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Abstract

In this thesis, we compute several moments and mean values of Dirichlet L-functions

in function fields, in both the odd and even characteristic setting.

Firstly, in Chapter [3, we use the techniques originally developed by Florea [Flo17a] to
improve the asymptotic formula for the first moment of quadratic Dirichlet L-functions
L(s,xp) at point s = 1,
degree in A = F,[T'] and ¢ = 1(mod 4), which was first obtained by Jung [Junl3]. In

particular, compared to the asymptotic formula obtained by Jung, we obtain a sec-

where D runs over all monic, square-free polynomials of even

ondary main term and improve the error term.

In Chapter , we obtain an asymptotic formula for the first moment of L(2, x,p), where
7 is a fixed generator of Fy and D runs over all monic, square-free polynomials of even
degree in A, where ¢ = 1(mod 4). As an application of this, we compute the average

size of the algebraic group K»(O,p), where O,p denotes the integral closure of A in
k(\/vD), where k =F,(T).

In Chapter [5] we obtain a lower bound for the k*» moment of quadratic Dirichlet L-
functions L(s, xp) at s = 2, where k is an even natural number, P is a monic irreducible

polynomial in F,[7] and ¢ = 1(mod 4).

In Chapter [0, we formulate a conjecture for the integral moments of quadratic Dirichlet

L-functions L(s,x,) at the central point s = %, where u runs over a specific family
in F,[T] and ¢ is a power of 2. We also show that this conjecture agrees with the
asymptotic formulas that have already been obtained. We also obtain the leading order
asymptotic for the moments of L (% +it, Xu) as we want to understand symmetry tran-
sitions of Dirichlet L-functions in the function field setting. In Chapter [7], we generalise
the methods used in Chapter [6] to conjecture an asymptotic formula for the mean value
of ratios of products of the Dirichlet L-functions L(s,x,). In Chapter [8 we present

two applications of the Ratios conjecture in even characteristic. Namely, under the



condition of the Ratios conjecture, we derive a formula for the one-level density for the
zeros of L(s, x.) and show that the proportion of L(s, x,) which do not vanish at s = 3
is 100%.

Finally, in Chapter [9 we obtain an asymptotic formula for the second moments of
‘L (%, X)‘ with one and two twists, when averaged over all primitive Dirichlet characters

of modulus R, where R is a monic polynomial in F,[7'].
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Notation

Most of the notation used in this thesis will be defined in Chapter 2] However, we will

describe some of the notation that is used throughout this thesis here too.

n(f)
o(f)
w(f)
di(f)

f(x) =0(g(x)) if there exists a constant ¢ > 0 such that |f(x)| < cg(x)
for all x > xy.

1) < g(x) if £(z) = O(g(x)).

F(@) = o(g(x)) if lim,_.oo £E = 0.

f(x) ~g(x) if lim,_ o % =1.

A finite field with ¢ elements.

The multiplicative group of F,.

The polynomial ring over [F,.

The set of monic polynomials in A.

The rational function field over F,.

The set of monic, square-free polynomials of degree n in F,[T].

The set of monic irreducible polynomials in F,[T].

The set, in even characteristic, defined in Section [2.7.1}
|f| = ¢8| the norm of f e F,[T].
A fixed generator of F.

A monic irreducible polynomial in F,[7'].

The size of the set G.

An integral over a closed contour.

An integral along the line fR(s) = c.

The Mobius function for A.

The Euler-Totient function for A.

The number of distinct monic irreducible polynomial factors of f.

The number of ways of writing the polynomial f as a product of k factors.
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Chapter 1

Introduction

1.1 The Riemann zeta-function

One of the most important subjects in Analytic Number Theory is the study of the
theory of the Riemann zeta-function, which was first introduced by Riemann [Rie59]

and is defined as

C(s)=S — (1.1.1)

for s € C with 2(s) > 1. In this region, the sum defining the Riemann zeta-function
is convergent and in the region P(s) > 1+ ¢ the series is absolutely and uniformly
convergent for every § > 0. Therefore the Riemann zeta-function is holomorphic for
M(s) > 1. Furthermore Euler [Eul37] showed that, for 2(s) > 1, the Riemann zeta-

function can be represented as an Euler product, namely

C(S)=l;[(1—]%)1 (1.1.2)

where the product is over all primes p. Using this formula, we can see the importance
of the Riemann zeta-function in the theory of prime numbers. For example Hadamard
[Had96] and de la Vallée Poussin [dIVP96] independently proved that ((s) # 0 on the

line M(s) = 1 and used this to prove the Prime Number Theorem.

Theorem 1.1.1 (Prime Number Theorem). Let w(x) = #{p:p prime,p<zx}. Then

(1.1.3)

as r — o0.

Further Riemann showed that the Riemann zeta-function has a meromorphic continu-
ation to the whole complex plane with a simple pole at s = 1 with residue 1. He also

showed that the Riemann zeta-function satisfies the following functional equation.

11



Chapter 1. Introduction

Theorem 1.1.2. For all s € C we have
¢(s) = 2(27m)T(1 - s)sin(%s) c(1-s), (1.1.4)
where T'(s) is the Gamma function defined as

[(s) = fooxs‘le‘zdx.
0

From and Hadamard and de la Vallée Poussin, we know that ((s) # 0 in the
region R(s) > 1. Thus ((1-s) # 0 for R(s) < 0. Furthermore, it can be shown that
I'(s) is non-zero for all s and is holomorphic in the region $R(s) > 0. Therefore, from
the functional equation (L.1.4), any zeros of ((s) which occur in the region R(s) < 0
arise from the zeros of sin (Z2). Thus, in the region R(s) <0, ¢(s) = 0 when s = —2n for
all n € N, these are called the “trivial zeros” of the Riemann zeta-function. Therefore
any “non-trivial” of the Riemann zeta-function lie in the critical strip 0 < RR(s) < 1.
Riemann then stated the famous conjecture about the location of these “non-trivial”

Zeros.

Conjecture 1.1.3 (Riemann Hypothesis). All the non-trivial zeros of the Riemann-

zeta function lie on the critical line R(s) = 3.

To this day, the Riemann hypothesis is still an open problem, and is one of the most
important open problems in mathematics. Although it has not been proven explicitly,
there is numerical evidence to support this conjecture. For example the hypothesis has
been checked for the first 10,000,000,000 zeros (for a list of these zeros, see [LMEF22]).
Furthermore, we know, by Pratt, Robles, Zacharescu and Zeindler [PRZZ20] that more
than five-twelfths of the non-trivial zeros of the Riemann zeta-function lie on the critical
line R(s) = 3.

Assuming the Riemann hypothesis, Gonek [Gonl2] showed that the Riemann zeta-
function is well approximated by short truncations of its Euler products in the region
PR(s) > 3 and not too close to the critical line. Conversely, Gonek also showed that if
the approximation of {(s) by Euler products is good in this region, then the Riemann

zeta-function has at most a finite number of zeros in it.

1.2 Moments of the Riemann zeta-function

One interesting problem involving the Riemann zeta-function is to understand its
growth rate on the critical line. Lindel6f [Lin08] conjectured the following result about

this growth rate.

12



1.2. Moments of the Riemann zeta-function

Conjecture 1.2.1 (Lindel6f Hypothesis). For every e >0 we have
1
C(§+zt) < te. (1.2.1)
Titchmarsh [Tit86] explained that the Lindelof hypothesis is equivalent to showing that

%fOT C(%-ﬁ-it)

for every integer k and any € > 0. Thus, a very important problem in Analytic Number

2k
dt < T° (1.2.2)

Theory is to estimate these moments of the Riemann zeta-function. More specifically,

we want to understand the asymptotic behaviour of

My(T) == fOT g(% " z't)

An asymptotic formula for the second moment of ([1.2.3)) was first obtained by Hardy
and Littlewood [HLI16] in which they proved the following result.

2k

dt. (1.2.3)

Theorem 1.2.2 (Hardy and Littlewood). We have, as T — oo,
My(T) ~TlogT. (1.2.4)
Ingham [[ng27] improved the asymptotic formula (1.2.4)) by proving the following result.

Theorem 1.2.3 (Ingham). We have
T 1
My(T) =Tlog o~ + (27 - 1)T +O (7% 10g7), (1.2.5)
T
where v is Euler’s constant.

In the same paper, Ingham established an asymptotic formula for the fourth moment
of (1.2.3)). In particular he proved the following result.

Theorem 1.2.4 (Ingham). We have, as T — oo,
1
My(T) = ﬁT10g4T+O(Tlog3 T). (1.2.6)
7r

Subsequently, Heath-Brown [HB79] improved the asymptotic formula (1.2.6]) by obtain-

ing all the main terms for the asymptotic formula.

Theorem 1.2.5 (Heath-Brown). There exist constants by, bs, ba, by and by such that
forT'>2 and € >0,

4
My(T) =T Y by log" T+ O (T3*). (1.2.7)

n=0

In particular, the constant by = #

13



Chapter 1. Introduction

For the sixth moment, Conrey and Ghosh [CG98| conjectured that
42 1\* 4 1
M;5(T) ~ —H((l——) (1+—+—))Tlog T
p p P
and for the eighth moment, Conrey and Gonek [CGO1] conjectured that

wan- 222 (25 2)

P p p* p?

In general, it is conjectured that

My(T) ~ (gf)l“‘T(l g T)F (1.2.8)

where g, is a positive integer and

akzn((1—1)k2 i M), (1.2.9)

D b m=0 pm

where di(n) is the number of ways to write n as a product of k factors. Using Random

Matrix Theory, Keating and Snaith [KS00b| conjectured a precise value for g, namely

oy !
g = (k )']I_(I)(]+k),

Gonek, Hughes and Keating [GHKOQT7] approximated ((s) as a hybrid Euler-Hadamard
product. Namely, they showed that ((s) ~» Px(s)Zx(s), where Px(s) is a truncated
Euler product and Zx(s) is a truncated Hadamard product. Using this, they conjec-
tured that the 2k*" moment of ¢ ( + zt) is asymptotic to the 2k™ moment of Py (3 +it)
multiplied by the 2k*" moment of Zx (— + zt) which is called the Splitting Conjecture.
Furthermore, they showed that the 2kt moment of PX( + zt) contributes the factor
a(k) and using Random Matrix Theory, they conjectured that the 2k moment of
Z X( +zt) contributes the factor g(k). Combining these results, they recovered the
conjecture (|1.2.8) and gave support for the Splitting Conjecture by showing that it
holds when k=1 and k = 2.

Conrey, Farmer, Keating, Rubinstein and Snaith [CEK*08] described a heuristic to
conjecture all of the main terms for the 2k*» moments of the Riemann zeta-function
and showed that the conjecture agrees with the results seen previously. In a series
of papers, Conrey and Keating [CK15a, [CK15bl [CK15d, [CKT6l [CKT9] looked at the
problem of obtaining asymptotic formulas for the 2k*® moment and shifted moments
of the Riemann zeta-function on the critical line from a number-theoretic perspective.

In particular, they gave new details about how the off-diagonal terms contribute to the

14



1.2. Moments of the Riemann zeta-function

main terms of the asymptotic formula.

Omne can also compute upper and lower bounds of ((1.2.3)) which can show that the
conjecture ([1.2.8]) is of the correct order of magnitude. For example, Ramachandra
[Ram80] obtained the following result for the lower bounds of ([1.2.3)).

Theorem 1.2.6 (Ramachandra). We have
M,(T) > T(log T)¥* (1.2.10)
for matural numbers k.

Heath-Brown |[HB81a] extended Ramachandra’s result by showing that holds
for any rational number k > 0. This result was further improved by Radziwill and
Soundararajan |[RS13] and Heap and Soundararajan [HS22] who improved the result
further by showing that for all large 7" and all real k£ > 0 we have

M (T) > C,T(log T)*¥* (1.2.11)

for some constant Cy. For upper bounds Soundararajan [Sou09] showed that under the

condition of the Riemann Hypothesis we have
My (T) «< T(log T)**<, (1.2.12)

for every positive real k£ and every € > 0. Refining Soundararajan’s method, Harper
[Har13] removed the € on the power of log T in and thus, under the condition of
the Riemann hypothesis, obtained upper bounds of the correct order of magnitude. In a
recent paper, Heap, Radziwilt and Soundararajan [HRS19] showed that, unconditionally
we have

M (T) <« T(log T)¥*

for 0<k<2and T >10.

Another problem involving ((s) is what is called the mollified moments of the Riemann

zeta-function. In other words, we want to understand the asymptotic behaviour of

T 1 2k 1 2
L= [ g(- +it) M, (- +z't) dt, (1.2.13)
0 2 2
where M, (s) is a mollifier of the form
a(n
() = ¥ 40



Chapter 1. Introduction

and for some specifically chosen coefficients a(n). Computing mollified moments has
applications to proving lower bounds on the proportion of the non-trivial zeros of ((s)

that lie on the critical line. For example, Levinson [Lev74] showed that

%%OITGT(T)AJF% (1.2.14)

for0<8<%witha(n):%;’i(%)

trivial zeros of ((s) that lie on the critical line is greater than % Changing the coefficient

to a(n) = u(n)P %), where P is a polynomial satisfying P(0) = 0, Conrey [Con89]
2.

showed that (1.2.14)) holds for 6 < ‘—; and thus the proportion of the non-trivial zeros
of ((s) is greater than 2. Bettin and Gonek [BGI7] showed that if In(T') <, T'*< for
2 < N <T? with 0 arbitrarily large, then the Riemann hypothesis is true.

and thus deduced that the proportion of the non-

1.3 Dirichlet L-functions

In this section, we define a generalisation of the Riemann zeta-function, namely we
state the definition of a Dirichlet L-function as well as state results about them. To do

this, we first state the definition of a Dirichlet character.

Definition 1.3.1. Let g be a positive integer. Then a function x : Z — C is called a

Dirichlet character modulo ¢ if
i) x(mn) = x(m)x(n), Vm,neZ,
i) x(n+q)=x(n), VneZ,

i) x(1) =1,

iv) x(n) =0, whenever (n,q) > 1.

We define the trivial character yo(n) by

1 ifn=1,
Xo(n) =
0 ifn>1.

Definition 1.3.2. Let x be a Dirichlet character modulo q. The Dirichlet L-function

corresponding to x is defined to be

L(s,x) = ileg). (1.3.1)

16



1.3. Dirichlet L-functions

The Dirichlet L-function is absolutely convergent for PR(s) > 1 and locally uniformly
convergent, and thus L(s, x) is holomorphic in this region. Furthermore in this region,

these Dirichlet L-functions have an Euler product representation, namely

L(s,x) = H( X(p)) . (1.3.2)

If x is the trivial character modulo ¢, then L(s, xo) is regular for all s € C except for a

2@

simple pole at s = 1 with residue e If x is not the trivial character modulo ¢, then

L(s,x) can be defined for all s € C.

Definition 1.3.3. Let x be a Dirichlet character modulo ¢ and let d|g. The number d

is called an induced modulus for y if we have
x(a) =1 whenever (a,q) =1 and a = 1(mod d).

Definition 1.3.4. A Dirichlet character modulo ¢ is said to be primitive modulo ¢ if

it has no induced modulus d < q.

Restricting x to be a primitive Dirichlet character modulo ¢, we define the completed

L-function as

As,y) = (%);F(S;Q)L(s,x), (1.3.3)

where

0 if x(-1) =1,
1 if x(-1) = -1.

Then the completed L-function satisfies the functional equation

A(s,X) = ;%A(l - 5,%), (1.3.4)

where 7(x) is the Gauss sum defined by

)= ) X(a)e()

a(mod q)

where e(x) := exp(2miz). Furthermore, we know that (see [MV06, Chapter 10] for more
details) L(s,x) # 0 for R(s) > 1 and for R(s) <0, L(s, x) has trivial zeros at s = —2n
if x(-1) =1 and at s = -2n -1 if x(-1) = 1. For the non-trivial zeros, we have the

following conjecture.

Conjecture 1.3.5 (Generalised Riemann Hypothesis). All the non-trivial zeros of

Dirichlet L-functions lie on the critical line.

17



Chapter 1. Introduction

1.4 Mean Value Theorems of Primitive Dirichlet L-

functions

Similar to the Riemann zeta-function, we want to understand the asymptotic behaviour
of moments of Dirichlet L—functions One problem is to understand the 2k* moment of
|L(s,x)| at the central point s = 5, when summed over all primitive Dirichlet characters
modulo ¢, which represents a q—analogue of the moments of the Riemann zeta-function

on the critical line. More precisely, we want to understand asymptotic formulas for

/(3

where ¢*(q) is the number of primitive Dirichlet characters modulo ¢ and the sum is

2k

! | (1.4.1)

@

over all primitive Dirichlet characters modulo g. For the second moment of (1.4.1)),
Paley [Pal31] proved the following result.

Theorem 1.4.1 (Paley). We have, as ¢ — oo,
1

@ L(5)

For the fourth moment of (1.4.1)) Heath-Brown [HB81b] proved the following result.

) log.a.
q

Theorem 1.4.2 (Heath-Brown). We have
1 S| 1-p!
L)l - sy

22 ps (1+p™1)
where w(q) is the number of prime divisors of q, where q is a positive integer.

w(q)
o (@)

1 *
)

(D (mod g)

(logq)* + O ( q(log q)3) . (1.4.2)

The asymptotic formula (1.4.2)) holds for almost all ¢. In particular, to ensure that the
error term is smaller than the main term (as ¢ - o), ¢ must be restricted in such a

way that

log1
w(q) < 08losa
log 2

Soundararajan [Sou(7] addressed this restriction by obtaining the following result.

Theorem 1.4.3 (Soundararajan). For all large ¢ we have
1 4

gb*—@x(ﬂ%;q) g (%7 X)

(1- p—l) iy, of“@ N T (logq)3
27r21;q[(1 +p! (logQ) (1 O(logq cb(q))) O(cb*(Q)(ng) )
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1.4. Mean Value Theorems of Primitive Dirichlet L-functions

Further Young [Youlla] obtained an asymptotic formula for all the main terms with a

power savings for prime moduli. In particular he proved the following result.

Theorem 1.4.4 (Young). For prime q # 2 we have

/(3

4 4

=Y ca(logg)" + O (q_%%) (1.4.3)

n=0

]. *
@

for some constants c,,.

Bloomer et al [BFK*17] improved the error term of ((1.4.3)) to O <q’%“). Although no
higher moments of ((1.4.1)) has been explicitly proven, Bui and Keating [BK07] conjec-
tured an asymptotic formula for (1.4.1) for all real k.

Conjecture 1.4.5 (Bui and Keating). For k fized with (k) > 0 we have
1

qb*—(q)x(ﬂgl*q) g (%7 X)

where a(k) is defined in and G is the Barnes G-function.

2k G?(k;+1) di(p™)? 2
~ o G(2/<:+1)H(Z ) (log )"

plg \mz0 D™

Similar to the Riemann zeta-function, one can also obtain upper and lower bounds
for the moments of primitive Dirichlet L-functions (1.4.1]). For example Rudnick and
Soundararajan [RS05] obtained the following result for lower bounds of ((1.4.1]).

Theorem 1.4.6 (Rudnick and Soundararajan). Let k be a fized natural number. Then

1

L=
()
This result was improved by Radziwilt and Soundararajan [RS13] and Heap and Soundarara-

jan [HS22] who showed that (|1.4.4)) holds for all real £ > 0. For upper bounds Soundarara-
jan [Sou09] showed that, under the condition of the Generalised Riemann hypothesis,
1 Z*

1
RN CR)
O (Dymoa gy | \2
for all positive real k, € >0 and ¢ prime. Heath-Brown [HB10] showed that
1

M(H%;:q) g (%7 X)

and thus obtaining upper bounds of the correct order of magnitude, under the con-

for all large primes q we have

5

x(mod q)

2k
> q(log q)¥*. (1.4.4)

we have
2%k

<p,e ¢(logq)

k2+e

2%k
< (logq)¥. (1.4.5)

dition of the Generalised Riemann Hypothesis. Unconditionally Heath-Brown showed
that (1.4.5) holds for any k of the form k = L with n € N. In a recent paper Gao
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Chapter 1. Introduction

[Gao2T1a] showed that (1.4.5)) holds, unconditionally, for all real 0 <k < 1.

Another problem is to understand the asymptotic behaviour of twisted moments of
Dirichlet L-functions. That is, for coprime integers h and p > 0, where p and h are both

primes, we want to find an asymptotic formula for

/(3

where the sum is over all primitive Dirichlet characters modulo p. Conrey [Con(7]

M- ¥ ), (146

x(mod p)

proved a reciprocity formula involving M (p,h) and M (h,-p) where p and h primes
with h < pg. Young [Youllb] improved Conrey’s reciprocity formula by proving the

following result for h < p.

Theorem 1.4.7 (Young). Suppose h < p are primes. Then

M(p,h) - %M(h, ) = % (log (1—;) rry— 10g(87r)) C (%)2 JP+E(p ) (14T)

where E(p, h) < P2t h+ b3t

Bettin [Bet16] studied the error term €(p, h) and showed that &£ (£) := E(p, h) extends to
a continuous function £(z) of the non-negative real numbers, which is O(z) as x — 0*.

In particular &£ (%) < B for h «<p.
Similarly, we also want to understand the asymptotic behaviour of the second moment

asymptotic behaviour of

2

x(h)x(k). (1.4.8)

=

of Dirichlet L-functions with two twists. Namely, one problem is to understand the
p Z*
gb(p )X(mod p)

1
Ll =
(5)
x(-1)==%1

This problem was first considered by Selberg [Sel46] who showed that

Mi(p; h, k) =

) e L) (g Lo n 7
M. (gsh) = 5 () (log % + 9 - og(sm) 7 7).

where ¢ is a prime and for some conditions on h and k. For different primes ¢, h and

k with ¢ > 4hk, Bettin [Bet16] proved a triple reciprocity formula involving M(q; h, k),
M (k; h,q) and M(h;k,q).

Theorem 1.4.8 (Bettin). Let h, k and q be different primes and let q > 4hk. Then

M.(q;h,k) = «M(k;h,q) = M(h; k,q)

1(q 3 q m
+2(hk:) (log(hk)+fy—log(87r)¢2)+O(logq).
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1.5. Mean Value Theorems of Quadratic Dirichlet L-functions

For the twisted fourth moment Hough [Houl6] obtained an asymptotic formula for

/()

where ¢; and ¢y are coprime and square-free with 1 < ¢;,¢5 < ¢? and 0 < 3% Zacharias

1

¢*—(<Z>X<n§i } X(6)x(62) (1.4.9)

[Zac19] obtained an asymptotic formula for (1.4.9) where ¢; and ¢y are coprime and

cubefree with (¢1/5,q) = 1. His result allows for the application to non-vanishing results.

1.5 Mean Value Theorems of Quadratic Dirichlet

L-functions

We start this section by defining a quadratic Dirichlet L-function. To do this, we need
the following definition.

Definition 1.5.1. The number d # 1 is called a fundamental discriminant if either
d=1(mod 4) or d =4N, where N is square-free and N = 2,3(mod 4).

Let x4 be the Dirichlet character defined by the Kronecker’s symbol x4(n) = (%) with
d being restricted to fundamental discriminants. Then the character x4 only takes the
real values —1, 0 or 1. The quadratic Dirichlet L-function is then defined as the Dirichlet
L-function corresponding to the Dirichlet character y4. In this setting, a problem is to

understand the asymptotic behaviour of
1 k
> L(—,Xd) : (1.5.1)
0ddzp  \2
where the sum is over over fundamental discriminants d as D — oo. Jutila [Jut8I]

obtained the following result for the first moment of ([1.5.1]).

Theorem 1.5.2 (Jutila). We have

3, t (50 = (es(2) £ (3) 411045 w) -o(01) s

where

P(s>=H(1—;)-

s pi(p+1)

Goldfeld and Hoffstein [GH85] improved the error term of (1.5.2) to O(D%*E) and
Young [You(Q9] showed that the error term is bounded by D2*¢ when considering the

smoothed first moment. In the same paper, Jutila obtained an asymptotic formula for
the second moment of ((1.5.1)), namely he proved the following result.
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Chapter 1. Introduction

Theorem 1.5.3 (Jutila). We have

1 2 C 5
L(—,X ) = ——Dlog? D+0O(D(log D)z
2, 5 = (Pl D))

where

1 ( 4p2—3p+1)
c 1-—7-].

T4 » pt+p?
Restricting d to be an odd, square-free integer, then ygy is a real primitive character
with conductor 8d and with ygqs(—1) = 1, Soundararajan [Sou00] proved the following

result.

Theorem 1.5.4 (Soundararajan). There exists polynomials Q) and R of degree 3 and
6 respectively such that

1 2 5
> L(35:x) =DQUog D) +0 (D) (153)
0<d<D 2
and
1 3 1
Z L(_7X8d) =DR(logD)+O(DT2*E), (1.5.4)
0<d<D 2

where the sums is over fundamental discriminants 8d.

In the same paper, Soundararajan proved that for at least 87.5% of odd square-free
integers d > 0, L (%,ng) # 0. By a conjecture of Chowla [Cho65], it is believed that
L (%, X) # 0 for all quadratic characters x.

Using multiple Dirichlet series, Diaconu, Goldfeld and Hoffstein [DGHO3| improved the
bound in (1.5.4), namely they proved that.

Theorem 1.5.5 (Diaconu, Goldfeld and Hoffstein). For d summed over fundamental

discriminants and any € >0 we have
1 3 6 _
> L(—,Xd) =D > ¢;(log D)! + O, (D) (1.5.5)
d<p  \2 i=0
for some computable constants ¢; and 6 ~ 0.853.
Furthermore, Diaconu and Whitehead [DW21] considered the smoothed third moment

and proved the existence of a secondary main term of size D1 and showed that the

error term is bounded by D3+ for every 6 > 0.

For the fourth moment, Shen [She21] proved an asymptotic formula under the condition
of the Riemann hypothesis and the Generalised Riemann hypothesis. Namely he proved

the following result.
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1.5. Mean Value Theorems of Quadratic Dirichlet L-functions

Theorem 1.5.6 (Shen). Assume the Generalised Riemann hypothesis for L(s,xaq) for

all fundamental discriminants d and the Riemann hypothesis for ((s). Then

1 4
Z L(_7X8d) :CLD(IOgD)10+O(D(10gD)%+E).
4 0<ngf 2
square-free

(d,2)=1

for some constant a.

Although no higher moments have been explicitly proven, it is conjectured that

1 k gk k(k+1)
R T
0<§§:D 2 (%k(k’+1))'( )

for some value g, and

k(k+1)
1

w05 00 5) )

Using random matrix theory, Keating and Snaith [KS00a|] conjectured that

g = (%k(k+1))!lﬁ[((2L;)!).

=1

Conrey, Farmer, Keating, Rubinstein and Snaith [CFK*05] developed a heuristic to
conjecture all of the main terms of (1.5.1)). Namely they conjectured the following.

Conjecture 1.5.7 (Conrey, Farmer, Keating, Rubinstein and Snaith). Let Xy(s) =
ld|2* X (s,a) where a=0if d>0 and a=1ifd<1, and

T 1ta-s
X(s,a) = 7r52%.
(52

2

That is, X4(s) is the factor in the functional equation for the quadratic Dirichlet L-

function
L(s,xa) = €aXa(s)L(1 = s, Xa)-

Summing over fundamental discriminants d we have

;L(%,Xd) = 3 Qullog ) (1 +o(1)). (1.5.6)

where Q. is the polynomial of degree %k(k +1) given by the k-fold residue

k(k-1) z sk o

(-1) 2k 1 —?5 55 G(z1,. .., 26)A(23, ... 22)%e2 2o %
)= . dzy ...dzy,
Qk( ) k! (27T7/)k H?:l ijk—l 1 k
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Chapter 1. Introduction

Gz, .y 2k) = Ar(21, . . zk)HX( +z],) H C(1+ 2+ 25),

1<i<j<k
A(z1,...,21) is the Vandermonde determinant given by
A(Zl>"'7zk): 1_[ (Zj_zi)
1<i<j<k

and Ay, is the Buler product, absolutely convergent for |R(z;)| < 1 defined as

p 1<i<j<k

1(E 1\ 1\ 1 1\
x| = H(l— - ) +H(1+ - ) + = (1+—) :
2\a\ pzE) o Ga\ prtE p p

Keating and Odgers [KOO0§| conjectured the leading order for the smoothed 2k mo-

ment of ‘L (% +it, Xd)‘ as D — oo, when summed over all fundamental discriminants d
with d < 0 and d = 0(mod 8).

Similarly, one can also obtain upper and lower bounds for moments of quadratic Dirich-
let L-functions (1.5.1]). For example, Rudnick and Soundararajan [RS06] obtained the
following result for the lower bounds of (1.5.1]).

Theorem 1.5.8 (Rudnick and Soundararajan). For every even natural number k we

have
k(k+1)
Z L( 7Xd) > D(lOgD)

|d|<D

(1.5.7)

This result has been improved by Radziwilt and Soundararajan [RS13] and Heap and
Soundararajan [HS22] who showed that (1.5.7) holds for all real & > 0. For upper,
bounds Soundararajan [Sou09] showed that, under the condition of the Generalised

Riemann Hypothesis we have

Ic(k+1)

> L( ,Xd) «p. D(log D)%™ (1.5.8)

|d|<D
for all positive real k and € > 0. In a recent paper, Gao [Gao21b] proved, unconditionally,
that for every 0 < k <2 we have
1
>, ‘L (5, XSd)
0<d<X

d square-free

(d,2)=1

k
< D(logD)™ =2

k(k+ )

Conrey, Farmer and Zirnbauer [CFZ08] presented a generalisation of the heuristic argu-
ments given in [CFK*05] to conjecture asymptotic formulas for the ratios of products
of Dirichlet L-functions.
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1.5. Mean Value Theorems of Quadratic Dirichlet L-functions

Conjecture 1.5.9 (Conrey, Farmer and Zirnbauer). Let ©* = {L(s,xq) :d >0} be the
symplectic family of L-functions associated with the quadratic character xq and suppose

that the real parts of oy, and 7y, are positive. Then
Hllc( 1 (l + Xd)
0<d<D Hq L ( T Vg Xd)

) Z Z (M)2Zk 1(exo— ak)ﬁg+( (07 —26kak)

0<d<D ee{-11}K \ T

X YD(€10417 .. -,EKOZK;’Y)AD(EWL . 7€KCVK§7)(1 + 0(1))

where (1 )
(=
9:(8) = =757,
) r(s)
H <j<k< 1- +a tag H <g<r< wlqwr
Ap(a;7) =[] ek (1 e Mo Q( )
» I T2 (1- s )
-1 Q cq
X 1+(1+_) quﬂ(p )
p 0<Tpap+Xycq is euenp k(5+an)+Zgca(5+74)
and

H1<g<k<K C(l o+ ak) H1<q<r<Q C(l Yt 77")
Hk 1H 1 C(1+ag +7)
As an application of the Ratios Conjecture m, Conrey and Snaith [CS07] used the

conjecture to compute the one-level density function for the zeros of quadratic Dirich-

Yp(a;v) =

let L-functions complete with lower order terms. Namely, conditional on the Ratios
Conjecture [1.5.9] they proved the following result.

Theorem 1.5.10 (Conrey and Snaith). Assuming the Ratios Conjecture the one-
level density for the zeros of the family of quadratic Dirichlet L-functions associated with

the quadratic Dirichlet character x4 is given by

B0 [Lro gl 35 2) 5 ()

C(L+2it)
+ Q(W + A’ (it; it)

d\*T(3-1) . L
-(-) fzg:zgg(1-znp@x-wﬂo))m(1+ou);

™

where 4 is the ordinate of a generic zero of L(s,xq) on the half-line,

ADpnm:[]@— L1 )@—1)2

» (p+1)p=2" p+1 p
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L (e = logp
i) = 2 G e 1)

and f is a function such that f(z) is holomorphic throughout the strip |R(z)| < 2, is

real on the real line, even and f(x) < (1+22)7! as x - oco.

Conrey and Snaith also presented another application of the Ratios Conjecture [1.5.9
namely under the condition of the Ratio Conjecture[1.5.9] they obtained an asymptotic

formula for the second mollified moment, where the mollifier is defined as

M(xa.P)= Y p) ()P (52

ny n

Y

=

where P is a polynomial satisfying P(0) = 0 and P’(0) = 0, y = X? for 6 > 0. In

particular, if we let

(e () b 2)ollred-cion). 030

then, conditionally on the Ratios Conjecture Conrey and Snaith proved the fol-

lowing result.

Theorem 1.5.11 (Conrey and Snaith). Assuming the Ratios Conjecture we have
for even polynomials Q1 and Q2 and polynomials Py and Py satisfying P1(0) = P,(0) =
P[(0) = Pj(0) =0, and y = X? with any 6 > 0,

@1 (1O§D%)Q2 (log?D%)(k;Df(% +04>Xd)§(% +5,Xd) M (xa, Pr)M (xa, P»)

a=B=0
- 9(8_19 [ (Grre@u - 402 @1 ) (574 0)Qe(w) - 40P()@)w) ) duds

1

1 (%P{(l)@(l) N 2P1(1)Q1(1)) (%Pz'(l)@(l) + 2P2(1)Q2(1)) +0 (@) )

+ —
4
where D* denotes the number of fundamental discriminants less than or equal to D and

Q) = [ Q.

1.6 Random Matrix Theory

Random Matrix Theory is the study of matrices whose elements are random variables,
and in particular we study the properties of the eigenvalues and eigenvectors of these
matrices. Random Matrix Theory has many applications, for example in Statistics

and Nuclear Physics, however in this section we will briefly discuss its applications to
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1.6. Random Matrix Theory

Number Theory and, in particular, its applications to the Riemann zeta-function and

Dirichlet L-functions.

We first present some of the random matrices that have applications in Number Theory.

e A Unitary Matrix A is an N x N matrix such that AAT = AT A = Iy, where AT
denotes the complex transpose of A and Iy is the N x N identity matrix. The
group of all Unitary matrices is called the Unitary group and is denoted by U(N).

e A Special Orthogonal Matrix A is an N x N unitary matrix of dimension N
such that AAT = ATA = [y with deg(A) = 1. The group of all N x N special
orthogonal matrices is called the Special orthogonal group and is called SO(N).

e A Unitary Symplectic matrix A is an 2N x 2N unitary matrix of dimension
2N such that AJAT = A where

0 I
J = M
Iy 0

The group of all 2N x 2N unitary matrices is called the Unitary symplectic group
and is denoted by US,(2N).

Each group has an attached Haar measure. The Haar measure for the Unitary group

U(N) is
1 ‘ ,
dA= —— €0 — 240, . dBy,
NI(2m)™ lgjl:lfISN

and for the Special Orthogonal group SO(2N) and the Unitary Symplectic group
US,(2N)

1 . . , PRI ,
dA - H |ezek _ 6—10j|2|620k _ 610]-|2 H |€19k _ €—Z9k|d91 .. dOy,
k=1

B N!(4m)N 1<j<k<N

where e» are the eigenvalues of the associated matrices.

The connection between Analytic Number Theory and Random Matrix Theory was first
observed by Montgomery and Dyson. Assuming the Riemann Hypothesis, Montgomery
[Mon73] studied the pair correlation of the zeros of the Riemann zeta-function and put

forward the following conjecture.

Conjecture 1.6.1 (Montgomery). Let v be a generic ordinate of a zero of the Riemann

zeta-function, then for a suitable test function f we have

: 1 Yoy Yo Ym v_m)_f“ _(sin(mc))2
Th—{rolo N(T) 0<%§nng (277 log 2w 2m log o) Jowo J@)| o) +1 T 4z,
(1.6.1)

where N(T) = &= log .= and § is the Dirac’s delta function.
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In Random Matrix Theory, if A € U(N) then the eigenvalues of A are e~ for 1 <n < N
and 0 < 6, < 2r. Similarly if Ae SO(2N) or A € US,(2N), then the eigenvalues occur in
conjugate pairs, thus the eigenvalues are e*"» where 1 <n < N and 0 <0, < 27. Dyson

[Dys62] proved the following result for the pair correlation for the matrices A € U(N).
Theorem 1.6.2 (Dyson). For a nice test function f we have

Lo (8 B 020 )iae [0 s (2 )

1<m,n<N
(1.6.2)

where § is Dirac’s delta function.

Comparing ([1.6.1)) and ((1.6.2)), we see that the pair correlation for U(NN) is the same

as the conjecture for the pair correlation for the Riemann zeta-function.

Similarly, we can compute moments of the characteristic polynomials of the matrices

defined above. For A € U(N), we define the characteristic polynomial of A by

Aa(s) =det(] - ATs) = 1]_\[[(1 — se7%n) (1.6.3)

n=1

and for either A € SO(2N) or A € US,(2N), the characteristic polynomial of A is
defined as

Aa(s) =det( - ATs) = lj—vl(l — s )(1 - se~n). (1.6.4)

n=1
Keating and Snaith [KS00al, [KS00bL, [KS03] proved the following results about the mo-

ments of these characteristic polynomials.

Theorem 1.6.3 (Keating and Snaith). We have

i 2 T J!
fU(N) [Aa(e 9)‘ ~ NF H((;M;)l) (1.6.5)

k .
A 0 k N k(k 1) k(k+ 166
/SO(QN)‘ A(e )| 11 (23 ( )

k(k+1) Ic(k+1)
A ~ 1.6.7
./USP(2N) | a(e”) ‘ 1_{ ( 2])') ( )

Under the correspondence N = log (%) and N = %log D, Keating and Snaith were able

and

to formulate conjectures for the moments of the Riemann zeta-function and Dirichlet
L-functions as stated in Section and Section respectively. In particular, they
were able to conjecture a precise value for the term g, which had not been obtained

previously.
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1.7 Overview of Thesis

In this thesis, the main focus has been the study of analytic number theory over function
fields, specifically the study of several problems involving moments and mean values
of Dirichlet L-functions in the function field context. In Chapter [2| we give all the

necessary background in function fields that is needed for this thesis.

In Chapter [3| we prove a theorem about the first moment of quadratic Dirichlet L-
1

functions at the critical point s = 5 in function fields. In particular, we prove, com-
pared to the result known previously, a secondary main term and improve the error
term. In the following Chapter, Chapter [4) we prove a theorem about the average size
of the algebraic group K5(O) in function fields and in Chapter [5, we use the methods
of Rudnick and Soundararajan [RS06] to prove a theorem about the lower bounds of
quadratic Dirichlet L-functions at s = % in function field.

In the next Chapter, Chapter[6], we adapt the recipe for conjecturing moments of Dirich-
let L-functions, Conjecture [1.5.7], to moments of Dirichlet L-functions in function fields
in even characteristic. In Chapter [7] we adapt the recipe for conjecturing ratios of
products of Dirichlet L-functions, Conjecture [I.5.9] to ratios of products of Dirichlet
L-functions in function fields in even characteristic. Then in the following Chapter,
Chapter [§, we present two applications of the Ratios conjecture in even characteristic

which adapt to function fields in even characteristic the methods used to obtain Theo-

rem [L.5.10] and Theorem [L.5.11]

Finally, in Chapter [ we prove a result about the second moment of Dirichlet L-
functions with one and two twists, when averaged over primitive Dirichlet characters

of a certain modulus in function fields.
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Chapter 2
Background on Function Fields

In this chapter, we will give some background on Number Theory in Function Fields

as well as state some preliminary results. Most of these facts are stated in [Ros02].

2.1 Function Field Preliminaries

Let F, denote a finite field with ¢ elements and let A = F,[T"] denote the polynomial
ring over IF,. This ring has many common properties with the ring of integers Z, which
can be found in [Ros02, Chapter 1]. Thus, many of the number theoretic questions that

are asked about Z have analogues in A.

An element f(T') € A can be written as
f(T)=a,T" + ...+ ay,

where o; € F, for all ¢ = 0,...,n. If o, # 0, we say that f has degree n, which will
be denoted as deg(f) = n. We will denote by A, and A, the set of all polynomials
of degree n and degree at most n in A respectively. Furthermore, if o, # 0, we define
the sign of f, sgn(f), to be equal to a, € F;, where F; denotes the set of all non-
zero elements in [F,. The following proposition states some important properties about

deg(f) and sgn(f).

Proposition 2.1.1 ([Ros02, p.1]). Let f and g be two non-zero polynomials in A. Then

we have
i) deg(fg) = deg(f) + deg(g).
i) sgn(fg) = sgn(f)sgn(yg).
iir) deg(f +g) <max{deg(f),deg(g)}, with equality holding if deg(f) # deg(g).
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2.1. Function Field Preliminaries

Definition 2.1.2. A polynomial f € A is called monic if sgn(f) = 1.

We will let A* denote the set of all monic polynomials in A. Furthermore, we will
denote by A} and AZ, to be the set of all monic polynomials of degree n and degree at

most n in A respectively.

Definition 2.1.3. A polynomial f € A is called reducible if we can write f(T) =
g(T)h(T'), where deg(g) >0 and deg(h) > 0. Otherwise f is called irreducible.

We will let the letter P denote a monic irreducible polynomial in A. Similarly, we will
let P and P,, denote the set of all monic irreducible polynomials and the set of all monic
irreducible polynomials of degree n in A respectively. The next theorem is the function

field analogue of the Prime Number Theorem.

Theorem 2.1.4 (Prime Polynomial Theorem, [Ros02, Theorem 2.2]). Let #P,, denote

the number of monic irreducible polynomials of degree n in A, then

n n

#pn:f+o(ﬁ), (2.1.1)

Remark 2.1.5. Monic polynomials play the role of positive integers and monic irre-
ducible polynomials play the role of prime numbers. We will also define sgn(0) =0 and
deg(0) = —oo.

Since the ring A has the unique factorisation property, we have that every fe A, f#0

can be uniquely written in the form
f=aP .. P, (2.1.2)

where « € Fy and each P; is a monic irreducible polynomial, P; # P; for i # j and e; is

a non-negative integer for ¢ =1,... r.
Definition 2.1.6. For a polynomial f € A, we define the norm of f to be

qdes() if £ 20,
0 it f=0.

£l

Definition 2.1.7. The zeta function of A, which is denoted by (4 (s), is defined by the

infinite series

Cals) = ! ]‘[(1—|;|S) R(s) > 1. (2.1.3)

feAt |f|s P
There are ¢™ monic polynomials of degree n in A, therefore

Ca(s) = - . 2.1.4
( ) nZ:E) qs 1- ql—s ( )
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Chapter 2. Background on Function Fields

From this geometric series, we can see that (4(s) is never zero and thus in this setting

the Riemann hypothesis is true.

We will make use of the change of variables u = ¢=%, so that Z(u) = (4(s) and so,

1

Z(u) = T

(2.1.5)

Definition 2.1.8. The Gamma function of A is defined to be

Using ([2.1.5)), we can prove the following result.

Theorem 2.1.9 ([Ros02, p.12]). The zeta function (a(s) can be continued to a mero-
morphic function to the whole of the complex plane with a simple pole at s = 1 with

residue ——. If we define £4(s) = ¢5Ta(s)Ca(s), then

logq

Ea(s) =&a(l-9). (2.1.6)

2.2 Multiplicative Functions on F,[7T']

In this section, we will define some multiplicative functions for A and state some pre-

liminary results which will be used throughout this thesis.
Definition 2.2.1. The Moébius function for A is defined as

-1 if =OéP1...PT,
p(f) = = /

0 otherwise,
where the P; are distinct monic polynomials.

Taking Euler products, we see that for all s € C and all R € A, we have

wE) _ H(1—#) (2.2.1)

e Bl b
and differentiating (2.2.1)), we see that for all s € C\{0}, we have

W(EYes(E) 1\ (5o des(P)
S I “(H - |P|s)(Z |P|s—1)‘ 222

E|R PR PIR

Definition 2.2.2. For all R € A, we define w(R) to be the number of distinct prime
factors of R.
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2.2. Multiplicative Functions on F,[T]

Lemma 2.2.3 (JAY21, Lemma 4.5)). Let Re A*. We have that

deg(P)
< logw(R). (2.2.3)
211
Lemma 2.2.4 ([Yia20, Lemma A.2.3]). For deg(R) > 1, we have
log, ||
w(R) « —24—— (2.2.4)
log, log, | R
where the implied constant is independent of q.
Lemma 2.2.5. We have
2900 = S u(E)). (2.2.5)
ER
Also, for any € >0 we have
2¢(B) «_|RJ*. (2.2.6)

Proof. The first part of the lemma follows from the definition of u(f) and w(f). For
the second part, notice that
2200 = 5 |u(E) < Y 1=d(R),
EIR EIR
where d(f) denotes the divisor function for A. The proof follows from using the fact
that d(f) <. |f| for every € > 0. ]

Definition 2.2.6. The Euler-Totient function for A is defined as

gzb(f) = Z 1. (2.2.7)
geAt
deg(g)<deg(f)
(f.9)=1

Lemma 2.2.7 ([Yia20, Lemma A.2.4]). For deg(R) > q we have

o(R) > ||

_ 2.2.8
log, log, | R ( )

For f e A*, let di(f) represent the number of ways to write f as a product of k factors.

Then we have the following results about di(f).

Lemma 2.2.8. We have
di(f)

Y =t~ e(k)2” (2.2.9)
feAZ, |f|
for some positive constant c(k).
Proof. The proof is similar to that given in [Ros02, Proposition 2.5]. [
Lemma 2.2.9. We have 5052
D U)oy 52 (2.2.10)
feAzz |f|
for some positive constant C'(k).
Proof. The proof is similar to that given in [And16} p. 12]. [
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Chapter 2. Background on Function Fields

2.3 Dirichlet characters in Function Fields

In this section, we will discuss some properties about Dirichlet characters over function

fields.

Definition 2.3.1. Let () € A*. Then a Dirichlet character modulo () is defined to be

a function y : A - C which satisfies the following properties:

i) x(f+9Q)=x(f), Vf,geA.

i) x(fg)=x(f)x(9), Vf,geA.

iii) x(f) #0 < (f,Q) =1, where the symbol (f,Q) denotes the greatest common

divisor of the functions f and Q.

A Dirichlet character modulo @ induces a homomorphism from (A/QA)* - C and
conversely, given such a homomorphism, there is a uniquely corresponding Dirichlet

character. The trivial character yq is defined to be

) {1 1(.Q) -1
0 if (f,Q)> 1.

The number of Dirichlet characters modulo @ is equal to ¢(Q). For a Dirichlet character

modulo @), we have the following result.

Proposition 2.3.2 (Orthogonality Relations, [Ros02, Proposition 4.2]). Let x and v
be two Dirichlet characters modulo () and let f and g be two elements in A which are

relatively prime to Q). Then
i)
2X(H(f) =

f

P(Q) if x =1,
if X # 1.

> x(f)x(g) =

X

Q) if f=g(mod Q),
if [ #9(mod Q).

The first sum is over any representatives of (AJQA) and the second sum is over all

Dirichlet characters modulo ().

Definition 2.3.3. A Dirichlet character xy modulo @ is even if x(cA) = x(A) for all
celF; and all AelF,[T]. Otherwise y is said to be odd.
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2.3. Dirichlet characters in Function Fields

We will let ¢*(Q) and ¢=(Q) denote the number of even and odd characters modulo
Q respectively. From [KRI4], we know that ¢*(Q) = %9 and ¢~(Q) = £26(Q).
Furthermore, when the sum is restricted to odd and even Dirichlet characters, we have

the following result.

Lemma 2.3.4 ([DDLV21, Lemma 2.1]). For polynomials A, B € F,[T'] relatively prime
to Q with deg(Q) > 1, we have

Z V(A)X(B) = % if A=cB(mod Q), cely,

x(mod Q) 0 otherwise,

and
£25(Q) if A= B(mod Q)
> x(A)x(B)={-42 if A=cB(mod Q), ceF:

q-1 q
x(mod Q) ,
X odd 0 otherwise.

Definition 2.3.5. Let @ € A*,S|@Q and x be a character of modulus Q). We say that S

is an induced modulus of x if there exists a character x; of modulus S such that

XI(A) lf (A7Q) = 17
X(A) =
0 otherwise.

We say x is primitive if there is no induced modulus of strictly smaller norm than Q).

Otherwise x is said to be non-primitive.

We let ¢*(Q) denote the number of primitive characters of modulus @). We have the
following result about ¢*(Q).

Lemma 2.3.6 ([Yia20, Lemma A.2.5.]). For deg(R) > q, we have

¢(1R)

" (R) » .
(R) logqlogq|R|

(2.3.1)
If @) is a monic irreducible polynomial, then every character modulo () is primitive
except the trivial character. We will denote the sum over primitive characters of modulo

Q@ by Z*X(mo 10)" For the sum of primitive characters, we have the following results.

Lemma 2.3.7. Let P be a monic, irreducible polynomial and let A, B € A. Then we

have

1 . B 1- -5 if A= B(mod P),
— Y y(Ax(B)={ D

o) otherwise.
Proof. Using Proposition and the arguments stated above proves the Lemma. m
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Chapter 2. Background on Function Fields

Lemma 2.3.8 (JAY21, Lemma 3.7]). Let Re A* and A,B e A. Then

X Y er-r (E)o(F) if (AB,R) =1,
>, x(Ax(B)={ HEA-B)
x(mod R) 0 otherwise
As a Corollary we have the following result.

Corollary 2.3.9 (JAY21, Corollary 3.8]). For all R € A* we have that
¢*(R)= ), w(E)o(F). (2.3.2)
EF-R

F=

2.4 Dirichlet L-functions in Function Fields

In this section, we will define the Dirichlet L-function corresponding to the Dirichlet
character defined in Section

Definition 2.4.1. Let x be a Dirichlet character modulo (). Then the Dirichlet L-series
corresponding to y is defined by

L(s,x) = ), (/) (2.4.1)

feA* |f‘8

which converges absolutely for 2(s) > 1.

Since the Dirichlet characters are multiplicative, we have

L(s,x) =[] (1 - ﬁ;];))_ (2.4.2)

P

for R(s) > 1. For the trivial character, we have

1
L(s,x0) = [ (1 - P|s)<A(s),

PIQ

which shows that L(s,xo) can be analytically continued to the whole C and has a

simple pole at s =1. When Y is a non-trivial character, we have the following result.

Proposition 2.4.2 ([Ros02, Proposition 4.3]). Let x be a non-trivial Dirichlet character
modulo Q). Then L(s,x) is a polynomial in u=q=* of degree at most deg(Q) — 1.

From Proposition we have the following Corollary.
Corollary 2.4.3 ([Ros02, p.36]). If x is a non-trivial Dirichlet character modulo @,

then L(s,x) can be analytically continued to an entire function to the whole complex

plane C.

Using the change of variables u = ¢7%, we have, for a non-trivial Dirichlet character
modulo @, that

Lux)= > x(fHu'sD. (2.4.3)

.
Fehlgea(@)1

36
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2.5 Zeta functions associated with curves

For any algebraic curve C of genus g > 1 over [F,, the zeta function to C' was first
introduced by Artin [Art24] and is defined as

iAucﬂg) |m<3 (2.5.1)

n=1

Zo(u) :=exp (

where N,(C) is the number of F,» rational points on C. Weil [Weid8] showed that

Zc(u) is a rational function of the form

Pc(u)
(1-u)(1-qu)’

where Po(u) is a polynomial of degree 2g with integer coefficients satisfying the func-

Zo(u) = (2.5.2)

tional equation

1

HMD:WMVH{—J- (2.5.3)
qu

Weil also proved the Riemann Hypothesis for function fields, namely that all of the

zeros of Po(u) lie on the circle |u| = ¢72.

2.6 Quadratic Function Field in Odd characteristic

In this section, we assume that ¢ is odd. Most of the facts stated in this section are
stated in [AK12].

2.6.1 Characters and the Reciprocity Law

Let P be a monic, irreducible polynomial in A. Then [Ros02, Proposition 1.10] tells us
that if f € A and P 4 f, then the congruence X< = f(mod P) is solvable if and only if

[P|-1

f @ =1(mod P),

where d is a divisor of ¢g—1. Therefore if P + f, then there is a unique element (Iij) R
such that

fidz(%)fnmdpx

otherwise we define (%) = (0. Thus, we can define the quadratic residue symbol (%) €

{£1} by

d

(%) = " (mod P) (2.6.1)
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Chapter 2. Background on Function Fields

if f is coprime to P. If P|f, then (%) = (0. We can also define the Jacobi symbol for
arbitrary monic ). Let f be coprime to @) and ) = P* ... Pf", then the Jacobi symbol

is defined as
G-t

Theorem 2.6.1 (Quadratic Reciprocity, [Ros02, Theorem 3.3]). Let A, B € A be rela-
tively prime and let A+ 0 and B+ 0. Then

A

(E) _ (%) (=175 dea(4) deg(B). (2.6.3)

When ¢ = 1(mod 4), Theorem gives

(2)-3)

Thus, in the rest of this section and in Chapters[3] 4 and 5 we will further restrict ¢ to
q = 1(mod 4).

2.6.2 Quadratic Dirichlet L-functions

Definition 2.6.2. Let D € A be square-free. We define the quadratic character yp
using the quadratic residue symbol for A by

o(f) = (?) . (2.6.5)

Therefore if P is a monic irreducible polynomial in A, we have

0 if P|D,
xp(P)=11 if P+ D and D is a square modulo P,
-1 if P4 D and D is a non-square modulo P.

Definition 2.6.3. The L-function corresponding to the quadratic character xp is de-

fined as

L(s,xp)= ), Xf}ﬁf), R(s) > 1. (2.6.6)
feA+

For the change of variables u = ¢=*, we have

L(s,xp) =L(u,xp) = f% xp(f)udesd) = ];[ (1-xp(P)udes®)™. (2.6.7)

From Proposition we know that £(u, xp) is a polynomial in u of degree at most
deg(D)-1. For P a monic irreducible polynomial, we can define the quadratic character

xp and the L-function corresponding to yp in a similar way.
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2.6. Quadratic Function Field in Odd characteristic

2.6.3 The Hyperelliptic Ensemble

Let
H, ={D € A: D monic, square-free, deg(D) =n}. (2.6.8)

Then, by [Ros02, Proposition 2.3], for g > 1, we have

D) _ L
Ca(2) Ca(2)
Let k = Fy(T") denote the rational function field over F, and let ooj, be the infinite
prime associated with %. If D € Hagy1, 0oy ramifies in k(v/D), i.e., Kp = k(v/D) is an
ramified quadratic extension of k. If D € Hyy.o, then ooy splits in k(\/ﬁ), ie, Kpisa

real quadratic extension of k. Let v be a fixed generator of [, then for any D € Hyg.o,

#H2g+1 = QQQ(C] - 1) = and #H2g+2 = q29+1(q - 1)

(2.6.9)

ooy, is an inert in k(\/vD), i.e., K,p is an inert imaginary quadratic extension of k.

From [Rud10] we know that for any D € Hagso, L(u, xp) has a trivial zero at u =1, and
for a fixed generator v of F;, L(u, xyp) has a trivial zero at u = ~1. Therefore if Kp is

ramified, we can define the complete L-function £*(u, xp) as

‘c*(u7XD) :[’(U7XD)' (2610)

Similarly, if Kp is real, we can define the complete L-function £*(u, xp) as

L*(u,xp) = (1-u)"L(u,xp). (2.6.11)

Finally, if K,p is a inert imaginary, we can define the complete L-function £*(u, x,p)

as

L (u, xp) = (1 +u) L (u, x+p). (2.6.12)

These complete L-functions are all polynomials in u of degree 2¢g which satisfies the

functional equation

L*(u,xp) = (qu)?L (qiu,x[)) : (2.6.13)

where D = D if K p is ramified or real and D= vD it Kj is inert imaginary. In his
thesis, Artin proved that these £*(u, xp) are equal to Pe, (u), where Po(u) is defined
in Section 2.5, D is a monic, square-free polynomial of degree 2¢g + 1 or 2¢g + 2 and the
affine equation y? = D(T') defines a projective and hyperelliptic curve Cp of genus ¢

over F,.
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Chapter 2. Background on Function Fields

For D € Hogy1, let
Xp(s) = |D|>*X (s)
where
X(s)=q 3%
Then we define the completed L-function A(s,xp) by
A(s, xp) = Xp(s) 2L(s, xp). (2.6.14)
The completed L-function satisfies the following functional equation

A(s,xp) =A(1-s,xp)- (2.6.15)

2.7 Quadratic Function Field in Even characteristic

For this section, let ¢ be a power of 2. Most of the facts stated in this section are stated
in [ABJI16l BJ1S].

2.7.1 Quadratic extensions of &

Any separable quadratic extension K of k is of the form K = K, := k(z,), where x, is a
zero of X2+ X +u =0 for some u € k. Two elements u and v are equivalent if K, = K.
Furthermore, they are also equivalent if and only if u +v = p(w), where w € k and
p:k -k is an additive homomorphism defined by p(z) = 22 + = (for more information
see [Has35, HLI10]). For & € F,\p(F,), the following Theorem is due to Y. Li, but a
proof is given in [BJI§].

Lemma 2.7.1 ([BJ18, Lemma 2.2]). Any separable quadratic extension K of k is of the

form K = K,,, where u € k can be uniquely normalised to satisfy the following conditions:

u = Zi%+2aﬂ%l+a, (2.7.1)
- P =1

where each P, € P are distinct, Q; ; € A with deg(Q; ;) < deg(P;), Qie; #0, a € {0,&}, oy €

F, and o, #0 for n>0.

Let uw € k be normalised as in 1} The infinite prime ooy, = (%) of k splits, is inert
or is ramified in K, according to if n =0 and =0, n =0 and a =& and n > 0. Then
the field K, is called real, inert imaginary or ramified imaginary respectively. The

discriminant D, of K, is given by

1, P if n=0,

D“ = 2n
e P (z)" ifn>0.
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2.7. Quadratic Function Field in Even characteristic

By the Hurwitz genus formula ([Sti93, Theorem III 4.12]), the genus g, of K, is given
by

g = %deg(Du) _1 (2.7.2)
For M e A*, let r(M) = [1pjpy P and t(M) = M x r(M). For P € P, let vp be the
normalised valuation at P, that is vp(M) = e, where P¢||M. Let B be the set of monic
polynomials M such that vp(M) =0 or odd for any P e P. Thus for M e B, t(M) is a

square. Also, for M € B, let {p = 2(bp(M) + 1) and

M = [] P =\/t(M). (2.7.3)
PIM
Furthermore, let C be the set of rational functions % € k such that D e A, M € B and
deg(D) < deg(M). Also, let € be the set of rational functions of the form

tp Ap;

D
M: Z me'—l’

PM i=1

where deg(Ap;) <deg(P) for any P|M and for all 1 < i < ¢p. Note that for & € &,
ged(D, M) =1 if and only if Apy, # 0 for any P|M. Thus let

D
F = {M €& :Apy, #0 for any P|M} (2.7.4)

and

F'={u+&:ueF}. (2.7.5)
For any positive integer s, let G, be the set of polynomials F'(T") € A of the form
F(T)=a+ Zs: o T*1
i=1
where a € {0,¢}, oy € F, and o, # 0 and let G = Ug1G,. Then let
I={u+F:uecF GeG)} (2.7.6)

where F = FuU Fy and Fy = {0}. Then by the normalisation given in (2.7.1)), we see
that u — K, defines a one-to-one correspondence between Z, F and F’ and the set of

all ramified imaginary, real and inert imaginary quadratic extensions of k respectively.

Furthermore, for a positive integer n, let

B, = {M €B:deg(t(M)) =2}, C, - {% eC:MeBn}

En=EnC,, Fo=Fné&, and F, ={u+&:uelkF,}.
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Also, for any integers >0 and s > 1, let
Ty ={u+ FrueF, Feg}. (2.7.7)

Then, for any integer n > 1, let Z,, be the union of all Z, ), where (r,s) runs through
all pairs of non-negative integers r and s with s > 0 and r + s = n. Then under the
correspondence u — K, Z,, F,, and F/ corresponds to the set of ramified imaginary, real

and inert imaginary separable quadratic extensions K, of k with genus n—1 respectively.

Remark 2.7.2. The map B, — A: defined by M — M and the map A% — B, defined
by N - N* = N?2/r(N) are inverses of each other.

We also have the following result about the sizes of the sets B,,, &,, F,, and Z,,.

Lemma 2.7.3 ([BJ18], Lemma 2.3). For positive integers n, we have #B,, = ¢, #&, =
q2n7 #fn = <A(2)_1q2n and #In = QCA(Q)_1q2n_1-

For each M € B, let Cj; be the set of rational functions u € C whose denominator divides
M, Ey=EnCy and Fyr = F nCyy. Furthermore we have that Cy; and £, are abelian
groups under addition and #&y = |M| and #Fy = ¢(M).

We also let F be the set of rational functions u € F whose denominator is a monic

irreducible polynomial. In other words, we let
]}:{u:%e}':PeP,OiAeAand deg(A) <deg(P)}.

Also, let
F={u+&:ueF}
and
I={u+F:ueF,FeG}.

Then under the correspondence u — K, Z, F and F’ corresponds to the set of ram-
ified imaginary, real and inert imaginary separable quadratic extensions of k whose

discriminant is a square of a prime polynomial respectively. Furthermore we let
Fo={ueF:PecP,} and F.={u+&:uck,}
Also, for r;s > 1, let
Ty ={u+FiueF, Feg).

Then for integer n > 1, let Z, be the union of all f(m) where (r,s) runs through all
positive integers r and s with r + s =n. Then, under the correspondence u + K, ng,
.7-'g+1 and .7-'§’, .1 corresponds to the set of ramified imaginary, real and inert imaginary
quadratic extensions of £ whose discriminant is a square of a prime polynomial with

genus g.
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2.7. Quadratic Function Field in Even characteristic

Remark 2.7.4. Comparing to the odd characteristic case, the sets Ly.1, Fgi1 and féﬂ

correspond to the sets Hogi1, Hogro and YHog4o Tespectively, where 7y is a fized generator
of Fe. Similarly, the sets fg“, .7:"g+1 and F+1 correspond to the sets Paogi1, Pogs2 and

Y Pag+2 TeSPectively.

2.7.2 Hasse Symbol

Definition 2.7.5. Let P € P. For u € k whose denominator is not divisible by P, the
Hasse symbol [u, P) with values in Fy is defined by

0 if X2+ X =u(mod P) is solvable in A,
[0, P) =

1 otherwise.

Definition 2.7.6. For N € A prime to the denominator of u, write N = sgn(N) [1_; P
where P, € P are distinct and e; > 1. Then

[u,N):= iez u, ;). (2.7.8)

Definition 2.7.7. For u € k and 0 # N € A, we define the quadratic symbol {%} by

{ u } (-1)=N)if N is prime to the denominator of u,
NS T

0 otherwise.

Remark 2.7.8. The symbol [u,n) is additive and the quadratic symbol {%} s multi-

plicative.

2.7.3 Quadratic L-functions

Definition 2.7.9. For the field K, the character y,, the character y, on A* is defined
as xu(f) = { } For PR(s) > 1, the L-function associated with y,, is defined by

L(s,xu) = O X“({) =H(1— ergﬁ)) . (2.7.9)

feAt |f| P

Using the change of variables z = g%, we have

L) = 3 val )28 =TT (1 - xu(P)=e?) (||$) (2.7.10)

feA+ P

Similarly, from [Rud10], we know that £(z,x,) has a trivial zero at z = 1 if and only
if K, is real and L(z, x,) has a zero at z = -1 if and only if K, is inert imaginary. We
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thus define the complete L-function £*(z,x,) as

L(z, Xu) if K, is ramified,
L(z,xu) =1 (1= 2)"L(2,xa) if K, is real,

(1+2)1L(z,xu) if K, is inert imaginary,

which is a polynomial of degree 2g,, where g, denotes the genus of K, which is defined
by (2.7.2), which satisfies the functional equation

1
* — 2\gu [ *
L (2, xu) = (q2°)™L (_q27Xu)~

For the hyperelliptic curve C,, : X2 + X + u = 0, we have that £L*(z, x.) = Pc,(2), where
Pc(z) was defined in Section [2.5
For weZg,, let

Xu(s) = (¢*1)27 X (s)

where
X(s)=q3"

Then we define the completed L-function A(s, y,) as
A(s, Xu) = Xu(5) 2 L(s, Xu).- (2.7.11)
The completed L-function also satisfies the following functional equation

A(s, xu) = A1 =5, xu)- (2.7.12)
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Chapter 3

The First Moment of L (%, X) for
Real Quadratic Function Fields

The work done in this chapter is a joint work with my supervisor, Dr. Julio Andrade
and has been published in Acta Arithmetica [AM21].

3.1 Introduction and Statement of Result

A problem in function fields is to understand the asymptotic behaviour of

> L(s,xp)", (3.1.1)

DeHogr1

for various values of s and k, as |D| — oo, where ¢ = 1(mod 4), L(s, xp) is the quadratic
Dirichlet L-function defined in Section and Hag.q is the hyperelliptic ensemble
defined in Section Since we are letting |D| — oo, there are two limits to consider,
the first is to fix ¢ and let ¢ - oo and the second is to fix ¢ and let g - co. Katz and
Sarnak [KS99al [KS99b] used equidistribution results to relate the ¢ limit of to
a random matrix integral, which was then computed by Keating and Snaith [KS00a].
We will thus concentrate on the other limit, namely when we fix ¢ and let ¢ - oo. In
this setting Andrade and Keating [AK12] computed the first moment of ([3.1.1)), when
s = %, which is seen to be the function field analogue of Jutila’s result Theorem m

Theorem 3.1.1 (Andrade and Keating). Let g be the fized cardinality of the ground
field F, and assume that ¢ = 1(mod 4). Then

1 P(1) 4 P 1
L(_7 ) = D [10 Dl+1+ ——(1 ]+O D 1+5log, 2 , 3.1.2
Degz:gﬂ 2P QCA(2)| |0, 1D log q P( ) (| | ) ( )

where

1
P(s) :H(l—m). (3.1.3)

P
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Motivated by Young’s [You09] number field result, Florea [Flo17a] improved the asymp-
totic formula 1} by obtaining a secondary main term of size gq% and bounded

the error term by ¢ (19,

Theorem 3.1.2 (Florea). Let q be a prime with q = 1(mod 4). Then

1 P(1) 4 P
Lo = 2O gy 2]
De%gﬂ 9 AP 205 (2) ( ) log ¢ P( )
+q 5 R(2g+1) + 0 (q5(19), (3.1.4)

where R is a polynomial of degree 1 that can be explicitly computed.

Florea [Flol17bl [Flo17¢] then computed the second, third and fourth moments of (3.1.1])

at s = % Namely, she proved the following results.

Theorem 3.1.3 (Florea). Let g be a prime with g = 1(mod 4). Then
1 2
D L(—,XD) =¥ P(29+1) + O (¢?9), (3.1.5)
DeHagys1 2

where P(x) is a polynomial of degree 3 that can explicitly be calculated.

Theorem 3.1.4 (Florea). Let q be a prime with q = 1(mod 4). Then
1 ’ 2g+1 39 (1+¢)
> L(_aXD) =q” Q(2g+1)+0(q2 ) (3.1.6)
D€H2g+1 2

where Q(x) is a polynomial of degree 6 that can explicitly be calculated.

Theorem 3.1.5 (Florea). Let q be a prime with q = 1(mod 4). Then
1 ! 2g+1 10 9 8 2g+1  T+i+e
Y L{5xn) = (a10g" + asg® + asg®) + O (%1 g™ 5), (3.1.7)
DeHagia 2
where the coefficients ayg,a9 and ag are arithmetic factors that can be written down

explicitly.

In [And12], Andrade obtained an asymptotic formula for the first moment of (3.1.1]) at

s = 1. In particular, he proved the following result.

Theorem 3.1.6 (Andrade). Let F, be a fized finite field with ¢ = 1(mod 4). Then

> L(1,xp) = |DIP(2) + O((29)*). (3.1.8)

DeHagy

Andrade and Jung [AJ18|, using the techniques presented by Florea [Flo17al, improved
the asymptotic formula 1) by obtaining a secondary main term of size ¢% and

bounded the error term by ¢9%¢ for any € > 0.
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3.1. Introduction and Statement of Result

Theorem 3.1.7 (Andrade and Jung). Let F, be a fized finite field with q a prime

number such that ¢ = 1(mod 4) and € >0. Then as g — oo, we have

Z L(1,xp) = P(2)¢* + cq% +0(q%), (3.1.9)
DeHagi1

where ¢ is a constant that can be explicitly calculated.

Bae and Jung [BJ19] used the techniques presented by Florea to improve the asymptotic

formula for the second derivative of L(s,xp) at s = %, when summed over D € Hyy,q,
which was first calculated by Andrade and Rajagopal [AR16]. Compared to the asymp-
totic formula obtained by Andrade and Rajagopal, Bae and Jung obtained a secondary

main term of size g3ngT+1 and bounded the error term by ¢2(1*+9).

Another problem in function fields is to understand the asymptotic behaviour of

>, L(s,xp)" (3.1.10)

DeHogi2

as |D| - oo, where Hyyo is the hyperelliptic ensemble defined in Section [2.6.3] In the
setting of fixing ¢ and letting g - oo, Jung [Junl3] obtained an asymptotic formula for
the first moment of (3.1.10) at s = 3.

Theorem 3.1.8 (Jung). Assume that q is odd and greater than 3. Then we have

De%ﬂL (%7XD) = 2?:(12)) |D| [logq |D| + %%(1) +20a (%)] L0 (|D|%+%log42) .
(3.1.11)

In this chapter, we will use the techniques presented by Florea to improve the asymp-
. .. . . 2g9+2

totic formula (3.1.11)), by obtaining a secondary main term of size gg~3~ and bound the

error term by ¢3(*9. In particular our goal for this chapter is to prove the following

theorem.

Theorem 3.1.9. Let g be a prime with ¢ = 1(mod 4). Then

1 P(1) 4 P 1
De%gu 2 AP ZCA(Q)q (29 +2) log q P( ) +2Ca 5
+ 5 R(29+2) + 0 (¢5049), -

where R is a polynomial of degree 1 that can explicitly be calculated (see formula

3.0.29)).
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3.2 Overview of Chapter

The techniques presented in this chapter follows the techniques presented in [Flol7a].
We will first use a form of the Poisson summation formula over [F,[7'] to split the sum
up to different formulas, which correspond to whether the degree of f is odd or even.
These formulas are presented in Section [3.4] In Section [3.5], we will express sums over

square polynomials f as contour integrals.

In Section [3.6] we will evaluate the non-square polynomials f using the Poisson sum-
mation formula, which will analyse the contribution of the square polynomials V. In
the imaginary quadratic function field case, the contribution to the main terms from
the square polynomials V' come from when the degree of f is even. However in the
real quadratic function field case, the contribution to the main terms from the square
polynomials V' come from when the degree of f is both odd and even. Thus, compared

to the calculations done by Florea, there are extra terms to calculate and evaluate.

In Section [3.7, we will bound the contribution of the non-square polynomials V' by
¢2(1*9) Finally, in Section , we will show how the results obtained in the previous

sections combine to establish the desired asymptotic formula.

3.3 Preliminary Lemmas

In this section, we will state some results which will be used to prove Theorem [3.1.9]

For D € Hsgio, the “approximate” functional equation was first proved in [Junl3],
however it has been corrected to match that stated in [RW15].

Lemma 3.3.1 (“Approximate” Functional Equation, [Junl3, Lemma 3.1]). Let xp be
a quadratic character, where D € Hag.o. Then

9 g

L(%aXD) =3 S (N E - T Y Y xolf)

n=0 feA} n=0 feA},
g-1 . . g-1
Y xo(NTE-q8 Y Y xo(f). (3.3.1)
n=0 feA}, n=0 feA;
Using Lemma |3.3.1], we have
1 1 g+1
Z L(§>XD): Z — Z xo(f)-q¢ = Z Z xo(f)
DeHagrs fehzy V|| Detzguo JERE, Do
1 g
S — Y xw)-af Y Y xolf). (332
feA;'g_l |f| DeHogi2 feA;g_l DeHogyio
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The next results will be used in later sections.

Lemma 3.3.2. Let f e A*. Then

>, xo(f)= > >, xp(h)-q ) >, xe(h), (3.3.3)

DeH C|f heAl C|f*° heA}
2g+2 Ce[‘g}i 2g+2-2deg(C) C€|1];;rg 2g-2deg(C)

<g+1

where C|f> means that any prime factor of C is among the prime factors of f.
Proof. The proof is similar to that given in [Flo17a, Lemma 2.2]. [

Next, we will state a version of the Poisson summation formula over function fields.
To do this, we need to recall the exponential function and the generalised Gauss sum
which was introduced by Hayes [Hay66, [EH91] and Florea [Flo17a]. We know that each

aelf, ((%)) can be written uniquely as
a= i a; (l)Z : (3.3.4)
i=—00 T
with a; € IF, such that all but finitely many of the a;’s with ¢ < 0 are non-zero. If a # 0
and a has the Laurent expansion ([3.3.4), then one can define the valuation

v(a) = smallest i such that a; # 0.

For a € Fy((4)) the exponential sum (see [Hay66]) is defined as

2miaq

e(a)=e"a |

where a; is the coefficient of % in the Laurent expansion 1' By [Hay66, The-
orem 3.3], we know that for a,b € F,((%)), we have e(a +b) = e(a)e(b) and for
A,B,H e F,[T], we have e(A) =1 and e(4) =¢(2) if A= B(mod H). For a general

character y modulo f, the generalised Gauss sum is defined as

GV0= % ().

A mod f

Then the following result holds.

Lemma 3.3.3 (Poisson Summation Formula, [Flo17a, Lemma 3.1]). Let f € A* and let

m be a positive integer.

1. If the degree of f is odd, we have

m+i

S xu@=t= T Gy (3.3.5)

geAf, |f| VEA-(;eg(f)—m—l
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2. If the degree of f is even, we have

zmw% GOx)+(g-1) Y G- Y G|,

geAt, VeA VeA

+ +
<deg(f)-m-2 deg(f)-m-1

(3.3.6)

Remark 3.3.4. G(0,xys) is non-zero if and only if f is a square, in which case,
G(0,xy) = &(f), where ¢(f) the Euler-Totient function defined in Section .

The last result that we will state in this section is the function field analogue of Perron’s

formula.

Lemma 3.3.5 (The function field analogue of Perron’s formula,[AJ18, Lemma 4.1]).

If the power series

H(u)= Y a(f)uid) (3.3.7)

feAt

converges absolutely for |u| < R <1, then

Y a(f) = — 9|§ "), (3.3.8)

) n+1
feis 271 Jju=R u

and

S a(f) = iy{ AW (3.3.9)

Poret 2711 Jju=r (1 —w)u™t

3.4 Setup of the Problem

Using the “approximate” functional equation (3.3.2)) and Lemma [3.3.2] we write

1
Z L (57 XD) = Sg,l - Sg,2 + Sg—171 - Sg—1,2 (341)
DeHagr2

where

1 1

Sg1= 2, = > o xi(W)-q Y, — > Y. xs(h),

fEAzg |f| C‘foo hGA;g+272dcg(C) fEAgg |f| C|f°° hEA;—g72dcg(C)
CeAl CeAl,

<g+1

Spp=q"" Y Y Sy -7 Y Y > xs(h),

feAl, CIf™ hehA} feAl, CIf> hea}

CEAI " 2g+2-2deg(C) CGAzg 2g—2deg(C)
<g <
1 1
Spa1= )2 = 2 2 xih-a 3 —= > X xs(h)
f€A§g-1 |f| CSII%EZI hEA;g+2—2dcg(C) fEAzg—l |f| CC"G‘IJ;; heAggﬂdcg(C)
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3.4. Setup of the Problem

and
Sp2=a? ¥ ¥ DIV OET D YD VD M e (1))
feA;g—l CSALE;OJJ heA;g+2—2deg(C) fEAgg—l CC"E‘A‘QZI hEA;g—Qdeg(C)

From [Flo17al, Section 4], we have

Yol
Clf=

Ceh}

thus we see that the terms in S, 1,8;2,S84-1,1 and S;-12 corresponding to C' € A;Jrl are
bounded by O (q%(“e)). Therefore, for k€ {g,g— 1}, we have

Si= Y =S| Y w-a S )]0 (E)

feA;k |f| C|f°° hGA;g+272dcg(C) hEA;g72dcg(C)
CeAl,

and

Sea=q 7 Y Y Sooxs()-q Y xp(h) |+ 0(g2049).

fEAzk CC';';QT hEA;g+272deg(C) hEA;g72deg(C)
<9
For ¢ € {1,2}, write
2(1
Sie=80,+85,+0(q2"9), (3.4.2)

where §7 , and Sf , denote the sum over f € A, of odd and even degree respectively. If

the degree of f is odd, then using Lemma [3.3.3] we have

5 1 1
Sta=a Y 2w (il o)
feAl, |f] clf= C]|

deg(f)_odd CGAEg

and
4g-k 1 1
Sta=q 7 ) > |C|2S (V; f,C)
feAg, |f’ C|f
deg(f) odd CeAt,
where
G(V, 1 G(V,
S°(V: £,C) = > GVixy) 1 Vxn) (543
VA iog(f)-20-3+2des(C) /] DV At g )-2-12008(0) /]
If the degree of f is even, then using Lemma , we rewrite S; , s
Spe = Mo+ Sp o1 + Sipo- (3.4.4)
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Chapter 3. The First Moment of L (%, X) for Real Quadratic Function Fields

Using Remark [3.3.4] we have that

29+ o(L2) 1
My = (3.4.5)
0@ 2 P A [P
<[5] CeAl,
and
4g-k+3
q > P(L?) 1
Myo=1—— . (3.4.6)
G@) 2 JIF A [P
(3] CeAt,
Similarly, for j € {1,2}, we have
Siu=a? Y o Y oSV
! feAl, |f] clF (O
deg(f) even CeAl,
and
S¢ _ w Z 1 Z 1 Se(vf C)
b2d feat ] 7 IO
<k
deg(f) even C’EA;’Q
where
Se(vf C)—(q—l) Z G(‘/va)_q_l G(V7Xf)
1 )y d -
VEAzdeg(f)—2g—4+2deg(C) |f| q VEA;deg(f)—Qg—z*'Qdeg(c) |f|
(3.4.7)
and
S3(Vi f,0) L GVixg) _ 3 Gxp) (3.4.8)
DVens oy 1y-2g-1r2d0ss) /] VA eg()-29-3+2deg(c)  V Il

For i € {o,e}, define S} ,(V = O) to be the sum over V square and S ,(V # D) to be
the sum over non-square V. Since the degree of f is even in , then the degree of
V' is odd and so V cannot be a square. Furthermore, since the degree of f is odd in
, then the degree of V' is even, so there is a contribution to the main terms when
the degree of f is odd, which does not occur when working in the imaginary function

field case, i.e., in Florea’s calculation [Flol17al.

3.5 Contribution from M term

Let
M = Mg,l - Mg’g + Mgfl,l - MQ*LQ' (351)

Then, in this section, we evaluate the main term M. The main result in this section is

the following result.
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3.5. Contribution from M term

Proposition 3.5.1. For any € >0 we have

M = My + My + M3 + My + O(q%), (3.5.2)
where
292 1 yg C(u)
1= =75 a7
Ca(2) 27 Jjul=r u(1 - qu)2(qu)l5]
2 1 95 C(u)
2= g 3
Ca(2) 27 Jjujer u(1 - qu)?(qu)! 7]
3g+3
oty ow
Ca(2) 2mi Jul=r u(1 - u)(1 - qu)ul?]
and 5
H+2
oLy e,
Ca(2) 2mi Jjul=r (1 - w)(1 - qu)u (4]

with r < ¢~' and

udeg(P)
C(u) = 1‘[( |P|+1) (3.5.3)

P

Remark 3.5.2. C(u) is analytic in the region |u| < 1. We may further write

u\! udeg(P)
cw=-z2(7) 1;[(“<1+|P|><|P|—udeg<P>>)

udea(P)

-(-wll (1 F PP —udeg<P>>)’ (354)

which furnishes an analytic continuation of C(u) to the region |u| < gq.

Proof of Proposition [3.5.1]. From (3.4.5)) and (3.4.6) and using the facts that (see [Flo17al
Section 5])

1 o(L
=5 = [[A=|P[?) " +0(¢*?)  and =[1a-1P™)
S e 1] w1l
CeAl,
we have I . |P|
q g
M1 = +0(q*)
G 2, TP
7
and 4g-k+3
q 2 1P|
M2 = +0(q%)
Ca(2) LeA+[k PIL |Pl+1
<12
Using the function field version of Perron’s formula, we have
2g+2 1
M, =2 Jc{ Alw) ydu+ O(¢”) (3.5.5)
Ca(2) 2mi Jujer u(1 - qu)(qu)lz]
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and o
qu 1 A(U)
Mz = el e 1 LU U 3.5.6
2 Ca(2) 2mi 7|§u|=r U(l—u)u[g] u+0(g"), ( )

where r < ¢g~! and

Pl
A(u) = Y udes®) P (3.5.7)
LEEA;J' PIL |Pl+1
By multiplicativity, we may write (3.5.7)) as
|[P] udeE®) C(u)
= ]_ = Z = . J.
A(u) I;[( + Pl 11— e (w)C(u) - q0) (3.5.8)
Inserting (3.5.8)) into (3.5.5)) and (3.5.6)), we have that
2g+2 1
My =+ — f C) s 0(g) (3.5.9)
Ca(2) 2mi Jul=r 4(1 - qu)2(qu)lz]
and 4g-k+3 1 C( )
q > u
My = ——95 du + O(q%). 3.5.10
27 C(2) 2mi Jjuger w(1-u)(1 - qu)ul?] (¢%) ( )

Observing (3.5.9) and (3.5.10]), we see that the terms My, M,_11, Mo and My_; 5 are
precisely the terms My, My, —M3 and —M, stated in Proposition respectively. By

(3.5.1) we deduce the Proposition. [

3.6 Contribution from V Square

3.6.1 Main Result

Let
S(V=0)=8(V=0)+84V=0) (3.6.1)

where

S(V=0)=8,(V=0)-8,(V=0)+8,,(V=0)-8 ,,(V=n) (3.6.2)
and

S(V=0)=8,(V=0)-S;o(V=0)+S8;_,,(V=0)-S;,,(V=0). (3.6.3)

In this section, we will evaluate the term S(V =0). The main result in this section is

the following Proposition.

Proposition 3.6.1. Using the same notation as before, we have

SV=0)=5&(V=0)+8(V=0)+S8(V=0)+85(V=0D)
+q" 5 R(2g+2) + 0 (¢2079), (3.6.4)
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where s o
S (V=n)=-2 . u p
1( D) CA(2> 211 ﬁ”:}% u(l_qu)Q(qU)[%] U,
2g+2 1 C(u)
S(V=p)=-Ll - .
A Ca(2) 2mi 55“|=R u(1 - qu)?(qu)lz’] “
U 0
Sy(V=o)=2L1' >
A== Gt Bttt -
and »
Ea C(u)
S(V=o)=1__~ ]
e Ca(2) 2mi ﬁ”:R u(1 - u)(1 - qu)ul 7] “

with 1 < R< q and

wdes(P) udeg(P)
et H(l‘ |P|+1) ) (1‘“)1;[(“ <|P|+1><|P|—udeg<P>>)‘

P

Furthermore, R is a linear polynomial that can be explicitly calculated (see formula

G

3.6.2 Notation and Preliminary Results

To prove Proposition [3.6.1, we first need the following notations and results, which are

stated and proved in [Flo17al Section 6]. For |z| > ¢72, let
] -1
= deg(f) - -
B(va) szA;fw Af(Z)IID_gc(l |P|2Zdeg(P))

where o
Ap(2) = Z s deg(l) ( aXf).
leAt |f|

Then we have the following results.

Lemma 3.6.2 ([Flol7a, Lemma 6.2]). For |z| > ¢ 2, we have
B(z,w) = Z(2)Z(w)Z(qu®z) [ [ Br(z,w) (3.6.5)
P

where

1

Bp(z,w) =1+ S|P 1

(wdeg(P) _ (Zw2)deg(P)|P|2 _ (22w)deg(P)|P|2
+ (22w3)deg(P)|P|2 + (sz)deg(P)|P| _ (zw3)deg(P)|P|)

Moreover [1p Bp(z,w) converges absolutely for |w| < q|z|,|w| < ¢"2 and |wz| < ¢*.
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Lemma 3.6.3 ([Flol7a, Lemma 6.3]). We have
[1Bn(z) = z( )Z(uﬂ) [1De(z), (3.6.6)

where

3deg(P) wdeg(P)

+
P PP

1
(|P|2zdeg(P) _ 1)(1 + wdeg(P))

Dp(z,w) =1+ ( — q2deg(P) _

+ (sz)deg(P)|P| + (Z,wQ)deg(P) _ (ZZ,w)deg(P)|P|2 + (wa)deg(P) _ (Z2w2)deg(P)|P|2).

Moreover [1p Dp(z,w) converges absolutely for |w|? < q|z], |w| < ¢3|z)?, |w| < 1 and |wz| <

gt

3.6.3 Outline of the proof of Proposition [3.6.]]

From the Poisson summation formula, the sum over square polynomials V' will occur
when the degree of f is even and when the degree of f is odd. In Section and
Section , we will obtain two integrals for each Sp ,(V =0) and S (V' = O) respec-
tively, which correspond to simple poles w = ¢~! and w = ¢z. In Section [3.6.6, we will
manipulate the integrals corresponding to the pole at w = ¢~!, similar to what was done
in [Flo17al Section 6] which will yield the main terms S;(V =0),S(V =0),S3(V =0)
and S(V = 0). In Section [3.6.7 we will evaluate the integrals corresponding to the

pole at w = gz, which will yield the secondary main term.

3.6.4 Degree f even
In this subsection, we prove the following result.
Lemma 3.6.4. We have
S(V=0)=Ay 1 - Ao+ A5 11~ AG 10+ By =By o+ By 1 =By 5+ 0 (qg(1+€)) :
where A , and B,f% are the integrals stated at the end of the subsection.
Proof. From (3.4.7)) and using the function field analogue of Perron’s formula, we obtain

Se(l2 fC) 1 f zg(q 1)((]2_1)Af(z)d

271'1 |z]=q=1-¢ q(1 _ Z)Zdeg(f)"'deg(c)

Using the fact that (see [Flol7a, Proof of Lemma 6.1])

1
C%:‘” |C’|2Zdeg(0)
CeAl,

— H(l _ |P|—22—deg(P))—1 +0 (qg(e—l))
Plf
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3.6. Contribution from V Square

we have, for k€ {g,g -1}

q*9+* 29(q-1)(gz-1) g
— e 2 (1+e)
Spa(V=0)= omi ¢z| i ) Hi 1 (2)dz+0(q ),

where A,(2)
e Az —2 __de _
Hiy ()= Y — gy [T -|Pardsto)
reml |flz2 P
deg(f) even

Similarly, we have

49-k+3

29(q-1)(gz -1 9 (14c
82,2(‘/:‘:‘):(] &1%;' - (g=1)(g )HEVQ(Z)CZZ-FO(qi(l ))7

27i q(1-2)

where A(2)
z 9 de B
Hip()= Y —— qmy [L(L-[P[P2)
feAd, \/|f|z 2 PIf

deg(f) even

Furthermore, we have

e f4f(Z) —2 __de _
Hk,E(z) = Z 3¢ dea(f) H(1_|P| 2274 g(P)) !
feat,  |fl7 22 Py

deg(f) even
: Ar(2)
! 2 _—deg(P)\-
- Z Z 3¢ des(/) H(1_|P| 2zmdes) !

30f€A+| |2z 2 P|f

n=

k
2

1 -2 _—deg(P)\-1
= 2 G0 m > Ap(2) [T - [P 2erdest?)

m=0 feAl . P|f
Using the function field analogue of Perron’s formula, we have

(5]
1 B(z,w) 1
H-gef B

27'('?, w =0 qm(3 Z)meQm
Lg Bew) gy L f OB,
210 Jpwl=re w (1 - ¢3~C2w?) (g3 fsz) 5] 2mi Jwl=rs 1 - ¢3Lzw?
(3.6.7)

For each k € {g,g—1} and each £ € {1,2}, the second integral in (3.6.7]) is zero since the

integrands have no poles inside the circle |w| = 5 < g7'. Therefore

e 29(q - 1)(qz— 1)B(z w) g
S¢,(V=n)= dwdz + O (q2(+9

and

4g-k+3

S T #(g-D(gz-DB(zw) .
StalV'=0) = (2mi)? jI|§Z|qr‘1‘€ §1§w| r2 qu(1 - 2)(1 - gzw?) (gzw?)[2] duwd

+0(g50+9).
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Using (3.6.5)) from Lemma [3.6.2] we obtain

Sls,l(v =0)
q29+2 g g
_ : jlg ‘75 29(q - 1) 1p Bp(z,w) — dwdz + 0 (¢30+9)
(27”) lel=a-1¢ Jjul=r2 qu(1 - 2)(1 - qu) (1 - g2zw?)2(g2zw?) 2]
and
82,2(‘/ =0)

4g-k+3

_ Zg(q 1) HP BP('Z U)) dwdz
(2mi)? quzm‘l‘s jISJI r2 qu(1 - 2)(1 - qu)(1 - gzw?) (1 - 2zw?)(qzw?)ls]
+0(g409).

Using (3.6.6)), from Lemma we obtain

S,i,l(V:D)
G2+ 29(q-1)(1 - qu?) [1p Dp(z,w)
dwd
R RS Moy q0) (1= 2) (1= zurp(@zun)lE
O(qg(1+6))
and

4g-k+3

e — — q ?
Sk,?(v - D) - _W .ﬁhqle ﬁd:rz
x 29(q-1)(1 - qu?) [1p Dp(2,w) dwdz
qu(1-2)(1-quw) (1 - —) (1-qzw?)(1 - ¢*zw?)(gzw?) [5]

+0(g5049).

For each Sp ,(V = D), write

2g+2

SI?I(V ) D) ) (271'2)2 ‘9|§Z| =q~1-¢ ﬁd =79 F]Sl(z w)dwdz + O (q2(1+e))

and
4g-k+3

q 2 g
S¢ = - qu 55 Fe , 2(1+e) )
r2(V=0) CEh AR k1 (2, w)dwdz + O (g )

Shrinking the contour |2| = ¢~1=¢ to |z| = ¢"2, we do not encounter any poles. Enlarging
the contour |w| =7y < ¢! to |w| = ¢~17¢, we encounter two simple poles, one at w = ¢!

and one at w = gz. Thus
SE,Z(V =0) = Ao+ Bro+Cry+ O (q%(“e)) )

where pesd
g+

e _ q
k1=

5 qu Res (F¢ (z,w);w=q")dz,
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3.6. Contribution from V Square

q29+2
B, = 5 §I|§Z_q3 Res (F,f’l(z,w); w = qz) dz
and

P FE L (z,w)dwdz.

We can write down a similar expression for the terms A, 2 Bj, and Cf ,. We evaluate

the residues at w = ¢~! and w = ¢z in the following way. For example, we have

YL #(w-q")(¢-1)T1pBr(z,w)
Res (F; (z,w);w = hm O
= = )T - qu) (- gz g
29(1-qw)(g-1)I1p Br(z, w)
" Pw(l-2)(1 - qu)(1 - @zw?) (¢*zw?) 3]
_zg(q DI1pBrp(z,q7")
q(1-2)3:13]

and
c o= o 29(w - qz)(g - 1)(1 - qu) [1p Dp(z, w)
Res(F¢ (2, w);w = gz) = m qu(1-2)(1 - qw)(l——)(l 2 2w?)? (g2 zw?) 8]
e (1) @ DA - et T D)
w9 (1 - 2)(1- qu) (1- 2) (1 - g2ew?)2(q2ew?) 3]
_ 29(q-1)(A-¢*2*)[1pDp(2,92)
g(1-2)(1-%2)(1 - ¢*2%)*(¢*2%) 4]

We can evaluate the residues of F¢,(2,w) at w = ¢7! and w = gz in a similar way.

Furthermore, we use Lemma (3.6.3 to show that Cj , « ¢3(1+9 . Thus, for each k €
{g,g-1} and (€ {1,2}, we have

we(V=0)=A; ,+ B ,+0 (Q%(HE)) ,

where

. g jg 29(q-1)T1pBp(2z,q71)
211 |z|=¢" 2 q(l — 2)32[2]

g,1 —
Be - ng”yg 29(q-1)(1-¢*2%)[1pDp(2,q2) s
P 2w Tt g(1-2)(1- q22)(1- ¢ 22)2 ()]

39+3

S jg 29(q-1)T1pBp(z,q7")
9.2 ~ ' -3 (2]
2mi Jil=a? q(1 - 2)2(1 - ¢7L2) (g 12)L5]

e _ 4° yg 29(q-1)(1 - ¢*2*)T1p Dp (2, q2)
227 2mi Jeegt g(1-2)(1- g22) (1 - ¢*23) (1 - *23) (g32%) 3]

e _ 797 yg #(¢-D)pBr(z.q7")
g7171 277'& |z| q 2 q(l _2)32[ 2 ]

dz,

)

9
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e :_q29+2§1§ #(q- DA -@2)MpDp(242)
T am St g(1-2)(1- @) (1 ¢ (g
3g
e :‘QQ+2§’§ #(q-DpBr(za!)
TR om St g(1-2)2(1- g t2) (g 2) )
and
. g § 29(q=1)(1- ¢*22) [1p D (2,42) N
T 2m Tl g(1-2)(1- g22) (1 - #23) (1 - ¢428) (P23 ]
Finally, using (3.6.3)) proves the Lemma. [ ]

3.6.5 Degree f Odd

In this subsection, we will prove the following result.

Lemma 3.6.5. We have

S(V=0)= A5, - A

9,

o o 6} I5) 0 o g .
9 t+ Ag-1,1 - Ag_1,2 + Bg,l - 6972 + By—l,l - 89_172 +0 (q2(1+ )) ’
where AZ@ and B2 b are the terms stated at the end of the subsection.

Proof. From (3.4.3]) and using the function field analogue of Perron’s formula, we have

So(1% f, >2—my§|

Using the fact that (see [Flol7al Proof of Lemma 6.1])

Ap(2)2973(qz - D,
deg(f)ereg(C)

qz

1
ey = LI PP2es) e o)),
C%:“’ |C’|22deg(C’) 11:;
CeAgg
we have
¢29+5 2973 (qz - 1) g
~ “\4* ) 1y0 Z(1+e)
Sta(v =)= qu T H L (2)dz 0 (¢H09),
where 4,(2)
o =z -2 _—de _
HY (2)= ) —=m [1( - P 2erdes®)),
feAl, |f|’Z 2 PIf
deg(f) odd
Similarly, we have
49-k o g-1
o (-4 272 (gz 1) 5 (140)
Sta(V=-0) =1~ jlil T H () + 0 (43079,
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3.6. Contribution from V Square

where A,(2)
z 9 de B
Hip(2) = Y =y [[(1-|P[22) ™,
feA, \/|f|z 2 Pif

deg(f) odd

Using similar methods to that seen in the previous subsection and the function field
analogue of Perron’s formula, we have

=5 f, Bz w) ”

271 Jhwters %3 25w2(1 - @L2w?) (g3 2w?) 7]

1 qu_éz%B(z,w)
T om e @ 3.6.8
2 quwzrz 1 - g3 zw? v ( )

and

3-¢
2

1 1 1 3 1
H ()= ¢ B g L B,
9-1, 210 Jjwl=rs (1 - q3‘fzw2)(q3—fzw2)[5] 21 Jjwlers 1 — @322
(3.6.9)
For each ¢ € {1,2}, the second integrals in (3.6.8) and (3.6.9)) are zero since the inte-

grands have no poles inside the circle |w| = ry < ¢7!. Therefore

So.(v -0y~ L7
a(V=0) = 5 7|§z|:qle ﬂ|§w|
D (g2 - 1)B(z, w)

8 o dwdz+ 0 (¢50+9)
q2k=g+1)qp2(k-g+1) (] — q2zw2)(q22w2)[ 2 ]

and

Sio(V =0)

49-k o k—(—l)g_k
_qz z (qgz-1)B(z,w) i
- (277-7/)2 _¢;|=q—l—e ﬁler 3 [M] dde + O (q2( + )) .
qk—g+§w2(k—g+1)(1 _ qsz)(qsz) 3

Using (3.6.5)) from Lemma [3.6.2) we obtain

q2g+%
Sia(V=0)=- (271)2 —ﬁlw“ 9|§w|=r2
Zk*(’l)g_k HP BP(Z, 'ZU)

dwdz + O (q%(l“))

X

[k-(-ng*k]
q2(kfg+1)w2(kfg+1)(1 - qw)(1 - ¢2zw?)?(¢?zw?) 2

and

49—k

qT+2
Sk:,Z(V = D) = _W ﬁ|:q16 ‘ﬁ”'zf,ﬂ
2D 5 Bp(z,w)

X

M] dwdz + O (q%(1+e)) .

£ a0 (1 ) (1 - gzu?)(1 - @) ()

61



Chapter 3. The First Moment of L (%, X) for Real Quadratic Function Fields

Using (3.6.6)) from Lemma we obtain

q2g+g
Sia(V=0) = (2mi)? 9|§z|q-1-e j%um

zk—(—l)g—k(l—QwQ)I‘I DP(Z,U}) .
x p k_(_l)gk]dde+O(q2(1 ))

O Do (1 qu) (1 2) (1 e ()|

éﬂi@+2
SaV-o)=-t 4
"2 (271)?% Jlzl=g-1-¢ Jjwl=rs

k=(-1)9% (1 — g2 D
x < ( quw ) HP P(Z7 w) dwdz
o (1 ) (1~ 2)(1 - gu?)(1- g2 (get)|

+0(¢40+9),

and

For each & (V' =0) write

2g+32
) _ _ q 2 o
Sp(V=0)= —(2m)2 jiq_l_e yﬂ;m FY (2, w)dwdz

and
égJﬁ+2

F2o(z,w)dwdz.
(27rz)2 jil =q-1=¢ Jjwl|=rs “ )

Shrinking the contour |z| = ¢717¢ to |z| = ¢ =3 we do not encounter any poles. Enlarging

SM(V 0)=-

—€

1 .
the contour |w| =13 < ¢! to |w| = ¢ 17, we encounter two simple poles, one at w = ¢!

and one at w = qz. Thus

S/?,e(v =0) = Ao+ Bro+CPy+ O (q%(“e)) )

where
o q2g+2 i .
1T o jlg:q_g Res (Fk’l(z,w);w =q )dz,
q29+2
and

2g+2
Ck,l (271'2 ﬁ o 3 ‘9§w|_ 1o kl z w)d'UJdZ

We can write down similar expressions for the terms AZ}Q, B,(;z and C;C”Q. We evaluate
the residues at w = ¢~! and w = ¢z in the following way. For example, we have
2971 (w =g ) [1p Bp(z,w)
L Pw?(1 - qu)(1 - Pw?)?(g2ew?) 7]
2971 (1 - qw) T1p Bp(z, w)

t (1 - qu)(1 - 2ew?)?(zw?) ]

29~ IHPBP(qu Y
(-2l

Res(Fy(z,w);w = ql)—l
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3.6. Contribution from V Square

and
Res(F, 1(2 w);w =qz) = lim 29N (w - qz)(1 - qu?) [1p Dp(2,w) -
w9z g2 w2(1 qw) (1 - —) (1 q Zw2)2(q ng) a-1]
I; Z (1——)(1—qw2) [1pDp(z,w)
= — lim
w—gz w2(1 qw)(l——)(1 q sz)z(q ng) [51]
#72(1-¢*2%) [1p Dp (2, q2)
(1= 22)(1- ¢*22)2(¢*=)l'F ]

We can evaluate the residues of F?, at w = ¢! and w = gz in a similar way. Furthermore,

we can use Lemma 3.6.3| to show that O}, < q2(*) . Thus, for each k € {g,g -1} and
¢ e {1,2} we have

51?,@ = Az,e + Bz,e +0 (q%(lﬁ)) )

where
o _q29+g —% Zg_l l_IP BP(Z7q_1)d
1= . 9= ’
9 2w Jiel=a77 (1 —2)2,2[71
o _ _q2g+g 55 2972(1-¢*2*) [1p Dp(2, g2) dz,
9.1 2mi Jzl=q 2 G(1-¢?2)(1-q*23)2(¢*23) (4]
L
9 = » [£ ’
9, 2711 Jlz=q3 q2(1 —z)(l q'2)(q712) [45°]
ST LY e
9277000 Jekad gE(1 - @22)(1- 828) (1 - g 28) (@) 2]
o _ _q29+g f 29 I_IP BP(Z7q71)d
9-1,1 2mi Jz)=q2 q(1—2)22[ ] 7
o - €7 jg gt =i Iy Bl qz)dz
g-1,1 i — 3 (1 q Z)(l q 23)2((] 23) % )
. _q% 55 29 [1pBp(z,q7")
270w St gE(1- 2)(1- g ) (¢ te)8]
and
o _q% 9{ g7 291 (1 - ¢*22) [1p Dp (2, ¢2)
g-1,2 211 J)zl=q -3 (1 q Z)(l q 23)(1 q 23)((] z3) ($]
Using (3 proves the Lemma. "
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3.6.6 Contribution From A terms

In this subsection, we will focus on evaluating the A terms which will give the terms
S1(V =0), &(V =0), S3(V =0) and S4(V =0) in Proposition Let

./4 = A;,l - A;,Z + A;—l,l - AZ‘LQ + ./4271 - 'AZ:Q + ‘AZ—I,l - A‘;_LQ, (3610)
then the main result in this subsection is the following lemma.

Lemma 3.6.6. Using the same notation as before, we have
.A=81(v=D)+82(V=D)+83(V=D)+S4(V=D), (3611)

where, in particular, the terms S1(V =0), So(V =0), S3(V =0) and §(V =0) are

the terms stated in Proposition (3.6.1]

Proof. For each k€ {g,g— 1}, write

€ —
k1=

o g #(g-1+ 1 -D)pBe(za)
. E VA
211 |z]=¢" 2 q(l — 2)32[5]

Let AS | = A, | + A% ,, where

ng+2§£ zg(l—qiz)Hpo(z,q‘l)
l2]=q~3

e - _ d
kLLT " Tom (1- 2)32L%] :
and
N 2 pBre(z.q7)
61277000 et &
T Jl=a 2 g(1-2)2zl2

After the change of variables z = (qu)~!, the contour of integration becomes a circle

around the origin |u| = \/g. Note that, from Lemma (3.6.2, [1p Bp (qiu, %) is absolutely

convergent for ¢! < |u| < g. Thus

. q2g+295 (1-u)[1pBp (q%ﬂé) (1‘(1%)_16[
117~ 7 : 10k U.
g,1 21 Jl=q u(l - qu)Q(qu)[k S ]

Using the fact (see [Flol7a, Section 6]) that

(1—u)HBP(i 1)(1—i)_1 Cu) (3.6.12)

e qu’ q qu)  Ca(2)

we get

q29+2 1 C(u)
A = ——— —=d 3.6.13
SELT(a(2) 2mi jlil—\/ﬁ w(1 - qu)2(qu) =T (3.6.13)
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3.6. Contribution from V Square

and

q2g+2 1 C(u)
A = Sz; du. 3.6.14
gL CA(Q) 2mi lul=va u(1 - qu)?(qu) (5] ! ( )

We see that (3.6.13) and ([3.6.14]) are precisely the terms S;(V =0) and So(V =0) in
the statement of Lemma [3.6.6] Similarly, using the substitution z = (qu)~!, we have

€ _ —
k1,2 =

q2g+2‘<}§ HPBP(qiu7%>
- _ U,
2w Jul=/q (1- qu)Q(qu)[k_(_;)g ’“]

and

0 _ ng@yg - Br (72:5)
i

B 2w S (qu)sR(1 - qu)?(qu)lE]

Using ((3.6.12)), we have

q29+2 1 C(u)
i du
k1,2 Sl k(-Dgk
and 20+8
g+3
- o B
1 Ca(2) 2mi uieva (qu)oRL(1 - ) (1 - qu)(qu)lE]
Rewrite A7, | as
29+% 1 C 1-
g-1,1 = q__. 95 (u)(1-qu+qu) ——du.
Ca(2) 2mi Jhi=va @u2(1 - u) (1 - qu)(qu)l =]

Then, we let A°_, , = A° + A7 , where
g-1,1 1,1,1 ~1,1,2

9=
i q29+g 1 f C(U)
oL 2) 27 Sl Vi qu(1-u)(1 - qu)(qu)[ %]
and 5
0 e 1 yg C(u) ~du
2T (2) 2mi S (1 - w)(qu)F2
Combining A7, and A7, | 5, we have
2g+2 1 1 %
A? Ae112=q—_‘j§ T 4]
Ca(2) 2mi Jjul=va qu(1 - u)(1 - qu)(QU) 2

Using the fact that (see [Junl3l Proof of Main Theorem])
a1

1+ q% =g +[4] + q—g+[97’1]+1’ (3615)

we have

Mkm

q2g+2 1
.AO +A —_—
LTt Ca(2) 2mi ylgul Vi qu(l-u)(1 - qu)(qu)l]
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Let A7, + A7 112—A1+/l2,where

39+3

A ’ C(u)
Ay = CA(Q) 2i 9|§1; ~va u(1-u)(1 - qu)u [¢] (3.6.16)

and

~ q 2 +3+[QT] 1 (u)
As - —¢ 7
T G®) 27 e (1- u)(1 - gu) (qu) 37
Similarly, combining A9 , , ; + A¢ , », and using (3.6.15)), we have
Ag i+ Agis = Ay + Ay,

where

Logrt C(u)
- — —d
! Ca(2) 2mi ﬁdﬂ/@ u(l—u)(l—qu)u[gT] !
and

3g+5

- q 2 +[4] 1 C(u) "
Ao = Cu(2) 2mi y|§u\/_(1 w)(1 - qu)(qu)qT T

We see that A; and A; are precisely the terms S3(V = 0) and S4(V = 0) given in the
statement of Lemma m From , we see that C(1) = 0, thus inside the circle
lul = \/q, the integrand of A9, has a pole of order [%] +2 at u = 0. Using the
Residue Theorem and calculations of residues seen in the proof of Lemma and
Lemma [B3.6.5] we have

o g eon (o)
AC - L

Similarly, inside the circle |u| = \/g, the integrands of A, and A, have a simple pole at

u=¢ ' and a pole at u =0 of order [ ] +1 and [ ] + 1 respectively. Thus we have

2

~ q529+1 2[%] [%] C(n)(o) [%]771 K q7+3+ %] C(q_l)
Ay = q
u(2) = n! k=0 (2) (¢-1)

and

i~ g2l [%z] Cm(0) (] 58 e (—1)'
Ca(2) a0 k=0 (2) (¢g-1)

For the remaining integrals, we write

e — € €
Afo=Af o1+ Af g,

where

6 :_qug zg<1—qlz)HpBP(2,q_l) i
k.21 ul=va (1= 2)2(1 - q~'2) (g7 2) L5
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3.6. Contribution from V Square

and 4g-k+3
e — _q 2 % zg—l HP BP(Z q_l) dZ
B Sy g(1- 2)(1-g71z) (g ) 5]

Using the substitution z = (qu)~!, we have

q6g—72k+5 (1-u)[1pBp (q%,%)
yIgul Vi

22 1~ . iy
14y 2 k-(-1)9
(1 eyl T
e qw HP BP (qiqp %)
k2,27 21 .7{4 NG [k—(—l)gk]du
(1-qu)(1-q*u)(¢*u)l 2
and
o QLZIHS HPBP (qLua %)
2w e (@) (- qu) (- ) ()]
Using ((3.6.12)), we have
. ) q6g 2k+7 C(fu/) d
hZI_'_2£X§3_§;E~%i_V@ [k4—w%fl+1 b
(1-qu)(1-q*u)(Pu)l >
6g9—k+5
q 2 (u)
A222=——.§I§ EYE du
Ca(2) 271 Jju=ya (1-w)( —q2u)(q2u)[k 1) k]+1
and

, a1 § C(u)

@) 2mi S (qru)h (1 - u)(1 - g2u) (g2 5
Inside the circle |u| = /g, the integrands have poles at v = 0, u = ¢! and u = ¢72 of
varying orders. Thus using the Residue Theorem we have

1

S Emnat SO Z] PO 14 U W il e
" w2 = onl i, a(2)  q-1 CA(Q) q-1"

72 -n

q5g2+1_2[%1] [QT C(n)(O) QT _ 5g+5

. 2% Clq 2)
922 a2 = n! kz(:) ! C u(2) -

L e Eleoo) ? %”) c_arBle) | g o)
g-1,2,1 C (2) “~ n! k:[%]_n q CA(2) q— 1 CA(2) q-—- 1 )

) q 3941-2[¢] [§] cm(0) [§]-n o q57g+3 C(q?)
9-1.22 = w2 = S a(2) ¢ =17

o _ g% 28] [ C™(0) g 2 47 Cla?)
N C) =S ! Ca(2) ¢*-1
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and
, qig 2[5 [l <n><o> e c<q—2)

_ q
ST & X e
Therefore combining everything seen in this proof with (3.6.10]), we have

A= 81(V = |:|) +82(V = D) +83(V = D) +S4(V = D)
+ A2—1,1,2 + A2 + 4212 - AZ,Q,l - Ag,z,z - -’4371,2,1 - A371,2,2 - «42,2 - 371,2

Thus, to complete the proof, we want to show that

Aj

g

1 1 e e e e o
gt Aet Ay — ALy —Afss — Af 101 — A 10— A

g’2 - 3_1’2 (3617)

equals zero. For the terms corresponding to the residue at u = ¢g~2, we have that (3.6.17))
is equal to

Sg+5 59+5 5g+7

Clg?)  a = C(g?) g3 C(q ), q2+3C(q‘2) g2 C(Q‘2)+q2*4C(Q‘2)
CA(Q) g-1 (2 @-1 Cu(2) g-1 CA(Q) Q- CA(2) ?-1 Ca(2) -

which clearly equals zero. For the terms corresponding to the residue at u = ¢!, we
have that (3.6.17)) is equal to

Sg+5

g lE e g lle)

5g+3

Fle(gt) N g7 >3l e(g)

. (3.6.18
AE) <q D G® -0 G® a1 @ g1 OO
Rearranging , we see that it is equal to
07 O (3] ), 0 O (o) gl
2] 2 It z Il —glz21*t). 3.6.19
Co o ) gy (T ). s
Using the fact that (see [Junl4, Section 1])
qg_[%] - q[%]+1 =0 and qg_[%] - q[%]*’l =0 (3620)

we see that (3.6.19)) is equal to zero. Finally, in Appendix , we show that the terms
corresponding to the residue at u = 0 is equals zero. Thus (3.6.17)) equals zero which
completes the proof of Lemma |3.6.6] [

3.6.7 Contribution from B terms

In this subsection, we will focus on evaluating the B terms, which will give the secondary
main term of Proposition Let

B = 8271 - 8572 + B;—].,]. - B;_]_’Q + 8371 - 83,2 + B;—]_,l - B;_]_’Q (3621)
Then, the main result in this subsection is the following lemma.
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3.6. Contribution from V Square

Lemma 3.6.7. Using the same notion as before, we have
B=¢%R(2g+2)+0(¢2149), (3.6.22)

where R is a polynomial of degree 1 which can be explicitly be calculated.

Proof. From Section |3.6.4{ and Section [3.6.5, we can write each Bi! as

39
2g+2 +2
q* R E

S Flu(:)dz and Bly=-T— & F,(:)d
i -9|£|q 1(z) z and B, ot P 2(z) z,

J _
Bk,l =

where each F; g ,(z) correspond to the integrands of Bi , that are stated in Section |3.6.4

and Section m Enlarging the contour |2| = "2 to |2| = ¢"1=¢ we encounter a double

pole at z = ¢73 of F,gl(z) and a simple pole at z = ¢”3 of F,gz(z) From Lemma |3.6.3]

[1p Dp(z, qz) is absolutely convergent when ¢=2 < |z| < ¢!. Then

J 2 +2 J _4 q29+2 j
By, = ¢ "Res (Fk (2);2= 3) ~ o -9|§ZI=q1€ Fl(2)dz (3.6.23)
and
. 39 .9 . 4 q%+2 )
Blo=a¥Res (Fly()iz=q 1) -4 — ¢ ), (3.6.24)

where the second terms in (]3.6.23[) and q3.6.24[) are bounded by O (q%(“e)). Computing

the residues, we see that

Bii=q'5 Qulg)+0(q20*9), Bii =q"% Qu(g) +O(q51+9),
0 =05 Qs()+O(2)), By =q7 Qu(g)+0(qF179),
where
(q-1)¢ (%)CA(%) 4 1
= D 3,973
Q1(9) Qq% A(%) 1;[ P(q q )
y |9 1 z 1,2 _ 4 id%HPDP(Z»qZ)
(9-3(5])+ 50 (5) (ot et a-af) o EEEREE )
(q 1)CA(§)C (%) 4 1
Q D 3 3
N ) 12 (¢ a7)
_ _1 i 7 3 3 3 i%HPDP(quZ)
(s 3[ 2 ]) & (3)(3+2q wat 20l ¢¢ MeDr(z42) |_
¢ (3) 4o
®@3(9) = — Dplq3,q3
g )
g 1 L1, Dp(z,qz)

(o) o ) R
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and
_ CA(%) -4 1
Q4(9)—9qégA(%)l;[DP(q .q )
(o ale), L (5 1 1 Dp(2,02)
((g 3[2])+Q§CA(3)(1+2(] )+q§ [1pDp(2,qz2) qu).
Let
Q29 +2) = Q1(g) + Q2(g) + Q3(g) + Qu(9),
then
_CA(%)CA(%) RS K _201%HPDP(ZGC]Z)
Qz) = 001 () l;[Dp(q a3) |56+ Co 7D |y

Ci=1-q-gqb+qs

where
and
2 7 12 ay 1 5Y(z _1 1 2
Co= G (5) @ (3v20t e o e2a-at)ema(5) (aF - ) (540t - 30) a0
Similarly, computing the residue, we see that
By =—qi*8lce + 0 (¢3079), B, = g0 5 ]Ce + 0 (42079),
B;,z = _q%+[97_1]05 +0 (q2(1+6)))7 30—1,2 = —q%+[%]05_1 +0 (q%(1+5)) )
where ( ) (5) (7) @)
q-1)Ca(3)Ca(3)Ca(2 4 1
06_ ) ’
7 3¢5 Ca (3 L1 P<q o 3)
(a-1D(3) (%)@ a1
Ce = 2 D ,q 3,
Q%CA(g)CA@) a1
C? = D
3<A(%) 1;[ P(q 3,4 3)
and (5) @
Cal3)Ca(2 Y
ce,=—=——"11|D 3,073 ).
g-1 SCA(%) 1;[ P(q »d )
Let
03=O§+Og_1 and C’4=CQO+C§_1,
then (5) (7) @)
C 3 C 3 C 2 1 7 4 4 1
Cs = A3 Cj:(%g) A (1+(]_6—q_G—q_3>11:IDP(q_3,q_3)
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and
5 7 9
C4_CA(3)§A((;3))<A( )(qé+q§—q‘§—q‘3)HDp(q‘§,q‘§)
Al3 P
Moreover | |4 | |2 | |1
4 1 Pl3s +|P|3 +|P|3 +1
D ENEE 1-
[12e(s7%0) =T (7T + P])? )
and

1 4T1De(z,02) deg(P)(|P|- 1) (|P[s - 1)

¢ pDr(z.02)

1 4 2
=t T (IPE-1)(1PF +|P)
Thus, combining the above with (3.6.21f), we have that

1

B= q%Q@g +2)+ CyqétlEl v oygt =4 0 (q%(l“)) .

Letting

2g+2

g5 R(29+2) = ¢ 5 Q29 +2) + Csqé*[8] + 0yl (3.6.25)

completes the proof of Lemma |3.6.7] [ |

3.7 Error from non-square V

Let
S(V+o)=8°(V=+no)+S4(V+0) (3.7.1)
where
S(V#0)=8,,(V#0)-8,(V+0)+Sy,,(V+0)-85; ,,(V #0D) (3.7.2)
and

S(V#0)=8,(V+0)-8,(V#0)+S,_,,(V+0)-8;1,(V #0). (3.7.3)

In this section, we will bound the term S(V # 0). The next proposition is the main

result in this section.

Proposition 3.7.1. Using the same notation described previously, we have, for any
e>0,
S(V #0) « ¢20+9), (3.7.4)

To prove Proposition we will need the following results from [Flo17al Section 7].
We have

1 1 1
T2 T o d 3.7.5
sz; IC|2 ~ 2mi yl%:m g2yt Hp|f(1 — ydes(P)) U ( )

CeAf,
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with ry < 1. For a non-square V € A* and positive integer n, let

G(V.xys)
Syn(n) = .
|8 (n) fg;; \/m HP|f(1 _ udeg(P))

If |u| = ¢~¢, then we have
|6v i (u)] < g2 IV, (3.7.6)

3.7.1 Bounding S§¢(V #0)
For each k€ {g,g—1} and £ € {1,2}, we have

S/ (V=0)=8;,,(V#0)+8;,,(V #0).
For each j € {1,2}, write

Sies(V#0) =8, ,(V#0) -8, (V2 0),

where S‘,g“(v #0) and 3;;7“(‘/ # 0) denote the sums over non-square V' with deg(V") <
deg(f)-2g-4+2deg(C) and deg(V') < deg(f)-2g-2+2deg(C) respectively. Similarly,
S,‘j,m(V +# 0) and 5’,‘;&2(\/ # O) denotes the sums over non-square V' with deg(V) =
deg(f) —2g -1+ 2deg(C) and deg(V') = deg(f) — 29 — 3 + 2deg(C') respectively. Then

by (B7.5), we have

¢29+2 (5] 4 g 1

Se q- 1
Sg1a(V D)= L ‘?I% Z —n Z Syl Z Ovion(u)du,

2mi =ry 20 _
1n=0 4" m=g-n+2 4 O0+VeAly, oy arom

. 1)1 5] 1 1
Sgaa(V#0)= M jlg > o 2 Tmeow > Oy s2n (u)du,

211 wl=ry = 2n B 2mum+1
| 1 n=0 q m=g-n+1 q D¢V€A§2n—2g—2+2m

~ g2+ (5] 4 g 1
SaVea)=T—¢ Yo Y o P dvan(wdu

£
0#VeAs, oy 112m

and

. 20+ (5] 4 g 1
Sgr2(V#0) = .jﬁ' 2 2 w2 Ovan(w)dy,

= ST _—=
1 n=0 q m=g-n+2 q D¢V€A§n—2g—3+2m

with 71 < 1. We can bound 6dy.2,(u) by (3.7.6) and the sum over V' by using the fact
that #A, = ¢*. Thus we get that 357171(‘/ +0) « ¢3(1+), S’;LI(V +0) « q2(1+),
3;7172(‘/ +0) < ¢2(1*) and 3967172(‘/ +0) < ¢z and so S (V#0) < q2(%9). Using
similar calculations, we can bound S;,(V # 0), S;,,(V # 0) and S, ,(V # 0O) by

q2(%9 and so by (3.7.3) we have

S¢(V #0) « ¢2(1+9), (3.7.7)
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3.7.2 Bounding S°(V D)
For ke {g,g—-1} and £ € {1,2}, let
Sp(V#0) =8 ,(V#0) -8, (V #0),

where ggj(V #0) and nge(v # 0) denotes the sums over non-square V' with deg(V') =
deg(f) —2g - 3 +2deg(C) and deg(V') = deg(f) — 29 — 1 + 2deg(C) respectively. Then

using ((3.7.5)), we have

~ q29+g [9771] 1 g 1

0 -
SV #0) = omi 515_ Z 2n+1 Z 2m g m+1 Z Ovone1 (w)du

T S nz0 4 m=g-n+1 ¢ 0#VeAS, 5 212m
and

~ q29+% [QT_I] 1 g 1

0 -

GV =t Y o Y o Y ()

m |U|7Vr1 n=0 q ng_nq u D¢V€A5n72g+2m

with 71 < 1. We can bound dy .9,41(u) by and the sum over V by using the fact
that #A} = ¢g». Thus we get that S;l(V +0) «< g2 and 3;’71(‘/ +0) «< ¢z and
so Sg (V#0) < q2(*9) . Similar calculations can show that So,(V#0), 8, (V #0)
and S8, ,(V # O) are bounded by q20+9 . Therefore, by , we get

So(V #0) « ¢+, (3.7.8)

Thus combining (3.7.7) and (3.7.8) with (3.7.1)) proves Proposition [3.7.1]

3.8 Proof of Theorem B.1.9

We combine results from the previous sections to prove Theorem [3.1.9

Proof of Theorem [3.1.9) From (3.4.1), we have
1
Z L(ﬁ’XD) = 8971 —8972 +Sg_1.1 —Sg_l’g. (381)
D€H2g+2
From the arguments stated in Section , we can rewrite (3.8.1) as
1
> L(—,XD):M+S(V:D)+S(V¢D). (3.8.2)
DeHagio 2

Using Proposition [3.5.1] Proposition and Proposition [3.7.1 we have

1
Z L(—,XD):M1+M2+M3+M4

D€H29+2 2
+81(V=0)+8(V=0)+S(V=0)+S(V =0D)
¢ 5 R(29+2) + 0 (¢2079). (3.8.3)
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Furthermore, from Proposition [3.5.1], and Proposition we have that

~ _ q29+2 L C(u)
S1(V=0)+M = —CA(Q) i jlgulR (1 qu)Q(qu)[%]
q29+2 L jé- C(u)
Ca(2) 2mi Jjul=r u(1 - qu)?(qu)l8]
~ . q29+2 L C(u)
SV =) = i o u(1 - qu)(qu)l 7]
q2g+2 1 C(u) y
CA(Q) i y|§U| = u(1l - qu)?(qu) (4] "
¢ 1 C(u)
SV =) M = CA(Q) 2mi jlil R (1 -u)(1 - qu)ul?]
¢ 1 C(u)
CA(Q ) 2mi §I§| = u(1 - u)(1 - qu)ul?] i
and
7+2 C(u)
S _ qz -
i(V=0)+ M= CA(Q) 2mi yﬁl Ru(l-u)(1l-qu)u (%] du
g C(u) "

where r < % and 1 < R < ¢q. By Remark , C(u) has an analytic continuation for
|u| < ¢ and C(1) = 0. Therefore, between the circles |u| = r and |u| =
corresponding to the terms M;, My, §;(V =0) and Sa(V = 0) have a double pole at
1. Similarly, the integrands corresponding to the terms Mj, My, S3(V =0O) and

u=q

S4(V =0) have a simple pole at u = ¢~'. We can compute the residue as follows:

es( C(u)

w1 —qu(qaa T )

Ca(2)2mi jlgul ru(l-u)(1l-qu)u (4]

A4 (umgYC()
=t du(1 - qu)?(qu)l]

i A _C)
et dug(qu)lE
, k
= lim —C (Uk) - lim ¢u) <[2k]
et g(qu)lalt et (qu)lale

) e([]1).
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3.8. Proof of Theorem|3.1.9

Similarly we have

() o0

es apiu=¢ )= lim .

u(1-u)(1 - qu)ulz] ~a (1 -u)(1 - qu)uls!
C(u)

' qu(l - u)u[g]

__C(ghqla”
(¢-1)

Using the substitution u = ¢~*, we have have that C(u) = P(s) and C'(u) = 10ng’(s).
Thus
o rolls) -5
M, +8(V=0)= POz +1)+——=
1+ &(V=0) Ca(2) WLzl logq /'’
2 +2 /
g-1 ) P(l))
My+8,(V =0) = P(1 1
-8V =m) = S o(|5 ] oo
3g+5
¢ TP
M3+ S3(V=0)=-
s =0 =L
and
q2+3+ P(l)
My+S8,(V =0 —_—
PR
Using the fact that
-1
Bl 5]
we have that
2 +2 2
My + M. = P(1 1)+ —P'(1)]. .8.
M8 (V=) SV =0) = L (2)( Do+ 1)+ =P ). s
Furthermore, using the fact that (see [Junl3, Proof of Main Theorem)])
1+ q% = q_gT_lJ'[%] + q_%+[97_1]+17
we have
P(1) 39451911 394,19
M+ M, +S(V=0)+8S(V =0) = ————2 (5] 4 ¢F+3+[8]
v M SV =8) -8V =0) =gy )
G29+2 1+qé
=- P(1
ORI
q2g+2 (1)
= — —. 3.8.9
Putting (3.8.8)) and (3.8.9) into 3) completes the proof of Theorem [3.1.9] [ ]
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Chapter 3. The First Moment of L (%, X) for Real Quadratic Function Fields

Remark 3.8.1. When revising the paper [AM21] and writing this chapter, we came
across a recent paper by Jung [Jun2(], where he computed, independently, the mean
value of L(%,XD) when summing over all monic, square-free polynomials of degree
2g+2 as g - oo using similar calculations to those used by Florea [Flo17d]. Compared
to Jung’s paper, we explicitly go into more detail about how to calculate the asymptotic

formula, especially when analysing the contribution from the square polynomaials V.
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Chapter 4

The Mean Value of |K9(O)| in the
Inert Imaginary Quadratic Function
Fields

4.1 The Algebraic K group K(O)

In this section, we will give some details about the algebraic K group K3(O), which is

mainly stated in Rosen [Ros95, Section 2] and relate their size to the number L(2, x).

Let F' =T, and let K/F be a function field in one variable with a finite constant field
F'. Furthermore, we will let the primes in K be denoted by v and the valuation ring
at v by O,. Also, we let P, denote the maximal ideal of O, and F, denote the residue
class field at v. The tame symbol (%, *), is a mapping from K* x K* to F* defined by

(a,b), = (=1)°@°®)ge®) /pp(@)  modulo P,. (4.1.1)

This symbol is bimultiplicative and has the property that (a,1-a), =1 for all a € K*
with a # 0, 1.

The group Ky(K) can be defined as K* ® K* modulo the subgroup generated by the
elements a ®(1-a) for all a € K* with a #0,1. There is a map ), : Ko(K) — F; which
is induced by A\ (a®b) = (a,b),. If we let \: Ky(K) - @, F be the sum of the tame
symbol maps and p: @, F* - F* be the map given by u(...,ay,...,) = [, a™/™ where
my = NPy —1=#F and m = g -1 = #F, then Moore (see [Tat71]) proved that the
sequence

(0) > Ker(\) = Ko(K) > @ Fr » F* > (0) (4.1.2)
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is exact. Tate [Tat71] proved the Birch-Tate conjecture concerning the size of Ker(\).

More precisely, he proved that

#Ker(\) = (¢-1)(¢" - 1) (-1)

where

Ck(s) = l;[(l—NPJS)_l

and the product is over all primes v of the function field K. Furthermore let S =
(P1,...,P;) be a finite set of primes of K and let Og denote the set of S-integers of K,
i.e. the elements of K whose poles lie in S. Then using a theorem of Quillen [Qui72]

we have that

(0) > Ka(Os) - Ka(K) 2> @~ (0)

where the map )\’ is the truncation of the map A. If we define the S-zeta function of K

to be
Cs(s)=]](1-NP;*), (4.1.3)

veS

then Rosen [Ros95, Proposition 1] says that
K>(0s) = (-1)'(¢* - )¢s(-1). (4.1.4)

Let m € A be square-free then we define K, = k(y/m) and O,, be the integral closure
of A. We also define the zeta function of the ring to be

COM(S) = Z Na‘s,

where a runs through the non-zero ideals of O,, = A[\/m] and Na is the number of

elements in O,,/a. Then, from [Ros95, Proposition 17.7] we have

(o (8) = Ca($) L(s, Xm), (4.1.5)

where L(s, X ) is the L-function defined in Section If we let S = S,,(c0) be the
primes in K above oo, then Og is O,, and thus combining (4.1.4) and (4.1.5) we have

#K3(O) = (=1)' 7 L(=1,Xm), (4.1.6)

where ¢ is the number of primes in K,, above co. Finally, proving a relationship between
L(-1,xm) and L(2, x.m), Rosen proved a relation between the size of the group K»(O,,)
and the number L(2, x,,).

Proposition 4.1.1 ([Ros95, Proposition 2]). Let K, = k(\/m), where m is a square-
free polynomial of degree M in A. We have the following:
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a) If M is odd, then

HE2(On) =02 2 L(2,Xm)- (4.1.7)
b) If M is even and the leading coefficient of m is a square, then

M —2CA( )

#KQ(Om) = Ca (2)

S22 102, Xm). (4.1.8)

c) If M is even and the leading coefficient of m is not a square, then

2CA( )¢a(5)

#52(On) = 2@)

SARESAR) 19 ). (4.1.9)

4.2 The Mean Value of |K,

Using Proposition and [HR92, Theorem 0.8], Rosen proved the following result.
Theorem 4.2.1 (Rosen). Let € >0 be given.

a) Suppose M is odd, then

(G- (M =MD Y HEK(On) = ¢ ¢ 3 (2)Ca(4)c(2) + O, (g0+9).

mEAM
m square-free

(4.2.1)

b) Suppose M is even and the leading coefficient of m is a square, then

2q-D) @ - ") Y #K(0,) = QSTMQ_QCA(3)§A(4)C(2) + 0, (qM(1+e)) .

mEAM
m square-free

(4.2.2)

c) Suppose M is even and the leading coefficient of M is not a square, then

2= (g™ =g ) Y #EKy(On)

meA M
m square-free

S C2(2)Ca(4)Ca(5)
G (3)

c(2) + O (¢MM+9). (4.2.3)
The constant ¢(2) is given by

c(2) = 1;[ (1-1P|2 =P +|P|°).

Restricting the sum to monic, square-free polynomials of a certain degree, Andrade
[And15] established an asymptotic formula for the size of the group K3(Op) for D €
Hog+1, where Hagyq is the hyperelliptic ensemble defined in Section [2.6.3] In particular

he proved the following result.
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Theorem 4.2.2 (Andrade). Let € >0 be given. Then

1 3 3
T #K5(0p) = g2 Vg2 (4)P(4) + O, (¢ 1+9), (4.2.4)
9+l DeHagia

where

1
P(s) = H(1—W). (4.2.5)

P

In this chapter, we will use the methods of Andrade to calculate the average size of the
group K5(O.p), where D is a monic, square-free polynomial of degree 2¢ + 2 and 7 is

a fixed generator of F;. The main result in this Chapter is the following:

Theorem 4.2.3. Let € >0 be given and let v be a fized generator of F;. Then

! — 45(29+2) —2CA(2)<A(4)CA(5) (29+2)(1+¢)
TV De?-ZLQ:g+2 #K2(0yp) = q2'%9"q Cﬁ(:)’) P(4) + O, (q g ) 7

(4.2.6)
where P(s) is given in ([{.2.5).

Remark 4.2.4. The asymptotic for ¥ pey,, ., #K2(Op) was obtained jointly with An-
drade and Davies in a paper, [ADM22], that is currently submitted for publication. As

the calculations are similar, I will only include the calculations to prove an asymptotic
for ¥ perts,.s #K2(O04p) here.

4.3 Preliminaries

In this section, we will state and prove results that will be needed to prove Theo-
rem We will start by proving the following result.

Lemma 4.3.1. Let x,p be a quadratic character, where vy is a fized generator of I
and D € Hagio. Then

L(q%, x-p) = Z (_1)d€9(f)XD_(f)+q—4g—2 Z xo(f). (4.3.1)

feA;ng |f‘2 feA;rzg

Proof. From Section and Section [2.6.2) we know that the L-function L(u,xp) is

written as

2g+1
L(u,xp) = ZO Ap(n)u® (4.3.2)
where D =~vD and
Ap(n) = fZN xp(f)- (4.3.3)
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From Section [2.6.3] we know that the complete L-function £*(u, xp) can be written as
2g
L(u,xp) =Y. Az (n)u". (4.3.4)
n=0
From ([2.6.12)) we know that
Ap(n) = 331" Ap(i)

Furthermore, since (%) (~1)dee(f) then ( ) (—1)des(£) (?) and so Ap(n) = (-1)"Ap(n).

Therefore

Ax(n) = Z(—1)”AD(¢). (4.3.5)
Thus combining (4.3.4)) and ( - we get
29 n
Lg% xp) =Y. Y. (-1)"Ap(i)g>". (4.3.6)
n=0=0

Interchanging the sums we get

L) = 3 S (D) Ap(n)g™

n=01i=n
Th
e ) 29 (_1)nq—2n + q—4g—2
L(q %, xp) = ZAD(n)( o ) (4.3.7)
n=0 q
Using ([2.6.12) in (4.3.7]) proves the Lemma. |

Proposition 4.3.2. Let £ € A be a monic polynomial. Then for all e >0 we have

Z 2g+2 H | |

+O0 () . (4.3.8)
D€H29+2 CA(2) P|€ |P|

(D,£)=1
Proof. The proof is similar to that given in [AK12, Proposition 5.2]. [ ]

Lemma 4.3.3 (JAKI2, Lemma 5.7]). We have

p(d) 1
q" . (4.3.9)
S 2 L
Lemma 4.3.4. For s=1 or s =4 we have
p(d) 1 -
=P 59 4.3.1
Z dJ* H‘P|+1 (s)+0(q™), (4.3.10)

deA?, Pld

where P(s) is given by ([4.2.5).
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Proof. When s = 1, the proof is given in [Junl4l Lemma 3.3]. Using similar methods,
we have that when s = 4 we can use the definition of the Mobius function and the Euler

product formula to obtain

1
d§+ |d| gl|P|+1 g(l_W)—P(‘l)-

We also have

Z 1(d) H 1 Z H (d) H
g ld* Pld |P|+1 deA* |d|4 Pld |P|
deg(d)>g deg(d)>g
S Y e Xt
deA* |d’ n=g+1
deg(d)>g
Thus
p1(d) 1 p1(d) 1 p1(d) 1 4
- - =P(4)+0(¢*).
2 Wpra = 2o e 2 e L (™)
deg(d)>g
[ ]
Lemma 4.3.5. If f € A is not a perfect square then
> xo(f) < ¢lflt (4.3.11)
DEH29+2
Proof. The proof is similar to that given in [And15l Lemma 4.3]. [ ]

4.4 Proof of Theorem

In this section, we will prove Theorem [£.2.3] Firstly, we split each term of ([£.3.1) in
two, the first over all polynomials of degree at most 2¢g which are a square and the

second over all polynomials of degree at most 2¢g which are not a square. Thus we get

Z L(2,xyp) = Z Z XD(f) Z Z (- 1)deg(f)XD(f)

DeHagyio DeHagyo fEAzQQ |f|2 D€H2g+2 fEAir |f|2
f=¢?=o f#0O

+q 1972 Z Z xp(f)+q 72 Z Z xp(f)- (4.4.1)
D€H2q+2 f€A<2g D6H2g+2 f€A<29
f=?=0 f+0O

We will evaluate each term of (4.4.1)) separately and then use Proposition to prove
Theorem [£.2.3

Proposition 4.4.1. For all € >0, we have

xo(f) _ ¢ S
DE;?QMEAZ_ /12 (2)5(4)13(4) O (¢*"*9). (4.4.2)
f=0
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Proof. From the definition of quadratic Dirichlet characters stated in Section [2.6.2] we
know that xp(¢2) =1 if (D,¢) =1 and 0 otherwise. Thus

Z Z xo(f) _ Z L Z

P ]+

DeHagi2 feA&g LeA?, DeHagya
f=0 (D,0)=1

Using Proposition we have

2g+2 9 P 2g

Detagra feAl,, |f‘2 A(Q) m=0 LeAt, Ple m=0
f=0

Invoking Lemma {4.3.3| we have
xo(f) ¢ & 4 p(d) 1 (1+¢)
= qg3m +0 (¢?'79). (4.4.3)
2 e T G@ A& e o)
f=0

Rearranging we get
xo(f) _ ¢ p(d) 1 “3m
Z Z - Z |d‘ H ‘P| +1 Z q

DeMtagea feAl,, |f|2 CA(2) deAt, Pld deg(d)<m<g
f=0
2 +2
p(d)
—=Ca(4)
L@z Il |P| I
¢ 1 > p(d) I 0 (¢20+9).
¢® —1¢a(2) deh, ldl P |P| w1
Using Lemma [4.3.4] proves the Proposition. [ |

Lemma 4.4.2. We have

g > xo(f)<q?
DéHager fehiy,
f=0

Proof. Trivially bounding the quadratic Dirichlet character, we have
g > Y xp(f)<g® Y Y 1xg® Y l«q?

DeHogro f€A<29 feA;ng DeHogio LeAl,
f=0 f=0

Lemma 4.4.3. We have

> > xo(f) < ¢

DEH29+2 f€A<2g
f#0O
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Proof. Using Lemma [£.3.5 we have

29 3m
> X wlf) ¢ S <Y <

DeHogio fEA;rzg |f|2 fEA;ng m=0
f#0O
]
Lemma 4.4.4. We have
—Ao— _9
g > Y xo(f)<qz.
DeHagsa fehl,,
f#0O
Proof. From Lemma {4.3.5| we have
—4g-2 -3¢ 1 -39 & om -4
q Yoo > xp()<g® Y |flikg® Y ¢ <q .
DeHogio fEA<29 f€A<2q n=0
f+0O
| ]

Thus using Proposition [4.4.1, Lemma Lemma and Lemma {4.4.4in (4.4.1)),

we have, for v a fixed generator of Fy, that

>, L(2,xyp) = CA(4)P(4) +0(¢719). (4.4.4)

DeHags2 C (2)

Using (2.6.9) and Proposition [.1.1] part ¢) proves Theorem [4.2.3|
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Chapter 5

Rudnick and Soundararajan’s
Theorem over Prime Polynomials
for the Rational Function Field

5.1 Lower bounds of Dirichlet L-functions in Func-

tion Fields

As previously discussed, a fundamental problem in Analytic Number Theory is to un-
derstand the asymptotic behaviour of moments of Dirichlet L-functions in function
fields. Andrade and Keating [AK14] conjectured that

1 1 k
L(—, ) ~ P,(log. |D 5.1.1
o DHZ 5 XD x(log, | DI) (5.1.1)

where Py is an explicit polynomial of degree 1k(k + 1), where Hag, is the hyperelliptic
ensemble and L(s, xp) is the Dirichlet L-function defined in Section and Section
respectively. The first four moments have been explicitly been computed by An-
drade and Keating [AK12] and Florea [Flol7al [Flo17bl [Flo17¢] and have also verified

the conjecture for these cases.

Furthermore, Andrade [And16] established lower bounds for the moments of Dirichlet
L-functions in function fields, which is seen to be the function field analogue of Rud-
nick and Soundararajan’s [RS06] result Theorem [1.5.8, Namely Andrade proved the

following result.

Theorem 5.1.1. For every even natural number k and n =2g+1 orn =2g+2, we have

1 1 k k(k+1)
pEp) L(i,XD) >4, (log, | D)) “5™. (5.12)
n DeH,
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For the family of Dirichlet L-functions associated with the Dirichlet character yp,
where P is a monic, irreducible polynomial in F,[7T"], Andrade, Jung and Shamesaldeen
[AJS21] conjectured

1 1 k
L(—, ) ~ Q(log, | P)), 5.1.3
#ng+1 P€722:g+1 2 e Qk( gQ| |) ( )

where @y, is an explicit polynomial of degree 5k(k +1). The first and second moments
have explicitly been calculated by Andrade and Keating [AKI3] and Bui and Florea
[BEF20].

In this chapter, we will use the methods of Rudnick and Soundararajan [RS06] and
Andrade [And16] to establish lower bounds for the moments of Dirichlet L-functions

associated with the Dirichlet character yp.

Theorem 5.1.2. For every even natural number k and n =2g+1 and n =29 + 2, we

have
k(k+1)

1 1 \F
L{-, > (1 PH—=". 5.1.4
Remark 5.1.3. Recently, Gao and Zhao [GZ22U] used the work of Radziwilt and
Soundararajan [RS13] and Heap and Soundararajan [HS22] to show that Theorem[5.1.1]

and Theorem holds for all real k > 0.

5.2 Preliminary Lemmas

In this section, we will state some preliminary Lemmas which will be used to prove

Theorem B.1.2]

Lemma 5.2.1 (“Approximate Functional Equation”). For P € Pyy.q1, we have

2 reit, VI genz, . VIS

Proof. The proof is similar to that given in [AK12, Lemma 3.3]. [ ]
Proposition 5.2.2 ([Rudi0, (2.5)]). For f € A* with deg(f) >0 and f not a perfect

square, we have

qz. (5.2.2)

5.3 Proof of Theorem

In this section, we prove Theorem [5.1.2l We will prove the result for n = 2g + 1, but

similar methods can be used to prove the result for n = 2g + 2.
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5.3. Proof of Theorem [5.1.2

5.3.1 Set Up of the Proof

Let k& be an even natural number and let x = %.

Remark 5.3.1. This is the mazimum and simplest choice of x so that the error term

in (5.83.14)) is bounded by |P|*~¢ for some € > 0.

For P € Pygy,1, we define

AP)= % xe(f) (5.3.1)
reat, VIS
and let
1 k-1
Sy= L(§7XP)A(P) (5.3.2)

PePagi1
and

Sy = Z A(P)*. (5.3.3)

PePogia

Using the triangle inequality and Holders inequality we get
>

1
L (_7 XP)
PePagia 2

(6] (2, aer)

AP

> L (% XP) A(P)*

PePagyi1

Thus

k L(i A(P)1)" k
I (%,XP) 5 (ZP€P29+1 (27XP) (k_)l ) _ SSkl—l (534)
(ZPE'PQQ+1 A(P)k) 2

Therefore to prove Theorem [5.1.2] we need to obtain estimates for S; and Ss.

2

P€P29+1

5.3.2 Estimating S,

We have

1
SQZ Z A(P)k: Z — Z Xp(nlnk)
PePagit e, /T - - M| PePagiy
We split the sum up in two, where the first is over all polynomials nq,...,n; of degree
at most x for which the product ny...ny is a square and the second sum is over all
polynomials nq, ..., n, of degree at most = for which the product n; ...n; is not a square.

Furthermore, from the definition of the quadratic Dirichlet character given in Section
2.6.2] we know that xp(¢?) =1 if (P,£) =1 and 0 otherwise. Also, if deg(P) > deg(¥),
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then all polynomials ¢ are coprime to P. Since deg(n;...ny) < kx = @ <2g+1-=

deg(P), then combining the above we get

1
Sy = Z _— Z 1+ xp(ny...ng).
ni,...,nEeAl, |?”L1 cee nk| PePagia ni,..., nkeA<z \V nl nk P€P2g+1

ni..nE=0 ni...nE*0

Using the Prime Polynomial Theorem, Theorem [2.1.4] and Proposition we have

Sy = |P| 1 ( |P|§ )
logq |P| N,y nkEAJr V nl nk ..... nkeAq nl nk logq |P|
ni...nE=0 n1 nE=0
1 |P|2
* deg(n .. -nk)) : (5.3.5)
n mzkeA<z Vine .. ng (Iqu|P|
TL1 nE+O

Since z = 229 then for the second term in we have

5k
Pz 1 g |p|% 1 5 1
log, |P[,, nkeAD;'z R log, | P| niehs, /Il ngear, /|l
ni..ng=
e
« 1P N L (5.3.6)
log, |P| log, | P|
Similarly, for the last term in ([5.3.5) we have
P> deg(n ... : 1 1
1P| Z eg(n1 nk)< P | Z Z
1qu |P| njeAt, |n1 ... nk| logq |P| nieAl, |n1| nieAl, |nk|
s
|1D|2 ko 7
< kxq? <« |P|wo. (5.3.7)
log, | P|
Therefore combining ((5.3.5)), (5.3.6) and (5.3.7)), we have
P 1
g, = 1 — O(|P|T7o) . (5.3.8)
log, [P .. meeht, \/ My
ni..np=0
Writing ny ...ng = m?, then from [And16, (4.18)], we have that
dr(m? dr(m?
Z k(m?) < Z Z k(m )’ (5.3.9)
meAly |m| ----- nieAl, nl nk meAJr o |m|
=2 n1 ng=0 <%z
where dj(f) is defined in Section 2.2 From Lemma [2.2.9] we have
k(k+1)
dr(m? 2
y, &) C(k)( g) 2 (5.3.10)

t Im]
meAS;C

)l
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and

meA*t
<

kz
3

Thus, using (5.3.8)), (5.3.10) and (5.3.11]), we have that

k(k+1)

Sy < |P|(logq|P|) 5 L

5.3.3 Estimating 5]

Using Lemma [5.2.1] we have

1
Sy = Z L (E,Xp) A(P)"“‘1
PePagi
1
= Z Z xp(fm
feAl, \Y |fr1 .. | PePaga

+
nl,...,'rLk,1€ASz

1
" Z Z xp(fr
sty ] P,

+
nl,...,nk_leASI

(5.3.11)
(5.3.12)
.. .nk,l)

The two sums in the last equality of (5.3.13]) are the same apart from the size of the

sum. Thus, we will only estimate the first sum, as the second follows from replacing g

with g — 1.

We split up the sum in two, where the first sum is over all

at most g and all polynomials nq,...,ng_; of degree at most

polynomials f of degree

x for which the product

fni...ng_1 is a square and the second sum is over all polynomials f of degree at most ¢

and all polynomials ny,...,n,_1 of degree at most = for which the product fni...n._1

is not a square. Furthermore using the arguments given in Section and the above

we have

1
Z _— Z xp(fni...ng1)
feAl, V |fn1---nk|PeP2g+1

+
nl,.A.,TLk,leASI

1 1

- 3 o1+ >

Z Xp(fnl .. .nk_l).

feAl, V |fn1 . nk—1| PePagi feAl, \/ |fn1 ... nk_1| PePagi1

+ +
nl,...,nk_leASw nl,...,nk_leASx
fn1...nk,1=l:l fnl...nk#]
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Using the Prime Polynomial Theorem and Proposition we have

1
>, xe(fny...ngq)
sty NN ngal péy.,

L 5 L o)
log,|P| ;&% ‘/— [frr .. g rit, A \logy [P
T yeeey nk—leAgz ML yenny nk—iEAgx
fni..ng_1=0 fni..ng_1=0
P2

1
0 ( deg(fni .. .nk_l)) : (5.3.14)
feAt, |fny .. .npq|  \logg|P|

fni..np_120

Since x = (5)2kg), then for the second term in (5.3.14]), we have

|P|z 5 1 g Pz 1 5 1
logq |P| feA;rg |fn1 .. .nk_1| logq |P| feAJr \/ nleA* n1 ng_1€AL, \/ nk_1|

fni..ng_1=0

1 19
< ﬂq%q(k*”z <1 |P| %q%" - P[>0
log, 1P log, P11 ™ Tog, [P
(5.3.15)
Similarly, for the final term in (5.3.14)), we have
|P|2 1
deg(fny...ng_1)
logq |P| fgxég |fn1 Ce nk_l\
MY yeeny nk—leAgz
fni.ng_1#0
Pz 1 1
(g+(k-1)z) ) —= C
1 gq|P| feAl, \/ nleA+ \/ nk,leA;’w |nk—1|
P} o IPD
(g+(k-1Dz)q2q¢ 2z < 9q* q% <« |P|2. 5.3.16
logq |P| log, |P| | | ( )
Thus, combining ([5.3.14]), ((5.3.15)) and (5.3.16]) we get
1
> Y. xe(fni...ngq)
fehs, A Ifnaeone| PPagn
ML yeeey nk—IEAIz
1P| 5 1 1
= +O(|P|2 ). (5.3.17)
logq |P| feAl, |fn1 . nk_1| ( )
MY yeeny nk—leAgz
=1, k-1

fni.np_1=0
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For the main term of (5.3.17)), we write ny...ng_; = rh? where r, h € A* with r square-

free. Thus, if fny...ng_q is a square, then f =r(? for some [ € A*. Then

> 1 _ 1 > 1
feAl, |fn1 .. -nk—1| N1y 1 €A, |Th| 1A | oa(r) |l|
ny,...,ng_1€A%, ny..ng_1=rh )

fni.np_1=0

Now, we have that

Thus using ((5.3.9)) we have

2
1P| Z — Z 1 > | P Z dy-1 (rh?)
logq |P| N1, np_1€AL, |’l“h| leAt |l| r,heA™ |’I“h|

n1..mp_1=rh> <R deg(rh?)<z
k(k+1)

> |P|(log, |P]) "z ', (5.3.18)

where the final bound in ([5.3.18) follows from Lemma and Lemma [2.2.9, The
same argument applies for the second sum in (5.3.13)) replacing g with g — 1. Therefore

we have
k(k+1)

Sy > |P|(log, | P|) 5. (5.3.19)

Combining (5.3.4), (5.3.12) and (5.3.19) and using the Prime Polynomial Theorem
completes the proof of Theorem [5.1.2]
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Chapter 6

Integral Moments of L-functions in

Even Characteristic

6.1 Moments of Dirichlet L-functions in Function
Fields

As mentioned in Chapter 3], a problem in function fields is to understand the asymptotic

behaviour of

> L(%,Xp)k (6.1.1)

DeMagan
as |D| - oo, for positive integer values k, where ¢ = 1(mod 4), L(s, xp) is the quadratic
Dirichlet L-function and Hs4.4 is the hyperelliptic ensemble which are defined in Section
2.6.2) and Section respectively. In the case of fixing ¢ and letting g — oo, the first
four moments of have been calculated by Andrade and Keating [AK12] and
Florea [Flol7al [Flol7bl [Flo17c|. Furthermore Andrade and Keating [AKI14] adapted
the recipe of Conrey, Farmer, Keating, Rubinstein and Snaith [CEK*05] to conjecture

the integral moments of quadratic L-functions in function fields. Their conjecture reads.

Conjecture 6.1.1 (Andrade and Keating). Suppose that q odd is the fized cardinality
of the finite field F, and let Xp(s) = |D|2*X (s) and

X(s)=q =
That is Xp(s) is the factor in the functional equation
L(s,xp) = Xp(s)L(1-s,xp).

Summing over fundamental discriminants D € Hag.q, we have

1 k
> L(3x0) = % Qullog, IDH(1+o(1), (6.1.2)

DeHogi1 2 DeHagr1

92



6.1. Moments of Dirichlet L-functions in Function Fields

where Q. is the polynomial of degree %k:(k +1) given by the k-fold residue

2)2

k(k-1)
(_1)T G(zla" (Z%a "azk) z sk o
Qr(x) = jg jg q2 i idz . dzy,
! (2m)k 5 lz% i

where A(z1,...,2) is the Vandermonde determinant given by

Azty.oz) = [ (z-2), (6.1.3)

1<i<j<k

Jun

G(zl,...,zk)=A(%; Zk)HX( +Zg) : H Ca(l+ 2+ 25)

1<i<j<k

and A( o PO ) is the Euler product, absolutely convergent for |PR(z;)| < , defined
by

1 1
f4 ("G Zlyew- 7,Zk;) = ( 1 - ___________‘)
2 1; 1<i<j<k |P|1+Zi+2j

Florea [Flo17al [Flo17b, [Flo17c| showed that the asymptotic formulas that she obtained,
see Theorem [3.1.2, to Theorem [3.1.5], agree with Conjecture[6.1.1. Furthermore, for the

third moment, Diaconu [Dial9] proved the existence of a secondary main term of size

ID|7 in the asymptotic formula and for higher moments, Diaconu and Twiss [DT20]
conjectured that there exists additional terms which occur in the asymptotic formula.
Rubinstein and Wu [RW15] provided numerical evidence for Conjecture , namely
they numerically computed the moments for £ < 10 and d < 18, where d = 2g + 1 for

various values of q.

Understanding negative moments of Dirichlet L-functions in function fields is a harder
problem due to the zeros of the L-functions on the critical line. Considering shifted
negative moments, Bui, Florea and Keating [BFK21a] showed that for § « g_i“ and

k a positive integer we have

k(k-1)

1 1 1 +
5 <« (—) T (log g) 5™ (6.1.4)
#H29+1 DeHagit L(%-{-ﬁ?XD)‘ 6
Florea [Flo21] proved an upper bound for
1 1

#7'[2_(]4—1 DeHagysa L (% + 6 + Zt’ XD)|k
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Chapter 6. Integral Moments of L-functions in Even Characteristic

for k>0 and 8 > 0 such that log (%) « log g. Additionally, Florea proved that for k a
positive integer, € > 0 and R(5) > ¢! (log g)l_ﬁJr6 we have

1 1
#H29+1 DeHagin L( + 5, XD)

= (1+28) B AB) +O (q_wwg§+§+e) |

where A() is a specific constant.

Andrade, Jung and Shamesaldeen [AJS21] conjectured the integral moments of quadratic
Dirichlet L-functions over monic irreducible polynomials in F,[7'] and showed that
their conjecture agrees with the asymptotic formulas obtained by Andrade and Keat-
ing [AK13] and Bui and Florea [BF20]. Their conjecture reads.

Conjecture 6.1.2 (Andrade, Jung and Shamesaldeen). Suppose that q = 1(mod 4) is
the fized cardinality of the finite field F, and let Xp(s) = |P|%‘5X(5) where

X(s)=q 2"
That is Xp(s) is the factor in the functional equation
L(s,xp) = Xp(s)L(1-s,xp).

Summing over primes P € Pog.1, we have

> L(%,Xp) = Y Qullog, |P)(1+0(1)), (6.1.5)

PePogia PePogia

where Q. is the polynomial of degree %k(k’ +1) given by the k-fold residue

k(k 1)

(-1) Gz, ..., (zg,.. )2 .
- f iohisdy L da,
M-,

where A(z1,...,2) is the Vandermonde determinant defined in ;

1

2

G(zl,...,zk):Ak(% zk)HX( +Zz) [T Ca(l+zi+2)

1<i<j<k

and Ay is the Euler product, absolutely convergent for |R(z;)| < % defined by

1 1
Ak(g;zl,...,Zk):H H (1_|F)|1+—31+27)

P 1<i<j<k

k 1 -1 k 1 -1
1-— + 1+ — .
E( |P|2+Z¢) g( |P|2+Zj)
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6.2. Statement of Result

When ¢ is a power of 2, a problem in function fields is to understand the asymptotic
behaviour of

> L(s,xa)", > L(s,xu)" and > L(s, xu)" (6.1.6)

!
uelgi1 ueFgi1 uefg+1

when ¢ is fixed and g - oo for various values of s and k, where L(s, x,) is the quadratic
Dirichlet L-function defined in Section and Z,,1, Fyi1 and ]-" ., are the sets defined
in Section . In this setting, Bae and Jung [BJ18] computed an asymptotic formula
for the first moment of for almost all s € C with 9R(s) > 5. For the interests of
this chapter we will only state their result for when s = % and when s = % + 1t where
t # 0, where the sum is over all v € Zg,,.

Theorem 6.1.3 (Bae and Jung). Suppose that q is a power of 2. Then we have

U;L(;X“) 242(2+)1P(1)( +1+é%(1))+0(923q3§) (6.1.7)

and for t +0 we have

2 +1 .
3 L(%H’t,xu)—Q (Q)CA(1+22t)(P(1+2zt) g 2o p(1- 22t))+0( 22q9(%-it)).

’lLEZngl

(6.1.8)

where

1
P =11 (1 NERGE 1))‘

A further problem is to understand the asymptotic behaviour of

> L(s,xu)", > L(s,xu)" and Z L(s,xu)* (6.1.9)

T ’
u€lgs1 ueFgi1 ueF g41

where fg“, fg“ and F "g+1 are the sets defined in Section . In this setting Andrade,
Bae and Jung [ABJ16] computed an asymptotic formula for the first moment of (6.1.9] -
for all s € C with RR(s) > 5 and an asymptotic formula for the second moment of (6.1.9 -
1

when s = 3

6.2 Statement of Result

In this chapter, we develop to even characteristic the heuristic developed in [CEK*05]
AK14] [AJS21]. The main result is the following Conjecture.

Conjecture 6.2.1. Suppose that q is a power of 2 which is the fixed cardinality of the
finite field Fy and let
Xu(s) = ()2 X (s)
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where

X(s) = q_%”
That is X,(s) is the factor of the functional equation
L(87 XU) = XU(S)L(]' -5, XU)

Summing over fundamental discriminants u € Ly, we have

1 k
> L(E,Xu) = Y Qr(29+1)(1+0(1)), (6.2.1)

uEIg+1 uEIg+1

where Qx(x) is the polynomial of degree 5k(k+1) given by the k-fold residue

k(k-1)
(-1)" =z 2k G2ty 2) A2, 20)2 o
Qr(z) = % jlg q2Zi%idzy .. dzy,
k! (27rz)k f [T 22+

where A(z1,...,2x) is the Vandermonde determinant defined in ;

=

2

G(zl,...,zk)zA(%; Zk)HX( +ZJ) H Ca(l+2+25)

1<i<j<k

and A (%;zl, ce zk) is the Euler product, absolutely convergent for |R(z;)| < % defined

1 1
A(53217~--7Zk):H H (1_|P|1+—Zi+zj)

P 1<i<j<k

Remark 6.2.2. To obtain Conjecture we will use the methods seen in [AK14,
A.JS21)]. However, the main difference is when averaging over the family Z,.,. For this
we need to use the calculations seen in [BJ1S], which is done in Lemma|6.4.2. We will

also show that our conjecture agrees with and , the latter of which has
not been done in either [AK1j|] or [AJS21], since asymptotic formulas for

1 b 1 b
Z L(§+it,XD) or Z L(§+it,xp)

DeHoge1 PePagi

have not been explicitly obtained. Finally we will use our conjecture to obtain explicit

congectural formulae for higher moments.
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6.3. Preliminary Lemmas

6.3 Preliminary Lemmas

In this section, we will state results which will be used in this chapter.

Lemma 6.3.1 (“Approximate” Functional Equation, [BJ18, Lemma 3.1]). Let s € C

with R(s) > 3, then for u eI, we have

L(s,xu)= 3 Xuld) |y () D Xulf) (6.3.1)

feAd, |f|s b feAZ, |f|17$ ’

where X, (s) = q9(1-29),

Lemma 6.3.2 ([BJ18, Lemma 3.3]). Let L € A*. Given any € >0, we have

2n
S 6(f) = T+ [P ™)+ O(g+9m). (6.3.2)
feAd CA(Q) PIL
(f7L):1

Proposition 6.3.3 ([BJ1S8, Proposition 3.20]). For any f € A} with n < g which is not

a perfect square, we have

> xulf) <927 ¢ (6.3.3)

UEIg+1

6.4 Heuristic Derivation of the Conjecture

In this section, we present the details for conjecturing moments of L-functions associated
to quadratic Dirichlet L-function L(s, x,) with u € Z .1 as g - oo, where [, is a fixed
finite field with ¢ a power of 2. As in [AKI4l [AJS21] we will adjust the recipe first
presented in [CEK*05] to the even characteristic setting.

6.4.1 Analogies between Classical L-functions and L-functions

over Function Fields

Let uw e Z,,;. For a fixed positive integer k, we want to obtain an asymptotic expression

for

> L(l,xu)k (6.4.1)

UEIg+1 2
as ¢ — oo. To achieve this, we consider a more general expression obtained by in-
troducing small shifts aq,...,a;. Thus we seek to achieve an asymptotic expression

for

1 1
Z L(§+a1,xu)...L(§+ak,Xu). (6.4.2)

ueIg+1
The introduction of these shifts reveals hidden structures and the calculations are sim-
plified. In the end we will let each «,...,a; tend to zero in (6.4.2)) to obtain an
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Chapter 6. Integral Moments of L-functions in Even Characteristic

asymptotic expression for ((6.4.1]).

The first step to obtain the conjecture for integral moments is to use the “Approximate”

functional equation, Lemma [6.3.1] Here we note that X,(s) can be written as
X.(s) = (¢¥)7 X (s), (6.4.3)

where X (s) = q_%”. Throughout this chapter, we will use the following results about
Xu(s).

Lemma 6.4.1. We have that

X,(s)2 = X,(1-5)2 (6.4.4)
and

X (s)X,(1-s)=1. (6.4.5)
Proof. The proof follows directly from the definition of X, (s). [

Recall, from Section that for u € Z,,1, we defined the completed L-function A(s, x.,)

as

A(s, Xa) = Xu(8) 2 L(s, Xu)- (6.4.6)

We will apply the recipe to the completed L-function since it simplifies the calculations

and it satisfies the functional equation
A(s, xu) = A1 =5, xu)- (6.4.7)

Thus, our goal is to obtain an asymptotic formula for the k-shifted moment

Lys)= Y Z(s;ai,...,ou) (6.4.8)
uEIg+1
where
k
Z(s;an,...,ak) = [JA(s + . xu). (6.4.9)
j=1
Using Lemma [6.3.1, Lemma [6.4.1) and (6.4.6]), we have
Ao =)t 3 X v gt 5 X)) (6.4.10)
feA;rg |f|s feA;Fl |f| B
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6.4. Heuristic Derivation of the Conjecture

6.4.2 Applying the recipe for L-functions in Even characteris-
tic
In this subsection, we will present the recipe which follows from [CFK*05] [AK14, [AJS21]

with the necessary modifications for the family L(s, ).

1. Write the product of k-shifted L-functions:
1 1 1
Z | =; =Al=+ wl A=+ a, xu]-
(2,Oé1, ,Oék) (2 a1, X ) (2 A, X )
2. Replace each L-function by its “approximate” functional equation (|6.4.10)).
Hence we obtain

1
Z(ﬁ;al,...,ak)

2’“1 Xu(%mj)% 5 xu(n»%u(;_aj)% y )

j n; monic |nj|%+aj 2 nj monic |nj|§_aj
deg(nj)<g deg(n;)<g-1
LI E: Xu(;)
_ X (_+€a.) Xul) (6.4.11)
deg(nj)<f(e;)

where f(1) =g and f(-1)=g-1.

By multiplying out, we get a sum over all monic polynomials nq,...,ng, then we

can write (6.4.11]) as
1 k 1 - (..
2(530417“-70%): > HXu(§+ejaj) 3 Xu(m 1) (6.4.12)

1 e
€j::l:1 ]:1 €%

NI

mt =g TT5 [ny|2
Trj monic

3. Average the sign of the functional equation.
Note that in this case, the es-signs of the functional equations are all equal to 1

and therefore do not produce any effect on the final result.

4. Replace each summand by its expected value when averaged over 7,,;.

For this we have the following result.

Lemma 6.4.2. Let

am:H(1+|1F|)l’

Plm
then
] 1 G if mois a square of a polynomial,
lim Y Xu(m) =
9700 #Lgi1 W0, 0  otherwise.
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Chapter 6. Integral Moments of L-functions in Even Characteristic

Remark 6.4.3. The same factor a,, when averaging over fundamental discrimi-
nants D € Hagi1, which is why Conjecture is similar to [AK1}), Conjecture 5].

Proof of Lemma[6.4.2. We start by considering the case when m is a square. For
m =0 = (2, and by the definition of Z given in Section we know that Z,.q is
the disjoint union of the Z(, 5,1-,)’s for 0 <r < g. Thus we have

Z XU(m=€2) = Z Z XU(m:€2)-

#Ig+1 uelyi1 +1 r= OUEI(T g+l-1)

1

Note that Zg g+1) = Gg+1. For 1 <r < g, we let
Ivy={v+F:veFy,FeGgui,},

where Fjy; and G,, are the sets defined in Section Then Z(, 4+1-5) is the
disjoint union of Zy;’s, where M runs over B, and B, is the set defined in Section
m. Hence we have

1 1 <
S5 @ ¥ w3 S Y )
+1 r= O’U,EI(T g+1-1) g+1 FEgg+1 g+1 r=1 MeB, uelns

For u € Z,; with M € B,, we have, from Definition that

1 if (M, 0)=1,
() = (M, 0)
0 otherwise.

Therefore we have

1 1 &
Y T g Yl Y ¥ T L (6413)
9+1 =0 ueZ(, gy1-r) 9+1 FeGgiq g+1 r=1 (1\]\//116521 uel g

Using Lemma and the fact that (see [BJ18| Proof of Proposition 4.1]) #G,, =
2¢5(2) g™, we have

1 ) 20 (2) 1go+!
#Lgn1 FeGyi1 2¢a(2)1g%+!

=q¢?9—->0asg—oco.

Using the above and the arguments stated in Section 2.7.1], we know that, for M €
B, #In = #Fu#Gge1—r = 2Ca(2)1qo+m (M), where M is defined in Section
2.7.1] Furthermore, from Remark [2.7.2] we know that the map B, - A}, defined
by M ~ M is a bijection and (M, f) = 1 if and only if (M, f) = 1. Thus, using
the above arguments and Lemma we have
1 @ g .
2, 2, X l=a?)aT ) (M)

#Ig+1 r=1 MeB, uelys r=1 MGA:E
(M,£)=1 (M,0)=1
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6.4. Heuristic Derivation of the Conjecture

Invoking Lemma [6.3.2, we have

e 5 on-2uTl(eg) Seeo(r Sir)
(Mf)l

I _1L g _ ¥ -g(1-¢)
<A<2>H( |P|) 1@ Do),

P|¢

As g - oo, the main term becomes a,, and the second and error terms tend to

zero. Therefore if m is a square we have

1
lim w(m) = ay,. 6.4.14
g—oe #Ig+1 Ue;gzrl X ( ) ( )

For m not a perfect square, we have, by Proposition [6.3.3

1 g
T > xu(m) < g22¢79 >0 as g > oco. (6.4.15)
g+ ueIg+1

Combining (6.4.14)) and (6.4.15) completes the proof of Lemma m [

Using Lemma [6.4.2, we have that

lim 1 M - L
g—>00 #Zg+1 u€lysr ™ ,nk H] 1 |7l |2+ejaj i ] , |7’L |2+ejaj
nj mon nj monic
ny..ng=m2
=y 3 L
m monic M1,-Mk ] 1 |n |2+€JO‘]
nJ monic
ny..np=m?
5. Extend each of ny,...,n; sum for all monic polynomials and denote the
sum M (s;aq,...,qx).
If we let
1 A2
Rk 5;610&1,...,6ka = Z Z —w7 (6416)
m monic 1Mk J 1|n |2 g4I
’n] monic
n1...nk:m2

then the extended sum produced by the recipe is

1
1 2 1
M(—;al,.. ) > 1‘[2( ( +ejaj) 2Rk( cea, .. ,ekozk). (6.4.17)
2 ej=+1j=1
6. The conjecture is
1 1
> Z(i;al,...,ak): > M(§;a1,...,ak)(1+o(1)). (6.4.18)

u€lyy1 u€lyy1
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Chapter 6. Integral Moments of L-functions in Even Characteristic

6.4.3 Putting the Conjecture into a more useful form

In this subsection, we will put Conjecture ((6.4.18)) into a more useful form since the
conjecture is problematic in this form because of the individual terms have poles that
cancel when summed. More specifically, we will write R as an Euler product and then

factor out the appropriate zeta factors, which helps us identify the poles.

First note that a,, is multiplicative since

o, = Qo Oy, whenever (m,n) =1,
where
L\
Ay = H 1+ —) .
Define
1
) = 6.4.19
@ Y (6.4.19)
7'74] monic
ni..nE=x
so that ¥(m?) is multiplicative on m, Therefore
A2 1
= 2
n] monic ’n/] monic
ny..ngp=m2 ny..np=m?
= > apep(m?) (6.4.20)
m monic

Taking the Euler product of (6.4.20]), we have

> il |n e 1;[(1+2ap2j¢(P2j)), (6.4.21)

S+og
m monic T1y--Mk |n1| :
nj monic

ny..np=m?

where
. 1
P = : 6.4.22
v "1an afsrer . fny|ster ( )
nl.{.nk:PQj
Since we have ny...n; = P%, then for each i = 1,...,k, write n; = P¢ for some e; > 0
and e; +...+eg =27. Thus (6.4.22) becomes
27y _
(P > H |P|el(s+al) (6.4.23)

e1,...,e>20 =1
e1+...+exp=27
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6.4. Heuristic Derivation of the Conjecture

Therefore, combining ((6.4.21]) and (6.4.23)) in (6.4.16) we have

Ry(s;on, ... o) = [J|1+ iamﬂﬁ(fﬂj))
j=1

P

= H 1+ iapzj Z H ( o | (6424)
P j=1 |p|e1 s

€1 yeeny er>0 =1
e1+...+exp=2j

Furthermore, we know that
ap2s = (1+|P|™H)7,

and thus (6.4.24)) becomes

ez(s+a,)

Rk(s;ocl,...,ozk)=l;[ 1+ (1+|P|™)” Z Z H|P

j=1 e1,...,e>0 i=1
e1+...+texp=2j

~ 1 Rir (6.4.25)

P

Also, we know that

1+|P ™)t = E
thus

T WD M g e o (6.4.20)

(=03j=1 e1,...,e>0 i=1
e1+...+exp=27

When «; =0 and s = %, only terms with e + ...+ ¢, = 2 give rise to poles. Isolating the

term with ¢ =0 and j =1, we have

ez(sm s + (lower order terms)

Rk,P:1+ Z H|P

e1+...+ep=2 i=1

1

=1+ Y —5——— + (lower order terms).
1<i<j<k | Pl Y

Thus, for R(«;) sufficiently small, we have (by [CEK*05, p.87]),

Rip=1+ 3 — 4+ O(P">)+0 (1P| ™).
1<i<j<k | P[Psteita
Expressing Ry p as an Euler product, we have
1
Fop= I (1 , |P|2—) (1+0(PF 2 ) v O (1P ™). (6427)

1<i<j<k

Furthermore since

11:1 (1 + |P1|28) - gigii; (6.4.28)
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Chapter 6. Integral Moments of L-functions in Even Characteristic

has a simple pole at s = % and

H (1 +0 (|P|—1—25+e) +0 (|P|—35+e))

P

1
3

we see that []p Ry, p has a pole at s = 5 of order 3k(k+1) if

is analytic in R(s) > 3

a1 =...=0 =0.

Since we have identified the leading order poles, we can now factor out the appropriate
zeta factors and thus put Conjecture (6.4.18) into a more desirable form in order to

obtain Conjecture m Using and we have that
1
Ri(s;aq,...,ap) = H ( H (1 + “DPSTMJ) (1 +0 (|p|—1—28+e) s (|P|—3S+e))) ‘

P \1<i<j<k

Using ((6.4.28]), we have

. _ CA(28+ai +a') —1-2s+¢ —3s+e
Ri(s;aq, ..., ax) _191;ng CA(2(23+041'+02')) 1;[(1+O(|P| 1-2 )+O(|P| 3 ))

Using ([2.1.3), we have

1 1
Ri(sion,...,a) = [] G@s+ai+a)[I|11- e |1+ oo
k(S,Oél, 7ak’) CA( sta +Oé]) = ( |P|25+a,-+aj)( + |P|2s+ai+o¢j)

1<i<j<k

% (1 +0 (’P’7172s+e) +0 (|P|73s+e)) )
Finally, using , we have

1
Rk(S;Oél, A ,Oék) = H CA(ZS + o + Oéj) HR]QP(S;CH, A ,Oék) (1 - W)
J2) J

1<i<j<k

= I ¢G@s+ai+a))A(s;on,... o),

1<i<j<k
where
1
A(S, 1, ... ,ak) = 1;[ Rk:,P(S; q, ... ,O./k) (1 - |P|25+T+O‘j) . (6429)
Here A(s, a1, ..., q) defines an absolutely convergent Dirichlet series for R(s) > %+6 for

some 0 > 0 and for all o;’s in some sufficiently small neighbourhood of 0. Furthermore,

we can write A(s;aq,...,qx) by using the following Lemma.

Lemma 6.4.4. Using the notation described previously, we have

1 1
A(§;217-'-7Zk):1—1 H (1_|P|1+—Z7,+Zj)

P 1<i<j<k
1(k 1\ ok 1\ 1 1\"
X | — H(l— 1 ) +H(1+—1) + — (1+—) .
2\;a\ Pz i\ Pzt |P| 1P|
(6.4.30)
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6.4. Heuristic Derivation of the Conjecture

Proof. From (6.4.29)), we have that

1 1 1
A(§,Zl,,2k):1;I(Rk7p(§,Zl,,Zk) H (1—W)), (6431)

1<i<j<k
where

1

1 k 1
Rk,P(—;Z )—1+ 1+|PI ™) ‘
2 K ( gZ; el,.§k>0 ﬂ |P| 5+Zi)
e1+...+ep=2j

Furthermore, we have

_ 0 b 1
Rk,p(i;zl,...,zk)=(1+|P|‘1) ' (1+|1P[H)+> Y ]‘[ﬁ . (6.4.32)

7j=1 e1,..., er>0 i=1
e1+...+tep=27

Thus
1 el
% My, 2, e
e1+...+e=2j e1+...tep=2j

l\')l}—t

)

o 11%2 )
%(ﬁ 1 i ) ﬁ( 0 )) (6.4.33)

Putting (6.4.33)) and (| into - 6.4.31]) completes the proof of Lemma m [
From (/6.4.17)) and ([6.4.29)) we have
1

1 2 1
M(é;al,.. ) Z HX ( +ejoz]) sz (§;ela1,...,ekak)

k €i
l} 0> o(lP] +Z)

€;=+1 j=1
_1
2
Z HX ( +ejoz])
€;=+1j=1
H gA(1+ezaz+e]a3)A( elal,...,ekak).
1<i<j<k

Therefore, from (6.4.18]) the conjectured asymptotic takes the form

Z Z(%;O&l,...,ak)

UGIg+1

= > > HX( +6Ja])éA(%;glal,...,ekak) [T ¢a(l+ea+ea;)(1+0(1)).

u€lgyy €5=%1 j=1 1<i<j<k

Using the definition of X, (s), we have that

1 _
Xu (5 + EjOéj)

N|=

= (q29+1)6 £ X (% + EjOéj)
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Chapter 6. Integral Moments of L-functions in Even Characteristic

Thus we arrive at the following conjecture:

1 1
Z A(§+a1,xu).../\(§+ak,xu)

UEI9+1
k 1 7% 1<k 1
=Y JIX (— + ejaj) >, (¢#9)zZm a9 R, (—; ea, . .. 7€kak) (1+0(1)).
€j=:k1 j:l 2 uEIg+1 2

(6.4.34)

6.4.4 The Integral Representation of the Conjecture

In this subsection, we will write Conjecture ([6.4.34) as contour integrals. To do this,

we will need the following lemma.

Lemma 6.4.5 ([CFK*05, Lemma 2.5.2]). Suppose F is a symmetric function in k
variables, reqular near (0,...,0) and f(s) has a simple pole of residue 1 at s =0 and

1s otherwise analytic in a neighbourhood of s =0, and let
K(ai,...,ax) = F(ai,...,a) H f(a;i +ay)
1<i<j<k

or
K(ala"'7ak):F(a1>"'7ak) H f(ai+aj)'

1<i<j<k
If a; + o is are contained in the region of analyticity of f(s) then

(_1)k(k2—1)2k 1

K(eion..... - , ff}(
L K am a2 (o)
A2, 22)2 M5 2

e [T (2 — ) (2 + )

dzy...dz

and

Z (Hej)K(elal,...,ek@k):( 1)k! 2 (2;i)k¢.,,.fK(zl,...,zk)

Ej:il j=1
2 2 k
A(’217 ceey Zk)2 Hj:l Oéj

e (e ag) (2 + )

dzy...dzy,

where the path of integration encloses the +o;’s.

First recall that

D IEIA(%WJ»M): > lﬁ[Xu(%mj)_éL(%mj,xu) (6.4.35)

uelgyr j=1 uelgyq j=1
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6.4. Heuristic Derivation of the Conjecture

and
1
Z Z(—;al,...,ak)
UEIg+1 2

=

=) 2 HX( +6]aj)_

uelyyq €5=%1 j=1

1
A(é;elala .. .,EkOék) H CA(l + €0, + 6]‘04]')(1 +0(1))

1<i<j<k
(6.4.36)
1
Since X, (% + 04]) * does not depend on u, we can factor it out and, using (6.4.35) and
(6.4.36)), we have
Z H L ( + Xu)
uelyyr j=1
S
Z H)\,’ ( +oz]) Z H)\,’ ( +€Jozj) A(—;elal,...,ekak)
uely1 j=1 ej=%1 j=1 2
x [ Ca(l+ ey +eay)(1+0(1)).
1<i<j<k
Using the definition of X, (s) we have
Z H L ( +aj, Xu)
uEIg+1j 1
k oy o (1 "2
— Z H(q2g+1) ]1 7X( +aj) ZH(Zngl) J177X(2+6jaj)
uelgyq j=1 ej=x1 j=1
x A (— €109, ..., ekozk.) [T ¢(1+eai+ea;)(1+0(1)).
1<i<j<k
Multiplying and dividing by (logq) D , we have
Z H L ( +ay, Xu)
uely1 j=1
@ ()t 1
14 I* 2 J ! T Q; Z €50 1 2
= Z j k(k+1) Z 1_[ (q2g+1) X (2 + 6]04])
ueZyiy (logq) €j=x1j=1
x A (— €100, . .. ,ekak) [T ¢a(1+eai+ea;)(logg)(L+o0(1)). (6.4.37)
1<i<j<k
If we call
k sk o (1 -3 (1
Flag,...,o) =]] (qQL‘”l)2 =YX (5 + ozj) A (5, ag,. .. ,ak) (6.4.38)
j=1
and
f(s) = Ca(1+5)(logq) (6.4.39)
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Chapter 6. Integral Moments of L-functions in Even Characteristic

so that
fla;+a;) =1+ +a;)(logq), (6.4.40)

then f(s) has a simple pole at s =0 with residue 1. Denoting

K(on,...,on) = F(ar,...,ap) [] flai+ay), (6.4.41)

1<i<j<k

then, using (6.4.37)), we have that

Z HL( +on,Xu)

uely1 j=1

=l X

uelg+1 (log Q)

e, (q2er) 2% X (1 )%
1 (g + j=1%J L.
= ECErD) : - Z K(eo,. .. epo) [ (1+0(1)). (6.4.42)

Thus applying Lemma [6.4.5, we have

Z HL( +a],xu)

’U,EInglj 1
Z (g2 HE X +O‘J) ()72 1 jg ng(z 2))
— - - . yoo oy Rk
u€lyi1 (log q) k(kz L k" (2’/TZ)k !
A, 22 T 2

cdz +o(g?9h).
Hz 11—[] 1(21 Oéj)(Zl-l-CY]) * ( )

Using (6.4.38)), (6.4.40) and (6.4.41]) we have

Z HL( +aj,xu)

uelyyr j=1

- (q29+1) S5 yX(;Jraj)z

uEIg+1

k(k-1) 1
% (_1) 2 k 2g+1 J 1%y X + ? A 1
k! (Qm)k H o T o Xy e O

220 222 [1h 2
X H Ca(l+2+25) AG1 o) 1l 2 dl...dzk+o(q29”).
1<igj<k Hz 11_[] 1(22 a])(zl-'-aj)

If we let

D=

G(z1,. ., 2k) = HX( +z])

108



6.5. Some Conjectural Formulae for Moments of L (%, Xu)

then we have

1 1
Z L(§+a1,XU)...L(§+ak,XU)

uEIg+1
k o (1 B(-1)" 52k
_ 2g+1\"2 Zj1 JX( " ) 5[5 quG(z
q (6] ) )~
ue%ﬂg( ) 2 k! (27?@)”C !
1yk A(22,.. 211
% (q29+1); Tia1% (Zl’ ) ..dz+o (q29+1) . (6443)
I 11_1] 1(22 @J)(Zz"‘O‘J)
Finally, let
Qr(z)
k(k-1)
1 ok Gz, ze) A2, 222 T %
- )kl 2 kjg 5’5 lk : : 2 LgE T tdz L dzy,
' (2mi) [T TT5 (20 — o) (20 + )

(6.4.44)

then setting ; = 0 we obtain the formulae stated in Conjecture [6.2.1]

6.5 Some Conjectural Formulae for Moments of L (%, Xu)

In this section, we use Conjecture to obtain explicit conjectural formulae for
the first three moments of quadratic Dirichlet L-functions in even characteristic. In
particular we will show that, for the first moment, Conjecture agrees with (6.1.7).

6.5.1 First Moment

We will use Conjecture to determine the asymptotic formula for the first moment
of our family of Dirichlet L-functions and compare it with (6.1.7)). For the first moment
Conjecture predicts that

Y L{50)= ¥ QuzgrD(+o(1)),

uelg1 2 uelyi1

where () is a polynomial of degree 1. From Conjecture [6.2.1] we have

0.(z) = ng G(21)A(27)%q2™ i (65.1)

21

where

[

1 1 2
G(z)=A (5, zl) X (5 + zl) Ca(l+22).
From the definition of the Vandermonde determinant and the definition of X(s), we
have that

l\J

1 2
A(22)*=1 and X(§+zj) =q 2.

=
=
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Chapter 6. Integral Moments of L-functions in Even Characteristic

Therefore (6.5.1)) becomes

1. 21 7%1
Q1 () = %f A(5i21) G+ 22427 dz. (6.5.2)

21

From Lemma [6.4.4] we have

-1 -1 -1
1 1 1 1 1 1 1
(b)) (- ) (o) ) ) (e )
27 =LV e )\ s ple=) )RR

We want to compute the integral (6.5.2]), where the contour is a small circle around the
origin. For this we need to locate the poles of the integrand. Let

1. S5
f<z1):A(2721)CA(1+221)q (i (65.3)

Z1

then f(z;) has a double pole at z; =0. To compute the residue, we expand f(z;) as a
Laurent series and pick up the coefficient of z7!. Expanding the numerator of (6.5.3))

around z; = 0, we have

1' _ 1 / 1 1 " 1 2
A(é,zl)—A(2,0)+A (2,O)Zl+2A (2,0)21+...,

1 1

1+22) = —
Ca( ) 2logq 2

1 1 1
+ 3 + g(logq)zl - %(logq)?’zi3 +...,

o 1 1
gz =1+ §(log q)xz + g(log Q)22+ ...

and . .
¢z =1- é(log q)z1 + g(log Q)i+

Thus we have
1 1 1 1 1
f(z1) = Z(A(§;0)+A'(§;O)Z1 +§A”(§;O)zf+...)
X (1 - %(IOgQ)% + é(logq)zf +.. )

1 1 1 1 1
g | -—(1 323 )
X (210ng1 + 5 +6(ogq)21 90(ogq) 20+

1 1
x (1 + E(logq)le + g(logq)ﬁzf +.. )

Multiplying the above expression and collecting the terms corresponding to 27!, we see
that

1 1 1 1 1 1
R 20y ==A(=0)+=A(=:0 A(=0).
es(f(21)i51=0) = (2, )+4 (2, )m%gq (2)
We know that ) .
A(§;0)=P(1) and A’(ﬁ;o):QP’(l),
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where
1
P(s) - (1_—).
U\~ praers
Thus
A(L 1+2 357 /
1 g AGa) G2 :—P(l)(:c+1+—4 5(1))
e 21 logq P

We therefore have

> L(%,xu)— ¥ Qi+ 1)(1+0(1)

> P)(g+1s é%u)) (1+0(1))

U,GIg+1

P(1) (g+ 14 é%u)) S 140(g).

u619+1

Using Lemma [2.7.3, we conclude that, for the first moment, Conjecture predicts
1 2q2g+1 2 p/

L(_7Xu): P(1 (g+1+—— 1 )+0 g9t . 6.5.4

P G e R AR TR A AL C (654

Comparing (6.1.7) and (6.5.4)), we see that the main and the principal lower order terms
are the same. Hence Theorem [6.1.3| proves Conjecture 6.2.1{ with an error of O (gQ%q%})
when £ = 1.

6.5.2 Second Moment

For the second moment, Conjecture predicts that

S L(30) = 8 @ narom),

u€lyi1 2 u€lyyi1

where

f f (ZI7ZQ)A(Z17 )qu(erm)dzleQ.

3
Z1 Z9

@) = (2r z)2

From Conjecture [6.2.1], we have

(SIS

G(z1,22) = A( Zl,ZQ)HX(;‘FZj)_ H Ca(l+2z+25)

1<i<5<2
1 _
—A( Zl,ZQ)X(§+21)

From the definition of the Vandermonde determinant and the definition of X (s), we

-

(SIS
IO

X (% + ZQ) : CA(l + QZl)CA(l + 21+ ZQ)CA(l + 22’2)

have

N|=
=

1 - 1 -
A(Z%7Z§)2 = (22 - 21)2 and X (5 + Zl) X (_ + 2;2) — q—%(21+22).

2
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Thus

3.3
2179

(321, 22) Ca(1+220)Ca (1 + 21 + 22)Ca (1 + 22)
@) = (27rz)2j§j§

x (25— 23%) q2(Z”Z?)q_%(Zl”Q)dzleQ.
Using MATHEMATICA, we have that

1
Q2(z) = m[(w + 622 +11x+6)A( ;0 0)log (q)

+ (322 + 12z + 11) log? (q)(Al(1 0 0)+A2(1 0 0))

+12(2+2) A (5; 0, O) log(q)

1 1 1 1
-2 (A111 (5;0,0) -3A112 (55070) - 3A12 (5;0,0) + Aggo (53070)) ]>

where A; denotes the partial derivative, evaluated at zero of the function A ( T2y zk)
with respect to the j*® variable. Hence the leading order asymptotic for the second mo-

ment for this family of L-functions can be written conjecturally as

p ) 25 ra(io)

uEIg+1

1 4|P|2—3|P|+1)
A(—;0,0)z (1— .
2 1;[ [PP(IP[+1)

6.5.3 Third Moment

when g - oo, where

For the third moment, Conjecture predicts that

Y 1(50) = ¥ Qg+ +o),

uelgs1 ueLyyq
where
G (21, 20, 23) A(27, 23 z3)2q2(21+22+23)
— = dzydzydzs.
Qs3(r) = 3(2m ququjg EER 1dzadzs

From Conjecture [6.2.1| we have

[SIE

G(21,22,23) = A( 21,22,23)131 ( +ZJ) [T Ca(l+2z+2)

1 1<i<j<3

(b x(Fen) x(ben) T x(Bes)
(
(

[SIES

XCA 1+2ZI)CA(1+21+22)<A(1+Zl+z3)
x Ca(1+225)Ca (1 + 22 + 23)Ca(1 + 223).
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From the definition of the Vandermonde determinant and the definition of X(s), we

have
A(zf,zg,z§)2=( _21) (23_21) (Z3_Z§)2
and X X X
1 T2 1 T2 1 T2
x(; ) 2X(§ +2) 2X(§ +23) e S
Thus
Q@) =575 § § F Fon 20 2) Ao
T)=—-———— 21, 29, 23)dz
3 3(277_@)3 1, %2, ~3 1 2 3
where
A (%;Zlu 22723) (25 = 27)%(25 - 27)%(25 - 23)° q%(zﬁzﬁzs)q%&ﬁZﬁZ:”)
f(21722723) = 5.5.5
272323

X Ca(14221)Ca(1+ 21 + 29)Ca(1+ 21 + 23)
X CA(l + 22’2)CA(1 + 29 + Zg)CA(l + 223)
Using MATHEMATICA, we have
Qs(r)

1
~ 864010g%(q)

+4(32° + 452 + 2602% + 72022 + 9492 + 471) log” (q)

[ (3+z)*(a* + 1223 + 4922 +78:17+40)A( ;0,0 0)10g( )

(A1 ( ;0,0 0) + A ( ;0,0 0) + Az ( ;0,0 O)) +4(949 + 1440z + 7802% + 180> + 15z*)

1 1 1
x log*(q) (Agg (5;0,0,0) + A (5, 0,0,0) + A (5, 0,0,0)) - 10(24 + 262 + 92% + 2°)
, 1 1 1 |
< log*(¢) 2A333(§;0,0,0) ~ 3 Ay (5;0,0,0) ~ 3 A (5;0,0,0) +24m (5:0,0,0
1 1
3 Ay ( 36412 ( 0,0,0) 341 (5; 0,0,0) 34 (—;0,0,0)

1
+ A2223( ,0,0) + A1333( ;0,0 0) 6A1933 (5;070,0) 6A1223(

0.0)

1

- 3A112 ( ) + 2A111 ( O 0 0) ) 20(26 + 18z + 3[132) log (q)(Aggg (2, )
1

+ A1222 ( 0 0 O) 6A1123 ( O 0 0) + A1113 ( ,O, 0, 0) + A1112 O 0 0 )

1
+6(3+x log(q)(2A33333 ;0,0, 0) - 5A23333 (57 0,0, 0) - 10A29333 (57 0,0, 0)

1 1 1
- 10A22233 (2 0,0 0) 5A22993 (2 ;0,0, 0) + 222990 (5, 0,0, 0) —-5A13333 (5, 0,0, 0)
1 1 1 1
+60A12233 (5, 0,0, 0) - 5A12292 (5, 0,0, 0) —10A11333 (57 0,0, 0) + 60411233 (57 0,0, 0)
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1 1 1 1
+60A11223 (57 0,0, 0) - 10A11222 (5, 0,0, O) —10A11133 (57 0,0, 0) - 10A11122 (5; 0,0, 0)

1 1 1 1
- 5A11113 (5, 0,0, 0) - 5A11112 (57 0,0, 0) +2A11111 (5, 0,0, 0) ) + 4(3A233333 (57 0,0, 0)

1 1 1 1
— 20A922333 (57 0,0, 0) + 3A222903 (5, 0,0, 0) + 3A133333 (5, 0,0, 0) - 30A193333 (5, 0,0, 0)
1 1 1
+30A122333 (57 0,0, O) + 304122233 (57 0,0, 0) — 304192293 (57 0,0, 0)
1 1 1 1
+ 3A122900 (5, 0,0, 0) +30A112333 (5, 0,0, 0) +30A112203 (5, 0,0, 0) —20A111333 (57 0,0, 0)

1 1 1
+30A111233 (57 0,0, O) +30A111223 (57 0,0, O) - 20A111222 (57 0,0, 0)

1 1 1
~-30A111123 (57 0,0, 0) +3A111113 (5, 0,0, 0) +3A111112 (5, 0,0, 0) )]7
where A; denotes the partial derivative, evaluated at zero of the function A (%, 21y, zk)
with respect to the jt variable. Hence the leading order asymptotic for the third mo-
ment for this family of L-functions can be written as

1\’ 2 g%+ 1
(5] ~ 2 Esda(5:0.00).
2 (2 X ) 156,(2)7 2

uEIg+1

when g - oo, where

A(%;0,0,0)=H

P

(1 12|PJ> - 23| P|* + 23| P|? - 15| P|? + 6| P| - 1)
[PI(1P]+1) '

6.6 Leading order Asymptotic for the Moments of
1
In this section, we will show how to obtain an explicit conjecture for the leading order

asymptotic of the moments for a general integer k. We will also use the conjecture to

calculate the leading order of the asymptotic for the fourth and fifth moments.

6.6.1 Leading order for general k
To obtain a formula for the leading order asymptotic, we need the following lemma.

Lemma 6.6.1 ([AK14, Lemma 5]). Suppose F' is a symmetric function of k variables,
reqular near (0,...,0) and f(s) has a simple pole of residue 1 at =0 and is otherwise

analytic in a neighbourhood of s =0. Let

K (QQQH;wl, . awk’) = Z G%log(qQQH)25:16]'“’?}7(61101, ey ERWE) H few; + €jw;)

€;=+1 1<i<j<k
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6.6. Leading order Asymptotic for the Moments of L (%, Xu)

and define I (q?9*1, k,w =0) to be the value of K when wy,...,wr=0. We have that

k(k+1)
1 2 k1) kool
I(*" k,w=0 ~(—10g g2+t ) F(0,...,0)27 2 ( —)
( )~ (S1og () s
Recall from ([6.4.42)), we have that
1 1
L(—+a1,xu)...L(—+ak,Xu)
ue%ﬂ 2 2
_ (q2g+1) 2 ]10‘JX 1 N2
= Z ] R (2 ) Z K(eiaq, ... epap) | (1+0(1)),
ueZyir (logq)
where
k 6 0% 7%
K(e1a, ... epay) = H(q29+1) JX( +€]Oé])
=1
1
x A 2 €100, .. EkOék) H CA(l + €, +€jOéj)(lqu).
1<i<j<k
Applying Lemma [6.6.1| with
f(s) =Ca(1+5)logg,
-1 1
F(oq,...,ap) = HX( +ozj) A(é;al,...,ak)

and

K(q29+1;a1,...,ak)= >, (q29+1)%2§:15j% F(eion,...,eay) ] [flaai+ea)),

j=+1 1<igj<k

and letting aq, ..., a; = 0 we obtain
k(k+1)

1 k 1 1
> L(gﬂcu) ~ m(glog(q%”)) 2 A(;O’ )

uEIg+1 UEIngl (log q)

k .
oy
Using Lemma [2.7.3| we obtain the following result.

Proposition 6.6.2. Conditional on Conjecture |6.2.1,, we have that, as g — oo, the

following holds

1 o e q29+1 k(k+1) 1 kool
L(—, u) ~2 2 T A(—;O,...,O) —_
2 Llgx ROMEERY 1 em

UEIQ+1
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6.6.2 Fourth Moment

Proposition implies that the leading order for the fourth moment is given by

1 4 2 q29+1 1 1
2 L(E’X“) 4725 (2)7 A( 0000)

ueIg+1

where
1 ha(|P))
Al1=:0.0.0.0] = 1-—
(3:0:0.00) 1;[( EEEED

and

hy(z) = 3027 — 1092® + 21027 - 2742° + 2722° - 2102 + 1192° - 452% + 107 - 1.

6.6.3 Fifth Moment

Proposition implies that the leading order for the fifth moment is given by

1 5 2 q2g+1 1
Lz xu] ~—— g* A( ;0,0,0,0 0)
2 (2 X ) 1465125 (o (2)”

UEIg+1

where
! hs(1P))
Al1=:0.0.0.0,0]) = l1-—m———
(3:0:0.0.0:0) 13( GREGED

and

hs(z) = 652 — 38523 + 12202 - 26132 + 42632'° - 572527 + 65402°
— 627527 + 487525 — 29652 + 13602* — 45523 + 10522 — 15z + 1.

6.7 Conjectural Asymptotic Formulae for the mo-

ments of L( + it Xu)

In this section, we will use Conjecture ((6.4.43)) to write down an asymptotic formula

for

> L(% +z’t,XU)k, (6.7.1)

’U,GIngl

where ¢ # 0 is real and fixed. Using techniques similar to that done in Section we
will show that, for the first moment, ((6.4.43) agrees with (6.1.8)) when a = it. We will
then use the methods of [KO08, Lemma 3] to show how to obtain an explicit conjecture

for the leading order asymptotic of (6.7.1]) for a general integer k.
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6.7. Conjectural Asymptotic Formulae for the moments of L (% +1t, Xu)

6.7.1 Conjectured Asymptotic Formulae

Letting a; = ... = ay =1t in (6.4.43)), we have that
1 k .
> L (— + it,Xu) = > ¢7Qu(29+1) +0(g*"), (6.7.2)
uEIg+1 2 U,GIg+1
where
Qr(z)

ko
=15 dzy .. dzy,

~ (—1)@% 1 j{ ﬁg Gzt 2)AGE - ) T 2 2y
L Tz - i)z +it)e
(6.7.3)

A(z,...,2;) is the Vandermonde determinant defined in (6.1.3),
ko1 2 (1
G(zl,...,zk)=HX(—+z») A(—;zl,...,zk) [T Ca(l+2z+2). (6.7.4)
j=1 2 2 1<i<j<k

and the path of integration encloses the +it’s.

6.7.2 First Moment

For the first moment, (6.7.2]) predicts that

> L(%Ht,xu): > Q29 +1) +o(g**),

uEIg+1 UGZngl

where

1 G)A()*2g2™
i (z1—it)(z1 +it) -

Qi(r) =

From (6.7.4) we have that

G(z) = A(%;zl)X (% + 21); Ca(l+22).

From the definition of the Vandermonde determinant and the definition of X(s), we
have that

A(22)?*=1 and X(%szj) =q 2.
Thus

A(L 1+2 gD
Ql(:c)zéﬁ (3:21) L+ 221)21927 dz,. (6.7.5)

(251 — Zt)(Zl + Zt)
From Lemma [6.4.4] we have

-1 -1 -1
1 1 1 1 1 1 1
()Tl (0 ) (o) o) )
o) = I e G\ s P2+ PP
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We want to compute the integral (6.7.5]), where the contour is a small circle around the

origin that encloses the +it’s. Let

(3;21) (1 +220)21g550g 7
(z10t) (21 +it) ’

A
9(z1) =

then g(z;) has a simple pole at z; =it and z; = —it (there is no pole at z; = 0 since the
z; term in the numerator cancels the simple pole that comes from the zeta function).
We have that
(z-it)A (%, zl) Ca(1+ 221)zlqulq‘%1
(21 +it)(z —it)
A(3;it) Ca(1 +2it)g7 D
2

Res(g(z1);21=0) = limt

Similarly, we have that

. o (+i)A(da Ca(1+221)21q7% g3
Res(g(21); 21 = —it) = lim, ?zl +)z‘t)(z1 —it)
A(L;=it) Cu(1 - 2it)g 5D
- . .

Furthermore, we know that

A (%u) _P(1+2it) and A (% —z't) _ P(1-2it),
and from the definition of (4(s) we see that
Ca(1=2it) = =g 2" Ca (1 + 2it).
Using the residue theorem we have
1 A(%;zl)gA(l+2Zl)zlqulq’%1
i (21 —it)(z +1it)

= Ca(1+2it) (qF D P(1+ 2it) - g F@ D P(1 - 2it)).

le

We therefore have

Z L(% +it,xu)

S g Qu(2g + 1) + o (%)

uelyi1 u€lyi1
=g (1 + 2it) (¢ P(1+2it) - D P(1-2it)) 37 1
UEIg+1
o (q29+1) )

Using Lemma [2.7.3) we conclude that, for the first moment, (6.7.2)) predicts that

[ 229+ , - —2it(g+1 . 2g+1
>, L(§+@t7Xu) = C—(2)CA(1+2@25) (P(1+2it) - g 2"V P(1-2it)) +o(q*™).
A

uEIg+1

(6.7.6)
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6.7. Conjectural Asymptotic Formulae for the moments of L (% +1t, Xu)

Comparing (6.7.6) and (6.1.8]), we see that the main and the principal lower order
terms are the same. Hence Theorem proves (6.7.2), for k =1, with an error term

0 (g21g(3-1),

6.7.3 Leading order for general k

In this subsection, we use the methods of Keating and Odgers [KOO§| to obtain the
leading order asymptotic for the moments of L (% + it, Xu) for a general integer k. To

do this will first need to prove the following lemma.

Lemma 6.7.1. Suppose F is a symmetric function of k variables reqular near (0, ...,0)

and f(s) has a simple pole of residue 1 at s =0 and is otherwise analytic in a neigh-
bourhood of s =0. Let

K (q29+1;w1, . ,wk) = Z e%bg(q%ﬂ)Z;?:lefij(elwl, coewg) [ flew: +€ew;)
€j==*1 1<i<j<k

and define I (q*9*';k,if) to be the value of K when wy = ... =wy =1 for a fized real
B +0. Then we have

kg k(k+1)

I(g*" ki) ~ (¢%*1) 7 F(iB,.... i) f(2iB) (6.7.7)

Proof. Let

G(q29+1;w1,...,wk):e%bg(ngﬂ)zﬁzlwﬂ'F(wl,...,wk) [T f(w+w;), (6.7.8)

1<i<j<k

then by Lemma [6.4.5] we have

k(k 1)
(S

S (2mi)k /{;lﬂg quG (521, )

A(Zp” )2 leJ

Z G (q29+1; €wy, .. Ekwk)

6]'::I:1

le AN de
Hz 1Hj 1( U}])(Zz'f‘w])
Thus
Ic(k 1)
1)
[ 2g+1. k ( f f G 2g+1 o
( Zﬂ) (2m)k L ’Zk)
A2, 22)2]]
(2 a2 dzy ... dz,. (6.7.9)

[T (2 - i8)*(z; +iB)*

For each [ # 0 each contour in the integral I (¢?9*1, k,i(3) can be continuously deformed
to two smaller circular contours centered at the poles +i3 connected by two straight
lines (whose contribution cancel). Therefore we can consider the multiple contour in-

tegral as a sum of 2 integrals in which each z; runs over one of the smaller circular
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Chapter 6. Integral Moments of L-functions in Even Characteristic

contours.

With ¢; = 1, let I'c;;5 be a circle with center ¢;i3 and radius less than |3]. Thus let
J(?9 ki85 T ip, - - ., Teip) be the value of the multiple contour (6.7.9) but with the

z; contour changed to I'c ;5. Hence

k(k 1)

1)
J(@7 ks iBi T Do) = T f (",
(q ’ 7157 e kﬁ) (271—2)]C 6113 ekzﬁ b ’zk)
A(22,.. 21152 24
( L ) 1 & dz 1...de

IT;- 1(23 —zﬁ)k(zj ‘”B)k

and
I (q29+1; kﬂﬁ) — Z J(q29+1; k,iﬁ;reliﬁ7 .. ,Fekiﬁ) .

Ej:il

. : _ 2y ;
Using the change of variables z; = e @r T T €;i3, we have

2dv;
dz; = —— 1
77 log (1)’
2v 2v
G2, . ) =Gl — i, —
(q 7217 7Zk) (q lOg (q2g+1) /8 710g (q2g+1) + 6162/6

2
A(2? 22 =A U 18 2 L i3 2
1,..-,k 1 (29+1) 1 g ooy 1 (29+1) k

and

, , 20, g 2v; , g
(2 - Zﬂ)k(zj + Zﬂ)k = (log (q2jg+1>) (log (qzjgn) + 2€jlﬂ)

Thus

T (45,3 Teyig, - Tein)

(D72 2 2
_ 2g+1 1 : k :
T2k ﬁo ﬁo ( "Tog (q29+1) €1if, ..., og (1) + ekzﬁ)

A((W“ﬂﬁ) (et +exif) )QHf 1 (it + €518)
X

% %
k 20 2v;
[Tj-1 (bg(q?]g“)) (10g(q29“) * 26325)
2dv, 2dvy,
X e
log (q%*1) "~ "log (¢**1)’

where Ty is a circle centered at the origin with radius less than |3|. Furthermore from
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6.7. Conjectural Asymptotic Formulae for the moments of L (% +1t, Xu)

(6.7.8) we have

2211 . QUk .
2g+1. _ _
G(C] )log (q29+1) +61257"'710g (q29+1) +6klﬁ)
_ eélog(ng”)Z?ﬂ(logé%“ﬂﬁ)p e €1if, ..., e, €xif
log (q?9*1) log (q29*1)
2v; + 2v;
f( J (€i+€')iﬁ).
1<g<k log (g**1) ’

Also, from the definition of the Vandermonde determinant, we have

2v 2 2v 2\’
1 ) & .
A((—log ) +6126) ’”"(—log () +ekzﬁ) )

_ 2’Uj . 2 21)7; . 2\’
_mH (log(q2g”) 6) _(log(q2~"+1) +€ﬂﬁ)

2

20, + 2v; ) 20 = 2v; . )

= ——— +(e; +¢)if ——— +(e;,—¢)if] .
1<£]I<k(10g(q2g“) (& + <) ) (log(q29+1) (& =)

We also have

2d111 Qd/Uk _ 2 kdv dv
log (¢29+1) " “log (¢2*1) ~ \log(g2e+1)) "1 TF

k 2w, \* 2 \M
I(—2% ) - [T
j=1 log (¢%*!) log (q?9*1) j=1 ’

Combining the above we have

and

J (QQQH; k:7 2/65 F61i,37 ey Fekzﬁ)
K1) )

1 k(k-1) 1 2g+1 ( 1
== 2g+1 ) 710g(q 9 ) 168N~/ 7 % % 15
(2 o8 (4 ) 62 (27rz)’“ T'o T'o &

2’1)1 i 2Uk .
F (—log ) + €110, ..., —log ) + ekzﬁ)

. f( 2v; + 2v;

1<Z<j<k log (q2g+1)

2u; + 2v 2 2 -2 ?
X ST (et e zﬁ) (#+ € — € zﬁ)
1<zljj<k(log (g%+1) & ) log (q%+!) ( )

k 2v;

k 2(2v; , o1  mgigey + €16

XHf(%—FQE‘]Zﬁ) ( e ) dUl...dUk.
glq H?:l U?(W +26326)

Fes ej)iﬂ)

=1

Also we have

I f( 2v; + 2v;

1<i<j<k log (¢**')

2v; + 2v; 2v; + 20
+(q+e-)z’ﬁ)= [ f( J +26»iﬁ) [] f( J )
’ 1<i<j<k IOg (q29+1) ’ 1<i<j<k log (q2g+1)
€5=€; €5=—€;
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and

H f 2v; + 205 _ H 7 2v; + 20 20; + 2v; 2u; + 2 -1
1<icier \1og (¢2*) | g \log (¢%*) ) \log (¢*9*1) ) \ log (¢9*1) :

Gj =—€; 6]':*62‘

Thus with ( fixed, real and away from 0, we have, as g — oo that

(@518 Taips - Tagin)

1 k(k=1) 2041\ vk . s
[T-(4iB) (-5 2
F(26i3) [/ (2e5iB) (208) 0 = 95 e

1<21:J[<k ’ H ’ ITj- 1(2631ﬂ)k (27”)k To To

€=

2
2v; - 20, ) ( 2v; + 20, ) 1

x — dvy ... dvg,

1sgsk(log(q29*l) 11;[k log (¢**1) J 15, of

€5=€; €;=—€;

where we have also used the fact that e? =1 for all j. Simplifying we get
J (q29+1; ka Zﬁ; Felzﬂa ey Fekzﬂ)

1 k(k-1) G2I+1) Tk ) k
~ (§log (q29*1)) e3los(a )ZjﬂeﬂﬁF(elzﬂ, e ,ekiﬂ)ne}’k
j=1

k(k 1)

i %

2€:1 2¢:1 51
1<g<kf( §i0) Hf( i) 2m)k > P
€J =€;

2
2u; + 2v; 2v; + 2v; ) 1
X P~ dUl cee dvk.

1<g<k (10g (q29+1) ) 1<g<k (log (q29+1) J 1 Uk
€5=€; €5=—€;

The leading order term arises when ¢; = 1 for all j. Thus

I(q; ,iB) ~ e3 s )20 WF(w, zﬁ)f(zzﬂ)’““””
(k-1)
SN S SO SO
k! (271'2)"? To T ? 12;;“ 1-...0aV%.
The proof follows by using the fact that
k(k 1)
(-1) 95 qu “U]A(zl,..., D g -1,
k! (27rz)’C J L v
Recall from ([6.4.42)), we have that
1 1
ue;g:ﬂ L (5 + Oy, XU) ... L (5 + g, Xu)
1
-~ (q29+1) 3 71°‘JX 1 )2
= Z j ey (2 ]) Z K(ejon, ... epap) | (1+0(1)),
ueyen (log q) ~
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where

=

k
K(ean,. .. epop) = H(q29+1) “”X( +eja])

JELQ, .. ,Ekak) 1_[ CA(l + €04 + GjOéj)(lqu).

1<i<j<k

xA(l
2

Applying Lemma with
f(s) =Ca(1+5)logg,

1
2 1
F(oq,...,qp) = HX( +ozj) QA(§;041,...,@;€)
and
15k oo
K(q29+1;a1,...,ak): > (q2g+1)2zfl U F(eron,. . ear) [ flaq+eay),
1<i<j<k

€j::I:1

and letting oy = ... = a = it, where t # 0 is real and fixed, we have that

1 k
> L(—+z‘t,xu)
u€lgy1 2
E
2

(q2+1) 72 5 X (L4t 1y Bt 1\
k(gm ) (QQg 1) ’ X(iﬂt)

uelg+1 (ng) 2
x Ca(1+ 2@15) (1og q)

k
2

1

k(k+1)

Simplifying and using Lemma we obtain the following result.

Proposition 6.7.2. Conditional on Conjecture and for a fized real t + 0 we have
that, as g - oo the following holds

1 k 2q2g+1 1 k(k+1)
L= +it,y,) ~ Al =it 1+ 2it . 6.7.10
Y L) - A (Giteit) 61+ 2it) (6.7.10)

uEIg+1
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Chapter 7

Autocorrelation of Ratios of

L-functions in Even characteristic

7.1 Autocorrelation of Ratios of L-functions over
the Rational Function Field

The generalisation of (6.1.1]) is to conjecture an asymptotic formula for the mean-value
of ratios of products of L-functions. More precisely, the generalised problem of (6.1.1])

is to understand the asymptotic behaviour of

5 [y L (5 +aw xp)
DeHagi1 H(?:l L(% +7q’XD) |

(7.1.1)

when ¢ = 1(mod 4) is fixed and g - oo, where L(s,xp) is the quadratic Dirichlet L-
function and Hggyi is the hyperelliptic ensemble defined in Section and Section
respectively. In this setting, Andrade and Keating [AK14] adapted the recipe of
Conrey, Farmer and Zirnbauer [CEZ0§| to conjecture ratios of products of quadratic
Dirichlet L-functions in function fields, which is seen to be the generalisation of Con-

jecture 6.1.1. Their conjecture reads.

Conjecture 7.1.1 (Andrade and Keating). Suppose that the real parts of a, and v, are
positive and that q odd is the fized cardinality of the finite field F,. Let ® = {L(s,xp):
D € Hagi1} be the family of L-functions associated with the quadratic character xp.
Furthermore, let Xp(s) = |D|27*X(s) where

X(s)=q2*
That is Xp(s) is the factor in the functional equation
L(s,xp) = Xp(s)L(1~-s,xp).

124



7.1. Autocorrelation of Ratios of L-functions over the Rational Function Field

Then we have

Z Hi(zlL(%—i_almXD)
DeHogi1 HqQ:l L (% + Ve XD)

K _
-y ¥ |D|;z,€il(ekak—ak)HX(l+w)
ool 2 2

DeHagi1 ee{-1,1} K

x Yp(ero, ... exar;v)An(e1ay,. .. egag;y) +o(|D]),
where
[icjer<r (1 - W) [Ticger<o (1 - W)
A@(OG’Y) = H I 0 1
L N ——
-1 Q
1 1 p(Pca
9 1+(1+_) > o, p1(P%)
|P| 0<Xp ap+Xqcq is even |P|Zk ak(§+ak)+2q cq(§+'yq)
and
Yo(a:7) = [Ticjcher Ca(l+ a; + ) [Ticger<q Ca(l+ Yq t V)
TS T a1+ e +7)
If we let

K
1 _
HD,|D|7Q’7(w) = |D|%Z£<=1 Wi HX (_ + ak wk
k=1

9 )XY@(wh‘"7wK;rY)A@(wl7"'7wK;7)7

then the conjecture may be formulated as
Z HszlL(%""ak?XD)
DeHager H(?zl L (% + Vg5 XD)

_1¢K
= Z |D| szzlak Z HD,‘DLa;y(ﬁlala"'7€KOéK;f)/)+0(|D|)'
DeHogi1 ee{-1,1} K

In a recent paper, Bui, Florea and Keating [BEK21a] used the upper bounds on negative
moments of Dirichlet L-functions (6.1.4]) to prove special cases of the Ratios Conjec-
ture [7.1.1} More specifically they proved the following result.

Theorem 7.1.2 (Bui, Florea and Keating). Let 0 < R(3;) < % for 1 < j < k. Let
a=max {|R(a1)|,...,|R(ax)|} and 5 =min{R(S1),...,R(Bx)}. Then Conjecture
holds for 1 <k <3 with the error term E} where

q98B+20)+eaB 4f ) < R(ay) < % and 3 > g*%“,

F <. 1
qopEaeregh if — % <R(a1) <0 and B> g 2+,

_ s 1-4a 1-2« . 1 1
Ey <. q gfmin{15i, 5 Jregs if a< 1 and > g~1*,

and )

. -da -da
-gB mln{ 4T,237}+egﬁ

1
E3 <. q if a< 6 and B > g’é“.
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Chapter 7. Autocorrelation of Ratios of L-functions in Even characteristic

Andrade, Jung and Shamesaldeen [AJS21] also stated a conjecture for the ratios of
products of Dirichlet L-functions with the quadratic character xp, where P is a monic
irreducible polynomial in F,[7"], which is seen to be the generalisation of Conjecture

6.1.2. Their conjecture reads.

Conjecture 7.1.3 (Andrade, Jung and Shamesaldeen). Suppose that the real parts of
oy, and vy, are positive and that g odd is the fized cardinality of the finite field F,. Let
B = {L(s,xp) : P € Pag1} be the family of L-functions associated with the quadratic
character xp. Purthermore, let Xp(s) = |P|z75X (s) where

X(s)=q 2.
That is Xp(s) is the factor in the functional equation
L(s,xp) =Xp(s)L(1-s,xp).

Then we have

5 HszlL(%+ak,XP)
PePagia H?:lL(%-F/Yq’XP)

K
S 'P|_§Z£1(e’““““’“)HX(l+m)
k=1 \2 2

PePagii ee{-1,1} K

xYyp(eran, ... exar;v)Ap(eran, ... exar;y) +o(|P]),

where
. 1-———=— 11 1-—L
1<j<k<K |P|1+O‘j+°‘k 1<m<r<Q ‘P|1+’Yq+’Yr
Ag(a;7) = pa— .
P [T I (1 - W)
19, p(Pea
<1+ Z . qfll ,LL( ) .
0<Yp ap+Xq cq is even |P|§ 2 ak(§+ak)+z‘1 cq(§+’yq)
and

[icjerer Ca(l+ a; + ) [Ticger<o Ca(l+79g+7)
T Hqul Ca(1+ag+7)

In this chapter, we will develop to even characteristic the heuristic developed in [CFZ08|

AK14] [AJS21] which will lead to a conjecture for the ratios of products of Dirichlet L-

functions L(s, x,) with w € Z,.1, where L(s, x,) is the Dirichlet L-function defined in

Section and Z,,; is the set defined in Section . The main result in this chapter

is the following.

Yp(a;v) =

Conjecture 7.1.4. Suppose that the real parts of oy, and v, are positive and that q is a
power of 2 which is the fived cardinality of the finite field F,. LetU = {L(s,xu) :u €Ly}
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7.2. Applying the Ratios Conjecture for L-functions in Even characteristic

be the family of L-functions associated with the quadratic character x,. Furthermore,
1
let X,(s) = (q2971)27° X () where

X(s)=q2".

That is X,(s) is the factor in the functional equation

L(SaXu) = XU(S)L(]' - Saxu)‘
Then we have

Z Hé(zl L (% + ak?Xu)
u€lyyi1 HqQ:1 L (% + Y Xu)

= 2g+1)3 Lot (han—0) K X(1+ Oék—ekoék;)
Y X (@) [Tx (5=

u€lgsy ee{-1,1}K

2
x AM(Elala sy EKQK;V)YU(Elﬁl, RN EKC(K,f)/) +0 (q2g+1) ,
where
i< (1 - W) [Ti<ger<q (1 - W)
Aula;v) = H Pr— -
i T T (1 - et )
,1 Q
1 " PCq
x 1+(1+—) D qu—lﬂ( ) :
|P| 0<X g ap+Xqcq is even ‘P‘zk ak‘(§+ak)+zq CQ(§+’Yq)
and
V(o) - Misiskerc 61+, + o) Micgersg G+ % +30)
Z/l I -
ITE, TI9, Ca(1 + g +7)
If we let

§+ 9 )AU(wla'"awK;V)YU(wh"')wK;’Y)v

then the Congjecture may be formulated as

1k, K 1 _
HI,a,w(w) _ (q29+1)2 Zhm1 Wk H X( Qp — Wy
k=1

Z Hf:l L (% + Xu)
u€lyy1 HqQ=1 L (% T Ve Xu)

1 K
2g+1\ ™3 Lk=1 Vk 2g+1
Z (qg ) Z Hzaﬂ(elozl,...,e;(a[()+o(qg )
u€lyyi1 ee{-1,1}¥

7.2 Applying the Ratios Conjecture for L-functions

in Even characteristic

In this section, we will obtain a conjectural asymptotic formula for

K L(L u
> H’fQ-l (21+a’“’x ), (7.2.1)
u€ly1 Hq=1L(§ +'7anu)
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Chapter 7. Autocorrelation of Ratios of L-functions in Even characteristic

where the set Z,,; is defined in Section and the family U = {L(s,xu) : v € Zy1}
is a symplectic family. By the “approximate” functional equation, Lemma the

L-functions in the numerator can be written as

feat, | f|* feAl, |fle

where X,(s) = ¢9(1=29) and, by (2.4.2), those L-functions in the denominator can be

written as

1 CXuP)) v mD)xu(f)

where y( f) is the Mobius function defined in Section 2.2} In the numerator, we replace
L(s,Xu) with the completed L-function A(s, x,,), which is defined in Section[2.7.3] Thus
we will apply the recipe to

5 Tl A (3 + o xw)

. (7.2.4)

ueZgy1 H(?zl L (% T Vg Xu)

We will recover Conjecture by using the fact that
A(8,Xu) = Xu(8) "2 L(5, Xu)- (7.2.5)

Using ((7.2.3)), we have

Hkl ( +ak>Xu)
ue%ﬂ Hq 1L( +7quu)
hi) ... pu(hg)xu(hi) .. xu(h
-5 A ran) ¥ A0 )

1
ueTgiq k=1 hi b H(?:l |hgl277

h; monic

From ([6.4.11)), we further know that

K

[]A ( +ak,xu)— > ﬁXu( +€kak)§ 5> Xz;((mlkrzii

k=1 ee{~1,1} K k=1

thus

Z HszlA(%""@kaXU)
uelyi1 H(?—lL(% +’7q7Xu)

= > > HX( +ekoz/<;)_é 3 ‘?1M(h )X"(HkKlmquth).

ueZyi1 ee{-1,1}K k=1 M1,y m(;( Hk 1 |m |2+ekak HQ . |m |2+’Yq




7.2. Applying the Ratios Conjecture for L-functions in Even characteristic

Following the recipe, we average the summand over fundamental discriminants u € Zy,q

Thus, using Lemma [6.4.2] we have that

1

3 O u(hg)xu (TIE Q p
lim 5 H X( +€kak) 5 ITe2y 1(hg) X (TTrzs mk TTey hg)

1 1
929 #Lge1 wThr e Ty k-l S [Ty |2 Fexo ngzl g2
1--510Q
m;,h; monic

Hfﬂl(h )5(HkK1mquQ1h )

e T el Fox I g [0
Mj,ll;;“;ncglic

?

-1
1+ L if n is a square,
sy - (T (1 77) 1

0 otherwise.

Let
H?:l p1(hy)o (HkK:1 mg H?:l hq)
Gu(a;y)= ), e Epp—, T
maomic [Ty [mel2 ™ [Tz [hgl2*7

hi,..,hg
m;,h; monic

then we can express Gy (a;7) as a convergent Euler product, provided that R(ay) > 0
and R(v,) >0. Thus

| P|Zrar(g+ar)+Zq ca(3+70)

L\
Gu(oz;v):l;[(1+(l+ﬁ) >

0<Yp ap+X4cq is even

Hqul p(Pea) )

We can use the Euler product expression to write Gy in terms of the zeta function

which will enable us to locate the zeros and poles. We have

L\
Gu(esy) =]] (1 + (1 + ﬁ)

P
1 u(P

K
X +
[1<j<k<K |P| Lroy)+(S+on) l<at<0 |P| Lvg)+(3+r) kz::l p

Mo

n(P)
1| P|(ren) s ”q)+"'])

where ... indicates that the terms converge. Since

wo-(-) 18]

then the terms with Y, ay + 222:1 ¢q = 2 contribute to the poles and zeros. The poles

come from the terms with a; =ay=1for 1<j<k<K andcy=c¢,=1for 1<g<r<Q.
The terms with a; = ¢, =1 for 1 <k < K and 1 < ¢ < @ contribute to the zeros. Thus,

the contribution of all these zeros and poles is

ngjskgK Ca(l+ Q; + o) H1§q<T§Q Ca(l+ Vgt Vr)
T T a1+ g+ )

Yu(as;y) =
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Chapter 7. Autocorrelation of Ratios of L-functions in Even characteristic

When factoring out Yy, from Gy, we are left with an Euler product Ay, where

Au(a;'y) _ 1_[ HlSjSksK (1 - W) HlSq<r£Q (1 - W)

P Hk;Kzl Hqul (1 — m)
1 ] Pea
U 2 Do pre) — . (726
|P| 0<Tj ap+Y, is even |P|Zk ap(5+on)+g cq(5+7q)

Furthermore, Ay, is absolutely convergent for all the variables in the small discs around
zero. Combining all this, we get

Hi(:lA(%—i—akvXu) K (1 )_
- Xu — + €
ue%” H(IQ=1 L (% + 7617Xu) Z Z H 2 Rk

uelyr1 ee{-1,1}X k=1

(NI

X Au(GlOél, . ,EKQK;’Y)YM(EIOQ, e EROKG 7) +0 (q2g+1) )
Using ((7.2.5)) and the definition of X,(s), we have

Z Héil L (% + ak?Xu)
u€lyi1 l_[qQ:1 L (% + 7(]7Xu)

1 K €A~ LS 1 2 1 B
-y ¥ (q29+1)22k:1(k . k)HX(—+ak)2X(—+ekock)
u€Zlgs1 ee{-1,1} K k=1 2 2

x Ay(eran, ... exar;y)Yu(eron, . . . exak;y) +0(q29+1) .

[SIE

(7.2.7)

To obtain the formulae stated in Conjecture we require the following Lemma.
Lemma 7.2.1. We have

1
X(1+ak)2X(1+ekak) =X(l+m)
2 2 2 2
Proof. The proof follows directly from the definition of X (s).

Therefore, using Lemma [7.2.1] we have that (7.2.7)) becomes

3 i, L (% + O"wXU)
wTyer T L (3 + 70 X)

u€Zgs1 ee{-1,1} K 2

x Ay(eran, ... exar;y)Yu(eron, ... egar;y) +o (%),

1 vK K

- 2g+1\ 3 Zh=1(ekk—ak) X (1 ap — EkOék)

- q +—
> 2 () ITX(3

If we let

HI,a,’y(w> _ (q2g+1)%Zii1Wk ﬁX(l + O — Wy

5 9 )Au(wb'"7wK;7)YM(w17"'>wK;7)7
k=1
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then

Z Hk:K:I L (% + oy, Xu)
u€lyi1 H?:l L (% + '7q7Xu)

= Z (q2g+1)—%ZkK=10¢k Z HLQ,,Y(elal,_..,eKOzK;fy)+O(q2g+1)’

u€lgiq ee{-1,1} K

which is precisely the formulae given in Conjecture [7.1.4]

7.3 Refinements of the Conjecture

In this section, we derive a closed form expression for Ay(«;v). The main results in

the section are the following.

Lemma 7.3.1. We have

1 )_1 H(§2=1 :U(ch)

1+|11+ —=
( |P| 3+0k)+Eq cq(5+74)

0<¥ g ap+Xqcq is even |P|Zk ak(

Q _ 1 Q 1
1 1H"‘1(1 P%”q) 1 H“(“ |P|%”q) 1
= 1 T 5 +§ +ﬁ .
AZH s A (1 1 ) e, (1 + ;)

[P+ |PI3

Using Lemma and (7.2.6), we immediately obtain Corollary [7.3.2) which states

the closed form expression of Ay (a;7), which is the same expression given in Conjec-

ture [Z.1.4l

Corollary 7.3.2. We have

HlSjSkSK (1 - W) H1§q<r§Q (1 - ‘P‘l+}yq+'y7—)
Ay(a;y) =1 P 1
S ()

Q 1 Q 1
1 1 =1 (1 |p|%+“/q) 1 M-t (1 " p|%+%z) 1
X 1 T 5 + 5 + ﬁ .
WP (- ) ()

|3+ |pI3

Proof of Lemma [7.3.1]. Suppose that
flx) =1+ uya™,
n=1

then
> w =5 (f@) + f(-0)-2)

O<n is even
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Chapter 7. Autocorrelation of Ratios of L-functions in Even characteristic

and so

1

1\" . !
1+(1+ﬁ) Y u :“(“ﬁ) (é(f(x)+f(—a:)—2))

O<n is even
1 fl@)+ f(-z) 1

Thus if we let

Q ca
f(i): 5 12, p(Pea)

|P| Ok,Cq |P|zk ak(%+ak)+zch(%+7q)’

then
! o = Z L Z HqQ:1 p(Pea)
|P’ ar |P|Zkak(l+ak |P|zch (L+79)

2t Sl e

ay k=1 |P ¢q q=1 |P|Cq(2+7¢I)

1
_ I (1 ) |P|%”q)
K 1 ‘
s (1 ) P%*%)

Combining (|7.3.1)) and (7.3.2) proves the lemma. [ ]

(7.3.2)

7.4 The final form of the Conjecture

In this section, we present a form of the Ratios Conjecture[7.1.4 using contour integrals.

To do this, we will need the following Lemma.

Lemma 7.4.1 ([CEZ08, Lemma 6.8]). Suppose that F(z) = F(z1,...,2K) is a function
of K wariables, which is symmetric and regular near (0,...,0). Suppose further that
f(s) has a simple pole of residue 1 at s =0 but is otherwise analytic in |s| < 1. Let

either
H(z,...,25) = F(21,...,2K) H f (2 + 21)
1<j<k<K
or

H(z,....2x) = F(z1,....2x) [ F(z+2).

1<j<k<K
If || < 1, then
Z H(elal,...,eKozK)
ee{-1,1} K
K(K )
(DT 1 f H(z,...2) A2, 22)2 [, B
- 1... K
Kl (27”)K =t TT5es TTec (26— a) (2 + @)
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and

Z Sgn(e)H(elozl,...,eKaK)
ee{-1,1} K
K(K 1)

( =2 1 / H(z1,. o 2i) A2, 22)2 T o
K! (2”)K Jzil=1 T35 T (2 — ) (2 + @)

le e dZK.

We are now in a position to present the final form of the Ratios Conjecture for Dirichlet
L-functions in even characteristic using the integrals introduced in Lemma [7.4.1] If we
let

1gx K 1 _
Feo ) = (@) P [T (54 205
k=1

2+ 5 k)Au(Zla--wZK;’Y)

and
H f(Zj‘l’Zk):Yu(Zl,...,ZK;7)7

1<j<k<K

then using the same notation as given in Conjecture [7.1.4, we let

HIa,'y(Zlv"'7zK)
2g+1\3 Shot %k S - 2k
( g ) H ( 2 )AL{(Zl,...,ZK;’Y)Yu(Zl,...,ZK;’Y),
k=1

where

Z Hk;Kl (l+ak7Xu)
u€lgt1 Hq 1L( +7q7Xu)

— 2g+1\ " 2 Zk:l Xk 20+1
= Z (q g ) Z HI,aﬁ(elozl?...,eKOcK)+0(q g )
UEIg+1 66{—1,1}K

Thus, using Lemma [7.4.1] Conjecture can be written as follows.

Conjecture 7.4.2. Suppose that the real parts of o, and 7y, are positive. Then

Q
u€lyi1 H ( +’7q7Xu) uelyt1
K1) 1)

( 1) 1 f HI,oc,v(Zl»-'-7ZK)A(Z%>--~7Z%()2H£<=121§
Kl (27i)% Jjzil=1 l_IjK:1 H£i1(2k—04j)(2k+04j)

Z HkK=1L(%+ak>XU) Z (q2g+1)—%Zi§1ak
1
2

dzy...dzg +o0 (q2«"+1) .
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Chapter 8

Applications of the Ratios

Conjecture in Even characteristic

8.1 Applications of the Ratios Conjecture in Func-
tion Fields

8.1.1 The One-Level Density

As an application of the Ratios Conjecture Andrade and Keating [AK14] used the
methods of Conrey and Snaith [CS07] to derive a formula for the one-level density for
the zeros of quadratic Dirichlet L-functions L(s,xp) with D € Hogy1, where Hogyq is
the hyperelliptic ensemble and L(s, xp) is the Dirichlet L-function which are defined in
Section and Section respectively. In particular, they obtained the following

result.

Theorem 8.1.1 (Andrade and Keating). Assuming the Ratios Conjecture the
one-level density for the zeros of the family of quadratic Dirichlet L-functions associated

with hyperelliptic curves given by the affine equation Cp :y? = D(T'), where D € Hagi,

1S given by
Z Zf('VD)
DeHags1 7D
1 Togd X' (1 L (1 + 24t
:—[lg HONDY 10g]D|——(——z‘t)+2 Gl +2it) Z,)
27T _lo‘g{q DEHQngl X 2 CA(l + 2Zt)

+ Ay (it;it) - (log q)| D)™ X (% + it) Ca(1=2it)Ap(—it; it)))dt +o(|D]),

where yp is the ordinate of a generic zero of L(s,xp), [ is an even and periodic nice
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8.1. Applications of the Ratios Conjecture in Function Fields

test function, X (s) =q 2",

1 -1 1 1
Ag(-ri7) = 1;[(1 B ﬁ) (1‘ (IP[+ D)IP[=> [P+ 1)

and
log | P

Aa(rs) =2 (P ) (P 1)

Bui and Florea [BF18] studied the one-level density of the zeros of quadratic Dirichlet
L-functions L(s,xp), when averaged over the hyperelliptic ensemble Hyy.1. Specifi-
cally, when the Fourier transform of the test function is restricted in some interval,
they computed some lower order terms which is not predicted by the Ratios Conjecture
7.1.1. In a recent paper Bui, Florea and Keating [BFK21b| used the Ratios Conjecture
7.1.1 to write down formulas for the one and two level densities of the zeros of quadratic
Dirichlet L-functions in function fields. More precisely, they used the Ratios Conjecture
7.1.1 to predict the Type-0 and Type-I terms for the one-level density and the Type-0,
Type-1 and Type-II for the two-level density. For a certain range, they also rigorously
computed the Type-0 and Type-I for each of the one and two level densities and showed
they agree with the predicted conjecture.

Andrade, Jung and Shamesaldeen [AJS21] used the Ratios Conjecture to derive
a formula for the one-level density of the zeros of quadratic Dirichlet L-functions asso-
ciated with monic, irreducible polynomials in F,[T"]. In particular they obtained the

following result. ,

Theorem 8.1.2 (Andrade, Jung and Shamesaldeen). Assuming the Ratios Conjec-
ture [.1.3 we have that

Z Zf('VP)

PePagi1 VP

1 Toga X' (1 .

- ; log|P| - 2= = —it

2W[bgq f()PEg;gH(ogl - (3-1)
¢y (1 +2i4t) p 1 ,

2| —————=-(1 P ZtX(— t) 1-2it dt P
(o - GoxlPx (5 it) a1 =200 ) |ar s o2,

where yp is the ordinate of a generic zero of L(s,xp), [ is an even and periodic suitable
test function and X (s) = ¢ 2**.

8.1.2 Non-Vanishing of L (%, X)

In the function field setting, we want to obtain results about non-vanishing of Dirichlet

L-functions L(s,x) at the central point s = 1. In this setting Li [Lil8] showed that
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Chapter 8. Applications of the Ratios Conjecture in Even characteristic

L (s,x) vanish infinitely often at s = 1, and thus showing that the function field ana-
logue of Chowla’s conjecture is false. However, the conjectures of Katz and Sarnak
[KS99a] predict that L(,xp) # 0 for 100% of discriminants D. Using their one-level
density results, Bui and Florea [BF18] proved, unconditionally, that the proportion of
L(s,xp) which do not vanish at s = 3 is greater than 94%.

In a recent paper, Andrade and Best [AB22] used the Ratios Conjecture and mol-

lified moments to show that, conditional on the Ratios Conjecture|7.1.1] the proportion

1

of L(s,xp) which do not vanish at s = 5 is 100%. In particular they obtained the

following result.

Theorem 8.1.3 (Andrade and Best). Conditional on the Ratios Conjecture we

have

1

#’HZQ+1 D5H29+1
L( % sXD )*0

1>1+0(1)

aSg—>OO.

8.2 Statement of Main Results

In this chapter, we will present two applications of the Ratios Conjecture[7.1.4] Firstly,
we will use the conjecture to obtain a formula for the one-level density for the zeros
of quadratic Dirichlet L-function L(s,x,) with u € Z,.1, where Z,,; and L(s,x,) are
defined in Section and Section respectively. In particular, assuming the
Ratios Conjecture we obtain the following result.

Theorem 8.2.1. Assuming the Ratio Conjecture the one-level density for the
zeros of quadratic Dirichlet L-functions associated with the quadratic character x, with
u €Ly 15 given by

> 2 fw)

uEIg+1 Yu

™

1 oz agiy X (1 Ch (1 +2idt)
—%fﬂ f(t) Z (log(q )_Y(§_Zt)+2(gi(1+2it)

“loggq u€Zg+1

+ A7, (it it) - (log q) (q2g+1)‘” X (% + it) Ca (1 - 24t) Ay (—it; it)))dt +o(q*"),

where 7y, 1is the ordinate of a generic zero of L(s,xy), [ is an even and periodic nice
test function, X (s) =q 2**,

1\" 1 1
Au(rir) =] (1 - W) (1 NG 1)
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and
A/ (7,,7,) — Z 1Og|13|
u (P2 =1)(|P|+ 1)

P

Also, we will use the Ratios Conjecture [7.1.4] and mollified moments to show that the

proportion of L(s,x,) which do not vanish at s = %

on the Ratios Conjecture we obtain the following result.

is 100%. In particular, conditional

Theorem 8.2.2. Conditional in the Ratios Conjecture we have

1
1>1+0(1) (8.2.1)
#Ig+l ue%H

L( 2 ,xu)#0

as g — 09.

8.3 An Application of the Ratios Conjecture in Even
Characteristic: The One-Level Density

In this section, we present an application of the Ratios Conjecture for Dirichlet L-
functions in even characteristic, namely we derive a formula for the one-level density of

the zeros of quadratic Dirichlet L-functions L(s, x.).

8.3.1 Applying the Ratios Recipe

In this subsection, we establish an asymptotic formula for

Ry(es7) = )] L(3 o)

—2 A% 8.3.1
u€lyy1 L (% +7, Xu) ( )

following the recipe described in Chapter [7] Following this recipe, we use Lemma

to express the Dirichlet L-function in the numerator as

L(s,xu)= ). Xu(m)+/'l,’(1+oz) Z Xulm) (8.3.2)

1 bl
sta -«
meaz, |m]?2 2

L Imf?
and we write the Dirichlet L-function in the denominator as

Ly xR
L(87Xu) heA+ |h|8 ’ (833)

From Lemma [6.4.2, we know that when averaging over the family #Z,.,, we retain only

square terms, since

a(n)#Z,,1 +small if n is a square,
Z Xu(n) = ()# 2y a (8.3.4)

ueZgsy small if n is not a square,
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Chapter 8. Applications of the Ratios Conjecture in Even characteristic

where
1P|
a(n) =] ZESk (8.3.5)

Pin

and, from Lemma [2.7.3] #Z,,; = %. We compute the square terms and complete

the sum by extending the range of the summation to include all monic polynomials.
We then identify and factor out the appropriate zeta factors which are multiplied by
an absolutely convergent Euler product. From the definition of Ry («,y) and X(s), we

have

Ru(ey)= 5 3 % Xu (1) p(h) Xu (h)

u€Zly1 meAgg heA+ |m|%+a|h|%+7

" (q2g+1)_o‘X (l +Oé) Z Z Z XU(m):u(h)Xu(h) (836)

2 ueTgs1 meAl, ) hehr |m|%—04|h|%+7

Considering the first sum in (8.3.6) and the terms mh = O, we have, from (8.3.4)),

w(h)xu(mh w(h)a(mh
> X : ;)J, (;+) = #Lg1 ), % (8.3.7)
hymeAt uelyq |’I7"L|2 O[|h|2 v m.heA* |m|2 CV|h|2 Y

mh=0

We want to express the sum on the right-hand side of (8.3.7) as an Euler product so
that we can identify and factor out the appropriate zeta factors. To do this, we have
g 1alnh) o ss p(atnn)

e | FBET SR S [m]ErelfEn

mh=0 mh=0=35>
: p(h)a(mh)
= Z a(j*) Z oot
jeh* mohent [m|2 T R[2*Y
mh=0=7j
Let D
‘ Il
P(5%) = —
ol i
mh=j
then

zawww%:H@+§wﬂwwﬁw)

jeA* P
Let mh = P?, and let m = Pt and h = P*2. Then mh = P?” and e; + e5 = 2v. Hence
pes
w(pm/) — Z ,U( )

e1'0250 |p|el(%+a)|P|62(%+7) '
61+’62:_21/

Therefore we have

oy S p(Pe)
a3 (5*) = [T| 1+ 2 a(P?)
j§+ I;[ VZ::I 61’22:20 |p|e1(%+a)|P|e2(%+W)
e1+ea=2v
p(P=)a(Per )
|P|el(%+o¢)|P|e2(%+7)

P e1,e2>0
e]teg even
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From the definition of the Mdbius function, we know that p(P°) equals zero except
when ey equals 0 or 1. When ey equals 0, we have

a(Per) i a(PQel)
EI;GH |P|61(1+a) |P|61(1+2a)

a(Pr)
=1+ Z |p|e1(1+2a)

LIRS
=1
PN

er=1
Pl 1 |
= 1 + .
RNV p—
|P‘1+2o¢
Similarly, if es = 1 we have
s AP 1 & e
e1 0dd |P|61(%+a)|p|%+’y |P|%+7 120 |P|(251+1)(%+o¢)
|P| 1 i 1 \”
|P| +1 |P|1+a+’y a0 |P|1+20¢
P 1 1
l+a+ ’
P+ LIPT (1 )
Combining this, we have
|P| 1 1 |P| 1 1
> a()v(5?) = H 1+ -
et P|+ 1|P|1+2e (1 _ P|+1|P|e+y (1 _ _1
P IPI (1= ) PP TIPP (1 1)

Factoring out the appropriate terms, we have that
p(h)a(mh)

mieh 22| k|2

C G(l+20) (s 1\ - 1 ) 1
CGrasy) U P [Pl2e(lPl+1) [Pl (1Pl +1) )
where the product over monic irreducible polynomials P is absolutely convergent when
R(a),R(7) > 1. We can use similar methods for the other term in (8.3.4)) which leads

to the following conjecture.

Conjecture 8.3.1. With —; < R(a) < 3, ey < R(7) < 1 and 3(a),3(7) <

(q29*1)176 for every € >0, we have

L(%+a,xu)

Ry(a;7) ZUE; —L(l iy Xu)
_ gy SaI+2a) gy (L ey _Sa(1=20)
_ue%:+1(AU( ’V)CA(1+04+’7) () X(2 )Au( ’V)CA(l—Oé‘*JY))
+o(q*), (8.3.8)
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Chapter 8. Applications of the Ratios Conjecture in Even characteristic

where

1\ 1 1
) =TT (1 s @‘uwﬂ%wwwmewwwwiﬂ' (539

8.3.2 An Asymptotic formula for the Logarithmic Derivative
of L(s,Xu)

To obtain the one-level density from the Ratios Conjecture, we need an asymptotic

formula for

L (% +7, Xu)
_— 8.3.10
ugg:ﬂ L (% T XU) ( )
First we note that (1 )
L’ 2 75 Xu 0
—\2 AW 2 : 3.11
ue%u L (% T, Xu) aaRu(OK’rY) <8 ’ )

a=y=r

Next, we have that

0 Ca(1+2a) ' (1 +2r) ' L
%mAu(aﬁ) N = —C’i(l N 2r)AU(T’r) + Au(r,r)
and
B, | Ca(1-20) _
5&0*99 X(ﬁ“ﬁaxtz:%f““m”ﬁawﬂ
= (o) (') X (5 +7) a1 - 20) Au(riv)
where
AL{(T;T) = 17
B 1 1
Aulorir) = Q( !H) @‘upulwwszPhly
and

log|P|
)= 3 G (T T

Thus, using the calculations stated above, we have that the Ratios Conjecture [7.1.4

implies the following.

Theorem 8.3.2. Assuming Conjecture(8.3.1 <R(r) < L and 3(r) <. (¢2+)",

10g(q29+1)
we have
Z L, (% +T, Xu)
ueZg+1 L (% +7, Xu)
G(1+2r) 1
) ueZy (m # A (1) = (log ) ()~ X (5 ’ r) Ca(1=2r)Ay(-r;7) | +o(q*™).
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8.3.3 The One-Level Density

In this subsection, we derive Theorem which states a formula for the one-level

density for the zeros of Dirichlet L-functions L(s, x4 ), complete with lower order terms.

Let 7y, denote the ordinate of a generic zero of L(s, x,) on the half line. As L(s, x,) is

a function in ¢=* and so is periodic with period 127” ,
ogq

thus we can confine our analysis

of the zeros to — = 2 <3(s) <4 T We consider the one-level density

Sl(f) = > 2w, (8.3.12)

uEIg+1 Yu

13“ -periodic even test function and holomorphic. By Cauchy’s Theorem,
g4q

where f is a

we have that

A A 1T BT P

uEI +1

where (c) denotes a vertical line from ¢ - motg e+ - and L+ —L _—~ <c< 2. The
logq loggq 2 log(g9*!) 4
integral along the (c¢)-line is equal to
1 og 1 L' (c+it, xy
f‘”f(—z’ (c+z't——)) > Llexitx) (8.3.14)
27T logq 2 ’LLEIngl L(C + Zt) Xu)
Moving the path of integration to ¢ = % as the integral is regular at ¢ = 0 and using

Theorem [8.3.2, we get that the integral along the (c)-line is equal to

e GO+2it) o
sl ARG (cﬁ(1+2it)+‘4“(”’”)

log g UEIQ+1

- (logq) (q2g+1)*it X (% + @'t) Ca(1 = 2it) Ay (—it; it))dt to (ng+1) _

(8.3.15)

For the integral along the (1 - ¢)-line, we use the change s - 1 — s and we use the

functional equation
L (1 _57Xu) _ Xu(s) _ L (37Xu)
L(1=s,xu)  Xu(s)  L(s,xu)
X, (s) X'(s)
ulNTI -1 2g+1 il S
O RELCUNRANTS
Thus, the integral along the (1 - ¢)-line is equal to

i flogqf(t) (log(ngﬂ)_%’(%_it)

log g ’U,EIQ+ 1

where

+ (% + AZ’/{(it; it) — (1og q) (q29+1)*it X (% + it) CA(l - Qit)AM(—it; zt)) )dt
Fo(d), (8.3.16)
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Chapter 8. Applications of the Ratios Conjecture in Even characteristic

Combining (8.3.12)), (8.3.13)), (8.3.15)) and (8.3.16)), we obtain Theorem [8.2.1]

8.3.4 The Scaled One-Level Density

Defining
t(2glogq
ey = ("PL2D)
T
and scaling the variable ¢ from Theorem [8.2.1] as
_ t(2glogq)
27 ’

we have that

> Zf( 2910gq)

UEIngl Yu
1 X' (1 2mir G (1+55)
1 2g+1 __(__ )+2 gloggq
29 log q / (T)UE%H( og (¢**") X \2 2gloggqg (CA( Q;ngq)

’ ( 2miT . 2miT ) (logq)@ QQT;ngOg(ngJrl)
2glogq’ 2glogq
1 2miT AT 2miT 2miT
X|= 1- Ayl - : d 29+1) - (8.3.17
(2+2glogq)§A( leogq) u( 2glogq’2glogq))) T+O(q ) ( )
Writing
C(145) = 2+ 2+ L(logg)s+ O(s?)
s)=———+—-—+—(logq)s s
A loggs 2 12084
we have

Gu(l+s) 1 1 1 ) 5
AEDI + 2logq— 12(logq) s+ O(s?).

Therefore as g - oo, only the log (¢?9*!) term, the ~ and the final term in the integral

(8.3.17)) contribute. Thus we have that
2g logq
> S (w2

'U,GIQ+1 Yu
1 2glogq 2glogq _, .
o+ 1 2g9+1Y\ _ I+ Z+ 27rz7')d )
s <T>(<# Do () = (#T,0) "2 EL 4 (42,.1) B 2rin Y gy

Since h is an even test function, the middle term drops out and the last term can be

duplicated with a change of sign. Thus we get

lim Z Zf( QQIqu)

g=ee # g+1 uelgi1 Yu
—-2miT 2miT
:f h(7’)(1+e _ _ ¢ ,)dT
—oo qmit  4dmiT
S AGIE

) + (cos(277) - isin(27r7')))) dr
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Therefore for g a fixed power of 2 and as g — oo, the one-level density for the scaled
zeros have the same form as the one-level density of the eigenvalues of matrices from
USp(2g) with respect with the Haar measure, which was obtained in [KS99b].

8.4 An Application of the Ratios Conjecture in Even
Characteristic: Non-Vanishing of L (%, Xu)

In this section, we present another application of the Ratios Conjecture 7.2.1 for
Dirichlet L-functions in even characteristic, namely, conditionally on the Ratios Con-
jecture we will prove that the proportion of quadratic L-functions L (%, Xu) which
does not equal zero is 100%. To do this, we need to introduce a mollifier, similar to

that done in [AB22], and prove results for the mollified first and second moments.

8.4.1 The Mollifier

Since the Riemann hypothesis for zeta functions associated with curves over finite fields
has been proved (see Section [2.5[ and Section for more details), we know that

1 p(xl) 8.a1)

L(SaXu) B feA+ |f|s

is absolutely convergent for R(s) > 1. Truncating this sum and multiplying by a

smoothing function leads to the mollifier

D) (es ()
M(xu,P)-{% T P sy (8.4.2)

where P is a polynomial satisfying P(0) =0 and y = (¢%9)? for 6 > 0.

Remark 8.4.1. If we let n = q%9(f), then we see that the mollifier is exactly
the same as the mollifier used in the sumber field setting [CS07]. The mollifier
is also the same mollifier used in [AB22).

We will write this sum as an integral using the following result.

Lemma 8.4.2 (JRMO08| Exercise 4.1.6]). For ¢ >0 and every integer n > 1 we have

e) 2" 0 ifr<l.

1 f v ailogz)™ if x> 1,
(

211
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Chapter 8. Applications of the Ratios Conjecture in Even characteristic

Let P be a polynomial satisfying P(0) = 0, then we can write it as P(z) = ¥ ,,5; pn2™.

Therefore we have

pOXulf) 8 Py nfY
M (xu, P) = i log" [+ ]
fgx;* |f] 7; log"y |f]
<y
Thus, using Lemma and the definition of the mollifier, we can rewrite (8.4.2)) as

pon! 1 y? 1

dz. (8.4.3)

M u7P = e
(O, P) 7%zllog y2mi J) 2" L (3 +2,xu)

Remark 8.4.3. To obtain the non-vanishing result Theorem |8.2.2, we first need to
obtain, conditional on the Ratios Conjecture [7.1.4], asymptotic formulas for the first
and second mollified moments which will be done in Section and Section 8.4.3
respectively. Using these results, the Cauchy-Schwartz inequality and letting the length

of the mollifier grow arbitrary large (i.e. 8 — co0) we obtain the result.

8.4.2 The Mollified First Moment

In this subsection, we prove, conditional on the Ratios Conjecture [7.1.4] an asymptotic

formula for the mollified first moment, which is defined as

M(a;P):= > L(%+a,xu)M(XU,P). (8.4.4)

uEIg+1

where a « %. Thus, in this subsection, we prove the following result.

Theorem 8.4.4. For Q) an even polynomial, P a polynomial satisfying P(0) =0 and

for any 0 >0 we have

() T A(5 e MO P)

gloggqda) 2, B
B 2q29+1 X i , ) ) B
~(2) (P(l)Q(l) QQP (1)/; Q(t)dt +O(g )), (8.4.5)

where A(s,x.) is the completed L-function defined in Section .

Remark 8.4.5. In Theorem [8.4.4] and Theorem [8.4.7| we only consider () even since,
by the functional equation , AF) (%7Xu) =0 if k is odd.

To prove Theorem we first need to prove the following result.

Lemma 8.4.6. For P a polynomial satisfying P(0) =0, we have

1= q—2ga
2aclogy

2 2g+1 1 —-2ga
Ma,P) =L (22

R0 5 P(1)+

PI(1) + o(g-l)) (8.4.6)

uniformly for a < é.
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Proof. Let P be a polynomial satisfying P(0) = 0, then we write P(z) = X,51 Pn2™.
Therefore, using (8.4.3)) in (8.4.4)) we have

z L(L ”
M(a; P) = 3 Pt L / Yoy Lra), (8.4.7)

a1 log"y 2mi J(o) 2™ T L (% + 2, Xu)
From Conjecture [8.3.1], we know that
Z L (% + Xu)
uelyy1 L (% + 2, Xu)

_ oy Sa(l+2a) “290 A (o (a(1-20) 2g+1
=) (Au(a,z)m+q Ay( oz,z)—CA(l_a+Z))+0(q ). (8.4.8)

u€Zgy1

where

1\ 1 1
Aule) =] (1 - W) (1 R CED R GE 1>)'

p
Thus if we let '
pan!
I(y) =Cu(1+2 —Ja 8.4.9
(1) =1+ 20) 3 2 1 () (8.49)

n>1

where
1 y: Ay(a;z)

" o () 2"y (1+a+2)

Ja(y)

then using Lemma [2.7.3| we have

(8.4.10)

2q2g+1
Ca(2)
Since (x(s) # 0 for all s, then C;;%(s) has no poles anywhere. Then moving the contour

from R(z) = ¢ to R(z) = =6 where ¢ > 0 is sufficiently small so that the Euler product
is absolutely convergent, we get that J,(y) is given by the residue at z = 0 plus the

M(a; P) =

(Ia(y) + 724 (y) +o(1)). (8.4.11)

integral along the line J3(2) = —0. We can write the residue at z = 0 as a contour integral

with the contour a circle of radius < é and for the integral along the line R(z) = -0, we

1/( v Aulez) <<y—5f°° L (8.4.12)

omi J-sy 2 G (1+a + 2) oo [t
and since the integral on the right-hand side of (8.4.12)) exists, then the contribution of
the integral along the line R(z) = -4 is bounded above by y=9. Thus combining all this

have

we get
1 2 Ay(a;z
D)= 5y § )
21 S 2 (T +a+ 2)

dz+0(y™). (8.4.13)
On the circular contour |z| % ¢ and with o x 7, we have the Taylor expansion

Ay(a; 2)

Grass @) Au0:0)logg+0 (97). (8.4.14)
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Chapter 8. Applications of the Ratios Conjecture in Even characteristic

Furthermore, since A;/(0;0) = 1, then we have

Ja(y)=%j§ — (logg(a+2) + O(g7?)) d=

Furthermore, on this circular contour and with y = (¢%9)?, we have, by the Estimation
Lemma, [ST18, Lemma 6.41],

9l Ly n-2
3w § wnde| <o
Thus
log q
Jo(y) = 57 z"+1 (a+z)dz+0( 2). (8.4.15)
Using the residue theorem, we have
1 y log"y
— dZ =
2mi J zn n!
and so
pan! 1 75
— =S p, = P(1 8.4.16
and
1 1
P _y e P (8.4.17)
St log"y 2mi ilogy  logy
Thus combining (8.4.9)), (8.4.15)), (8.4.16) and (8.4.17)) together, we have
1
I.(y) =log qCa(1 + 20) (aP(l) * Tog P'(1) + O(g—2)). (8.4.18)
ogy
For a 2 é, we have the Laurent expansion
1+2a) = O(1
Ca(1+2a) 2alogq+ (1) «<g
and so we have that
1
L(y) = =P(1 P'(1)+0 (g 8.4.19
(1) =3P+ 5o P'(1)+ 0 (57) (3.4.19)
uniformly on any fixed annulus «a < é. Using (8.4.19)) we can rewrite (8.4.11)) as
q—2ga 1= q—2ga , 9
P)=———P(1)+ —P'(1)+ O . 8.4.20
Mo P) = (1) + 5o P (1) +0(7) (34:20)

Since M(«; P) and the main term on the right hand side of (8.4.20]) are holomorphic for

a << é, then the error term is also holomorphic in this region. Thus, by the maximum
modulus principle, (8.4.20) holds uniformly for o « é. [
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of L (3,xu)
Proof of Theorem [8.4.4] Define
1
N(a;P):= ) A(§+a,xu) M (X, P). (8.4.21)

ueIg+1

From the definition of the completed L-function defined in Section [2.7.3] we know that
A (% +a, Xu) =q9*L (% +a, Xu)- Thus by Lemma we have

oy 2079 (g9 + g9 g% —q 9, o
N(a; P) = CA(2)( 5 P(1)+—2alogy P'(1)+0(g )) (8.4.22)

logg

uniformly for a < é. Let a = then we have ¢9* = qlogq = eTosa = e%. Similarly

glogq
q 9% = e~ Then by the definition of sinh and cosh and with y = (¢%9)¢ we have

N(glggq;P):ng)l (P(l)cosha+ ;nh“Pu) O(g )) (8.4.23)

Let @ be an even polynomial, then

=Q(1) (8.4.24)

and

Q(i) sinha

da a

:Q(d%) fo ' cosh(at)dt - fo ot (8.4.25)

a=

Combining (8.4.23)), (8.4.24) and (8.4.25)), we have

Q(%)N(@;p)l_ 2_12(92)1( (1)@(1)+—P'(1)f Q(t)dt + 0 (g 1))

Using the change of variables a = gl(‘)‘gq so that % = ‘;—2‘% = g1;gq£ and {D com-
pletes the proof of Theorem [8.4.4] [

8.4.3 The Mollified Second Moment

In this subsection, we prove, conditional on the Ratios Conjecture[7.1.4] an asymptotic

formula for the mollified second moment, which is defined as

M55 P = 3 L+ e {5+ ) MG POMGus Py), - (8:426)

ueIg+1

where o, f «< é. Thus, in this subsection, we prove the following result.
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Theorem 8.4.7. For even polynomials Q)1 and Qs and polynomials Py and Py satisfying
P(0) = P{(0) = P»(0) = P;(0) =0 and for every 6 >0 we have

Ql( : i)Qz( : i) > A(l*’aaXu)A(%+57Xu)M(Xu>P1)M(XuaP2)

glogqda glogqdp ) g, \2 a=f=0

2292*)1(89 [ [ (P0G - 40P (0)@1 ) (P2 (@) 40P Q4w )

+ 3 (FROGM) +2P (@) (5P +2P,()2:(0) +O(91))>

(8.4.27)

where

Q) = [ Q)

and A(s, xy) is the completed L-function defined in Section[2.7.5
To prove Theorem [8.4.7, we first need to prove the following result.

Lemma 8.4.8. For polynomials Py and Py satisfying P1(0) = P{(0) = P»(0) = P;(0) =0

we have

M(Oé,ﬁ;Pl,Pg) (8428)
2q2g+1 Oéﬂ logy 1-— q—2g(a+6) q72ga _ q72gﬁ 1

= Pi(r)P
@(2)( . R I L OO,

(e (1) [ (PP + PP
1 ((1+61‘29°‘)(1—Q‘295) . (1_q_QgB)(l+q_295))f1P1’(r)P2’(r)dr

" 4logy B o
— q—2g(a+p) -298 _ 4—2ga
+ L 1-q +q q / (Pi(r) Py (r) + P{"(r)Pa(r))dr
4logy a+f
1
+ 1= —-2ga 1 - -2g8 / P! P + P P! d
i () (1= ) (B P + PUGY P
1 1-— q—2g(a+ﬁ) q—ngz _ q—2gﬁ fl .
P (r)Py (r)dr + O 8.4.29
+4a610g3y( PP B — . PI(P(r)dr+0(g7") | (8.4.29)

uniformly for a, 8 < %.

Proof. Let P, and P, be polynomials satisfying P;(0) = P{(0) = P»(0) = P;(0) = 0.

Then we can write the polynomials as Pi(z) = Y50 P1.m2™ and Po(z) = ¥,50 P2.n®™
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ofL(%,Xu)

Therefore, using (8.4.3)) twice in (8.4.26)) we have
mP2nm!n!
M(a, B; Py, Py) = Z Pmbon T

m+n
m,n>2 IOg

f f Y L(%waxu)L(%waxu)
(2m (¢) J(e) wmrlzn+l

ueZy 1L(%+w7Xu)L(%+Z7Xu)

dwdz

(8.4.30)
for any ¢ > 0. From the Ratios Conjecture [7.1.4] we have that

5> L(5+a,xu)L(5+6 xu)

uelyy1 L(% +w7Xu) L(% +Z?Xu)

- 3

(Au(Oé,ﬂ;w,Z)Yu(Oé,ﬂ;w,Z) +q_2‘quu(—Oé7ﬂ;w,Z)Yu(_Oé Bw Z)
u€Ig+1

gBAM(a7 _ﬁ7 w, Z)Yz,{(Oé, _57 w, Z) + q_QQ(a+ﬁ)AZ/{(_a7 _67 w, Z)Yu(_Oé 6 w Z))
+O(q29+1)7

where

Au(a,ﬂ;w,z)

1 (1 ) (1 - o)
L | ([

1 1 1 1
( CIPEE(PI 1) PP+ 1) Pl ([P 1) PR (P 1)
1 1 1
Plee(Pl+ 1) [P=([F[+ 1) [PF(P[+1)

1 1 1
_LPW”(U4+1)_IPP”QOPW+1)_IPP”50PP+U)
and

(8.4.31)

) _ CA(1+2Q)CA(1+a+6)g&(1+2B)CA(1+w+Z)
Yu(a, frw, 2) = G+a+w)a(l+a+2)(1+B8+w)a(1+8+2)
Thus if we let

aﬁ(y) Ca(1+20)a(1+a+B)Ca(1+25) Z P1mP2,nmin!

g™y Jas(y) (8.4.32)
m,n>2
where

Jap(y) =

w+z
(271'2)2 [0) ‘/(c) m+lyn+l

Ca(l+w+2)Ay (e, Biw, 2)
<A(1 +a+w)a(l+a+2)G(l+F+w)Ca(1+5+ z)dwdz’ (8.4.33)

149



Chapter 8. Applications of the Ratios Conjecture in Even characteristic

then using Lemma we have

M(a, B; P, P)

2q2g+1 e . e
A0 (Las(y) + a2 Lo s(y) + P 0 _(y) + 2D, _5(y) +0(1)). (8.4.34)

For R(w + z) > 0 we write

w+z

Yy _fy wiz QU
= u —’

w+z 0 u

Wz
a,@(y) (271'2 -/ ./c) /;c) wmHlzntl

(w+2)C(1+w+ 2)Ay(a, fw, 2) dwd du
* G(l+a+w)a(l+a+2)a(1+8+w)Ca(1+5+2) v

thus

(8.4.35)

The integration in u is over 1 < u <y as for u < 1 the contours can be moved to the right
o (S has

no poles anywhere. Furthermore, (4(s) has a simple pole at s = 1, thus (4 (1 + w + 2)

so that the integrands in w and z equal zero. Since (4(s) # 0 for all s, then

has a pole at w = -z, therefore (w + 2)(y(1 + w + 2) is analytic at w = —z. Hence the
poles of the integrand of occur when w = z = 0. Therefore moving the contours
from R(w) = R(z) = ¢ to R(w) = R(z) = =6 where ¢ > 0 is sufficiently small so that
the Euler product is absolutely convergent, we have that J, s(y) is given by
the residue at w = z = 0 plus the integrals along the R(w) = R(z) = —6. We express the
residue at w = z = 0 as contour integrals where the contour is a circle of radius = é and
using similar calculations as those done in the proof of Lemma [8.4.6] we see that the
integrals along the line R(w) = -§ and R(z) = -§ is bounded above by u™°. Letting
20 = €, we have that

uw+z

(-8) J(-6) wm+lzn+1

(w+2)Ca(1+w+ 2)Ay(a, B5w, 2) dwd du
* l+a+w)(1+a+2)(1+8+w)a(1+8+2) e

Yy du
< / u t— < 1.
1 U
1 1

On the circular contours |w| X ¢ and [z % ¢ and with o x ; and § x ¢, we have the

Taylor expansion

(w+2)Ca(1+w+ 2)Ay(a, f;w, 2)
l+a+w)a(1+a+2)a(1+8+w)(1+8+2)
= (a+w)(a+2)(B+w)(B+2)Ay(0,0;0,0)log’ ¢+ O (g7°).
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Using the fact that Ay(0,0;0,0) =1, we have

Jo,s(y)
(2m)2./ fﬂgwﬂ;;l (0‘”")(O‘+Z)(ﬂ+w)(5+2)10g3q+0(9‘5))dw‘izdju.

On these circular contours and with y = (¢29)%, we have, by the Estimation Lemma,

Wtz du
|(2m f ygygwm”z"*ldwdzz

Y 1du
« gm+n—5£ ugz <« gm+n—4_

Thus

Ja,5(Y)
=(1§§ij M (f Star o) (§ S+ 2)dz) Lo (g,

Expanding and computing the residue where we use the fact that for k € {0,1,2} and
i€{1,2} we have

pinn! 1 u? L (logu
D o _~§I§Zn+1—kdz: b ( )7

5 log" y 2mi log" y logy

we get that

Losg(y) = Ca(1+22)Ca(1+a+ B)Ca(1+28)log’ g
y /y aﬂPl(logu)+a+6P1’(logu)+ 12 Pl,,(logu)
1 logy logy logy/ log“y logy

om () () L () o0 )

logy/ logy “\logy/ log”y ~ \logy

Using the change u = y" we have

Los(y) = Ca(1+20)Ca(1 + o+ B)Ca(1 +2B) log® glogy
1 a+
X (/; (aﬁPl('r’) + oz

X (aﬁPg(r) LT
lo

1
Plr) + 2P{'(r>)
log”y

2sz (r)) dr + O(g‘ ))

1
BPQ’(r) +
Y lo

For o, B = é and |o + 8| > é, we have the Laurent expansion

1

2 3
4aﬁ(a+ﬁ)log3q+0(g )<<g '

QA(l + 20‘)@%(1 + o+ 5){&(1 + 25) =
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Thus
__ logy / L o
1o = gty [ (o8P0 2R s P
N (Oz,BPQ(T) + ﬁpﬁ(r) + ]o;QyPQH(T)) dr + O(g—l)

uniformly on any fixed annuli such that «, 8 x é and |a + ] > é. Multiplying out we

have

Toon) = S5 [ PP

= 1<P1<r>P2'<r> « P{(r)Pa(r))dr

a+6 ! !/
4045 logy Pl(r)PQ(r)dr
m [ PP + PECY P
o [AGRL) ¢ PP

fo PI(r)PY(r)dr + O (g7)). (8.4.36)

4aﬁ log
1

+
daf(a+ ) log®y

Using ([8.4.36)), we can rewrite (8.4.34) as

M(a, B; Py, Py)
2q2g+1 @5 lo y 1= q—2g(a+,8) q—29a _ q—2g,8 1
- C1%(2)( 4g e + - [0 Py (r)Py(r)dr

P01 [BEBE) + AP
L (e Um0 ®) )y

+
4logy 6] o
1 ( 1- q—29(a+5) q_QQB — q—QQCY
+

a+f a-f
(1-¢*)(1-q 295)f (P{(r) By (r) + P/'(r)P5(r))dr

’ 4logy ) _[ (Pi(r) B3/ (r) + P{' (1) Pa(r))dr

1
4a5 log?y

_ —2g(a+pB) -2ga _ —298 1
+ 1 5 1-4 + 4 q f P{’(r)Pé'(r)errO(g_l) )
daf(a+ p)log”y a+ 3 a-p 0

(8.4.37)

Since M(a, 3; P1, P,) and the main term on the right hand side of (8.4.37)) are holo-
morphic for «a, f < é, then the error term is holomorphic in this region too. Thus by
the maximum modulus principle 1) holds uniformly for «, 8 « é. [ |
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Proof of Theorem [8.4.7] Define
1 1
N(aﬂﬂ;PlaPQ) = Z A(E +aaXu)A(§ +67XU)M(XU7P1)M(X1MP2)7

uEIg+1

From the definition of the completed L-function, we know that A (% +a, Xu) A (% + 0, Xu) =
g AL (% +a,x,) L(%+ 8, xu), then by Lemma we have

N(Oé,ﬂ;Pl,PQ)
2g29+1 1 g(a+B) _ g=9(a+p) g(B-a) _ q9(a=P) 1

_2a7 [ablogy (4 I g [ PiyParyar
Ca(2) 4 a+f a-pf 0

# 1@ a0 (@ + ) [(BEIR) + PP
1 ( (qga + q—ga) (qgﬁ B q—gﬁ) + (qgﬁ + q—gﬁ) (qga B q—ga) ) fl P{(’I‘)PQI(’I“)CZT

4logy 6] Q
1 qg(a"'ﬁ) — q—g(a‘*ﬁ) qg(a_ﬁ) — qg(ﬁ_a) 1
Pi(r)Py P/ (r)P. d
e (TS T LR R ) PR
1 ! !/ 174 174 !
b (@ -0 (¢ ) [ (PP + PP
daflog”y 0
1 qg(a+ﬁ) — q_g(a*'ﬁ) qg(ﬁ_a) — qg(a_ﬁ) /1
+ + P/ (r)P)(r)dr +O (g7!
4a610g3y( a+f a-p 0 V' (r) P (r) (9 )
uniformly for a, f « j Let o = glggq and (3 = 10gq7 then by the definition of sinh and

cosh and with y = (¢%9)? we have

glogq’ glogq’ (2)
+coshacoshbf (Pi(r)Ps(r) + P/(r)Ps(r))dr
0

. . 1
. i (smhacoshb . smhbcosha) [ PI(r)PY(r)dr
20 a b 0
1 1
+ / cosh(au) cosh(bu)du f (P (r) Py (r) + P{'(r)Py(r))dr
0 0

1 sinhasinhb , y ,
e GG ORI CT N

1 1 sinh(aw) sinh(bu L, "y _
+%f0 (5 ) b( )dufo Pl(r)PQ(T)dr+O(g 1))

a b 2q2g+1 1
N( .p17p2) 29/ asinh( au)bsmh(bu)duf Py(r) Py (r)dr
0

Let @ be an even polynomial, then we have

- Q) eoh(an)| = £-Q(w) - Q'(w),

a=0

Q (d%z) asinh(au)

a=0

=Q(1)

a=0

Q (d%t)cosha
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and

0 (i) sinh(au)

da a

-0 %) [eosnianad = [" Q=0

a=0

a=0

Thus, let ()1 and )2 be even polynomials and define

)
a=b=0

N(Qlsz,Pl,Pz) Ql( )QQ( ) (glggq’ﬁ;Pl’PQ)

then we have

N(@Q1, @0 P P2) = ( 0 [ Qi@idu [ PGP

e
£ QUQ:0) [ (AOIF) + PO B(r)ir
1 e S ! / /
+ 55 (DM + Q@) [ AP
2—19 [ Qs [ (AEIPLG) + PGP
¢ @) [ (PP + PP

+@fo Ql(U)Qz(U)du/O Pl"(r)PQ"(r)dr+O(g_1)). (8.4.38)

To write (8.4.38)) in the form seen in the statement of Theorem we need to recall

the following identities, which all follow from integration by parts:

[RGB+ BOR)r = PP,
[ PL0IPEG) + P B = PP,

[ PR = PP - [RGB

and
[ a@@sdu= Q) - [ Qi@
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Using the above identities, we also have
[ @@ [ (ROIPIG) + PGP
- [ [ @@@n 0P @+ [ [ Qi@uw) P Par) duds
- [ POP @ (@G0 - [ Qi@ w)d)
- [P (@@ - [ Giwesi)
= Q) [ PP+ Gu(DQ:) [ PP
- [ [ PP @@= [ [P RG 0)@h(w)dudr
- Q@) (RMPAW - [ PR
=) (RO - [ PERC)
- [ [ R@@ PO @dudr— [ [ P0G P) Qs dudr

Thus, combining the above results together, we have

N(Q1,Qq: P, )

_ ii(z) (29 A | ! P)QL ) PP @ (u)dudy + Qu(1)Qs(D P () PA(1)

" % (PL(D)Q1 (1) PY(1)Oa(1) + PU1)G1 (1) Pa(1)Qa(1))
_ 2_10 (/01 [01 (PL(r) QL (w) Py (1) Qs (w) + P/ (1) Q1 (u) Py (1) Q(u)) dudr)

+ ﬁ@ﬂl)éﬂl)ﬂl(l)ﬁl(l) + # fol '/01 P{’(T)@1(U)Pg"(T)Qg(u)dudr + O (9_1) )

(8.4.39)
Factorising (8.4.39) completes the proof of Theorem [8.4.7] [ ]

8.4.4 Proof of Theorem

In this subsection, we combine Theorem and Theorem to prove Theo-
rem [8.2.7)

Proof of Theorem [8.2.2]. Using Theorem with P(z) = 22 and Q(z) = 1, and using
the definition of the completed L-function we have that

uzil L (%xu) M (xu, P) = Zg; (1 + % +0 (é)) . (8.4.40)
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Similarly, using Theorem with P(z) = Pyi(x) = Po(x) = 22 and Q(z) = Q1(z) =
(QQ2(z) = 1 and using the definition of the completed L-function we have that

3 L(%,Xu)2M(xu,P)2 = 2612(92)1 (# + (1 + %)2 +0 (1)) (8.4.41)

UEIg+1 g

An application of the Cauchy-Schwartz inequality gives us that

 Zuety (L (3x0) M (x, )’

- (8.4.42)
L(3.xu) M (xu, P)|

2.

ulEIg+1 ZUGIQ+1
L(5xu)#0

Thus using (8.4.40)) and (8.4.41)) in (8.4.42) we have, as g - oo that

1 ()
>
#Lg ity s+ (1+

L(%yXu)¢0

5 +0(1).

D=
~

Letting the length of the mollifier grow arbitrary large (i.e. letting 6 — oo) proves the

result. ]

156



Chapter 9

The Twisted Second Moment of
Dirichlet L-functions in F,[T]

9.1 Twisted Moments of Dirichlet L-functions in

Function Fields

In function fields it is an interesting problem to understand the asymptotic behaviour

of
2%

: (9.1.1)

where () is a polynomial in F [T"] with ¢ being a power of an odd prime, y is a prim-
itive Dirichlet character modulo @, L(s,x) is a Dirichlet L-function associated to the
Dirichlet character x, which are defined in Section [2.3]and Section [2.4] respectively, and

the sum being over all primitive Dirichlet characters modulo Q.

For ) a monic irreducible polynomial in F,[T"], Tamam [Tam14] proved an asymptotic
formula for the second and fourth moments of (9.1.1)), where the sum is over all primitive

Dirichlet characters modulo Q).

Theorem 9.1.1 (Tamam). Let Q) be a monic irreducible polynomial in F,[T'], then we

have
1 1 2 1 2
_— L - :d _1_ 1 1_ 1
#(Q) X<m§w>‘ (Gl -0 (i)
and

4

1 1 _a-1 e 4y e 3
W?)X(m%@‘L(é’X) =g (4@ O (e Q))°).

X#FX0
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Chapter 9.  The Twisted Second Moment of Dirichlet L-functions in F,[T']

When summing over all primitive Dirichlet characters of modulus R, where R is a monic
polynomial in F,[T"], Andrade and Yiasemides [AY21] proved an asymptotic formula
for the second and fourth moments of (9.1.1)).

Theorem 9.1.2 (Andrade and Yiasemides). Let R be a monic polynomial in F,[T],

/()

then we have

1

* > ¢(R)
¢*(R)><(m20(:z R) )

|B]

deg(R) + O (logw(R)) (9.1.2)

and

5

x(mod R)

Lol L- q (1-[P[)° . 1y, w(R)
L(27X) = (R)IID—}I%( + P )(d g(R)) (1 O( deg(R)))
(9.1.3)

where w(R) is the number of prime divisors of R and ¢*(R) in the number of primitive

Dirichlet characters of modulus R.

Yiasemides [Yia21] conjectured higher moments of (9.1.1)) where the sum is over all
primitive Dirichlet characters of modulus R, where R is a monic polynomial in F,[T’]
and showed that the conjecture agrees with (9.1.2)) and (9.1.3)).

2k

Conjecture 9.1.3 (Yiasemides). For all non-negative integers k it is conjectured that
1 * k2
> ~ Cy(deg(R))"™,

o (B ) (5]

for some explicit constant Cy, as deg(R) — oo.

Furthermore, Andrade and Yiasemides [AY21] proved an asymptotic formula for the
second moment of (9.1.1)) when the sum is over all primitive Dirichlet characters modulo

R, where R is a square-full polynomial in F,[T].

Theorem 9.1.4 (Andrade and Yiasemides). Let R be a square-full polynomial, that is
if P|R then P?|R and let x be a Dirichlet character modulo R. Then

1 2 _o(R)? o(R) o(R)? deg(R)
L) - T T (IRP ~IRP )%m—l

LU (e en) ( 1))
(q%—1>2( TS AT

Another problem in function fields is to understand the asymptotic behaviour of twisted

5

x(mod R)

moments of Dirichlet L-functions, when averaged over primitive Dirichlet characters of
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modulus @. If we let P and H be monic irreducible polynomials in F,[T'], then a

problem is to establish an asymptotic formula for

1

Ll=
(5:4)

Motivated by the methods of Young [Youllb] in the number field setting, Djankovié
[Djal8] established a reciprocity formula involving S(P; H) and S(H;-P). In partic-

ular he proved the following result.

2

S(P;H) = ( 3 | Y(H). (9.1.4)

Theorem 9.1.5 (Djankovi¢). For any two monic irreducible polynomials P, H € F [T']
with H # P and deg(H) < deg(P), we have the following reciprocity formula between

the twisted second moments:

1

5 g py - PPy — ety - o (L)
- iy SCtp) = s - e 6 (5

2 Pl ) H|: !
+gA(%) (1 —2% (1-1P1%) +2Q|§(—}|[(1 - |H|‘2)).

Similarly, we also want to understand the second moment of Dirichlet L-functions with

1P
o(p) )

two twists when averaged over primitive Dirichlet characters modulo () in function
fields. If we let H, K and () be monic irreducible polynomials in F,[7T"] and restrict
the sum further to be over all even or odd Dirichlet characters modulo (), where the
definition of an odd and even Dirichlet characters is stated in Section [2.3] then a problem

is to establish an asymptotic formula for

+ . _ |Q|% + 1 ? -
s(@HK) = o7 3 ({5 o), (915)

where ¢*(@Q) denotes the number of even or odd Dirichlet characters modulo @). Moti-
vated by the methods of Bettin [Bet16], Djankovié¢, Doki¢ and Lelas [DDL21] established
a triple reciprocity formula involving S=(Q; H,K), S~(H; K,-Q) and S~(K; H,-Q)
and involving S*(Q; H,K), S*(H; K,Q) and S*(K; H,Q). In particular, they proved

the following results.

Theorem 9.1.6 (Djankovi¢, Doki¢ and Lelas). Let H, K and Q be distinct monic
irreducible polynomials in F,[T] such that deg(H) + deg(K) < deg(Q). Then we have

the following triple reciprocity formulas:

Si(Q7H?K) :Si(H;K7_Q) +Si(K;Ha_Q)
Q2
[HEK |2

(deg(Q) — deg(H) — deg(K))
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and

SUQH,K) =S"(H; K,Q) +S™(K; H,Q)
Q> 1)?
T e = ) sty - (5) 0= )

o (LY (1Q -1 |H]P -1 |K]2 -1
2@*(2)(@(@) o (i) ¢+<K>)'

+

9.2 Statement of Main Results

In this chapter, we will obtain asymptotic formulas for

/(3 /(3

where H, K and R are monic polynomials in F,[T], ¢*(R) denotes the number of

2

2 ! VXK (9.2.1)

1 %
H d
x(H) an ezﬁ*(R)X(m%R)

W(R)X(mé R)

primitive Dirichlet characters modulo R and the sum is over all primitive Dirichlet

characters modulo R. In particular we prove the following results.

Theorem 9.2.1. Let H and R be monic polynomials in F,[T] with deg(H) < deg(R).

Then
1
Ll=
(2’X)

where w(R) is the function defined in Section 2.2, ¢*(R) denotes the number of primi-
tive Dirichlet characters modulo R and the sum is over all primitive Dirichlet characters
modulo R.

1 *
¢*(R)X(mzo;1 R)

Y(H) = |H|> ﬁﬁ) deg(HR) +O (|H|* logw(R)), ~ (922)

Theorem 9.2.2. Let H, K and R be monic polynomials in F,[T] with deg(H) +
deg(K) <deg(R). Then

/(3
(9.2.3)

where w(R) is the function defined in Section 2.2, ¢*(R) denotes the number of primi-

tive Dirichlet characters modulo R and the sum is over all primitive Dirichlet characters
modulo R.

W(lR)x( z;z;) X(H)X(K) = IHKléﬂ(Ti)deg(HKR) + O(|HK|% 10gw(3)) 7

Remark 9.2.3. In Theorem and Theorem 9.2.2|, we take the sum over all prim-
itive Dirichlet characters of modulus R, where R is a monic polynomial in F,[T]. In

particular, we do not restrict these sums to odd or even Dirichlet characters that was

considered in Theorem [9.1.6l.
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From Theorem and Theorem [9.2.2| we immediately have the following corollaries.

Corollary 9.2.4. Under the same assumptions as Theorem[9.2.1], we have

1 ()| xen ~

—¢*(R)X<m§m deg(HR) (9.2.4)

as deg(R) - oo.
Corollary 9.2.5. Under the same assumptions Theorem |9.2.2, we have

1 2
L=
(%)

1 *
¢*(R)X(mzoc:l R)

as deg(R) — oo.

VH)Y(K) ~ [HE]} ¢|”T) deg(HKR) (9.2.5)

Remark 9.2.6. Using Lemma |2.2.4] and Lemma [2.2.7| we can see that %
eg

IR

to zero as deg(R) tends to infinity and thus verifying the asymptotic formulas ,

FZ3). @Z4) and (723,

tends

9.3 Preliminary Lemmas

In this section, we state and prove results which will be needed to prove Theorem [9.2.1

and Theorem|9.2.2| We start by stating the approximate function equation for ‘L (%, X) ‘2.

Lemma 9.3.1 ([GZ22al, Lemma 2.5]). Let x be a primitive Dirichlet character of mod-

wlus R. Then we have

1 2 A)x(B
‘L(—,X) TR L’Cﬁ)m(mré*). (9.3.1)
2 A,BeA* |AB|z
deg(AB)<deg(R)

The next lemma will be used to obtain the main term of Theorem [9.2.1] and Theo-
rem |9.2.2)

Lemma 9.3.2. Let H and R be fized monic polynomials in F,[T] with deg(H) < deg(R)
and let x be a positive integer. If x > deg(R) — deg(H ), then

1 o(R)
A%: T = HIT R (w+ deg(H)) + O (JH[logo(R)) (9.3.2)
(AH,R)=1

Whereas if x < deg(R) — deg(H), then

A%z ﬁ:mﬁ(]j) (x+deg(H))+O(|H|logw(R))+O(2w(R)(I ;deg(H))). (9.3.3)
(AH,R)-1
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Proof. We have

1 1 1 1
> " > T Yo wE)= ), T Yoow(E) =Y WE) >, 7k (9.3.4)
AeAl, | | AeAl, | | E|(AH,R) AeAl, | | E|AH ElR AeAl, | |
(AH,R)=1 E|R E|AH

Since E|AH then EL = AH for some L € A* with deg(L) = deg(A)+deg(H)—deg(FE) <
z+deg(H)—deg(FE). Furthermore, since EL = AH, then |EL| = |AH| and so ﬁ = %
Also, since there does not exist any polynomials L € A* with deg(L) < 0, then, for the
sum over all L € A* with deg(L) <z + deg(H) — deg(F), we can restrict the sum over
E|R further to the sum over E|R with deg(F) < z + deg(H). Thus combining

and the above arguments we have

1 w(E) 1

2, - > TE 3 it

acie, Al bl |E Leht L]
(AH,R)=1 deg(E)<z+deg(H) deg(L)<z+deg(H )-deg(E£)

We know that, for a non-negative integer vy,

1 —_—

y y
> 2at Yy 1= 1=y+1,
LeAzy |L| k=0 LGAZ k=0
and so
1 E
Y, — =|H| > i >(x+deg(H)—deg(E)+1)
AeA?, | Al E|R ||
(AH,R)=1 deg(E)<z+deg(H)
_ p(E)
= |H| Z (z+deg(H) -deg(E)+1)
E|R 2
E
- |H| > ul )(rc+deg(H) —deg(E) +1). (9.3.5)
Bk |E]
deg(E)>z+deg(H)

Using (2.2.1)), (2.2.2) and Lemma we have

% ug) (z +deg(H) - deg(E) +1) = ¢|(g) (z+deg(H)) +O (logw(R)).  (9.3.6)

If z+deg(H) > deg(R), then there is no E|R with deg(E) > deg(R) and so the final
term on the right-hand side of (9.3.5)) is empty. Thus for = + deg(H) > deg(R)

E
D HE) (4 deg(H) - deg(E) +1) = 0. (9.3.7)
Bk |E]
deg(E)>z+deg(H)

Whereas for x + deg(H) < deg(R), we have that if deg(FE) > x + deg(H), then x +
deg(H) —deg(E) +1<deg(F) - deg(F) <deg(FE) and so

E E
> e (r+deg(H)-deg(E)+1) < > Mdeg(E). (9.3.8)
iR |E| ik ||
deg(E)>z+deg(H) deg(E)>z+deg(H)
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As deg(F) < |E| for deg(F) > x + deg(H ), then

p(E)ldeg(E) _ x+deg(H)

B (9.3.9)
EZ}:Q |E" qx+deg(H) ;};
deg(E)>z+deg(H) deg(E)>z+deg(H)
Furthermore, since |pu(E)| > 0, then
S B < X lu(B)] = 24, (9.3.10)
EIR E|R
deg(FE)>z+deg(H)

where the final equality follows from Lemma [2.2.5. Combining (9.3.8)), (9.3.9) and
(19.3.10) we have

u(E) 22(R) (2 + deg(H))
E% B (z +deg(H) - deg(F) +1) «< PRy (9.3.11)
deg(E)>z+deg(H)
which completes the proof. [ |

Finally, the following lemmas will be used to create a suitable bound for the error term
of Theorem [3.2.1] and Theorem [0.2.2

Lemma 9.3.3. Let ', H and R be fized monic polynomials in F,[T] where F|R and
let z < deg(R). Then
1 2(z+1)|H
_aiGe Dl
ABeA+ |AB|2 ||

deg(AB)=z
AH=B(mod F)

(9.3.12)

Proof. We consider three cases, deg(AH ) > deg(B), deg(AH) < deg(B) and deg(AH) =
deg(B) where AH # B.

If we first consider the case deg(AH) > deg(B) and suppose that deg(A) = i, then
since AH = B(mod F') and AH # B we have that AH = LF + B for some L € A where
deg(AH) = deg(LF + B). Furthermore since A, H, F and B are monic, then L is monic.
Also, since deg(AH) > deg(B), then deg(LF) > deg(B) and so, by Proposition [2.1.1]
deg(LF + B) = deg(LF'). Thus, using the above and Proposition again, we have
that deg(L) = deg(A) + deg(H) — deg(F') = i + deg(H) — deg(F'). Furthermore, since
deg(AB) = z and deg(A) = i, then deg(B) = z — deg(A) = z - where 0 < i < z and
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z

|AB| 2 = ¢"3. Combining all the above we have that

1 i
2 2 2, 1

A, BeA* |AB | i=0 Lea* BeA*

deg(AB)=z deg=i+deg(H)-deg(F) deg(B)=2-1
deg(AH)>deg(B)
AH=B(mod F)

AH+B

(ABH,R)=1

deg(L)=i+deg(H)—-deg(F)
(9.3.13)

Similarly, if we consider the case deg(AH) < deg(B) and suppose that deg(B) =
then since AH = B(mod F') and AH # B, then we have that B = LF' + AH for some
L € A where deg(B) = deg(LF + AH). Furthermore since A, H, F' and B are monic,
then L is monic. Also, since deg(B) > deg(AH), then deg(LF') > deg(AH) and so by
Proposition deg(LF+AH) = deg(LF'). Thus using the above and Proposition[2.1.1]
we have that deg(L) = deg(B) - deg(F’). Furthermore since deg(AB) = z and deg(B) =
i, then |AB[2 = ¢" and deg(A) = z — deg(B) = z — i where 0 < i < z. Thus combining
the above we have
<q 2 1
A,;Av |AB \% izzo LeZA; AZA+
deg(AB)=z deg(L)=i—deg(F") deg(A)=2~i
deg(B)>deg(AH)
AH=B(mod F)

AH+B
(ABH,R)=1

i (ZT D) (9.3.14)

1
L=
N
ok
'QI
h
20
ﬁjm

deg(L)=i—deg(F)

Finally, if we consider the case where deg(AH) = deg(B) = i, then 2i = deg(ABH) =
z+deg(H) and so deg(B) =1 = %g(m. Furthermore since AH = B(mod F) and
AH + B, then AH = LF + B where L € A with deg(AH) = deg(LF + B). Since
deg(AH) = deg(B) where A, H and B are monic, then by Proposition and the

z+deg(H)
2

above arguments we have that deg(LF') < deg(B) = . Thus combining the above

and using the argument stated previously we have

1 -
gt ) D 1
A,Beh* |AB|z BeA* LeA
deg(AB)=z deg(B)==r9EUH) deg(L)< 9D _geg(F)
deg(AH)=deg(B)
AH=B(mod F)
AH+B
(ABH,R)=1
|H]|z g |H|
< = : (9.3.15)
|F| B%; |F|

deg(B): z+de2g(H)
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Combining all the cases proves the result. [

Remark 9.3.4. The inequality that occurs in (9.3.15), (9.5.14) and comes
from the removal of the condition of (ABH,R) = 1. Although, we could consider this

condition, it maybe harder to evaluate and we obtain a desirable bound without it. We

similarly do this in (9.3.17), (9.5.18) and with the condition (ABHK, R) = 1.

Lemma 9.3.5. Let F, H, K and R be fized monic polynomials in F,[T] where F|R
and let z < deg(R). Then

1 3 NHK
5 L PG DIHE]

1
ABat  |AB|2 |F|
deg(AB)=z
AH=BK (mod F)
AH+BK
(ABHEK,R)=1

(9.3.16)

Proof. The proof is similar to the proof of Lemma and [Yia2ll Lemma 6.4], but
will be presented here too. We consider three cases, deg(AH) > deg(BK), deg(AH) <
deg(BK) and deg(AH) = deg(BK) where AH + BK.

If we consider the first case deg(AH) > deg(BK) and suppose that deg(A) = ¢, then
since AH = BK(mod F) and AH # BK we have that AH = LF + BK for some L € A
where deg(AH) = deg(LF + BK). Furthermore, since A, H, K, F and B are all monic,
then L is monic. Also, since deg(AH) > deg(BK), then deg(LF") > deg(BK') and so
by Proposition deg(LF + BK) = deg(LF). Invoking Proposition again and
the above we see that deg(L) = deg(AH) —deg(F') =i+deg(H) - deg(F'). Furthermore
since deg(AB) = z and deg(A) =1, then deg(B) = z - deg(A) = z—¢ where 0 <i < z and
|AB|"2 = ¢"3. Combining the above we have

1 2 &
TSq 2 Z Z Z 1
A, BeA* |AB|z i=0 LeAt Bea*
deg(AB)=z deg(L)=i+deg(H)—deg(F') deg(B)=2z—t
deg(AH )>deg(BK)
AH=BK (mod F)
AH+BK
(ABHK,R)=1

e CGH & i )]
kX 2 Tt T

LeA*
deg(L)=i+deg(H)—-deg(F)

(9.3.17)

Similarly, if we consider the case where deg( BK') > deg( AH ) and suppose that deg(B) =
i, then since AH = BK(mod F') and AH # BK, then BK = LF + AH for some L € A
with deg(BK) = deg(LF + AH). Furthermore, since A, H, K, F and B are all monic,
then L is monic. Also, since deg(BK) > deg(AH), then deg(LF) > deg(AH) and
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so by Proposition deg(LF + AH) = deg(LF'). Invoking Proposition again
and the above we see that deg(L) = deg(B) + deg(K) — deg(F') =i + deg(K) — deg(F).
Furthermore since deg(AB) = z and deg(B) =i, then deg(A) = z — deg(B) = z —i and

|AB |’% = ¢"2z. Combining the above and using the arguments stated previously we have

1 2 &
2 ) 2 2, 1
A, BeAt |AB|2 i=0 LeA* Aeat
deg(AB)=2 deg(L)=i+deg(K)—deg(F) deg(A)=z—i
deg(BK)>deg(AH)
AH=BK (mod F)
AH+BK
(ABHK,R)=1
s ¢ qle! _ g3 (z+ DIK]
IR REEE
=0 LeA*
deg(L)=i+deg(K)-deg(F)
(9.3.18)

Finally, if we consider the case where deg(AH ) = deg(BK) = i. Then 2i = deg(ABHK) =
z+deg(HK) and so deg(B) =i - deg(K) = w. Furthermore since AH =
BK(mod F') and AH +# BK then AH = LF + BK where deg(AH) = deg(LF + BK).
Since deg(AH) = deg(BK) where A, B, H and K are monic, then by Proposi-
tion[2.1.1]and the arguments stated above we have deg(LF") < deg(BK) and so deg(L) <
i —deg(F) = M%(HK) — deg(F). Furthermore since deg(AB) = z then |[AB[2 = ¢"5.
Thus combining the above and using the arguments stated previously we have

1 P

> T > >
A,Beh* |AB|2 BeA* e
deg(AB)=z deg(B)=2taes)=deal) qeg( )< 24U _geg(F)
deg(AH )=deg(BK)
AH=BK (mod F)
AH+BK
(ABHK,R)-1
HEK|: q°|H|
< 1= : (9.3.19)
|F B§+ |F
deg(B): z+deg(H%7deg(K)
Combining all the above cases proves the result. [
Lemma 9.3.6. For all Re A* and € >0 we have
2<(R)|R| deg( R
| *|2 U (9.3.20)
¢*(R)
Proof. For deg(R) < q we know, by [Yia20, (A.2.3)] that ¢*|1(%1|%) > 1. Thus for deg(R) < q

we have )
2:W|Rlsdeg(R) _ 2200 deg(R) _ 2R

¢*(R) |R|2 |R|%*E'
From Lemma we know that 2¢(f) « |R|¢, thus (9.3.20)) holds for deg(R) < g.
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For deg(R) > ¢ we know by Lemma and Lemma that

o(r) R
-
log, log, |R| — (log,log,|R|)

¢ (R) >

Thus if deg(R) > g, then

20| R|3deg(R) __ 24P deg(R)(log, log, |R)? 24t
¢*(R) IRz " R[5

Finally, from Lemma|2.2.5, we know that 2¢(%) « | RJ¢, then (9.3.20)) holds for deg(R) > ¢
and thus completes the proof. [

9.4 Proof of Theorem [0.2.1]

In this section, we use results stated previously to prove Theorem [9.2.1

Proof of Theorem (9.2.1]. Using the approximate function equation Lemma|9.3.1|we have

1 . 1 2

(b*(R)X(m%c:l R) (2 7 X) X(H)

_2 g XA XBWXH) (IR

) I O\ %7 m]. (941
deg(AB)<deg(R)

Using the definition of Dirichlet characters and ¢*(R) we have

|R|—%+e . |R|—%+E . B
X(H) < 1=|R|z*.
TN IR NP

mod R) mod R)

Using the orthogonality relation Lemma [2.3.8] we have

2 5 5 x(A)x(B)x(H)

* 1
¢ (R)X(mod R)  A,BeA* |AB|2
deg(AB)<deg(R)
2 1
- W(E)o(F) 5 (9.4.2)
) B s
deg(AB)<deg(R)
AH=B(mod F)
(ABH,R)=1

For the second sum on the right-hand side of (9.4.2)), we will consider the contribution
of the diagonal, AH = B, and the off-diagonal, AH # B, terms separately. Thus we
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write

1
; n(E)O(F)
¢*(R) E;R Age:;v |AB|2
deg(AB)<deg(R)
AH=B(mod F)
(ABH,R)=1

2 1
== n(E)o(F) ;
¢*(R) E;::R A,;Nf |AB|2
deg(AB)<deg(R)
AH=B(mod F)

AH=B
(ABH,R)=1

2 1
; >, ME)$(F) > -
¢*(R) 7R A,BeA* |AB|z
deg(AB)<deg(R)
AH=B(mod F)
AH+B
(ABH,R)=1

+

Considering the contribution of the diagonal, AH = B, terms we have that |[AB| 2 =
|H["2|A|"! and deg(AB) = deg(ABH) - deg(H) = 2deg(A) + deg(H). Thus the double
sum over A, B € A* with deg(AB) < deg(R), AH = B and (ABH, R) = 1 becomes a
single sum over A € A* with deg(A) < 3(deg(R) —deg(H)) and (AH, R) = 1. Therefore
using the arguments stated above and Corollary we have

2 1 2 1
: W(E)(F) - 2 S (943)
¢*(R) E;::R A,;A" |AB|z  |H|z AEZA;+ |Al
deg(AB)<deg(R) deg@“kw
(Aggf]{?):l (AH,R)=1
Using Lemma with x = w —1 we have
2 1 19(R) 1
— = |H|2 —==%(deg(H) +deg(R)) + O (|H|z logw(R) ). (9.4.4)
|H|§ AEZA;+ |Al |R| ( )
deg(A)<deg(R);deg(H)
(AH,R)=1
For the contribution of the off-diagonal terms we have
» L. s
= ) (9.4.5)
aBear  |ABJ3 20 A |AB|2
deg(AB)<deg(R) deg(AB)=z
AH=B(mod F) AH=B(mod F)
AH+B AH+B
(ABH,R)=1 (ABH,R)=1
Using Lemma [9.3.3| we have
1 s Hg3(2+1)  |H||R|2deg(R
ABeA+  |AB|z 220 |F| |F|
deg(AB)<deg(R)
AH=B(mod F)
AH=#B
(ABH,R)=1
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Thus using we have

1 [H|R|2deg(R) O(F)
1(E)o(F) T < (E)| ==~
¢*(R) E;R A,;AJr |AB|2 ¢*(R) E; |F|
deg(AB)<deg(R)
AH=B(mod F)
AH+B
(ABH,R)=1

(9.4.7)

Combining (9.4.7)), Lemma [2.2.5 and the fact that ‘b'—‘) <1 we have

2 1 22(R)|H||R|2deg(R)
; n(E)o(F) ; ; (9.4.8)
(R) E;R A,BZE:N |AB|z ¢*(R)
deg(AB)<deg(R)
AH=B(mod F)
AH+B
(ABH,R)=1

Furthermore, combining (9 and Lemma |9.3.6] we have

1
2 1 2«(R)|H||R|2deg(R !
2 S wBE) Y o 2NN AeBUR) s,
¢*(R) 7R ABear  |ABJ2 ¢*(R)
deg(AB)<deg(R)
AH=B(mod F)
AH+B
(ABH,R)=1

(9.4.9)
Since deg(H) < deg(R), then there is some € > 0 such that deg(H) < (1 - 2¢)deg(R).
Thus |H|2|R|*2 = qédeg(H)*( 2)des(R) ¢ 5 (1-2e)deg(R)+(e-5)dea(R) — 1 Therefore combin-
ing the above with (9.4.9] , we get

< |H|z. (9.4.10)

2
; u(E)o(F) ;
¢*(R) E;R A,BZE:A+ |AB|2
deg(AB)<deg(R)
AH=B(mod F)

Combining the above completes the proof of Theorem [9.2.1} [ |

9.5 Proof of Theorem [9.2.9

In this section we use similar methods to that seen in the proof of Theorem to

prove Theorem [9.2.2

Proof of Theorem|9.2.2| Using the approximate functional equation, Lemma [9.3.1] we
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have
Y L(1 x) ()
¢*(R)X(mod R) 2’
2 . A(B)x(H)X(K Rl _
- x(A)x( )X(l XK | |*|R S W H)WE) .
o*( )X(rnod R)  ABeA* |AB|z ¢*( )X(mod R)
deg(AB)<deg(R)
(9.5.1)
Using the definition of Dirichlet characters and ¢*(R) we have
R > x(H)X(K) < L S 1= |R[ 3
O (R), (niod ) ¢ (R)y(uod R)
Using the orthogonality relation Lemma [2.3.8] we have
2 N X(A)x(B)x(H)x (k)
O*(R)(mod ) AGear |AB|%
deg(AB)<deg(R)
2 1
- W(E)6(F) . (9.5.2)
¢*(R) E;R A,;A" |AB|2
deg(AB)<deg(R)
AH=BK (mod F)
(ABHK,R)=1

For the second sum on the right-hand side of (9.5.2)) we will consider the contribution
of the diagonal, AH = BK, and off-diagonal, AH +# BK, terms separately. Thus we

write

2 1
; u(E)¢(F) 1
¢*(R) E;R A;m |AB|z
deg(AB)<deg(R)
AH=BK (mod F)
(ABHK,R)=1

2 1
= 2 wE)e(F) ) ;
¢*(R) 7R ABear  |AB|2
deg(AB)<deg(R)
AH=BK (mod F)
AH=BK
(ABHK,R)=1

2 1
; > WE)G(F) > T
¢*(R) pFir A,BeA* |AB|>
deg(AB)<deg(R)
AH=BK (mod F)
AH+BK
(ABHK,R)=1

+ (9.5.3)

Considering the contribution of the diagonal, AH = BK, terms we have that |[AB ]‘% =
|H[2|K|z|A] " and deg(AB) = deg(ABHK) —deg(HK) = 2deg(A) + deg(H) - deg(K).
Thus the double sum over A, B € A* with deg(AB) < deg(R), AH = BK and (ABHK,R) =
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1 becomes a single sum over A € A* with deg(A4) < 3(deg(R) + deg(K) — deg(H)) and
(AH, R) = 1. Therefore using the arguments stated above and Corollary we have

2 1 2K
; n(E)o(F) r=—— —. (9.5.4)
¢*(R) E;R A;N |AB|z  |H|: A% A
deg(AB)<deg(R) deg(A)<deali)rdes(K)—des(H)
AH=BK

(ABHK,R)=1 (AH,R)=1

Using Lemma with z = $(deg(R) + deg(K) — deg(H)) - 1 we have

2|K |2 5 |
deg(A)< ng(R)erCgéK)fdcg(H)
(AH,R)=1

- |[HK|? %(deg(}?) +deg(H) + deg(K)) + O (|HK|* logw(R) ).

For the contribution of the off-diagonal terms we have

1 deg(R)—l 1

T ) 2 T
ABat  |AB|2 2=0 A, BeA* |AB|z
deg(AB)<deg(R) deg(AB)=z
AH=BK (mod F) AH=BK (mod F)
AH+BK AH+BK
(ABHK,R)=1 (ABHK,R)=1

(9.5.5)

Using Lemma [9.3.5( we have

1 deg(R)-1 |HK|qz (2 +1) « |HK||R|%deg(R) (9.5.6)
D N

2

1
A,BeAt |AB|2 z=0 |F|
deg(AB)<deg(R)
AH=BK (mod F)
AH+BK
(ABHK,R)=1

Thus using (9.5.6) we have
2 L JHE|RIeg(R) o oy 0CF)

* W(E)o(F) L o,
¢ (R) EﬁZ::R A,g;y |AB|5 ¢ (R) EF=R |F|
deg(AB)<deg(R)
AH=BK (mod F)
AH+BK
(ABHK,R)=1

(9.5.7)

Combining (9.5.7), Lemma [2.2.5( and the fact that % <1 we have

1 22(B)| H K||R|2deg(R)
Z u(E)o(F) Z |AB|% < o (R) ) (9.5.8)

*
?*(R) g#r A,BeA*
deg(AB)<deg(R)
AH=BK (mod F)
AH#BK
(ABHK,R)=1
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Furthermore, combining (9.5.8) and Lemma we have

1 22(R)|HK||R|? deg(R
—— Z M(E)gb(F) Z F < | *H | ( )
¢*(R) p7r ABear  |ABJ2 ¢*(R)
deg(AB)<deg(R)
AH=BK (mod F)

AH+BK
(ABHK,R)=1

< |HK||R|"2.

(9.5.9)
Since deg(H ) +deg(K) < deg(R), then there is some € > 0 such that deg(H ) +deg(K) <
(1 _ 26)deg(R) Thus |HK‘%‘R’€—% — qdeg(H)+deg(K)+(e—%)deg(R) < q(1—2e)deg(R)+(e—%)deg(R) —
1. Thus, combining the above and (9.5.9) we have

2 1 1
Y u(E)p(F) < |HK]?. (9.5.10)
¢*(R) E;R A,;A’f |AB|z
deg(AB)<deg(R)
AH=BK (mod F)
AH+BK
(ABHK,R)=1

Combining everything completes the proof of Theorem [9.2.2]
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Appendix A

Completing the proof of

Lemma 3.0.6

A.1 Introduction

In this appendix we prove that

AO,I,LQ + AQ + AQ - Ae 2,1 - Ae

g g, g,

e e o) o
227 AQ*L?J -A -1,2,2 -Ag,Q ~Ag-1,2 (A.l.l)

g

equals zero. For the terms corresponding to the residues at u = ¢! and u = ¢72, it was
already shown, in Chapter [3| that equals zero, thus it remains to show that,
for the terms corresponding to the residue at u =0, equals zero. To do this, we
will use induction on g and consider two cases: g even and g odd. This appendix also

appears in [AM21].

A.2 g even

Let g = 2m for m € Z, we will show, by induction on m, that (A.1.1]) equals zero for all
m > 1. For the base case, m = 1, (A.1.1)) is equalling to

@%@(qg (C(O) +C'(0)) + q4(C(0)(1 +q) +Cl(0)) + q%C(O) n q%C(O) _ q%C(O)
+¢°(C(0)(g+¢*) +C'(0)) = ¢*(C(0) (1 +¢*) +C'(0)) - q%(C(O)(l +¢?) +C'(0))

—q5(C(0)(1+q2)+C’(O))). (A.2.1)
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Rearranging ([A.2.1)), we see that it is equal to

CA12)(6(0)((q4+qg+q5+q121 +qS+q? +q7)_(q4+qg NPEIN T +q7))
e (i)t ) )

which clearly equals zero. Assume that (A.1.1))= 0 for m =¢. Then

n=0 n! n=0 :

1 43 C(”)(O . C(n) —n .5 1 em)(0) n
3 ¢t Z gt Z Z ias Z qk
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= k=0 n=0 ! k=0
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For m=t+1, (A.1.1) equals
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=l n=0
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(A.2.3)

Rearranging (A.2.3), we have that (A.1.1))=(A.2.4)+(A.2.5)), where

@ (et 32 €O e 2 COO) S s SO
Ca(2) = n! e S (L = n! k=0

i S EO ST g SO 3t+226<"><0> Y
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(A.2.4)
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and
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Using the inductive hypothesis, we have that ( equals zero, therefore it remains
to show that - A.2.5) equals zero. Rearranglng we see that it is equal to

1 Lcm) 0 CtD(0 1 CO(0
Z ) 2(t n) q3t+4 ( ) +(]3t+7 ( )
o (2) (t+1)! fl
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n.
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Rearranging ({A.2.6)), we see that it is equal to

1 C(m (0 5. < CM(0
CA(Q)( 2(1+q2+q+q2)z ()Q(tn) 2(1+q2+q+q§ Z )2(tn))

which equals zero. Thus (A.1.1))= 0 for m = ¢ + 1, and so, by induction, (A.1.1)= 0 for

all g > 1 even.

A.3 g odd

Now let g = 2m + 1. We will show, by induction on m, (A.1.1)) equals zero for all m > 0.
For the base case, m =0, (A.1.1)) is equal to

ﬁ(qé(c«n +C'(0)) +2C(0) + ¢°C(0) +¢*C(0) - 4°C(0) + ¢2C(0) ~ ¢2C(0)

e - e+ - 0)) (a31)
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Appendix A. Completing the proof of Lemma [3.6.6

Rearranging (A we see that it is equal to
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which clearly equals zero. Assume that (A.1.1))= 0 for m =¢. Then
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Rearranging (A , we see that (A.1.1)=(A.3.4)+(A.3.5)), where
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and
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By the inductive hypothesis (A.3.4) equals zero, therefore it remains to show that
(A.3.5) equals zero. Rearranging (|A.3.5)), we see that it equals
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Rearranging (A we see that it equals

1 t+1 C(n) 0 . . t+1 C(n) 0 "
CA(2)((]3%6(1_}_(]2_+_q_+_QQ) Z n( ) 2(t 1-n) _ 3t 6(1+q2+q+q2) Z ( ) 2(t+1 ))

which equals zero. Thus (A.1.1))= 0 for m = ¢ + 1, and so, by induction, (A.1.1)) for all
g >1 odd. This completes the proof of Lemma [3.6.6]
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