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Abstract

Virus host shifts, where a virus transmits to and infects a novel host species, are a major

source of emerging infectious disease. Genetic similarity between eukaryotic host species

has been shown to be an important determinant of the outcome of virus host shifts, but it is

unclear if this is the case for prokaryotes where anti-virus defences can be transmitted by

horizontal gene transfer and evolve rapidly. Here, we measure the susceptibility of 64

strains of Staphylococcaceae bacteria (48 strains of Staphylococcus aureus and 16 non-S.

aureus species spanning 2 genera) to the bacteriophage ISP, which is currently under

investigation for use in phage therapy. Using three methods–plaque assays, optical density

(OD) assays, and quantitative (q)PCR–we find that the host phylogeny explains a large pro-

portion of the variation in susceptibility to ISP across the host panel. These patterns were

consistent in models of only S. aureus strains and models with a single representative from

each Staphylococcaceae species, suggesting that these phylogenetic effects are conserved

both within and among host species. We find positive correlations between susceptibility

assessed using OD and qPCR and variable correlations between plaque assays and either

OD or qPCR, suggesting that plaque assays alone may be inadequate to assess host

range. Furthermore, we demonstrate that the phylogenetic relationships between bacterial

hosts can generally be used to predict the susceptibility of bacterial strains to phage infec-

tion when the susceptibility of closely related hosts is known, although this approach pro-

duced large prediction errors in multiple strains where phylogeny was uninformative.

Together, our results demonstrate the ability of bacterial host evolutionary relatedness to

explain differences in susceptibility to phage infection, with implications for the development

of ISP both as a phage therapy treatment and as an experimental system for the study of

virus host shifts.
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Author summary

Virus host shifts, where a virus jumps into a new host from another species, are a major

source of emerging infectious diseases. Virus host shifts have been shown to be more

likely between animals and plant species that are closely related. However, there is much

to learn about how relatedness predicts susceptibility in bacterial hosts. Here, we used a

panel of 64 Staphylococcus bacteria and a virus that infects them to investigate how the

relationship between host species influences their susceptibility to infection. We find high

variation in susceptibility to infection across the host panel and that most of that variation

can be explained by the relationship between hosts. This effect is seen consistently using

three methods for assessing susceptibility and can be seen both within and between spe-

cies. Additionally, we find that the relationship between hosts allows us to predict the sus-

ceptibility of an unknown host with some accuracy, although there are instances where

susceptibility cannot be predicted. Overall, this suggests that closely related hosts will

show similar susceptibility to infection and that the relationship between bacterial hosts

can be used to predict the susceptibility of an unknown host with limited success.

Introduction

Host shifts, where a pathogen jumps into a novel host species and establishes onward transmis-

sion, are a major source of emerging infectious diseases. While host shifts can occur with

many types of pathogen, viruses are the most prolific [1, 2]. Accordingly, viruses originating in

non-human animals make up the majority of recently emerged human infections [3–5],

including several human pandemics: HIV-1, which jumped into humans from chimpanzees

[3, 6]; influenza A viruses, which commonly emerge from wild aquatic birds [7–10]; and most

recently SARS-CoV-2, which likely transmitted into humans from a bat reservoir [11–13].

Given the scale and speed at which emerging viruses can impact host populations, understand-

ing the underlying causes of virus host shifts has become a major goal of infectious disease

research.

The evolutionary relationships between hosts are a key factor in determining the success of

a pathogen following transmission to a novel host species, and several studies have investigated

the ability of host evolutionary relatedness to explain variation in infection traits. These studies

have shown that virulence tends to increase [14–18], and transmission rate [14, 19] and patho-

gen load [18, 20, 21] decrease with greater evolutionary distance between donor and recipient

host species. These ‘distance effects’ have been seen in viruses [19–21], bacterial pathogens

[22–24], fungi [25, 26], and nematodes [18], as well as in reconstructions of virus host shifts

and cross species transmissions in nature [19, 27]. Additionally, closely related species may

share similar levels of susceptibility independent of evolutionary distance to the natural host.

These ‘clade effects’ create a patchwork of host clades across a phylogeny that vary in their sus-

ceptibility to a pathogen, and have been demonstrated in experimental infections of fruit flies

[17, 21] and in pathogens that repeatedly jump between distantly related hosts in nature [28–

32]. These effects can act concurrently to influence host shifts, with distance effects making

successful pathogen shifts into closely related hosts more likely, and clade effects allowing for

host shifts into more distantly related clades of susceptible hosts.

While most studies investigate the role of eukaryotic host phylogenies, few have examined

the influence of the host phylogeny on susceptibility to infection in a prokaryotic system. Host

phylogenetic effects follow the conventional wisdom that more closely related species share
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more similar phenotypes, and so present similar environments to invading pathogens. In bac-

teria, there are several mechanisms by which bacteriophage (viruses that infect bacteria; here-

after ‘phage’) resistance may be acquired in a phylogenetically intractable way, including

horizontal gene transfer (HGT) [33], recombination [34], and the acquisition of prophages

conferring resistance to further phage infection [35]. It was previously demonstrated that the

transfer of plasmids between bacterial hosts is more likely between recipients with near identi-

cal genomes to the plasmid donor, but the likelihood of plasmid transfer was not correlated

with genetic distance between donors and recipients at larger evolutionary distances [36]. As

such, mobile genetic elements containing phage resistance genes may transmit between bacte-

rial hosts in a way that does not segregate phylogenetically. Additionally, it has been demon-

strated that evolution of the bacterial core genome is almost entirely driven by recombination,

and thus more determined by the spatial structure of microbes rather than clonal inheritance

[34]. Finally, the presence of prophage in bacterial genomes providing superinfection immu-

nity to lytic phage has been characterised [37–41], including in Staphylococcus [42], meaning

that prior infection with temperate bacteriophage could influence the pattern of susceptibility

to lytic phage across the phylogeny [35, 43]. Together, we may expect these mechanisms to

lead to weaker phylogenetic signal in virus susceptibility in bacterial hosts than that seen in

animals where immunity is largely vertically transmitted.

Recent years have seen a resurgence in interest in the use of phage to treat bacterial infec-

tions due to the continuing emergence of antimicrobial resistance [44–47]. Phage present a

promising alternative to traditional antimicrobials in that they are self-amplifying, self-limit-

ing, and have proved effective in the treatment of drug-resistant bacterial infections such as

methicillin-resistant Staphylococcus aureus (MRSA) [48–50] and Pseudomonas aeruginosa
[50]. Two key considerations in the design of phage therapies are the host range of the phage–

and so the range of bacterial strains or species it can be used to treat–and the efficiency of the

phage in replicating and killing its bacterial host, which is linked to host susceptibility. Studies

have shown that phage host range can vary from a single host species [51–55] to broad host

range generalists [51, 53–59], although a consensus has yet to be reached on the most effective

method for quantifying phage host range [60–62]. Additionally, studies investigating suscepti-

bility to phage across bacterial isolates have shown variation in susceptibility at both the host

strain and species level [56, 57, 59].

An ability to explain and predict variation in phage host range and susceptibility would be

beneficial in the design of future therapies, allowing for the more efficient design of broad

range phage cocktails with high efficacy against multiple pathogens. Recently, the evolutionary

relationships between bacterial hosts were shown to explain some of the variation in suscepti-

bility of a panel of S. aureus hosts to several staphylococcal phages when measured using pla-

que assays [63], suggesting that the structure of the host phylogeny may be a useful tool in

predicting bacterial susceptibility to phage. It remains to be seen whether the host phylogeny

can be a useful tool in explaining variation in bacterial susceptibility across broader phyloge-

netic scales (i.e., across bacterial species or genera), or when applied to different measures or

components of bacterial susceptibility.

Here, we use a broad host range bacteriophage (Intravenous Staphylococcal Phage; ISP)

and a panel of 64 Staphylococcaceae isolates (encompassing 2 genera and 17 Staphylococcus
species) to investigate how patterns of bacterial susceptibility are influenced by the evolution-

ary relationships between hosts. ISP, a double stranded DNA virus in the family Myoviridae, is

closely related to Staphylococcus phage G1 [64, 65] and has shown success in the treatment of

antimicrobial resistant infections clinically [66]. ISP was isolated in the 1920s from an

unknown source [65] and has a broad experimental host range within S. aureus, infecting 86%

isolates tested in a previous study [67]. However, in the same study, ISP was unable to
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experimentally infect nine S. haemolyticus isolates, suggesting that this host range may be spe-

cies-specific. Staphylococci are a well-established model for bacteria-phage interactions, with

investigations into staphylococcal phages occurring since the 1910s. Lytic staphylococcal

phages have demonstrated broad host ranges [52, 56, 68, 69], antibiofilm activity [68, 70], and

vary in their efficacies against bacterial infection [71–73]. Several mechanisms that are impor-

tant for the interaction between staphylococci and their phage have been characterised, includ-

ing common cell surface receptors used for attachment [74–79], and host resistance

mechanisms such as the overproduction of surface proteins to block adsorption [80–82],

restriction modification systems [83–85], and CRISPR targeted degradation of phage DNA

[86–89]. Despite this, much remains to be understood about the interactions between staphy-

lococcal phages and their hosts. An improved understanding of the mechanisms that underpin

bacteria-phage interactions may provide more general insights into virus-host interactions

and their implications in the emergence of viral pathogens into novel populations.

In this study we demonstrate that ISP is a broad host range bacteriophage, able to infect

both within and among species of Staphylococcaceae. Given that different methods of quantify-

ing host range can give different estimations, we assessed the susceptibility of our bacterial

host panel to ISP using three methods: plaque assays, optical density assays, and quantitative

PCR. We observed considerable variation in susceptibility to ISP across the host panel and

showed that a high proportion of the observed variation in susceptibility was attributable to

the relationship between host species.

Methods

Staphylococcaceae isolates

This study made use of 64 strains of Staphylococcaceae, representing a broad phylogenetic and

geographic range of hosts. These strains spanned 2 genera and 17 species that were estimated

to have last shared a common ancestor ~122mya [90]. Multi-Locus Sequencing Typing

(MLST) revealed that 5 Clonal Complexes (CC) of S. aureus were represented in this panel,

including major complexes CC1 and CC8 (S1 Table).

Each Staphylococcaceae sample was streaked on a LB-agar Miller (Formedium) plate (1.5%

agar) and incubated for 24 hours at 37˚C. A single colony was isolated and used to inoculate

5mL of LB broth, which was incubated at 37˚C, 180rpm for 24 hours. All isolates were stored

in 25% glycerol at -80˚C. When required, isolates were grown up by inoculating 5mL of high-

salt LB Miller broth (Formedium) in a sterile 30mL glass universal with a scraping of the frozen

culture and incubating at 37˚C, 180rpm overnight. To ensure that any observed differences in

susceptibility to ISP were not a function of host availability (i.e., differences in the concentra-

tion of bacterial hosts in solution), calibration curves using optical density (OD) and colony

forming units (CFU)/mL were generated for each strain. Overnight cultures were then nor-

malised by dilution in LB Miller broth to give similar host densities prior to their use in suscep-

tibility assays.

Phage preparation

An isolate of ISP was kindly provided by Jean-Paul Pirnay and Maya Merabishvili at the

Queen Astrid Military Hospital (Brussels, Belgium). ISP was propagated on the S. aureus strain

13S44S9 (chosen for consistency with previous studies [65]; hereafter referred to as the ‘propa-

gation host’) and extracted using chloroform: 1mL aliquots of the suspension were treated

with 10% chloroform, vortexed for 1.5 minutes, then centrifuged for 1 minute at 18 x g. The

supernatant containing the phage was aliquoted into sterile 2mL Eppendorf tubes, and the pro-

cess repeated a second time to ensure the complete removal of bacterial hosts.
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The number of infectious phage present was quantified using plaque assays. ISP was 10-fold

serially diluted in 1X M9 buffer (Merck Life Sciences) from 100 to 10−8. 100μL of overnight cul-

ture of 13S44S9 and 50μL of diluted phage were added to 5mL of LB-agar (0.5% agar), gently

mixed, and poured over a 20mL LB-agar Miller plate. Plates were left to dry before being

inverted and incubated at 37˚C for 24 hours. Plaques were counted and plaque forming units

(PFU)/mL determined based on the dilution with the highest number of discernible plaques.

Each plaque assay was repeated at least 3 times to account for plating error.

Assessing susceptibility using plaque assays

10-fold serial dilutions of ISP (initial concentration 1.6x108 PFU/mL, determined by plaquing

on 13S44S9) were prepared in 1X M9 buffer, ranging from 100 to 10−8. Bacterial isolates were

diluted in LB Miller broth, plated out to a final density of 2x1010 bacteria/mL, and left to dry

before 5μL of each ISP dilution was spotted on each LB-agar Miller plate. The plates were then

inverted and incubated at 37˚C. Plaques were counted after 24 hours and converted to PFU/

μL, based on the dilution with the highest number of discernible plaques. Six biological repli-

cates of the plaque assay were performed for each bacteria-phage pairing. As the range of PFU/

mL across technical replicates in preliminary plaque assays was small (1.4–1.7x108 PFU/mL),

only a single technical replicate per biological replicate was performed. Of the 64 bacterial

hosts tested, 6 biological replicates were obtained for 42 strains, 5 replicates for 12 strains, and

4 replicates for 10 strains.

Assessing susceptibility using optical density assays

In each well of a 96-well plate, 180μL of LB Miller broth was added alongside 10μL of each Sta-
phylococcaceae isolate diluted to an initial concentration of 1x106 CFU/mL. For infected plates,

10μL of ISP at a concentration of 5x104 PFU/mL was added to each well to achieve an MOI of

0.05 (final concentration of 5x104 CFU/mL and 2.5x103 PFU/mL). A low MOI was chosen to

ensure any large changes in OD were due to multiple rounds of phage infection within the

sample, requiring the production of viable phage progeny. For control plates, 10μL of 1X M9

buffer was added in place of ISP to maintain a final concentration of 5x104 CFU/mL. Samples

with and without phage were kept on separate plates to minimise the chance of phage contami-

nating uninfected samples. Within-plate position was kept constant between infected and con-

trol plates for each biological replicate but randomised between replicates to minimise the

effect of within-plate position effects. The effects of between-plate variation were estimated by

comparing OD readings between biological replicates of the same infection conditions (stan-

dard deviation of 0.14) and were found to account for a small amount of variation compared

with the effect of infection (standard deviation of 0.67). Three LB Miller broth and three 1X

M9 buffer controls were added to each plate to check for contamination. The plates were

sealed with an adhesive PCR plate seal (Thermo Scientific) and incubated for 24 hours at 37˚C,

180rpm. Following the incubation, OD was read at 600nm on a MultiSkan Sky Microplate

Spectrophotometer (Thermo Fisher). To standardise for any differences in bacterial growth

rate, susceptibility was calculated as a proportion change in OD due to infection, as follows:

ODChange ¼
ODuninfected � ODinfected

ODuninfected

Several collected data points reported a proportion change in OD considerably less than

zero. As this was likely the result of anomalous OD readings, outlier analysis was performed.

Datapoints more than 1.5 times the interquartile range outside the upper and lower quartile of

the data were considered minor outliers, and those more than 3 times the interquartile range
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outside the upper and lower quartiles were considered major outliers. All analyses included

here were robust to the removal of both major and minor outliers (S2–S5 Tables), and so only

data with all major and minor outliers removed is presented in the main text. Following outlier

removal, 6 biological replicates were obtained for 56 of the bacterial strains tested, 5 replicates

were obtained for 7 of the strains, and 3 replicates were obtained for 1 strain.

Assessing susceptibility using quantitative PCR

Infections used to measure susceptibility using quantitative (q)PCR were set up identically to

those in the OD assays described above. Again, a low MOI of 0.05 was used to ensure that any

large changes in viral load were due to multiple rounds of phage infection, requiring the pro-

duction of viable phage progeny. Following the 24 hour incubation, 100μL of each sample was

transferred to a sterile 1.5mL screw cap microcentrifuge tube and heat treated at 90˚C for

10-minutes to inactivate the bacteria. Additionally, 12 samples of the aliquot of ISP used to

infect the Staphylococcaceae strains were diluted 1:20 in LB Miller broth and extracted to pro-

vide an initial viral load at infection timepoint zero. To extract the viral DNA, 100μL of 10%

w/v Chelex 100 (Merck Life Sciences), 2ul of 20ng/μL Proteinase K (Merck Life Sciences), and

~10 1mm zirconia beads (Thistle Scientific) were added to each sample before mechanically

lysing the bacteria using an Omni Bead Ruptor 24 (Camlab). Samples were centrifuged briefly,

and heat treated for 10 minutes at 95˚C to inactivate the Proteinase K before being centrifuged

for a further 5 minutes at 18 x g to sediment out the Chelex. For each sample, 50μL of the

supernatant containing bacterial and viral DNA was transferred and stored at -20˚C.

qPCR was performed on each of the samples using an Applied Biosystems StepOnePlus sys-

tem with a Sensifast Hi-Rox Sybr kit (Bioline). Cycle conditions were as follows: initial dena-

turation at 95˚C for 120 seconds, then 40 cycles of 95˚C for 5 seconds, and 60˚C for 30

seconds. ISP was measured using the following primers: forward, 5’- CCTGTACCGGCTTG

ACTCTC -3’; reverse, 5’- AGCTACAACCGAGCAGTTAGA -3’, which were confirmed to

have a near 100% efficiency when tested in the presence of each bacterial isolate. Pilot experi-

ments showed that normalisation to either staphylococcal genomic DNA or an exogenous

DNA spike made little difference to the between sample variation in ISP viral load and, there-

fore, no normalisation was used.

For each sample, two technical replicates of the qPCR reaction were performed. Amplifica-

tion of the correct product was confirmed by melt curve analysis: samples that had failed to

amplify the product, showed evidence of melt curve contaminants, or departed from the melt

curve peak of positive samples by ±1.5˚C were excluded. Correction for plate effects between

technical replicates was performed using a linear model as previously described [91, 92]. Mean

viral Ct values from technical replicate pairs (Ct:24) were normalised to an initial dose of ISP

(Ct:0) and converted to fold change in viral load using the 2–ΔCt method, where ΔCt = Ct:24 –

Ct:0. Prior to analysis, these values were converted to a log10 fold change in viral load over 24

hours. Of the 64 bacterial strains tested, 6 biological replicates were obtained for 58 strains, 5

replicates for 5 strains, and 4 replicates for 1 strain.

Inferring the host phylogeny

To infer the evolutionary relationships between Staphylococcaceae isolates, a core genome phy-

logeny was constructed using BEAST v1.10 [93]. Briefly (see S1 Text, S1–S4 Figs, and S6–S7

Tables for full details), whole genome sequences were collected for 8 previously sequenced

strains from NCBI (S1 Table), and the remaining 56 sequences were obtained through whole

genome sequencing. Library preparations and sequencing were performed by MicrobesNG

(Birmingham, UK). Genomic DNA libraries were prepared using the Nextera XT Library Prep
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Kit (Illumina) with twice the stated amount of input DNA and PCR elongation increased to

45-seconds. Pooled libraries were quantified using the Kapa Biosystems Library Quantification

Kit for Illumina and sequenced using Illumina sequencers (HiSeq/NovaSeq) with a 250-bp paired

end protocol. Sequence reads were deposited on NCBI under the BioProject ID: PRJNA894984

(see S1 Table). Genomes were assembled and quality controlled as described in S1 Text.

De novo assemblies were annotated using Prokka (v2.8.2) [94] and orthologous genes iden-

tified with Panaroo [95] using a sequence identity threshold of 0.7. Orthologous genes were

then used to generate a core genome alignment of the 102 genes shared between each of the 64

Staphylococcaceae isolates. Phylogenetic trees were constructed using BEAST v1.10 [93].

Sequence alignments were fitted to a HKY substitution model using relaxed uncorrelated

molecular clock models, gamma distributions of rate variation, and constant population size

coalescent priors [93]. Separate substitution models and molecular clocks were fitted to 1st/2nd

and 3rd codon positions, to reflect differences in selective constraint [96]. Two independent

MCMC chains were run for each model until both convergence and a<10% burn-in was

achieved. Convergence of all parameters was checked using Tracer v1.6 [97].

The within-S. aureus and among-species phylogenies were constructed by dropping the rel-

evant tips from the 64-strain tree using the R package ape [98]. To ensure that the phylogenetic

relationship between species and strains were accurately resolved in the 64-strain tree, separate

phylogenetic trees were constructed using only the S. aureus samples or species isolates with

13S44S9 as a representative S. aureus strain (see S1 Text). As the topology of the smaller phy-

logenies matched that of the phylogenies made by dropping tips from the whole phylogeny,

the dropped tip phylogenies were used for our analyses as they had comparable branch lengths

to the 64-strain phylogeny.

Phylogenetic mixed models

Phylogenetic generalised linear mixed models were used to investigate the effect of host relat-

edness on susceptibility to infection with ISP, and to examine correlations between the meth-

ods used to assess susceptibility. Multivariate models were fitted using the R package

MCMCglmm [99] with susceptibility, as determined by each method (plaque assay, OD, and

qPCR), as the response variable. Unscaled trees were used to correct for differences in the evo-

lutionary divergence of our within- and among-species trees.

The structures of the model were as follows:

yhim ¼ b1:m þ mp:hm þ ms:hm þ ehim ð1Þ

yhim ¼ b1:m þ mp:hm þ ehim ð2Þ

In these models, yhim is the susceptibility measured by method m in the ith biological repli-

cate of host h. The fixed effect β1 represents the intercepts for each method, the random effect

μp represents the effects of the host phylogeny assuming a Brownian model of evolution, and e
represents the model residuals. Model (1) also includes a strain-specific random effect that is

independent of the host phylogeny (μs:hm). This explicitly estimates the non-phylogenetic com-

ponent of between-strain variance and allows for the calculation of phylogenetic heritability

(described below). μs:hm was removed from model (2) as model (1) failed to separate the phylo-

genetic and strain-specific effects. An additional version of model (1) was run with evolution-

ary distance from the propagation host added as a fixed effect (βd:hm). This was done to

examine if the evolutionary distance from the propagation host explained any observed differ-

ences in susceptibility between strains, but was found to be non-significant and thus excluded

from further models.
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Susceptibilities measured by OD and qPCR were treated as normally distributed. However,

to account for the zero-inflated nature of the plaque assay data, plaque assay susceptibility was

divided into two separate variables–equivalent to a hurdle modelling approach–with a binary

variable indicating whether the bacteria was permissive (1) or non-permissive (0) to infection,

modelled using probit link function [100], and (conditional on being permissive) a continuous

variable containing PFU/μL which was treated as normally distributed.

Within each of these models, the random effects and residuals were assumed to follow a

multivariate normal distribution with a mean of 0 and covariance structure Vp�A for the phy-

logenetic effects, Vs�I for strain-specific effects, and Ve�I for residuals, where� represents

the Kronecker product. A represents the host phylogenetic relatedness matrix, I an identity

matrix, and V represents 4 × 4 covariance matrices describing the variances and covariances in

susceptibility for the different methods. Specifically, the matrices Vp and Vs describe the phylo-

genetic and non-phylogenetic between-strain variances in susceptibility for each method and

the covariances between them, whereas the residual covariance matrix Ve describes the within-

strain variance that includes both true within-strain effects and measurement errors. Here,

between strain variation refers to the variation in susceptibility between bacterial strains,

whereas within-strain variation refers to variation in susceptibility between biological repli-

cates of the same strain (i.e., variation within the same strain), including both within-strain

genetic variance and measurement error. Because each biological replicate consists of a mea-

surement from a single method, the covariances of Ve cannot be estimated and were set to 0.

Additionally, the residual variance for the binary variable cannot be estimated and was fixed

at 1.

Models were run for 13 million MCMC generations, sampled every 5,000 iterations with a

burn-in of 3 million generations. Parameter expanded priors were placed on the covariance

matrices, resulting in multivariate F distributions with marginal variances being scaled by

1000. Inverse-gamma priors were placed on the residual variances, with a shape and scale

equal to 0.002. To ensure the model outputs were robust to changes in prior distribution, mod-

els were also fitted with inverse-Wishart priors, which gave quantitatively similar results.

To estimate an effect of phylogeny on the susceptibility of Staphylococcaceae to ISP, we cal-

culated several metrics. First, repeatability, used in the study of quantitative traits and defined

as how ‘repeatable’ a measurement is within a group compared with measurements made

across groups, was calculated from model (2) as Vp/Vp+Ve, where Vp represents the phyloge-

netic (i.e., ‘across group’) variation, and Ve the within strain variation [101–103]. To estimate

the proportion of between-strain variation that can be explained by phylogeny, we calculated

phylogenetic heritability (h2) from model (1). Phylogenetic heritability is defined in two ways

in the literature: either as the variance in average phenotype across strains that can be

explained by phylogeny or as the variance in phenotype that can be explained by phylogeny

[104, 105]. The former averages over the within-strain variation (Vs) such that h2 ¼
Vp

VpþVs
(i.e.,

the proportion of the phylogenetic and non-phylogenetic strain variance explained by phylog-

eny, referred to as “phylogenetic heritability” in this paper), whereas the latter does not and

h2 ¼
Vp

VpþVsþVe
(i.e., the proportion of the total variance explained by phylogeny, defined as the

“phylogenetic heritability of total variance” in this paper). Inter-strain correlations in viral

load between each method were calculated from model (2) Vp matrix as
covx;yffiffiffiffiffiffiffiffiffiffiffiffiffi

varx�vary
p and the

slopes (β) of each relationship as
covx;y
varx

. Parameter estimates stated below are means of the poste-

rior density, and 95% credible intervals (CIs) were taken to be the 95% highest posterior den-

sity intervals.
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To visualise the outputs of our phylogenetic GLMMs as patterns of bacterial susceptibility

across the host phylogeny, we plotted ancestral state reconstructions using methods described

elsewhere (https://doi.org/10.6084/m9.figshare.7756526.v1). These plots take the trait values

for each terminal node (i.e., the experimentally measured susceptibilities of extant bacterial

hosts) and the inferred trait values of ancestral nodes from model (2) and plot them as colour

gradients across the phylogeny, with changes in trait values along branches assumed to be

smooth, fixed rate transitions as expected when following a Brownian model of trait evolution.

Leave-one-out cross-validation

To investigate the ability of the bacterial host phylogeny to predict the susceptibility of a novel

host, leave-one-out cross-validation was used [106], whereby multiple versions of model (1)

were fitted, each with the data from a single bacterial strain removed, and the model chal-

lenged to predict the susceptibility of the “unknown” host given only its evolutionary relation-

ships to other Staphylococcaceae strains and their measured susceptibilities. For comparison, a

null model containing no effect of host phylogeny was fitted. Prediction errors from the leave-

one-out cross-validation and the null model were compared using Wilcoxon rank sum tests

[107] to determine whether information on the relationship between host species significantly

improved the ability of the model to predict the susceptibility of an unknown host.

Results

ISP is a broad host range phage with varying infectivity across

Staphylococcaceae
To investigate the ability of the host phylogeny to explain variation in susceptibility to virus

infection in bacteria–and how different methods may vary in their quantification of phage

host range–we experimentally infected 64 strains of Staphylococcaceae with the bacteriophage

ISP and assessed susceptibility using three distinct methods: plaque assays, OD assays, and

qPCR. When assessed using plaque assays, 64% of host strains were seen to be permissive to

infection with ISP. However, both OD and qPCR measures of susceptibility showed that ISP

was capable of infecting 97% of the host panel (Fig 1). Variation in susceptibility between Sta-
phylococcaceae isolates was seen in every method: the mean PFU/μL of permissive hosts ranged

from 2.2x103 in S. simulans to 8.1x105 in S. aureus strain JW31330OBHY1; the mean propor-

tional decrease in OD ranged from 0.01 in S. aureus strain SAR1218N1 to 0.90 in S. aureus
strain B142S1; and the mean change in qPCR viral load ranged from a 1.2-fold increase in S.

simiae to a ~300,000-fold increase in S. aureus strain DAR06181LC1 (Fig 1). Together, these

results show that ISP is both able to infect a broad range of Staphylococcaceae strains and spe-

cies, and that susceptibility to ISP varies widely across the Staphylococcaceae family.

Susceptibility to ISP across Staphylococcaceae is explained by the host

phylogeny

The phylogeny of Staphylococcaceae host species inferred here is broadly consistent with previ-

ous studies of these taxa [84], with the close phylogenetic relationships between species being

generally well supported and hosts falling into two main clades (Fig 1). The Staphylococcaceae
phylogeny is characterised by high susceptibility to ISP across a large number of isolates, with

smaller clades showing reduced susceptibility to infection (i.e., the clade containing S. aureus
strains AR05S1, AR03918O1, and DAR091813). Some clades show intermediate levels of sus-

ceptibility (e.g., the clade containing S. haemolyticus and S. hominis) while some contain both
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Fig 1. Susceptibility to ISP across a panel of 64 Staphylococcaceae isolates, measured using three distinct methods. Bar

lengths and colour show the mean change in ISP assessed by plaque assay (PFU/μL), optical density (proportion decrease in

OD with infection after 24 hours), and qPCR (log10 fold change in viral load after 24 hours), with error bars representing

the standard error of the mean across at least four biological replicates. The phylogeny of Staphylococcaceae hosts is

presented on the left, with the scale bar representing the number of nucleotide substitutions per site. Strain names are

presented on the right, with non-aureus species in bold and the propagation host labelled with an asterisk (a full version of

the tree is available at https://doi.org/10.6084/m9.figshare.21642209.v1).

https://doi.org/10.1371/journal.ppat.1011433.g001
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permissive and non-permissive strains (e.g., the clade containing S. aureus strains SAR1218N1

and AR05618O1).

Phylogenetic generalised linear mixed models were fitted to the data to determine the pro-

portion of variation in susceptibility explained by the host phylogeny (Table 1). Estimates of

repeatability, phylogenetic heritability, and phylogenetic heritability of total variance for the

binary plaque assay, OD, and qPCR data were close to 1 with narrow credible intervals. The

convergence of phylogenetic heritability and repeatability estimates for the binary plaque

assay, OD, and qPCR data at 1 suggests that the between-strain phylogenetic component

explains a high proportion of the variation in susceptibility with little within-strain variation

or measurement error (Table 1). Estimates of repeatability and phylogenetic heritability for the

continuous (PFU/μL) component of the plaque assay had wide credible intervals spanning

0–1, suggesting that there is no effect of phylogeny when susceptibility is assessed using a con-

tinuous component of plaque assay. The effect of phylogeny on the susceptibility of Staphylo-
coccaceae hosts to ISP can be further seen in ancestral state reconstructions (Figs 2 and 3),

where different clades are seen to have similar susceptibilities to infection. This is particularly

apparent within-S. aureus samples, where clades show either high, intermediate, or low suscep-

tibility to ISP (Fig 3).

To determine if the observed phylogenetic signal is consistent across evolutionary scales,

we reduced the phylogeny to one containing only the S. aureus samples (S8 Table) and one

containing each of the Staphylococcaceae species and a single representative S. aureus strain

(13S44S9) (S9 Table). Similar estimates of repeatability were observed for both the within-

aureus and among-species phylogeny models. However, both models showed a reduced ability

to estimate phylogenetic effect, with wide credible intervals around estimates (apart from esti-

mates for binary plaque assay and qPCR in the within-S. aureus model). It is likely that the

observed difference in ability to estimate heritability between the whole phylogeny model com-

pared to the reduced phylogeny models is down to reduced statistical power, causing the latter

models to struggle to separate the phylogenetic and strain-specific effects.

Finally, to ensure that ISP had not adapted to its propagation host prior to the experiment,

we looked for an effect of distance from the propagation host (S. aureus strain, 13S44S9). No

effect of distance from the propagation host on the susceptibility of Staphylococcaceae to ISP

was found (β = 0.03, 95% credible interval: -1.46, 1.56), suggesting that the observed phyloge-

netic signal was not being driven by adaptation of ISP to the propagation host.

Measures of susceptibility from plaque assays, OD assays, and qPCR are

positively correlated across hosts

Correlations between plaque assay, OD, and qPCR measures of susceptibility to ISP across

bacterial host strains were estimated from the variance-covariance matrices of model (2)

(Table 2). A strong positive inter-strain correlation was observed between susceptibility

Table 1. Estimates for the repeatability and phylogenetic heritability across 64 Staphylococcaceae isolates. Estimates of repeatability are taken from model (2) and esti-

mates of phylogenetic heritability (the proportion of phylogenetic and non-phylogenetic strain variation explained by the host phylogeny) and phylogenetic heritability of

the total variance (the proportion of total variation explained by the host phylogeny) are taken from model (1). PA = plaque assay, CI = credible interval.

Repeatability Phylogenetic heritability Phylogenetic heritability of total variance

Method Mean 95% CI Mean 95% CI Mean 95% CI

Binary PA 1.00 1.00, 1.00 1.00 1.00, 1.00 1.00 1.00, 1.00

Continuous PA 0.00 0.00, 0.00 0.68 0.01, 1.00 0.00 0.00, 0.00

OD 0.98 0.96, 0.99 0.97 0.94, 1.00 0.94 0.88, 0.98

qPCR 0.99 0.99, 1.00 1.00 1.00, 1.00 0.99 0.98, 1.00

https://doi.org/10.1371/journal.ppat.1011433.t001
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measured by OD and qPCR (r = 0.97, 95% CI: 0.92, 1:00), and a strong positive correlation was

observed between the binary measure of plaque assay and OD (r = 0.94, 95% CI: 0.86, 1.00) and

the binary measure of plaque assay and qPCR (r = 0.98, 95% CI: 0.94, 1.00). However, no evi-

dence of a correlation was observed between the continuous plaque assay data and either OD or

qPCR, with correlation coefficients approximately zero and credible intervals spanning -1 to 1

(Table 2). Similar correlations were observed between methods for the within S. aureus (S10

Table) and among-species (S11 Table) phylogenies, with the qPCR:OD correlation being the only

one consistently and significantly positive. A correlation between the binary measure of PA and

the other measures of susceptibility was observed in the among-species phylogeny but not the

Fig 2. Ancestral state reconstruction of susceptibility to ISP measured by OD. Ancestral states were estimated from model (2)

for each node and plotted in colour across the Staphylococcaceae host phylogeny, with the scale bar representing nucleotide

substitutions per site. Colours represent susceptibility of a host to infection with ISP measured by OD (proportion change in optical

density in infected compared to non-infected cultures), with black representing the lowest level of susceptibility and yellow the

highest. Strain IDs are presented on the right, with non-aureus species in bold and the propagation host labelled with an asterisk

(*).

https://doi.org/10.1371/journal.ppat.1011433.g002
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within-S. aureus phylogeny, suggesting that the correlation observed between these measures is

being driven by strong correlations seen at the species level rather than the within-species level.

Mixed evidence for host phylogeny improving the accuracy of susceptibility

predictions

As the host phylogeny explains a large proportion of the variation in ISP susceptibility, it may

allow for the susceptibility of untested Staphylococcaceae strains and species to be predicted

based on their evolutionary relationships to staphylococci with known susceptibilities. To

Fig 3. Ancestral state reconstruction of the S. aureus host strains susceptibility to ISP measured by OD. Ancestral states

were estimated from model (2) for each node and plotted in colour across the Staphylococcus aureus host phylogeny, with the

scale bar representing nucleotide substitutions per site. Colours represent susceptibility of a host to infection with ISP

measured by OD (proportion change in optical density in infected compared to non-infected cultures), with black

representing the lowest level of susceptibility and yellow the highest. Strain IDs are presented on the right and the propagation

host labelled with an asterisk (*).

https://doi.org/10.1371/journal.ppat.1011433.g003
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investigate the ability of the bacterial host phylogeny to predict susceptibility, leave-one-out

cross-validation was used, whereby multiple versions of model (2) were fitted, each with the

data from a single bacterial strain removed, and the model challenged to predict the suscepti-

bility of the “unknown” host given only its evolutionary relationships to other staphylococci

strains and their measured susceptibilities (Fig 4).

For the binary component of plaque assay, the phylogenetic model was able to correctly

predict a strain’s permissiveness to ISP infection in 73% of cases (Fig 4A), whereas a null

model without phylogeny predicted all hosts to be permissive, achieving an accuracy of 63%.

When asked to predict the continuous (PFU/μL) component of plaque assays, errors from the

phylogenetic and null models were indistinguishable (Wilcoxon rank sum test: W43,43 = 886,

p = 0.74), as in the phylogenetic model most of the variation in PFU/μL was partitioned into

the model residuals, causing trait values predicted from the phylogenetic component to cluster

around the across-strain mean (Fig 4B). When asked to predict susceptibility measured by OD

assay (Fig 4C), the errors produced by the phylogenetic model were also not significantly dif-

ferent from those produced by a null model (Wilcoxon rank sum test: W64,64 = 2111, p = 0.77).

However, when predicting viral loads from qPCR data (Fig 4D), the phylogenetic model pro-

duced a small but significant decrease in error compared to the null model (Wilcoxon rank

sum test: W64,64 = 2726, p< 0.01).

In the OD and qPCR assays most strains were both similar in susceptibility to their close rela-

tives and showed susceptibility close to the across-strain mean (Figs 1, 4C, and 4D), causing the

phylogenetic and null models to produce similar predictions for the majority of strains. In cases

where hosts existed in clades with susceptibilities different from the across-strain mean, predic-

tion accuracy increased when phylogeny was included (e.g., qPCR prediction for S. haemolyticus
and S. hominis, OD prediction for S. xylosus and S. pseudoxylosus). However, when hosts had sus-

ceptibility near the across-strain mean and had close relatives that differed from this mean, the

phylogenetic model produced larger errors in prediction than the null model (e.g., both OD and

qPCR predictions for S. schleiferi spp schleiferi). Lastly, where hosts differed from the across-strain

mean but had close relatives that conformed to the mean, both phylogenetic and null models

were poor predictors of susceptibility (e.g., both OD and qPCR predictions for S. schleiferi spp
coagulans and S. aureus SAR1218N1). Together, these results suggest that the host phylogeny

may allow for the limited prediction of host susceptibility, but may mislead predictions in host

strains that differ strongly from the susceptibilities of their close relatives.

Discussion

Closely related host species present similar environments to novel viruses [103, 108], and so

tend to share similar levels of susceptibility [17, 19–21, 26]. Here, we have examined how

Table 2. Inter-strain correlations in susceptibility measures between methods. Numbers show the mean estimates for the correlation strength (r, white cells) and slope

(β, grey cells) between pairs of methods, with 95% credible intervals (CIs) indicated in brackets. The slopes were calculated with the variables in columns as x and variables

in rows as y. Estimates with CIs that do not span zero are highlighted in bold. PA = plaque assay, *value on a probit scale.

Binary PA Continuous PA OD qPCR

Binary PA - - 0.94

(0.86, 1.00)

0.98

(0.94, 1.00)

Continuous PA - - -0.01

(-0.99, 0.99)

-0.01

(-1.00, 1.00)

OD 0.50*
(0.50, 0.50)

-0.00

(-0.12, 0.17)

- 0.97

(0.92, 1.00)

qPCR 0.51*
(0.50, 0.52)

0.01

(-1.30, 0.97)

7.45

(5.53, 9.59)

-

https://doi.org/10.1371/journal.ppat.1011433.t002
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susceptibility to a broad host range phage varies across a diverse panel of Staphylococcaceae
bacteria and determined what proportion of the variation in phage susceptibility is explained

by the relationships between bacterial hosts. ISP was capable of infecting 97% of the host

strains investigated here when measured by OD and qPCR assays, but only 64% of these strains

appeared permissive when tested by plaque assay. We found that variation in susceptibility

across our Staphylococcaceae panel–measured using OD, qPCR, and the binary component of

plaque assays–was largely explained by the host phylogeny, and these effects were seen at both

within-species, and among-species phylogenetic scales. No effects of evolutionary distance

Fig 4. Leave-one-out cross-validation of phylogenetic mixed models fitted to plaque assay, OD, and qPCR data. Predictions of

“unknown” trait values from a leave-one-out cross-validation of phylogenetic model (2) for binary plaque assay (A), continuous (PFU/μL)

plaque assay (B), change in OD with infection (C) and fold changes in viral load measured by qPCR (D). Each datapoint represents an

individual strain of Staphylococcaceae whose measured trait value has been removed from model (2) and predicted from its evolutionary

relationships to other Staphylococcaceae isolates and their trait values. Solid diagonal lines illustrate the location of 1:1 predictions and

dotted lines indicate the root-mean-squared errors around these lines. Orange vertical lines represent the predicted trait values of all

strains from a null (intercept only) model. For panels B, C, and D, points plotted in pink show the S. aureus strains whereas points plotted

in grey show the non-S. aureus strains.

https://doi.org/10.1371/journal.ppat.1011433.g004
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from the propagation host were seen, with the patterns instead being driven by the existence of

host clades sharing similar levels of susceptibility to ISP. Strong positive correlations were seen

between the susceptibility measures from the binary plaque assay, OD, and qPCR assays, but

not between these methods and the PFU/μL measures taken from plaque assays. Together,

these results suggest that ISP has a broad ability to infect bacterial hosts within the Staphylococ-
caceae family, and that a large proportion of the variation in susceptibility to ISP across Staphy-
lococcaceae hosts can be explained by the evolutionary relationship between bacterial hosts.

Recent studies investigating the host range of phages have employed host panels of varying

phylogenetic scales, including analyses across diverse panels of bacterial species [51, 53, 57, 58,

109–111], and focused investigations in a high number of isolates within a single species [54,

55, 59]. This variable diversity of hosts selected for host range screening has often affected our

interpretation of host range, with “broad host range” used to refer to both phages able to infect

many strains within a single species and phage able to infect a large number of species within a

genus. Here, we have demonstrated that ISP is capable of infecting two genera and 17 species

within the Staphylococcaceae family. This expands upon the findings of a previous study which

demonstrated that ISP was able to infect many strains of S. aureus [67] and extends the num-

ber of hosts that the phage can infect. The identification of phages with a broad host range is

advantageous for phage therapy, where broad range phage can be used to treat a larger number

of clinical infections. Having such phages available for study would also be beneficial to our

growing understanding of virus host shifts, as it has been demonstrated that viruses with a

broad host range are more likely to shift between species [112].

Both permissiveness and susceptibility of bacterial hosts to phage are key considerations

when designing phage therapies. In our results, variation in permissiveness and susceptibility

to ISP was apparent, both within S. aureus and among Staphylococcaceae species. This among-

strain and among-species variation is likely due to differences in the molecular pathways influ-

encing host range. For example, previous studies on phages have demonstrated that the highly

conserved wall teichoic acid (WTA) serves as the primary receptor for staphylococcal phages

[79], contributing to their broad host range. Further studies have characterised the anti-phage

defence systems present in S. aureus and found that a combination of type I and type III

restriction modification systems prevent the uptake of DNA originating from other species

[113] and between S. aureus lineages [114], respectively, meaning that patterns of restriction

can be clonal complex specific and lead to independent lineage evolution [115]. A Genome-

wide association study (GWAS) aiming to identify genes associated with susceptibility mea-

sured by plaque assays identified putative loci affecting the host range of S. aureus bacterio-

phages, including: the TarJ, TagH, and TarP proteins which are involved in the production

and transport of WTA to the bacterial cell surface; HsdS which determines the sequence speci-

ficity of the SauI restriction modification system; and several prophage associated genes, sug-

gesting that superinfection immunity is playing a role in the susceptibility of S. aureus to

bacteriophage [63]. Given the increase in phage host range observed in our study when suscep-

tibility was assessed by either OD or qPCR, it is likely that future GWAS approaches based on

susceptibility assessed by different methods may reveal further molecular pathways involved in

bacteriophage host range. Further investigation of ISP to identify the specific molecular path-

ways by which it interacts with its host will improve our understanding of the factors that con-

tribute to variation in susceptibility across bacterial hosts, allowing us to utilise ISP more

efficiently as a therapeutic.

Bacterial evolution is known to involve several processes that could disrupt the phylogenetic

heritability of susceptibility to phage. Notably, cell surface receptors can be easily altered by

point mutations and components of phage resistance may be frequently gained and lost

through horizontal gene transfer, which can lead to high levels of variation in the phage
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defence systems present in bacterial genomes [33, 116–120]. Previous investigations have

shown that the carriage of prophage and the transfer of restriction modification systems can

be lineage specific in bacteria [36, 115]. However, the extent to which these mechanisms are

phylogenetically constrained is unknown. Despite the potential for horizontal gene transfer

and large effect point mutations to disrupt the phylogenetic signal in phage susceptibility, our

models suggest that the evolutionary relationships between a diverse panel of bacterial hosts

can capture a large proportion of the variation in susceptibility to ISP. If horizontal gene trans-

fer is occurring more frequently between closely related strains of Staphylococcaceae, then

their influence on phage susceptibility may be phylogenetically conserved and this variation

may have been captured in the core genome phylogeny. In any case, our results indicate that

more closely related Staphylococcaceae strains and species are more likely to share similar sus-

ceptibilities to phage infection, consistent with patterns seen in previous studies of animal

hosts and viruses [17, 19–21, 26]. Additionally, while the evolutionary relationship between

hosts had been shown to influence susceptibility within a single species of Staphylococcus [63],

we have found that the relationship between hosts can explain susceptibility over a much

broader phylogenetic scale, across genera. Further work should aim to characterise the mecha-

nisms underpinning the differences in susceptibility reported here. In particular, the role of

horizontal gene transfer [33], superinfection immunity [35], and recombination [34] in the

resistance of Staphylococcaceae to phage infection, as well as the evolutionary scale at which

the relationship between host species is unable to explain variation to susceptibility.

In this study, we used three methods to assess the susceptibility of Staphylococcaceae to a

bacteriophage: plaque assays, optical density assays, and qPCR. Susceptibility measured by

binary plaque assay, OD, and qPCR were strongly positively correlated. However, no correla-

tion was seen between the continuous component of plaque assay and either other method.

While OD and qPCR suggest a broad host range for ISP, plaque assays underestimated the sus-

ceptibility of the host panel, with only 63% of strains appearing permissive to infection. This

discrepancy may in part be due to differences in the environmental conditions imposed by

each assay on the bacteria and phage. Bacteria in the plaque assay are sessile and aerobic,

whereas bacteria are planktonic and anaerobic in the OD and qPCR assays. For facultative

anaerobes, such as Staphylococcus, anoxia has been shown to lead to the differential expression

of over 200 genes influencing a multitude of biological processes [121–126]. While the ability

of phage to infect Staphylococcaceae species under varying oxygen concentrations is under-

studied, it is likely that differences in oxygen availability would influence bacterial physiology

in a way that may affect phage infection [125, 127]. Further investigation into the influence of

oxygen availability on phage infection, and the physiological relevance of this to various clini-

cal infections may improve our ability to effectively utilise ISP as a therapeutic and explain the

lack of correlation between the plaque assays and OD and qPCR used here. Interestingly, we

observe a strong positive correlation between OD and qPCR even though both assays are mea-

suring different aspects of infection, with OD providing a measure of damage done to the host

and qPCR a measure of virus replication and persistence. That these two infection traits are

strongly correlated suggests that staphylococcal phage immunity is strongly tied to their ability

to disrupt and prevent phage replication, as opposed to mitigating damage while tolerating

phage replication.

Being able to predict and prevent emerging infectious diseases is a major goal of scientific

research, and one of the first steps of that process is being able to predict whether a host will be

susceptible to a novel pathogen [128]. While our phylogenetic models suggest that a high pro-

portion of the variation in susceptibility between host species can be attributed to the relation-

ship between hosts, they showed a limited ability to predict the susceptibility of an unknown

host given only its relationship to other hosts and their susceptibilities. For example, S. simiae
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is isolated within the phylogeny, with few close relatives, and had a poorly estimated suscepti-

bility due to the distance between it and its nearest neighbour. Several additions may improve

the accuracy of predictions of susceptibility using these models. Firstly, improving the depth of

our phylogeny–i.e., adding more strains and species that reduce the number of isolated strains

on long evolutionary branches–would increase the number of observations that the model can

use to predict susceptibility. Secondly, furthering our understanding of the mechanisms by

which susceptibility can change in a non-phylogenetically tractable way (i.e., via HGT, super-

infection immunity, or recombination) may improve our ability to predict susceptibility when

phylogeny is not informative. Predictive models that incorporate the evolutionary relation-

ships between hosts (core genome phylogeny) alongside additional information about the

presence of anti-phage defence systems and prophages may be better able to predict suscepti-

bility in instances where phylogeny alone is not informative. Alternative metrics, such as

genome composition bias, have been shown to outperform phylogeny in the prediction of

infection traits [129], and may make useful additions to future predictive models [128–130].

Understanding the complexity of factors that contribute to viral susceptibility, and how they

interact with one another, is an important step towards the prediction of susceptibility in

unknown hosts. An ability to predict the susceptibility of a host to novel pathogens, particu-

larly how susceptible a host will be to infection, would allow us to better prioritise resources to

the prevention and control of emerging infectious diseases in humans and wildlife.

Together, our results demonstrate that the bacterial host phylogeny is an important deter-

minant of phage susceptibility and replication across novel hosts, and that the relationship

between host species may be a useful addition to models aiming to predict virus host range

both in the context of emerging infectious disease and phage therapy. Further work is required

to understand the specific interactions underlying variation in ISP susceptibility across bacte-

rial hosts; the relationship between host damage, virus replication, and virus persistence in this

system; and how the patterns of phage susceptibility across bacterial phylogenies may vary

under different infection conditions and contexts.
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