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Abstract
Humans employ visually-guided actions during a myriad of daily activities. These ubiquitous but precise manual actions 
rely on synergistic work between eye and hand movements. During this close cooperation between hands and eyes, the hands 
persist in sight in a way which is unevenly distributed across our visual field. One common assertion is that most hand actions 
occur in the lower visual field (LVF) because the arms are anatomically lower than the head, and objects typically rest on 
waist-high table surfaces. While experimental work has shown that humans are more efficient at reaching for and grasping 
targets located below their visual midline (Goodale and Danckert, Exp Brain Res 137:303–308, 2001), there is almost no 
empirical data detailing where the hands lie in the visual fields during natural hand actions. To build a comprehensive picture 
of hand location during natural visually guided manual actions, we analyzed data from a large-scale open-access dataset 
containing 100 h of non-scripted manual object interactions during domestic kitchen tasks filmed from a head-mounted 
camera. We found a clear vertical visual asymmetry with hands located in the lower visual scene (LVS) in more than 70% of 
image frames, particularly in ipsilateral space. These findings provide the first direct evidence for the established assumption 
that hands spend more time in the lower than in the upper visual field (UVF). Further work is required to determine whether 
this LVF asymmetry differs across the lifespan, in different professions, and in clinical populations.
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Introduction

Humans use vision to guide the majority of their manual 
actions during daily activities. From preparing breakfast in 
the morning to hitting a ball while playing tennis, eyes and 
hands work closely together to achieve rapid and precise 
manual actions. During these activities of daily living, hands 
and the objects being manipulated are often under the scru-
tiny of the human eye (Land et al. 1999). In fact, hands and 
eyes work tightly together to the point that the former will 
often wait for the latter to guide and select subsequent targets 
(Pelz et al. 2001). When such close cooperation between 

hands and eyes is prevented, our visuomotor performance 
is negatively affected. For instance, when individuals avoid 
looking directly at a target, reaching accuracy is impaired 
(Henriques et al. 2003; Henriques and Crawford 2000). 
One of the consequences of such close connection between 
hands and eyes is that hands are often in sight. Despite the 
persistence of hands in our line of sight, the distribution 
of such persistence across our visual field is thought to be 
biased toward the lower half. One common assertion is that 
most hand actions occur in the LVF because the arms are 
anatomically lower than the head, and objects typically rest 
on waist-high table surfaces. The goal of this paper is to 
quantify the degree to which the hands operate in the LVF 
in typical daily tasks.

Although it is not yet known how long the hands actually 
spend in the LVF relative to the UVF, a significant body of 
experimental work has shown that humans are more efficient 
at reaching and grasping for targets located below their vis-
ual midline (Brown et al. 2005; Goodale and Danckert 2001; 
Graci 2011; Khan and Lawrence 2005; Krigolson and Heath 
2006; Stone et al. 2019). The seminal work of Goodale and 
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Danckert (2001) highlights a LVF functional advantage 
for visually guided skilled movements which is not solely 
explained by retinal factors. When they asked individuals 
to point as quickly and accurately as possible at a target 
which kept changing size, they found out that individuals 
were faster and more accurate when the target was located 
in the LVF. Further work since this initial observation found 
less variation in reaching and grasping movements when the 
target persisted in the LVF instead of better speed and accu-
racy. For instance, individuals applied less variation in their 
peak grip aperture when grasping in the LVF (Brown et al. 
2005) and were more effective at adjusting limb trajectories 
in the late stages of pointing movements when such actions 
occurred in the LVF (Khan and Lawrence 2005). Similarly, 
Krigolson and Heath (2006) observed better endpoint pre-
cision in the LVF using a reaching task where target loca-
tion alternated between constant and unexpectedly varied. 
This LVF performance bias has also been demonstrated in 
controlled functional tasks. When humans have the LVF 
occluded, they take longer to reach a glass of water placed 
on a desk and stand at a longer distance from that same 
desk/glass, compared to having full vision of the environ-
ment (Graci 2011). Interestingly, there is even evidence from 
sporting populations that this LVF bias is malleable. Col-
lege-level basketball players (who spend a disproportionate 
amount of time with their hands in the UVF) also performed 
faster and more accurately in a reaching task when the target 
was located in the LVF, but this asymmetry was far smaller 
than in non-basketball players (Stone et al. 2019).

Support for a LVF specialization is not only found in 
behavioral work but also at the neuroanatomical level. 
For example, cone and ganglion cell density in the reti-
nal region corresponding to the lower visual hemifield is 
nearly 60% higher than its contra vertical region (Curcio 
and Allen 1990). This vertical asymmetry continues as we 
move into intermediate levels of the visual system—for 
example, Schmidtmann et al. (2015) found that participants 
are more accurate at discriminating differences in object 
and face shapes in the LVF than the UVF. Specific higher 
cortical areas which reside anteriorly to the primary visual 
cortex and are implicated in controlling visually guided 
limb movements also show a functional preference for tar-
gets present in the LVF. Rossit et al. (2013) asked partici-
pants to grasp targets while fixating their gaze at one of four 
visual quadrants. The authors found a higher activation of 
the superior parieto-occipital cortex and the left precuneus 
(regions heavily involved in skilled manual actions) when 
participants reached for targets which were located in their 
LVF, compared to the UVF. Maltempo et al. (2021), using a 
visuomotor task involving pointing with the eye, the hand, 
or the foot, found not only a higher activation in the anterior 
superior parietal lobe but also in the dorsomedial parietal 

cortex when targets were presented in the LVF involved in 
visually guided upper and lower limb actions.

There is a strong body of evidence that actions performed 
in our LVF are supported by different neural structures than 
those in the UVF. Furthermore, there are clear anatomi-
cal and contextual reasons to assume that the hands spend 
more time in the lower than in upper visual field. However, 
this assumption has received no empirical support, and the 
degree of this putative asymmetry has not been quantified. 
Capturing the spatial preferences of hands from the indi-
vidual’s point of view in uncontrolled environments could 
provide further insight into the development, acquisition and 
impairment of human visuomotor skills. Furthermore, map-
ping hand location during natural hand movements could 
validate a body of knowledge on visually guided hand move-
ment efficiency which is predominantly built on controlled 
environment findings. Ecologically robust findings of hand 
spatial preferences during visually guided movements are 
not only relevant for fundamental research but also have 
tangible applications in clinical and industry contexts. For 
instance, there are clear applications to support the current 
shift to tele health services for stroke survivors (Laver et al. 
2020) and for individuals with musculoskeletal conditions 
(Murray et al. 2021). The spatial preferences of the hands 
can be translated to rehabilitation monitoring or workstation 
planning by remotely assessing and tracking the progress 
of individuals in their own environment during meaningful 
hand-based tasks.

Most research examining visual field preference uses eye 
tracking or constrained visual fixation to quantify the visual 
field of actions and stimuli. A visual scene (VS) is the head-
centric visual space experienced by the individual when 
situated in a specific context (Intraub 2012). Gaining access 
to the statistical regularities of the VS can provide ecologi-
cally robust understanding of why humans are more efficient 
at performing hand movements in certain spatial areas in 
contrast to more ‘neglected’ ones. The difficulty of labeling 
large volumes of images, which is often performed manually 
by researchers (Niehorster et al. 2020), has been delegated to 
machine learning-based image classification models (Shan 
et al. 2020) yielding computational models which are accu-
rate at identifying and labeling objects in image and video. 
These advances in image labeling, together with the easy 
access and application of head-mounted cameras have pro-
duced several datasets on hand location and object interac-
tion status which are openly accessible online to other fields 
of fundamental and clinical science (Damen et al. 2018).

In this paper, we show how we examined a large-scale 
open-access dataset of naturally occurring (i.e. non-scripted) 
manual object interactions from a domestic kitchen setting 
filmed from a head-mounted camera to determine where in 
space the hands are located during real-world tasks. From 
this dataset, we were able to extract the positions of the 
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hands in the visual scene and build a comprehensive picture 
of where, in the viewers’ head-centered close space, manual 
actions typically occur.

Methods

Dataset

We examined VS asymmetries during manual actions in 
a large-scale open-access dataset named EPIC-KITCH-
ENS-100 (Damen et al. 2022, 2018). The dataset is com-
posed of 100 h of video recordings of naturally occurring 
(i.e. non-scripted) manual object interactions (e.g. making a 
cup of tea or slicing cake). To make this dataset, over 20 mil-
lion frames of first-person perspective were recorded using 
a head-mounted camera by 37 participants while in their 
own domestic kitchens located in 4 different international 
cities. In brief, participants were asked to fit the GoPro head-
mounted camera themselves and to check battery life and 
viewpoint using the GoPro Capture app installed on their 
phones. Viewpoint was determined by aligning the camera 
in a way that the participant’s stretched hands were located 
in the centre of the screen. The cameras were set to lin-
ear field of view, recording at 59.94 frames per second and 
1920 × 1080 resolution. Some participants changed video 
and screen resolution; however, this only affected 1–2% of 
the videos (Damen et al. 2018).

The analysis of visual scenes rather than visual fields was 
underpinned by a number of assumptions. We assumed that 
the collected image fields (i.e., the head-mounted camera 
field of view) coincided with the Cartesian centre of the VS. 
We are aware that the eyes follow the object under manipula-
tion before the hand is in contact with the object (Land et al. 
1999) and eye movements do not always coincide with head 
movements (Pelz et al. 2001), which may have added vari-
ance to our results. However, experimental work also shows 
that head position modulates visual perception with humans 
performing better during visual identification tasks when 
their heads are aligned with target position, irrespectively 
of head–eye alignment (Nakashima and Shioiri 2015). We 
also assumed that hands were correctly centered in the image 
Cartesian middle coordinates during head-mounted camera 
setup. The relevance of this assumption is based on experi-
mental work showing that the eyes tend to fixate the index 
finger object contact point while guiding the hand in engag-
ing with objects (Cavina-Pratesi and Hesse 2013; Voudouris 
et al. 2016). If visual perception and attention are improved 
by aligning the head with hand interaction targets and if fixa-
tions follow the index finger contact point, we assumed that 
by centering these two factors to the centre of visual scene 
participants would be often looking to an approximation of 
the visual field centroid. This assumption is also supported 

by the work of Foulsham and colleagues (2011) in which the 
use of head-mounted eye tracking showed that adults spend 
most of the time fixating the centre of their visual field when 
walking around a natural scene on their way to get a coffee. 
We further explore the impact of these assumptions on our 
findings in the ‘Discussion’ section.

To conduct our analysis, we processed the Hand–Object 
automatic annotations from the EPIC-KITCHENS-100 data-
set (Damen et al. 2022). These annotations were produced 
using a hand–object interaction classification model (Shan 
et al. 2020). The authors of EPIC-KITCHENS-100 (Damen 
et al. 2022) reported that they trained the model using 100 K 
images from YouTube together with 42 K images from other 
egocentric datasets (Damen et al. 2018; Li et al. 2015; Sigur-
dsson et al. 2018). The original authors made sure that 18 K 
of the 42 K images were from their own videos (Damen et al. 
2018). The model by Shan et al (2020) labels hand–object 
interactions in each frame. With regards to hand–object clas-
sification, the model identifies whether one or both hands are 
present in each frame, determines hand laterality, hand and 
object spatial location, and draws a bounding box (‘bbox’) 
around hand and object. An example of a ‘bbox’ can be 
found below (Fig. 1) when the original authors rendered the 
hand–object interaction classification.

The same model also classified hand–object interaction 
state—whether the hand is interacting with a ‘portable’ 
object, a ‘stationary’ object, in ‘no contact’ with any object 
or in ‘self-contact’ with the other hand. ‘Portable’ objects 
included small objects which were required to perform 
kitchen tasks such as small kitchen appliances, crockery and 
different food and drink items. ‘Stationary’ objects included 
larger and static kitchen appliances or furniture found in the 
kitchen such as fridges, kitchen tops or ovens. ‘No contact’ 
state included actions involving hand free roaming as well 
as during reaching for objects or reaching for the other hand. 
Hand ‘self-contact’ includes actions involving one hand 
touching the other such as washing, drying or brushing the 
hands. We were unable to include a full list of actions classi-
fied by hand–object interaction state as these data are made 
only partially available by the authors.

All annotations from the classification model were saved 
in a python ‘object’ which can be accessed using a sup-
porting python library. We developed a script to extract the 
following data from the annotation files: participant num-
ber, video number, frame number, hand spatial location and 
hand–object interaction state. With regards to hand spatial 
location, we only collected hand ‘bbox’ centre y coordi-
nate, ‘bbox’ left coordinate, ‘bbox’ width, frame width and 
height. Using this information, we were able to determine 
the 2D spatial centre coordinates for each hand across time. 
Frames were 456 × 256 pixels; hence, the horizontal cen-
tre was at 228 pixels and the vertical centre at 128 pixels. 
We were able to determine the ‘bbox’ centre y coordinate 
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directly from the annotations but had to calculate the ‘bbox’ 
centre x coordinate by adding half the ‘bbox’ width to its 
left coordinate.

Data availability

We accessed the Hand–Object automatic annotations from 
the EPIC-KITCHENS-100 dataset files using the supporting 
python library provided by the dataset authors and hosted 
on an online repository (Price and Ray 2020; available 
here: https://​github.​com/​epic-​kitch​ens/​epic-​kitch​ens-​100-​
hand-​object-​bboxes). More information on the image clas-
sification model and corresponding library can be found in 
Shan et al. (2020). A total of 703 Pickle files were analyzed 
through the Google Colab online platform. In the interest of 
the reproducibility of our work, we provide the respective 
Jupyter Notebooks we developed in Google Colab which 
can be used to follow the steps we took to reach our findings 
(https://​osf.​io/​uwe9k/).

Dataset analysis

The resultant dataset required two transformations. Every 
frame containing both left and right hands had to be dupli-
cated as we could only process the location of one of the 
hands at the time. The spatial coordinates provided for the 
‘bbox’ are relative to the origin coordinates (0, 0) of the 
frames. However, the origin (0, 0) of the frame corresponds 
to the top left corner rather than the Cartesian origin of a 
plot—the bottom left corner. For that reason, we converted 
every y-centre coordinate to Cartesian so the finding could 
be plotted. We also developed a second script to calculate 
the total number, and respective proportion, of frames across 
vertical and horizontal visual hemi scenes, and visual scene 

quadrants. This second script processed data by both hands, 
each of the hands and also by handedness.

Participant handedness information was not collected in 
the original dataset. However, to estimate handedness, we 
downloaded and watched the video footage for each partici-
pant, available in Damen et al. (2022). We then used items 
from the Edinburgh Handedness Inventory (Oldfield 1971) 
to determine participant handedness, through four activities 
(the use of scissors, spoon and knife with and without a fork) 
performed in the videos. We assigned a point to the hand 
employed to perform one of the activities aforementioned. 
The hand side with the highest score determined participant 
handedness.

Statistical analysis

Data were analyzed using the Pingouin statistics package 
for Python 3 (Vallat 2018) inside a Google Colab notebook. 
We set statistical significance at α = 0.05. Effect size was 
reported as Cohen’s dz. Statistical differences between pro-
portion of hands in the various quadrants, hemi scenes, and 
during hand interactions were tested using paired samples 
t tests. In the interest of the reproducibility of our analysis, 
we provide the respective Jupyter Notebook we developed 
in Google Colab which can be used to follow the steps we 
took to reach our findings (https://​osf.​io/​uwe9k/).

Results

Descriptive findings

All video annotations from the 37 participants in the origi-
nal EPIC-KITCHENS-100 dataset were included in the 
study. In total, 703 automatic annotation files and respective 

Fig. 1   An example of a video 
frame and respective hand and 
object boundary boxes after 
classification by the model. 
The Cartesian coordinates were 
processed to determine whether 
the hand is above or below 
the visual horizontal midline 
correspond to the centre of the 
box (the blue dot in the blue box 
and the red dot in the red box). 
From (Price and Ray 2020)

https://github.com/epic-kitchens/epic-kitchens-100-hand-object-bboxes
https://github.com/epic-kitchens/epic-kitchens-100-hand-object-bboxes
https://osf.io/uwe9k/
https://osf.io/uwe9k/
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20,076,005 frames were processed. Subsequently, we identi-
fied 15,761,306 frames which contained at least 1 hand. To 
analyze single hand location, we ended up with a total of 
31,300,201 frames (for information about how this value was 
arrived at, see Methods). From the total number of frames 
analyzed, we found a higher number of frames containing 
right hands (16,123,924) than those containing left hands 
(15,176,277). The majority of participants were classified as 
right handed (n = 32), with the remaining five participants 
classified as left handed.

Despite the fact that the main aim of the paper was to 
answer how hand location is distributed across vertical hemi 
VS, we also examined hand location across VS quadrants 
and during different hand interactions. We found that hands 
spent most of the time interacting with portable objects 
(83.2%), or not in contact with anything (12.7%). The hands 
were in contact with a stationary object 2.9% of the time, 
and were in contact with the contralateral hand 1.2% of the 
time.

Hand location across image vertical hemi space

We found a higher proportion of frames where hands were 
located in the LVS, when compared to the UVS (Table 1 and 
Fig. 2). This marked vertical asymmetry in hand location 
was also present when we explored the dataset by hand side. 
We found that both left and right hands were present more 
often in the LVS than in the UVS (Table 1 and Fig. 2). These 
values were similar in both left handers and right handers 
(plots and tables for these data by hand dominance can be 
found in the supplementary materials).

We also found that hands were more often located in the 
LVS during all object interaction states, when compared to 
the UVS (Table 2 and Fig. 3). Similarly, both left and right 
hands were present more often in the LVS than in the UVS 
during object interactions (Table 2 and Fig. 3). We found 
similar proportions in both left and right handers (plots and 
tables for these data by hand dominance can be found in the 
supplementary materials).

Hand location across image quadrants

When we looked at hand location irrespective of hand side 
and hand interaction, we found that hands were more often 
located in the lower quadrants. The upper left quadrant was 
the least visited area of the visual space (Fig. 2 and Table 3). 
We found similar values in left handers and right handers. 
Plots and tables for these data by hand preference can be 
found in the supplementary materials.

Table 1   Frame proportions across vertical hemi scenes, UVS and 
LVS (visually presented in Fig. 2)

Hand location across vertical hemi scene (Frame %)

UVS LVS

Total frames Either hand 24.0 76.0
Left hand 21.4 78.6
Right hand 26.5 73.5

Fig. 2   Hex plots showing the overall distribution of hand location 
(Table 1); a for the left hand only, b irrespectively of hand (i.e., both 
left and right hands, for unimanual and bimanual movements) and 
c for the right hand only, across the image space. Total number of 

frames analyzed = 31,300,201. The darkness of the color reflects the 
density of the coded hand (attached color bar indicates frame density 
across the visual scene), which are similarly reflected in the horizon-
tal and vertical axis histogram bars on the top and side of the image
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Interestingly, when we looked at hand side irrespective 
of hand interactions (Fig. 2 and Table 3), we found that each 
hand is more often present in its ipsilateral visual scene and 
almost neglects locations in the contralateral UVS with simi-
lar values in both left handers and right handers. Plots and 
tables for these data by hand side can be found in the sup-
plementary materials.

We found that hands were also more often located in the 
lower quadrants and the upper left quadrant was the least 
visited visual space during the different contact states (Fig. 3 
and Table 4). Similar results were found in left handers and 
in right handers. Plots and tables for these data by hand pref-
erence can be found in the supplementary materials.

Statistical findings

To quantify for significant differences between the various 
quadrants and hemi scenes, we calculated the respective 
within-subject frame averages for all the participants (n = 37) 
and then conducted paired samples t tests with an alpha 
threshold of 0.05. For the comparisons tested in Table 6, a 
Bonferroni-corrected alpha threshold of 0.00625 (0.05/8) 
was used as the threshold for statistical significance. We also 

calculated 95% confidence intervals for the mean difference 
and effect sizes in the form of Cohen’s dz.

We found significant differences between the proportions 
of frames with hands located in the lower and upper hemi 
scenes as well as between hands (Tables 5 and 6). Hands 
were more often in the lower hemi scene than on the upper 
hemi scene (74.3% vs. 25.7%, p < 0.001; Table 5). Inter-
estingly, the left hand was more often located in the lower 
hemi scene than the right hand (77.1% vs. 71.6%, p < 0.001; 
Table 6). As a consequence, the right hand was more often 
located in the upper hemi scene than the left hand (28.4% 
vs. 22.9%, p < 0.001; Table 6).

We also found significant differences between the pro-
portions of frames with hands located in the ipsilateral and 
contralateral hemi scenes as well as between hands (Tables 5 
and 6). Hands were more often located in the ipsilateral hemi 
scene than in the contralateral hemi scene (88.2% vs. 11.8%, 
p < 0.001; Table 5). Interestingly, the left hand was more 
often located in the contralateral hemi scene than the right 
hand (16.2% vs. 7.6%, p < 0.001; Table 6). Correspondingly, 
the right hand was more often in the ipsilateral hemi scene 
than the left hand (92.4% vs. 83.8%, p < 0.001; Table 6).

We found significant differences between hands across 
quadrants (Tables 5 and 6). The left hand was more often 

Table 2   Frame proportions during the different contact states occurring across vertical hemi scenes, UVS and LVS (visually presented in Fig. 3)

Hand location during object interaction across vertical hemi scenes (Frame %)

Portable objects

UVS LVS

Total frames Either hand 25.0 75.0
Left hand 22.6 77.4
Right hand 27.2 72.8

No-contact

UVS LVS

Total frames Either hand 17.0 83.0
Left hand 13.8 86.2
Right hand 20.7 79.3

Stationary objects

UVS LVS

Total frames Either hand 29.1 70.9
Left hand 24.9 75.1
Right hand 32.9 67.1

Self-contact

UVS LVS

Total frames Either hand 19.5 80.5
Left hand 19.5 80.5
Right hand 19.5 80.5
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located in its contralateral upper quadrant than the right 
hand (3.3% vs. 1.8%, p = 0.003; Table 6). The right hand 
was more often used in its ipsilateral upper quadrant than 
the left hand (26.6% vs. 19.6%, p < 0.001; Table 6). The left 
hand was more often used in its contralateral lower quadrant 
than the right hand (12.9% vs. 5.8%, p < 0.001; Table 6). No 
significant differences were found between how often either 
hand visited the ipsilateral lower quadrant (65.8% vs. 64.2%, 
p = 0.365; Table 6).

Discussion

Strengths and weaknesses of our analysis

We analyzed a large-scale open-access dataset of natural 
hand movements during domestic kitchen tasks from 37 
individuals. We found a clear bias for the hands to spend 
the majority of their time in the lower half of the visual 
scene. These results address the lack of real-life data on the 
spatial regularities of hand actions during visually guided 
tasks in the literature.

The analyzed dataset was collected using a head-mounted 
camera which was set up by participants themselves, accord-
ing to instructions provided by the authors of the original 
dataset. The camera angle of view will not correspond 
exactly to eye level and will follow head movements rather 
than combined head and eye movements. Furthermore, each 
video frame is 456 by 256 pixels which creates a rectan-
gular field of view but guarantees a landscape perspective 
of what the participant is observing during their activities. 
The nature of the captured field of view will not necessar-
ily correspond to the human field of view but we feel it is a 
close approximation. Potential differences in people’s height 
might have changed the scale of the scene analyzed. These 
scene scale differences may be ameliorated by the fact that 
participants recorded themselves in their own kitchen, which 
might be adapted to individuals’ height and arm length. 
Furthermore, head-centered viewpoints of hands might not 
have always been aligned with the centroid of the collected 
image fields. Nonetheless, experimental work has shown 
that humans perform better during visual identification tasks 
when their heads are aligned with target position, irrespec-
tively of head–eye alignment (Nakashima and Shioiri 2015). 
The interpretation of our results should take these factors 
into consideration—despite the richness of naturally occur-
ring hand movement, the use of the head-mounted camera 
will have had added unknown variance to the data captured.

In the original dataset collection, participants were 
allowed to pause the video and narrate what they had been 
doing. This process may have caused participants to per-
form their movements less naturally than they otherwise 
might have. Moreover, a large number of the activities 

performed involved handling sharp objects such as knives 
or scissors as well as handling hot food over a heat source, 
therefore demanding close monitoring of their hands in the 
LVS. Kitchens are ultimately environments developed by, 
and for, humans, and hence afford more actions in the LVS. 
Following the constraint that arms are anatomically lower 
than the head, kitchen furniture is mostly available below, 
or at the same level as the centre of the head and portable 
objects typically rest on waist-high table surfaces. Neverthe-
less, kitchen-based tasks have long been a subject of study 
in neuropsychological research as these tasks relate well to 
a variety of cognitive functions including visuospatial skills 
(Yantz et al. 2010). Furthermore, the ubiquitous nature of 
these daily tasks and the use of both single and bi-manual 
unscripted actions across the entire visual scene make them 
ecologically robust and representative of healthy popula-
tions. Kitchen-based tasks are also widely used in neurologi-
cal rehabilitation, both in the assessment and treatment of 
individuals with acquired brain injury (Mohapatra and Kul-
nik 2021) and are considered meaningful and highly valued 
by these same individuals (Bigelius et al. 2009). Moreover, 
the fairly low ambulatory demands of kitchen-related tasks 
also make them a good activity to contrast to other activi-
ties involving visually guided manual actions combined with 
ambulation in wider spaces such as in sports contexts or 
factory environments. We recommend that these different 
contexts are explored in future research.

Participant handedness was estimated based on observa-
tion from the use of a qualitative tool (Oldfield 1971) rather 
than through the administration of a participant question-
naire. Our estimates are less robust and the respective find-
ings should be taken with care. Nonetheless, participant 
handedness proportion is in line with the general popula-
tion—left-handed individuals corresponding to only 10% of 
the world population (Sha et al. 2021).

Our overall analysis examined over 31 million images 
of hands across 100 h of video footage. Size sample and 
respective data analysis meant that it was virtually impos-
sible to manually check the findings of both the hand clas-
sification model and our analysis of the annotations. The 
hand classification model (Shan et al. 2020) has been trained 
using several large-scale datasets and showed strong external 
validity. The authors have trained this model using different 
large-scale image datasets and reported a 90.4% precision in 
identifying a hand in the image, 88.4% precision of identify-
ing hand side, and 73.2% identifying the hand contact state 
(see Methods for reference to works where this was done).

The results of our analysis align with the literature on 
the topic and the methods used to reach such findings 
have been made available in the supplemental section. 
We wanted to guarantee that the methodological process 
was transparent and reproducible. We were not involved 
in any process related to the collection and analysis of the 
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original dataset and have no affiliation to the research team 
responsible for the original dataset. We provided a detailed 
step-by-step description developed in Google Colab in the 
form of a Jupyter notebook with description of the steps 
taken and Python code (version 3.7.13) to run the analy-
sis we applied on the dataset (available in supplementary 
materials and here: https://​osf.​io/​uwe9k/).

We think that the methods used in the paper can be 
transferred to fundamental and clinical research. In the 
first instance, access to large-scale datasets of image clas-
sification of natural behavior is on the rise. Computer 
vision research labs continue to develop machine learn-
ing models and make them open access. Further analysis 
of such ecologically robust datasets can provide further 
knowledge on how visuomotor skills are developed, can be 
improved, and become impaired. We also hope the current 
work has encouraged the use of computer vision-based 
methodologies as a potential tool to study human behavior 
in a more ecologically robust way. Such methodologies 
can also be employed to test novel ways to help remote 
rehabilitation of individuals in their own environments. 
Nowadays, head-mounted cameras are easily accessible at 
reduced cost. Furthermore, image classification machine 
learning models, such as the one used to generate the data-
set analyzed, are open access and can be run in cloud-
based coding environments. Nevertheless, we are aware 
that these methods still present some barriers to their use. 
Specifically, the use of machine learning models requires 
computer coding skills and knowledge of machine learn-
ing model training. Step-by-step guides on how to train 

and use these models, as is the case of Shan’s model, are 
often available.

Hand location during visually guided manual 
actions

We analyzed a large-scale dataset of manual object interac-
tions during domestic kitchen-based tasks to build a com-
prehensive map of hand location during naturally occurring 
visually guided manual actions. This open-access dataset 
(Aldamen et al. 2020) represents 100 h of video footage 
captured from a head-mounted camera and contains over 
20 million frames. We found that hands were present in 
the visual scene for most of the time (78.51% of the frames 
analyzed) but unevenly distributed across the visual space. 
We found that hands were located more often in the lower 
half of the visual scene and that this asymmetry was pre-
sent irrespective of hand, hand dominance, and hand–object 
interaction state. Interestingly, the left hand was on average 
more often located in the lower hemi scene while the right 
hand was on average more often located in the upper hemi 
scene. These results provide empirical data in support of 
the common assertion that hands spend most of the time in 
the line of sight, predominantly in the LVF. Furthermore, 
the findings also add to work in controlled settings showing 
that humans are more efficient at reaching and grasping for 
targets located below our visual midline (Brown et al. 2005; 
Goodale and Danckert 2001; Graci 2011; Khan and Law-
rence 2005; Krigolson and Heath 2006; Stone et al. 2019).

Interestingly, when we analyzed data by visual quadrants, 
we also found that each hand spent longer in their ipsilat-
eral LVS irrespective of hand side, hand dominance, and 
hand–object interaction state. Our results mirror the findings 
from lab-based work demonstrating that humans are more 
efficient reaching for targets on the same side of the body 
as the limb used as opposed to reaching for targets on the 
contralateral side of the body (Barthélémy and Boulinguez 
2002; Fisk and Goodale 1985; Hodges et al. 1997; Kim et al. 
2011; Le and Niemeier 2014). This ipsilateral performance 
advantage has been linked to the effector side rather than 
to the location of the target (Fisk and Goodale 1985) and 
can be explained by the biomechanical characteristics of the 
movement itself (Carey et al. 1996). Slower and less accurate 
visually guided manual actions due to neuroanatomical and 
biomechanical constraints will instead result in neglected 
areas of our visual field. Lab-based experimental work by 
de Bruin et al. (2014) found a physiological ‘neglect’ of 
the upper left quadrant during 3D block construction tasks 
where participants had to reach and grasp for blocks avail-
able in equal numbers across a tabletop separated into 
quadrants. Despite having equal access to the same kind of 
objects in all quadrants of the tabletop, participants predomi-
nantly pick blocks from the lower right quadrant and leave 

Fig. 3   Hex plots representing the overall distribution of hand location 
during the different contact states across the visual scene (Tables  2 
and 4). In the first row, the three-panel figure shows the overall dis-
tribution of hand location during portable object interaction, a for 
the left hand only, b irrespectively of hand used (d, i.e., both left and 
right hands, for unimanual and bimanual movements); and c for the 
right hand only, across the image space; total number of frames ana-
lyzed = 26,054,826. In the second row, the three-panel figure shows 
the overall distribution of hand location during stationary object 
interaction, d for the left hand only, e irrespectively of hand used d 
( i.e., both left and right hands, for unimanual and bimanual move-
ments) and f for the right hand only, across the image space; total 
number of frames analyzed = 901,915. In the third row, the three-
panel figure shows the overall distribution of hand location during 
no object contact, g for the left hand only, h irrespectively of hand 
used g (i.e., both left and right hands, for unimanual and bimanual 
movements) and i for the right hand only, across the image space; 
Total number of frames analyzed = 3,968,863. On the forth row, the 
3-panel figure shows the overall distribution of hand location during 
hand self-contact, j for the left hand only, k irrespectively of hand 
used j (i.e., both left and right hands, for unimanual and bimanual 
movements) and l for the right hand only, across the image space; 
total number of frames analyzed = 374,597. The darkness of the color 
reflects the density of the coded hand (attached color bar indicates 
frame density across the visual scene), which are similarly reflected 
in the horizontal and vertical axis histogram bars on the top and side 
of the image

◂

https://osf.io/uwe9k/
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the upper left quadrant for later in the task, irrespectively of 
individual handedness and hand side. We also found a spe-
cific visual quadrant neglect but in our dataset, this neglect 

was always in the contralateral UVS irrespectively of hand, 
handedness, and object interaction. In the overall sample, 
the right hand neglected the upper left quadrant on aver-
age nearly twice as often when compared to the left hand. 
Some explanations for the contrast between our findings and 
those of de Bruin et al. (2014) may be related to specific 
task contextual aspects, namely the fact that our findings 
reflect a more varied repertoire of hand actions performed 
in a larger 3D space, where different objects will be located 
in specific areas of the visual scene and will afford differ-
ent movements in detriment of others based on spatial and 
biomechanical constraints. Our findings may have practical 
implications in the planning and design of skill acquisition, 

Table 3   Frame proportions across visual scene quadrants (visually 
presented in Fig. 2)

Hand location across visual scene quadrants (Frame %)

UL LL UR LR

Total frames Both hands 10.0 35.6 14.1 40.3
Left hand 18.3 65.9 3.1 12.7
Right hand 2.1 7.1 24.4 66.3

Table 4   Frame proportions during object interactions across visual scene quadrants for all participants (visually presented in Fig. 3)

Hand–object interactions across visual scene quadrants (Frame %)

Portable objects

UL LL UR LR

Total frames Both hands 10.3 40.0 14.7 40.4
Left hand 19.4 65.2 3.2 12.2
Right hand 2.0 6.4 25.2 66.4

No-contact

UL LL UR LR

Total frames Both hands 7.2 43.0 9.8 40.0
Left hand 11.6 72.2 2.2 14.1
Right hand 2.4 10.5 18.3 68.8

Stationary objects

UL LL UR LR

Total frames Both hands 12.1 34.6 17.0 36.3
Left hand 21.7 64.5 3.2 10.6
Right hand 3.4 7.6 29.5 59.5

Self-contact

UL LL UR LR

Total frames Both hands 9.4 34.5 10.1 46.0
Left hand 12.9 47.2 6.6 34.3
Right hand 5.7 22.1 13.9 58.4

Table 5   Statistical differences between hemi scenes: mean frame percentages for each hemi scene, paired samples t test score, p value for the 
mean difference, 95% confidence interval for the difference and effect size (Cohen’s dz)

Statistical differences between hemi scenes

Hand location Mean hand % Upper scene Mean hand % Lower scene t(36) p CI95% Cohen’s dz

Vertical hemi scenes 25.7 74.3  − 10.525  < 0.001  − 57.95, − 39.22 3.461

Mean hand % Ipsilateral Mean hand % Contralateral t(36) p CI95% Cohen’s dz

Horizontal hemi scenes 88.2 11.8 65.819  < 0.001 74.13, 78.84 21.641
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improving performance and developing recreational experi-
ences. Designing physical and virtual environments which 
afford optimal manual movements may improve task perfor-
mance, rehabilitation engagement, or simply improve our 
working and recreational experience.

External validity of our findings

It must be acknowledged that it is unclear how much the 
findings from this paper would generalize to the whole rep-
ertoire of human manual activities; therefore, we advise 
caution in interpreting our findings outside the context of 
kitchen-based visually guided manual actions. Different 
proportions of hand–object interactions, context specificity 
of the dataset, and the absence of data on specific actions 
will have influenced the external validity of our findings. 
We found a much larger proportion of frames where hands 
are interacting with kitchen portable objects in comparison 
to other hand–object interactions. This predominance of 
portable object interaction data, combined with the fact that 
kitchen-based activities are often bimanual and tool based, 
makes our findings more transferable to tool-use activities. 
Kitchens are often small contained environments designed 
in a way that there is a predominance of objects below or 
at the same level as our eyes. The context specificity of 
kitchen-based activities will have likely influenced hand 
location. The dataset we analyzed does not provide specific 
information regarding the different employed actions dur-
ing kitchen-based activities. The absence of information 
on the nature of the actions employed, their frequency and 
duration, makes it impossible to draw stronger conclusions 
about hand use. For instance, the second largest sample of 
frames represented hand locations during no contact with 
either other object or the contralateral hand. We are unable 
to differentiate between hand location during actions where 
the hand is reaching for objects and actions when the hand 
is not involved in any object interaction. Further research 
would benefit from developing and analyzing similar 

datasets in different professional and recreational activities, 
environmental contexts, and clinical populations. Advances 
in machine learning models will no doubt also enhance the 
capacity to recognize a broader range of actions and yield 
richer datasets.

Conclusion

We have shown that, in the context of typical kitchen-based 
activities, hands were frequently in sight but their presence 
across the visual scene was not evenly distributed. Hand 
presence during visually guided manual object interactions 
was more often located in the lower and ipsilateral visual 
hemi scenes. Furthermore, hands revisited the upper and 
contralateral visual quadrant far less than the remaining 
visual space. Our findings are consistent with experimen-
tal work in controlled environments showing ipsilateral 
LVF advantages in a number of kinematic parameters. 
Further research should compare natural hand movements 
from different age, professional, recreational, and clinical 
populations.
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Table 6   Statistical differences 
between the proportion of 
frames containing the left or 
the right hand in the various 
hemi scenes and quadrants: 
mean frame percentages for 
each hand, paired samples t 
test score, p value for the mean 
difference, 95% confidence 
interval for the difference and 
effect size (Cohen’s dz)

Statistical differences between the left and the right hands

Hand location Mean % 
Left hand

Mean 
% Right 
hand

t(36) p CI95% Cohen’s dz

Lower hemi scene 77.1 71.6 5.524  < 0.001 3.52, 7.6 0.386
Upper hemi scene 22.9 28.4  − 5.524  < 0.001  − 7.6, − 3.52 0.386
Contralateral hemi scene 16.2 7.6 4.440  < 0.001 4.65, 12.46 1.242
Ipsilateral hemi scene 83.8 92.4  − 4.440  < 0.001  − 12.46, − 4.65 1.242
Contralateral upper quadrant 3.3 1.8 3.204 0.003 0.53, 2.35 0.817
Ipsilateral upper quadrant 19.6 26.6  − 6.612  < 0.001  − 9.14, 4.85 0.515
Contralateral lower quadrant 12.9 5.8 4.400  < 0.001 3.83, 10.39 1.166
Ipsilateral lower quadrant 64.2 65.8  − 0.916 0.365  − 5.0, 1.89 0.115
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