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Abstract 

Objective  Precision medicine requires reliable identification of variation in patient-level outcomes with different 
available treatments, often termed treatment effect heterogeneity. We aimed to evaluate the comparative utility of 
individualized treatment selection strategies based on predicted individual-level treatment effects from a causal forest 
machine learning algorithm and a penalized regression model.

Methods  Cohort study characterizing individual-level glucose-lowering response (6 month reduction in HbA1c) in 
people with type 2 diabetes initiating SGLT2-inhibitor or DPP4-inhibitor therapy. Model development set comprised 
1,428 participants in the CANTATA-D and CANTATA-D2 randomised clinical trials of SGLT2-inhibitors versus DPP4-
inhibitors. For external validation, calibration of observed versus predicted differences in HbA1c in patient strata 
defined by size of predicted HbA1c benefit was evaluated in 18,741 patients in UK primary care (Clinical Practice 
Research Datalink).

Results  Heterogeneity in treatment effects was detected in clinical trial participants with both approaches (propor-
tion predicted to have a benefit on SGLT2-inhibitor therapy over DPP4-inhibitor therapy: causal forest: 98.6%; penal-
ized regression: 81.7%). In validation, calibration was good with penalized regression but sub-optimal with causal 
forest. A strata with an HbA1c benefit > 10 mmol/mol with SGLT2-inhibitors (3.7% of patients, observed benefit 
11.0 mmol/mol [95%CI 8.0–14.0]) was identified using penalized regression but not causal forest, and a much larger 
strata with an HbA1c benefit 5–10 mmol with SGLT2-inhibitors was identified with penalized regression (regression: 
20.9% of patients, observed benefit 7.8 mmol/mol (95%CI 6.7–8.9); causal forest 11.6%, observed benefit 8.7 mmol/
mol (95%CI 7.4–10.1).

Conclusions  Consistent with recent results for outcome prediction with clinical data, when evaluating treatment 
effect heterogeneity researchers should not rely on causal forest or other similar machine learning algorithms alone, 
and must compare outputs with standard regression, which in this evaluation was superior.
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Background
Randomized controlled trials (RCTs) are the gold stand-
ard for understanding the effect of treatments on clinical 
outcomes. Average treatment effects from RCTs are then 
used to support evidence-based clinical decision making 
for individual patients. This application of a population-
level result to individual treatment selection may result 
in sub-optimal decision making, as the average treatment 
effects may only represent the individual experience of a 
subset of patients [1]. As a result, there is great interest in 
developing precision medicine approaches to treatment, 
by characterizing patient sub-populations for which a 
treatment is most beneficial, or harmful. Such variabil-
ity in patient level outcomes is known as treatment effect 
heterogeneity [2, 3], and is often obscured by average 
treatment effects. Importantly, if differences are clinically 
significant, characterizing treatment effect heterogeneity 
may allow specific treatments to be targeted at patients 
most likely to benefit.

Methods to evaluate treatment effect heterogeneity are 
not well established. One-variable-at-a-time subgroup 
analysis approaches have been shown to be rarely rep-
licable due to low power, and will miss treatment effect 
heterogeneity induced by complex covariate relationships 
[3]. Traditional regression-based models can be used to 
estimate treatment effect heterogeneity across multiple 
variables by defining potential treatment-covariate inter-
actions for each covariate of interest, but require these 
covariates to be specified by the analyst. Results may 
in particular be subject to the risk of Type I Error rate 
inflation (false positives) with small sample sizes, which 
may not be solved by penalized or shrinkage methods 
[4]. Recently, machine learning algorithms, in particular 
causal forest, have been developed to specifically assess 
treatment effect heterogeneity and represent a data-
driven alternative to regression-based approaches poten-
tially overcoming challenges associated with reliance on 
manual input and prespecification of treatment-covariate 
interaction terms [5, 6]. Whilst in a recent simulation 
study causal forest outperformed a two-step regression 
approach that estimated differential treatment effects by 
building separate models in each treatment arm [7], its 
comparative utility relative to regression for the purpose 
of treatment selection informed by treatment effect het-
erogeneity has not, to our knowledge, been previously 
assessed in applied studies using clinical data [8].

This issue of sub-optimal (personalized) decision mak-
ing is potentially evident in the pharmacological man-
agement of Type 2 diabetes; a heterogenous chronic 
condition with multiple treatment options prescribed 
with the primary clinical purpose of lowering blood 
glucose (glycated hemoglobin [HbA1c]) levels. SGLT2-
inhibitors (SGLT2-i) and DPP4-inhibitors (DPP4-i) are 

two commonly prescribed glucose-lowering treatment 
options [9], recommended after metformin in type 2 dia-
betes clinical guidelines [10]. Whilst RCT data suggest 
that the glucose-lowering efficacy of both treatments is 
on average similar [11], treatment effect heterogeneity is 
plausible due to the marked variation in the clinical char-
acteristics of people with type 2 diabetes, and the differ-
ing mechanisms of action of the two drug classes [12]. As 
such, our primary objective in this study was to compare 
individualized treatment selection strategies based on 
predicted treatment effects from a causal forest algo-
rithm and a penalized regression model, using the clini-
cally relevant context of selecting between SGLT2-i and 
DPP4-i therapy for people with type 2 diabetes.

Methods
Overview
Two treatment effect heterogeneity models (causal for-
est and penalized regression) were developed to predict 
HbA1c-lowering efficacy with SGLT2-i and DPP4-i ther-
apy using individual-level participant data from two large 
RCTs. Performance of individualized treatment selection 
strategies derived from each model was evaluated in rou-
tine clinical data.

Data sources and Handling
Clinical trial data (development dataset)
Individual participant data from 2 active comparator 
glucose-lowering efficacy RCTs of SGLT2-i (Canagli-
flozin) and DPP4-i (Sitagliptin) therapy (2010–2012) 
in people with type 2 diabetes were accessed from the 
Yale University Open Data Access Project (https://​yoda.​
yale.​edu/). Data on participants randomized to either 
SGLT2-i or DPP4-i in the CANTATA-D and CANTATA-
D2 were pooled for analysis; these trials differed only in 
background glucose-lowering therapy not in any other 
inclusion criteria. Trial results to compare the average 
HbA1c-lowering efficacy of the two therapies have been 
previously published [13, 14].

Routine clinical data (test dataset)
Anonymized primary care electronic health records were 
extracted from UK Clinical Practice Research Datalink 
(CPRD) GOLD [15]. New users of SGLT2-i and DPP4-i 
therapies (i.e. patients initiating one of these therapies for 
the first time) after January 1st, 2013, were identified, fol-
lowing our previously published protocol [16]. We then 
excluded patients prescribed a SGLT2-i or DPP4-i as 
first-line treatment (as this is outside of treatment guide-
lines) [10], patients co-treated with insulin as response 
will reflect (poorly recorded) insulin titration and partici-
pants in the RCTs were all non-insulin treated, patients 
with eGFR < 45 (where SGLT2-i prescription was usually 

https://yoda.yale.edu/
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contraindicated at the time of data collection), patients 
with a missing baseline HbA1c (the major determinant 
of HbA1c response) or a baseline HbA1c < 53 (as this is 
threshold for glucose-lowering medication initiation in 
clinical guidelines) or presenting with severe hyperglyce-
mia of ≥ 120 mmol/mol. Baseline HbA1c was defined as 
the closest HbA1c to drug initiation within –91/ + 7 days.

Predictors
Across both data  sources, the following clinical features 
were extracted for each individual: baseline HbA1c, age 
at treatment, sex, estimated glomerular filtration rate 
(eGFR), Alanine Aminotransferase (ALT), body mass 
index (BMI), High-density lipoprotein cholesterol (HDL-
c), Low-density lipoprotein cholesterol (LDL-c), Tri-
glycerides, Albumin, and Bilirubin. These features were 
selected due to their availability in a majority of individu-
als in both the trial and routine data. Diabetes duration 
was redacted from the RCT data so was not evaluated. 
Ethnicity was not evaluated as a candidate predictor as 
trial participants were predominantly of White ethnic-
ity. In CPRD, where a systematic baseline assessment of 
clinical features was not available, for all biomarkers we 
used the most recent value in the 2  years prior to drug 
initiation available in the primary care record.

Confounders
In CPRD, we also identified potential confounders, 
comprising the number of current, and ever, prescribed 
glucose-lowering drug classes, ethnicity (white, Asian, 
black, mixed or other), smoking status (active, ex, or non 
smoker), diabetes duration, history of hypertension, car-
diovascular disease, heart failure, chronic kidney disease, 
or microvascular complications (neuropathy, nephropa-
thy, or retinopathy), and history of non-adherence on 
first line therapy, with non-adherence defined as previ-
ously published [17].

Missing data handling
In the trials, missing values in all covariates were imputed 
using missForest, a random forest based imputation 
method [18]. For validation of the model developed in 
the trials in CPRD, we conducted complete case analysis, 
as missing values were considered likely to be missing not 
at random [19].

Statistical modelling
Two treatment effect heterogeneity models were 
developed using RCT training data. During model 
development the prediction target was the achieved 
HbA1c 6  months after drug initiation (a measure 
of glucose-lowering efficacy), evaluated as a con-
tinuous measure. In the trials, this was defined as the 

last-observation-carried-forward HbA1c from 3-months 
if the 6-month value was not available. In CPRD, this 
was defined as the closest HbA1c to 6  months (within 
3–15  months) after initiation, on unchanged glucose-
lowering therapy. Subsequently, utility of the models for 
selecting optimal treatment for patients was evaluated 
in routine clinical electronic medical record data using a 
novel framework [12].

Model development in trial data: penalized regression
A multivariable linear regression model was fitted to 
the training dataset composed of all baseline features 
(see Predictors section), the outcome and the treatment 
indicator. Each of the eleven continuous baseline fea-
tures was modelled as a 3-knot restricted cubic spline 
to allow for non-linearity. Interaction terms for each 
baseline feature:treatment indicator pair were included 
to estimate treatment effect heterogeneity. No variable 
selection was applied, but optimal penalty factors, based 
on Akaike information criterion (AIC), were estimated 
separately for main effects, non-linear effects, and inter-
action terms, using an approach similar to ridge regres-
sion (pentrace function in R package RMS) [20]. We 
compared performance of this model with an alternative 
of Lasso regression, fitted using the same baseline feature 
set. Optimism-adjusted model fit (R2), root mean square 
error (RMSE), the calibration slope, and calibration-in-
the-large were estimated, although these test the ability 
of a model to predict the outcome, and are therefore of 
limited use when evaluating treatment effect heteroge-
neity. Relative feature importance, in terms of treatment 
effect heterogeneity, was assessed by ranking features by 
the proportion of chi-squared explained by the interac-
tion term for that feature, with bootstrapped confidence 
intervals.

Model development in trial data: causal forest
A causal forest model was also fitted over the train-
ing dataset. The causal forest model was built over 5000 
causal trees and used default tuning parameters for grow-
ing the many tree structures. Tuning parameters used for 
growing an individual causal tree included setting a mini-
mum of ten patients within a determined subgroup and 
splitting the training dataset equally into two separate 
random samples for first determining the tree structure, 
and then utilising the second sample for treatment effect 
estimation at each determined subgroup. To assess the 
sensitivity of the model to the number of casual trees we 
repeated the model building step with 50, 100, 200, 500, 
1000, 2500, 7500, and 10,000 trees. Variable importance 
measures computed from trees in the forest highlight 
the covariates selected most frequently by the model. 
However, classification and regression trees (CART) 
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and associated ensemble structures (e.g., random for-
ests) have been shown to be biased towards splitting over 
covariates that offer many potential values to split on 
(e.g., continuous covariates) as compared to covariates 
with few categories (e.g., binary covariates). To account 
for this problem of biased variable selection, adjusted fea-
ture importance in the form of p-values were determined 
using a permutation-based test [21, 22]. A p-value for 
each covariate is computed by determining the propor-
tion for which importance measures from forest models 
over permuted responses are greater than the measure 
obtained for a forest using an unpermuted response.

Model evaluation in routine clinical data
Utility of the two treatment effect heterogeneity model-
ling approaches for selecting the likely most effective 
therapy for patients was tested in CPRD. The first step 
was to estimate the difference in the in predicted HbA1c 
outcome (the conditional average treatment effect; 
Table  1) for each patient using both models. The accu-
racy of the CATE cannot be evaluated at the patient-level 
(as patients receive either SGLT2-i or DPP4-i but not the 
other). However, it can be used to define and test a treat-
ment selection decision rule in patient strata defined by 
the difference in predicted HbA1c outcome, as follows: 
For each model, the difference in HbA1c outcome was 
estimated for each patient. For penalized regression this 
was the difference in predicted HbA1c outcome on the 
two therapies. In the causal forest algorithm, the differ-
ence in HbA1c outcome is explicitly estimated. Strata 
were then defined by decile of predicted difference in 

predicted HbA1c outcome, and by clinically defined 
HbA1c cut-offs of predicted difference in HbA1c out-
come (SGLT2i benefit: ≥ 10, 5–10, 3–5, 0–3  mmol/mol; 
DPP4i benefit: ≥ 5, 3–5, 0–3  mmol/mol), with 3  mmol/
mol used widely as minimally important difference in 
clinical trials [23]. To compare performance of each 
model, we tested whether within-strata HbA1c outcome 
differences were consistent with predictions. Linear 
regression models were used to contrast HbA1c out-
come in concordant (i.e. therapy received is the therapy 
predicted to have greatest HbA1c lowering) versus dis-
cordant (i.e. therapy received is the predicted non-opti-
mal therapy) subgroups. As CPRD patients were not 
randomized to treatment, models were adjusted for all 
features used in the treatment selection model (see Pre-
dictors section), and confounding factors (see Confound-
ers section). Statistical analysis used R software, with 
causal forest fitted using the grf package [24].

Sensitivity analysis for model evaluation in routine clinical 
data
We ran three sensitivity analysis to test the robustness 
of the CPRD validation: 1); as patients with a missing 
HbA1c outcome were excluded, we evaluated the poten-
tial influence of informative drop-out by repeating the 
validation incorporating inverse-probability of censor-
ing weights (IPCW), with double robust adjustment 
for predictors and confounders in the outcome model. 
IPCW weights were derived from a logistic regres-
sion model with censoring status (Yes/No) as the out-
come and incorporating all predictors and confounders 

Table 1  Primer on Conditional Average Treatment Effect (CATE) estimation

Evaluation framework

In a potential outcomes framework, the causal effect of a treatment on a patient is defined by the difference in outcomes, where the outcomes are 
obtained for two different treatment assignments. The conditional average treatment effect (CATE) is defined as the average over individual treatment 
effects for a subpopulation determined by specific patient characteristics. The estimation of such subgroup-specific treatment effects has tradition-
ally relied on a manual comparison of pre-defined patient sub-populations. However, this is not necessarily possible for subgroups determined by 
unknown covariate relationships or for higher-dimensional datasets. We evaluate two different methods that are able to estimate conditional average 
treatment effects, which represent differential patient responses to a treatment allocation

Penalized regression

Standard maximum likelihood regression models can estimate CATE by including treatment-by-covariate interaction terms. For each covariate, the 
interaction term coefficient(s) represent the estimated differential treatment effect associated with that covariate. The model can then be used to 
predict the counterfactual outcome on each therapy, conditional on the features included as interaction terms. The difference between the predicted 
outcome on each therapy provides an estimate of the patient-level treatment effect. Penalized regression can be used to reduce overfitting and poten-
tially improve prediction in new data

Causal forest

Causal forest is a data-driven ensemble method built over many individual causal trees to estimate the CATE [6]. A causal tree [5] modifies the tradi-
tional CART structure [25] to explicitly optimise for treatment effect heterogeneity and generates estimates at the leaves of the trees. Causal trees utilise 
a separate sample to detect the tree structure and another sample to estimate the treatment effects, this double-sample approach (also referred to as 
honest) helps to overcome the problem of over-fitting. Similar to the random forest for outcome prediction, each causal tree within the causal forest is 
built over a bootstrap sample from the training data and the forest averages over the tree generated treatment effects. In general, use of a forest over a 
large number of individual trees has been shown to more stable and produce more accurate results than an individual tree [21].
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described above including all patients with complete 
baseline data but allowing missing outcome data; 2); to 
evaluate the sensitivity of treatment effect outcomes to 
non-random treatment assignment we repeated the vali-
dation incorporating inverse-probability of treatment 
weights (IPTW), again derived from logistic regression 
incorporating all predictors and confounders and all 
patients with complete baseline data. IPCW were mul-
tiplied with IPTW and stabilised to define final model 
weights [26, 27]; 3) to assess whether differences in gly-
caemic outcome could reflect the fact DPP4i are most 
commonly prescribed at first intensification of glucose-
lowering therapy (second-line,  after initial metformin), 
while SGLT2i are most commonly third-line treatments, 
we repeated the primary model evaluation in the subset 
of patients initiating DPP4i or SGLT2i as second-line 
therapy only.

Results
Participant cohort
Baseline clinical characteristics of the trial cohort used 
for model development (n = 1,428) are reported in 
Table  2. 61 participants were excluded as they had no 

on-treatment HbA1c outcome available (sFlowchart  1). 
Mean achieved HbA1c at 26  weeks was 53.0 (SD 9.8) 
mmol/mol on SGLT2-i and 54.1 (SD 10.9) mmol/mol on 
DPP4-i.

Model development
Penalized regression
In the development cohort the median average treatment 
effect was estimated as a 1.9 (IQR 0.5, 3.6) greater HbA1c 
reduction with SGLT2-i compared to DPP4-I (sFig-
ure 1a). There was evidence of heterogeneity of treatment 
effect with a predicted greater HbA1c reduction with 
SGLT2-i versus DPP4-i for 1,216 (81.7%) of trial partici-
pants. Optimism-adjusted model performance statistics 
for predicting HbA1c outcome were: RMSE 8.1 (95%CI 
7.6, 8.4) mmol/mol, R2 0.30 (95%CI 0.26, 0.36), calibra-
tion slope 0.98 (95%CI 0.98, 1.00), calibration in the 
large 0.86 (95%CI -0.19. 0.95). Performance of the Lasso 
regression based model was similar (sTable 2), so only the 
primary penalised regression model was taken forward 
for external validation.

Table 2  Baseline clinical characteristics by initiated drug class in CANTATA D and D2 randomised trials, and Clinical Practice Research 
Datalink (UK primary care data). Data are mean (SD) unless stated

Derivation set: CANTATA D and D2 trials Validation set: Clinical Practice Research 
Datalink

SGLT2-inhibitor 
(n = 715)
[Canagliflozin 300 mg]

DPP4-inhibitor 
(n = 713)
[Sitagliptin 100 mg]

SGLT2-inhibitor 
(n = 11,682)
[Any class]

DPP4-inhibitor 
(n = 7,059)
[Any class]

Trial (n %)
  CANTATA-D 355 (49.7) 356 (49.9) NA NA

  CANTATA-D2 360 (50.3) 357 (50.1) NA NA

Age (years) 55.9 (9.4) 56.0 (9.4) 59.9 (9.1) 64.0 (10.8)

Sex (n %)
  Female 355 (49.7) 339 (47.5) 4,393 (37.6) 2,593 (36.7)

  Male 360 (50.3) 374 (52.5) 7,289 (62.4) 4,466 (63.3)

HbA1c (mmol/mol) 63.9 (9.9) 63.9 (9.9) 76.8 (14.2) 72.4 (13.2)

BMI (kg/m2) 31.5 (6.6) 31.9 (6.5) 34.4 (6.6) 32.2 (6.4)

eGFR (mL/min/1.3 m2) 88.5 (18.2) 88.2 (19.5) 88.8 (14.4) 82.9 (17.2)

HDL-c (mmol/L) 1.2 (0.3) 1.2 (0.3) 1.1 (0.3) 1.2 (0.3)

LDL-c (mmol/L) 2.7 (0.9) 2.7 (0.9) 2.4 (1.0) 2.3 (0.9)

Triglycerides (mmol/L) 2.1 (1.4) 1.9 (1.2) 2.3 (1.4) 2.1 (1.3)

ALT (IU/L) 28.8 (18.5) 28.2 (14.7) 36.5 (44.2) 33.9 (56.9)

Albumin (g/L) 41.0 (3.3) 41.0 (3.3) 42.4 (4.0) 42.4 (3.9)

Bilirubin (µmol/L) 8.3 (4.0) 8.0 (0.9) 9.8 (5.0) 10.0 (5.1)

Number of concurrent glucose-lowering drugs (n %)
  0 0 0 187 (2.6) 665 (5.7)

  1 355 (49.7) 356 (49.9) 2818 (39.9) 6947 (59.5)

  2 360 (50.3) 357 (50.1) 3268 (46.3) 3914 (33.5)

  3 0 0 786 (11.1) 156 (1.3)
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Causal forest
The median average treatment effect in the development 
cohort was a 1.6 (IQR 0.6, 2.5) greater HbA1c reduc-
tion with SGLT2-i therapy (sFigure  1b). Average treat-
ment effects were consistent when varying the number 
of causal trees used to fit the model (sTable 3).There was 
evidence of heterogeneity in individual treatment effects 
(p = 0.005), although 1,408 (98.6%) of participants were 
predicted to have a greater benefit on SGLT2-i therapy.

Model specification
Most influential predictors of differential treatment effect
Figure 1 reports the most influential predictors for differ-
ential treatment effect for the regression and causal forest 
approaches. Baseline HbA1c, age, ALT and triglycerides 
were the top 4 predictors identified by both approaches.

Model external validation: performance for treatment 
selection in routine clinical data
Utility for selecting treatment was evaluated in 18,741 
patients initiating DPP4-i (n = 11,682), or SGLT2-
i (n = 7,059) in CPRD (sFlowchart), after excluding 
14,930 patients with missing outcome HbA1c and 8,136 
patients with missing values for other predictors. Out-
come HbA1c was observed at a median of 6  months 

(Interquartile range 4–8 months). Patients initiating each 
therapy differed in all clinical characteristics except sex 
and baseline albumin (Table 2). In particular, patients ini-
tiating DPP4-i were on average older than those initiat-
ing SGLT2-i (mean 64.0 versus 59.9  years), had a lower 
baseline HbA1c (mean 72.4 versus 76.8 mmol/mol), and 
had lower BMI (mean 32.2 versus 24.4 kg/m2) and eGFR 
(mean 82.9 versus 88.8 mL/min/1.3 m.2

The distribution of model predicted treatment differ-
ence for the regression and causal forest approaches are 
shown in Fig.  2. The regression model predicted that 
87% (n = 16,276) of patients would benefit on SGLT2-
i and 13% (n = 2,465) on DPP4-i. In contrast, the causal 
forest model predicted that nearly all patients (99.7% 
[n = 18,689]) would benefit on a SGLT2-i.

From the regression model there was good calibra-
tion between observed and predicted estimates, across 
deciles of predicted treatment effect (Fig.  2, right 
panel). This included reliably identifying the smaller 
group of patients with a predicted treatment benefit on 
DPP4-i. Although the causal forest model did reliably 
identify patients with differences in observed treatment 
effect, the model did not show good calibration (Fig. 2). 
The causal forest predicted treatment effects were in a 
much narrower range than observed treatment effects, 

Fig. 1  Relative feature importance for treatment selection with SGLT2-inhibitor and DPP4-inhibitor treatment, for all clinical features included in 
model development. a Penalized regression. Feature importance reflects the proportion of chi-squared explained by drug-by-covariate interaction 
terms for each clinical feature in multivariable analysis, as these represent differential treatment effects for the two therapies. Bars represent 
bootstrapped 95% confidence intervals. b Causal forest model. Adjusted importance (using p-values) represent the covariates selected most often 
by trees within the causal forest, after controlling for biased variable selection. Permutation-based tests generate p-values for each covariate, using 
an understanding that spurious splits in trees would continue to occur in the presence of a permuted outcome unless these splits also reflect the 
true underlying association. For the purpose of comparison, inverse p-values are presented as relative importance measures
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and the model did not identify a patient strata with 
an observed treatment benefit on DPP4-i. In strata 
defined by clinical cut-offs for predicted treatment 
benefit (Table  3), the regression model reliably identi-
fied 687 (3.7%) patients with a marked (≥ 10  mmol/

mol) observed benefit on SGLT2-i. This group was not 
identified using the causal forest model. The regression 
model also identified a much larger group of patients 
with an observed benefit with SGLT2-i of 5–10 mmol/
mol (n = 3,920 [20.9%]) compared to the causal for-
est model (n = 2,175 [11.6%]). Similarly, a group with 

Fig. 2  Final treatment selection model performance for A Penalized regression and B Causal forest in CPRD validation data. Left panels show 
the distribution of predicted individualized treatment effects. Negative values reflect a predicted benefit on SGLT2-inhibitor treatment, positive 
values reflect a predicted HbA1c benefit on DPP4-inhibitor treatment. Right panels show calibration between observed and predicted treatment 
effects, across strata defined by decile of predicted treatment effect. Estimates are adjusted for clinical features in the treatment selection model 
(see Methods: Predictors section), and potential confounders (see Methods: Confounders section) to improve precision and control for potential 
differences in covariate balance within strata
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a > 3  mmol/mol benefit on DPP4-i was identified with 
the regression model (n = 270 [1.4%]) but not the causal 
forest.

Sensitivity analysis
Calibration of both models was similar when incorpo-
rating IPCW and IPTW into the CPRD model valida-
tion, and when restricting the CPRD cohort to patients 
initiating SGLT2-i or DPP4-I as second-line therapy 
(sFigures 2–4).

Discussion
Our study provides a comparison of causal forest and 
regression approaches to detect and characterize treat-
ment effect heterogeneity, as well as to operationalize 
it for treatment selection. Specifically, we observed that 
while both approaches detect treatment effect heteroge-
neity in glucose-lowering efficacy for SGLT2-i and DPP4-
i, this translates into marked differences in predicted 
treatment benefit for individual patients. Through exter-
nal validation using real-world (routinely collected) data, 
we establish the utility of both approaches for identifying 

strata with an observed benefit on one treatment over 
the other. We found a regression-based model performed 
substantially better than causal forest for identifying 
strata with a clinically important observed treatment 
benefit on SGLT2-i compared to DPP4-i. In contrast to 
causal forest, the regression model was also able to iden-
tify a smaller strata with a likely observed treatment ben-
efit on DPP4-i.

From a methodological perspective, the analysis adds 
to the growing literature showing limited, if any, perfor-
mance improvement for machine learning over regres-
sion in tasks utilizing structured clinical data [28–30], 
although our study provides important new evidence as 
previous evaluations have focused on performance for 
risk prediction rather than treatment effect heterogene-
ity. Whilst a recent simulation study found consider-
able advantages of causal forest over two-step regression 
(using two separate regression models to estimate treat-
ment effects in each treatment arm) with non-linear 
and interactive covariates, and with high-dimensional 
covariates [7], no performance advantage was seen in our 
real-world evaluation. Indeed, in clinical trial data, with 

Table 3  External validation in CPRD: Observed treatment effects across strata defined by clinical cut-offs of predicted treatment 
benefit. Estimates are adjusted for clinical features in the treatment selection model (to improve precision and control for potential 
differences in covariate balance within subgroups)

Observed treatment difference (mmol/mol; negative favors SGLT2-i)

Predicted HbA1c difference N patients Treatment 
difference (mean)

Lower 95% CI Upper 95% CI p-value

Penalized regression model external validation
  Overall 18,741 -4.5 -5.0 -4.1 < 0.001

  Strata
    SGLT2-i benefit by any mmol/mol 15321 -5.2 -5.7 -4.7 < 0.001

    SGLT2-i benefit by ≥ 10 mmol/mol 1173 -10.7 -13.0 -8.4 < 0.001

    SGLT2-i benefit by 5–10 mmol/mol 4503 -7.6 -8.6 -6.6 < 0.001

    SGLT2-i benefit by 3–5 mmol/mol 3517 -5.0 -5.9 -4.0 < 0.001

    SGLT2-i benefit by 0–3 mmol/mol 6128 -2.3 -3.0 -1.6 < 0.001

    DPP4-i benefit by any mmol/mol 3420 0.3 -0.7 1.3 0.506

    DPP4-i benefit by 0–3 mmol/mol 2972 0.0 -1.0 1.1 0.937

    DPP4-i benefit by ≥ 3 mmol/mol 448 2.9 -0.6 6.5 0.107

Causal forest external validation
  Overall 18741 -4.5 -4.9 -4.0 0.003

  Strata
    SGLT2-i benefit by any mmol/mol 18689 -4.5 -5.0 -4.1 < 0.001

    SGLT2-i benefit by ≥ 10 mmol/mol 0 NA NA NA NA

    SGLT2-i benefit by 5–10 mmol/mol 2175 -8.7 -10.0 -7.3 < 0.001

    SGLT2-i benefit by 3–5 mmol/mol 8676 -6.0 -6.6 -5.3 < 0.001

    SGLT2-i benefit by 0–3 mmol/mol 7838 -1.1 -1.7 -0.4 0.001

    DPP4-i benefit by any mmol/mol 52 10.3 -8.6 29.3 0.269

    DPP4-i benefit by 0–3 mmol/mol 52 10.3 -8.6 29.3 0.269

    DPP4-i benefit by ≥ 3 mmol/mol 0 NA NA NA NA
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a limited set of candidate predictors reflecting param-
eters commonly measured in people with type 2 diabetes 
as part of their routine care, we found the causal forest 
algorithm outputted substantially more conservative 
estimates of treatment effect heterogeneity compared 
to penalized regression incorporating drug-predictor 
interactions and non-linearity for continuous predictors 
through the use of restricted cubic splines. In valida-
tion we then found that the greater treatment effect het-
erogeneity identified by the regression-based model was 
reproducible in real-world UK primary care data, whilst 
the causal forest based predictions were substantially 
miscalibrated. Although we demonstrate this with only a 
single outcome in a limited trial population, this reflects 
precisely the type of clinical dataset where machine 
learning methods for treatment effect heterogeneity are 
increasingly being deployed, for example in evaluation 
of risk of harm of intensive blood pressure management 
in the SPRINT trial [31], and evaluation of heterogeneity 
in mortality risk in people with diabetes in the ACCORD 
trial [32]. Given the lower performance of the causal for-
est algorithm in external validation, our study suggests 
that further research is urgently needed to understand 
the reasons underlying differences in outputs from treat-
ment effect heterogeneity focused machine learning and 
regression based approaches in relatively low dimen-
sional health datasets. In the meantime, we recommend 
that, when evaluating treatment effect heterogeneity, 
researchers do not rely on causal forest (or other similar 
machine learning) algorithms alone and compare out-
puts with standard regression. This is further supported 
by recent work suggesting subgroups defined by heter-
ogenous treatment effects using causal trees may not be 
reproducible across randomized trials [33].

Moreover, in the specific context of type 2 diabetes 
management, our results support recent work showing 
that a ‘precision’ approach to treatment is possible by 
demonstrating clinically relevant heterogeneity of treat-
ment response that can be predicted using simple patient 
characteristics and routine biomarker tests [13, 14]. Our 
findings raise the possibility of targeting specific treat-
ment to patients most likely to have a greater HbA1c 
response, using characteristics that are already routinely 
measured. However, a limitation is that we evaluated only 
a single outcome, HbA1c. Treatment decisions are multi-
factorial, and potential glycemic benefit should be con-
sidered alongside differences in side-effect profile, likely 
tolerability, and cardiovascular and renal benefit [12, 34]. 
Our study has the potential to inform future research to 
establish the potential utility of predicting individual-
level treatment benefit for these outcomes.

Strengths of our study include the systematic compari-
son of both modelling approaches in the same datasets, 

and the use of individual-level trial data to develop treat-
ment effect heterogeneity models, meaning randomiza-
tion may allow a causal interpretation of individual-level 
treatment effects [35]. Whilst research to develop opti-
mal methods for predicting treatment effect heterogene-
ity, and to evaluate their performance, has been called for 
in the recent PATH statement and is the subject of ongo-
ing methodological development [2, 36], the evaluative 
framework applied in this study can be applied for any 
future study aiming to evaluate the value of using patient 
level features to inform a precision medicine approach to 
treatment in any disease with multiple treatment options 
[12].

A limitation of our study is that we only compared 
performance in a single, low dimensional setting with 
a continuous outcome; as shown in simulation-based 
analysis causal forest may outperform regression-based 
approaches with high dimensional or less structured data 
than those captured in clinical trial and routine clinical 
data [7]. The focus of our study was to systematically 
compare two different methods for modelling treatment 
effect heterogeneity using the same predictive features, 
and our candidate predictor set was informed by availa-
bility of features in both the RCT and observational data. 
It is therefore possible that we not to include all poten-
tially influential predictors and research is ongoing to 
fully investigate robust predictors of treatment effect het-
erogeneity for these two drug classes [37]. A further limi-
tation is that we only evaluated a single machine learning 
approach. Causal forest was chosen as it is widely used 
with easy to use software available. Our focus was not 
a comprehensive review of all closely related methods, 
and so we cannot comment on the performance of other 
treatment effect heterogeneity focused algorithms, in 
particular recently developed Bayesian approaches [38–
40] Finally, as our validation dataset was observational, 
despite extensive sensitivity analysis we cannot rule out 
unmeasured confounding as a potential explanation for 
our findings [41].

Conclusions
The causal forest machine learning algorithm is outper-
formed by standard regression when identifying patients 
with type 2 diabetes with a treatment benefit if receiving 
one blood glucose-lowering drug over another. Given the 
rapidly growing interest in precision medicine, further 
research is urgently needed to understand the settings 
in which different classical and data-driven modelling 
approaches can be effectively deployed to reliably detect 
and quantify treatment effect heterogeneity.
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