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Bridge Damage Detection using Precise Vision-based 

Displacement Influence Lines and Weigh-in-motion Devices: 

Experimental Validation  

Abstract 

This study presents an experimental validation for a high-precision vision-based 

Displacement Influence Line (DIL) measurement system for a purpose of damage 

detection on bridges. The vision-based DIL measurement system is a promising tool for 

structural health monitoring on real operation bridges, which combines two Computer 

Vision subsystems and weigh-in-motion (WIM) devices. Two vision systems are 

utilized for tracking vehicle position and measuring structural displacement, while the 

WIM device obtains vehicle weight information. To demonstrate the feasibility of such 

a vision-based DIL measurement system, this study developed a vision system using a 

Go-Pro camera for vehicle positioning and a consumer grade camera for displacement 

measurement, followed by a series of laboratory experiments on a simply supported 

bridge using vision-based DILs to assess damage existence and localisation. Five 

damage scenarios were created by restrengthening the test structure instead of 

damaging it. Each restrengthened structure was considered intact while the original 

structure was considered damaged. Vision-based DIL measurements were repeated 12 

times for each damage scenario to observe uncertainties in damage localisation as well 

as DILs. As the measured DILs were found adversely affected by the friction on the 

boundary supports, the Chordwise Displacement Influence Line (cw-DIL) approach 



 

 

was proposed to compensate for this effect. Damage-induced cw-DILs were shown to 

be able to assess damage existence and localisation successfully and consistently for all 

five damage scenarios.  

Keywords: bridge damage detection, vision-based measurement, vehicle-induced 

displacements, influence line, changeable load speed. 

1 Introduction 

The progressive deterioration of bridges is one of the major concerns for bridge 

owners. In order to ensure structural safety and cost-effective maintenance of bridges, 

it is important to develop technologies to identify structural deterioration or damage 

ideally at an early stage. 

Structural health monitoring and damage detection for bridges have been a long 

endeavour in structural engineering for more than four decades (Doebling et al. 1996; 

Sohn et al. 2002; Das et al. 2016; Han et al. 2021). Most of the efforts were using 

output-only measurements such as acceleration, strain, displacement, tilt, etc, mainly 

due to their relative easiness to measure, and showed different levels of success in 

numerical and lab experimental studies. To the best knowledge of the authors, there is 

no methodology validated to be effective on real operational bridges. There were two 

common barriers to such validation: 1) the measured quantities required by the 

developed methodologies were influenced not only by damage, but also by ambient 

environmental changes such as vehicle volume (Cross et al. 2013; K.-Y. Koo et al. 

2013), thermal effect (de Battista et al. 2015; Han et al. 2021), and wind loading 



 

 

(Brownjohn et al. 1994; Dan et al. 2022), and 2) more importantly it was extremely 

challenging to make artificial damage or an equivalent effect on real operational bridges. 

Beyond the output-only approaches, an alternative approach was to measure the 

changes of bridge influence lines (ILs) with both input and output information. An early 

attempt was using video recording to identify vehicles and strain sensors on the bridge 

to produce strain influence lines (SILs) (Zaurin and Catbas 2009), which were later 

applied to damage detection in a bridge model (Zaurin and Catbas 2011). Also, the 

displacement influence line (DIL) has been recognised as another promising tool. 

Methodologies to use displacement influence lines were developed for damage 

localisation and quantification with studies on laboratory bridge models (He et al. 

2017b; Chen et al. 2018; Le et al. 2019). There were variations in damage localisation 

methods: curvature based (He et al. 2017b), optimisation based (Chen et al. 2018), and 

displacement based (Le et al. 2019). There were also variations in damage 

quantification as well: solving a set of linear equations (He et al. 2017b), optimisation 

(Chen et al. 2018), and slope of displacement (Le et al. 2019). Rotational influence lines 

(RILs) were also considered an attractive tool for damage detection, especially around 

supports where DILs have a lower sensitivity to damage. A damage localisation method 

was proposed by finding an abrupt change in RILs (Yu Zhou et al. 2018), and 

experimental validations in the laboratory and field were carried out (Huseynov et al. 

2020). To combine the advantages of DILs and RILs in damage detection, a method for 

the estimation of flexural bending rigidity was proposed with information from a FE 



 

 

model and validated through a numerical simulation (Breccolotti and Natalicchi 2022).  

To implement field measurements for DIL or RIL, it is highly promising to apply 

emerging computer vision technologies to measure vehicle trajectories and bridge 

displacements. Vision-based displacement measurement has been intensively studied 

in recent years (Xu et al. 2018; Lydon et al. 2019; Kromanis 2021). According to the 

size of the field of view, such measurement approaches can be implemented in two 

ways: single-point measurement (Kromanis 2021) and distributed measurement (Xu et 

al. 2018). The distributed measurement can yield more comprehensive structural 

information, however, laboratory and field trials showed that it is less precise than 

single-point measurements (Lydon et al. 2019). Correspondingly, distributed vision-

based methods have also been applied to DIL measurements. Erdenebat and Waldmann 

(2020) used a full-frame camera to measure multi-point displacements along a concrete 

bridge under the loading of six controlled trucks. Lydon et al. (2021) proposed a roving 

camera technique to measure displacements at various positions along a bridge 

repeatedly loaded by the same vehicle. As these DIL measurement methods relied on 

the control of loading vehicles, some studies turned attention to integrating single-point 

displacement measurement with another vision system for vehicle position 

measurement. Dong et al. (2019) implemented a field DIL measurement system for a 

small real truss bridge. Martini et al. (2022) identified the DILs of a steel beam for finite 

element model updating. Such input-output vision systems have the potential to obtain 

DILs for operational bridges, however, there is little research on their applications for 



 

 

damage detection, which imposes strict accuracy requirements on both displacement 

measurement and vehicle positioning. A recent work (Khuc and Catbas 2018) reported 

a successful detection of the damage existence in a steel bridge, however, the results of 

damage localisation were not entirely satisfactory and limited by the accuracy of vision 

systems. Therefore, it remains necessary to develop an input-output vision system with 

higher precision and study its performance on DIL-based damage detection. 

Considering the above obstacles, this paper aims to propose a high-precision 

vision-based DIL measurement system and validate its feasibility for damage detection 

by performing laboratory experiments on a bridge model. The bridge model was not 

damaged but restrengthened so that the restrengthened structure was considered as the 

intact structure, whilst the original structure as a damaged structure. Moreover, the 

concept of integrating weigh-in-motion (WIM) with vision systems is introduced in this 

study, which offers the possibility for DIL-based damage detection to be repeatedly 

conducted on operational bridges by using different crossing vehicles. 

The remainder of this paper is organised as follows. Section 2 introduces the 

theoretical basis of the vehicle position measurement, bridge displacement 

measurement, and the damage detection method using DILs. Section 3 provides the 

details of the experiments for the laboratory bridge model and the damage scenarios. 

Section 4 presents the measurements, constructed DILs, and the damage detection 

results, followed by Conclusion.  

 



 

 

2 Theory 

2.1 The Vision-based Damage Detection System 

Vehicle loading is one of the three major loadings on bridges, i.e., vehicle loading, 

thermal loading and wind loading (especially for long-span bridges). In spite of the 

importance, it was practically difficult to measure the distribution of vehicle loading at 

a given time on a bridge. But due to the widespread technology of Computer Vision 

(CV), it has become feasible to measure it by integrating CV and a weigh-in-motion 

(WIM) system, as well as the structural response of a bridge. This change gave a rise 

of the idea to use computer vision for a purpose of structural health monitoring and 

damage detection. 

Fig.1 shows an overview of the proposed vision-based damage detection system 

that uses damage-induced displacement influence lines. It includes two computer 

vision-based measurement systems and a WIM system. Vision subsystem A is 

responsible for measuring vehicle positions, while vision subsystem B monitors 

structural displacements. In addition, the WIM system records weight information for 

each passing vehicle. By properly synchronizing the subsystems and fusing the 

information from the three measurements for different vehicles, accurate displacement 

influence lines (DILs) can be generated. Usually, structural displacement measurements 

have dynamically oscillating components due to the natural frequencies, but a quasi-

static component of them can be extracted by low-pass filtering with a proper cut-off 

frequency. Structural damage detection can be done using changes in the DILs before 



 

 

and after damage. Although the proposed damage detection system assumes there is 

only one vehicle on the bridge during the time of DIL measurements, it can be applied 

to repeated measurements for vehicles of various weights so which enables 

implementation on operational bridges. 

 
Fig.1 Overview of the proposed vision-based damage detection system 

The theory of vehicle position measurement is described in Section 2.2 and that of 

structural displacement measurement is in Section 2.3. The DIL-based damage 

detection method is presented in Section 2.4. 

2.2 Vehicle Position Measurement 

Vehicle position measurement involves 1) “vehicle position identification” in the 

image coordinates for each frame of a video stream, and 2) transformation of the 

identified vehicle position from the image coordinates to the bridge deck coordinates. 

Vehicle position identification refers to detecting and tracking a vehicle in image 



 

 

sequences. In the existing studies on vision-based damage detection or DIL 

identification, vehicle position was identified by traditional algorithms such as the 

background difference (Zaurin and Catbas 2009; Zaurin and Catbas 2011; Zaurin et al. 

2016; Chen et al. 2017) and optical flow (Dong et al. 2019). The traditional algorithms 

are faster in computation and easy to deploy, but are adversely affected by the change 

in illumination, limiting the accuracy of vehicle position measurement. Recently, with 

the rapid development of Deep Learning, a series of vehicle position identification 

algorithms have emerged based on CNN backbones and been proven to be highly 

accurate and robust in real bridge scenarios (Ge et al. ; Ge et al. 2020; Yun Zhou et al. 

2020). This study used a YOLO-v4-based detection model and the Kalman filtering 

algorithm for vehicle detection and tracking, respectively. As a result, a bounding box 

of a vehicle is obtained in each frame image as shown in Fig.2.  

 

 
Fig.2 Explanation of the process of vehicle locating 

For transforming an identified vehicle position in the image coordinates to the 



 

 

bridge deck coordinates, the principle of projection geometry is used. 

    (1) 

where  represents the image coordinates of reference points (i.e., yellow ellipses 

in Figure 2),   their corresponding bridge deck coordinates, and   the 

element of the coordinate transformation matrix which is determined by the intrinsic 

and extrinsic camera parameters. By assuming  , the unknowns   can be 

solved by using the least squares method given the condition .  

After the transformation matrix is determined, the bridge deck coordinates of the 

vehicle centre are calculable according to the corresponding image coordinates, and the 

vehicle trajectory can be measured by performing this operation on each image frame. 

In this process, image coordinates refer to centres of the detection bounding boxes of a 

designated side of the vehicle (top profile is chosen in this study). The advantage of this 

design is that it is beneficial to minimize identification errors of the vehicle centre 

image coordinates caused by changes in projection angle. 

2.3 Computer Vision-based displacement measurement 

Vision-based displacement measurement techniques are increasingly popular in 

SHM applications due to the non-contact nature of the measurement. In this study, a 

technique named gradient-based matching via voting (GMV) was used to measure 



 

 

vehicle-induced displacement. The GMV technique was shown to be more robust and 

accurate in several indoor and outdoor tests under adverse effects of illumination 

changes and occlusions (Wang et al. 2022), in comparison with other available 

techniques, such as feature point matching (Dong and Catbas 2019), optical flow (Yoon 

et al. 2016) and template matching (Feng et al. 2017). 

The GMV is an improved normalized cross-correlation-based technique using a 

voting strategy and the similarity of pixel gradients for feature tracking. The main steps 

of the GMV technique are given below: 

Step 1: Calibration of intrinsic camera parameters; definition of the first video frame 

as the reference frame. 

Step 2: In the reference frame, a region of interest (ROI) for the measurement target 

is selected. Edge points are extracted from the ROI to form a template, and 

the elements of the template are regarded as voters. 

Step 3: In all subsequent frames, a voting process is conducted to calculate the 

similarity between the template and all possible areas of the same size as the 

template. The pixel displacement of the target can be determined as a peak 

position of the similarity score map. 

Step 4：Interpolation for subpixel displacement estimations for better resolution; final 

conversion from the subpixel displacements into physical displacements. 

2.4 Damage Localisation Using DILs 

Using Maxwell’s reciprocal theorem, a displacement influence line of a vehicle 



 

 

loading is the displacement when the vehicle loading is applied to the displacement 

sensor location provided that the dynamic effect is negligible. Damage localisation by 

a DIL is effectively the same as damage localisation using static loading tests.  

Inspired by the methods using static displacements from static loading tests or 

equivalent from modal flexibility matrices (Choi et al. 2004; K. Koo et al. 2011; Le et 

al. 2019), this paper applied damage-induced displacement influence line (DIDIL) to 

localise damages. As shown in Fig.3, a simply supported (SS) beam is taken as an 

example to illustrate the process of damage localisation.  

 

   Fig.3 Damage-induced displacement influence lines: (a) single damaged beam;  
(b) DI-DIL of (a); (c) double damaged beam; (d) DI-DIL of (c). 

As the moving load is measurable by using vision subsystem A and WIM system, 

only a single measurement point at  is necessary to measure DILs. According to the 

Principle of Virtual Work, the deflections of the intact and damaged (SS) beam at the 

measurement point under a unit load acting at the location   can be derived, i.e., 

generating DIL functions. The damage localisation index is defined by the damage-

induced change in DILs, which is given as 

                   (2) 

where  and  are the DIL values before and after damage.  



 

 

For a single damage case, it can be proved that the indicator  appears 

linear in undamaged areas but it takes on a cubic curve with a maximum amplitude in 

the damaged area (i.e., Fig.3(a) and (b)). Based on this fact, damage is localised by the 

vertex point of a triangular shape of the damage-induced displacement influence line 

(DIDIL). 

For scenarios with multiple damages, the DIDIL is, using the principle of 

superposition, a sum of several triangular DIDILs (i.e., Fig.3(c) and (d)). Multiple 

damages are localised by sharp corners where the slope of the piecewise linear curve of 

the damage-induced displacement influence line (DIDIL) changes abruptly. 

While calculating DIDILs is theoretically straightforward, the quality of DIDILs 

in practical measurement is subject to various factors, such as the accuracy of vision 

systems, the precision of time synchronization, and changes in structural status. For 

example, the initial structural displacements in different loading tests may vary due to 

changes in the boundary friction effect, resulting in DILs drifting away from zero at the 

supports (x=0 and x=l). To compensate for such an effect, this study proposes a 

chordwise displacement approach as shown in Fig.4. DILs are substrated by the chord 

displacement connecting the two points of y(x) at x=0 and x=l. Then the chordwise 

displacement (cwDIL) ycw(x) is guaranteed to be zero at the two supports. 



 

 

 
Fig.4 Chord-wise Displacement Influence Line 

    In addition, it is noteworthy that detecting sharp corners solely based on curvature 

at a single point may cause false positives due to noise interference in actual 

measurements of DIDILs. Therefore, for accurate automatic detection, it is beneficial 

to apply some corner detectors considering regional curvature change and contour 

features (He et al. 2017a; Zhang et al. 2022).  

 

3 Laboratory experiment 

3.1 Experiment setup and instrumentation 

A laboratory experiment was carried out on a simply supported beam (Fig.5) to 

validate the DILs measured by Computer Vision. The test structure was made of a steel 

beam with dimensions of 2.49m×20cm×6mm. The support on the left was a hinge and 

the other on the right was a roller, with a distance between the supports of 2.16m.  

For displacement measurement, two targets were mounted along the structure, 

while another one was fixed on the ground as a reference. The test structure was loaded 

with a two-axle moving vehicle. Guardrails were arranged on the upper surface of the 

bridge to prevent the vehicle from falling, and 39 reference points were evenly marked 



 

 

for the calculation of transformation matrix as discussed in Section 2.2.  

 
Fig.5 Test structure: (top) overview, and (bottom) top view 

A model vehicle (Fig.6) with a weight of 2.05 kg was used as a moving load and 

was horizontally pulled along the structure from the right end to the left by a fishing 

wire. The advantage of this approach rather than using a motor pulling at a constant 

speed was the variability of the vehicle speed, which is close to real conditions on real 

bridges.  

 
Fig.6 Model Vehicle  

Both the position of the model vehicle and displacements of the structure were 

measured by the computer vision techniques discussed in Sections 2.2 and 2.3. Fig.7 

shows the layout of the two cameras. A GoPro camera was installed above the beam to 

capture the vehicle position in the whole range of the bridge, while a single-lens reflex 

camera, of which the shooting direction was perpendicular to the beam axis, was 



 

 

mounted on one side of the structure to measure vertical displacements of the two 

targets. Despite the proposed method only requiring the measurement of a single target 

measuring two targets is intended to compare the damage detectability of the DILs at 

different positions. The two cameras were synchronised by a sound made by a 

clapperboard. The sound signals were sampled at a high frequency (48kHz), which 

provides high synchronization accuracy when determining timestamp differences based 

on signal peak positions.  

 
Fig.7 Layout of cameras for vehicle tracking and structural displacement measurement 

3.2 Damage Scenarios  

The test structure was stiffened with single or double steel plates attached beneath 

the beam, rather than damaged. The original structure can be regarded as damaged in 

comparison to the stiffened one. This approach enables the test structure to be reusable 

for any number of different damage scenarios.  

Three types of steel plates (Fig.8) were attached at two positions, i.e., the damage 

centres 1 or 2 in Fig.9. Using different combinations of size and position of the steel 



 

 

plates, five damage scenarios were considered as shown in Table 1. 

 
Fig.8 Steel plates used in the experiment: (left) Plate A, (middle) Plate B, and (right) Plate C 

 

 

 
Fig.9 Positions of the damage areas relative to the targets: (upper) layout; and (bottom) photo 

 
 Table 1. Damage Scenarios  

Damage scenarios  Positions Plate types Descriptions 

Intact -- -- No plate attached. 

SD 1 Damage centre 1 Plate A Small damage. 

SD 2 Damage centre 1 Plate B Medium damage. 

SD 3 Damage centre 1 Plate C Large damage. 

DD  Damage centre 1 & 2 2 × Plate B Double medium damages. 

Notes: “SD” and “DD” represent “Single Damage” and “Double Damage”, respectively. 

 

For each damage scenario, the structure was loaded by the vehicle 12 times to 

observe repeatability of the experiment and a total of 60 DILs for the 5 damage 

scenarios were measured. 



 

 

3.3 Displacement Influence Line Measurements 

In order to get a DIL from each experiment, the raw measurements of the vehicle 

position and CV-based displacement of the structure need to be obtained first, and then 

fused with a proper time-synchronisation.  

For vehicle position measurements, the YOLO-v4-based model and Kalman 

filtering algorithm were used to detect and track the vehicle. The YOLO-v4-based 

model was trained with 1834 annotated images captured by the vision subsystem A as 

shown in Fig.10(a). The forces acting on the bridge were simplified to a single-point 

load at the centre of the detected bounding box. According to Eq.(2), the image 

coordinates of the single point load were converted to actual positions on the structure. 

Since the structural deflection under the self-weight was too large to be ignored, the 

elevation change of the bridge deck was considered in the coordinate transformation. 

Fig.10(b) & (c) show the 24 curves of vehicle position and vehicle speed in damage 

cases “Intact” and “SD3”. Fig.10(b) shows that the vehicle was placed on a point before 

the right support (the negative x coordinate at t=0), and started to move to the left. 

However, due to a configuration problem of the vehicle camera, the vehicle location 

was tracked only up to a point just before the left support at x=216 cm. Fig.10(b) 

showed that the vehicle speed varied significantly in the range of 0-0.5 m/s, which was 

different from the speed patterns reported in previous studies. 

 

 
(a) 



 

 

  
(b)                                   (c) 

Fig.10 Input loading identification: (a) vehicle detection; (b) vehicle position time history; (c) 
vehicle speed time history 

 

Fig.11 presents the FOV of subsystem B. To compare the damage detectability of 

the identified DILs at different positions, two measurement targets were used in this 

study. Despite this, it should be noted that the single-target measurement is optimal for 

DIL-based damage detection, which provides better precision of displacements. 

 
Fig.11 Targets captured by vision subsystem B for displacement measurements 

 

For CV-based displacement measurements of the structure, the GVM method was 

applied to the videos from vision subsystem B. Fig.12 shows a typical time history in 

damage cases “Intact” and “SD2”. It is worth noting that point A presents the time when 
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the model vehicle was placed on the structure, point B the time when the model vehicle 

started to move, and point C the time when the model vehicle left the structure followed 

by a free vibration of the structure. It can be seen that the displacement amplitudes were 

clearly reduced in the damage case “SD2”, showing the stiffening effect.  

Fig.12 shows two interesting observations: 1) the displacement of Target 1 in “SD2” 

didn’t start from zero and 2) the displacements of Target 3 in both “Intact” and “SD2” 

were slightly off from zero. The former observation indicates that the friction effect on 

the supports prevented the structure from being restored to the initial displacement 

before vehicle loading. The latter observation indicates that the CV-based displacement 

measurements had a drift that was likely caused by the gradual tilt of the camera 

mounting due to the gravitational effect of the lens. The former effect by friction was 

found to be significantly larger than the latter effect. Fig.13 presents the displacement 

of Target 3 during the twelve runs of measurements. It is seen that although the camera 

tilting is visible but occurs at a slow rate, rendering it negligible during a single run that 

typically lasts a few seconds. 

 



 

 

 
Fig.12 CV-based displacement measurements of Targets 1 and 3: (top) Overview, (bottom) 

Zoomed View 

 

 
Fig.13 Displacement of Target 3 during continuous measurements 

 

For constructing a DIL from the two measurements obtained above, the following 

three steps were used: 1) the timestamps of the vehicle position and displacement were 

aligned using the recorded audio signals; 2) the dynamic component of the vehicle-

induced displacement was low-pass filtered to get a quasi-static displacement as shown 

in Fig.14. The cut-off frequency was 1.5 Hz while the first frequency of the structure 

was about 3.15 Hz; 3) the time history of the static displacement and the corresponding 
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vehicle trajectory were fused to generate a quasi-static displacement influence line.  

 
Fig.14 Static component of vehicle-induced displacement by a low-pass filtering 

 

DILs from different tests were standardized to the same size using spline 

interpolation and resampling to facilitate averaging and standard deviation calculation. 

The averaged DILs of Targets 1 & 2 for the “SD2” case are shown in Fig.15 with 2.5σ 

deviation levels from 12 repeated tests.  
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Fig.15 Static DILs of Targets 1 & 3 with 2.5σ deviation levels 

 

It is worth noting that the displacements at the left end x(0) were below 0, which 

was mainly caused by the friction effect of the bearings. To compensate for such effects, 

the chordwise displacement approach introduced in Section 2.4 was applied. The 

chordwise DILs from Targets 1 & 3 are shown in Fig.16, in which they are compensated 

to be zero at x=0 and x=209.5 cm that was the maximum coordinate tracked as shown 

in Fig.10(b). In Fig.16, the largest standard deviation of the DILs at Targets 1 and 2 are 

0.073mm and 0.078mm, indicating comparable accuracy with a state-of-art approach 

to vision-based displacement measurements (Martini et al. 2022). The precision of 

displacement can be further improved by increasing target image size, e.g., by 

performing single-point measurement. 



 

 

 
Fig.16 Chord-wise Displacement Influence Lines of Targets 1 & 3 with 2.5σ deviation levels 

 

Furthermore, it should be noted that the deviation of DILs was not only from 

displacement measurement, but also from errors in vehicle localization. Since the 

displacement is analytically a function of loading position, errors in vehicle localization 

may introduce additional variability into the measured DILs. Regarding this, the 1834 

annotated images, which were also from the “SD2” case, were used as ground truth for 

error analysis. Fig.17 shows the mean error and standard deviation of the vehicle 

localization at different positions along the bridge model. It is seen that the proposed 

system achieved stable and highly accurate measurements of vehicle position. 



 

 

 
Fig.17 Error analysis for vehicle localization: (top) mean error; (bottom) standard deviation 

 

This section has shown that the proposed vision systems have high accuracy in 

both vehicle position and displacement measurements. However, it should be explained 

that the standard deviation of DILs, which is illustrated in Fig.15 and Fig.16, increases 

with the vehicle position. This trend was also reported in a recent study (Martini et al. 

2022) and was possibly caused by changes in lighting conditions. Reduction in 

brightness may lead to a gradually increasing bias in the displacement. Therefore, 

proper illumination compensation is also beneficial to improve vision-based 

displacement measurement. 

3.4 Damage Detection Results 

12 DILs for each damage scenario were obtained by fusing the two CV-based 

measurements. Damage-induced changes in the DILs before and after damage were 

investigated and presented in the section.  



 

 

Fig.18(a) shows the chordwise displacement influence lines with 2.5σ deviation 

levels of Target 1 for the damage case “SD3” from “Intact”. Fig.18(b) shows a zoomed 

view of the damage-induced chordwise DIL together with the location of the damage 

centre 1. It clearly shows that the damage-induced cwDIL is significantly larger than 

the 2.5 σ of the cwDIL of “SD3”, indicating a statistically significant detection of the 

damage. Also, the damage is shown successfully localised by the maximum point in the 

damage-induced cwDIL.  

Fig.18(c&d) and (e&f) show the results for the smaller damage cases: “SD2” from 

“Intact”, and “SD1” from “Intact”, respectively. As shown in Fig.18(d) and (f), the 

damage existence detections are successful beyond the 2.5σ deviation levels for both 

cases. Damage localisation is also successful by the maximum points in the damage-

induced cwDILs. 

 

    
(a) (b) 



 

 

    
 (c) (d) 

    
 (e) (f) 

Fig.18 Chordwise DILs with 2.5σ and the damage-induced change from Target 1: (a & b) SD3; (c 
& d) SD2; (e & f) SD1 

 

Fig.19 presents the damage detection results for the cases with “DD”. Fig.19(a&b) 

show the cwDILs for damage case “DD” from “Intact”, and the corresponding damage-

induced change. The damage-induced cwDIL is large enough beyond the 2.5 σ 

deviation levels of damage case “DD” and two damage centres were localised by the 

slope changing points of the piecewise linear curve. Fig.19(c&d) show the cwDILs for 

damage case “DD” from “SD2”, and their damage-induced change. The difference 

between the two cases was the restrengthening in damage area 1, which was in effect a 

single damage case. It was found that the damage was marginally detected by the 



 

 

damage-induced cwDIL just beyond the 2.5 σ deviation levels of damage case “SD2” 

and was localised correctly by the damage centre 1. 

Fig.20 shows the damage-induced cwDILs obtained from Target 2. By comparing 

Fig.20(a) with Fig.18(b), it was found that the damage-induced cwDIL in Fig.20(a) was 

larger than that in Fig.18(b). This observation can be explained by the fact that Target 

2 was closer to the damage centre 1 than Target 1 as shown in Fig.9. Similarly, Fig.20

(b) shows a smaller damage-induced cwDIL than that in Fig.18(f) as Target 2 was 

further away from the damage centre 2 than Target 1. 

The damage-induced cwDIL shown in Fig.20(b) was close to the smallest damage 

this experiment was able to detect over the 2.5 deviation levels (about 0.16mm). For 

better damage detection sensitivity, it is required to measure cwDILs with smaller 

deviation levels. 
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Fig.19 Chordwise DILs with 2.5σ and their amagedged-induced change from Target 1: (a & b) 
DD from Intact; (c & d) DD from SD2 

 

    
     (a)                                            (b) 

Fig.20 Changes in chordwise DILs from Target 2: (a) SD3 from Intact; (b) DD from SD2 

 

3.5 Discussion 

The results provided evidence that the proposed CV-based DILs using the 

chordwise approach were consistently successful for both damage existence detection 

and localisation for all single and double damage cases, in the existence of different 

vehicle speeds. However, since this paper only presents preliminary laboratory results, 

there are still some gaps between the proposed approach and practical applications. 

Some discussion and suggestions for filling in these gaps are given below.  



 

 

(1) It was found that friction on the supports can defend the structure from restoring 

and deviate DIL measurements. While the chordwise approach effectively 

compensated friction effects in this study, understanding the friction mechanism 

under more complex boundaries and their reduction still remain to be explored.  

(2) Fig.15 revealed greater deviations around the left support as compared to the right 

support, which was possibly due to the lighting changes during the displacement 

measurement process. Therefore, improving camera imaging quality with 

illumination compensation and higher resolution can potentially improve damage 

detection sensitivity. 

(3) For a clearer illustration, the maximum displacement presented in this study is 

around 6mm, which corresponds to 1/360 of the main span. This deflection-span 

ratio is relatively large for real bridges. However, it is reasonable to assume that the 

bridge model behaved elastically during the tests since the applied load remained 

far below the ultimate design capacity and no plastic deformation was detected. 

Moreover, compared to striving for consistency in the deflection-span ratio, 

achieving adequate DIL resolution is more important for practical measurements. 

(4) Although the proposed vision-based subsystems have shown high precision in DIL 

measurement and the potential to continuously detect damage for operational 

bridges, the current investigation is limited to laboratory conditions. Unlike the test 

bridge, real bridges have more complex boundaries, smaller damages, are subject 

to various environmental factors (e.g. temperature), and are even made of other 



 

 

materials (e.g, concrete). Therefore, the performance of the proposed vision-based 

damage detection framework on a bridge under more realistic conditions remains 

to be further studied in the future.  

4 Conclusion 

This study presented a feasibility study on an input-output vision-based system to 

measure displacement influence lines for applications of bridge damage detection. The 

feasibility has been validated through a series of laboratory experiments on the simply 

supported beam model. Some conclusions can be summarized as follows.  

 The vision-based system showed high precision in measuring vehicle position and 

displacement, leading to accurate displacement influence lines (DILs). Through 

experimental studies on the laboratory test structure, the measured DILs were 

found to effectively assess the existence and location of damages. The damage 

detection and localisation were carried out successfully for all 5 damage scenarios 

consistently. 

 The Chordwise Displacement Influence Line (cw-DIL) was proposed to 

compensate adverse effects of friction in the boundary supports and was shown 

effective through successful damage detection and localisation results. Even so, it 

is noteworthy that for more complex adverse effects, such as thermal effects and 

camera imaging errors, the current compensation method may require further 

improvement.  

 The proposed DIL-based damage detection approach was successfully validated 



 

 

using random vehicle speeds while a novel concept of integrating the WIM system 

with dual-vision systems was suggested, which provides insights into the 

possibility of continuous damage detection in operational bridges under normal 

traffic. 

 The quality of DIL measurements significantly influences damage detectability. In 

this study, the maximum standard deviation of measured DILs was under 0.08mm, 

while the smallest detectable damage-induced displacement, considering 2.5 

deviation levels, was approximately 0.16mm. To balance accuracy and sensitivity 

in damage detection, it is recommended to maintain the maximum standard 

deviation at no more than half of the target damage-induced displacement.  

Although this study obtained promising results for damage detection in a test 

bridge, there are many aspects to be further developed and validated in the existence of 

ambient environmental changes, boundary frictions, and nonlinearities existing in the 

field condition. 
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