
83

Multi-Stage Machine Learning Model for Hierarchical Tie

Valence Prediction

KARANDEEP SINGH, Data Science Group, Institute for Basic Science

SEUNGEON LEE, Data Science Group, Institute for Basic Science, and School of Computing, KAIST

GIUSEPPE (JOE) LABIANCA, Department of Management, UMass Amherst, and Department of

Management, University of Exeter

JESSE MICHAEL FAGAN, Department of Management, University of Exeter

MEEYOUNG CHA, Data Science Group, Institute for Basic Science, and School of Computing, KAIST

Individuals interacting in organizational settings involving varying levels of formal hierarchy naturally form

a complex network of social ties having different tie valences (e.g., positive and negative connections). So-

cial ties critically affect employees’ satisfaction, behaviors, cognition, and outcomes—yet identifying them

solely through survey data is challenging because of the large size of some organizations or the often hidden

nature of these ties and their valences. We present a novel deep learning model encompassing NLP and graph

neural network techniques that identifies positive and negative ties in a hierarchical network. The proposed

model uses human resource attributes as node information and web-logged work conversation data as link

information. Our findings suggest that the presence of conversation data improves the tie valence classifica-

tion by 8.91% compared to employing user attributes alone. This gain came from accurately distinguishing

positive ties, particularly for male, non-minority, and older employee groups. We also show a substantial dif-

ference in conversation patterns for positive and negative ties with positive ties being associated with more

messages exchanged on weekends, and lower use of words related to anger and sadness. These findings have

broad implications for facilitating collaboration and managing conflict within organizational and other social

networks.

CCS Concepts: • Applied computing → Business Intelligence; • Information systems → Enterprise

information systems;

Additional Key Words and Phrases: Signed link prediction, sentiment embeddings, graph neural networks,

tie-valence prediction, organizational social network

K. Singh and S. Lee contributed equally to this research.

This work was supported by the Institute for Basic Sciences (IBS), Republic of Korea, under IBS-R029-C2 (Singh, Lee, and

Cha).

Authors’ addresses: K. Singh, Data Science Group, Institute for Basic Science, Daejeon 34126, South Korea; email:

karandeepbrar@gmail.com; S. Lee and M. Cha (corresponding author), Data Science Group, Institute for Basic Sci-

ence, Daejeon 34126, and School of Computing, KAIST, Daejeon 34141, South Korea; emails: archon159@kaist.ac.kr,

meeyoungcha@kaist.ac.kr; G. (Joe) Labianca, Department of Management, UMass Amherst, Amherst MA 01003, and De-

partment of Management, University of Exeter, Exeter EX4 4PY, UK; email: joelabianca@gmail.com; J. M. Fagan, Depart-

ment of Management, University of Exeter, Exeter EX4 4PY, UK; email: aftersox@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1556-4681/2023/02-ART83 $15.00

https://doi.org/10.1145/3579096

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 6, Article 83. Publication date: February 2023.

https://orcid.org/0000-0001-6030-1663
https://orcid.org/0000-0002-9756-0068
https://orcid.org/0000-0002-9412-8421
https://orcid.org/0000-0003-1153-9442
https://orcid.org/0000-0003-4085-9648
mailto:permissions@acm.org
https://doi.org/10.1145/3579096
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579096&domain=pdf&date_stamp=2023-02-28


83:2 K. Singh et al.

ACM Reference format:

Karandeep Singh, Seungeon Lee, Giuseppe (Joe) Labianca, Jesse Michael Fagan, and Meeyoung Cha. 2023.

Multi-Stage Machine Learning Model for Hierarchical Tie Valence Prediction. ACM Trans. Knowl. Discov.

Data. 17, 6, Article 83 (February 2023), 20 pages.

https://doi.org/10.1145/3579096

1 INTRODUCTION

There is growing interest in understanding the role of positive and negative network ties or
links—recurring relationships that involve enduring valenced interpersonal judgments—in explain-
ing actors’ attitudes, behaviors, cognition, and outcomes [25]. Identification of tie valences can be
helpful for a variety of practical downstream tasks such as recommending products [26, 51] or
friends [22], estimating the impact of a publication [7], and predicting the dynamics of complex
social networks [24, 49]. However, despite the amount of time that individuals spend within so-
cial structures involving hierarchy and some level of competition, such as work organizations,
little is known about tie valence within these networks. Work contexts can, for example, control
which individual can gain a promotion; create competition for scarce organizational resources;
place people into specialized units that are often at odds with other units; and introduce power
relationships that are difficult to ignore. While viewing organizations as a nexus of social relation-
ships has gained ground in the past decade, the use of large-scale data for tie valence detection in
a setting involving hierarchy and some conflict is still in its infancy.

What has made this research and its applications particularly challenging is that negative ties are
counter-normative (i.e., are generally frowned upon) and are often hidden from view [37]. While
colleagues in the same rank might notice conflicts, these conflicts are intentionally suppressed
from higher-ranked individuals. This produces a phenomenon where top management is often
unaware of important conflicts occurring below them (e.g., interpersonal or interdepartmental dis-
putes) that might need active attention because these conflicts can grow and draw in others [42],
ultimately threatening the organization’s proper functioning [3]. Thus, a critical task is to under-
stand where there are positive ties that can encourage collaboration and employee attachment to
the organization and negative ties that undermine organizational solidarity and goal achievement.
Numerous previous studies have shown that the number of positive and negative ties in an organi-
zation affects individual and group-based outcomes, including work performance, job satisfaction,
and employee turnover [30].

Electronically-mediated communication and electronic information exchange patterns could be
reflective of the tie-valences between the concerned parties. Additionally, the advent of digitiza-
tion has enabled data collection at an unprecedented scale which could be mined for discovering
hidden patterns of interest. This, coupled with the recognition of the importance of understanding
workplace ties, has resulted in the development of various data-driven solutions like Microsoft
Workplace Analytics [39], OrgMapper [38], and Humanyze Workplace Analytics [28]. These tools
utilize corporate data to drive workplace improvements based on a broad set of features, including
those from e-mails, meetings, collaboration activities, unscheduled calls, and instant messages. In
some cases, these providers already collect these data legally on behalf of the client organizations
for other purposes. These digital information exchanges can be used to learn relationship patterns
and create actionable insights while still protecting individuals’ privacy. Yet much of this poten-
tial remains underutilized because tie valence prediction is not incorporated into social network
analytic tools.

Given the potential offered by these relatively unexplored data, we propose a computa-
tional and data-driven approach to the problem of tie-valence prediction in networks involving
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hierarchy and competition. We utilize disparate sources of real data from an organization and
propose a neural network model that extracts the relational sentiment information from unstruc-
tured and structured data sources. More specifically, our model, called exTV (Model to extract
Tie Valences), is trained on anonymized work conversation data, employees’ human resources

(HR) data, and a sociometric survey of positive and negative ties among a subsample of members.
exTV is the first of its kind to utilize anonymized official conversation texts exchanged between
members of varying ranks in an organizational hierarchy to learn the numeric embeddings that
are representative of people’s sentiments toward one another. This step employs a meticulously
designed natural language processing (NLP) algorithm to handle unstructured textual infor-
mation and other critical meta information such as messaging frequency and times. Next, these
embeddings are used alongside the HR data to build a neural network that identifies relational
information among the people and finally delivers the output to be used as the tie valence label.

We explore the model and the underlying data with the results obtained and test what sources
and types of data are important for the final classification. In doing so, we discover intricate rela-
tionships among individuals of different ranks (e.g., supervisor and subordinate) and individuals of
particular profiles (e.g., managers, females, ethnic minorities). We also find that work conversations
are a rich resource that uncovers valuable information for discerning additional, and otherwise
ambiguous, tie-valences. Our model, exTV, can classify tie valence in the studied organizational
network with an AUROC score of 0.8190. We intend to apply our model in the future to under-
stand the rest of our large organization’s network tie valences. Our model can offer key insights
into downstream tasks such as improving organizational restructuring and post-merger integra-
tion, increasing workplace attachment, decreasing conflict and employee attrition rates, leading
to improved organizational functioning and employee well-being.

Ethical considerations. Analyzing interpersonal connections, in general, and tie valence, in par-
ticular, can provide valuable insights into the workplace environment even while being conducted
ethically in a manner that protects individual privacy. One key is separating the firm gathering the
data and conducting the network analyses (the third-party provider) from the client organization
that receives recommendations, much as is done in numerous other contexts (e.g., third-party firms
often handle client companies’ sexual harassment or whistleblower allegations to maintain confi-
dentiality for all parties and provide neutral assessments). The client only receives anonymized,
aggregated results that, while actionable, protect individuals’ data privacy (e.g., identifying where
there is increasing interdepartmental conflict in the organization to initiate conflict management
techniques quickly). These data are obtained legally because, in most of the world, the data are
owned by companies, and employees are made aware that anything they transmit over company
networks can be accessed by those companies (with the European Union being the main notable
exception).

2 RELATED WORK

Numerous social theories have been proposed to understand positive and negative ties in networks,
including in organizational contexts [50]; these theories are often used when attempting tie valence
detection. The most commonly used theory is structural balance theory [8, 14], along with its
newer variants such as [44]. Sentiment lexicons like [21, 40] have also been a popular choice for
linguistic-features-based sentiment-classification. Other popular methods in link prediction such
as Jaccard coefficient, resource allocation index, and preferential attachment can be used to predict
“missing” links [35]. In this work, we focus on the tie-valence of existing edges in an organizational
social network.

From a computational perspective, work on predicting network tie valence in organizational
contexts is nearly non-existent. Though there is plenty of research on link prediction in social
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networks, transferring this to organizational contexts is impracticable due to different network
dynamics in a formal work setting (e.g., one with competing/collaborating departments and a for-
mal reporting hierarchy). From a machine learning point-of-view, GNN [41] based models can
operate on and learn representations of graph-structured data and have shown improved perfor-
mance over traditional deep learning approaches. The strength of GNNs comes from their ability
to implicitly learn the graph’s structure and the neighboring contextual information. Addition-
ally, works like SGCN [16], SiGNet [29], and SiGAT [27] have adopted GNNs to handle directional
and signed networks. These approaches often incorporate social balance theories into the training
process, thereby amalgamating computational and sociological approaches. For instance, SGCN
includes structural balance theory, and SiGAT captures both the structural balance theory and
status theory [15].

Matrix factorization has also been used commonly for analyzing networks and link prediction
tasks [2, 4]. For example, [4] proposes a matrix factorization-based model that also cashes in on the
users’ personality information. Reference [32] rethinks the problem of link prediction by identify-
ing “no-relation” as a possible future status of the node pairs. Studies like [5, 6] introduce advanced
graph embedding methods with techniques such as preferential random walks. Research has also
been focused on using latent factor models for link prediction tasks, such as [43, 49].

3 PROBLEM SETTING

3.1 Dataset

One of the key factors in determining the performance of a machine learning model is the data
being utilized for training and testing purposes. Our research problem is not often attempted be-
cause employee data from a work organization are rarely available for research consumption. Even
rarer is the data pertaining to the employees’ liking and disliking of their fellow colleagues. Un-
derstandably, these data are limited and relatively very limited for a computational approach that
a machine learning model heavily drives. The various data sources that we utilize to supervise the
training and assess the model output are discussed in the following paragraphs1.

Conversation data consist of official conversation exchanges among employees over two years.
While the digital conversations could be in any form, such as e-mails, instant messages, meeting
invites, or seminar chat logs, we use e-mails in this study. The digital exchange of information
among employees forms an information exchange network. Along with the exchange patterns,
we also have at our disposal the anonymized text of the conversations, where the data is stripped
of any personally identifiable information.

Each record in this data has multiple features, including message text, ID, timestamp, and the
hash digests of the sender and receiver IDs. In total, there are 1,403,303 messages exchanged be-
tween 3,404 users. Furthermore, using the exchange patterns, we generate an additional 73 meta

features from conversation data that may reflect the link polarity, e.g., the number of total e-mails
between a user pair, the number of weekend e-mails.

Human resources (HR) data contain the demographic and work-related attributes for each
employee. Features in these data are typical of HR data (e.g., age, gender, department, rank, expe-
rience). Other information, such as salary, is anonymized due to privacy concerns. The HR data
are only available for 1,022 employees (e.g., it does not cover part-time employees or contractors).

Sociometric survey data from the studied organization contain self-reported workplace rela-
tionships in a work unit. The survey contained a questionnaire that inquired about the attitudes

1Code link: https://github.com/k-s-b/extv.

Due to our non-disclosure agreement with the organization and our Institutional Review Board data management protocol,

the raw data cannot be shared.
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Fig. 1. An example of signed, directed network with partially missing information (i.e., tie valence from Tom
to Sean). People with different roles and attributes form the organization depicted.

of 127 employees toward their colleagues. Responses were provided on a seven-point Likert scale,
1 = “dislike a lot” and 7 = “like a lot.” We utilize these data to build the dichotomized ground-
truth labels for our research problem; specifically, people in an employee’s “friend” network have
positive labels and the “avoid” network have negative labels. State-of-the-art techniques for valid,
reliable, and ethical social network survey data collection, including using optimal question word-
ing, Social Network Data Labs, and institutional ethical oversight were employed [1]. A.3 presents
additonal details of the survey.

We reconcile and merge these datasets via employees’ anonymized IDs and arrive at the fi-
nal dataset used as an input to our model. The e-mail and HR data are from an overlapping pe-
riod, which makes the data unique. This intersection results in data on 98 unique employees with
967 labeled relations among them. Furthermore, these data are split into train, valid, and test sets
for model training and analysis purposes. While the final dataset is small in size, our proposed
approach is nonetheless able to extract insightful information from the available data annotation.
A.1 presents selected exploratory analyses on HR and conversation data.

3.2 Signed Edge Prediction Problem

Employees constantly interact with each other in organizational settings, forming a localized so-
cial interaction network. Increasingly, these individuals also exchange digital information (e.g.,
e-mails, instant messages), forming a virtual social interaction network. The nodes in this net-
work are the individuals, and the traces of digital information exchange would determine edges.
When this virtual network is reconciled with the survey responses indicating the perceived link
polarity between the people in the offline network, the virtual network’s edges could be anno-
tated as positive or negative ties. Overall, this process constitutes a directed, signed, as well as node,

and edge attributed social network, where the employees are the nodes and their tie-valences the
network’s edges. Figure 1 illustrates an example of signed, directed network of our problem.

Given the importance of understanding and predicting the valence of ties between employees,
our research problem can be defined as a binary classification task with labels {0, 1}, denoting
negative and positive ties. We formulate this problem with a multi-modal deep-learning approach
that uses NLP and graph-based deep-learning techniques. More formally, an organizations’ social
network can be viewed as a graph G = (V,E+,E−), where V = {v1,v2, . . . ,vn } is the set of
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Fig. 2. Overview of the model: exTV consists of two stages—the NLP stage and the semi-supervised signed
GNN stage. The NLP stage extracts text embeddings (“Sentiment Embedding” in this figure) with the context
of e-mails exchanged between the employee-pairs. The ground truth is the sociometric survey data on the
tie-valence between the employees. Network graph is constructed with employees as nodes, and the e-mail
exchange as the edges. As the learnt embeddings represent the sentiment between a pair of employees, these
embeddings are concatenated with other edge-level feature obtained from the input data. Finally, the node
features, updated edge features, and other meta features are leveraged in the semi-supervised signed GNN
stage to perform the final classification.

n employees while E+ ⊂ V ×V and E− ⊂ V ×V represents set of positive and negative edges. A
labeled edge between an employee pair, ei, j : vi ,vj ∈ V and ∀ei, j ∈ {E+∪E−}, is representative of
the sentiment fromvi tovj . Note that the signs of ei, j and ej,i could be different, as one’s perception
of a person as a “friend”, may not necessarily be reciprocated. xv denotes the feature matrix that
contains each employee’s personal information ∀v ∈ V . D+ and D− are the matrices that contains
edge features including conversation information of edges, for ∀e+ ∈ E+ and ∀e− ∈ E− each.

4 METHODS

The model’s first stage processes the raw e-mail text and aims to extract numeric embeddings that
represent the underlying reported sentiments. We first explore standard NLP approaches, includ-
ing sentiment lexicons like LIWC [40] and VADER [21]. Then, we design a neural network that
builds upon state-of-the-art deep learning NLP models while accommodating outputs from the
above-mentioned standard approaches.

Because the network is composed of sentient people who can influence each other’s attitudes,
which can, in turn, alter their relationships with other people, we need to add a relational compo-
nent to the machine learning process. Therefore, in the second stage of exTV, the outputs from
stage one, along with other designed meta-features, build upon approaches like graph neural net-
works and matrix-factorization that take relational information into account while learning the
target embeddings. Furthermore, the “signed” models of these approaches also segregate these re-
lational contexts into positive and negative before learning the embeddings to be further utilized
for the final classification. The overall model architecture is depicted in Figure 2.

4.1 Text-to-Sentiment Embeddings

This step’s goal is to extract numeric embeddings from the e-mail conversation data that are repre-
sentative of the reported tie-valences among the employees. An employee interacts and exchanges
information with other employees via e-mails (and other means), and the nature of this commu-
nication is determined by factors such as department affiliation, roles, rank, and perceived tie-
valences. We posit that the e-mail text should carry information that is reflective of the nature of
the relationship between people and it could be utilized for the final classification task.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 6, Article 83. Publication date: February 2023.
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We begin by cleaning the conversation data (i.e., e-mail in this study but could be replaced by
other types) of unwanted noise by removing signatures and addresses, automated messages, and
salutations. The ground-truth labels (the survey data) only exist for a small portion of the otherwise
large network with ample conversation text data (approx. 1 million messages in total). Utilizing the
whole network and the accompanying exchange data can be potentially advantageous in discover-
ing important hidden features and in enabling the model to “learn” the structure of underlying text.

To enable this utilization, we undertake the fine-tuning of pre-trained and state-of-the-art
ELECTRA [13] model in an unsupervised fashion. This is accomplished by fine-tuning the model
with masked language modeling (MLM). Equation (1) represents the training objective of MLM
while Π denotes the index of masked tokens, and XΠ and X−Π denotes set of masked tokens and
unmasked tokens, respectively [33]

Lmlm (XΠ |X−Π) =
1

K

K∑
k=1

logp (xπk
|X−Π). (1)

As strong sentiments are rarely expressed in workplace messages, the lack of informative signal
could potentially lead to the model learning over-smooth sentiment embeddings. Letting our model
ingest the entire conversation data customizes the model weights to the mostly neutral, formal
conversation style of an organizational workplace.

Thereafter, we employ unsupervised fine-tuned ELECTRA to generate numeric embeddings
for all messages pertaining to all pairs of users involved in the e-mail exchange. The e-mail ex-
change data are naturally unstructured as a variable number of messages of different lengths are
exchanged by each person-pair. We design a methodology where this data could be transformed
into a fixed-sized embedding for each pair of users in the exchange data.

For each pair, the numeric embeddings for each message obtained from the previous step
are stacked and passed through a multi-head-self-attention (MHSA) layer as described in
Equation (2). MHSA step relates different messages in the input and updates the initial embeddings
to further “highlight” the underlying sentiment.

Let F
Q , F

K , and F
V denote matrices for queries, keys, and values in self-attention [45], respec-

tively. Scaled dot product attention is defined as

SDPA(FQ , FK , FV ) = so f tmax

(
F

K (FQ )�
√
d

F
V

)
, (2)

which is used to capture the similarity between the F
Q and F

K vectors. Instead of performing a
single attention function, the queries, keys, and values can be projected with different learned
linear projections, on which the attention mechanism can be performed in parallel. To accomplish
this goal of modeling different aspects of interactions between the different messages, multi-head
(MH) self-attention is utilized:

MH (FQ , FK , FV ) = Concat(head1,head2, . . . ,headnh
)WO , (3)

where headi = SDPA(FQ
W

Q
i , F

K
W

K
i , F

V
W

V
i ), W

Q
i ,W

K
i ,W

V
i ∈ Rd×dk and W

O ∈ Rnhdv×d are

learnable weights, and nh is the number of heads. The dense layers (i.e., W
Q
i ,W

K
i ,W

V
i ) are used

to project the queries, keys, and values into their vector spaces. Since the queries, keys, and values
are all equal to the messages pertaining to a person-pair, i.e., F

Q = F
K = F

V = S, we can produce
the multi-head attention-aware sentiment embedding matrix as S̃ = MH (S, S, S).

Input to the MHSA layer is padded (and masked) equal to the length of vector of maximum
length in a batch. Next, the output of the MHSA layer is pooled via mean-pooling to arrive at
a fixed-sized embedding across all user pairs. Subject to ELECTRA, e-mail messages longer than
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ALGORITHM 1: Sentiment Extraction

Input: emails b/w pairs, mi, j , ∀i ∈ {1 . . .nj }, ∀j ∈ {1 . . .N }, where nj denotes the number of emails

of pair j and N denotes the number of pairs, pre-trained electra, set of entire unlabeled emailsU

Output: email context embeddings zemail
j , ∀j ∈ {1, . . . ,Np }

// Use LIWC and VADER for aggregated emails per pair.

1 FLIWC (j ) := LIWC(CONCAT(mi, j ));

2 FVADER (j ) := VADER(CONCAT(mi, j ));

// Train a XGBoost model, and extract its leaves.

3 XL( f ) := LEAVES(XGB( f (j ))), f ∈ {FLIWC, FVADER},∀j ∈ {1 . . .N }
// Unsupervised finetuning of ELECTRA via MLM

4 ELECTRA = MLM(electra, U )

5 for j ∈ {1, 2, . . . ,N } do

6 for i ∈ {1, 2, . . . ,nj } do
// Get email embeddings with ELECTRA.

7 ei, j = ELECTRA(mi, j )

8 end

// Update ELECTRA embeddings by MHSA.

9 ai, j = MHSA(ei, j )

// Obtain hidden state hE
j by pooling from MHSA result.

10 hE
j = WE MEAN(ai, j )

// Obtain hidden state hL
j from LIWC.

11 hL
j = WL

0 [FLIWC (j ), XL(FLIWC (j ))]

// Obtain hidden state hV
j from VADER.

12 hV
j = WV

0 [FVADER (j ), XL(FVADER (j ))]

13 end

14 zemail
j ← tanh([hE

j , hL
j , hV

j ])

512 words are truncated, and those of shorter lengths are padded, though as shown in Figure 5(b),
most e-mail messages are shorter than the upper limit of 512 words and there is rarely any
information loss due to this limitation.

To strengthen and aid the sentiment-extraction process, we utilize the outputs of two senti-

ment lexicons: LIWC [40] and VADER [21]. Both LIWC and VADER are fed the concatenated
messages for all user-pairs. LIWC reads the input text and outputs the percentage of words that
reflect different emotions, thinking styles, and social concerns. VADER considers the polarity and
intensity of emotion of the input text and gives four output scores, positive, negative, neutral, and
compound (computed by normalizing the other three scores).

We train XGBoost [9] models on the outputs of LIWC and VADER and then let the neural net-
work learn the weights of the concatenated input of original features and the one-hot encoded de-
cision paths in the extracted tree leaves from the trained XGBoost model. This enables the model
to learn the relational information between different features of sentiment lexicons.

Finally, ELECTRA embeddings, outputs from sentiment lexicons, and one-hot encoded leaf
embeddings from sentiment-lexicon-XGBoost-models are concatenated and fed to an FC layer to
produce a fixed-sized embedding vector. The training process is accomplished by performing bi-
nary classification against the ground-truth sentiment labels using binary cross-entropy loss.

Multiple experiments established that the larger size of the final embedding vector can lead
to overfitting. Hence, we run regularization techniques and maintain a small embedding size to
account for the input dataset’s size. The sentiment extraction process is presented in Algorithm 1.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 6, Article 83. Publication date: February 2023.
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4.2 Semi-Supervised Graph Neural Networks

Positive and negative links have different dynamics in a network, and social theories like balance
theory offer a systematic way to handle these. Specially-designed machine learning approaches
such as the signed graph neural network models are the computational counterparts of these
sociological approaches, where positive and negative links are initially treated independently, of-
ten driven by relevant social theories. The message passing architecture in GNNs in general learns
the embedding of a node by leveraging it’s own and the aggregated neighboring information:

xk
i = ϕ

(
xk−1

i ,γ (ϕ (N k−1 (xi )))
)
, (4)

where ϕ is a non-linearity, γ is a permutation invariant function, andN k−1 (x ) are the neighboring
nodes of the target node in the layer k − 1. This mechanism is applied in signed networks by
segregating the nodes by link polarity, and by contrasting the embeddings of these groups of nodes.
Any other associated information such as link direction, topological structure, associated node
features can easily be incorporated into the model-training. In this work, we employ the SGCN [16],
that incorporates one of the most noteworthy signed social network theory—balance theory [8]—
as the base information aggregator. SGCN segregates the positive and negative neighbors based
on balance theory and employs a segregated aggregation mechanism as presented in Algorithm 2.
Additionally, we explored GNNs like SiGAT [27], that include both the balance theory and another
popular signed social network theory—the status theory [19, 48]. We account for neighboring
nodes that can be reached via a 3-hop path, a hyperparameter design choice.

We experimented with two different aggregation mechanisms for improving the representa-
tional ability of GNNs. First, instead of standard order invariant pooling, we employed an attention-
based aggregation mechanism. Second, we designed an aggregator function that can ingest the
edge-level features in the node neighborhood. This function enabled the pertinent inclusion of
topologically-relevant relational information into the training process. However, we discovered
that despite a substantial increase in computational complexity, including both of these approaches
in the SGCN didn’t lead to a statistically significant performance gain. After extensive experimen-
tation we reached the conclusion that owing to a small-sized dataset, the gains offered by both
these approaches are invariably offset by over-fitting.

We train a multi layer perceptron for the final classification by concatenating the sentiment
embeddings from the NLP stage, and relational embeddings from the SGCN stage. Algorithm 2
describes the aggregation process.

5 RESULTS

We evaluated the model’s performance in various test settings. The merged data were randomly
split into training, validation, and test sets (with ratios 0.70, 0.15, and 0.15), resulting in 682, 140, and
145 data points, respectively. As summarized in Tables 1 and 2, model performance for both the NLP
stage and for the complete model is compared against strong baselines, including XGBoost, and
various signed GNN models. The embeddings from state-of-the-art NLP-only models are used as
baselines for establishing the superiority of the sentiment embeddings extracted via the proposed
approach. For the complete model, the 10-run averages are reported with and without sentiment-
embeddings. We use early stopping on the validation set, and the best Macro-F1, precision, recall,
and AUC scores for test sets are reported. For all models, the best model is selected by searching
the embedding size in {32,64,128} and number of epochs in {50,100,200}. The results demonstrate
our approach outperforms all baselines, achieving the best performance for all reported metrics,
along with a best AUROC score of 0.8190. It is worth mentioning here that a logistic regression
model (not shown in Tables 1 and 2) yielded a low AUROC score of 0.5610.
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ALGORITHM 2: Balance Theory-Based Aggregation

Input: G = (V ,E+,E−); node feature xi , ∀vi ∈ V ; neighbor nodes vj ∈ Ni , where Ni denotes the

neighbors of vi ; edge feature between positive neighbors D+i, j , ∀ei, j ∈ E+; edge feature between

negative neighbors D−i, j , ∀ei, j ∈ E−; number of layers L; weight matrices WP (l ) and WN (l ) ,

∀l ∈ {1 . . . L}; activation function σ
Output: node embedding vectors determining tie valence zi , ∀vi ∈ V
// (Optional attention based) node aggregation for neighbors

1 F
+
Att

(l , i ) :=
∑

j ∈N+
i

ATTENTION(hj
P (l ) )

2 F
−
Att

(l , i ) :=
∑

k ∈N−
i

ATTENTION(hk
P (l ) )

// Initialize the first layer with given node features

3 hi
(0) ← xi , ∀vi ∈ V

4 for vi ∈ V do
// Aggregate edge information between negative neighbors

5 hi
D+ = POOL(D+i, j ), ∀j ∈ N+i

// Aggregate edge information between negative neighbors

6 hi
D− = POOL(D−

i,k
), ∀k ∈ N−i

// Obtain positive hidden state for the first layer

7 hi
P (1) = σ

(
WP (1)

[
F
+
Att

(0, i ), hi
D+ , hi

D− , hi
(0)

] )
// Obtain negative hidden state for the first layer

8 hi
N (1) = σ

(
WN (1)

[
F
−
Att

(0, i ), hi
D+ , hi

D− , hi
(0)

] )
9 end

10 if L > 1 then

11 for l ∈ {1, 2, . . . ,nj } do

12 for vi ∈ V do
// Obtain positive hidden state from the previous layer.

13 hi
P (l ) =

σ
(
WP (l )

[
F
+
Att

(l − 1, i ), F−
Att

(l − 1, i ), hi
P (l−1) , hi

D+ , hi
D−

])
// Obtain negative hidden state from the previous layer.

14 hi
N (l ) =

σ
(
WN (l )

[
F
+
Att

(l − 1, i ), F−
Att

(l − 1, i ), hi
N (l−1) , hi

D+ , hi
D−

])
15 end

16 end

17 end

18 zi ← [hi
P (L) ,hi

N (L)], ∀vi ∈ V

Table 1. Performance Comparison for exTV’s Sentiment Embeddings

Model F1 Precision Recall AUC

LIWC & VADERonly 0.396 0.328 0.500 0.5
ELECTRAonly 0.517 0.576 0.575 0.575
exTV-NLPno_leaves 0.567 0.648 0.579 0.578
exTV-NLPno_meta 0.581 0.601 0.580 0.581
exTV-NLPno_MHSA 0.579 0.618 0.582 0.582
exTV-NLP 0.615 0.650 0.612 0.612

(exTV-NLP). Combinations of the input components also serve the purpose of ablation

study.
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Table 2. Performance Comparison for with and without Sentiment
Embeddings from exTV against Various Baselines

Model F1 Precision Recall AUC

XGBoost 0.625 0.641 0.621 0.621
XGBoostexTV 0.660 0.668 0.655 0.655
SiGAT 0.586 0.619 0.586 0.666
SiGATexTV 0.579 0.581 0.578 0.673
SLF 0.671 0.708 0.662 0.743
SLFexTV 0.676 0.685 0.671 0.765
SGCN 0.680 0.704 0.672 0.781
SGCNexTV 0.728 0.726 0.730 0.819

Fig. 3. Ratios of age, manager, minority, and gender for S (Same) and D (Diff.) sets. “All” represents
respective values for entire dataset.

To analyze the functioning of the proposed approach, we further explore model behavior un-
der various test conditions. The inclusion of sentiment embeddings clearly delivers a substantial
performance boost over the baselines models. Comparing and contrasting the model output with
and without text embeddings will provide an opportunity to discover unique, informative patterns
in the underlying e-mail data. In the absence of similar datasets as used in this research, we can
not make a direct empirical comparison between such findings from different organizations, but
we aim to provide a roadmap for deploying our model to a live setting. The model code is made
available publicly.

We chose the best performing model SGCN among the baselines for this analysis. Specifically,
the SGCN model was run with and without sentiment embeddings; then true positive (TP) and
true negative (TN) cases were identified. Furthermore, the TP and TN were compared to achieve
a set of data points that were similar (Same or S) or are newly-identified (Diff. or D) in both
the runs (with, and without sentiment embeddings). As the performance gain comes from the
sentiment information, the new TP and TN can be attributed to new relational patterns uncovered
by the e-mail text. Recall that our data-points are the relation-edges between people formed by
exchanging digital information. In this light, we perform an exploratory analysis of attributes of
relation-edges in the S and D sets, as well as the individuals involved in these edges.

5.1 Node-Level Traits

A workplace usually is a unique mixture of individuals from different age groups, nationalities,
and ethnicities, who take up different departmental roles according to their knowledge, skills, abil-
ities, and experiences. We explore the HR information of the people in the S and D and find
that the information uncovered by inclusion of digital exchange data can exhibit certain patterns.
Specifically, we analyze age distributions, and manager, minority, and gender ratios.

Figures 3(a)–(d) present the results of this analysis. It can be observed that people in setD have
a higher median age on average. The minority and the female ratio is lower, whereas the ratio of
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Fig. 4. Selected LIWC feature values for S (same edges) and D (different edges) sets. y-axis of the figure
represents LIWC score, which is percentage of words in the text belonging to that dictionary. The values
atop bars are the respective percentage values. Each subfigure’s title is the feature name in the LIWC output.
“WPS” (a) stands for words per sentence, “I” (b) and “They” (c) present the percentage of these pronouns,
and similarly, percentage of “Anger” (d), “Sexual” (e), “Religious” (f), “Time” (g), and “Money” (h) words. This
figure clearly highlights differences in the nature of communication in the S and D sets.

managers is roughly the same. This analysis also points out that in this data, identification of ties
for people with relatively higher age, non-minorities, and males have a higher ambiguity, and that
utilizing communication data mitigates this ambiguity. Discovery of such patterns can be utilized
by management to design better programs and policies that promote better communication among
employees, tailored to the organization’s needs.

5.2 Edge-Level Features

The edge level features are directly associated with the tie-valence for a pair of individuals, and
studying these features can aid the understanding and prediction of the relational edges. We ana-
lyze two types of edge features in our data.

5.2.1 Meta Features. We engineered meta-features from the properties of the network formed
by the e-mail exchange information. These features were designed with an assumption of being
informative of the characteristics of the network formed, indicative of the relationship between
a pair of employees, and logically comprehensible. Examples include the total number of e-mails
exchanged, average message length, and message frequency. All meta-features are listed in sup-
plementary information Table 3.

Another consideration was to treat the day of week effect. We segregated the exchange for week-
days and weekends to elaborate this pattern further and received intriguing results. For Diff. edges,
the average number of e-mails exchanged during weekdays is lower than the Same edges, whereas
these numbers are substantially higher during the weekends. Additional exploratory analysis is
present in A.1

5.2.2 LIWC Features. LIWC [40] is a non-parametric sentiment lexicon that reveals thoughts,
feelings, personality, and motivations based on percentages of the words describing different con-
texts. LIWC takes as input the text, and outputs a vector of length 93, which are the percentages of
words belonging to that dictionary. The individual outputs and their values can be interpreted to
analyze the underlying sentiment in the text. We summarize insights from data in Figures 4(a)–(h),
that highlight a clear difference in the nature of communication between the S and D sets.
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The WPS (words per sentence) feature value is substantially lower for set D, as is the use of
first-person singular pronouns (I). However, the use of the third-person plural pronoun (they) is
higher. Furthermore, the results also suggest that individuals in the set D also communicate less
about time and more about money. We also find that the use of words concerning anger, sexuality,
swearing, religion, with such verbiage being absent from the edges in set D.

5.3 Label-Distributions for S and D Sets

We explored the ratio of negative ties for both sets. The values come out to 0.69 and 0.56 for the
S and D sets, respectively. The newly classified edges exhibit a lower ratio of negative ties or a
larger share of positive ties.

The inclusion of e-mail embeddings resulted in better identification of positive edges or emo-
tions. This finding further implies that the final classifier, ingesting the merged information of
network and e-mail embeddings, finds an improved signal for the positive relations. It is worth
pointing out here that the distribution of labels in the underlying data is imbalanced in favor of
negative ties (2:1), potentially resulting in the deep learning model overfitting on this class, mainly
due to the smaller data size. Despite this, the analysis reveals that our classifier, and hence the NLP
model in stage 1, is finding better text-based indicators for the smaller class. This finding signifies
that the text-based positive sentiment is easier to discern than its negative counterpart.

The data show that continual communication on weekends, with a much lower tendency for
anger, anxiety, and profanity, signifies a sound positive relation between individuals. Heavy usage
of first-person pronouns can be indicative of a preoccupation with one’s thoughts and depres-
sion [18], and lower usage of such pronouns can suggest a positive relational perspective. Greater
use of group connotation pronouns also signals a reduced prevalence of depression [46]. For in-
stance, the usage of “they” is higher in the set D. Similarly, the lower WPS count in Diff. edges
might exhibit a more casual form of relationship, akin to friendly acquaintances exchanging infor-
mation on a digital messaging service, rather than employing long, formal sentences.

The model’s superiority stems from sentiment embeddings, as presented in Table 1. Further-
more, detailed comparison of results with and without sentiment embeddings identifies new rela-
tionships. Out of the 85 employees in the test data, the inclusion of sentiment embeddings leads to
a large performance gain with an accurate tie-valence identification for 16 additional individuals
(18.82% of all employees). Such findings can not only greatly aid in shaping the training programs,
but also the identification and prediction of the tie-valences in an organization.

6 DISCUSSION AND CONCLUSION

This article presented an ensemble model utilizing anonymized employee information to identify
tie-valences in an organizational social network. While ensemble models and their applications
have been well researched [10, 11, 17, 20, 31, 34], as per our knowledge, this is the first deep-
learning-based ensemble model that leverages archived message text and employee information
to learn and predict tie-valences in a context involving hierarchy and organizational structure.
While being a data-driven paper, the computational algorithms employed in this work include
the most prominent theories in signed social networks—balance theory [8] and status theory [19,
48]. Our model can be applied by third-party providers in a live setting to unobtrusively analyze
traffic on an organization’s digital communication platforms and deliver useful insights to the
client, including providing feedback on emerging interdepartmental conflicts that could threaten
the organization’s functioning or tracking increased collaboration in a post-merger context [12,
47], all while protecting individuals’ anonymity.

This research is built on a snapshot of a much larger dataset and proves that deep learning can
be used to better predict and analyze workplace tie valences. Yet, our findings have implications
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beyond organizational structures and can be used in any online domain, for example, on various
online collaboration platforms (e.g., Trello, Slack). Our work suggests insights for future research.
As the size of our dataset was relatively small, we expect the model’s learning capability to
increase greatly when trained over the entire corporate dataset. A larger dataset can be used for
modeling. Owing to data limitations, we have employed transductive GNNs for the model’s second
stage; however, larger datasets will warrant using inductive approaches like GraphSAGE [23].
Similarly, an end-to-end training regimen will allow for improved learning of embedding in both
of the stages.

Findings from this work have direct implications in promoting positively valenced relations and
collaboration in organizational and other social networks. The proposed method can be employed
in any social network by replacing/augmenting the information exchange mechanism, e.g., social
media posts, instant messages, bulletin boards, and calendar invites. The relatively high perfor-
mance of exTV also renders it helpful in pursuing what-if analysis in the social networks.

While the use of personal, conversational data is always fraught with privacy concerns, there are
many ways to manage the risk. We suggest separating the providing firm collecting and analyzing
the data from the client firm receiving the anonymized, aggregated suggestions for improvement.
Combining this with a machine-learning-based method that does not involve humans accessing
private data allows the client firm to protect its employees while deriving valuable insights that can
improve the organization’s functioning and the employees’ mental health and career outcomes.

APPENDIX

A APPENDIX

A.1 Exploratory Analysis on HR and Conversation Data

Fig. 5. Exploratory analysis. (a) The ratios of different profiles and demographic features. (b) A histogram
of number of words in an e-mail. (c)–(e) Average number of e-mails exchanged between individuals of dif-
ferent profiles and demographic attributes. (f) Average number of e-mails exchanged between edges with
different tie-valences (positive and negative). “Out-” and “In-” e-mails denote the e-mails sent and received,
respectively.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 6, Article 83. Publication date: February 2023.



Multi-Stage Machine Learning Model for Hierarchical Tie Valence Prediction 83:15

Figure 5 presents selected exploratory analyses on our dataset. A larger majority of the
individuals are males (67%), managers (19%), ethnic minorities (16%), and front-line supervisors
(16%). The word count of e-mails has a long-tailed distribution with the peak at 50–100, implying
that most of the e-mails involve shorter conversations. Combined with the fact that these
exchanges are taking place in a formal setting, this makes mining useful information from text
more difficult.

Figures 5(c)–(f) present unique traits—the average number of e-mails exchanged—of the e-mail
exchange patterns between different types of user pairs in our data. In Figure 5(c), it can be ob-
served that managers send and receive the most, and subordinates the least information among
themselves. This observation could be attributed to the fact that, by the nature of their role, man-
agers interact with many people and tend to participate in many higher-level meetings. Figure 5(d)
shows that on average, minorities send out more e-mails to non-minorities (likely driven by numer-
ical probabilities given how few minorities there are), but receive the most e-mails from minorities
themselves, suggesting e-mail exchange is also driven by social identities. The results in Figure 5(e)
show that women are more likely to exchange with each other. Finally, Figure 5(f) highlights that
as compared to negative ties, people with positive workplace relationships interact substantially
more with each other. This suggests that reducing negative ties might improve an organization’s
effectiveness and productivity by promoting better interactions and exchange.

A.2 Meta Features

Table 3. Designed Meta Features

Feature name Interpretation

total_time_<out/in> The total period that e-mails have been sent/received.

num_email_<out/in> The number of e-mails that e-mails have been sent/received.

frequency_<out/in>
The frequency that e-mails have been sent/received.

(num_email_out / total_time_out)

avg_interval_<out/in>
The average interval that e-mails have been sent/received.

(total_time_out / num_email_out)

med_total_pos_<out/in>
The relative time of median e-mail that have been sent/received in

total period.

med_year_pos_<out/in>
The year-wise relative time of median e-mail that have been

sent/received.

med_month_pos_<out/in>
The month-wise relative time of median e-mail that have been

sent/received.

num_week_emails_<out/in> The number of e-mails that have been sent/received in weekdays.

num_weekend_emails_<out/in> The number of e-mails that have been sent/received in weekend.

month_max_num_<out/in>
The maximum number of e-mails that have been sent/received in

a month.

month_max_<month>_<out/in>
The maximum number of e-mails that have been sent/received

in <month>.

avg_length_<out/in>
The average number of characters in an e-mail that has been

sent/received.

avg_sentence_len_<out/in>
The average sentence length in an e-mail that has been

sent/received.

avg_sentence_num_<out/in>
The average number of sentences in an e-mail that has been

sent/received.

All meta features are computed for sent (out) and received (in) messages. <month> is replaced by all months.
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A.3 Survey Description

The ground-truth network used to train the model was collected via survey back in September 2012
in the new product development unit of this consumer product organization’s corporate headquar-
ters. Social network analysis was conducted to help reorganize the unit to speed up new product
development. A roster with all 185 employees’ names was provided and the following social net-
work questions were administered, including the positive tie (friend) and negative tie (avoid)
question. Of the 185 sociometric surveys distributed, 144 completed surveys were returned.

— Desired Collaboration
– I would be more effective in my work if I were able to collaborate more closely with this

person. (respondent will check the appropriate names on the roster)
— Friend

– Do you consider this person to be a close friend (e.g., confide in this person)? (respondent
will check the appropriate names on the roster)

— Avoid
– Sometimes people at work may make us feel uncomfortable or uneasy and, therefore, we

try to avoid interacting with them. Do you try to avoid interacting with this person?
(respondent will check the appropriate names on the roster)

— Innovation Ratings
– Innovative employees have the ability to effectively generate and implement novel ideas

in the workplace. Please rate how innovative you believe each of your coworkers is. (1 =
never innovative, 7 = always innovative)

A.4 Shapley Analysis

We present the SHAP analysis [36] of a XGBoost edge-label classifier that utilizes the same in-
formation as the full model. As seen in Figure 6, this analysis could reconfirm that sentiment
embeddings are key features in the classification task. It can also be observed that people who
send a relatively higher number of messages on weekends are inclined to give positive workplace
relationship feedback. Similarly older people tend to give more positive feedback as well. On the
other hand, belonging to minority groups seem to be correlated with receiving negative feedback
in perceived workplace ties.
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Fig. 6. SHAP summary plot. Left vertical axis - features sorted in descending order of importance. Vertical
bar - color legend for feature values. Horizontal axis - how values of different features drive the model out-
put. For display purposes, feature names are shortened. SE_<> : sentiment embeddings, U<>_<age/minority>
:user1/user2 age/minority, <WD/WE/Num>_em_<in/out> :number of weekday/weekend/number of e-mails
in/out, Sen_<len/num>_<in/out> : sentence length/number in/out.

A.5 Additional Exploratory Analysis

Additional exploratory analysis on the valence-data. Figure 7 presents the mean valence score
given by managers. The figure presents segregated scores from male and female managers, as well
scores from managers to people in minority and non-minority sets. Figure 8 shows the weekend
communication trend for different scenarios. An interesting observation here is the pattern for
positive and negative edges, with people with positive edges communicating substantially higher
during the weekend “off-hours”.

Fig. 7. Valence scores by managers.
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Fig. 8. Avg. number of weekend e-mails exchanged.
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