21 shows

he average execution time when CPU cores on a cluster with 2 Intel
eon-6138 CPUs are used, with 40 cores per node. We show results

rom 1 core to 256 cores. Especially in the latter case, one sees
lear limits of strong scalability, as communication costs become
uite large if the problem is decomposed into slabs that are just a
ingle cell wide. This stresses that there is al w ays a limit for strong
calability, something that is known as Ahmdahl’s law. By enlarging
he problem size, this limit can ho we ver usually be pushed to larger
arallel partition sizes. Another major contributor to the degradation
hat happens when going from 16 to 32 cores is the saturation of
vailable memory bandwidth of a single 20-core socket. We verified
his using the STREAM benchmark. 5 

.3 CPU versus GPU benchmark 

nother interesting question is how the absolute speed of GPU
 x ecution of our code compares to running it only on ordinary CPU
ores. To estimate this speedup, we take the av erage e x ecution times
o compute a time-step from our weak scaling results for both the
PU and CPU runs and consider their ratio. We do this for the three

onsidered DG orders p = 2 to p = 4, and for the varying problem
izes and number of compute units used. Since we had used 4 CPU
ores to pair up with 1 GPU, we rescale the results in two different
ays, to either compare the e x ecution performance of four Nvidia
100 GPUs with 40 Intel Xeon-6138 cores – which is how one of
ur compute nodes is equipped – or to the performance of a single
PU compared to one CPU core (which thus gives 10 times higher
alues). 

The corresponding results are illustrated in Fig. 22 . The speedup
f GPU e x ecution at the node-level is modest for order p = 2, as
here are not enough floating point operations to fill up the GPUs. At
 = 2, 3 we reach the highest node-level speedup observed among
his set of runs, it peaks at just o v er 8 × the CPU speed for large
roblems. This runs show better performance because there are a
ot of floating points operations to perform at the same time, and all
ntermediate results still fit into the GPU’s limited shared memory.
uch shared memory is ‘on chip’ and therefore about ∼100 × faster

han global memory. Once the intermediate results become too large
o fit into shared memory, the code determines the maximum number
f quadrature points it can process at once and proceeds forward in
atches of n quadrature points. At this point, a single GPU is about
0 times as fast as a CPU core, but when comparing a fully equipped
PU node to a fully equipped CPU node, more realistic numbers

re in the ballpark of ∼8. Note that this speedup metric is based
n the specific hardware configuration of the cluster the authors had
ccess to throughout this project. While the configuration of four
vidia A100 GPUs paired with about 40 Intel Xeon cores quite

ypically reflects the general HPC situation in 2021 and 2022, the
orresponding hardware characteristics are not universal and can be
 xpected to evolv e substantially in future generations of CPU-GPU
ystems. In any case, the performances we find are not far away
rom the ratio of the nominal peak performances of the involved
ompute devices for double precision arithmetic (which we have
sed here throughout), but this comparison also suggests that there is
till some modest room for impro v ement in the performance of our
PU implementation. 
NRAS 522, 982–1008 (2023) 
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0  SUMMARY  A N D  C O N C L U S I O N S  

n this study, we have described a novel hydrodynamical simulation
ode which is based on the mathematical Discontinuous Galerkin
pproach. The fluid state is expanded in this method into a set of
patially varying basis functions with time-variable weights, yielding
 separation of the temporal and spatial dependencies. The time
volution of the weights is obtained in a weak formulation of the
nderlying partial differential equations of fluid dynamics. 
Our work builds up on the earlier development of a DG code

y Schaal et al. ( 2015 ) and Guillet et al. ( 2019 ), but extends it
nto several crucial directions. First of all, we hav e dev eloped a
o v el GPU implementation from scratch, thereby demonstrating
he substantial potential of these acceleration devices for achieving
igher computational performance in astrophysical applications.
his potential has already been identified in a few first finite-volume
ydrodynamical GPU codes in astrophysics, but ours is the first
ne that can carry out DG calculations of the full Navier–Stokes
quations at very high order of p = 10 and beyond. 

Secondly, we have introduced a novel approach to shock-capturing
t high order, solving the long-standing problem that standard slope-
imiting techniques do not work well at high order and tend to
iscard in troubled cells much of the advantage that is supposed
o be delivered by a high order approach. The latter can only be
escued if the DG method is able to capture physical discontinuities
n a sub-cell fashion. By means of our new source routines for a time-
ependent artificial viscosity field, we have demonstrated very good
hock-capturing ability of our code, with a shock broadening that
losely tracks the ef fecti ve spatial resolution h / p that we expect from
he method based on its number of degrees of freedom per dimension.

hile this does not necessarily give high-order approaches an
dvantage for representing a shock compared with a lower order
ethod with the same number of degrees of freedom, at least it

lso is not worse – using a high-order approach will ho we ver in
ny case still be beneficial for all smooth parts of a flow. If it

https://github.com/intel/memory-bandwidth-benchmarks
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erforms at the same time as well as a lower order method in places
here there is a shock, this can be a significant advantage. For

ontact discontinuities, similar considerations apply, but here high- 
rder methods have the additional advantage of exhibiting greatly 
educed numerical dif fusi vity. Contact discontinuities that mo v e o v er
ubstantial time-spans therefore also benefit from the use of higher 
rder. 
Thirdly, we have stressed that the use of physical viscosity is

ften a key to make problems well posed and amenable to direct
umerical solutions. Here we have introduced a novel method to 
efine the viscous surface fluxes at cell interfaces. This is based on
rriving at unambiguous derivatives at interfaces by projecting the 
wo piece-wise solutions in the adjacent cells onto a continuous basis
unction e xpansion co v ering both cells. The deri v ati ves can then be
omputed in terms of analytic deri v ati ves of the basis functions.
e have shown that this technique is robust, consumes much less
emory and computational effort than the uplifting technique, and 
ost importantly, it converges at the expected rapid convergence rate 
hen high order is used. 
In fact, in several of our test problems, we could show that our

G code shows for smooth problems exponential convergence as 
 function of expansion order p , while for fixed order, the L 1 error
orm declines as a power law of the spatial resolution, L 1 ∝ h p . These
a v ourable properties suggest that it is often worthwhile to invest
dditional degrees of freedom into the use of higher expansion order 
ather than employing more cells. Ho we ver, since e very DG cell
f fecti vely represents a small spectral problem in which the required
olution e v aluations and volume integrations are carried out in real
pace, the computational cost to advance a single cell also increases 
apidly with order p . In practice, this can make the optimal order
uite problem dependent. 
With our present implementation, we could obtain excellent 

greement with the reference Kelvin–Helmholtz solution computed 
y Lecoanet et al. ( 2016 ) with the spectral code DEDALUS.
emarkably, we achieved this already with 64 cells and order p 
 4, for which our results are equally as accurate as those obtained
ith the finite volume code ATHENA at second order using 2048 

ells. This again shows the potential of the DG approach. Given that
n this work we could o v ercome one of its greatest weaknesses in an
ccurate, simple, and robust way – namely the treatment of shocks 
t high order – we are confident that the DG method could soon turn
nto a method of choice in astrophysical applications, ri v aling the
raditional finite volume techniques. Our next planned steps to make 
his a reality are to add additional physics such as radiative cooling
nd self-gravity to our code, and to provide functionality for local 
efinement and derefinement ( h -adaptivity), as well as to allow for
arying the expansion order used in a single cell ( p -adaptivity). The
igh performance we could realize with our GPU implementation, 
hich outperforms modern multicore CPUs by a significant factor, 

urthermore strengthens the case to push into this direction, which 
eems also a necessity to eventually be able to harness the power of
he most powerful supercomputers at the exascale level for unsolved 
roblems in astrophysical research. 
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