
Moments of Dirichlet L-functions in Function Fields

Joseph MacMillan

Doctor of Philosophy in Mathematics

December 2022

Department of Mathematics and Statistics

Faculty of Environment, Science and Economy

University of Exeter

Submitted by Joseph MacMillan to the University of Exeter as a thesis for the Degree

of Doctor of Philosophy in Mathematics, December 2022.

This thesis is available for Library use on the understanding that it is copyright

material and that no quotation from the thesis may be published without proper

acknowledgement.

I certify that all material in this thesis which is not my own work has been identified

and that any material that has previously been submitted and approved for the award

of a degree by this or any other University has been acknowledged.

(Signature) ..................................................................................................................



Abstract

In this thesis, we compute several moments and mean values of Dirichlet L-functions

in function fields, in both the odd and even characteristic setting.

Firstly, in Chapter 3, we use the techniques originally developed by Florea [Flo17a] to

improve the asymptotic formula for the first moment of quadratic Dirichlet L-functions

L(s,χD) at point s = 1
2 , where D runs over all monic, square-free polynomials of even

degree in A = Fq[T ] and q ≡ 1(mod 4), which was first obtained by Jung [Jun13]. In

particular, compared to the asymptotic formula obtained by Jung, we obtain a sec-

ondary main term and improve the error term.

In Chapter 4, we obtain an asymptotic formula for the first moment of L(2, χγD), where

γ is a fixed generator of F∗q and D runs over all monic, square-free polynomials of even

degree in A, where q ≡ 1(mod 4). As an application of this, we compute the average

size of the algebraic group K2(OγD), where OγD denotes the integral closure of A in

k(
√
γD), where k = Fq(T ).

In Chapter 5, we obtain a lower bound for the kth moment of quadratic Dirichlet L-

functions L(s,χP ) at s = 1
2 , where k is an even natural number, P is a monic irreducible

polynomial in Fq[T ] and q ≡ 1(mod 4).

In Chapter 6, we formulate a conjecture for the integral moments of quadratic Dirichlet

L-functions L(s,χu) at the central point s = 1
2 , where u runs over a specific family

in Fq[T ] and q is a power of 2. We also show that this conjecture agrees with the

asymptotic formulas that have already been obtained. We also obtain the leading order

asymptotic for the moments of L (1
2 + it, χu) as we want to understand symmetry tran-

sitions of Dirichlet L-functions in the function field setting. In Chapter 7, we generalise

the methods used in Chapter 6 to conjecture an asymptotic formula for the mean value

of ratios of products of the Dirichlet L-functions L(s,χu). In Chapter 8, we present

two applications of the Ratios conjecture in even characteristic. Namely, under the
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condition of the Ratios conjecture, we derive a formula for the one-level density for the

zeros of L(s,χu) and show that the proportion of L(s,χu) which do not vanish at s = 1
2

is 100%.

Finally, in Chapter 9, we obtain an asymptotic formula for the second moments of

∣L (1
2 , χ)∣ with one and two twists, when averaged over all primitive Dirichlet characters

of modulus R, where R is a monic polynomial in Fq[T ].
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Notation

Most of the notation used in this thesis will be defined in Chapter 2. However, we will

describe some of the notation that is used throughout this thesis here too.

O f(x) = O(g(x)) if there exists a constant c > 0 such that ∣f(x)∣ ≤ cg(x)

for all x ≥ x0.

≪ f(x) ≪ g(x) if f(x) = O(g(x)).

o f(x) = o(g(x)) if limx→∞
f(x)
g(x) = 0.

∼ f(x) ∼ g(x) if limx→∞
f(x)
g(x) = 1.

Fq A finite field with q elements.

F∗q The multiplicative group of Fq.
A = Fq[T ] The polynomial ring over Fq.

A+ The set of monic polynomials in A.

k = Fq(T ) The rational function field over Fq.
Hn The set of monic, square-free polynomials of degree n in Fq[T ].

Pn The set of monic irreducible polynomials in Fq[T ].

In The set, in even characteristic, defined in Section 2.7.1.

∣f ∣ ∣f ∣ = qdeg(f), the norm of f ∈ Fq[T ].

γ A fixed generator of F∗q .
P A monic irreducible polynomial in Fq[T ].

#G The size of the set G.

∮ An integral over a closed contour.

∫(c) An integral along the line R(s) = c.

µ(f) The Möbius function for A.

φ(f) The Euler-Totient function for A.

ω(f) The number of distinct monic irreducible polynomial factors of f .

dk(f) The number of ways of writing the polynomial f as a product of k factors.
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Chapter 1

Introduction

1.1 The Riemann zeta-function

One of the most important subjects in Analytic Number Theory is the study of the

theory of the Riemann zeta-function, which was first introduced by Riemann [Rie59]

and is defined as

ζ(s) ∶=
∞
∑
n=1

1

ns
(1.1.1)

for s ∈ C with R(s) > 1. In this region, the sum defining the Riemann zeta-function

is convergent and in the region R(s) ≥ 1 + δ the series is absolutely and uniformly

convergent for every δ > 0. Therefore the Riemann zeta-function is holomorphic for

R(s) > 1. Furthermore Euler [Eul37] showed that, for R(s) > 1, the Riemann zeta-

function can be represented as an Euler product, namely

ζ(s) =∏
p

(1 −
1

ps
)
−1

(1.1.2)

where the product is over all primes p. Using this formula, we can see the importance

of the Riemann zeta-function in the theory of prime numbers. For example Hadamard

[Had96] and de la Vallée Poussin [dlVP96] independently proved that ζ(s) ≠ 0 on the

line R(s) = 1 and used this to prove the Prime Number Theorem.

Theorem 1.1.1 (Prime Number Theorem). Let π(x) = #{p ∶ p prime, p ≤ x}. Then

π(x) ∼
x

logx
(1.1.3)

as x→∞.

Further Riemann showed that the Riemann zeta-function has a meromorphic continu-

ation to the whole complex plane with a simple pole at s = 1 with residue 1. He also

showed that the Riemann zeta-function satisfies the following functional equation.

11



Chapter 1. Introduction

Theorem 1.1.2. For all s ∈ C we have

ζ(s) = 2(2π)s−1Γ(1 − s) sin(
πs

2
) ζ(1 − s), (1.1.4)

where Γ(s) is the Gamma function defined as

Γ(s) = ∫
∞

0
xs−1e−xdx.

From (1.1.2) and Hadamard and de la Vallée Poussin, we know that ζ(s) ≠ 0 in the

region R(s) ≥ 1. Thus ζ(1 − s) ≠ 0 for R(s) ≤ 0. Furthermore, it can be shown that

Γ(s) is non-zero for all s and is holomorphic in the region R(s) > 0. Therefore, from

the functional equation (1.1.4), any zeros of ζ(s) which occur in the region R(s) < 0

arise from the zeros of sin (πs
2
). Thus, in the region R(s) < 0, ζ(s) = 0 when s = −2n for

all n ∈ N, these are called the “trivial zeros” of the Riemann zeta-function. Therefore

any “non-trivial” of the Riemann zeta-function lie in the critical strip 0 < R(s) < 1.

Riemann then stated the famous conjecture about the location of these “non-trivial”

zeros.

Conjecture 1.1.3 (Riemann Hypothesis). All the non-trivial zeros of the Riemann-

zeta function lie on the critical line R(s) = 1
2 .

To this day, the Riemann hypothesis is still an open problem, and is one of the most

important open problems in mathematics. Although it has not been proven explicitly,

there is numerical evidence to support this conjecture. For example the hypothesis has

been checked for the first 10,000,000,000 zeros (for a list of these zeros, see [LMF22]).

Furthermore, we know, by Pratt, Robles, Zacharescu and Zeindler [PRZZ20] that more

than five-twelfths of the non-trivial zeros of the Riemann zeta-function lie on the critical

line R(s) = 1
2 .

Assuming the Riemann hypothesis, Gonek [Gon12] showed that the Riemann zeta-

function is well approximated by short truncations of its Euler products in the region

R(s) > 1
2 and not too close to the critical line. Conversely, Gonek also showed that if

the approximation of ζ(s) by Euler products is good in this region, then the Riemann

zeta-function has at most a finite number of zeros in it.

1.2 Moments of the Riemann zeta-function

One interesting problem involving the Riemann zeta-function is to understand its

growth rate on the critical line. Lindelöf [Lin08] conjectured the following result about

this growth rate.
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1.2. Moments of the Riemann zeta-function

Conjecture 1.2.1 (Lindelöf Hypothesis). For every ε > 0 we have

ζ (
1

2
+ it) ≪ tε. (1.2.1)

Titchmarsh [Tit86] explained that the Lindelöf hypothesis is equivalent to showing that

1

T ∫
T

0
∣ζ (

1

2
+ it)∣

2k

dt≪ T ε (1.2.2)

for every integer k and any ε > 0. Thus, a very important problem in Analytic Number

Theory is to estimate these moments of the Riemann zeta-function. More specifically,

we want to understand the asymptotic behaviour of

Mk(T ) ∶= ∫
T

0
∣ζ (

1

2
+ it)∣

2k

dt. (1.2.3)

An asymptotic formula for the second moment of (1.2.3) was first obtained by Hardy

and Littlewood [HL16] in which they proved the following result.

Theorem 1.2.2 (Hardy and Littlewood). We have, as T →∞,

M1(T ) ∼ T logT. (1.2.4)

Ingham [Ing27] improved the asymptotic formula (1.2.4) by proving the following result.

Theorem 1.2.3 (Ingham). We have

M1(T ) = T log
T

2π
+ (2γ − 1)T +O (T

1
2 logT) , (1.2.5)

where γ is Euler’s constant.

In the same paper, Ingham established an asymptotic formula for the fourth moment

of (1.2.3). In particular he proved the following result.

Theorem 1.2.4 (Ingham). We have, as T →∞,

M2(T ) =
1

2π2
T log4 T +O(T log3 T ). (1.2.6)

Subsequently, Heath-Brown [HB79] improved the asymptotic formula (1.2.6) by obtain-

ing all the main terms for the asymptotic formula.

Theorem 1.2.5 (Heath-Brown). There exist constants b4, b3, b2, b1 and b0 such that

for T ≥ 2 and ε > 0,

M2(T ) = T
4

∑
n=0

bn logn T +O (T
7
8
+ε) . (1.2.7)

In particular, the constant b4 =
1

2π2 .
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Chapter 1. Introduction

For the sixth moment, Conrey and Ghosh [CG98] conjectured that

M3(T ) ∼
42

9!
∏
p

((1 −
1

p
)

4

(1 +
4

p
+

1

p2
))T log9 T

and for the eighth moment, Conrey and Gonek [CG01] conjectured that

M4(T ) ∼
24024

16!
∏
p

((1 −
1

p
)

9

(1 +
9

p
+

9

p2
+

1

p3
)) .

In general, it is conjectured that

Mk(T ) ∼
akgk
(k2)!

T (logT )k
2

(1.2.8)

where gk is a positive integer and

ak =∏
p

((1 −
1

p
)
k2 ∞
∑
m=0

dk(pm)2

pm
) , (1.2.9)

where dk(n) is the number of ways to write n as a product of k factors. Using Random

Matrix Theory, Keating and Snaith [KS00b] conjectured a precise value for gk, namely

gk = (k2)!
k−1

∏
j=0

j!

(j + k)!
.

Gonek, Hughes and Keating [GHK07] approximated ζ(s) as a hybrid Euler-Hadamard

product. Namely, they showed that ζ(s) ≈ PX(s)ZX(s), where PX(s) is a truncated

Euler product and ZX(s) is a truncated Hadamard product. Using this, they conjec-

tured that the 2kth moment of ζ (1
2 + it) is asymptotic to the 2kth moment of PX (1

2 + it)

multiplied by the 2kth moment of ZX (1
2 + it), which is called the Splitting Conjecture.

Furthermore, they showed that the 2kth moment of PX (1
2 + it) contributes the factor

a(k) and using Random Matrix Theory, they conjectured that the 2kth moment of

ZX (1
2 + it) contributes the factor g(k). Combining these results, they recovered the

conjecture (1.2.8) and gave support for the Splitting Conjecture by showing that it

holds when k = 1 and k = 2.

Conrey, Farmer, Keating, Rubinstein and Snaith [CFK+08] described a heuristic to

conjecture all of the main terms for the 2kth moments of the Riemann zeta-function

and showed that the conjecture agrees with the results seen previously. In a series

of papers, Conrey and Keating [CK15a, CK15b, CK15c, CK16, CK19] looked at the

problem of obtaining asymptotic formulas for the 2kth moment and shifted moments

of the Riemann zeta-function on the critical line from a number-theoretic perspective.

In particular, they gave new details about how the off-diagonal terms contribute to the

14



1.2. Moments of the Riemann zeta-function

main terms of the asymptotic formula.

One can also compute upper and lower bounds of (1.2.3) which can show that the

conjecture (1.2.8) is of the correct order of magnitude. For example, Ramachandra

[Ram80] obtained the following result for the lower bounds of (1.2.3).

Theorem 1.2.6 (Ramachandra). We have

Mk(T ) ≫ T (logT )k
2

(1.2.10)

for natural numbers k.

Heath-Brown [HB81a] extended Ramachandra’s result by showing that (1.2.10) holds

for any rational number k ≥ 0. This result was further improved by Radziwi l l and

Soundararajan [RS13] and Heap and Soundararajan [HS22] who improved the result

further by showing that for all large T and all real k > 0 we have

Mk(T ) ≥ CkT (logT )k
2

(1.2.11)

for some constant Ck. For upper bounds Soundararajan [Sou09] showed that under the

condition of the Riemann Hypothesis we have

Mk(T ) ≪ T (logT )k
2+ε, (1.2.12)

for every positive real k and every ε > 0. Refining Soundararajan’s method, Harper

[Har13] removed the ε on the power of logT in (1.2.12) and thus, under the condition of

the Riemann hypothesis, obtained upper bounds of the correct order of magnitude. In a

recent paper, Heap, Radziwi l l and Soundararajan [HRS19] showed that, unconditionally

we have

Mk(T ) ≪ T (logT )k
2

for 0 ≤ k ≤ 2 and T ≥ 10.

Another problem involving ζ(s) is what is called the mollified moments of the Riemann

zeta-function. In other words, we want to understand the asymptotic behaviour of

Iy(T ) = ∫
T

0
∣ζ (

1

2
+ it)∣

2k

∣My (
1

2
+ it)∣

2

dt, (1.2.13)

where My(s) is a mollifier of the form

My(s) = ∑
n≤y

a(n)

ns

15



Chapter 1. Introduction

and for some specifically chosen coefficients a(n). Computing mollified moments has

applications to proving lower bounds on the proportion of the non-trivial zeros of ζ(s)

that lie on the critical line. For example, Levinson [Lev74] showed that

lim
T→∞

IT θ(T )

T
= 1 +

1

θ
(1.2.14)

for 0 < θ < 1
2 with a(n) =

µ(n) log( y
n
)

log y and thus deduced that the proportion of the non-

trivial zeros of ζ(s) that lie on the critical line is greater than 1
3 . Changing the coefficient

to a(n) = µ(n)P (
log( y

n
)

log y ), where P is a polynomial satisfying P (0) = 0, Conrey [Con89]

showed that (1.2.14) holds for θ < 4
7 and thus the proportion of the non-trivial zeros

of ζ(s) is greater than 2
5 . Bettin and Gonek [BG17] showed that if IN(T ) ≪ε T 1+ε for

2 ≤ N ≤ T θ with θ arbitrarily large, then the Riemann hypothesis is true.

1.3 Dirichlet L-functions

In this section, we define a generalisation of the Riemann zeta-function, namely we

state the definition of a Dirichlet L-function as well as state results about them. To do

this, we first state the definition of a Dirichlet character.

Definition 1.3.1. Let q be a positive integer. Then a function χ ∶ Z → C is called a

Dirichlet character modulo q if

i) χ(mn) = χ(m)χ(n), ∀m,n ∈ Z,

ii) χ(n + q) = χ(n), ∀n ∈ Z,

iii) χ(1) = 1,

iv) χ(n) = 0, whenever (n, q) > 1.

We define the trivial character χ0(n) by

χ0(n) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if n = 1,

0 if n > 1.

Definition 1.3.2. Let χ be a Dirichlet character modulo q. The Dirichlet L-function

corresponding to χ is defined to be

L(s,χ) =
∞
∑
n=1

χ(n)

ns
. (1.3.1)

16



1.3. Dirichlet L-functions

The Dirichlet L-function is absolutely convergent for R(s) > 1 and locally uniformly

convergent, and thus L(s,χ) is holomorphic in this region. Furthermore in this region,

these Dirichlet L-functions have an Euler product representation, namely

L(s,χ) =∏
p

(1 −
χ(p)

ps
)
−1

. (1.3.2)

If χ is the trivial character modulo q, then L(s,χ0) is regular for all s ∈ C except for a

simple pole at s = 1 with residue φ(q)
q . If χ is not the trivial character modulo q, then

L(s,χ) can be defined for all s ∈ C.

Definition 1.3.3. Let χ be a Dirichlet character modulo q and let d∣q. The number d

is called an induced modulus for χ if we have

χ(a) = 1 whenever (a, q) = 1 and a ≡ 1(mod d).

Definition 1.3.4. A Dirichlet character modulo q is said to be primitive modulo q if

it has no induced modulus d < q.

Restricting χ to be a primitive Dirichlet character modulo q, we define the completed

L-function as

Λ(s,χ) = (
q

π
)

s
2

Γ(
s + a

2
)L(s,χ), (1.3.3)

where

a =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if χ(−1) = 1,

1 if χ(−1) = −1.

Then the completed L-function satisfies the functional equation

Λ(s,χ) =
τ(χ)

ia
√
q

Λ(1 − s, χ̄), (1.3.4)

where τ(χ) is the Gauss sum defined by

τ(χ) ∶= ∑
a(mod q)

χ(a)e(
a

q
)

where e(x) ∶= exp(2πix). Furthermore, we know that (see [MV06, Chapter 10] for more

details) L(s,χ) ≠ 0 for R(s) > 1 and for R(s) < 0, L(s,χ) has trivial zeros at s = −2n

if χ(−1) = 1 and at s = −2n − 1 if χ(−1) = −1. For the non-trivial zeros, we have the

following conjecture.

Conjecture 1.3.5 (Generalised Riemann Hypothesis). All the non-trivial zeros of

Dirichlet L-functions lie on the critical line.

17



Chapter 1. Introduction

1.4 Mean Value Theorems of Primitive Dirichlet L-

functions

Similar to the Riemann zeta-function, we want to understand the asymptotic behaviour

of moments of Dirichlet L-functions. One problem is to understand the 2kth moment of

∣L(s,χ)∣ at the central point s = 1
2 , when summed over all primitive Dirichlet characters

modulo q, which represents a q-analogue of the moments of the Riemann zeta-function

on the critical line. More precisely, we want to understand asymptotic formulas for

1

φ∗(q)
∑

∗

χ(mod q)
∣L(

1

2
, χ)∣

2k

, (1.4.1)

where φ∗(q) is the number of primitive Dirichlet characters modulo q and the sum is

over all primitive Dirichlet characters modulo q. For the second moment of (1.4.1),

Paley [Pal31] proved the following result.

Theorem 1.4.1 (Paley). We have, as q →∞,

1

φ∗(q)
∑

∗

χ(mod q)
∣L(

1

2
, χ)∣

2

∼
φ(q)

q
log q.

For the fourth moment of (1.4.1) Heath-Brown [HB81b] proved the following result.

Theorem 1.4.2 (Heath-Brown). We have

1

φ∗(q)
∑

∗

χ(mod q)
∣L(

1

2
, χ)∣

4

=
1

2π2∏
p∣q

(1 − p−1)3

(1 + p−1)
(log q)4 +O (

2ω(q)

φ∗(q)
q(log q)3) , (1.4.2)

where ω(q) is the number of prime divisors of q, where q is a positive integer.

The asymptotic formula (1.4.2) holds for almost all q. In particular, to ensure that the

error term is smaller than the main term (as q → ∞), q must be restricted in such a

way that

ω(q) <
log log q

log 2
.

Soundararajan [Sou07] addressed this restriction by obtaining the following result.

Theorem 1.4.3 (Soundararajan). For all large q we have

1

φ∗(q)
∑

∗

χ(mod q)
∣L(

1

2
, χ)∣

4

=
1

2π2∏
p∣q

(1 − p−1)3

(1 + p−1)
(log q)4 (1 +O (

ω(q)

log q

√
q

φ(q)
)) +O (

q

φ∗(q)
(log q)

7
2) .
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1.4. Mean Value Theorems of Primitive Dirichlet L-functions

Further Young [You11a] obtained an asymptotic formula for all the main terms with a

power savings for prime moduli. In particular he proved the following result.

Theorem 1.4.4 (Young). For prime q ≠ 2 we have

1

φ∗(q)
∑

∗

χ(mod q)
∣L(

1

2
, χ)∣

4

=
4

∑
n=0

cn(log q)n +O (q−
5

512
+ε) (1.4.3)

for some constants cn.

Bloomer et al [BFK+17] improved the error term of (1.4.3) to O (q−
1
20
+ε). Although no

higher moments of (1.4.1) has been explicitly proven, Bui and Keating [BK07] conjec-

tured an asymptotic formula for (1.4.1) for all real k.

Conjecture 1.4.5 (Bui and Keating). For k fixed with R(k) ≥ 0 we have

1

φ∗(q)
∑

∗

χ(mod q)
∣L(

1

2
, χ)∣

2k

∼ a(k)
G2(k + 1)

G(2k + 1)
∏
p∣q

(∑
m≥0

dk(pm)2

pm
)

−1

(log q)k
2

where a(k) is defined in (1.2.9) and G is the Barnes G-function.

Similar to the Riemann zeta-function, one can also obtain upper and lower bounds

for the moments of primitive Dirichlet L-functions (1.4.1). For example Rudnick and

Soundararajan [RS05] obtained the following result for lower bounds of (1.4.1).

Theorem 1.4.6 (Rudnick and Soundararajan). Let k be a fixed natural number. Then

for all large primes q we have

∑
∗

χ(mod q)
∣L(

1

2
, χ)∣

2k

≫k q(log q)k
2

. (1.4.4)

This result was improved by Radziwi l l and Soundararajan [RS13] and Heap and Soundarara-

jan [HS22] who showed that (1.4.4) holds for all real k > 0. For upper bounds Soundarara-

jan [Sou09] showed that, under the condition of the Generalised Riemann hypothesis,

we have
1

φ∗(q)
∑

∗

χ(mod q)
∣L(

1

2
, χ)∣

2k

≪k,ε q(log q)k
2+ε.

for all positive real k, ε > 0 and q prime. Heath-Brown [HB10] showed that

1

φ∗(q)
∑

∗

χ(mod q)
∣L(

1

2
, χ)∣

2k

≪k (log q)k
2

. (1.4.5)

and thus obtaining upper bounds of the correct order of magnitude, under the con-

dition of the Generalised Riemann Hypothesis. Unconditionally Heath-Brown showed

that (1.4.5) holds for any k of the form k = 1
n with n ∈ N. In a recent paper Gao
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[Gao21a] showed that (1.4.5) holds, unconditionally, for all real 0 ≤ k ≤ 1.

Another problem is to understand the asymptotic behaviour of twisted moments of

Dirichlet L-functions. That is, for coprime integers h and p > 0, where p and h are both

primes, we want to find an asymptotic formula for

M(p, h) = ∑
∗

χ(mod p)
∣L(

1

2
, χ)∣

2

χ(h), (1.4.6)

where the sum is over all primitive Dirichlet characters modulo p. Conrey [Con07]

proved a reciprocity formula involving M(p, h) and M(h,−p) where p and h primes

with h < p
2
3 . Young [You11b] improved Conrey’s reciprocity formula by proving the

following result for h < p.

Theorem 1.4.7 (Young). Suppose h < p are primes. Then

M(p, h) −

√
p

√
h
M(h,−p) =

p
√
h
(log (

p

h
) + γ − log(8π)) + ζ (

1

2
)

2 √
p + E(p, h) (1.4.7)

where E(p, h) ≪ p−
1
2
+εh + h−

1
2
+εp

1
2 .

Bettin [Bet16] studied the error term E(p, h) and showed that E ( ph) ∶= E(p, h) extends to

a continuous function E(x) of the non-negative real numbers, which is O(x) as x→ 0+.

In particular E ( ph) ≪
p
h for h≪ p.

Similarly, we also want to understand the asymptotic behaviour of the second moment

of Dirichlet L-functions with two twists. Namely, one problem is to understand the

asymptotic behaviour of

M±(p;h, k) =
p

1
2

φ(p)
∑

∗

χ(mod p)
χ(−1)=±1

∣L(
1

2
, χ)∣

2

χ(h)χ̄(k). (1.4.8)

This problem was first considered by Selberg [Sel46] who showed that

M±(q;h, k) ∼
1

2
(
q

hk
)

1
2

(log
q

hk
+ γ − log(8π) ∓

π

2
) ,

where q is a prime and for some conditions on h and k. For different primes q, h and

k with q ≥ 4hk, Bettin [Bet16] proved a triple reciprocity formula involving M(q;h, k),

M(k;h, q) and M(h;k, q).

Theorem 1.4.8 (Bettin). Let h, k and q be different primes and let q ≥ 4hk. Then

M±(q;h, k) = ±M(k;h, q) ±M(h;k, q)

+
1

2
(
q

hk
)

1
2

(log (
q

hk
) + γ − log(8π) ∓

π

2
) +O(log q).
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1.5. Mean Value Theorems of Quadratic Dirichlet L-functions

For the twisted fourth moment Hough [Hou16] obtained an asymptotic formula for

1

φ∗(q)
∑

∗

χ(mod q)
∣L(

1

2
, χ)∣

4

χ(`1)χ̄(`2) (1.4.9)

where `1 and `2 are coprime and square-free with 1 ≤ `1, `2 ≤ qθ and θ < 1
32 . Zacharias

[Zac19] obtained an asymptotic formula for (1.4.9) where `1 and `2 are coprime and

cubefree with (`1`2, q) = 1. His result allows for the application to non-vanishing results.

1.5 Mean Value Theorems of Quadratic Dirichlet

L-functions

We start this section by defining a quadratic Dirichlet L-function. To do this, we need

the following definition.

Definition 1.5.1. The number d ≠ 1 is called a fundamental discriminant if either

d ≡ 1(mod 4) or d = 4N , where N is square-free and N ≡ 2,3(mod 4).

Let χd be the Dirichlet character defined by the Kronecker’s symbol χd(n) = ( d
n
) with

d being restricted to fundamental discriminants. Then the character χd only takes the

real values −1, 0 or 1. The quadratic Dirichlet L-function is then defined as the Dirichlet

L-function corresponding to the Dirichlet character χd. In this setting, a problem is to

understand the asymptotic behaviour of

∑
0<d≤D

L(
1

2
, χd)

k

, (1.5.1)

where the sum is over over fundamental discriminants d as D → ∞. Jutila [Jut81]

obtained the following result for the first moment of (1.5.1).

Theorem 1.5.2 (Jutila). We have

∑
0<d≤D

L(
1

2
, χd) =

P (1)

4ζ(2)
D (log (

D

π
) +

Γ′

Γ
(

1

4
) + 4γ − 1 + 4

P ′

P
(1)) +O (D

3
4
+ε) (1.5.2)

where

P (s) =∏
p

(1 −
1

ps(p + 1)
) .

Goldfeld and Hoffstein [GH85] improved the error term of (1.5.2) to O (D
19
32
+ε) and

Young [You09] showed that the error term is bounded by D
1
2
+ε when considering the

smoothed first moment. In the same paper, Jutila obtained an asymptotic formula for

the second moment of (1.5.1), namely he proved the following result.

21



Chapter 1. Introduction

Theorem 1.5.3 (Jutila). We have

∑
0<d≤D

L(
1

2
, χd)

2

=
c

ζ(2)
D log3D +O (D(logD)

5
2
+ε)

where

c =
1

48
∏
p

(1 −
4p2 − 3p + 1

p4 + p3
) .

Restricting d to be an odd, square-free integer, then χ8d is a real primitive character

with conductor 8d and with χ8d(−1) = 1, Soundararajan [Sou00] proved the following

result.

Theorem 1.5.4 (Soundararajan). There exists polynomials Q and R of degree 3 and

6 respectively such that

∑
0<d≤D

L(
1

2
, χ8d)

2

=DQ(logD) +O (D
5
6
+ε) (1.5.3)

and

∑
0<d≤D

L(
1

2
, χ8d)

3

=DR(logD) +O (D
11
12
+ε) , (1.5.4)

where the sums is over fundamental discriminants 8d.

In the same paper, Soundararajan proved that for at least 87.5% of odd square-free

integers d ≥ 0, L (1
2 , χ8d) ≠ 0. By a conjecture of Chowla [Cho65], it is believed that

L (1
2 , χ) ≠ 0 for all quadratic characters χ.

Using multiple Dirichlet series, Diaconu, Goldfeld and Hoffstein [DGH03] improved the

bound in (1.5.4), namely they proved that.

Theorem 1.5.5 (Diaconu, Goldfeld and Hoffstein). For d summed over fundamental

discriminants and any ε > 0 we have

∑
∣d∣≤D

L(
1

2
, χd)

3

=D
6

∑
i=0

ci(logD)i +Oε (D
θ+ε) (1.5.5)

for some computable constants ci and θ ∼ 0.853.

Furthermore, Diaconu and Whitehead [DW21] considered the smoothed third moment

and proved the existence of a secondary main term of size D
3
4 and showed that the

error term is bounded by D
2
3
+δ for every δ > 0.

For the fourth moment, Shen [She21] proved an asymptotic formula under the condition

of the Riemann hypothesis and the Generalised Riemann hypothesis. Namely he proved

the following result.
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1.5. Mean Value Theorems of Quadratic Dirichlet L-functions

Theorem 1.5.6 (Shen). Assume the Generalised Riemann hypothesis for L(s,χd) for

all fundamental discriminants d and the Riemann hypothesis for ζ(s). Then

∑
0<d≤D

d square-free
(d,2)=1

L(
1

2
, χ8d)

4

= aD(logD)10 +O (D(logD)
39
4
+ε) .

for some constant a.

Although no higher moments have been explicitly proven, it is conjectured that

∑
0<d≤D

L(
1

2
, χd)

k

∼
akgk

(1
2k(k + 1))!

(logD)
k(k+1)

2

for some value gk and

ak =∏
p

(1 − 1
p)

k(k+1)
2

1 + 1
p

⎛

⎝

1

2

⎛

⎝
(1 −

1
√
p
)

−k

+ (1 +
1

√
p
)

−k
⎞

⎠
+

1

p

⎞

⎠
.

Using random matrix theory, Keating and Snaith [KS00a] conjectured that

gk = (
1

2
k(k + 1))!

k

∏
j=1

(
j!

(2j)!
) .

Conrey, Farmer, Keating, Rubinstein and Snaith [CFK+05] developed a heuristic to

conjecture all of the main terms of (1.5.1). Namely they conjectured the following.

Conjecture 1.5.7 (Conrey, Farmer, Keating, Rubinstein and Snaith). Let Xd(s) =

∣d∣
1
2
−sX(s, a) where a = 0 if d > 0 and a = 1 if d < 1, and

X(s, a) = πs−
1
2

Γ (1+a−s
2

)

Γ ( s+a
2

)
.

That is, Xd(s) is the factor in the functional equation for the quadratic Dirichlet L-

function

L(s,χd) = εdXd(s)L(1 − s,χd).

Summing over fundamental discriminants d we have

∑
d

L(
1

2
, χd)

k

=∑
d

Qk(log ∣d∣)(1 + o(1)), (1.5.6)

where Qk is the polynomial of degree 1
2k(k + 1) given by the k-fold residue

Qk(x) =
(−1)

k(k−1)
2 2k

k!

1

(2πi)k ∮
. . .∮

G(z1, . . . , zk)∆(z2
1 , . . . , z

2
k)

2e
x
2 ∑

k
j=1 zj

∏
k
j=1 z

2k−1
j

dz1 . . . dzk,
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G(z1, . . . , zk) = Ak(z1, . . . , zk)
k

∏
j=1

X (
1

2
+ zj, a) ∏

1≤i≤j≤k
ζ(1 + zi + zj),

∆(z1, . . . , zk) is the Vandermonde determinant given by

∆(z1, . . . , zk) = ∏
1≤i<j≤k

(zj − zi)

and Ak is the Euler product, absolutely convergent for ∣R(zj)∣ <
1
2 defined as

Ak(z1, . . . , zk) =∏
p
∏

1≤i≤j≤k
(1 −

1

p1+zi+zj
)

×
⎛

⎝

1

2

⎛

⎝

k

∏
j=1

(1 −
1

p
1
2
+zj

)

−1

+
k

∏
j=1

(1 +
1

p
1
2
+zj

)

−1
⎞

⎠
+

1

p

⎞

⎠
(1 +

1

p
)
−1

.

Keating and Odgers [KO08] conjectured the leading order for the smoothed 2kth mo-

ment of ∣L (1
2 + it, χd)∣ as D →∞, when summed over all fundamental discriminants d

with d < 0 and d ≡ 0(mod 8).

Similarly, one can also obtain upper and lower bounds for moments of quadratic Dirich-

let L-functions (1.5.1). For example, Rudnick and Soundararajan [RS06] obtained the

following result for the lower bounds of (1.5.1).

Theorem 1.5.8 (Rudnick and Soundararajan). For every even natural number k we

have

∑
∣d∣≤D

L(
1

2
, χd)

k

≫k D(logD)
k(k+1)

2 . (1.5.7)

This result has been improved by Radziwi l l and Soundararajan [RS13] and Heap and

Soundararajan [HS22] who showed that (1.5.7) holds for all real k > 0. For upper,

bounds Soundararajan [Sou09] showed that, under the condition of the Generalised

Riemann Hypothesis we have

∑
∣d∣≤D

L(
1

2
, χd)

k

≪k,ε D(logD)
k(k+1)

2
+ε (1.5.8)

for all positive real k and ε > 0. In a recent paper, Gao [Gao21b] proved, unconditionally,

that for every 0 ≤ k ≤ 2 we have

∑
0<d<X

d square-free
(d,2)=1

∣L(
1

2
, χ8d)∣

k

≪k D(logD)
k(k+1)

2 .

Conrey, Farmer and Zirnbauer [CFZ08] presented a generalisation of the heuristic argu-

ments given in [CFK+05] to conjecture asymptotic formulas for the ratios of products

of Dirichlet L-functions.
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Conjecture 1.5.9 (Conrey, Farmer and Zirnbauer). Let D+ = {L(s,χd) ∶ d > 0} be the

symplectic family of L-functions associated with the quadratic character χd and suppose

that the real parts of αk and γq are positive. Then

∑
0<d≤D

∏
K
k=1L (1

2 + αk, χd)

∏
Q
q=1L (1

2 + γq, χd)

= ∑
0<d≤D

∑
ε∈{−1,1}K

(
∣d∣

π
)

1
2 ∑

K
k=1(εkαk−αk) K

∏
k=1

g+ (
1

2
+
αk − εkαk

2
)

× YD(ε1α1, . . . , εKαK ;γ)AD(ε1α1, . . . , εKαK ;γ)(1 + o(1))

where

g+(s) =
Γ (1−s

2
)

Γ ( s
2
)
,

AD(α;γ) =∏
p

∏1≤j≤k≤K (1 − 1

p1+αj+αk
)∏1≤q<r≤Q (1 − 1

p1+γq+γr
)

∏
K
k=1∏

Q
q=1 (1 − 1

p1+αk+γq
)

×
⎛

⎝
1 + (1 +

1

p
)
−1

∑
0<∑k ak+∑q cq is even

∏
Q
q=1 µ(p

cq)

p∑k(
1
2
+αk)+∑q cq( 1

2
+γq)

⎞

⎠

and

YD(α;γ) =
∏1≤j≤k≤K ζ(1 + αj + αk)∏1≤q<r≤Q ζ(1 + γq + γr)

∏
K
k=1∏

Q
q=1 ζ(1 + αk + γq)

.

As an application of the Ratios Conjecture 1.5.9, Conrey and Snaith [CS07] used the

conjecture to compute the one-level density function for the zeros of quadratic Dirich-

let L-functions complete with lower order terms. Namely, conditional on the Ratios

Conjecture 1.5.9, they proved the following result.

Theorem 1.5.10 (Conrey and Snaith). Assuming the Ratios Conjecture 1.5.9, the one-

level density for the zeros of the family of quadratic Dirichlet L-functions associated with

the quadratic Dirichlet character χd is given by

∑
d≤D
∑
γd

f(γd) =
1

2π ∫
∞

−∞
f(t)∑

d≤D

⎛

⎝
log (

d

π
) +

1

2

Γ′

Γ
(

1

4
+
it

2
) +

1

2

Γ′

Γ
(

1

4
−
it

2
)

+ 2
⎛

⎝

ζ ′(1 + 2it)

ζ(1 + 2it)
+A′

D(it; it)

− (
d

π
)
−it Γ (1

4 −
it
2
)

Γ (1
4 +

it
2
)
ζ(1 − 2it)AD(−it; it)

⎞

⎠

⎞

⎠
dt(1 + o(1)),

where γd is the ordinate of a generic zero of L(s,χd) on the half-line,

AD(−r; r) =∏
p

(1 −
1

(p + 1)p1−2r
−

1

p + 1
)(1 −

1

p
)
−1

,
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A′
D(r; r) =∑

p

log p

(p + 1)(p1+2r − 1)

and f is a function such that f(z) is holomorphic throughout the strip ∣R(z)∣ < 2, is

real on the real line, even and f(x) ≪ (1 + x2)−1 as x→∞.

Conrey and Snaith also presented another application of the Ratios Conjecture 1.5.9,

namely under the condition of the Ratio Conjecture 1.5.9, they obtained an asymptotic

formula for the second mollified moment, where the mollifier is defined as

M(χd, P ) ∶= ∑
n≤y

µ(n)χd(n)P (
log( y

n
)

log y )

n
1
2

,

where P is a polynomial satisfying P (0) = 0 and P ′(0) = 0, y = Xθ for θ > 0. In

particular, if we let

ξ (
1

2
+ α,χd) ∶= (

d

π
)

α
2

Γ(
1

4
+
α

2
)L(

1

2
+ α,χd) = ξ (

1

2
− α,χd) , (1.5.9)

then, conditionally on the Ratios Conjecture 1.5.9 Conrey and Snaith proved the fol-

lowing result.

Theorem 1.5.11 (Conrey and Snaith). Assuming the Ratios Conjecture 1.5.9, we have

for even polynomials Q1 and Q2 and polynomials P1 and P2 satisfying P1(0) = P2(0) =

P ′
1(0) = P

′
2(0) = 0, and y =Xθ with any θ > 0,

Q1 (
2

logD

d

dα
)Q2 (

2

logD

d

dβ
) ∑

0<d≤D
ξ (

1

2
+ α,χd) ξ (

1

2
+ β,χd)M(χd, P1)M(χd, P2)

RRRRRRRRRRRα=β=0

=D∗⎛

⎝

1

8θ ∫
1

0
∫

1

0
(

1

θ
P ′′

1 (r)Q̃1(u) − 4θP1(r)Q
′
1(u))(

1

θ
P ′′

2 (r)Q̃2(u) − 4θP2(r)Q
′
2(u))dudr

+
1

4
(

1

θ
P ′

1(1)Q̃1(1) + 2P1(1)Q1(1))(
1

θ
P ′

2(1)Q̃2(1) + 2P2(1)Q2(1)) +O (
1

logD
)
⎞

⎠
,

where D∗ denotes the number of fundamental discriminants less than or equal to D and

Q̃(u) = ∫
u

0
Q(t)dt.

1.6 Random Matrix Theory

Random Matrix Theory is the study of matrices whose elements are random variables,

and in particular we study the properties of the eigenvalues and eigenvectors of these

matrices. Random Matrix Theory has many applications, for example in Statistics

and Nuclear Physics, however in this section we will briefly discuss its applications to
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1.6. Random Matrix Theory

Number Theory and, in particular, its applications to the Riemann zeta-function and

Dirichlet L-functions.

We first present some of the random matrices that have applications in Number Theory.

� A Unitary Matrix A is an N ×N matrix such that AĀT = ĀTA = IN , where ĀT

denotes the complex transpose of A and IN is the N ×N identity matrix. The

group of all Unitary matrices is called the Unitary group and is denoted by U(N).

� A Special Orthogonal Matrix A is an N ×N unitary matrix of dimension N

such that AAT = ATA = IN with deg(A) = 1. The group of all N × N special

orthogonal matrices is called the Special orthogonal group and is called SO(N).

� A Unitary Symplectic matrix A is an 2N × 2N unitary matrix of dimension

2N such that AJAT = A where

J =
⎛

⎝

0 IN

−IN 0

⎞

⎠
.

The group of all 2N ×2N unitary matrices is called the Unitary symplectic group

and is denoted by USp(2N).

Each group has an attached Haar measure. The Haar measure for the Unitary group

U(N) is

dA ∶=
1

N !(2π)N
∏

1≤j<k≤N
∣eiθk − eiθj ∣2dθ1 . . . dθN ,

and for the Special Orthogonal group SO(2N) and the Unitary Symplectic group

USp(2N)

dA ∶=
1

N !(4π)N
∏

1≤j<k≤N
∣eiθk − e−iθj ∣2∣eiθk − eiθj ∣2

N

∏
k=1

∣eiθk − e−iθk ∣dθ1 . . . dθN ,

where eiθn are the eigenvalues of the associated matrices.

The connection between Analytic Number Theory and Random Matrix Theory was first

observed by Montgomery and Dyson. Assuming the Riemann Hypothesis, Montgomery

[Mon73] studied the pair correlation of the zeros of the Riemann zeta-function and put

forward the following conjecture.

Conjecture 1.6.1 (Montgomery). Let γ be a generic ordinate of a zero of the Riemann

zeta-function, then for a suitable test function f we have

lim
T→∞

1

N(T )
∑

0<γm,γn≤T
f (

γn
2π

log
γn
2π

−
γm
2π

log
γm
2π

) = ∫
∞

−∞
f(x)(δ(x) + 1 − (

sin(πx)

πx
)

2

)dx,

(1.6.1)

where N(T ) = T
2π log T

2π and δ is the Dirac’s delta function.
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In Random Matrix Theory, if A ∈ U(N) then the eigenvalues of A are eiθn for 1 ≤ n ≤ N

and 0 ≤ θn < 2π. Similarly if A ∈ SO(2N) or A ∈ USp(2N), then the eigenvalues occur in

conjugate pairs, thus the eigenvalues are e±iθn where 1 ≤ n ≤ N and 0 ≤ θn < 2π. Dyson

[Dys62] proved the following result for the pair correlation for the matrices A ∈ U(N).

Theorem 1.6.2 (Dyson). For a nice test function f we have

lim
N→∞∫U(N)

(
1

N
∑

1≤m,n≤N
f (θn

N

2π
− θm

N

2π
))dA = ∫

∞

−∞
f(x)(δ(x) + 1 − (

sin(πx)

πx
)

2

)dx,

(1.6.2)

where δ is Dirac’s delta function.

Comparing (1.6.1) and (1.6.2), we see that the pair correlation for U(N) is the same

as the conjecture for the pair correlation for the Riemann zeta-function.

Similarly, we can compute moments of the characteristic polynomials of the matrices

defined above. For A ∈ U(N), we define the characteristic polynomial of A by

ΛA(s) = det(I − ĀT s) =
N

∏
n=1

(1 − se−iθn) (1.6.3)

and for either A ∈ SO(2N) or A ∈ USp(2N), the characteristic polynomial of A is

defined as

ΛA(s) = det(I − ĀT s) =
N

∏
n=1

(1 − seiθn)(1 − se−iθn). (1.6.4)

Keating and Snaith [KS00a, KS00b, KS03] proved the following results about the mo-

ments of these characteristic polynomials.

Theorem 1.6.3 (Keating and Snaith). We have

∫
U(N)

∣ΛA(e
iθ)∣

2k
∼ Nk2

k−1

∏
j=0

(
j!

(j + k)!
) , (1.6.5)

∫
SO(2N)

∣ΛA(e
0)∣

k
∼ N

k(k−1)
2 2

k(k+1)
2

k

∏
j=1

(
j!

(2j)!
) (1.6.6)

and

∫
USp(2N)

∣ΛA(e
0)∣

k
∼ N

k(k+1)
2 2

k(k+1)
2

k

∏
j=1

(
j!

(2j)!
) . (1.6.7)

Under the correspondence N = log ( T
2π

) and N = 1
2 logD, Keating and Snaith were able

to formulate conjectures for the moments of the Riemann zeta-function and Dirichlet

L-functions as stated in Section 1.2 and Section 1.5 respectively. In particular, they

were able to conjecture a precise value for the term gk which had not been obtained

previously.
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1.7 Overview of Thesis

In this thesis, the main focus has been the study of analytic number theory over function

fields, specifically the study of several problems involving moments and mean values

of Dirichlet L-functions in the function field context. In Chapter 2, we give all the

necessary background in function fields that is needed for this thesis.

In Chapter 3 we prove a theorem about the first moment of quadratic Dirichlet L-

functions at the critical point s = 1
2 in function fields. In particular, we prove, com-

pared to the result known previously, a secondary main term and improve the error

term. In the following Chapter, Chapter 4, we prove a theorem about the average size

of the algebraic group K2(O) in function fields and in Chapter 5, we use the methods

of Rudnick and Soundararajan [RS06] to prove a theorem about the lower bounds of

quadratic Dirichlet L-functions at s = 1
2 in function field.

In the next Chapter, Chapter 6, we adapt the recipe for conjecturing moments of Dirich-

let L-functions, Conjecture 1.5.7, to moments of Dirichlet L-functions in function fields

in even characteristic. In Chapter 7, we adapt the recipe for conjecturing ratios of

products of Dirichlet L-functions, Conjecture 1.5.9, to ratios of products of Dirichlet

L-functions in function fields in even characteristic. Then in the following Chapter,

Chapter 8, we present two applications of the Ratios conjecture in even characteristic

which adapt to function fields in even characteristic the methods used to obtain Theo-

rem 1.5.10 and Theorem 1.5.11.

Finally, in Chapter 9, we prove a result about the second moment of Dirichlet L-

functions with one and two twists, when averaged over primitive Dirichlet characters

of a certain modulus in function fields.
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Chapter 2

Background on Function Fields

In this chapter, we will give some background on Number Theory in Function Fields

as well as state some preliminary results. Most of these facts are stated in [Ros02].

2.1 Function Field Preliminaries

Let Fq denote a finite field with q elements and let A = Fq[T ] denote the polynomial

ring over Fq. This ring has many common properties with the ring of integers Z, which

can be found in [Ros02, Chapter 1]. Thus, many of the number theoretic questions that

are asked about Z have analogues in A.

An element f(T ) ∈ A can be written as

f(T ) = αnT
n + . . . + α0,

where αi ∈ Fq for all i = 0, . . . , n. If αn ≠ 0, we say that f has degree n, which will

be denoted as deg(f) = n. We will denote by An and A≤n the set of all polynomials

of degree n and degree at most n in A respectively. Furthermore, if αn ≠ 0, we define

the sign of f , sgn(f), to be equal to αn ∈ F∗q , where F∗q denotes the set of all non-

zero elements in Fq. The following proposition states some important properties about

deg(f) and sgn(f).

Proposition 2.1.1 ([Ros02, p.1]). Let f and g be two non-zero polynomials in A. Then

we have

i) deg(fg) = deg(f) + deg(g).

ii) sgn(fg) = sgn(f)sgn(g).

iii) deg(f + g) ≤ max{deg(f),deg(g)}, with equality holding if deg(f) ≠ deg(g).
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2.1. Function Field Preliminaries

Definition 2.1.2. A polynomial f ∈ A is called monic if sgn(f) = 1.

We will let A+ denote the set of all monic polynomials in A. Furthermore, we will

denote by A+
n and A+

≤n to be the set of all monic polynomials of degree n and degree at

most n in A respectively.

Definition 2.1.3. A polynomial f ∈ A is called reducible if we can write f(T ) =

g(T )h(T ), where deg(g) > 0 and deg(h) > 0. Otherwise f is called irreducible.

We will let the letter P denote a monic irreducible polynomial in A. Similarly, we will

let P and Pn denote the set of all monic irreducible polynomials and the set of all monic

irreducible polynomials of degree n in A respectively. The next theorem is the function

field analogue of the Prime Number Theorem.

Theorem 2.1.4 (Prime Polynomial Theorem, [Ros02, Theorem 2.2]). Let #Pn denote

the number of monic irreducible polynomials of degree n in A, then

#Pn =
qn

n
+O (

q
n
2

n
) . (2.1.1)

Remark 2.1.5. Monic polynomials play the role of positive integers and monic irre-

ducible polynomials play the role of prime numbers. We will also define sgn(0) = 0 and

deg(0) = −∞.

Since the ring A has the unique factorisation property, we have that every f ∈ A, f ≠ 0

can be uniquely written in the form

f = αP e1
1 . . . P er

r , (2.1.2)

where α ∈ F∗q and each Pi is a monic irreducible polynomial, Pi ≠ Pj for i ≠ j and ei is

a non-negative integer for i = 1, . . . , r.

Definition 2.1.6. For a polynomial f ∈ A, we define the norm of f to be

∣f ∣ ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

qdeg(f) if f ≠ 0,

0 if f = 0.

Definition 2.1.7. The zeta function of A, which is denoted by ζA(s), is defined by the

infinite series

ζA(s) ∶= ∑
f∈A+

1

∣f ∣s
=∏

P

(1 −
1

∣P ∣s
)

−1

R(s) > 1. (2.1.3)

There are qn monic polynomials of degree n in A, therefore

ζA(s) =
∞
∑
n=0

qn

qns
=

1

1 − q1−s . (2.1.4)
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From this geometric series, we can see that ζA(s) is never zero and thus in this setting

the Riemann hypothesis is true.

We will make use of the change of variables u = q−s, so that Z(u) = ζA(s) and so,

Z(u) =
1

1 − qu
. (2.1.5)

Definition 2.1.8. The Gamma function of A is defined to be

ΓA(s) ∶=
1

1 − q−s
.

Using (2.1.5), we can prove the following result.

Theorem 2.1.9 ([Ros02, p.12]). The zeta function ζA(s) can be continued to a mero-

morphic function to the whole of the complex plane with a simple pole at s = 1 with

residue 1
log q . If we define ξA(s) = q−sΓA(s)ζA(s), then

ξA(s) = ξA(1 − s). (2.1.6)

2.2 Multiplicative Functions on Fq[T ]

In this section, we will define some multiplicative functions for A and state some pre-

liminary results which will be used throughout this thesis.

Definition 2.2.1. The Möbius function for A is defined as

µ(f) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(−1)r if f = αP1 . . . Pr,

0 otherwise,

where the Pj are distinct monic polynomials.

Taking Euler products, we see that for all s ∈ C and all R ∈ A, we have

∑
E∣R

µ(E)

∣E∣s
=∏
P ∣R

(1 −
1

∣P ∣s
) (2.2.1)

and differentiating (2.2.1), we see that for all s ∈ C/{0}, we have

∑
E∣R

µ(E)deg(E)

∣E∣s
= −

⎛

⎝
∏
P ∣R

1 −
1

∣P ∣s
⎞

⎠

⎛

⎝
∑
P ∣R

deg(P )

∣P ∣s − 1

⎞

⎠
. (2.2.2)

Definition 2.2.2. For all R ∈ A, we define ω(R) to be the number of distinct prime

factors of R.
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Lemma 2.2.3 ([AY21, Lemma 4.5]). Let R ∈ A+. We have that

∑
P ∣R

deg(P )

∣P ∣ − 1
≪ logω(R). (2.2.3)

Lemma 2.2.4 ([Yia20, Lemma A.2.3]). For deg(R) > 1, we have

ω(R) ≪
logq ∣R∣

logq logq ∣R∣
, (2.2.4)

where the implied constant is independent of q.

Lemma 2.2.5. We have

2ω(R) = ∑
E∣R

∣µ(E)∣. (2.2.5)

Also, for any ε > 0 we have

2ω(R) ≪ε ∣R∣ε. (2.2.6)

Proof. The first part of the lemma follows from the definition of µ(f) and ω(f). For

the second part, notice that

2ω(R) = ∑
E∣R

∣µ(E)∣ ≤ ∑
E∣R

1 = d(R),

where d(f) denotes the divisor function for A. The proof follows from using the fact

that d(f) ≪ε ∣f ∣ε for every ε > 0. ∎

Definition 2.2.6. The Euler-Totient function for A is defined as

φ(f) ∶= ∑
g∈A+

deg(g)<deg(f)
(f,g)=1

1. (2.2.7)

Lemma 2.2.7 ([Yia20, Lemma A.2.4]). For deg(R) > q we have

φ(R) ≫
∣R∣

logq logq ∣R∣
. (2.2.8)

For f ∈ A+, let dk(f) represent the number of ways to write f as a product of k factors.

Then we have the following results about dk(f).

Lemma 2.2.8. We have

∑
f∈A+

≤z

dk(f)

∣f ∣
∼ c(k)zk (2.2.9)

for some positive constant c(k).

Proof. The proof is similar to that given in [Ros02, Proposition 2.5]. ∎

Lemma 2.2.9. We have

∑
f∈A+

≤z

dk(f 2)

∣f ∣
∼ C(k)z

k(k+1)
2 (2.2.10)

for some positive constant C(k).

Proof. The proof is similar to that given in [And16, p. 12]. ∎
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2.3 Dirichlet characters in Function Fields

In this section, we will discuss some properties about Dirichlet characters over function

fields.

Definition 2.3.1. Let Q ∈ A+. Then a Dirichlet character modulo Q is defined to be

a function χ ∶ A→ C which satisfies the following properties:

i) χ(f + gQ) = χ(f), ∀f, g ∈ A.

ii) χ(fg) = χ(f)χ(g), ∀f, g ∈ A.

iii) χ(f) ≠ 0 ⇐⇒ (f,Q) = 1, where the symbol (f,Q) denotes the greatest common

divisor of the functions f and Q.

A Dirichlet character modulo Q induces a homomorphism from (A/QA)∗ → C and

conversely, given such a homomorphism, there is a uniquely corresponding Dirichlet

character. The trivial character χ0 is defined to be

χ0(f) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if (f,Q) = 1,

0 if (f,Q) > 1.

The number of Dirichlet characters modulo Q is equal to φ(Q). For a Dirichlet character

modulo Q, we have the following result.

Proposition 2.3.2 (Orthogonality Relations, [Ros02, Proposition 4.2]). Let χ and ψ

be two Dirichlet characters modulo Q and let f and g be two elements in A which are

relatively prime to Q. Then

i)

∑
f

χ(f)ψ(f) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

φ(Q) if χ = ψ,

0 if χ ≠ ψ.

ii)

∑
χ

χ(f)χ̄(g) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

φ(Q) if f ≡ g(mod Q),

0 if f ≢ g(mod Q).

The first sum is over any representatives of (A/QA) and the second sum is over all

Dirichlet characters modulo Q.

Definition 2.3.3. A Dirichlet character χ modulo Q is even if χ(cA) = χ(A) for all

c ∈ F∗q and all A ∈ Fq[T ]. Otherwise χ is said to be odd.
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We will let φ+(Q) and φ−(Q) denote the number of even and odd characters modulo

Q respectively. From [KR14], we know that φ+(Q) = φ(Q)
q−1 and φ−(Q) = q−2

q−1φ(Q).

Furthermore, when the sum is restricted to odd and even Dirichlet characters, we have

the following result.

Lemma 2.3.4 ([DD̄LV21, Lemma 2.1]). For polynomials A,B ∈ Fq[T ] relatively prime

to Q with deg(Q) ≥ 1, we have

∑
χ(mod Q)
χ even

χ(A)χ̄(B) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

φ(Q)
q−1 if A ≡ cB(mod Q), c ∈ F∗q ,

0 otherwise,

and

∑
χ(mod Q)
χ odd

χ(A)χ̄(B) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

q−2
q−1φ(Q) if A ≡ B(mod Q)

−φ(Q)
q−1 if A ≡ cB(mod Q), c ∈ F∗q

0 otherwise.

Definition 2.3.5. Let Q ∈ A+, S∣Q and χ be a character of modulus Q. We say that S

is an induced modulus of χ if there exists a character χ1 of modulus S such that

χ(A) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

χ1(A) if (A,Q) = 1,

0 otherwise.

We say χ is primitive if there is no induced modulus of strictly smaller norm than Q.

Otherwise χ is said to be non-primitive.

We let φ∗(Q) denote the number of primitive characters of modulus Q. We have the

following result about φ∗(Q).

Lemma 2.3.6 ([Yia20, Lemma A.2.5.]). For deg(R) > q, we have

φ∗(R) ≫
φ(R)

logq logq ∣R∣
. (2.3.1)

If Q is a monic irreducible polynomial, then every character modulo Q is primitive

except the trivial character. We will denote the sum over primitive characters of modulo

Q by ∑
∗
χ(mod Q). For the sum of primitive characters, we have the following results.

Lemma 2.3.7. Let P be a monic, irreducible polynomial and let A,B ∈ A. Then we

have

1

φ(P )
∑

∗

χ(mod P )
χ(A)χ̄(B) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 − 1
φ(P ) if A ≡ B(mod P ),

− 1
φ(P ) otherwise.

Proof. Using Proposition 2.3.2 and the arguments stated above proves the Lemma. ∎
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Lemma 2.3.8 ([AY21, Lemma 3.7]). Let R ∈ A+ and A,B ∈ A. Then

∑
∗

χ(mod R)
χ(A)χ̄(B) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∑ EF=R
F ∣(A−B)

µ(E)φ(F ) if (AB,R) = 1,

0 otherwise

As a Corollary we have the following result.

Corollary 2.3.9 ([AY21, Corollary 3.8]). For all R ∈ A+ we have that

φ∗(R) = ∑
EF=R

µ(E)φ(F ). (2.3.2)

2.4 Dirichlet L-functions in Function Fields

In this section, we will define the Dirichlet L-function corresponding to the Dirichlet

character defined in Section 2.3.

Definition 2.4.1. Let χ be a Dirichlet character modulo Q. Then the Dirichlet L-series

corresponding to χ is defined by

L(s,χ) ∶= ∑
f∈A+

χ(f)

∣f ∣s
(2.4.1)

which converges absolutely for R(s) > 1.

Since the Dirichlet characters are multiplicative, we have

L(s,χ) =∏
P

(1 −
χ(P )

∣P ∣s
)

−1

(2.4.2)

for R(s) > 1. For the trivial character, we have

L(s,χ0) =∏
P ∣Q

(1 −
1

∣P ∣s
) ζA(s),

which shows that L(s,χ0) can be analytically continued to the whole C and has a

simple pole at s = 1. When χ is a non-trivial character, we have the following result.

Proposition 2.4.2 ([Ros02, Proposition 4.3]). Let χ be a non-trivial Dirichlet character

modulo Q. Then L(s,χ) is a polynomial in u = q−s of degree at most deg(Q) − 1.

From Proposition 2.4.2, we have the following Corollary.

Corollary 2.4.3 ([Ros02, p.36]). If χ is a non-trivial Dirichlet character modulo Q,

then L(s,χ) can be analytically continued to an entire function to the whole complex

plane C.

Using the change of variables u = q−s, we have, for a non-trivial Dirichlet character

modulo Q, that

L(u,χ) = ∑
f∈A+

≤deg(Q)−1

χ(f)udeg(f). (2.4.3)
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2.5 Zeta functions associated with curves

For any algebraic curve C of genus g ≥ 1 over Fq, the zeta function to C was first

introduced by Artin [Art24] and is defined as

ZC(u) ∶= exp(
∞
∑
n=1

Nn(C)
un

n
) ∣u∣ <

1

q
, (2.5.1)

where Nn(C) is the number of Fqn rational points on C. Weil [Wei48] showed that

ZC(u) is a rational function of the form

ZC(u) =
PC(u)

(1 − u)(1 − qu)
, (2.5.2)

where PC(u) is a polynomial of degree 2g with integer coefficients satisfying the func-

tional equation

PC(u) = (qu2)gPC (
1

qu
) . (2.5.3)

Weil also proved the Riemann Hypothesis for function fields, namely that all of the

zeros of PC(u) lie on the circle ∣u∣ = q−
1
2 .

2.6 Quadratic Function Field in Odd characteristic

In this section, we assume that q is odd. Most of the facts stated in this section are

stated in [AK12].

2.6.1 Characters and the Reciprocity Law

Let P be a monic, irreducible polynomial in A. Then [Ros02, Proposition 1.10] tells us

that if f ∈ A and P ∤ f , then the congruence Xd ≡ f(mod P ) is solvable if and only if

f
∣P ∣−1
d ≡ 1(mod P ),

where d is a divisor of q−1. Therefore if P ∤ f , then there is a unique element ( f
P
)
d
∈ F∗q

such that

f
∣P ∣−1
d ≡ (

f

P
)
d

(mod P ),

otherwise we define ( f
P
)
d
= 0. Thus, we can define the quadratic residue symbol ( f

P
) ∈

{±1} by

(
f

P
) ≡ f

∣P ∣−1
2 (mod P ) (2.6.1)
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Chapter 2. Background on Function Fields

if f is coprime to P . If P ∣f , then ( f
P
) = 0. We can also define the Jacobi symbol for

arbitrary monic Q. Let f be coprime to Q and Q = P e1
1 . . . P er

r , then the Jacobi symbol

is defined as

(
f

Q
) =

r

∏
i=1

(
f

Pi
)
ei

. (2.6.2)

Theorem 2.6.1 (Quadratic Reciprocity, [Ros02, Theorem 3.3]). Let A,B ∈ A be rela-

tively prime and let A ≠ 0 and B ≠ 0. Then

(
A

B
) = (

B

A
) (−1)

q−1
2

deg(A)deg(B). (2.6.3)

When q ≡ 1(mod 4), Theorem 2.6.1 gives

(
A

B
) = (

B

A
) . (2.6.4)

Thus, in the rest of this section and in Chapters 3, 4 and 5 we will further restrict q to

q ≡ 1(mod 4).

2.6.2 Quadratic Dirichlet L-functions

Definition 2.6.2. Let D ∈ A be square-free. We define the quadratic character χD

using the quadratic residue symbol for A by

χD(f) = (
D

f
) . (2.6.5)

Therefore if P is a monic irreducible polynomial in A, we have

χD(P ) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0 if P ∣D,

1 if P ∤D and D is a square modulo P,

−1 if P ∤D and D is a non-square modulo P.

Definition 2.6.3. The L-function corresponding to the quadratic character χD is de-

fined as

L(s,χD) ∶= ∑
f∈A+

χD(f)

∣f ∣s
, R(s) > 1. (2.6.6)

For the change of variables u = q−s, we have

L(s,χD) = L(u,χD) = ∑
f∈A+

χD(f)udeg(f) =∏
P

(1 − χD(P )udeg(P ))
−1
. (2.6.7)

From Proposition 2.4.2, we know that L(u,χD) is a polynomial in u of degree at most

deg(D)−1. For P a monic irreducible polynomial, we can define the quadratic character

χP and the L-function corresponding to χP in a similar way.
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2.6. Quadratic Function Field in Odd characteristic

2.6.3 The Hyperelliptic Ensemble

Let

Hn = {D ∈ A ∶D monic, square-free, deg(D) = n}. (2.6.8)

Then, by [Ros02, Proposition 2.3], for g ≥ 1, we have

#H2g+1 = q
2g(q − 1) =

∣D∣

ζA(2)
and #H2g+2 = q

2g+1(q − 1) =
∣D∣

ζA(2)
. (2.6.9)

Let k = Fq(T ) denote the rational function field over Fq and let ∞k be the infinite

prime associated with 1
T . If D ∈ H2g+1, ∞k ramifies in k(

√
D), i.e., KD ∶= k(

√
D) is an

ramified quadratic extension of k. If D ∈ H2g+2, then ∞k splits in k(
√
D), i.e., KD is a

real quadratic extension of k. Let γ be a fixed generator of F∗q , then for any D ∈ H2g+2,

∞k is an inert in k(
√
γD), i.e., KγD is an inert imaginary quadratic extension of k.

From [Rud10] we know that for any D ∈ H2g+2, L(u,χD) has a trivial zero at u = 1, and

for a fixed generator γ of F∗q , L(u,χγD) has a trivial zero at u = −1. Therefore if KD is

ramified, we can define the complete L-function L∗(u,χD) as

L∗(u,χD) = L(u,χD). (2.6.10)

Similarly, if KD is real, we can define the complete L-function L∗(u,χD) as

L∗(u,χD) = (1 − u)−1L(u,χD). (2.6.11)

Finally, if KγD is a inert imaginary, we can define the complete L-function L∗(u,χγD)

as

L∗(u,χγD) = (1 + u)−1L(u,χγD). (2.6.12)

These complete L-functions are all polynomials in u of degree 2g which satisfies the

functional equation

L∗(u,χD̃) = (qu2)gL∗ (
1

qu
,χD̃) , (2.6.13)

where D̃ = D if KD̃ is ramified or real and D̃ = γD if KD̃ is inert imaginary. In his

thesis, Artin proved that these L∗(u,χD̃) are equal to PCD(u), where PC(u) is defined

in Section 2.5, D is a monic, square-free polynomial of degree 2g + 1 or 2g + 2 and the

affine equation y2 = D(T ) defines a projective and hyperelliptic curve CD of genus g

over Fq.
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Chapter 2. Background on Function Fields

For D ∈ H2g+1, let

XD(s) = ∣D∣
1
2
−sX(s)

where

X(s) = q−
1
2
+s

Then we define the completed L-function Λ(s,χD) by

Λ(s,χD) = XD(s)−
1
2L(s,χD). (2.6.14)

The completed L-function satisfies the following functional equation

Λ(s,χD) = Λ(1 − s,χD). (2.6.15)

2.7 Quadratic Function Field in Even characteristic

For this section, let q be a power of 2. Most of the facts stated in this section are stated

in [ABJ16, BJ18].

2.7.1 Quadratic extensions of k

Any separable quadratic extension K of k is of the form K =Ku ∶= k(xu), where xu is a

zero of X2 +X + u = 0 for some u ∈ k. Two elements u and v are equivalent if Ku =Kv.

Furthermore, they are also equivalent if and only if u + v = ρ(w), where w ∈ k and

ρ ∶ k → k is an additive homomorphism defined by ρ(x) = x2 + x (for more information

see [Has35, HL10]). For ξ ∈ Fq/ρ(Fq), the following Theorem is due to Y. Li, but a

proof is given in [BJ18].

Lemma 2.7.1 ([BJ18, Lemma 2.2]). Any separable quadratic extension K of k is of the

form K =Ku, where u ∈ k can be uniquely normalised to satisfy the following conditions:

u =
m

∑
i=1

ei

∑
j=1

Qi,j

P 2j−1
i

+
n

∑
`=1

α`T
2`−1 + α, (2.7.1)

where each Pi ∈ P are distinct, Qi,j ∈ A with deg(Qi,j) < deg(Pi), Qi,ei ≠ 0, α ∈ {0, ξ}, α` ∈

Fq and αn ≠ 0 for n > 0.

Let u ∈ k be normalised as in (2.7.1). The infinite prime ∞k = ( 1
T
) of k splits, is inert

or is ramified in Ku according to if n = 0 and α = 0, n = 0 and α = ξ and n > 0. Then

the field Ku is called real, inert imaginary or ramified imaginary respectively. The

discriminant Du of Ku is given by

Du =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∏
m
i=1P

2ei
i if n = 0,

∏
m
i=1P

2ei
i ( 1

T
)

2n
if n > 0.
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2.7. Quadratic Function Field in Even characteristic

By the Hurwitz genus formula ([Sti93, Theorem III 4.12]), the genus gu of Ku is given

by

gu =
1

2
deg(Du) − 1. (2.7.2)

For M ∈ A+, let r(M) = ∏P ∣M P and t(M) = M × r(M). For P ∈ P, let vP be the

normalised valuation at P , that is vP (M) = e, where P e∣∣M . Let B be the set of monic

polynomials M such that vP (M) = 0 or odd for any P ∈ P. Thus for M ∈ B, t(M) is a

square. Also, for M ∈ B, let `P = 1
2(vP (M) + 1) and

M̃ = ∏
P ∣M

P `P =
√
t(M). (2.7.3)

Furthermore, let C be the set of rational functions D
M ∈ k such that D ∈ A, M ∈ B and

deg(D) < deg(M). Also, let E be the set of rational functions of the form

D

M
= ∑
P ∣M

`P

∑
i=1

AP,i
P 2i−1

,

where deg(AP,i) ≤deg(P ) for any P ∣M and for all 1 ≤ i ≤ `P . Note that for D
M ∈ E ,

gcd(D,M) = 1 if and only if AP,`P ≠ 0 for any P ∣M . Thus let

F = {
D

M
∈ E ∶ AP,`P ≠ 0 for any P ∣M} (2.7.4)

and

F ′ = {u + ξ ∶ u ∈ F}. (2.7.5)

For any positive integer s, let Gs be the set of polynomials F (T ) ∈ A of the form

F (T ) = α +
s

∑
i=1

αiT
2i−1

where α ∈ {0, ξ}, αi ∈ Fq and αs ≠ 0 and let G = ∪s≥1Gs. Then let

I = {u + F ∶ u ∈ F̂ ,G ∈ G} (2.7.6)

where F̂ = F ∪ F0 and F0 = {0}. Then by the normalisation given in (2.7.1), we see

that u ↦ Ku defines a one-to-one correspondence between I, F and F ′ and the set of

all ramified imaginary, real and inert imaginary quadratic extensions of k respectively.

Furthermore, for a positive integer n, let

Bn = {M ∈ B ∶ deg(t(M)) = 2n}, Cn = {
D

M
∈ C ∶M ∈ Bn}

En = E ∩ Cn, Fn = F ∩ En and F ′
n = {u + ξ ∶ u ∈ Fn}.
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Also, for any integers r ≥ 0 and s ≥ 1, let

I(r,s) = {u + F ∶ u ∈ Fr, F ∈ Gs}. (2.7.7)

Then, for any integer n ≥ 1, let In be the union of all I(r,s), where (r, s) runs through

all pairs of non-negative integers r and s with s > 0 and r + s = n. Then under the

correspondence u↦Ku, In, Fn and F ′
n corresponds to the set of ramified imaginary, real

and inert imaginary separable quadratic extensions Ku of k with genus n−1 respectively.

Remark 2.7.2. The map Bn → A+
n defined by M → M̃ and the map A+

n → Bn defined

by N → N∗ = N2/r(N) are inverses of each other.

We also have the following result about the sizes of the sets Bn, En, Fn and In.

Lemma 2.7.3 ([BJ18], Lemma 2.3). For positive integers n, we have #Bn = qn, #En =

q2n, #Fn = ζA(2)−1q2n and #In = 2ζA(2)−1q2n−1.

For each M ∈ B, let CM be the set of rational functions u ∈ C whose denominator divides

M , EM = E ∩ CM and FM = F ∩ CM . Furthermore we have that CM and EM are abelian

groups under addition and #EM = ∣M̃ ∣ and #FM = φ(M̃).

We also let F̃ be the set of rational functions u ∈ F whose denominator is a monic

irreducible polynomial. In other words, we let

F̃ = {u =
A

P
∈ F ∶ P ∈ P,0 ≠ A ∈ A and deg(A) < deg(P )} .

Also, let

F̃ ′ = {u + ξ ∶ u ∈ F̃}

and

Ĩ = {u + F ∶ u ∈ F̃ , F ∈ G}.

Then under the correspondence u ↦ Ku, Ĩ, F̃ and F̃ ′ corresponds to the set of ram-

ified imaginary, real and inert imaginary separable quadratic extensions of k whose

discriminant is a square of a prime polynomial respectively. Furthermore we let

F̃n = {u ∈ F̃ ∶ P ∈ Pn} and F̃ ′
n = {u + ξ ∶ u ∈ F̃n}

Also, for r, s ≥ 1, let

Ĩ(r,s) = {u + F ∶ u ∈ F̃r, F ∈ Gs}.

Then for integer n ≥ 1, let Ĩn be the union of all Ĩ(r,s) where (r, s) runs through all

positive integers r and s with r + s = n. Then, under the correspondence u↦Ku, Ĩg+1,

F̃g+1 and F̃ ′
g+1 corresponds to the set of ramified imaginary, real and inert imaginary

quadratic extensions of k whose discriminant is a square of a prime polynomial with

genus g.
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2.7. Quadratic Function Field in Even characteristic

Remark 2.7.4. Comparing to the odd characteristic case, the sets Ig+1, Fg+1 and F ′
g+1

correspond to the sets H2g+1, H2g+2 and γH2g+2 respectively, where γ is a fixed generator

of F∗q . Similarly, the sets Ĩg+1, F̃g+1 and F̃ ′
g+1 correspond to the sets P2g+1, P2g+2 and

γP2g+2 respectively.

2.7.2 Hasse Symbol

Definition 2.7.5. Let P ∈ P. For u ∈ k whose denominator is not divisible by P , the

Hasse symbol [u,P ) with values in F2 is defined by

[u,P ) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if X2 +X ≡ u(mod P ) is solvable in A,

1 otherwise.

Definition 2.7.6. For N ∈ A prime to the denominator of u, write N = sgn(N)∏
s
i=1P

ei
i

where Pi ∈ P are distinct and ei ≥ 1. Then

[u,N) ∶=
s

∑
i=1

ei[u,Pi). (2.7.8)

Definition 2.7.7. For u ∈ k and 0 ≠ N ∈ A, we define the quadratic symbol { u
N
} by

{
u

N
} ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(−1)[u,N) if N is prime to the denominator of u,

0 otherwise.

Remark 2.7.8. The symbol [u,n) is additive and the quadratic symbol { u
N
} is multi-

plicative.

2.7.3 Quadratic L-functions

Definition 2.7.9. For the field Ku, the character χu, the character χu on A+ is defined

as χu(f) = {uf }. For R(s) > 1, the L-function associated with χu is defined by

L(s,χu) ∶= ∑
f∈A+

χu(f)

∣f ∣s
=∏

P

(1 −
χu(P )

∣P ∣s
)

−1

. (2.7.9)

Using the change of variables z = q−s, we have

L(z,χu) = ∑
f∈A+

χu(f)z
deg(f) =∏

P

(1 − χu(P )zdeg(P ))
−1

(∣z∣ <
1

q
) . (2.7.10)

Similarly, from [Rud10], we know that L(z,χu) has a trivial zero at z = 1 if and only

if Ku is real and L(z,χu) has a zero at z = −1 if and only if Ku is inert imaginary. We
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thus define the complete L-function L∗(z,χu) as

L∗(z,χu) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

L(z,χu) if Ku is ramified,

(1 − z)−1L(z,χu) if Ku is real,

(1 + z)−1L(z,χu) if Ku is inert imaginary,

which is a polynomial of degree 2gu, where gu denotes the genus of Ku which is defined

by (2.7.2), which satisfies the functional equation

L∗(z,χu) = (qz2)guL∗ (
1

qz
,χu) .

For the hyperelliptic curve Cu ∶X2 +X + u = 0, we have that L∗(z,χu) = PCu(z), where

PC(z) was defined in Section 2.5.

For u ∈ Ig+1, let

Xu(s) = (q2g+1)
1
2
−sX(s)

where

X(s) = q−
1
2
+s

Then we define the completed L-function Λ(s,χu) as

Λ(s,χu) = Xu(s)
− 1

2L(s,χu). (2.7.11)

The completed L-function also satisfies the following functional equation

Λ(s,χu) = Λ(1 − s,χu). (2.7.12)

44



Chapter 3

The First Moment of L (12, χ) for

Real Quadratic Function Fields

The work done in this chapter is a joint work with my supervisor, Dr. Julio Andrade

and has been published in Acta Arithmetica [AM21].

3.1 Introduction and Statement of Result

A problem in function fields is to understand the asymptotic behaviour of

∑
D∈H2g+1

L(s,χD)k, (3.1.1)

for various values of s and k, as ∣D∣→∞, where q ≡ 1(mod 4), L(s,χD) is the quadratic

Dirichlet L-function defined in Section 2.6.2 and H2g+1 is the hyperelliptic ensemble

defined in Section 2.6.3. Since we are letting ∣D∣→∞, there are two limits to consider,

the first is to fix g and let q → ∞ and the second is to fix q and let g → ∞. Katz and

Sarnak [KS99a, KS99b] used equidistribution results to relate the q limit of (3.1.1) to

a random matrix integral, which was then computed by Keating and Snaith [KS00a].

We will thus concentrate on the other limit, namely when we fix q and let g → ∞. In

this setting Andrade and Keating [AK12] computed the first moment of (3.1.1), when

s = 1
2 , which is seen to be the function field analogue of Jutila’s result Theorem 1.5.2

Theorem 3.1.1 (Andrade and Keating). Let q be the fixed cardinality of the ground

field Fq and assume that q ≡ 1(mod 4). Then

∑
D∈H2g+1

L(
1

2
, χD) =

P (1)

2ζA(2)
∣D∣ [logq ∣D∣ + 1 +

4

log q

P ′

P
(1)] +O (∣D∣

3
4
+ 1

2
logq 2) , (3.1.2)

where

P (s) =∏
P

(1 −
1

∣P ∣s(∣P ∣ + 1)
) . (3.1.3)
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Motivated by Young’s [You09] number field result, Florea [Flo17a] improved the asymp-

totic formula (3.1.2) by obtaining a secondary main term of size gq
2g+1
3 and bounded

the error term by q
g
2
(1+ε).

Theorem 3.1.2 (Florea). Let q be a prime with q ≡ 1(mod 4). Then

∑
D∈H2g+1

L(
1

2
, χD) =

P (1)

2ζA(2)
q2g+1 [(2g + 1) + 1 +

4

log q

P ′

P
(1)]

+ q
2g+1
3 R(2g + 1) +O (q

g
2
(1+ε)) , (3.1.4)

where R is a polynomial of degree 1 that can be explicitly computed.

Florea [Flo17b, Flo17c] then computed the second, third and fourth moments of (3.1.1)

at s = 1
2 . Namely, she proved the following results.

Theorem 3.1.3 (Florea). Let q be a prime with q ≡ 1(mod 4). Then

∑
D∈H2g+1

L(
1

2
, χD)

2

= q2g+1P (2g + 1) +O (qg(1+ε)) , (3.1.5)

where P (x) is a polynomial of degree 3 that can explicitly be calculated.

Theorem 3.1.4 (Florea). Let q be a prime with q ≡ 1(mod 4). Then

∑
D∈H2g+1

L(
1

2
, χD)

3

= q2g+1Q(2g + 1) +O (q
3g
2
(1+ε)) , (3.1.6)

where Q(x) is a polynomial of degree 6 that can explicitly be calculated.

Theorem 3.1.5 (Florea). Let q be a prime with q ≡ 1(mod 4). Then

∑
D∈H2g+1

L(
1

2
, χD)

4

= q2g+1(a10g
10 + a9g

9 + a8g
8) +O (q2g+1g7+ 1

2
+ε) , (3.1.7)

where the coefficients a10, a9 and a8 are arithmetic factors that can be written down

explicitly.

In [And12], Andrade obtained an asymptotic formula for the first moment of (3.1.1) at

s = 1. In particular, he proved the following result.

Theorem 3.1.6 (Andrade). Let Fq be a fixed finite field with q ≡ 1(mod 4). Then

∑
D∈H2g+1

L(1, χD) = ∣D∣P (2) +O((2q)g). (3.1.8)

Andrade and Jung [AJ18], using the techniques presented by Florea [Flo17a], improved

the asymptotic formula (3.1.8) by obtaining a secondary main term of size q
g
3 and

bounded the error term by qgε for any ε > 0.
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3.1. Introduction and Statement of Result

Theorem 3.1.7 (Andrade and Jung). Let Fq be a fixed finite field with q a prime

number such that q ≡ 1(mod 4) and ε > 0. Then as g →∞, we have

∑
D∈H2g+1

L(1, χD) = P (2)q2g+1 + cq
g
3 +O(qgε), (3.1.9)

where c is a constant that can be explicitly calculated.

Bae and Jung [BJ19] used the techniques presented by Florea to improve the asymptotic

formula for the second derivative of L(s,χD) at s = 1
2 , when summed over D ∈ H2g+1,

which was first calculated by Andrade and Rajagopal [AR16]. Compared to the asymp-

totic formula obtained by Andrade and Rajagopal, Bae and Jung obtained a secondary

main term of size g3q
2g+1
3 and bounded the error term by q

g
2
(1+ε).

Another problem in function fields is to understand the asymptotic behaviour of

∑
D∈H2g+2

L(s,χD)k (3.1.10)

as ∣D∣ → ∞, where H2g+2 is the hyperelliptic ensemble defined in Section 2.6.3. In the

setting of fixing q and letting g →∞, Jung [Jun13] obtained an asymptotic formula for

the first moment of (3.1.10) at s = 1
2 .

Theorem 3.1.8 (Jung). Assume that q is odd and greater than 3. Then we have

∑
D∈H2g+2

L(
1

2
, χD) =

P (1)

2ζA(2)
∣D∣ [logq ∣D∣ +

4

log q

P ′

P
(1) + 2ζA (

1

2
)] +O (∣D∣

3
4
+ 1

2
logq 2) .

(3.1.11)

In this chapter, we will use the techniques presented by Florea to improve the asymp-

totic formula (3.1.11), by obtaining a secondary main term of size gq
2g+2
3 and bound the

error term by q
g
2
(1+ε). In particular our goal for this chapter is to prove the following

theorem.

Theorem 3.1.9. Let q be a prime with q ≡ 1(mod 4). Then

∑
D∈H2g+2

L(
1

2
, χD) =

P (1)

2ζA(2)
q2g+2 [(2g + 2) +

4

log q

P ′

P
(1) + 2ζA (

1

2
)]

+ q
2g+2
3 R(2g + 2) +O (q

g
2
(1+ε)) , (3.1.12)

where R is a polynomial of degree 1 that can explicitly be calculated (see formula

(3.6.25)).
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3.2 Overview of Chapter

The techniques presented in this chapter follows the techniques presented in [Flo17a].

We will first use a form of the Poisson summation formula over Fq[T ] to split the sum

up to different formulas, which correspond to whether the degree of f is odd or even.

These formulas are presented in Section 3.4. In Section 3.5, we will express sums over

square polynomials f as contour integrals.

In Section 3.6, we will evaluate the non-square polynomials f using the Poisson sum-

mation formula, which will analyse the contribution of the square polynomials V . In

the imaginary quadratic function field case, the contribution to the main terms from

the square polynomials V come from when the degree of f is even. However in the

real quadratic function field case, the contribution to the main terms from the square

polynomials V come from when the degree of f is both odd and even. Thus, compared

to the calculations done by Florea, there are extra terms to calculate and evaluate.

In Section 3.7, we will bound the contribution of the non-square polynomials V by

q
g
2
(1+ε). Finally, in Section 3.8, we will show how the results obtained in the previous

sections combine to establish the desired asymptotic formula.

3.3 Preliminary Lemmas

In this section, we will state some results which will be used to prove Theorem 3.1.9.

For D ∈ H2g+2, the “approximate” functional equation was first proved in [Jun13],

however it has been corrected to match that stated in [RW15].

Lemma 3.3.1 (“Approximate” Functional Equation, [Jun13, Lemma 3.1]). Let χD be

a quadratic character, where D ∈ H2g+2. Then

L(
1

2
, χD) =

g

∑
n=0

∑
f∈A+n

χD(f)q−
n
2 − q−

g+1
2

g

∑
n=0

∑
f∈A+n

χD(f)

+
g−1

∑
n=0

∑
f∈A+n

χD(f)q−
n
2 − q−

g
2

g−1

∑
n=0

∑
f∈A+n

χD(f). (3.3.1)

Using Lemma 3.3.1, we have

∑
D∈H2g+2

L(
1

2
, χD) = ∑

f∈A+
≤g

1
√

∣f ∣
∑

D∈H2g+2

χD(f) − q−
g+1
2 ∑

f∈A+
≤g

∑
D∈H2g+2

χD(f)

+ ∑
f∈A+

≤g−1

1
√

∣f ∣
∑

D∈H2g+2

χD(f) − q−
g
2 ∑
f∈A+

≤g−1

∑
D∈H2g+2

χD(f). (3.3.2)
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The next results will be used in later sections.

Lemma 3.3.2. Let f ∈ A+. Then

∑
D∈H2g+2

χD(f) = ∑
C∣f∞

C∈A+
≤g+1

∑
h∈A+

2g+2−2deg(C)

χf(h) − q ∑
C∣f∞
C∈A+

≤g

∑
h∈A+

2g−2deg(C)

χf(h), (3.3.3)

where C ∣f∞ means that any prime factor of C is among the prime factors of f .

Proof. The proof is similar to that given in [Flo17a, Lemma 2.2]. ∎

Next, we will state a version of the Poisson summation formula over function fields.

To do this, we need to recall the exponential function and the generalised Gauss sum

which was introduced by Hayes [Hay66, EH91] and Florea [Flo17a]. We know that each

a ∈ Fq (( 1
T
)) can be written uniquely as

a =
∞
∑
i=−∞

ai (
1

T
)
i

, (3.3.4)

with ai ∈ Fq such that all but finitely many of the ai’s with i < 0 are non-zero. If a ≠ 0

and a has the Laurent expansion (3.3.4), then one can define the valuation

v(a) = smallest i such that ai ≠ 0.

For a ∈ Fq (( 1
T
)) the exponential sum (see [Hay66]) is defined as

e(a) = e
2πia1
q ,

where a1 is the coefficient of 1
T in the Laurent expansion (3.3.4). By [Hay66, The-

orem 3.3], we know that for a, b ∈ Fq (( 1
T
)), we have e(a + b) = e(a)e(b) and for

A,B,H ∈ Fq[T ], we have e(A) = 1 and e (AH ) = e (BH ) if A ≡ B(mod H). For a general

character χ modulo f , the generalised Gauss sum is defined as

G(V,χ) ∶= ∑
A mod f

χ(A)e(
AV

f
) .

Then the following result holds.

Lemma 3.3.3 (Poisson Summation Formula, [Flo17a, Lemma 3.1]). Let f ∈ A+ and let

m be a positive integer.

1. If the degree of f is odd, we have

∑
g∈A+m

χf(g) =
qm+

1
2

∣f ∣
∑

V ∈A+
deg(f)−m−1

G(V,χf). (3.3.5)
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2. If the degree of f is even, we have

∑
g∈A+m

χf(g) =
qm

∣f ∣

⎛
⎜
⎝
G(0, χf) + (q − 1) ∑

V ∈A+
≤deg(f)−m−2

G(V,χf) − ∑
V ∈A+

deg(f)−m−1

G(V,χf)
⎞
⎟
⎠
.

(3.3.6)

Remark 3.3.4. G(0, χf) is non-zero if and only if f is a square, in which case,

G(0, χf) = φ(f), where φ(f) the Euler-Totient function defined in Section 2.2.

The last result that we will state in this section is the function field analogue of Perron’s

formula.

Lemma 3.3.5 (The function field analogue of Perron’s formula,[AJ18, Lemma 4.1]).

If the power series

H(u) = ∑
f∈A+

a(f)udeg(f) (3.3.7)

converges absolutely for ∣u∣ ≤ R < 1, then

∑
f∈A+n

a(f) =
1

2πi ∮∣u∣=R

H(u)

un+1
du (3.3.8)

and

∑
f∈A+

≤n

a(f) =
1

2πi ∮∣u∣=R

H(u)

(1 − u)un+1
du. (3.3.9)

3.4 Setup of the Problem

Using the “approximate” functional equation (3.3.2) and Lemma 3.3.2, we write

∑
D∈H2g+2

L(
1

2
, χD) = Sg,1 − Sg,2 + Sg−1,1 − Sg−1,2 (3.4.1)

where

Sg,1 = ∑
f∈A+

≤g

1
√

∣f ∣
∑
C∣f∞

C∈A+
≤g+1

∑
h∈A+

2g+2−2deg(C)

χf(h) − q ∑
f∈A+

≤g

1
√

∣f ∣
∑
C∣f∞
C∈A+

≤g

∑
h∈A+

2g−2deg(C)

χf(h),

Sg,2 = q
− g+1

2 ∑
f∈A+

≤g

∑
C∣f∞

C∈A+
≤g+1

∑
h∈A+

2g+2−2deg(C)

χf(h) − q
− g−1

2 ∑
f∈A+

≤g

∑
C∣f∞
C∈A+

≤g

∑
h∈A+

2g−2deg(C)

χf(h),

Sg−1,1 = ∑
f∈A+

≤g−1

1
√

∣f ∣
∑
C∣f∞

C∈A+
≤g+1

∑
h∈A+

2g+2−2deg(C)

χf(h) − q ∑
f∈A+

≤g−1

1
√

∣f ∣
∑
C∣f∞
C∈A+

≤g

∑
h∈A+

2g−2deg(C)

χf(h)
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and

Sg−1,2 = q
− g

2 ∑
f∈A+

≤g−1

∑
C∣f∞

C∈A+
≤g+1

∑
h∈A+

2g+2−2deg(C)

χf(h) − q
− g

2
+1 ∑

f∈A+
≤g−1

∑
C∣f∞
C∈A+

≤g

∑
h∈A+

2g−2deg(C)

χf(h).

From [Flo17a, Section 4], we have

∑
C∣f∞
C∈A+g+1

1 ≪ qgε,

thus we see that the terms in Sg,1,Sg,2,Sg−1,1 and Sg−1,2 corresponding to C ∈ A+
g+1 are

bounded by O (q
g
2
(1+ε)). Therefore, for k ∈ {g, g − 1}, we have

Sk,1 = ∑
f∈A+

≤k

1
√

∣f ∣
∑
C∣f∞
C∈A+

≤g

⎛
⎜
⎝

∑
h∈A+

2g+2−2deg(C)

χf(h) − q ∑
h∈A+

2g−2deg(C)

χf(h)
⎞
⎟
⎠
+O (q

g
2
(1+ε))

and

Sk,2 = q
− k+1

2 ∑
f∈A+

≤k

∑
C∣f∞
C∈A+

≤g

⎛
⎜
⎝

∑
h∈A+

2g+2−2deg(C)

χf(h) − q ∑
h∈A+

2g−2deg(C)

χf(h)
⎞
⎟
⎠
+O (q

g
2
(1+ε)) .

For ` ∈ {1,2}, write

Sk,` = S
o
k,` + S

e
k,` +O (q

g
2
(1+ε)) , (3.4.2)

where Sok,` and Sek,` denote the sum over f ∈ A+
≤k of odd and even degree respectively. If

the degree of f is odd, then using Lemma 3.3.3, we have

Sok,1 = q
2g+ 5

2 ∑
f∈A+

≤k

deg(f) odd

1

∣f ∣
∑
C∣f∞
C∈A+

≤g

1

∣C ∣2
So(V ; f,C)

and

Sok,2 = q
4g−k

2
+2 ∑

f∈A+
≤k

deg(f) odd

1
√

∣f ∣
∑
C∣f∞
C∈A+

≤g

1

∣C ∣2
So(V ; f,C)

where

So(V ; f,C) = ∑
V ∈A+

deg(f)−2g−3+2deg(C)

G(V,χf)
√

∣f ∣
−

1

q
∑

V ∈A+
deg(f)−2g−1+2deg(C)

G(V,χf)
√

∣f ∣
. (3.4.3)

If the degree of f is even, then using Lemma 3.3.3, we rewrite Sek,` as

Sek,` =Mk,` + S
e
k,`,1 + S

e
k,`,2. (3.4.4)
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Using Remark 3.3.4, we have that

Mk,1 =
q2g+2

ζA(2)
∑

L∈A+
≤[
k
2 ]

φ(L2)

∣L∣3
∑
C∣L∞
C∈A+

≤g

1

∣C ∣2
(3.4.5)

and

Mk,2 =
q

4g−k+3
2

ζA(2)
∑

L∈A+
≤[
k
2 ]

φ(L2)

∣L∣2
∑
C∣L∞
C∈A+

≤g

1

∣C ∣2
. (3.4.6)

Similarly, for j ∈ {1,2}, we have

Sek,1,j = q
2g+2 ∑

f∈A+
≤g

deg(f) even

1

∣f ∣
∑
C∣f∞
C∈A+

≤g

1

∣C ∣2
Sej (V ; f,C)

and

Sek,2,j = q
4g−k+3

2 ∑
f∈A+

≤k

deg(f) even

1
√

∣f ∣
∑
C∣f∞
C∈A+

≤g

1

∣C ∣2
Sej (V ; f,C),

where

Se1(V ; f,C) = (q − 1) ∑
V ∈A+

≤deg(f)−2g−4+2deg(C)

G(V,χf)
√

∣f ∣
−
q − 1

q
∑

V ∈A+
≤deg(f)−2g−2+2deg(C)

G(V,χf)
√

∣f ∣

(3.4.7)

and

Se2(V ; f,C) =
1

q
∑

V ∈A+
deg(f)−2g−1+2deg(f)

G(V,χf)
√

∣f ∣
− ∑
V ∈A+

deg(f)−2g−3+2deg(C)

G(V,χf)
√

∣f ∣
. (3.4.8)

For i ∈ {o, e}, define S ik,`(V = ◻) to be the sum over V square and S ik,`(V ≠ ◻) to be

the sum over non-square V . Since the degree of f is even in (3.4.8), then the degree of

V is odd and so V cannot be a square. Furthermore, since the degree of f is odd in

(3.4.3), then the degree of V is even, so there is a contribution to the main terms when

the degree of f is odd, which does not occur when working in the imaginary function

field case, i.e., in Florea’s calculation [Flo17a].

3.5 Contribution from M term

Let

M =Mg,1 −Mg,2 +Mg−1,1 −Mg−1,2. (3.5.1)

Then, in this section, we evaluate the main term M . The main result in this section is

the following result.
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3.5. Contribution from M term

Proposition 3.5.1. For any ε > 0 we have

M =M1 +M2 +M3 +M4 +O(qgε), (3.5.2)

where

M1 =
q2g+2

ζA(2)

1

2πi ∮∣u∣=r

C(u)

u(1 − qu)2(qu)[
g
2
]
du,

M2 =
q2g+2

ζA(2)

1

2πi ∮∣u∣=r

C(u)

u(1 − qu)2(qu)[
g−1
2

]
du,

M3 = −
q

3g+3
2

ζA(2)

1

2πi ∮∣u∣=r

C(u)

u(1 − u)(1 − qu)u[ g
2
]
du

and

M4 = −
q

3g
2
+2

ζA(2)

1

2πi ∮∣u∣=r

C(u)

u(1 − u)(1 − qu)u[ g−1
2

]
du,

with r < q−1 and

C(u) =∏
P

(1 −
udeg(P )

∣P ∣ + 1
) . (3.5.3)

Remark 3.5.2. C(u) is analytic in the region ∣u∣ < 1. We may further write

C(u) = Z (
u

q
)
−1

∏
P

(1 +
udeg(P )

(1 + ∣P ∣)(∣P ∣ − udeg(P ))
)

= (1 − u)∏
P

(1 +
udeg(P )

(1 + ∣P ∣)(∣P ∣ − udeg(P ))
) , (3.5.4)

which furnishes an analytic continuation of C(u) to the region ∣u∣ < q.

Proof of Proposition 3.5.1. From (3.4.5) and (3.4.6) and using the facts that (see [Flo17a,

Section 5])

∑
C∣f∞
C∈A+

≤g

1

∣C ∣2
=∏
P ∣f

(1 − ∣P ∣−2)−1 +O(q−g(2−ε)) and
φ(L2)

∣L∣2
=∏
P ∣L

(1 − ∣P ∣−1),

we have

Mk,1 =
q2g+2

ζA(2)
∑

L∈A+
≤[
k
2 ]

1

∣L∣
∏
P ∣L

∣P ∣

∣P ∣ + 1
+O(qgε)

and

Mk,2 =
q

4g−k+3
2

ζA(2)
∑

L∈A+
≤[
k
2 ]

∏
P ∣L

∣P ∣

∣P ∣ + 1
+O(qgε).

Using the function field version of Perron’s formula, we have

Mk,1 =
q2g+2

ζA(2)

1

2πi ∮∣u∣=r

A(u)

u(1 − qu)(qu)[
k
2
]
du +O(qgε) (3.5.5)
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and

Mk,2 =
q

4g−k+3
2

ζA(2)

1

2πi ∮∣u∣=r

A(u)

u(1 − u)u[ k
2
]
du +O(qgε), (3.5.6)

where r < q−1 and

A(u) = ∑
L∈A+

udeg(L)∏
P ∣L

∣P ∣

∣P ∣ + 1
. (3.5.7)

By multiplicativity, we may write (3.5.7) as

A(u) =∏
P

(1 +
∣P ∣

∣P ∣ + 1

udeg(P )

1 − udeg(P )) = Z(u)C(u) =
C(u)

(1 − qu)
. (3.5.8)

Inserting (3.5.8) into (3.5.5) and (3.5.6), we have that

Mk,1 =
q2g+2

ζA(2)

1

2πi ∮∣u∣=r

C(u)

u(1 − qu)2(qu)[
k
2
]
du +O(qgε) (3.5.9)

and

Mk,2 =
q

4g−k+3
2

ζA(2)

1

2πi ∮∣u∣=r

C(u)

u(1 − u)(1 − qu)u[ k
2
]
du +O(qgε). (3.5.10)

Observing (3.5.9) and (3.5.10), we see that the terms Mg,1,Mg−1,1,Mg,2 and Mg−1,2 are

precisely the terms M1,M2,−M3 and −M4 stated in Proposition 3.5.1 respectively. By

(3.5.1) we deduce the Proposition. ∎

3.6 Contribution from V Square

3.6.1 Main Result

Let

S(V = ◻) = So(V = ◻) + Se(V = ◻) (3.6.1)

where

So(V = ◻) = Sog,1(V = ◻) − Sog,2(V = ◻) + Sog−1,1(V = ◻) − Sog−1,2(V = ◻) (3.6.2)

and

Se(V = ◻) = Seg,1(V = ◻) − Seg,2(V = ◻) + Seg−1,1(V = ◻) − Seg−1,2(V = ◻). (3.6.3)

In this section, we will evaluate the term S(V = ◻). The main result in this section is

the following Proposition.

Proposition 3.6.1. Using the same notation as before, we have

S(V = ◻) = S1(V = ◻) + S2(V = ◻) + S3(V = ◻) + S4(V = ◻)

+ q
2g+2
3 R(2g + 2) +O (q

g
2
(1+ε)) , (3.6.4)
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where

S1(V = ◻) = −
q2g+2

ζA(2)

1

2πi ∮∣u∣=R

C(u)

u(1 − qu)2(qu)[
g
2
]
du,

S2(V = ◻) = −
q2g+2

ζA(2)

1

2πi ∮∣u∣=R

C(u)

u(1 − qu)2(qu)[
g−1
2

]
du,

S3(V = ◻) =
q

3g+3
2

ζA(2)

1

2πi ∮∣u∣=R

C(u)

u(1 − u)(1 − qu)u[ g
2
]
du

and

S4(V = ◻) =
q

3g
2
+2

ζA(2)

1

2πi ∮∣u∣=R

C(u)

u(1 − u)(1 − qu)u[ g−1
2

]
du,

with 1 < R < q and

C(u) =∏
P

(1 −
udeg(P )

∣P ∣ + 1
) = (1 − u)∏

P

(1 +
udeg(P )

(∣P ∣ + 1)(∣P ∣ − udeg(P ))
) .

Furthermore, R is a linear polynomial that can be explicitly calculated (see formula

(3.6.25)).

3.6.2 Notation and Preliminary Results

To prove Proposition 3.6.1, we first need the following notations and results, which are

stated and proved in [Flo17a, Section 6]. For ∣z∣ > q−2, let

B(z,w) = ∑
f∈A+

wdeg(f)Af(z)∏
P ∣f

(1 −
1

∣P ∣2zdeg(P ))

−1

where

Af(z) = ∑
l∈A+

zdeg(l)G(l2, χf)
√

∣f ∣
.

Then we have the following results.

Lemma 3.6.2 ([Flo17a, Lemma 6.2]). For ∣z∣ > q−2, we have

B(z,w) = Z(z)Z(w)Z(qw2z)∏
P

BP (z,w) (3.6.5)

where

BP (z,w) = 1 +
1

zdeg(P )∣P ∣2 − 1

⎛

⎝
wdeg(P ) − (zw2)deg(P )∣P ∣2 − (z2w)deg(P )∣P ∣2

+ (z2w3)deg(P )∣P ∣2 + (zw2)deg(P )∣P ∣ − (zw3)deg(P )∣P ∣
⎞

⎠

Moreover ∏P BP (z,w) converges absolutely for ∣w∣ < q∣z∣, ∣w∣ < q−
1
2 and ∣wz∣ < q−1.

55



Chapter 3. The First Moment of L (1
2 , χ) for Real Quadratic Function Fields

Lemma 3.6.3 ([Flo17a, Lemma 6.3]). We have

∏
P

BP (z,w) = Z (
w

q2z
)Z(w2)−1∏

P

DP (z,w), (3.6.6)

where

DP (z,w) = 1 +
1

(∣P ∣2zdeg(P ) − 1)(1 +wdeg(P ))

⎛

⎝
−w2deg(P ) −

w3deg(P )

∣P ∣
+

wdeg(P )

∣P ∣2zdeg(P )

+ (zw2)deg(P )∣P ∣ + (zw2)deg(P ) − (z2w)deg(P )∣P ∣2 + (zw3)deg(P ) − (z2w2)deg(P )∣P ∣2
⎞

⎠
.

Moreover ∏P DP (z,w) converges absolutely for ∣w∣2 < q∣z∣, ∣w∣ < q3∣z∣2, ∣w∣ < 1 and ∣wz∣ <

q−1.

3.6.3 Outline of the proof of Proposition 3.6.1

From the Poisson summation formula, the sum over square polynomials V will occur

when the degree of f is even and when the degree of f is odd. In Section 3.6.4 and

Section 3.6.5, we will obtain two integrals for each Sek,`(V = ◻) and Sok,`(V = ◻) respec-

tively, which correspond to simple poles w = q−1 and w = qz. In Section 3.6.6, we will

manipulate the integrals corresponding to the pole at w = q−1, similar to what was done

in [Flo17a, Section 6] which will yield the main terms S1(V = ◻),S2(V = ◻),S3(V = ◻)

and S4(V = ◻). In Section 3.6.7, we will evaluate the integrals corresponding to the

pole at w = qz, which will yield the secondary main term.

3.6.4 Degree f even

In this subsection, we prove the following result.

Lemma 3.6.4. We have

Se(V = ◻) = Aeg,1 −A
e
g,2 +A

e
g−1,1 −A

e
g−1,2 + B

e
g,1 − B

e
g,2 + B

e
g−1,1 − B

e
g−1,2 +O (q

g
2
(1+ε)) ,

where Aek,` and Bek,` are the integrals stated at the end of the subsection.

Proof. From (3.4.7) and using the function field analogue of Perron’s formula, we obtain

Se1(l
2; f,C) =

1

2πi ∮∣z∣=q−1−ε

zg(q − 1)(qz − 1)Af(z)

q(1 − z)z
deg(f)

2
+deg(C)

dz.

Using the fact that (see [Flo17a, Proof of Lemma 6.1])

∑
C∣f∞
C∈A+

≤g

1

∣C ∣2zdeg(C) =∏
P ∣f

(1 − ∣P ∣−2z−deg(P ))−1 +O (qg(ε−1))
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we have, for k ∈ {g, g − 1}

Sek,1(V = ◻) =
q2g+2

2πi ∮∣z∣=q−1−ε

zg(q − 1)(qz − 1)

q(1 − z)
He
k,1(z)dz +O (q

g
2
(1+ε)) ,

where

He
k,1(z) = ∑

f∈A+
≤k

deg(f) even

Af(z)

∣f ∣z
deg(f)

2

∏
P ∣f

(1 − ∣P ∣−2z−deg(P ))−1.

Similarly, we have

Sek,2(V = ◻) =
q

4g−k+3
2

2πi ∮∣z∣=q−1−ε

zg(q − 1)(qz − 1)

q(1 − z)
He
k,2(z)dz +O (q

g
2
(1+ε)) ,

where

He
k,2(z) = ∑

f∈A+
≤k

deg(f) even

Af(z)
√

∣f ∣z
deg(f)

2

∏
P ∣f

(1 − ∣P ∣−2z−deg(P ))−1.

Furthermore, we have

He
k,`(z) = ∑

f∈A+
≤k

deg(f) even

Af(z)

∣f ∣
3−`
2 z

deg(f)
2

∏
P ∣f

(1 − ∣P ∣−2z−deg(P ))−1

=
k

∑
n=0
n=2m

∑
f∈A+n

Af(z)

∣f ∣
3−`
2 z

deg(f)
2

∏
P ∣f

(1 − ∣P ∣−2z−deg(P ))−1

=
[ k
2
]

∑
m=0

1

qm(3−`)zm
∑

f∈A+2m

Af(z)∏
P ∣f

(1 − ∣P ∣−2z−deg(P ))−1.

Using the function field analogue of Perron’s formula, we have

He
k,`(z) =

1

2πi ∮∣w∣=r2

B(z,w)

w

[ k
2
]

∑
m=0

1

qm(3−`)zmw2m
dw

=
1

2πi ∮∣w∣=r2

B(z,w)

w(1 − q3−`zw2)(q3−`zw2)[
k
2
]
dw −

1

2πi ∮∣w∣=r2

q3−`zwB(z,w)

1 − q3−`zw2
dw.

(3.6.7)

For each k ∈ {g, g −1} and each ` ∈ {1,2}, the second integral in (3.6.7) is zero since the

integrands have no poles inside the circle ∣w∣ = r2 < q−1. Therefore

Sek,1(V = ◻) =
q2g+2

(2πi)2 ∮∣z∣=q−1−ε
∮

∣w∣=r2

zg(q − 1)(qz − 1)B(z,w)

qw(1 − z)(1 − q2zw2)(q2zw2)[
k
2
]
dwdz +O (q

g
2
(1+ε))

and

Sek,2(V = ◻) =
q

4g−k+3
2

(2πi)2 ∮∣z∣=q−1−ε
∮

∣w∣=r2

zg(q − 1)(qz − 1)B(z,w)

qw(1 − z)(1 − qzw2)(qzw2)[
k
2
]
dwdz

+O (q
g
2
(1+ε)) .
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Using (3.6.5) from Lemma 3.6.2, we obtain

Sek,1(V = ◻)

= −
q2g+2

(2πi)2 ∮∣z∣=q−1−ε
∮

∣w∣=r2

zg(q − 1)∏P BP (z,w)

qw(1 − z)(1 − qw)(1 − q2zw2)2(q2zw2)[
k
2
]
dwdz +O (q

g
2
(1+ε))

and

Sek,2(V = ◻)

= −
q

4g−k+3
2

(2πi)2 ∮∣z∣=q−1−ε
∮

∣w∣=r2

zg(q − 1)∏P BP (z,w)

qw(1 − z)(1 − qw)(1 − qzw2)(1 − q2zw2)(qzw2)[
k
2
]
dwdz

+O (q
g
2
(1+ε)) .

Using (3.6.6), from Lemma 3.6.3 we obtain

Sek,1(V = ◻)

= −
q2g+2

(2πi)2 ∮∣z∣=q−1−ε
∮

∣w∣=r2

zg(q − 1)(1 − qw2)∏P DP (z,w)

qw(1 − z)(1 − qw) (1 − w
qz) (1 − q2zw2)2(q2zw2)[

k
2
]
dwdz

+O (q
g
2
(1+ε)) .

and

Sek,2(V = ◻) = −
q

4g−k+3
2

(2πi)2 ∮∣z∣=q−1−ε
∮

∣w∣=r2

×
zg(q − 1)(1 − qw2)∏P DP (z,w)

qw(1 − z)(1 − qw) (1 − w
qz) (1 − qzw2)(1 − q2zw2)(qzw2)[

k
2
]
dwdz

+O (q
g
2
(1+ε)) .

For each Sek,`(V = ◻), write

Sek,1(V = ◻) = −
q2g+2

(2πi)2 ∮∣z∣=q−1−ε
∮

∣w∣=r2
F e
k,1(z,w)dwdz +O (q

g
2
(1+ε))

and

Sek,2(V = ◻) = −
q

4g−k+3
2

(2πi)2 ∮∣z∣=q−1−ε
∮

∣w∣=r2
F e
k,1(z,w)dwdz +O (q

g
2
(1+ε)) .

Shrinking the contour ∣z∣ = q−1−ε to ∣z∣ = q−
3
2 , we do not encounter any poles. Enlarging

the contour ∣w∣ = r2 < q−1 to ∣w∣ = q−
1
4
−ε, we encounter two simple poles, one at w = q−1

and one at w = qz. Thus

Sek,`(V = ◻) = Aek,` + B
e
k,` + C

e
k,` +O (q

g
2
(1+ε)) ,

where

Aek,1 =
q2g+2

2πi ∮∣z∣=q−
3
2

Res (F e
k,1(z,w);w = q−1)dz,
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Bek,1 =
q2g+2

2πi ∮∣z∣=q−
3
2

Res (F e
k,1(z,w);w = qz)dz

and

Cek,1 = −
q2g+2

(2πi)2 ∮∣z∣=q−
3
2
∮

∣w∣=q−
1
4−ε
F e
k,1(z,w)dwdz.

We can write down a similar expression for the terms Aek,2, Bek,2 and Cek,2. We evaluate

the residues at w = q−1 and w = qz in the following way. For example, we have

Res (F e
g,1(z,w);w = q−1) = lim

w→q−1

zg(w − q−1)(q − 1)∏P BP (z,w)

qw(1 − z)(1 − qw)(1 − q2zw2)2(q2zw2)[
g
2
]

= − lim
w→q−1

zg(1 − qw)(q − 1)∏P BP (z,w)

q2w(1 − z)(1 − qw)(1 − q2zw2)(q2zw2)[
g
2
]

−
zg(q − 1)∏P BP (z, q

−1)

q(1 − z)3z[
g
2
]

and

Res(F e
g,1(z,w);w = qz) = lim

w→qz

zg(w − qz)(q − 1)(1 − qw2)∏P Dp(z,w)

qw(1 − z)(1 − qw) (1 − w
qz) (1 − q2zw2)2(q2zw2)[

g
2
]

= − lim
w→qz

qzg+1 (1 − w
qz) (q − 1)(1 − qw2)∏P DP (z,w)

qw(1 − z)(1 − qw) (1 − w
qz) (1 − q2zw2)2(q2zw2)[

g
2
]

= −
zg(q − 1)(1 − q3z2)∏P DP (z, qz)

q(1 − z)(1 − q2z)(1 − q4z3)2(q4z3)[
g
2
]
.

We can evaluate the residues of F e
k,`(z,w) at w = q−1 and w = qz in a similar way.

Furthermore, we use Lemma 3.6.3 to show that Cek,` ≪ q
g
2
(1+ε). Thus, for each k ∈

{g, g − 1} and ` ∈ {1,2}, we have

Sek,`(V = ◻) = Aek,` + B
e
k,` +O (q

g
2
(1+ε)) ,

where

Aeg,1 = −
q2g+2

2πi ∮∣z∣=q−
3
2

zg(q − 1)∏P BP (z, q
−1)

q(1 − z)3z[
g
2
]

dz,

Beg,1 = −
q2g+2

2πi ∮∣z∣=q−
3
2

zg(q − 1)(1 − q3z2)∏P DP (z, qz)

q(1 − z)(1 − q2z)(1 − q4z3)2(q4z3)[
g
2
]
dz,

Aeg,2 = −
q

3g+3
2

2πi ∮∣z∣=q−
3
2

zg(q − 1)∏P BP (z, q
−1)

q(1 − z)2(1 − q−1z)(q−1z)[
g
2
]
dz,

Beg,2 = −
q

3g+3
2

2πi ∮∣z∣=q−
3
2

zg(q − 1)(1 − q3z2)∏P DP (z, qz)

q(1 − z)(1 − q2z)(1 − q3z3)(1 − q4z3)(q3z3)[
g
2
]
dz,

Aeg−1,1 = −
q2g+2

2πi ∮∣z∣=q−
3
2

zg(q − 1)∏P BP (z, q
−1)

q(1 − z)3z[
g−1
2

]

59



Chapter 3. The First Moment of L (1
2 , χ) for Real Quadratic Function Fields

Beg−1,1 = −
q2g+2

2πi ∮∣z∣=q−
3
2

zg(q − 1)(1 − q3z2)∏P DP (z, qz)

q(1 − z)(1 − q2z)(1 − q4z3)2(q4z3)[
g−1
2

]
dz,

Aeg−1,2 = −
q

3g
2
+2

2πi ∮∣z∣=q−
3
2

zg(q − 1)∏P BP (z, q
−1)

q(1 − z)2(1 − q−1z)(q−1z)[
g−1
2

]
dz

and

Beg−1,2 = −
q

3g
2
+2

2πi ∮∣z∣=q−
3
2

zg(q − 1)(1 − q3z2)∏P DP (z, qz)

q(1 − z)(1 − q2z)(1 − q3z3)(1 − q4z3)(q3z3)[
g−1
2

]
dz.

Finally, using (3.6.3) proves the Lemma. ∎

3.6.5 Degree f Odd

In this subsection, we will prove the following result.

Lemma 3.6.5. We have

So(V = ◻) = Aog,1 −A
o
g,2 +A

o
g−1,1 −A

o
g−1,2 + B

o
g,1 − B

o
g,2 + B

o
g−1,1 − B

o
g−1,2 +O (q

g
2
(1+ε)) ,

where Aok,` and Bok,` are the terms stated at the end of the subsection.

Proof. From (3.4.3) and using the function field analogue of Perron’s formula, we have

So(l2; f,C) =
1

2πi ∮∣z∣=q−1−ε

Af(z)z
g− 1

2 (qz − 1)

qz
deg(f)

2
+deg(C)

dz.

Using the fact that (see [Flo17a, Proof of Lemma 6.1])

∑
C∣f∞
C∈A+

≤g

1

∣C ∣2zdeg(C) =∏
P ∣f

(1 − ∣P ∣−2z−deg(P ))−1 +O(qg(ε−1)),

we have

Sok,1(V = ◻) =
q2g+ 5

2

2πi ∮∣z∣=q−1−ε

zg−
1
2 (qz − 1)

q
Ho
k,1(z)dz +O (q

g
2
(1+ε)) ,

where

Ho
k,1(z) = ∑

f∈A+
≤k

deg(f) odd

Af(z)

∣f ∣z
deg(f)

2

∏
P ∣f

(1 − ∣P ∣−2z−deg(P ))−1.

Similarly, we have

Sok,2(V = ◻) =
q

4g−k
2

+2

2πi ∮∣z∣=q−1−ε

zg−
1
2 (qz − 1)

q
Ho
k,2(z)dz +O (q

g
2
(1+ε)) ,
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where

Ho
k,2(z) = ∑

f∈A+
≤k

deg(f) odd

Af(z)
√

∣f ∣z
deg(f)

2

∏
P ∣f

(1 − ∣P ∣−2z−deg(P ))−1.

Using similar methods to that seen in the previous subsection and the function field

analogue of Perron’s formula, we have

Ho
g,`(z) =

1

2πi ∮∣w∣=r2

B(z,w)

q
3−`
2 z

1
2w2(1 − q3−`zw2)(q3−`zw2)[

g−1
2

]
dw

−
1

2πi ∮∣w∣=r2

q
3−`
2 z

1
2B(z,w)

1 − q3−`zw2
dw (3.6.8)

and

Ho
g−1,`(z) =

1

2πi ∮∣w∣=r2

q
3−`
2 z

1
2B(z,w)

(1 − q3−`zw2)(q3−`zw2)[
g
2
]
dw −

1

2πi ∮∣w∣=r2

q
3−`
2 z

1
2B(z,w)

1 − q3−`zw2
dw.

(3.6.9)

For each ` ∈ {1,2}, the second integrals in (3.6.8) and (3.6.9) are zero since the inte-

grands have no poles inside the circle ∣w∣ = r2 < q−1. Therefore

Sok,1(V = ◻) =
q2g+ 5

2

(2πi)2 ∮∣z∣=q−1−ε
∮

∣w∣=r2

×
zk−(−1)g−k(qz − 1)B(z,w)

q2(k−g+1)w2(k−g+1)(1 − q2zw2)(q2zw2)
[ k−(−1)

g−k

2
]
dwdz +O (q

g
2
(1+ε))

and

Sok,2(V = ◻)

=
q

4g−k
2

+2

(2πi)2 ∮∣z∣=q−1−ε
∮

∣w∣=r2

zk−(−1)g−k(qz − 1)B(z,w)

qk−g+
3
2w2(k−g+1)(1 − qzw2)(qzw2)

[ k−(−1)
g−k

2
]
dwdz +O (q

g
2
(1+ε)) .

Using (3.6.5) from Lemma 3.6.2, we obtain

Sok,1(V = ◻) = −
q2g+ 5

2

(2πi)2 ∮∣z∣=q−1−ε
∮

∣w∣=r2

×
zk−(−1)g−k∏P BP (z,w)

q2(k−g+1)w2(k−g+1)(1 − qw)(1 − q2zw2)2(q2zw2)
[ k−(−1)

g−k

2
]
dwdz +O (q

g
2
(1+ε))

and

Sok,2(V = ◻) = −
q

4g−k
2

+2

(2πi)2 ∮∣z∣=q−1−ε
∮

∣w∣=r2

×
zk−(−1)g−k∏P BP (z,w)

qk−g+
3
2w2(k−g+1)(1 − qw)(1 − qzw2)(1 − q2zw2)(qzw2)

[ k−(−1)
g−k

2
]
dwdz +O (q

g
2
(1+ε)) .
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Using (3.6.6) from Lemma 3.6.3 we obtain

Sok,1(V = ◻) = −
q2g+ 5

2

(2πi)2 ∮∣z∣=q−1−ε
∮

∣w∣=r2

×
zk−(−1)g−k(1 − qw2)∏P DP (z,w)

q2(k−g+1)w2(k−g+1)(1 − qw) (1 − w
qz) (1 − q2zw2)2(q2zw2)

[ k−(−1)
g−k

2
]
dwdz +O (q

g
2
(1+ε))

and

Sok,2(V = ◻) = −
q

4g−k
2

+2

(2πi)2 ∮∣z∣=q−1−ε
∮

∣w∣=r2

×
zk−(−1)g−k(1 − qw2)∏P DP (z,w)

qk−g+
3
2w2(k−g+1)(1 − qw)(1 − w

qz)(1 − qzw
2)(1 − q2zw2)(qzw2)

[ k−(−1)
g−k

2
]
dwdz

+O (q
g
2
(1+ε)) .

For each Sok,`(V = ◻) write

Sok,1(V = ◻) = −
q2g+ 5

2

(2πi)2 ∮∣z∣=q−1−ε
∮

∣w∣=r2
F o
k,1(z,w)dwdz

and

Sok,2(V = ◻) = −
q

4g−k
2

+2

(2πi)2 ∮∣z∣=q−1−ε
∮

∣w∣=r2
F o
k,2(z,w)dwdz.

Shrinking the contour ∣z∣ = q−1−ε to ∣z∣ = q−
3
2 we do not encounter any poles. Enlarging

the contour ∣w∣ = r2 < q−1 to ∣w∣ = q−
1
4
−ε, we encounter two simple poles, one at w = q−1

and one at w = qz. Thus

Sok,`(V = ◻) = Aok,` + B
o
k,` + C

o
k,` +O (q

g
2
(1+ε)) ,

where

Aok,1 =
q2g+2

2πi ∮∣z∣=q−
3
2

Res (F o
k,1(z,w);w = q−1)dz,

Bok,1 =
q2g+2

2πi ∮∣z∣=q−
3
2

Res (F o
k,1(z,w);w = qz)dz

and

Cok,1 = −
q2g+2

(2πi)2 ∮∣z∣=q−
3
2
∮

∣w∣=q−
1
4−ε
F o
k,1(z,w)dwdz.

We can write down similar expressions for the terms Aok,2, Bok,2 and Cok,2. We evaluate

the residues at w = q−1 and w = qz in the following way. For example, we have

Res(F o
g,1(z,w);w = q−1) = lim

w→q−1

zg−1(w − q−1)∏P BP (z,w)

q2w2(1 − qw)(1 − q2w2)2(q2zw2)[
g−1
2

]

= − lim
w→q−1

zg−1(1 − qw)∏P BP (z,w)

q3w2(1 − qw)(1 − q2zw2)2(q2zw2)[
g−1
2

]

= −
zg−1∏P BP (z, q

−1)

q(1 − z)2z[
g−1
2

]
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and

Res(F o
g,1(z,w);w = qz) = lim

w→qz

zg−1(w − qz)(1 − qw2)∏P DP (z,w)

q2w2(1 − qw) (1 − w
qz) (1 − q2zw2)2(q2zw2)[

g−1
2

]

= − lim
w→qz

zg (1 − w
qz) (1 − qw2)∏P DP (z,w)

qw2(1 − qw) (1 − w
qz) (1 − q2zw2)2(q2zw2)[

g−1
2

]

= −
zg−2(1 − q3z2)∏P DP (z, qz)

q3(1 − q2z)(1 − q4z3)2(q4z3)[
g−1
2

]
.

We can evaluate the residues of F o
k,` at w = q−1 and w = qz in a similar way. Furthermore,

we can use Lemma 3.6.3 to show that Co
k,` ≪ q

g
2
(1+ε). Thus, for each k ∈ {g, g − 1} and

` ∈ {1,2} we have

Sok,` = A
o
k,` + B

o
k,` +O (q

g
2
(1+ε)) ,

where

Aog,1 = −
q2g+ 5

2

2πi ∮∣z∣=q−
3
2

zg−1∏P BP (z, q
−1)

q(1 − z)2z[
g−1
2

]
dz,

Bog,1 = −
q2g+ 5

2

2πi ∮∣z∣=q−
3
2

zg−2(1 − q3z2)∏P DP (z, qz)

q3(1 − q2z)(1 − q4z3)2(q4z3)[
g−1
2

]
dz,

Aog,2 = −
q

3g
2
+2

2πi ∮∣z∣=q−
3
2

zg−1∏P BP (z, q
−1)

q
1
2 (1 − z)(1 − q−1z)(q−1z)[

g−1
2

]
dz,

Bog,2 = −
q

3g
2
+2

2πi ∮∣z∣=q−
3
2

zg−2(1 − q3z2)∏P DP (z, qz)

q
5
2 (1 − q2z)(1 − q3z3)(1 − q4z3)(q3z3)[

g−1
2

]
dz,

Aog−1,1 = −
q2g+ 5

2

2πi ∮∣z∣=q−
3
2

zg∏P BP (z, q
−1)

q(1 − z)2z[
g
2
]
dz,

Bog−1,1 = −
q2g+ 5

2

2πi ∮∣z∣=q−
3
2

qzg+1(1 − q3z2)∏P DP (z, qz)

(1 − q2z)(1 − q4z3)2(q4z3)[
g
2
]
dz,

Aog−1,2 = −
q

3g+5
2

2πi ∮∣z∣=q−
3
2

zg∏P BP (z, q
−1)

q
3
2 (1 − z)(1 − q−1z)(q−1z)[

g
2
]
dz,

and

Bog−1,2 = −
q

3g+5
2

2πi ∮∣z∣=q−
3
2

q
1
2 zg+1(1 − q3z2)∏P DP (z, qz)

(1 − q2z)(1 − q3z3)(1 − q4z3)(q3z3)[
g
2
]
dz.

Using (3.6.2) proves the Lemma. ∎
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3.6.6 Contribution From A terms

In this subsection, we will focus on evaluating the A terms which will give the terms

S1(V = ◻), S2(V = ◻), S3(V = ◻) and S4(V = ◻) in Proposition 3.6.1. Let

A = Aeg,1 −A
e
g,2 +A

e
g−1,1 −A

e
g−1,2 +A

o
g,1 −A

o
g,2 +A

o
g−1,1 −A

o
g−1,2, (3.6.10)

then the main result in this subsection is the following lemma.

Lemma 3.6.6. Using the same notation as before, we have

A = S1(V = ◻) + S2(V = ◻) + S3(V = ◻) + S4(V = ◻), (3.6.11)

where, in particular, the terms S1(V = ◻), S2(V = ◻), S3(V = ◻) and S4(V = ◻) are

the terms stated in Proposition 3.6.1.

Proof. For each k ∈ {g, g − 1}, write

Aek,1 = −
q2g+2

2πi ∮∣z∣=q−
3
2

zg (q − 1
z +

1
z − 1)∏P BP (z, q

−1)

q(1 − z)3z[
k
2
]

dz.

Let Aek,1 = A
e
k,1,1 +A

e
k,1,2, where

Aek,1,1 = −
q2g+2

2πi ∮∣z∣=q−
3
2

zg (1 − 1
qz)∏P BP (z, q

−1)

(1 − z)3z[
k
2
]

dz

and

Aek,1,2 = −
q2g+2

2πi ∮∣z∣=q−
3
2

zg−1∏P BP (z, q
−1)

q(1 − z)2z[
k
2
]

dz.

After the change of variables z = (qu)−1, the contour of integration becomes a circle

around the origin ∣u∣ =
√
q. Note that, from Lemma 3.6.2, ∏P BP ( 1

qu ,
1
q) is absolutely

convergent for q−1 < ∣u∣ < q. Thus

Aeg,1,1 = −
q2g+2

2πi ∮∣u∣=√q

(1 − u)∏P BP ( 1
qu ,

1
q) (1 − 1

qu)
−1

u(1 − qu)2(qu)
[ k−(−1)

g−k

2
]

du.

Using the fact (see [Flo17a, Section 6]) that

(1 − u)∏
P

BP (
1

qu
,
1

q
)(1 −

1

qu
)
−1

=
C(u)

ζA(2)
, (3.6.12)

we get

Aeg,1,1 = −
q2g+2

ζA(2)

1

2πi ∮∣u∣=√q

C(u)

u(1 − qu)2(qu)[
g−1
2

]
du (3.6.13)
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and

Aeg−1,1,1 = −
q2g+2

ζA(2)

1

2πi ∮∣u∣=√q

C(u)

u(1 − qu)2(qu)[
g
2
]
du. (3.6.14)

We see that (3.6.13) and (3.6.14) are precisely the terms S1(V = ◻) and S2(V = ◻) in

the statement of Lemma 3.6.6. Similarly, using the substitution z = (qu)−1, we have

Aek,1,2 = −
q2g+2

2πi ∮∣u∣=√q

∏P BP ( 1
qu ,

1
q)

(1 − qu)2(qu)
[ k−(−1)

g−k

2
]
du,

and

Aok,1 = −
q2g+ 5

2

2πi ∮∣u∣=√q

∏P BP ( 1
qu ,

1
q)

(qu)g−k(1 − qu)2(qu)[
k
2
]
du.

Using (3.6.12), we have

Aek,1,2 =
q2g+2

ζA(2)

1

2πi ∮∣u∣=√q

C(u)

qu(1 − u)(1 − qu)(qu)
[ k−(−1)

g−k

2
]
du

and

Aok,1 =
q2g+ 5

2

ζA(2)

1

2πi ∮∣u∣=√q

C(u)

(qu)g−k+1(1 − u)(1 − qu)(qu)[
k
2
]
du.

Rewrite Aog−1,1 as

Aog−1,1 =
q2g+ 5

2

ζA(2)

1

2πi ∮∣u∣=√q

C(u)(1 − qu + qu)

q2u2(1 − u)(1 − qu)(qu)[
g−1
2

]
du.

Then, we let Aog−1,1 = A
o
g−1,1,1 +A

o
g−1,1,2, where

Aog−1,1,1 =
q2g+ 5

2

ζA(2)

1

2πi ∮∣u∣=√q

C(u)

qu(1 − u)(1 − qu)(qu)[
g−1
2

]
du

and

Aog−1,1,2 =
q2g+ 5

2

ζA(2)

1

2πi ∮∣u∣=√q

C(u)

(1 − u)(qu)[
g−1
2

]+2
du.

Combining Aog,1 and Aeg−1,1,2, we have

Aog,1 +A
e
g−1,1,2 =

q2g+2

ζA(2)

1

2πi ∮∣u∣=√q

C(u)(1 + q
1
2 )

qu(1 − u)(1 − qu)(qu)[
g
2
]
du.

Using the fact that (see [Jun13, Proof of Main Theorem])

1 + q
1
2 = q−

g−1
2
+[ g

2
] + q−

g
2
+[ g−1

2
]+1, (3.6.15)

we have

Aog,1 +A
e
g−1,1,2 =

q2g+2

ζA(2)

1

2πi ∮∣u∣=√q

C(u) (q−
g−1
2
+[ g

2
] + q−

g
2
+[ g−1

2
]+1)

qu(1 − u)(1 − qu)(qu)[
g
2
]

du.
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Let Aog,1 +A
e
g−1,1,2 = Â1 + Â2, where

Â1 =
q

3g+3
2

ζA(2)

1

2πi ∮∣u∣=√q

C(u)

u(1 − u)(1 − qu)u[ g
2
]
du (3.6.16)

and

Â2 =
q

3g
2
+3+[ g−1

2
]

ζA(2)

1

2πi ∮∣u∣=√q

C(u)

(1 − u)(1 − qu)(qu)[
g
2
]+1
du.

Similarly, combining Aog−1,1,1 +A
e
g,1,2, and using (3.6.15), we have

Aog−1,1,1 +A
e
g,1,2 = Ã1 + Ã2,

where

Ã1 =
q

3g
2
+2

ζA(2)

1

2πi ∮∣u∣=√q

C(u)

u(1 − u)(1 − qu)u[ g−1
2

]
du

and

Ã2 =
q

3g+5
2

+[ g
2
]

ζA(2)

1

2πi ∮∣u∣=√q

C(u)

(1 − u)(1 − qu)(qu)[
g−1
2

]+1
du.

We see that Â1 and Ã1 are precisely the terms S3(V = ◻) and S4(V = ◻) given in the

statement of Lemma 3.6.6. From (3.5.4), we see that C(1) = 0, thus inside the circle

∣u∣ =
√
q, the integrand of Aog−1,1,2 has a pole of order [g−1

2
] + 2 at u = 0. Using the

Residue Theorem and calculations of residues seen in the proof of Lemma 3.6.4 and

Lemma 3.6.5 we have

Aog−1,1,2 =
q2g+ 1

2
−[ g−1

2
]

ζA(2)

[ g−1
2

]+1

∑
n=0

C(n)(0)

n!
.

Similarly, inside the circle ∣u∣ =
√
q, the integrands of Â2 and Ã2 have a simple pole at

u = q−1 and a pole at u = 0 of order [g
2
] + 1 and [g−1

2
] + 1 respectively. Thus we have

Â2 =
q

5g
2
+1−2[ g

2
]

ζA(2)

[ g
2
]

∑
n=0

C(n)(0)

n!

[ g
2
]−n

∑
k=0

qk −
q

3g
2
+3+[ g−1

2
]

ζA(2)

C(q−1)

(q − 1)

and

Ã2 =
q

5g+1
2

−2[ g−1
2

]

ζA(2)

[ g−1
2

]

∑
n=0

C(n)(0)

n!

[ g−1
2

]−n

∑
k=0

qk −
q

3g+5
2

+[ g
2
]

ζA(2)

C(q−1)

(q − 1)
.

For the remaining integrals, we write

Aek,2 = A
e
k,2,1 +A

e
k,2,2,

where

Aek,2,1 = −
q

4g−k+3
2

2πi ∮∣u∣=√q

zg (1 − 1
qz)∏P BP (z, q

−1)

(1 − z)2(1 − q−1z)(q−1z)[
k
2
]
dz
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and

Aek,2,2 = −
q

4g−k+3
2

2πi ∮∣u∣=√q

zg−1∏P BP (z, q
−1)

q(1 − z)(1 − q−1z)(q−1z)[
k
2
]
dz.

Using the substitution z = (qu)−1, we have

Aek,2,1 =
q

6g−k+5
2

2πi ∮∣u∣=√q

(1 − u)∏P BP ( 1
qu ,

1
q)

(1 − qu)2(1 − q2u)(q2u)
[ k−(−1)

g−k

2
]
du,

Aek,2,2 = −
q

6g−k+3
2

2πi ∮∣u∣=√q

∏P BP ( 1
qu ,

1
q)

(1 − qu)(1 − q2u)(q2u)
[ k−(−1)

g−k

2
]
du

and

Aok,2 = −
q

6g−k+5
2

2πi ∮∣u∣=√q

∏P BP ( 1
qu ,

1
q)

(q2u)g−k(1 − qu)(1 − q2u)(q2u)[
k
2
]
du.

Using (3.6.12), we have

Aek,2,1 = −
q

6g−k+7
2

ζA(2)

1

2πi ∮∣u∣=√q

C(u)

(1 − qu)(1 − q2u)(q2u)
[ k−(−1)

g−k

2
]+1
du,

Aek,2,2 =
q

6g−k+5
2

ζA(2)

1

2πi ∮∣u∣=√q

C(u)

(1 − u)(1 − q2u)(q2u)
[ k−(−1)

g−k

2
]+1
du

and

Aok,2 =
q

6g−k+7
2

ζA(2)

1

2πi ∮∣u∣=√q

C(u)

(q2u)g−k(1 − u)(1 − q2u)(q2u)[
k
2
]+1
du.

Inside the circle ∣u∣ =
√
q, the integrands have poles at u = 0, u = q−1 and u = q−2 of

varying orders. Thus using the Residue Theorem we have

Aeg,2,1 = −
q

5g+3
2

−2[ g−1
2

]

ζA(2)

[ g−1
2

]

∑
n=0

C(n)(0)

n!

2([ g−1
2

]−n)

∑
k=[ g−1

2
]−n

qk −
q

5g+3
2

−[ g−1
2

]

ζA(2)

C(q−1)

q − 1
+
q

5g+5
2

ζA(2)

C(q−2)

q − 1
,

Aeg,2,2 =
q

5g+1
2

−2[ g−1
2

]

ζA(2)

[ g−1
2

]

∑
n=0

C(n)(0)

n!

[ g−1
2

]−n

∑
k=0

q2k −
q

5g+5
2

ζA(2)

C(q−2)

q2 − 1
,

Aeg−1,2,1 = −
q

5g
2
+2−2[ g−1

2
]

ζA(2)

[ g
2
]

∑
n=0

C(n)(0)

n!

2([ g
2
]−n)

∑
k=[ g

2
]−n

qk −
q

5g
2
+2−[ g

2
]

ζA(2)

C(q−1)

q − 1
+
q

5g
2
+3

ζA(2)

C(q−2)

q − 1
,

Aeg−1,2,2 =
q

5g
2
+1−2[ g

2
]

ζA(2)

[ g
2
]

∑
n=0

C(n)(0)

n!

[ g
2
]−n

∑
k=0

q2k −
q

5g
2
+3

ζA(2)

C(q−2)

q2 − 1
,

Aog,2 =
q

5g+3
2

−2[ g
2
]

ζA(2)

[ g
2
]

∑
n=0

C(n)(0)

n!

[ g
2
]−n

∑
k=0

q2k −
q

5g+7
2

ζA(2)

C(q−2)

q2 − 1
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and

Aog−1,2 =
q

5g
2
−2[ g−1

2
]

ζA(2)

[ g−1
2

]+1

∑
n=0

C(n)(0)

n!

[ g−1
2

]+1−n

∑
k=0

q2k −
q

5g
2
+4

ζA(2)

C(q−2)

q2 − 1
.

Therefore combining everything seen in this proof with (3.6.10), we have

A = S1(V = ◻) + S2(V = ◻) + S3(V = ◻) + S4(V = ◻)

+Aog−1,1,2 + Â2 + Ã2 −A
e
g,2,1 −A

e
g,2,2 −A

e
g−1,2,1 −A

e
g−1,2,2 −A

o
g,2 −A

o
g−1,2

Thus, to complete the proof, we want to show that

Aog−1,1,2 + Â2 + Ã2 −A
e
g,2,1 −A

e
g,2,2 −A

e
g−1,2,1 −A

e
g−1,2,2 −A

o
g,2 −A

o
g−1,2 (3.6.17)

equals zero. For the terms corresponding to the residue at u = q−2, we have that (3.6.17)

is equal to

−
q

5g+5
2

ζA(2)

C(q−2)

q − 1
+
q

5g+5
2

ζA(2)

C(q−2)

q2 − 1
−
q

5g
2
+3

ζA(2)

C(q−2)

q − 1
+
q

5g
2
+3

ζA(2)

C(q−2)

q2 − 1
+
q

5g+7
2

ζA(2)

C(q−2)

q2 − 1
+
q

5g
2
+4

ζA(2)

C(q−2)

q2 − 1
,

which clearly equals zero. For the terms corresponding to the residue at u = q−1, we

have that (3.6.17) is equal to

−
q

3g
2
+3+[ g−1

2
]

ζA(2)

C(q−1)

(q − 1)
−
q

3g+5
2

+[ g
2
]

ζA(2)

C(q−1)

(q − 1)
+
q

5g+3
2

−[ g−1
2

]

ζA(2)

C(q−1)

q − 1
+
q

5g
2
+2−[ g

2
]

ζA(2)

C(q−1)

q − 1
. (3.6.18)

Rearranging (3.6.18), we see that it is equal to

q
3g
2
+2

ζA(2)

C(q−1)

(q − 1)
(qg−[

g
2
] − q[

g−1
2

]+1) +
q

3g+3
2

ζA(2)

C(q−1)

(q − 1)
(qg−[

g−1
2

] − q[
g
2
]+1) . (3.6.19)

Using the fact that (see [Jun14, Section 1])

qg−[
g−1
2

] − q[
g
2
]+1 = 0 and qg−[

g
2
] − q[

g−1
2

]+1 = 0 (3.6.20)

we see that (3.6.19) is equal to zero. Finally, in Appendix A, we show that the terms

corresponding to the residue at u = 0 is equals zero. Thus (3.6.17) equals zero which

completes the proof of Lemma 3.6.6. ∎

3.6.7 Contribution from B terms

In this subsection, we will focus on evaluating the B terms, which will give the secondary

main term of Proposition 3.6.1. Let

B = Beg,1 − B
e
g,2 + B

e
g−1,1 − B

e
g−1,2 + B

o
g,1 − B

o
g,2 + B

o
g−1,1 − B

o
g−1,2 (3.6.21)

Then, the main result in this subsection is the following lemma.
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Lemma 3.6.7. Using the same notion as before, we have

B = q
2g+2
3 R(2g + 2) +O (q

g
2
(1+ε)) , (3.6.22)

where R is a polynomial of degree 1 which can be explicitly be calculated.

Proof. From Section 3.6.4 and Section 3.6.5, we can write each Bjk,` as

Bjk,1 = −
q2g+2

2πi ∮∣z∣=q−
3
2

F j
k,1(z)dz and Bjk,2 = −

q
3g
2
+2

2πi ∮∣z∣=q−
3
2

F j
k,2(z)dz,

where each F j
k,`(z) correspond to the integrands of Bjk,` that are stated in Section 3.6.4

and Section 3.6.5. Enlarging the contour ∣z∣ = q−
3
2 to ∣z∣ = q−1−ε we encounter a double

pole at z = q−
4
3 of F j

k,1(z) and a simple pole at z = q−
4
3 of F j

k,2(z). From Lemma 3.6.3,

∏P DP (z, qz) is absolutely convergent when q−2 < ∣z∣ < q−1. Then

Bjk,1 = q
2g+2Res (F j

k,1(z); z = q
− 4

3) −
q2g+2

2πi ∮∣z∣=q−1−ε
F j
k,1(z)dz (3.6.23)

and

Bjk,2 = q
3g
2
+2Res (F j

k,2(z); z = q
− 4

3) −
q

3g
2
+2

2πi ∮∣z∣=q−1−ε
F j
k,2(z)dz, (3.6.24)

where the second terms in (3.6.23) and (3.6.24) are bounded by O (q
g
2
(1+ε)). Computing

the residues, we see that

Beg,1 = q
2g+2
3 Q1(g) +O (q

g
2
(1+ε)) , Beg−1,1 = q

2g+2
3 Q2(g) +O (q

g
2
(1+ε)) ,

Bog,1 = q
2g+2
3 Q3(g) +O (q

g
2
(1+ε)) , Bog−1,1 = q

2g+2
3 Q4(g) +O (q

g
2
(1+ε)) ,

where

Q1(g) =
(q − 1)ζA (5

3
) ζA (7

3
)

9q
4
3 ζA (4

3
)

∏
P

DP (q−
4
3 , q−

1
3)

×
⎛
⎜
⎝
(g − 3 [

g

2
]) +

1

q
4
3

ζA (
7

3
)(3 + 2q

1
3 + q

2
3 + 2q − q

4
3) +

1

q
4
3

d
dz ∏P DP (z, qz)

∏P DP (z, qz)

RRRRRRRRRRRz=q−
4
3

⎞
⎟
⎠
,

Q2(g) =
(q − 1)ζA (5

3
) ζA (7

3
)

9q
4
3 ζA (4

3
)

∏
P

DP (q−
4
3 , q−

1
3)

×
⎛
⎜
⎝
(g − 3 [

g − 1

2
]) +

1

q
4
3

ζA (
7

3
)(3 + 2q

1
3 + q

2
3 + 2q − q

4
3) +

1

q
4
3

d
dz ∏P DP (z, qz)

∏P DP (z, qz)

RRRRRRRRRRRz=q−
4
3

⎞
⎟
⎠
,

Q3(g) =
ζA (5

3
)

9q
1
6 ζA (4

3
)
∏
P

DP (q−
4
3 , q−

1
3)

×
⎛
⎜
⎝
(g − 3 [

g − 1

2
]) +

1

q
2
3

ζA (
5

3
)(4 + 2q

1
3 − 3q

2
3) +

1

q
4
3

d
dz ∏P DP (z, qz)

∏P DP (z, qz)

RRRRRRRRRRRz=q−
4
3

⎞
⎟
⎠
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and

Q4(g) =
ζA (5

3
)

9q
1
6 ζA (4

3
)
∏
P

DP (q−
4
3 , q−

1
3)

×
⎛
⎜
⎝
(g − 3 [

g

2
]) +

1

q
2
3

ζA (
5

3
)(1 + 2q

1
3) +

1

q
4
3

d
dz ∏P DP (z, qz)

∏P DP (z, qz)

RRRRRRRRRRRz=q−
4
3

⎞
⎟
⎠
.

Let

Q(2g + 2) = Q1(g) +Q2(g) +Q3(g) +Q4(g),

then

Q(x) =
ζA (5

3
) ζA (7

3
)

9q
4
3 ζA (4

3
)
∏
P

DP (q−
4
3 , q−

1
3)

⎛
⎜
⎝

x

2
C1 +C2 −

2C1

q
4
3

d
dz ∏P DP (z, qz)

∏P DP (z, qz)

RRRRRRRRRRRz=q−
4
3

⎞
⎟
⎠
,

where

C1 = 1 − q − q
7
6 + q−

1
6

and

C2 =
2

q
4
3

ζA (
7

3
) (q−1) (3 + 2q

1
3 + q

2
3 + 2q − q

4
3)+

1

q
2
3

ζA (
5

3
)(q

7
6 − q−

1
6) (5 + 4q

1
3 − 3q

2
3)−4C1.

Similarly, computing the residue, we see that

Beg,2 = −q
g
6
+[ g

2
]Ce

g +O (q
g
2
(1+ε)) , Beg−1,2 = −q

g
6
+[ g−1

2
]Ce

g−1 +O (q
g
2
(1+ε)) ,

Bog,2 = −q
g
6
+[ g−1

2
]Co

g +O (q
g
2
(1+ε))), Bog−1,2 = −q

g
6
+[ g

2
]Co

g−1 +O (q
g
2
(1+ε)) ,

where

Ce
g =

(q − 1)ζA (5
3
) ζA (7

3
) ζA(2)

3q
7
6 ζA (4

3
)

∏
P

DP (q−
4
3 , q−

1
3) ,

Ce
g−1 =

(q − 1)ζA (5
3
) ζA (7

3
) ζA(2)

3q
2
3 ζA (4

3
)

∏
P

DP (q−
4
3 , q−

1
3) ,

Co
g =

q
1
2 ζA (5

3
) ζA(2)

3ζA (4
3
)

∏
P

DP (q−
4
3 , q−

1
3)

and

Co
g−1 =

ζA (5
3
) ζA(2)

3ζA (4
3
)
∏
P

DP (q−
4
3 , q−

1
3) .

Let

C3 = C
e
g +C

o
g−1 and C4 = C

o
g +C

e
g−1,

then

C3 =
ζA (5

3
) ζA (7

3
) ζA(2)

ζA (4
3
)

(1 + q−
1
6 − q−

7
6 − q−

4
3)∏

P

DP (q−
4
3 , q−

1
3)
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and

C4 =
ζA (5

3
) ζA (7

3
) ζA(2)

ζA (4
3
)

(q
1
3 + q

1
2 − q−

2
3 − q−

5
6)∏

P

DP (q−
4
3 , q−

1
3) .

Moreover

∏
P

DP (q−
4
3 , q−

1
3) =∏

P

(1 −
∣P ∣

4
3 + ∣P ∣

2
3 + ∣P ∣

1
3 + 1

(∣P ∣
4
3 + ∣P ∣)2

)

and

1

q
4
3

d
dz ∏P DP (z, qz)

∏P DP (z, qz)

RRRRRRRRRRRz=q−
4
3

= −∑
P

deg(P )(∣P ∣ − 1) (∣P ∣
1
3 − 1)

(∣P ∣
1
3 − 1) (∣P ∣

4
3 + ∣P ∣)

2 .

Thus, combining the above with (3.6.21), we have that

B = q
2g+2
3 Q(2g + 2) +C3q

g
6
+[ g

2
] +C4q

g
6
+[ g−1

2
] +O (q

g
2
(1+ε)) .

Letting

q
2g+2
3 R(2g + 2) = q

2g+2
3 Q(2g + 2) +C3q

g
6
+[ g

2
] +C4q

g
6
+[ g−1

2
] (3.6.25)

completes the proof of Lemma 3.6.7. ∎

3.7 Error from non-square V

Let

S(V ≠ ◻) = So(V ≠ ◻) + Se(V ≠ ◻) (3.7.1)

where

So(V ≠ ◻) = Sog,1(V ≠ ◻) − Sog,2(V ≠ ◻) + Sog−1,1(V ≠ ◻) − Sog−1,2(V ≠ ◻) (3.7.2)

and

Se(V ≠ ◻) = Seg,1(V ≠ ◻) − Seg,2(V ≠ ◻) + Seg−1,1(V ≠ ◻) − Seg−1,2(V ≠ ◻). (3.7.3)

In this section, we will bound the term S(V ≠ ◻). The next proposition is the main

result in this section.

Proposition 3.7.1. Using the same notation described previously, we have, for any

ε > 0,

S(V ≠ ◻) ≪ q
g
2
(1+ε). (3.7.4)

To prove Proposition 3.7.1, we will need the following results from [Flo17a, Section 7].

We have

∑
C∣f∞
C∈A+m

1

∣C ∣2
=

1

2πi ∮∣u∣=r1

1

q2mum+1∏P ∣f(1 − u
deg(P ))

du (3.7.5)
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with r1 < 1. For a non-square V ∈ A+ and positive integer n, let

δV ;n(n) = ∑
f∈A+n

G(V,χf)
√

∣f ∣∏P ∣f(1 − u
deg(P ))

.

If ∣u∣ = q−ε, then we have

∣δV ;n(u)∣ ≪ q
n
2
(1+ε)∣V ∣ε. (3.7.6)

3.7.1 Bounding Se(V ≠ ◻)

For each k ∈ {g, g − 1} and ` ∈ {1,2}, we have

Sek,`(V ≠ ◻) = Sek,`,1(V ≠ ◻) + Sek,`,2(V ≠ ◻).

For each j ∈ {1,2}, write

Sek,`,j(V ≠ ◻) = S̃ek,`,j(V ≠ ◻) − Ŝek,`,j(V ≠ ◻),

where S̃ek,`,1(V ≠ ◻) and Ŝek,`,1(V ≠ ◻) denote the sums over non-square V with deg(V ) ≤

deg(f)−2g−4+2deg(C) and deg(V ) ≤ deg(f)−2g−2+2deg(C) respectively. Similarly,

S̃ek,`,2(V ≠ ◻) and Ŝek,`,2(V ≠ ◻) denotes the sums over non-square V with deg(V ) =

deg(f) − 2g − 1 + 2deg(C) and deg(V ) = deg(f) − 2g − 3 + 2deg(C) respectively. Then

by (3.7.5), we have

S̃eg,1,1(V ≠ ◻) =
(q − 1)q2g+2

2πi ∮
∣u∣=r1

[ g
2
]

∑
n=0

1

q2n

g

∑
m=g−n+2

1

q2mum+1 ∑
◻≠V ∈A+

≤2n−2g−4+2m

δV ;2n(u)du,

Ŝeg,1,1(V ≠ ◻) =
(q − 1)q2g+1

2πi ∮
∣u∣=r1

[ g
2
]

∑
n=0

1

q2n

g

∑
m=g−n+1

1

q2mum+1 ∑
◻≠V ∈A+

≤2n−2g−2+2m

δV ;2n(u)du,

S̃eg,1,2(V ≠ ◻) =
q2g+1

2πi ∮∣u∣=r1

[ g
2
]

∑
n=0

1

q2n

g

∑
m=g−n+1

1

q2mum+1 ∑
◻≠V ∈A+2n−2g−1+2m

δV ;2n(u)du

and

Ŝeg,1,2(V ≠ ◻) =
q2g+2

2πi ∮∣u∣=r1

[ g
2
]

∑
n=0

1

q2n

g

∑
m=g−n+2

1

q2mum+1 ∑
◻≠V ∈A+2n−2g−3+2m

δV ;2n(u)du,

with r1 < 1. We can bound δV ;2n(u) by (3.7.6) and the sum over V by using the fact

that #A+
n = qn. Thus we get that S̃eg,1,1(V ≠ ◻) ≪ q

g
2
(1+ε), Ŝeg,1,1(V ≠ ◻) ≪ q

g
2
(1+ε),

S̃eg,1,2(V ≠ ◻) ≪ q
g
2
(1+ε) and Ŝeg,1,2(V ≠ ◻) ≪ q

g
2
(1+ε) and so Seg,1(V ≠ ◻) ≪ q

g
2
(1+ε). Using

similar calculations, we can bound Seg,2(V ≠ ◻), Seg−1,1(V ≠ ◻) and Seg−1,2(V ≠ ◻) by

q
g
2
(1+ε) and so by (3.7.3) we have

Se(V ≠ ◻) ≪ q
g
2
(1+ε). (3.7.7)
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3.7.2 Bounding So(V ≠ ◻)

For k ∈ {g, g − 1} and ` ∈ {1,2}, let

Sok,`(V ≠ ◻) = S̃ok,`(V ≠ ◻) − Ŝok,`(V ≠ ◻),

where S̃ok,`(V ≠ ◻) and Ŝok,`(V ≠ ◻) denotes the sums over non-square V with deg(V ) =

deg(f) − 2g − 3 + 2deg(C) and deg(V ) = deg(f) − 2g − 1 + 2deg(C) respectively. Then

using (3.7.5), we have

S̃og,1(V ≠ ◻) =
q2g+ 5

2

2πi ∮∣u∣=r1

[ g−1
2

]

∑
n=0

1

q2n+1

g

∑
m=g−n+1

1

q2mum+1 ∑
◻≠V ∈A+2n−2g−2+2m

δV ;2n+1(u)du

and

Ŝog,1(V ≠ ◻) =
q2g+ 3

2

2πi ∮∣u∣=r1

[ g−1
2

]

∑
n=0

1

q2n+1

g

∑
m=g−n

1

q2mum+1 ∑
◻≠V ∈A+2n−2g+2m

δV ;2n+1(u)du

with r1 < 1. We can bound δV ;2n+1(u) by (3.7.6) and the sum over V by using the fact

that #A+
n = q

n. Thus we get that S̃og,1(V ≠ ◻) ≪ q
g
2
(1+ε) and Ŝog,1(V ≠ ◻) ≪ q

g
2
(1+ε) and

so Sog,1(V ≠ ◻) ≪ q
g
2
(1+ε). Similar calculations can show that Sog,2(V ≠ ◻), Sog−1,1(V ≠ ◻)

and Sog−1,2(V ≠ ◻) are bounded by q
g
2
(1+ε). Therefore, by (3.7.2), we get

So(V ≠ ◻) ≪ q
g
2
(1+ε). (3.7.8)

Thus combining (3.7.7) and (3.7.8) with (3.7.1) proves Proposition 3.7.1.

3.8 Proof of Theorem 3.1.9

We combine results from the previous sections to prove Theorem 3.1.9.

Proof of Theorem 3.1.9. From (3.4.1), we have

∑
D∈H2g+2

L(
1

2
, χD) = Sg,1 − Sg,2 + Sg−1.1 − Sg−1,2. (3.8.1)

From the arguments stated in Section 3.4, we can rewrite (3.8.1) as

∑
D∈H2g+2

L(
1

2
, χD) =M + S(V = ◻) + S(V ≠ ◻). (3.8.2)

Using Proposition 3.5.1, Proposition 3.6.1 and Proposition 3.7.1, we have

∑
D∈H2g+2

L(
1

2
, χD) =M1 +M2 +M3 +M4

+ S1(V = ◻) + S2(V = ◻) + S3(V = ◻) + S4(V = ◻)

+ q
2g+2
3 R(2g + 2) +O (q

g
2
(1+ε)) . (3.8.3)
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Furthermore, from Proposition 3.5.1, and Proposition 3.6.1 we have that

S1(V = ◻) +M1 = −
q2g+2

ζA(2)

1

2πi ∮∣u∣=R

C(u)

u(1 − qu)2(qu)[
g
2
]
du

+
q2g+2

ζA(2)

1

2πi ∮∣u∣=r

C(u)

u(1 − qu)2(qu)[
g
2
]
du, (3.8.4)

S2(V = ◻) +M2 = −
q2g+2

ζA(2)

1

2πi ∮∣u∣=R

C(u)

u(1 − qu)2(qu)[
g−1
2

]
du

+
q2g+2

ζA(2)

1

2πi ∮∣u∣=r

C(u)

u(1 − qu)2(qu)[
g−1
2

]
du, (3.8.5)

S3(V = ◻) +M3 =
q

3g+3
2

ζA(2)

1

2πi ∮∣u∣=R

C(u)

u(1 − u)(1 − qu)u[ g
2
]
du

−
q

3g+3
2

ζA(2)

1

2πi ∮∣u∣=r

C(u)

u(1 − u)(1 − qu)u[ g
2
]
du (3.8.6)

and

S4(V = ◻) +M4 =
q

3g
2
+2

ζA(2)

1

2πi ∮∣u∣=R

C(u)

u(1 − u)(1 − qu)u[ g−1
2

]
du

−
q

3g
2
+2

ζA(2)

1

2πi ∮∣u∣=r

C(u)

u(1 − u)(1 − qu)u[ g−1
2

]
du, (3.8.7)

where r < 1
q and 1 < R < q. By Remark 3.5.2, C(u) has an analytic continuation for

∣u∣ < q and C(1) = 0. Therefore, between the circles ∣u∣ = r and ∣u∣ = R, the integrands

corresponding to the terms M1, M2, S1(V = ◻) and S2(V = ◻) have a double pole at

u = q−1. Similarly, the integrands corresponding to the terms M3, M4, S3(V = ◻) and

S4(V = ◻) have a simple pole at u = q−1. We can compute the residue as follows:

Res(
C(u)

u(1 − qu)2(qu)[
k
2
]
;u = q−1) = lim

u→q−1

d

du

(u − q−1)2C(u)

u(1 − qu)2(qu)[
k
2
]

= lim
u→q−1

d

du

C(u)

q(qu)[
k
2
]+1

= lim
u→q−1

C′(u)

q(qu)[
k
2
]+1

− lim
u→q−1

C(u) ([k2] + 1)

(qu)[
k
2
]+2

=
C′ (q−1)

q
− C (q−1)([

k

2
] + 1) .
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Similarly we have

Res(
C(u)

u(1 − u)(1 − qu)u[ k
2
]
;u = q−1) = lim

u→q−1

(u − q−1)C(u)

u(1 − u)(1 − qu)u[ k
2
]

= − lim
u→q−1

C(u)

qu(1 − u)u[ k
2
]

= −
C (q−1) q[

k
2
]+1

(q − 1)
.

Using the substitution u = q−s, we have have that C(u) = P (s) and C′(u) = qs

log qP
′(s).

Thus

M1 + S1(V = ◻) =
q2g+2

ζA(2)
(P (1) ([

g

2
] + 1) +

P ′(1)

log q
) ,

M2 + S2(V = ◻) =
q2g+2

ζA(2)
(P (1) ([

g − 1

2
] + 1) +

P ′(1)

log q
) ,

M3 + S3(V = ◻) = −
q

3g+5
2

+[ g−1
2

]P (1)

ζA(2)(q − 1)

and

M4 + S4(V = ◻) = −
q

3g
2
+3+[ g

2
]P (1)

ζA(2)(q − 1)
.

Using the fact that

[
g

2
] + [

g − 1

2
] = g − 1

we have that

M1 +M2 + S1(V = ◻) + S2(V = ◻) =
q2g+2

ζA(2)
(P (1)(g + 1) +

2

log q
P ′(1)) . (3.8.8)

Furthermore, using the fact that (see [Jun13, Proof of Main Theorem])

1 + q
1
2 = q−

g−1
2
+[ g

2
] + q−

g
2
+[ g−1

2
]+1,

we have

M3 +M4 + S3(V = ◻) + S4(V = ◻) = −
P (1)

ζA(2)(q − 1)
(q

3g+5
2

+[ g−1
2

] + q
3g
2
+3+[ g

2
])

= −
q2g+2

ζA(2)

1 + q
1
2

q − 1
P (1)

=
q2g+2

ζA(2)
P (1)ζA (

1

2
) . (3.8.9)

Putting (3.8.8) and (3.8.9) into (3.8.3) completes the proof of Theorem 3.1.9. ∎
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Remark 3.8.1. When revising the paper [AM21] and writing this chapter, we came

across a recent paper by Jung [Jun20], where he computed, independently, the mean

value of L (1
2 , χD) when summing over all monic, square-free polynomials of degree

2g + 2 as g →∞ using similar calculations to those used by Florea [Flo17a]. Compared

to Jung’s paper, we explicitly go into more detail about how to calculate the asymptotic

formula, especially when analysing the contribution from the square polynomials V .
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Chapter 4

The Mean Value of ∣K2(O)∣ in the

Inert Imaginary Quadratic Function

Fields

4.1 The Algebraic K group K2(O)

In this section, we will give some details about the algebraic K group K2(O), which is

mainly stated in Rosen [Ros95, Section 2] and relate their size to the number L(2, χ).

Let F = Fq and let K/F be a function field in one variable with a finite constant field

F . Furthermore, we will let the primes in K be denoted by v and the valuation ring

at v by Ov. Also, we let Pv denote the maximal ideal of Ov and F̄v denote the residue

class field at v. The tame symbol (∗,∗)v is a mapping from K∗ ×K∗ to F̄ ∗
v defined by

(a, b)v = (−1)v(a)v(b)av(b)/bv(a) modulo Pv. (4.1.1)

This symbol is bimultiplicative and has the property that (a,1 − a)v = 1 for all a ∈ K∗

with a ≠ 0,1.

The group K2(K) can be defined as K∗⊗K∗ modulo the subgroup generated by the

elements a⊗(1−a) for all a ∈K∗ with a ≠ 0,1. There is a map λv ∶K2(K)→ F̄ ∗
v which

is induced by λv(a⊗ b) = (a, b)v. If we let λ ∶ K2(K) →⊕v F̄ ∗
v be the sum of the tame

symbol maps and µ ∶⊕v F̄ ∗
v → F ∗ be the map given by µ(. . . , av, . . . , ) =∏v a

mv/m
v where

mv = NPv − 1 = #F̄ ∗
v and m = q − 1 = #F , then Moore (see [Tat71]) proved that the

sequence

(0)→ Ker(λ)→K2(K)
λ
Ð→⊕

v
F̄ ∗
v → F ∗ → (0) (4.1.2)
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is exact. Tate [Tat71] proved the Birch-Tate conjecture concerning the size of Ker(λ).

More precisely, he proved that

#Ker(λ) = (q − 1)(q2 − 1)ζK(−1)

where

ζK(s) =∏
v

(1 −NP−sv )−1

and the product is over all primes v of the function field K. Furthermore let S =

(P1, . . . ,Pt) be a finite set of primes of K and let OS denote the set of S-integers of K,

i.e. the elements of K whose poles lie in S. Then using a theorem of Quillen [Qui72]

we have that

(0)→K2(OS)→K2(K)
λ′

Ð→⊕
v∉S

F̄ ∗ → (0)

where the map λ′ is the truncation of the map λ. If we define the S-zeta function of K

to be

ζS(s) =∏
v∉S

(1 −NP−sv )−1, (4.1.3)

then Rosen [Ros95, Proposition 1] says that

K2(OS) = (−1)t(q2 − 1)ζS(−1). (4.1.4)

Let m ∈ A be square-free then we define Km = k(
√
m) and Om be the integral closure

of A. We also define the zeta function of the ring to be

ζOm(s) =∑
a

Na−s,

where a runs through the non-zero ideals of Om = A[
√
m] and Na is the number of

elements in Om/a. Then, from [Ros95, Proposition 17.7] we have

ζOm(s) = ζA(s)L(s,χm), (4.1.5)

where L(s,χm) is the L-function defined in Section 2.6.2. If we let S = Sm(∞) be the

primes in K above ∞, then OS is Om and thus combining (4.1.4) and (4.1.5) we have

#K2(Om) = (−1)t−1L(−1, χm), (4.1.6)

where t is the number of primes in Km above ∞. Finally, proving a relationship between

L(−1, χm) and L(2, χm), Rosen proved a relation between the size of the group K2(Om)

and the number L(2, χm).

Proposition 4.1.1 ([Ros95, Proposition 2]). Let Km = k(
√
m), where m is a square-

free polynomial of degree M in A. We have the following:
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a) If M is odd, then

#K2(Om) = q
3M
2 q−

3
2L(2, χm). (4.1.7)

b) If M is even and the leading coefficient of m is a square, then

#K2(Om) = q
3M
2 q−2 ζA(3)

ζA(2)
L(2, χm). (4.1.8)

c) If M is even and the leading coefficient of m is not a square, then

#K2(Om) = q
3M
2 q−2 ζA(2)ζA(5)

ζ2
A(3)

L(2, χm). (4.1.9)

4.2 The Mean Value of ∣K2(O)∣ in Function Fields

Using Proposition 4.1.1 and [HR92, Theorem 0.8], Rosen proved the following result.

Theorem 4.2.1 (Rosen). Let ε > 0 be given.

a) Suppose M is odd, then

(q − 1)−1(qM − qM−1)−1 ∑
m∈AM

m square-free

#K2(Om) = q
3M
2 q−

3
2 ζA(2)ζA(4)c(2) +Oε (q

M(1+ε)) .

(4.2.1)

b) Suppose M is even and the leading coefficient of m is a square, then

2(q − 1)−1(qM − qM−1)−1 ∑
m∈AM

m square-free

#K2(Om) = q
3M
2 q−2ζA(3)ζA(4)c(2)+Oε (q

M(1+ε)) .

(4.2.2)

c) Suppose M is even and the leading coefficient of M is not a square, then

2(q − 1)−1(qM − qM−1)−1 ∑
m∈AM

m square-free

#K2(Om)

= q
3M
2 q−2 ζ

2
A(2)ζA(4)ζA(5)

ζ2
A(3)

c(2) +Oε (q
M(1+ε)) . (4.2.3)

The constant c(2) is given by

c(2) =∏
P

(1 − ∣P ∣−2 − ∣P ∣−5 + ∣P ∣−6) .

Restricting the sum to monic, square-free polynomials of a certain degree, Andrade

[And15] established an asymptotic formula for the size of the group K2(OD) for D ∈

H2g+1, where H2g+1 is the hyperelliptic ensemble defined in Section 2.6.3. In particular

he proved the following result.
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Theorem 4.2.2 (Andrade). Let ε > 0 be given. Then

1

#H2g+1
∑

D∈H2g+1

#K2(OD) = q
3
2
(2g+1)q−

3
2 ζA(4)P (4) +Oε (q

(2g+1)(1+ε)) , (4.2.4)

where

P (s) =∏
P

(1 −
1

∣P ∣s(∣P ∣ + 1)
) . (4.2.5)

In this chapter, we will use the methods of Andrade to calculate the average size of the

group K2(OγD), where D is a monic, square-free polynomial of degree 2g + 2 and γ is

a fixed generator of F∗q . The main result in this Chapter is the following:

Theorem 4.2.3. Let ε > 0 be given and let γ be a fixed generator of F∗q . Then

1

#H2g+2
∑

D∈H2g+2

#K2(OγD) = q
3
2
(2g+2)q−2 ζA(2)ζA(4)ζA(5)

ζ2
A(3)

P (4) +Oε (q
(2g+2)(1+ε)) ,

(4.2.6)

where P (s) is given in (4.2.5).

Remark 4.2.4. The asymptotic for ∑D∈H2g+2
#K2(OD) was obtained jointly with An-

drade and Davies in a paper, [ADM22], that is currently submitted for publication. As

the calculations are similar, I will only include the calculations to prove an asymptotic

for ∑D∈H2g+2
#K2(OγD) here.

4.3 Preliminaries

In this section, we will state and prove results that will be needed to prove Theo-

rem 4.2.3. We will start by proving the following result.

Lemma 4.3.1. Let χγD be a quadratic character, where γ is a fixed generator of F∗q
and D ∈ H2g+2. Then

L(q−2, χγD) = ∑
f∈A+

≤2g

(−1)deg(f)
χD(f)

∣f ∣2
+ q−4g−2 ∑

f∈A+
≤2g

χD(f). (4.3.1)

Proof. From Section 2.4 and Section 2.6.2, we know that the L-function L(u,χD̃) is

written as

L(u,χD̃) =
2g+1

∑
n=0

AD̃(n)un (4.3.2)

where D̃ = γD and

AD(n) = ∑
f∈A+n

χD(f). (4.3.3)
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From Section 2.6.3, we know that the complete L-function L∗(u,χD̃) can be written as

L∗(u,χD̃) =
2g

∑
n=0

A∗
D̃
(n)un. (4.3.4)

From (2.6.12) we know that

A∗
D̃
(n) =

n

∑
i=0

(−1)n−iAD̃(i).

Furthermore, since (γf ) = (−1)deg(f) then ( D̃f ) = (−1)deg(f) (Df ) and soAD̃(n) = (−1)nAD(n).

Therefore

A∗
D̃
(n) =

n

∑
i=0

(−1)nAD(i). (4.3.5)

Thus combining (4.3.4) and (4.3.5) we get

L∗(q−2, χD̃) =
2g

∑
n=0

n

∑
i=0

(−1)nAD(i)q−2n. (4.3.6)

Interchanging the sums we get

L∗(q−2, χD̃) =
2g

∑
n=0

2g

∑
i=n

(−1)iAD(n)q−2i.

Thus

L∗(q−2, χD̃) =
2g

∑
n=0

AD(n) (
(−1)nq−2n + q−4g−2

1 + q−2
) . (4.3.7)

Using (2.6.12) in (4.3.7) proves the Lemma. ∎

Proposition 4.3.2. Let ` ∈ A be a monic polynomial. Then for all ε > 0 we have

∑
D∈H2g+2

(D,`)=1

1 =
q2g+2

ζA(2)
∏
P ∣`

∣P ∣

∣P ∣ + 1
+O (qg ∣`∣ε) . (4.3.8)

Proof. The proof is similar to that given in [AK12, Proposition 5.2]. ∎

Lemma 4.3.3 ([AK12, Lemma 5.7]). We have

∑
`∈A+m
∏
P ∣`

∣P ∣

∣P ∣ + 1
= qm ∑

d∈A+
≤m

µ(d)

∣d∣
∏
P ∣d

1

∣P ∣ + 1
. (4.3.9)

Lemma 4.3.4. For s = 1 or s = 4 we have

∑
d∈A+

≤g

µ(d)

∣d∣s
∏
P ∣d

1

∣P ∣ + 1
= P (s) +O(q−sg), (4.3.10)

where P (s) is given by (4.2.5).
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Proof. When s = 1, the proof is given in [Jun14, Lemma 3.3]. Using similar methods,

we have that when s = 4 we can use the definition of the Möbius function and the Euler

product formula to obtain

∑
d∈A+

µ(d)

∣d∣4
∏
P ∣d

1

∣P ∣ + 1
=∏

P

(1 −
1

∣P ∣4(∣P ∣ + 1)
) = P (4).

We also have

∑
d∈A+

deg(d)>g

µ(d)

∣d∣4
∏
P ∣d

1

∣P ∣ + 1
≤ ∑

d∈A+
deg(d)>g

µ2(d)

∣d∣4
∏
P ∣d

1

∣P ∣

≤ ∑
d∈A+

deg(d)>g

1

∣d∣5
=

∞
∑
n=g+1

q−4n ≪ q−4g.

Thus

∑
d∈A+

≤g

µ(d)

∣d∣4
∏
P ∣d

1

∣P ∣ + 1
= ∑
d∈A+

µ(d)

∣d∣4
∏
P ∣d

1

∣P ∣ + 1
− ∑

d∈A+
deg(d)>g

µ(d)

∣d∣4
∏
P ∣d

1

∣P ∣ + 1
= P (4) +O (q−4g) .

∎

Lemma 4.3.5. If f ∈ A is not a perfect square then

∑
D∈H2g+2

χD(f) ≪ qg ∣f ∣
1
4 (4.3.11)

Proof. The proof is similar to that given in [And15, Lemma 4.3]. ∎

4.4 Proof of Theorem 4.2.3

In this section, we will prove Theorem 4.2.3. Firstly, we split each term of (4.3.1) in

two, the first over all polynomials of degree at most 2g which are a square and the

second over all polynomials of degree at most 2g which are not a square. Thus we get

∑
D∈H2g+2

L(2, χγD) = ∑
D∈H2g+2

∑
f∈A+

≤2g

f=`2=◻

χD(f)

∣f ∣2
+ ∑
D∈H2g+2

∑
f∈A+

≤2g

f≠◻

(−1)deg(f)χD(f)

∣f ∣2

+ q−4g−2 ∑
D∈H2g+2

∑
f∈A+

≤2g

f=`2=◻

χD(f) + q−4g−2 ∑
D∈H2g+2

∑
f∈A+

≤2g

f≠◻

χD(f). (4.4.1)

We will evaluate each term of (4.4.1) separately and then use Proposition 4.1.1 to prove

Theorem 4.2.3.

Proposition 4.4.1. For all ε > 0, we have

∑
D∈H2g+2

∑
f∈A+

≤2g

f=◻

χD(f)

∣f ∣2
=
q2g+2

ζA(2)
ζA(4)P (4) +O (qg(1+ε)) . (4.4.2)
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Proof. From the definition of quadratic Dirichlet characters stated in Section 2.6.2, we

know that χD(`2) = 1 if (D, `) = 1 and 0 otherwise. Thus

∑
D∈H2g+2

∑
f∈A+

≤2g

f=◻

χD(f)

∣f ∣2
= ∑
`∈A+

≤g

1

∣`∣4
∑

D∈H2g+2

(D,`)=1

1.

Using Proposition 4.3.2, we have

∑
D∈H2g+2

∑
f∈A+

≤2g

f=◻

χD(f)

∣f ∣2
=
q2g+2

ζA(2)

g

∑
m=0

q−4m ∑
`∈A+m
∏
P ∣`

∣P ∣

∣P ∣ + 1
+O (qg

2g

∑
m=0

qmε−m) .

Invoking Lemma 4.3.3 we have

∑
D∈H2g+2

∑
f∈A+

≤2g

f=◻

χD(f)

∣f ∣2
=
q2g+2

ζA(2)

g

∑
m=0

q−3m ∑
d∈A+

≤m

µ(d)

∣d∣
∏
P ∣d

1

∣P ∣ + 1
+O (qg(1+ε)) . (4.4.3)

Rearranging (4.4.3) we get

∑
D∈H2g+2

∑
f∈A+

≤2g

f=◻

χD(f)

∣f ∣2
=
q2g+2

ζA(2)
∑
d∈A+

≤g

µ(d)

∣d∣
∏
P ∣d

1

∣P ∣ + 1
∑

deg(d)≤m≤g
q−3m

=
q2g+2

ζA(2)
ζA(4) ∑

d∈A+
≤g

µ(d)

∣d∣4
∏
P ∣d

1

∣P ∣ + 1

−
q2−g

q3 − 1

1

ζA(2)
∑
d∈A+

≤g

µ(d)

∣d∣
∏
P ∣d

1

∣P ∣ + 1
+O (qg(1+ε)) .

Using Lemma 4.3.4 proves the Proposition. ∎

Lemma 4.4.2. We have

q−4g−2 ∑
D∈H2g+2

∑
f∈A+

≤2g

f=◻

χD(f) ≪ q−g.

Proof. Trivially bounding the quadratic Dirichlet character, we have

q−4g−2 ∑
D∈H2g+2

∑
f∈A+

≤2g

f=◻

χD(f) ≪ q−4g ∑
f∈A+

≤2g

f=◻

∑
D∈H2g+2

1 ≪ q−2g ∑
L∈A+

≤g

1 ≪ q−g.

∎

Lemma 4.4.3. We have

∑
D∈H2g+2

∑
f∈A+

≤2g

f≠◻

χD(f) ≪ qg.
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Proof. Using Lemma 4.3.5, we have

∑
D∈H2g+2

∑
f∈A+

≤2g

f≠◻

χD(f)

∣f ∣2
≪ qg ∑

f∈A+
≤2g

∣f ∣−
7
4 ≪ qg

2g

∑
m=0

q−
3m
4 ≪ qg.

∎

Lemma 4.4.4. We have

q−4g−2 ∑
D∈H2g+2

∑
f∈A+

≤2g

f≠◻

χD(f) ≪ q−
g
2 .

Proof. From Lemma 4.3.5 we have

q−4g−2 ∑
D∈H2g+2

∑
f∈A+

≤2g

f≠◻

χD(f) ≪ q−3g ∑
f∈A+

≤2g

∣f ∣
1
4 ≪ q−3g

2g

∑
n=0

q
5m
4 ≪ q−

g
2 .

∎

Thus using Proposition 4.4.1, Lemma 4.4.2, Lemma 4.4.3 and Lemma 4.4.4 in (4.4.1),

we have, for γ a fixed generator of F∗q , that

∑
D∈H2g+2

L(2, χγD) =
q2g+2

ζA(2)
ζA(4)P (4) +O (qg(1+ε)) . (4.4.4)

Using (2.6.9) and Proposition 4.1.1 part c) proves Theorem 4.2.3.

∎
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Chapter 5

Rudnick and Soundararajan’s

Theorem over Prime Polynomials

for the Rational Function Field

5.1 Lower bounds of Dirichlet L-functions in Func-

tion Fields

As previously discussed, a fundamental problem in Analytic Number Theory is to un-

derstand the asymptotic behaviour of moments of Dirichlet L-functions in function

fields. Andrade and Keating [AK14] conjectured that

1

#H2g+1
∑

D∈H2g+1

L(
1

2
, χD)

k

∼ Pk(logq ∣D∣) (5.1.1)

where Pk is an explicit polynomial of degree 1
2k(k + 1), where H2g+1 is the hyperelliptic

ensemble and L(s,χD) is the Dirichlet L-function defined in Section 2.6.3 and Section

2.6.2 respectively. The first four moments have been explicitly been computed by An-

drade and Keating [AK12] and Florea [Flo17a, Flo17b, Flo17c] and have also verified

the conjecture for these cases.

Furthermore, Andrade [And16] established lower bounds for the moments of Dirichlet

L-functions in function fields, which is seen to be the function field analogue of Rud-

nick and Soundararajan’s [RS06] result Theorem 1.5.8. Namely Andrade proved the

following result.

Theorem 5.1.1. For every even natural number k and n = 2g+1 or n = 2g+2, we have

1

#Hn
∑
D∈Hn

L(
1

2
, χD)

k

≫k (logq ∣D∣)
k(k+1)

2 . (5.1.2)
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For the family of Dirichlet L-functions associated with the Dirichlet character χP ,

where P is a monic, irreducible polynomial in Fq[T ], Andrade, Jung and Shamesaldeen

[AJS21] conjectured

1

#P2g+1
∑

P ∈P2g+1

L(
1

2
, χP)

k

∼ Qk(logq ∣P ∣), (5.1.3)

where Qk is an explicit polynomial of degree 1
2k(k + 1). The first and second moments

have explicitly been calculated by Andrade and Keating [AK13] and Bui and Florea

[BF20].

In this chapter, we will use the methods of Rudnick and Soundararajan [RS06] and

Andrade [And16] to establish lower bounds for the moments of Dirichlet L-functions

associated with the Dirichlet character χP .

Theorem 5.1.2. For every even natural number k and n = 2g + 1 and n = 2g + 2, we

have
1

#Pn
∑
P ∈Pn

L(
1

2
, χP)

k

≫k (logq ∣P ∣)
k(k+1)

2 . (5.1.4)

Remark 5.1.3. Recently, Gao and Zhao [GZ22b] used the work of Radziwi l l and

Soundararajan [RS13] and Heap and Soundararajan [HS22] to show that Theorem 5.1.1

and Theorem 5.1.2 holds for all real k > 0.

5.2 Preliminary Lemmas

In this section, we will state some preliminary Lemmas which will be used to prove

Theorem 5.1.2.

Lemma 5.2.1 (“Approximate Functional Equation”). For P ∈ P2g+1, we have

L(
1

2
, χP) = ∑

f∈A+
≤g

χP (f)
√

∣f ∣
+ ∑
f∈A+

≤g−1

χP (f)
√

∣f ∣
. (5.2.1)

Proof. The proof is similar to that given in [AK12, Lemma 3.3]. ∎

Proposition 5.2.2 ([Rud10, (2.5)]). For f ∈ A+ with deg(f) > 0 and f not a perfect

square, we have

∣ ∑
P ∈Pn

χP (f)∣ ≪
deg(f)

n
q
n
2 . (5.2.2)

5.3 Proof of Theorem 5.1.2

In this section, we prove Theorem 5.1.2. We will prove the result for n = 2g + 1, but

similar methods can be used to prove the result for n = 2g + 2.
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5.3. Proof of Theorem 5.1.2

5.3.1 Set Up of the Proof

Let k be an even natural number and let x = 2(2g)
5k .

Remark 5.3.1. This is the maximum and simplest choice of x so that the error term

in (5.3.14) is bounded by ∣P ∣1−ε for some ε > 0.

For P ∈ P2g+1, we define

A(P ) = ∑
f∈A+

≤x

χP (f)
√

∣f ∣
(5.3.1)

and let

S1 ∶= ∑
P ∈P2g+1

L(
1

2
, χP)A(P )k−1 (5.3.2)

and

S2 ∶= ∑
P ∈P2g+1

A(P )k. (5.3.3)

Using the triangle inequality and Hölders inequality we get

RRRRRRRRRRR
∑

P ∈P2g+1

L(
1

2
, χP)A(P )k−1

RRRRRRRRRRR

≤ ∑
P ∈P2g+1

∣L(
1

2
, χP)∣ ∣A(P )∣k−1

≤
⎛

⎝
∑

P ∈P2g+1

L(
1

2
, χP)

k⎞

⎠

1
k ⎛

⎝
∑

P ∈P2g+1

A(P )k
⎞

⎠

1
k

.

Thus

∑
P ∈P2g+1

L(
1

2
, χP)

k

≥
(∑P ∈P2g+1

L (1
2 , χP )A(P )k−1)

k

(∑P ∈P2g+1
A(P )k)

k−1
=
Sk1
Sk−1

2

. (5.3.4)

Therefore to prove Theorem 5.1.2, we need to obtain estimates for S1 and S2.

5.3.2 Estimating S2

We have

S2 = ∑
P ∈P2g+1

A(P )k = ∑
n1,...,nk∈A+≤x

1
√

∣n1 . . . nk∣
∑

P ∈P2g+1

χP (n1 . . . nk).

We split the sum up in two, where the first is over all polynomials n1, . . . , nk of degree

at most x for which the product n1 . . . nk is a square and the second sum is over all

polynomials n1, . . . , nk of degree at most x for which the product n1 . . . nk is not a square.

Furthermore, from the definition of the quadratic Dirichlet character given in Section

2.6.2, we know that χP (`2) = 1 if (P, `) = 1 and 0 otherwise. Also, if deg(P ) > deg(`),
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then all polynomials ` are coprime to P . Since deg(n1 . . . nk) ≤ kx = 2(2g)
5 < 2g + 1 =

deg(P ), then combining the above we get

S2 = ∑
n1,...,nk∈A+≤x
n1...nk=◻

1
√

∣n1 . . . nk∣
∑

P ∈P2g+1

1 + ∑
n1,...,nk∈A+≤x
n1...nk≠◻

1
√

∣n1 . . . nk∣
∑

P ∈P2g+1

χP (n1 . . . nk).

Using the Prime Polynomial Theorem, Theorem 2.1.4, and Proposition 5.2.2, we have

S2 =
∣P ∣

logq ∣P ∣
∑

n1,...,nk∈A+≤x
n1...nk=◻

1
√

∣n1 . . . nk∣
+ ∑
n1,...,nk∈A+≤x
n1...nk=◻

1
√

∣n1 . . . nk∣
O (

∣P ∣
1
2

logq ∣P ∣
)

+ ∑
n1,...,nk∈A+≤x
n1...nk≠◻

1
√

∣n1 . . . nk∣
O (

∣P ∣
1
2

logq ∣P ∣
deg(n1 . . . nk)) . (5.3.5)

Since x = 2(2g)
5k , then for the second term in (5.3.5) we have

∣P ∣
1
2

logq ∣P ∣
∑

n1,...,nk∈A+≤x
n1...nk=◻

1
√

∣n1 . . . nk∣
≤

∣P ∣
1
2

logq ∣P ∣
∑

n1∈A+≤x

1
√

∣n1∣
. . . ∑

nk∈A+≤x

1
√

∣nk∣

≪
∣P ∣

1
2

logq ∣P ∣
q
kx
2 =

∣P ∣
7
10

logq ∣P ∣
. (5.3.6)

Similarly, for the last term in (5.3.5) we have

∣P ∣
1
2

logq ∣P ∣
∑

nj∈A+≤x
j=1,...,k
n1...nk≠◻

deg(n1 . . . nk)
√

∣n1 . . . nk∣
≤

∣P ∣
1
2

logq ∣P ∣
kx ∑

n1∈A+≤x

1
√

∣n1∣
. . . ∑

nk∈A+≤x

1
√

∣nk∣

≪
∣P ∣

1
2

logq ∣P ∣
kxq

kx
2 ≪ ∣P ∣

7
10 . (5.3.7)

Therefore combining (5.3.5), (5.3.6) and (5.3.7), we have

S2 =
∣P ∣

logq ∣P ∣
∑

n1,...,nk∈A+≤x
n1...nk=◻

1
√

∣n1 . . . nk∣
+O (∣P ∣

7
10) . (5.3.8)

Writing n1 . . . nk =m2, then from [And16, (4.18)], we have that

∑
m∈A+

≤
x
2

dk(m2)

∣m∣
≤ ∑
n1,...,nk∈A+≤x
n1...nk=◻

1
√

∣n1 . . . nk∣
≤ ∑
m∈A+

≤
kx
2

dk(m2)

∣m∣
, (5.3.9)

where dk(f) is defined in Section 2.2. From Lemma 2.2.9, we have

∑
m∈A+

≤
x
2

dk(m2)

∣m∣
∼ C(k) (

2g

5k
)

k(k+1)
2

(5.3.10)
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and

∑
m∈A+

≤
kx
2

dk(m2)

∣m∣
∼ C(k) (

2g

5
)

k(k+1)
2

. (5.3.11)

Thus, using (5.3.8), (5.3.10) and (5.3.11), we have that

S2 ≪ ∣P ∣(logq ∣P ∣)
k(k+1)

2
−1. (5.3.12)

5.3.3 Estimating S1

Using Lemma 5.2.1, we have

S1 = ∑
P ∈P2g+1

L(
1

2
, χP)A(P )k−1

= ∑
f∈A+

≤g

n1,...,nk−1∈A+≤x

1
√

∣fn1 . . . nk−1∣
∑

P ∈P2g+1

χP (fn1 . . . nk−1)

+ ∑
f∈A+

≤g−1

n1,...,nk−1∈A+≤x

1
√

∣fn1 . . . nk−1∣
∑

P ∈P2g+1

χP (fn1 . . . nk−1). (5.3.13)

The two sums in the last equality of (5.3.13) are the same apart from the size of the

sum. Thus, we will only estimate the first sum, as the second follows from replacing g

with g − 1.

We split up the sum in two, where the first sum is over all polynomials f of degree

at most g and all polynomials n1, . . . , nk−1 of degree at most x for which the product

fn1 . . . nk−1 is a square and the second sum is over all polynomials f of degree at most g

and all polynomials n1, . . . , nk−1 of degree at most x for which the product fn1 . . . nk−1

is not a square. Furthermore using the arguments given in Section 5.3.2 and the above

we have

∑
f∈A+

≤g

n1,...,nk−1∈A+≤x

1
√

∣fn1 . . . nk∣
∑

P ∈P2g+1

χP (fn1 . . . nk−1)

= ∑
f∈A+

≤g

n1,...,nk−1∈A+≤x
fn1...nk−1=◻

1
√

∣fn1 . . . nk−1∣
∑

P ∈P2g+1

1 + ∑
f∈A+

≤g

n1,...,nk−1∈A+≤x
fn1...nk≠◻

1
√

∣fn1 . . . nk−1∣
∑

P ∈P2g+1

χP (fn1 . . . nk−1).
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Using the Prime Polynomial Theorem and Proposition 5.2.2 we have

∑
f∈A+

≤g

n1,...,nk−1∈A+≤x

1
√

∣fn1 . . . nk−1∣
∑

P ∈P2g+1

χP (fn1 . . . nk−1)

=
∣P ∣

logq ∣P ∣
∑
f∈A+

≤g

n1,...,nk−1∈A+≤x
fn1...nk−1=◻

1
√

∣fn1 . . . nk−1∣
+ ∑

f∈A+
≤g

n1,...,nk−1∈A+≤x
fn1...nk−1=◻

1
√

∣fn1 . . . nk−1∣
O (

∣P ∣
1
2

logq ∣P ∣
)

+ ∑
f∈A+

≤g

n1,...,nk−1∈A+≤x
fn1...nk=1≠◻

1
√

∣fn1 . . . nk−1∣
O (

∣P ∣
1
2

logq ∣P ∣
deg(fn1 . . . nk−1)) . (5.3.14)

Since x = 2(2g)
5k , then for the second term in (5.3.14), we have

∣P ∣
1
2

logq ∣P ∣
∑
f∈A+

≤g

n1,...,nk−1∈A+≤x
fn1...nk−1=◻

1
√

∣fn1 . . . nk−1∣
≤

∣P ∣
1
2

logq ∣P ∣
∑
f∈A+

≤g

1
√

∣f ∣
∑

n1∈A+≤x

1
√

∣n1∣
. . . ∑

nk−1∈A+≤x

1
√

∣nk−1∣

≪
∣P ∣

1
2

logq ∣P ∣
q
g
2 q(k−1)x

2 ≤
∣P ∣

1
2

logq ∣P ∣
q
g
2 q

2g
5 =

∣P ∣
19
20

logq ∣P ∣

(5.3.15)

Similarly, for the final term in (5.3.14), we have

∣P ∣
1
2

logq ∣P ∣
∑
f∈A+

≤g

n1,...,nk−1∈A+≤x
fn1...nk−1≠◻

1
√

∣fn1 . . . nk−1∣
deg(fn1 . . . nk−1)

≤
∣P ∣

1
2

logq ∣P ∣
(g + (k − 1)x) ∑

f∈A+
≤g

1
√

∣f ∣
∑

n1∈A+≤x

1
√

∣n1∣
. . . ∑

nk−1∈A+≤x

1
√

∣nk−1∣

≪
∣P ∣

1
2

logq ∣P ∣
(g + (k − 1)x)q

g
2 q

(k−1)x
2 ≪

∣P ∣
1
2

logq ∣P ∣
gq

g
2 q

2g
5 ≪ ∣P ∣

19
20 . (5.3.16)

Thus, combining (5.3.14), (5.3.15) and (5.3.16) we get

∑
f∈A+

≤g

n1,...,nk−1∈A+≤x

1
√

∣fn1 . . . nk−1∣
∑

P ∈P2g+1

χP (fn1 . . . nk−1)

=
∣P ∣

logq ∣P ∣
∑
f∈A+

≤g

n1,...,nk−1∈A+≤x
j=1,...,k−1
fn1...nk=1=◻

1
√

∣fn1 . . . nk−1∣
+O (∣P ∣

19
20) . (5.3.17)
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For the main term of (5.3.17), we write n1 . . . nk−1 = rh2 where r, h ∈ A+ with r square-

free. Thus, if fn1 . . . nk−1 is a square, then f = rl2 for some l ∈ A+. Then

∑
f∈A+

≤g

n1,...,nk−1∈A+≤x
fn1...nk−1=◻

1
√

∣fn1 . . . nk−1∣
= ∑
n1,...,nk−1∈A+≤x
n1...nk−1=rh2

1

∣rh∣
∑

l∈A+
≤
g−deg(r)

2

1

∣l∣
.

Now, we have that

∑
l∈A+

≤
g−deg(r)

2

1

∣l∣
∼

1

2
(logq ∣P ∣).

Thus using (5.3.9) we have

∣P ∣

logq ∣P ∣
∑

n1,...,nk−1∈A+≤x
n1...nk−1=rh2

1

∣rh∣
∑

l∈A+
≤
g−deg(r)

2

1

∣l∣
≫ ∣P ∣ ∑

r,h∈A+
deg(rh2)≤x

dk−1(rh2)

∣rh∣

≫ ∣P ∣(logq ∣P ∣)
k(k+1)

2
−1, (5.3.18)

where the final bound in (5.3.18) follows from Lemma 2.2.8 and Lemma 2.2.9. The

same argument applies for the second sum in (5.3.13) replacing g with g − 1. Therefore

we have

S1 ≫ ∣P ∣(logq ∣P ∣)
k(k+1)

2
−1. (5.3.19)

Combining (5.3.4), (5.3.12) and (5.3.19) and using the Prime Polynomial Theorem

completes the proof of Theorem 5.1.2.

∎
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Chapter 6

Integral Moments of L-functions in

Even Characteristic

6.1 Moments of Dirichlet L-functions in Function

Fields

As mentioned in Chapter 3, a problem in function fields is to understand the asymptotic

behaviour of

∑
D∈H2g+1

L(
1

2
, χD)

k

(6.1.1)

as ∣D∣→∞, for positive integer values k, where q ≡ 1(mod 4), L(s,χD) is the quadratic

Dirichlet L-function and H2g+1 is the hyperelliptic ensemble which are defined in Section

2.6.2 and Section 2.6.3 respectively. In the case of fixing q and letting g →∞, the first

four moments of (6.1.1) have been calculated by Andrade and Keating [AK12] and

Florea [Flo17a, Flo17b, Flo17c]. Furthermore Andrade and Keating [AK14] adapted

the recipe of Conrey, Farmer, Keating, Rubinstein and Snaith [CFK+05] to conjecture

the integral moments of quadratic L-functions in function fields. Their conjecture reads.

Conjecture 6.1.1 (Andrade and Keating). Suppose that q odd is the fixed cardinality

of the finite field Fq and let XD(s) = ∣D∣
1
2
−sX(s) and

X(s) = q−
1
2
+s.

That is XD(s) is the factor in the functional equation

L(s,χD) = XD(s)L(1 − s,χD).

Summing over fundamental discriminants D ∈ H2g+1, we have

∑
D∈H2g+1

L(
1

2
, χD)

k

= ∑
D∈H2g+1

Qk(logq ∣D∣)(1 + o(1)), (6.1.2)
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where Qk is the polynomial of degree 1
2k(k + 1) given by the k-fold residue

Qk(x) =
(−1)

k(k−1)
2 2k

k!

1

(2πi)k ∮
. . .∮

G(z1, . . . , zk)∆(z2
1 , . . . , z

2
k)

2

∏
k
j=1 z

2k−1
j

q
x
2 ∑

k
j=1 zjdz1 . . . dzk,

where ∆(z1, . . . , zk) is the Vandermonde determinant given by

∆(z1, . . . , zk) = ∏
1≤i<j≤k

(zj − zi), (6.1.3)

G(z1, . . . , zk) = A(
1

2
; z1, . . . , zk)

k

∏
j=1

X (
1

2
+ zj)

− 1
2

∏
1≤i≤j≤k

ζA(1 + zi + zj)

and A (1
2 ; z1, . . . , zk) is the Euler product, absolutely convergent for ∣R(zj)∣ <

1
2 , defined

by

A(
1

2
; z1, . . . , zk) =∏

P

∏
1≤i≤j≤k

(1 −
1

∣P ∣1+zi+zj
)

×
⎛

⎝

1

2

⎛

⎝

k

∏
j=1

(1 −
1

∣P ∣
1
2
+zj

)

−1

+
k

∏
j=1

(1 +
1

∣P ∣
1
2
+zj

)

−1
⎞

⎠
+

1

∣P ∣

⎞

⎠
(1 +

1

∣P ∣
)

−1

.

Florea [Flo17a, Flo17b, Flo17c] showed that the asymptotic formulas that she obtained,

see Theorem 3.1.2, to Theorem 3.1.5, agree with Conjecture 6.1.1. Furthermore, for the

third moment, Diaconu [Dia19] proved the existence of a secondary main term of size

∣D∣
3
4 in the asymptotic formula and for higher moments, Diaconu and Twiss [DT20]

conjectured that there exists additional terms which occur in the asymptotic formula.

Rubinstein and Wu [RW15] provided numerical evidence for Conjecture 6.1.1, namely

they numerically computed the moments for k ≤ 10 and d ≤ 18, where d = 2g + 1 for

various values of q.

Understanding negative moments of Dirichlet L-functions in function fields is a harder

problem due to the zeros of the L-functions on the critical line. Considering shifted

negative moments, Bui, Florea and Keating [BFK21a] showed that for β ≪ g−
1
2k
+ε and

k a positive integer we have

1

#H2g+1
∑

D∈H2g+1

1

∣L (1
2 + β,χD)∣

k
≪ (

1

β
)

k(k−1)
2

(log g)
k(k+1)

2 . (6.1.4)

Florea [Flo21] proved an upper bound for

1

#H2g+1
∑

D∈H2g+1

1

∣L (1
2 + β + it, χD)∣

k
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for k > 0 and β > 0 such that log ( 1
β) ≪ log g. Additionally, Florea proved that for k a

positive integer, ε > 0 and R(β) ≫ g−1 (log g)
1− 1

2k
+ε

we have

1

#H2g+1
∑

D∈H2g+1

1

L (1
2 + β,χD)

k
= ζA(1 + 2β)(

k
2
)A(β) +O (q−

2gR(β)(2−ε)
k g

k2

2
+ k

2
+ε) ,

where A(β) is a specific constant.

Andrade, Jung and Shamesaldeen [AJS21] conjectured the integral moments of quadratic

Dirichlet L-functions over monic irreducible polynomials in Fq[T ] and showed that

their conjecture agrees with the asymptotic formulas obtained by Andrade and Keat-

ing [AK13] and Bui and Florea [BF20]. Their conjecture reads.

Conjecture 6.1.2 (Andrade, Jung and Shamesaldeen). Suppose that q ≡ 1(mod 4) is

the fixed cardinality of the finite field Fq and let XP (s) = ∣P ∣
1
2
−sX(s) where

X(s) = q−
1
2
+s.

That is XP (s) is the factor in the functional equation

L(s,χP ) = XP (s)L(1 − s,χP ).

Summing over primes P ∈ P2g+1, we have

∑
P ∈P2g+1

L(
1

2
, χP)

k

= ∑
P ∈P2g+1

Qk(logq ∣P ∣)(1 + o(1)), (6.1.5)

where Qk is the polynomial of degree 1
2k(k + 1) given by the k-fold residue

Qk(x) =
(−1)

k(k−1)
2 2k

k!

1

(2πi)k ∮
. . .∮

G(z1, . . . , zk)∆(z2
1 , . . . , z

2
k)

2

∏
k
j=1 z

2k−1
j

q
x
2 ∑

k
i=1 zidz1 . . . dzk,

where ∆(z1, . . . , zk) is the Vandermonde determinant defined in (6.1.3),

G(z1, . . . , zk) = Ak (
1

2
; z1, . . . , zk)

k

∏
i=1

X (
1

2
+ zi)

− 1
2

∏
1≤i≤j≤k

ζA(1 + zi + zj)

and Ak is the Euler product, absolutely convergent for ∣R(zi)∣ <
1
2 defined by

Ak (
1

2
; z1, . . . , zk) =∏

P

∏
1≤i≤j≤k

(1 −
1

∣P ∣1+zi+zj
)

×
1

2

⎛

⎝

k

∏
i=1

(1 −
1

∣P ∣
1
2
+zi

)

−1

+
k

∏
i=1

(1 +
1

∣P ∣
1
2
+zj

)

−1
⎞

⎠
.
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6.2. Statement of Result

When q is a power of 2, a problem in function fields is to understand the asymptotic

behaviour of

∑
u∈Ig+1

L(s,χu)
k, ∑

u∈Fg+1
L(s,χu)

k and ∑
u∈F ′g+1

L(s,χu)
k (6.1.6)

when q is fixed and g →∞ for various values of s and k, where L(s,χu) is the quadratic

Dirichlet L-function defined in Section 2.7.3 and Ig+1, Fg+1 and F ′
g+1 are the sets defined

in Section 2.7.1. In this setting, Bae and Jung [BJ18] computed an asymptotic formula

for the first moment of (6.1.6) for almost all s ∈ C with R(s) ≥ 1
2 . For the interests of

this chapter we will only state their result for when s = 1
2 and when s = 1

2 + it where

t ≠ 0, where the sum is over all u ∈ Ig+1.

Theorem 6.1.3 (Bae and Jung). Suppose that q is a power of 2. Then we have

∑
u∈Ig+1

L(
1

2
, χu) =

2q2g+1

ζA(2)
P (1) (g + 1 +

2

log q

P ′

P
(1)) +O (g2

g
2 q

3g
2 ) (6.1.7)

and for t ≠ 0 we have

∑
u∈Ig+1

L(
1

2
+ it, χu) =

2q2g+1

ζA(2)
ζA(1+2it)(P (1+2it)−q−2it(g+1)P (1−2it))+O (g2

g
2 qg(

3
2
−it)) .

(6.1.8)

where

P (s) =∏
P

(1 −
1

∣P ∣s(∣P ∣ + 1)
) .

A further problem is to understand the asymptotic behaviour of

∑
u∈Ĩg+1

L(s,χu)
k, ∑

u∈F̃g+1

L(s,χu)
k and ∑

u∈F̃ ′g+1

L(s,χu)
k (6.1.9)

where Ĩg+1, F̃g+1 and F̃ ′

g+1 are the sets defined in Section 2.7.1. In this setting Andrade,

Bae and Jung [ABJ16] computed an asymptotic formula for the first moment of (6.1.9)

for all s ∈ C with R(s) ≥ 1
2 and an asymptotic formula for the second moment of (6.1.9)

when s = 1
2 .

6.2 Statement of Result

In this chapter, we develop to even characteristic the heuristic developed in [CFK+05,

AK14, AJS21]. The main result is the following Conjecture.

Conjecture 6.2.1. Suppose that q is a power of 2 which is the fixed cardinality of the

finite field Fq and let

Xu(s) = (q2g+1)
1
2
−sX(s)
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where

X(s) = q−
1
2
+s.

That is Xu(s) is the factor of the functional equation

L(s,χu) = Xu(s)L(1 − s,χu).

Summing over fundamental discriminants u ∈ Ig+1, we have

∑
u∈Ig+1

L(
1

2
, χu)

k

= ∑
u∈Ig+1

Qk(2g + 1)(1 + o(1)), (6.2.1)

where Qk(x) is the polynomial of degree 1
2k(k + 1) given by the k-fold residue

Qk(x) =
(−1)

k(k−1)
2 2k

k!

1

(2πi)k ∮
. . .∮

G(z1, . . . , zk)∆(z2
1 , . . . , z

2
k)

2

∏
k
j=1 z

2k−1
j

q
x
2 ∑

k
j=1 zjdz1 . . . dzk,

where ∆(z1, . . . , zk) is the Vandermonde determinant defined in (6.1.3),

G(z1, . . . , zk) = A(
1

2
; z1, . . . , zk)

k

∏
j=1

X (
1

2
+ zj)

− 1
2

∏
1≤i≤j≤k

ζA(1 + zi + zj)

and A (1
2 ; z1, . . . , zk) is the Euler product, absolutely convergent for ∣R(zj)∣ <

1
2 defined

by

A(
1

2
; z1, . . . , zk) =∏

P

∏
1≤i≤j≤k

(1 −
1

∣P ∣1+zi+zj
)

×
⎛

⎝

1

2

⎛

⎝

k

∏
j=1

(1 −
1

∣P ∣
1
2
+zj

)

−1

+
k

∏
j=1

(1 +
1

∣P ∣
1
2
+zj

)

−1
⎞

⎠
+

1

∣P ∣

⎞

⎠
(1 +

1

∣P ∣
)

−1

.

Remark 6.2.2. To obtain Conjecture 6.2.1, we will use the methods seen in [AK14,

AJS21]. However, the main difference is when averaging over the family Ig+1. For this

we need to use the calculations seen in [BJ18], which is done in Lemma 6.4.2. We will

also show that our conjecture agrees with (6.1.7) and (6.1.8), the latter of which has

not been done in either [AK14] or [AJS21], since asymptotic formulas for

∑
D∈H2g+1

L(
1

2
+ it, χD)

k

or ∑
P ∈P2g+1

L(
1

2
+ it, χP)

k

have not been explicitly obtained. Finally we will use our conjecture to obtain explicit

conjectural formulae for higher moments.
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6.3. Preliminary Lemmas

6.3 Preliminary Lemmas

In this section, we will state results which will be used in this chapter.

Lemma 6.3.1 (“Approximate” Functional Equation, [BJ18, Lemma 3.1]). Let s ∈ C
with R(s) ≥ 1

2 , then for u ∈ I, we have

L(s,χu) = ∑
f∈A+

≤g

χu(f)

∣f ∣s
+Xu(s) ∑

f∈A+
≤g−1

χu(f)

∣f ∣1−s
, (6.3.1)

where Xu(s) = qg(1−2s).

Lemma 6.3.2 ([BJ18, Lemma 3.3]). Let L ∈ A+. Given any ε > 0, we have

∑
f∈A+n

(f,L)=1

φ(f) =
q2n

ζA(2)
∏
P ∣L

(1 + ∣P ∣−1)−1 +O(q(1+ε)n). (6.3.2)

Proposition 6.3.3 ([BJ18, Proposition 3.20]). For any f ∈ A+
n with n ≤ g which is not

a perfect square, we have

∑
u∈Ig+1

χu(f) ≪ g2
n
2 qg. (6.3.3)

6.4 Heuristic Derivation of the Conjecture

In this section, we present the details for conjecturing moments of L-functions associated

to quadratic Dirichlet L-function L(s,χu) with u ∈ Ig+1 as g → ∞, where Fq is a fixed

finite field with q a power of 2. As in [AK14, AJS21] we will adjust the recipe first

presented in [CFK+05] to the even characteristic setting.

6.4.1 Analogies between Classical L-functions and L-functions

over Function Fields

Let u ∈ Ig+1. For a fixed positive integer k, we want to obtain an asymptotic expression

for

∑
u∈Ig+1

L(
1

2
, χu)

k

(6.4.1)

as g → ∞. To achieve this, we consider a more general expression obtained by in-

troducing small shifts α1, . . . , αk. Thus we seek to achieve an asymptotic expression

for

∑
u∈Ig+1

L(
1

2
+ α1, χu) . . . L(

1

2
+ αk, χu) . (6.4.2)

The introduction of these shifts reveals hidden structures and the calculations are sim-

plified. In the end we will let each α1, . . . , αk tend to zero in (6.4.2) to obtain an

97



Chapter 6. Integral Moments of L-functions in Even Characteristic

asymptotic expression for (6.4.1).

The first step to obtain the conjecture for integral moments is to use the “Approximate”

functional equation, Lemma 6.3.1. Here we note that Xu(s) can be written as

Xu(s) = (q2g+1)
1
2
−sX(s), (6.4.3)

where X(s) = q−
1
2
+s. Throughout this chapter, we will use the following results about

Xu(s).

Lemma 6.4.1. We have that

Xu(s)
1
2 = Xu(1 − s)

− 1
2 (6.4.4)

and

Xu(s)Xu(1 − s) = 1. (6.4.5)

Proof. The proof follows directly from the definition of Xu(s). ∎

Recall, from Section 2.7.3 that for u ∈ Ig+1, we defined the completed L-function Λ(s,χu)

as

Λ(s,χu) = Xu(s)
− 1

2L(s,χu). (6.4.6)

We will apply the recipe to the completed L-function since it simplifies the calculations

and it satisfies the functional equation

Λ(s,χu) = Λ(1 − s,χu). (6.4.7)

Thus, our goal is to obtain an asymptotic formula for the k-shifted moment

Lu(s) = ∑
u∈Ig+1

Z(s;α1, . . . , αk) (6.4.8)

where

Z(s;α1, . . . , αk) =
k

∏
j=1

Λ(s + αj, χu). (6.4.9)

Using Lemma 6.3.1, Lemma 6.4.1 and (6.4.6), we have

Λ(s,χu) = Xu(s)
− 1

2 ∑
f∈A+

≤g

χu(f)

∣f ∣s
+Xu(1 − s)

− 1
2 ∑
f∈A+

≤g−1

χu(f)

∣f ∣1−s
. (6.4.10)
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6.4.2 Applying the recipe for L-functions in Even characteris-

tic

In this subsection, we will present the recipe which follows from [CFK+05, AK14, AJS21]

with the necessary modifications for the family L(s,χu).

1. Write the product of k-shifted L-functions:

Z (
1

2
;α1, . . . , αk) = Λ(

1

2
+ α1, χu) . . .Λ(

1

2
+ αk, χu) .

2. Replace each L-function by its “approximate” functional equation (6.4.10).

Hence we obtain

Z (
1

2
;α1, . . . , αk)

=
k

∏
j=1

⎛
⎜
⎜
⎜
⎝

Xu (
1

2
+ αj)

− 1
2

∑
nj monic
deg(nj)≤g

χu(nj)

∣nj ∣
1
2
+αj

+Xu (
1

2
− αj)

− 1
2

∑
nj monic

deg(nj)≤g−1

χu(nj)

∣nj ∣
1
2
−αj

⎞
⎟
⎟
⎟
⎠

= ∑
εj=±1

k

∏
j=1

Xu (
1

2
+ εjαj)

− 1
2

∑
nj monic

deg(nj)≤f(εj)

χu(nj)

∣nj ∣
1
2
+εjαj

, (6.4.11)

where f(1) = g and f(−1) = g − 1.

By multiplying out, we get a sum over all monic polynomials n1, . . . , nk, then we

can write (6.4.11) as

Z (
1

2
;α1, . . . , αk) = ∑

εj=±1

k

∏
j=1

Xu (
1

2
+ εjαj)

− 1
2

∑
n1,...,nk
nj monic

χu(n1 . . . nk)

∏
k
j=1 ∣nj ∣

1
2
+εjαj

. (6.4.12)

3. Average the sign of the functional equation.

Note that in this case, the εf -signs of the functional equations are all equal to 1

and therefore do not produce any effect on the final result.

4. Replace each summand by its expected value when averaged over Ig+1.

For this we have the following result.

Lemma 6.4.2. Let

am = ∏
P ∣m

(1 +
1

∣P ∣
)

−1

,

then

lim
g→∞

1

#Ig+1
∑

u∈Ig+1
χu(m) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

am if m is a square of a polynomial,

0 otherwise.
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Remark 6.4.3. The same factor am when averaging over fundamental discrimi-

nants D ∈ H2g+1, which is why Conjecture 6.2.1 is similar to [AK14, Conjecture 5].

Proof of Lemma 6.4.2. We start by considering the case when m is a square. For

m = ◻ = `2, and by the definition of I given in Section 2.7.1, we know that Ig+1 is

the disjoint union of the I(r,g+1−r)’s for 0 ≤ r ≤ g. Thus we have

1

#Ig+1
∑

u∈Ig+1
χu(m = `2) =

1

#Ig+1

g

∑
r=0

∑
u∈I

(r,g+1−r)

χu(m = `2).

Note that I(0,g+1) = Gg+1. For 1 ≤ r ≤ g, we let

IM = {v + F ∶ v ∈ FM , F ∈ Gg+1−r},

where FM and Gn are the sets defined in Section 2.7.1. Then I(r,g+1−r) is the

disjoint union of IM ’s, where M runs over Br and Br is the set defined in Section

2.7.1. Hence we have

1

#Ig+1

g

∑
r=0

∑
u∈I

(r,g+1−r)

χu(`
2) =

1

#Ig+1
∑

F ∈Gg+1
χF (`

2) +
1

#Ig+1

g

∑
r=1

∑
M∈Br

∑
u∈IM

χu(`
2).

For u ∈ IM with M ∈ Br, we have, from Definition 2.7.7, that

χu(`
2) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if (M,`) = 1,

0 otherwise.

Therefore we have

1

#Ig+1

g

∑
r=0

∑
u∈I

(r,g+1−r)

χu(`
2) =

1

#Ig+1
∑

F ∈Gg+1
1 +

1

#Ig+1

g

∑
r=1

∑
M∈Br

(M,`)=1

∑
u∈IM

1. (6.4.13)

Using Lemma 2.7.3 and the fact that (see [BJ18, Proof of Proposition 4.1]) #Gn =

2ζA(2)−1qn, we have

1

#Ig+1
∑

F ∈Gg+1
1 =

2ζA(2)−1qg+1

2ζA(2)−1q2g+1
= q−g → 0 as g →∞.

Using the above and the arguments stated in Section 2.7.1, we know that, for M ∈

Br, #IM = #FM#Gg+1−r = 2ζA(2)−1qg+1−rφ(M̃), where M̃ is defined in Section

2.7.1. Furthermore, from Remark 2.7.2, we know that the map Bn → A+
n defined

by M ↦ M̃ is a bijection and (M,f) = 1 if and only if (M̃, f) = 1. Thus, using

the above arguments and Lemma 2.7.3 we have

1

#Ig+1

g

∑
r=1

∑
M∈Br

(M,`)=1

∑
u∈IM

1 = q−g
g

∑
r=1

q−r ∑
M̃∈A+r

(M̃,`)=1

φ(M̃).
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Invoking Lemma 6.3.2, we have

q−g
g

∑
r=1

q−r ∑
M̃∈A+r

(M̃,`)=1

φ(M̃) =
q−g

ζA(2)
∏
P ∣`

(1 +
1

∣P ∣
)

−1 g

∑
r=1

qr +O (q−g
g

∑
r=1

qεr)

=
q−g

ζA(2)
∏
P ∣`

(1 +
1

∣P ∣
)

−1
q

q − 1
(qg − 1) +O (q−g(1−ε)) .

As g → ∞, the main term becomes am and the second and error terms tend to

zero. Therefore if m is a square we have

lim
g→∞

1

#Ig+1
∑

u∈Ig+1
χu(m) = am. (6.4.14)

For m not a perfect square, we have, by Proposition 6.3.3

1

#Ig+1
∑

u∈Ig+1
χu(m) ≪ g2

g
2 q−g → 0 as g →∞. (6.4.15)

Combining (6.4.14) and (6.4.15) completes the proof of Lemma 6.4.2. ∎

Using Lemma 6.4.2, we have that

lim
g→∞

1

#Ig+1
∑

u∈Ig+1
∑

n1,...,nk
nj monic

χu(n1 . . . nk)

∏
k
j=1 ∣nj ∣

1
2
+εjαj

= ∑
n1,...,nk
nj monic

n1...nk=m2

am2

∏
k
j=1 ∣nj ∣

1
2
+εjαj

= ∑
m monic

∑
n1,...,nk
nj monic

n1...nk=m2

am2

∏
k
j=1 ∣nj ∣

1
2
+εjαj

.

5. Extend each of n1, . . . , nk sum for all monic polynomials and denote the

sum M(s;α1, . . . , αk).

If we let

Rk (
1

2
; ε1α1, . . . , εkαk) = ∑

m monic

∑
n1,...,nk
nj monic

n1...nk=m2

am2

∏
k
j=1 ∣nj ∣

1
2
+εjαj

, (6.4.16)

then the extended sum produced by the recipe is

M (
1

2
;α1, . . . , αk) = ∑

εj=±1

k

∏
j=1

Xu (
1

2
+ εjαj)

− 1
2

Rk (
1

2
; ε1α1, . . . , εkαk) . (6.4.17)

6. The conjecture is

∑
u∈Ig+1

Z (
1

2
;α1, . . . , αk) = ∑

u∈Ig+1
M (

1

2
;α1, . . . , αk) (1 + o(1)). (6.4.18)
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6.4.3 Putting the Conjecture into a more useful form

In this subsection, we will put Conjecture (6.4.18) into a more useful form since the

conjecture is problematic in this form because of the individual terms have poles that

cancel when summed. More specifically, we will write Rk as an Euler product and then

factor out the appropriate zeta factors, which helps us identify the poles.

First note that am is multiplicative since

amn = aman whenever (m,n) = 1,

where

am = ∏
P ∣m

(1 +
1

∣P ∣
)

−1

.

Define

ψ(x) ∶= ∑
n1,...,nk
nj monic
n1...nk=x

1

∣n1∣s+α1 . . . ∣nk∣s+αk
, (6.4.19)

so that ψ(m2) is multiplicative on m, Therefore

∑
m monic

∑
n1,...,nk
nj monic

n1...nk=m2

am2

∣n1∣s+α1 . . . ∣nk∣s+αk
= ∑
m monic

am2 ∑
n1,...,nk
nj monic

n1...nk=m2

1

∣n1∣s+α1 . . . ∣nk∣s+αk

= ∑
m monic

am2ψ(m2) (6.4.20)

Taking the Euler product of (6.4.20), we have

∑
m monic

∑
n1,...,nk
nj monic

n1...nk=m2

am2

∣n1∣s+α1 . . . ∣nk∣s+αk
=∏

P

(1 +
∞
∑
j=1

aP 2jψ(P 2j)) , (6.4.21)

where

ψ(P 2j) = ∑
n1,...,nk
nj monic

n1...nk=P 2j

1

∣n1∣s+α1 . . . ∣nk∣s+αk
. (6.4.22)

Since we have n1 . . . nk = P 2j, then for each i = 1, . . . , k, write ni = P ei for some ei ≥ 0

and e1 + . . . + ek = 2j. Thus (6.4.22) becomes

ψ(P 2j) = ∑
e1,...,ek≥0
e1+...+ek=2j

k

∏
i=1

1

∣P ∣ei(s+αi)
. (6.4.23)
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Therefore, combining (6.4.21) and (6.4.23) in (6.4.16) we have

Rk(s;α1, . . . , αk) =∏
P

(1 +
∞
∑
j=1

aP 2jψ(P 2j))

=∏
P

⎛
⎜
⎜
⎝

1 +
∞
∑
j=1

aP 2j ∑
e1,...,ek≥0
e1+...+ek=2j

k

∏
i=1

1

∣P ∣ei(s+αi)

⎞
⎟
⎟
⎠

. (6.4.24)

Furthermore, we know that

aP 2j = (1 + ∣P ∣−1)−1,

and thus (6.4.24) becomes

Rk(s;α1, . . . , αk) =∏
P

⎛
⎜
⎜
⎝

1 + (1 + ∣P ∣−1)−1
∞
∑
j=1

∑
e1,...,ek≥0
e1+...+ek=2j

k

∏
i=1

1

∣P ∣ei(s+αi)

⎞
⎟
⎟
⎠

=∏
P

Rk,P . (6.4.25)

Also, we know that

(1 + ∣P ∣−1)−1 =
∞
∑
`=0

(−1)`

∣P ∣`
,

thus

Rk,P = 1 +
∞
∑
`=0

∞
∑
j=1

∑
e1,...,ek≥0
e1+...+ek=2j

k

∏
i=1

(−1)`

∣P ∣ei(s+αi)+`
. (6.4.26)

When αi = 0 and s = 1
2 , only terms with e1 + . . . + ek = 2 give rise to poles. Isolating the

term with ` = 0 and j = 1, we have

Rk,P = 1 + ∑
e1+...+ek=2

k

∏
i=1

1

∣P ∣ei(s+αi)
+ (lower order terms)

= 1 + ∑
1≤i≤j≤k

1

∣P ∣2s+αi+αj
+ (lower order terms).

Thus, for R(αi) sufficiently small, we have (by [CFK+05, p.87]),

Rk,P = 1 + ∑
1≤i≤j≤k

1

∣P ∣2s+αi+αj
+O (∣P ∣−1−2s+ε) +O (∣P ∣−3s+ε) .

Expressing Rk,P as an Euler product, we have

Rk,P = ∏
1≤i≤j≤k

(1 +
1

∣P ∣2s+αi+αj
)(1 +O (∣P ∣−1−2s+ε) +O (∣P ∣−3s+ε)) . (6.4.27)

Furthermore since

∏
P

(1 +
1

∣P ∣2s
) =

ζA(2s)

ζA(4s)
(6.4.28)
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has a simple pole at s = 1
2 and

∏
P

(1 +O (∣P ∣−1−2s+ε) +O (∣P ∣−3s+ε))

is analytic in R(s) > 1
3 , we see that ∏P Rk,P has a pole at s = 1

2 of order 1
2k(k + 1) if

α1 = . . . = αk = 0.

Since we have identified the leading order poles, we can now factor out the appropriate

zeta factors and thus put Conjecture (6.4.18) into a more desirable form in order to

obtain Conjecture 6.2.1. Using (6.4.25) and (6.4.27) we have that

Rk(s;α1, . . . , αk) =∏
P

⎛

⎝
∏

1≤i≤j≤k
(1 +

1

∣P ∣2s+αi+αj
)(1 +O (∣P ∣−1−2s+ε) +O (∣P ∣−3s+ε))

⎞

⎠
.

Using (6.4.28), we have

Rk(s;α1, . . . , αk) = ∏
1≤i≤j≤k

ζA(2s + αi + αj)

ζA(2(2s + αi + αj))
∏
P

(1 +O (∣P ∣−1−2s+ε) +O (∣P ∣−3s+ε))

Using (2.1.3), we have

Rk(s;α1, . . . , αk) = ∏
1≤i≤j≤k

ζA(2s + αi + αj)∏
P

(1 −
1

∣P ∣2s+αi+αj
)(1 +

1

∣P ∣2s+αi+αj
)

× (1 +O (∣P ∣−1−2s+ε) +O (∣P ∣−3s+ε)) .

Finally, using (6.4.27), we have

Rk(s;α1, . . . , αk) = ∏
1≤i≤j≤k

ζA(2s + αi + αj)∏
P

Rk,P (s;α1, . . . , αk)(1 −
1

∣P ∣2s+αi+αj
)

= ∏
1≤i≤j≤k

ζA(2s + αi + αj)A(s;α1, . . . , αk),

where

A(s,α1, . . . , αk) =∏
P

Rk,P (s;α1, . . . , αk)(1 −
1

∣P ∣2s+αi+αj
) . (6.4.29)

Here A(s,α1, . . . , αk) defines an absolutely convergent Dirichlet series for R(s) > 1
2+δ for

some δ > 0 and for all αj’s in some sufficiently small neighbourhood of 0. Furthermore,

we can write A(s;α1, . . . , αk) by using the following Lemma.

Lemma 6.4.4. Using the notation described previously, we have

A(
1

2
; z1, . . . , zk) =∏

P

∏
1≤i≤j≤k

(1 −
1

∣P ∣1+zi+zj
)

×
⎛

⎝

1

2

⎛

⎝

k

∏
j=1

(1 −
1

∣P ∣
1
2
+zj

)

−1

+
k

∏
j=1

(1 +
1

∣P ∣
1
2
+zj

)

−1
⎞

⎠
+

1

∣P ∣

⎞

⎠
(1 +

1

∣P ∣
)

−1

.

(6.4.30)
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Proof. From (6.4.29), we have that

A(
1

2
; z1, . . . , zk) =∏

P

⎛

⎝
Rk,P (

1

2
; z1, . . . , zk) ∏

1≤i≤j≤k
(1 −

1

∣P ∣1+zi+zj
)
⎞

⎠
, (6.4.31)

where

Rk,P (
1

2
; z1, . . . , zk) = 1 + (1 + ∣P ∣−1)−1

∞
∑
j=1

∑
e1,...,ek≥0
e1+...+ek=2j

k

∏
i=1

1

∣P ∣ei(
1
2
+zi)

.

Furthermore, we have

Rk,P (
1

2
; z1, . . . , zk) = (1 + ∣P ∣−1)

−1
⎛
⎜
⎜
⎝

(1 + ∣P ∣−1) +
∞
∑
j=1

∑
e1,...,ek≥0
e1+...+ek=2j

k

∏
i=1

1

∣P ∣ei(
1
2
+zi)

⎞
⎟
⎟
⎠

. (6.4.32)

Thus

1 +
∞
∑
j=1

∑
e1,...,ek≥0
e1+...+ek=2j

k

∏
i=1

1

∣P ∣ei(
1
2
+zi)

=
1

2

∞
∑
j=0

∑
e1,...,ek≥0
e1+...+ek=2j

2
k

∏
i=1

1

∣P ∣ei(
1
2
+zi)

=
1

2
(
k

∏
i=1

∑
ei≥0

(
1

∣P ∣
1
2
+zi

)

ei

+
k

∏
i=1

∑
ei≥0

(−1)e1+...+ek (
1

∣P ∣
1
2
+zi

)

ei

)

=
1

2

⎛

⎝

k

∏
i=1

(1 −
1

∣P ∣
1
2
+zi

)

−1

+
k

∏
i=1

(1 +
1

∣P ∣
1
2
+zi

)

−1
⎞

⎠
. (6.4.33)

Putting (6.4.33) and (6.4.32) into (6.4.31) completes the proof of Lemma 6.4.4. ∎

From (6.4.17) and (6.4.29) we have

M (
1

2
;α1, . . . , αk) = ∑

εj=±1

k

∏
j=1

Xu (
1

2
+ εjαj)

− 1
2

Rk (
1

2
; ε1α1, . . . , εkαk)

= ∑
εj=±1

k

∏
j=1

Xu (
1

2
+ εjαj)

− 1
2

× ∏
1≤i≤j≤k

ζA(1 + εiαi + εjαj)A(
1

2
; ε1α1, . . . , εkαk) .

Therefore, from (6.4.18) the conjectured asymptotic takes the form

∑
u∈Ig+1

Z (
1

2
;α1, . . . , αk)

= ∑
u∈Ig+1

∑
εj=±1

k

∏
j=1

Xu (
1

2
+ εjαj)

− 1
2

A(
1

2
; ε1α1, . . . , εkαk) ∏

1≤i≤j≤k
ζA(1 + εiαi + εjαj)(1 + o(1)).

Using the definition of Xu(s), we have that

Xu (
1

2
+ εjαj)

− 1
2

= (q2g+1)
εjαj

2 X (
1

2
+ εjαj)

− 1
2

.
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Thus we arrive at the following conjecture:

∑
u∈Ig+1

Λ(
1

2
+ α1, χu) . . .Λ(

1

2
+ αk, χu)

= ∑
εj=±1

k

∏
j=1

X (
1

2
+ εjαj)

− 1
2

∑
u∈Ig+1

(q2g+1)
1
2 ∑

k
j=1 εjαjRk (

1

2
; ε1α1, . . . , εkαk) (1 + o(1)).

(6.4.34)

6.4.4 The Integral Representation of the Conjecture

In this subsection, we will write Conjecture (6.4.34) as contour integrals. To do this,

we will need the following lemma.

Lemma 6.4.5 ([CFK+05, Lemma 2.5.2]). Suppose F is a symmetric function in k

variables, regular near (0, . . . ,0) and f(s) has a simple pole of residue 1 at s = 0 and

is otherwise analytic in a neighbourhood of s = 0, and let

K(a1, . . . , ak) = F (a1, . . . , ak) ∏
1≤i≤j≤k

f(ai + aj)

or

K(a1, . . . , ak) = F (a1, . . . , ak) ∏
1≤i<j≤k

f(ai + aj).

If αi + αj is are contained in the region of analyticity of f(s) then

∑
εj=±1

K(ε1α1, . . . , εkαk) =
(−1)

k(k−1)
2 2k

k!

1

(2πi)k ∮
. . .∮ K(z1, . . . , zk)

×
∆(z2

1 , . . . , z
2
k)

2∏
k
j=1 zj

∏
k
i=1∏

k
j=1(zi − αj)(zi + αj)

dz1 . . . dzk

and

∑
εj=±1

(
k

∏
j=1

εj)K(ε1α1, . . . , εkαk) =
(−1)

k(k−1)
2 2k

k!

1

(2πi)k ∮
. . .∮ K(z1, . . . , zk)

×
∆(z2

1 , . . . , z
2
k)

2∏
k
j=1αj

∏
k
i=1∏

k
j=1(zi − αj)(zi + αj)

dz1 . . . dzk,

where the path of integration encloses the ±αj’s.

First recall that

∑
u∈Ig+1

k

∏
j=1

Λ(
1

2
+ αj, χu) = ∑

u∈Ig+1

k

∏
j=1

Xu (
1

2
+ αj)

− 1
2

L(
1

2
+ αj, χu) (6.4.35)
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and

∑
u∈Ig+1

Z (
1

2
;α1, . . . , αk)

= ∑
u∈Ig+1

∑
εj=±1

k

∏
j=1

Xu (
1

2
+ εjαj)

− 1
2

A(
1

2
; ε1α1, . . . , εkαk) ∏

1≤i≤j≤k
ζA(1 + εiαi + εjαj)(1 + o(1)).

(6.4.36)

Since Xu (
1
2 + αj)

− 1
2 does not depend on u, we can factor it out and, using (6.4.35) and

(6.4.36), we have

∑
u∈Ig+1

k

∏
j=1

L(
1

2
+ αj, χu)

= ∑
u∈Ig+1

k

∏
j=1

Xu (
1

2
+ αj)

1
2

∑
εj=±1

k

∏
j=1

Xu (
1

2
+ εjαj)

− 1
2

A(
1

2
; ε1α1, . . . , εkαk)

× ∏
1≤i≤j≤k

ζA(1 + εiαi + εjαj)(1 + o(1)).

Using the definition of Xu(s) we have

∑
u∈Ig+1

k

∏
j=1

L(
1

2
+ αj, χu)

= ∑
u∈Ig+1

k

∏
j=1

(q2g+1)
− 1

2 ∑
k
j=1 αj X (

1

2
+ αj)

1
2

∑
εj=±1

k

∏
j=1

(q2g+1)
1
2 ∑

k
j=1 εjαj X (

1

2
+ εjαj)

− 1
2

×A(
1

2
; ε1α1, . . . , εkαk) ∏

1≤i≤j≤k
ζA(1 + εiαi + εjαj)(1 + o(1)).

Multiplying and dividing by (log q)
k(k+1)

2 , we have

∑
u∈Ig+1

k

∏
j=1

L(
1

2
+ αj, χu)

= ∑
u∈Ig+1

∏
k
j=1 (q

2g+1)
− 1

2 ∑
k
j=1 αj X (1

2 + αj)
1
2

(log q)
k(k+1)

2

∑
εj=±1

k

∏
j=1

(q2g+1)
1
2 ∑

k
j=1 εjαj X (

1

2
+ εjαj)

− 1
2

×A(
1

2
; ε1α1, . . . , εkαk) ∏

1≤i≤j≤k
ζA(1 + εiαi + εjαj)(log q)(1 + o(1)). (6.4.37)

If we call

F (α1, . . . , αk) =
k

∏
j=1

(q2g+1)
1
2 ∑

k
j=1 αj X (

1

2
+ αj)

− 1
2

A(
1

2
;α1, . . . , αk) (6.4.38)

and

f(s) = ζA(1 + s)(log q) (6.4.39)
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so that

f(αi + αj) = ζA(1 + αi + αj)(log q), (6.4.40)

then f(s) has a simple pole at s = 0 with residue 1. Denoting

K(α1, . . . , αk) = F (α1, . . . , αk) ∏
1≤i≤j≤k

f(αi + αj), (6.4.41)

then, using (6.4.37), we have that

∑
u∈Ig+1

k

∏
j=1

L(
1

2
+ αj, χu)

=
⎛
⎜
⎝
∑

u∈Ig+1

∏
k
j=1 (q

2g+1)
− 1

2 ∑
k
j=1 αj X (1

2 + αj)
1
2

(log q)
k(k+1)

2

∑
εj=±1

K(ε1α1, . . . , εkαk)
⎞
⎟
⎠
(1 + o(1)). (6.4.42)

Thus applying Lemma 6.4.5, we have

∑
u∈Ig+1

k

∏
j=1

L(
1

2
+ αj, χu)

= ∑
u∈Ig+1

∏
k
j=1 (q

2g+1)
− 1

2 ∑
k
j=1 αj X (1

2 + αj)
1
2

(log q)
k(k+1)

2

(−1)
k(k−1)

2 2k

k!

1

(2πi)k ∮
. . .∮ K(z1, . . . , zk)

×
∆(z2

1 , . . . , z
2
k)

2∏
k
j=1 zj

∏
k
i=1∏

k
j=1(zi − αj)(zi + αj)

dz1 . . . dzk + o (q
2g+1) .

Using (6.4.38), (6.4.40) and (6.4.41) we have

∑
u∈Ig+1

k

∏
j=1

L(
1

2
+ αj, χu)

= ∑
u∈Ig+1

(q2g+1)
− 1

2 ∑
k
j=1 αj X (

1

2
+ αj)

1
2

×
(−1)

k(k−1)
2 2k

k!

1

(2πi)k ∮
. . .∮

k

∏
j=1

(q2g+1)
1
2 ∑

k
j=1 αj X (

1

2
+ αj)

− 1
2

A(
1

2
;α1, . . . , αk)

× ∏
1≤i≤j≤k

ζA(1 + zi + zj)
∆(z2

1 , . . . , z
2
k)

2∏
k
j=1 zj

∏
k
i=1∏

k
j=1(zi − αj)(zi + αj)

dz1 . . . dzk + o (q
2g+1) .

If we let

G(z1, . . . , zk) =
k

∏
j=1

X (
1

2
+ zj)

− 1
2

A(
1

2
; z1, . . . , zk) ∏

1≤i≤j≤k
ζA(1 + zi + zj),
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then we have

∑
u∈Ig+1

L(
1

2
+ α1, χu) . . . L(

1

2
+ αk, χu)

= ∑
u∈Ig+1

k

∏
j=1

(q2g+1)
− 1

2 ∑
k
j=1 αj X (

1

2
+ αj)

1
2 (−1)

k(k−1)
2 2k

k!

1

(2πi)k ∮
. . .∮ G(z1, . . . , zk)

× (q2g+1)
1
2 ∑

k
j=1 zj ∆(z2

1 , . . . , z
2
k)

2∏
k
j=1 zj

∏
k
i=1∏

k
j=1(zi − αj)(zi + αj)

dz1 . . . dzk + o (q
2g+1) . (6.4.43)

Finally, let

Qk(x)

=
(−1)

k(k−1)
2 2k

k!

1

(2πi)k ∮
. . .∮

G(z1, . . . , zk)∆(z2
1 , . . . , z

2
k)

2∏
k
j=1 zj

∏
k
i=1∏

k
j=1(zi − αj)(zi + αj)

q
x
2 ∑

k
j=1 zjdz1 . . . dzk,

(6.4.44)

then setting αj = 0 we obtain the formulae stated in Conjecture 6.2.1.

6.5 Some Conjectural Formulae for Moments of L (1
2, χu)

In this section, we use Conjecture 6.2.1 to obtain explicit conjectural formulae for

the first three moments of quadratic Dirichlet L-functions in even characteristic. In

particular we will show that, for the first moment, Conjecture 6.2.1 agrees with (6.1.7).

6.5.1 First Moment

We will use Conjecture 6.2.1 to determine the asymptotic formula for the first moment

of our family of Dirichlet L-functions and compare it with (6.1.7). For the first moment

Conjecture 6.2.1 predicts that

∑
u∈Ig+1

L(
1

2
, χu) = ∑

u∈Ig+1
Q1(2g + 1)(1 + o(1)),

where Q1(x) is a polynomial of degree 1. From Conjecture 6.2.1, we have

Q1(x) =
1

πi ∮
G(z1)∆(z2

1)
2q

x
2
z1

z1

dz1, (6.5.1)

where

G(z1) = A(
1

2
; z1)X (

1

2
+ z1)

− 1
2

ζA(1 + 2z1).

From the definition of the Vandermonde determinant and the definition of X(s), we

have that

∆(z2
1)

2 = 1 and X (
1

2
+ zj)

− 1
2

= q−
z1
2 .
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Therefore (6.5.1) becomes

Q1(x) =
1

πi ∮
A (1

2 ; z1) ζA(1 + 2z1)q
x
2
z1q−

z1
2

z1

dz1. (6.5.2)

From Lemma 6.4.4 we have

A(
1

2
; z1) =∏

P

(1 −
1

∣P ∣1+2z1
)
⎛

⎝

1

2

⎛

⎝
(1 −

1

∣P ∣
1
2
+z1

)

−1

+ (1 +
1

∣P ∣
1
2
+z1

)

−1
⎞

⎠
+

1

∣P ∣

⎞

⎠
(1 +

1

∣P ∣
)

−1

.

We want to compute the integral (6.5.2), where the contour is a small circle around the

origin. For this we need to locate the poles of the integrand. Let

f(z1) =
A (1

2 ; z1) ζA(1 + 2z1)q
x
2
z1q−

z1
2

z1

, (6.5.3)

then f(z1) has a double pole at z1 = 0. To compute the residue, we expand f(z1) as a

Laurent series and pick up the coefficient of z−1
1 . Expanding the numerator of (6.5.3)

around z1 = 0, we have

A(
1

2
; z1) = A(

1

2
; 0) +A′ (

1

2
; 0) z1 +

1

2
A′′ (

1

2
; 0) z2

1 + . . . ,

ζA(1 + 2z1) =
1

2 log q

1

z1

+
1

2
+

1

6
(log q)z1 −

1

90
(log q)3z3

1 + . . . ,

q
x
2
z1 = 1 +

1

2
(log q)xz1 +

1

8
(log q)2x2z2

1 + . . .

and

q−
z1
2 = 1 −

1

2
(log q)z1 +

1

8
(log q)2z2

1 + . . . .

Thus we have

f(z1) =
1

z1

(A(
1

2
; 0) +A′ (

1

2
; 0) z1 +

1

2
A′′ (

1

2
; 0) z2

1 + . . .)

× (1 −
1

2
(log q)z1 +

1

8
(log q)z2

1 + . . .)

× (
1

2 log q

1

z1

+
1

2
+

1

6
(log q)z1 −

1

90
(log q)3z3

1 + . . .)

× (1 +
1

2
(log q)xz1 +

1

8
(log q)x2z2

1 + . . .)

Multiplying the above expression and collecting the terms corresponding to z−1
1 , we see

that

Res(f(z1); z1 = 0) =
1

4
A(

1

2
; 0) +

1

4
A(

1

2
; 0)x +

1

2 log q
A′ (

1

2
; 0) .

We know that

A(
1

2
; 0) = P (1) and A′ (

1

2
; 0) = 2P ′(1),
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where

P (s) =∏
P

(1 −
1

∣P ∣s(∣P ∣ + 1)
) .

Thus

1

πi ∮
A (1

2 ; z1) ζA(1 + 2z1)q
x
2
z1q−

z1
2

z1

dz1 =
1

2
P (1) (x + 1 +

4

log q

P ′

P
(1)) .

We therefore have

∑
u∈Ig+1

L(
1

2
, χu) = ∑

u∈Ig+1
Q1(2g + 1)(1 + o(1))

= ∑
u∈Ig+1

P (1) (g + 1 +
2

log q

P ′

P
(1)) (1 + o(1))

= P (1) (g + 1 +
2

log q

P ′

P
(1)) ∑

u∈Ig+1
1 + o (q2g+1) .

Using Lemma 2.7.3, we conclude that, for the first moment, Conjecture 6.2.1 predicts

∑
u∈Ig+1

L(
1

2
, χu) =

2q2g+1

ζA(2)
P (1) (g + 1 +

2

log q

P ′

P
(1)) + o (q2g+1) . (6.5.4)

Comparing (6.1.7) and (6.5.4), we see that the main and the principal lower order terms

are the same. Hence Theorem 6.1.3 proves Conjecture 6.2.1 with an error of O (g2
g
2 q

3g
2 )

when k = 1.

6.5.2 Second Moment

For the second moment, Conjecture 6.2.1 predicts that

∑
u∈Ig+1

L(
1

2
, χu)

2

= ∑
u∈Ig+1

Q2(2g + 1)(1 + o(1)),

where

Q2(x) = −
2

(2πi)2 ∮ ∮
G(z1, z2)∆(z2

1 , z
2
2)

2q
x
2
(z1+z2)

z3
1z

3
2

dz1dz2.

From Conjecture 6.2.1, we have

G(z1, z2) = A(
1

2
; z1, z2)

2

∏
j=1

X (
1

2
+ zj)

− 1
2

∏
1≤i≤j≤2

ζA(1 + zi + zj)

= A(
1

2
; z1, z2)X (

1

2
+ z1)

− 1
2

X (
1

2
+ z2)

− 1
2

ζA(1 + 2z1)ζA(1 + z1 + z2)ζA(1 + 2z2).

From the definition of the Vandermonde determinant and the definition of X(s), we

have

∆(z2
1 , z

2
2)

2 = (z2
2 − z

2
1)

2 and X (
1

2
+ z1)

− 1
2

X (
1

2
+ z2)

− 1
2

= q−
1
2
(z1+z2).
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Thus

Q2(x) = −
2

(2πi)2 ∮ ∮
A (1

2 ; z1, z2) ζA(1 + 2z1)ζA(1 + z1 + z2)ζA(1 + 2z2)

z3
1z

3
2

× (z2
2 − z

2
1)

2q
x
2
(z1+z2)q−

1
2
(z1+z2)dz1dz2.

Using MATHEMATICA, we have that

Q2(x) =
1

24 log3(q)

⎡
⎢
⎢
⎢
⎢
⎣

(x3 + 6x2 + 11x + 6)A(
1

2
; 0,0) log3(q)

+ (3x2 + 12x + 11) log2(q) (A1 (
1

2
; 0,0) +A2 (

1

2
; 0,0))

+ 12(2 + x)A12 (
1

2
; 0,0) log(q)

− 2(A111 (
1

2
; 0,0) − 3A112 (

1

2
; 0,0) − 3A122 (

1

2
; 0,0) +A222 (

1

2
; 0,0))

⎤
⎥
⎥
⎥
⎥
⎦

,

whereAj denotes the partial derivative, evaluated at zero of the functionA (1
2 ; z1, . . . , zk)

with respect to the jth variable. Hence the leading order asymptotic for the second mo-

ment for this family of L-functions can be written conjecturally as

∑
u∈Ig+1

L(
1

2
, χu)

2

∼
2

3

q2g+1

ζA(2)
g3A(

1

2
; 0,0)

when g →∞, where

A(
1

2
; 0,0) =∏

P

(1 −
4∣P ∣2 − 3∣P ∣ + 1

∣P ∣3(∣P ∣ + 1)
) .

6.5.3 Third Moment

For the third moment, Conjecture 6.2.1 predicts that

∑
u∈Ig+1

L(
1

2
, χu)

3

= ∑
u∈Ig+1

Q3(2g + 1)(1 + o(1)),

where

Q3(x) = −
4

3

1

(2πi)3 ∮ ∮ ∮
G(z1, z2, z3)∆(z2

1 , z
2
2 , z

2
3)

2q
x
2
(z1+z2+z3)

z5
1z

5
2z

5
3

dz1dz2dz3.

From Conjecture 6.2.1 we have

G(z1, z2, z3) = A(
1

2
; z1, z2, z3)

3

∏
j=1

X (
1

2
+ zj)

− 1
2

∏
1≤i≤j≤3

ζA(1 + zi + zj)

= A(
1

2
; z1, z2, z3)X (

1

2
+ z1)

− 1
2

X (
1

2
+ z2)

− 1
2

X (
1

2
+ z3)

− 1
2

× ζA(1 + 2z1)ζA(1 + z1 + z2)ζA(1 + z1 + z3)

× ζA(1 + 2z2)ζA(1 + z2 + z3)ζA(1 + 2z3).
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From the definition of the Vandermonde determinant and the definition of X(s), we

have

∆(z2
1 , z

2
2 , z

2
3)

2 = (z2
2 − z

2
1)

2(z2
3 − z

2
1)

2(z2
3 − z

2
2)

2

and

X (
1

2
+ z1)

− 1
2

X (
1

2
+ z2)

− 1
2

X (
1

2
+ z3)

− 1
2

= q−
1
2
(z1+z2+z3).

Thus

Q3(x) = −
4

3

1

(2πi)3 ∮ ∮ ∮ f(z1, z2, z3)dz1dz2dz3,

where

f(z1, z2, z3) =
A (1

2 ; z1, z2, z3) (z2
2 − z

2
1)

2(z2
3 − z

2
1)

2(z2
3 − z

2
2)

2q
x
2
(z1+z2+z3)q−

1
2
(z1+z2+z3)

z5
1z

5
2z

5
3

× ζA(1 + 2z1)ζA(1 + z1 + z2)ζA(1 + z1 + z3)

× ζA(1 + 2z2)ζA(1 + z2 + z3)ζA(1 + 2z3).

Using MATHEMATICA, we have

Q3(x)

=
1

8640 log6(q)

⎡
⎢
⎢
⎢
⎢
⎣

3(3 + x)2(x4 + 12x3 + 49x2 + 78x + 40)A(
1

2
; 0,0,0) log6(q)

+ 4(3x5 + 45x4 + 260x3 + 720x2 + 949x + 471) log5(q)

× (A1 (
1

2
; 0,0,0) +A2 (

1

2
; 0,0,0) +A3 (

1

2
; 0,0,0)) + 4(949 + 1440x + 780x2 + 180x3 + 15x4)

× log4(q) (A23 (
1

2
; 0,0,0) +A13 (

1

2
; 0,0,0) +A12 (

1

2
; 0,0,0)) − 10(24 + 26x + 9x2 + x3)

× log3(q)
⎛

⎝
2A333 (

1

2
; 0,0,0) − 3A233 (

1

2
; 0,0,0) − 3A223 (

1

2
; 0,0,0) + 2A222 (

1

2
; 0,0,0)

− 3A133 (
1

2
; 0,0,0) − 36A123 (

1

2
; 0,0,0) − 3A122 (

1

2
; 0,0,0) − 3A113 (

1

2
; 0,0,0)

− 3A112 (
1

2
; 0,0,0) + 2A111 (

1

2
; 0,0,0)

⎞

⎠
− 20(26 + 18x + 3x2) log2(q)

⎛

⎝
A2333 (

1

2
; 0,0,0)

+A2223 (
1

2
; 0,0,0) +A1333 (

1

2
; 0,0,0) − 6A1233 (

1

2
; 0,0,0) − 6A1223 (

1

2
; 0,0,0)

+A1222 (
1

2
; 0,0,0) − 6A1123 (

1

2
; 0,0,0) +A1113 (

1

2
; 0,0,0) +A1112 (

1

2
; 0,0,0)

⎞

⎠

+ 6(3 + x) log(q)
⎛

⎝
2A33333 (

1

2
; 0,0,0) − 5A23333 (

1

2
; 0,0,0) − 10A22333 (

1

2
; 0,0,0)

− 10A22233 (
1

2
; 0,0,0) − 5A22223 (

1

2
; 0,0,0) + 2A22222 (

1

2
; 0,0,0) − 5A13333 (

1

2
; 0,0,0)

+ 60A12233 (
1

2
; 0,0,0) − 5A12222 (

1

2
; 0,0,0) − 10A11333 (

1

2
; 0,0,0) + 60A11233 (

1

2
; 0,0,0)
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+ 60A11223 (
1

2
; 0,0,0) − 10A11222 (

1

2
; 0,0,0) − 10A11133 (

1

2
; 0,0,0) − 10A11122 (

1

2
; 0,0,0)

− 5A11113 (
1

2
; 0,0,0) − 5A11112 (

1

2
; 0,0,0) + 2A11111 (

1

2
; 0,0,0)

⎞

⎠
+ 4

⎛

⎝
3A233333 (

1

2
; 0,0,0)

− 20A222333 (
1

2
; 0,0,0) + 3A222223 (

1

2
; 0,0,0) + 3A133333 (

1

2
; 0,0,0) − 30A123333 (

1

2
; 0,0,0)

+ 30A122333 (
1

2
; 0,0,0) + 30A122233 (

1

2
; 0,0,0) − 30A122223 (

1

2
; 0,0,0)

+ 3A122222 (
1

2
; 0,0,0) + 30A112333 (

1

2
; 0,0,0) + 30A112223 (

1

2
; 0,0,0) − 20A111333 (

1

2
; 0,0,0)

+ 30A111233 (
1

2
; 0,0,0) + 30A111223 (

1

2
; 0,0,0) − 20A111222 (

1

2
; 0,0,0)

− 30A111123 (
1

2
; 0,0,0) + 3A111113 (

1

2
; 0,0,0) + 3A111112 (

1

2
; 0,0,0)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

,

whereAj denotes the partial derivative, evaluated at zero of the functionA (1
2 ; z1, . . . , zk)

with respect to the jth variable. Hence the leading order asymptotic for the third mo-

ment for this family of L-functions can be written as

∑
u∈Ig+1

L(
1

2
, χu)

3

∼
2

45

q2g+1

ζA(2)
g6A(

1

2
; 0,0,0) ,

when g →∞, where

A(
1

2
; 0,0,0) =∏

P

(1 −
12∣P ∣5 − 23∣P ∣4 + 23∣P ∣3 − 15∣P ∣2 + 6∣P ∣ − 1

∣P ∣6(∣P ∣ + 1)
) .

6.6 Leading order Asymptotic for the Moments of

L (1
2, χu)

In this section, we will show how to obtain an explicit conjecture for the leading order

asymptotic of the moments for a general integer k. We will also use the conjecture to

calculate the leading order of the asymptotic for the fourth and fifth moments.

6.6.1 Leading order for general k

To obtain a formula for the leading order asymptotic, we need the following lemma.

Lemma 6.6.1 ([AK14, Lemma 5]). Suppose F is a symmetric function of k variables,

regular near (0, . . . ,0) and f(s) has a simple pole of residue 1 at = 0 and is otherwise

analytic in a neighbourhood of s = 0. Let

K (q2g+1;w1, . . . ,wk) = ∑
εj=±1

e
1
2

log(q2g+1)∑kj=1 εjwjF (ε1w1, . . . , εkwk) ∏
1≤i≤j≤k

f(εiwi + εjwj)
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and define I (q2g+1, k,w = 0) to be the value of K when w1, . . . ,wk = 0. We have that

I (q2g+1, k,w = 0) ∼ (
1

2
log (q2g+1))

k(k+1)
2

F (0, . . . ,0)2
k(k+1)

2 (
k

∏
j=1

j!

(2j)!
) .

Recall from (6.4.42), we have that

∑
u∈Ig+1

L(
1

2
+ α1, χu) . . . L(

1

2
+ αk, χu)

=
⎛
⎜
⎝
∑

u∈Ig+1

∏
k
j=1 (q

2g+1)
− 1

2 ∑
k
j=1 αj X (1

2 + αj)
1
2

(log q)
k(k+1)

2

∑
εj=±1

K(ε1α1, . . . , εkαk)
⎞
⎟
⎠
(1 + o(1)),

where

K(ε1α1, . . . , εkαk) =
k

∏
j=1

(q2g+1)
1
2 ∑

k
j=1 εjαj X (

1

2
+ εjαj)

− 1
2

×A(
1

2
; ε1α1, . . . , εkαk) ∏

1≤i≤j≤k
ζA(1 + εiαi + εjαj)(log q).

Applying Lemma 6.6.1 with

f(s) = ζA(1 + s) log q,

F (α1, . . . , αk) =
k

∏
j=1

X (
1

2
+ αj)

− 1
2

A(
1

2
;α1, . . . , αk)

and

K (q2g+1;α1, . . . , αk) = ∑
εj=±1

(q2g+1)
1
2 ∑

k
j=1 εjαj F (ε1α1, . . . , εkαk) ∏

1≤i≤j≤k
f(εiαi + εjαj),

and letting α1, . . . , αk → 0 we obtain

∑
u∈Ig+1

L(
1

2
, χu)

k

∼ ∑
u∈Ig+1

1

(log q)
k(k+1)

2

(
1

2
log (q2g+1))

k(k+1)
2

A(
1

2
; 0, . . . ,0)2

k(k+1)
2

k

∏
j=1

j!

(2j)!
.

Using Lemma 2.7.3 we obtain the following result.

Proposition 6.6.2. Conditional on Conjecture 6.2.1, we have that, as g → ∞, the

following holds

∑
u∈Ig+1

L(
1

2
, χu)

k

∼ 2
k(k+1)

2
+1 q

2g+1

ζA(2)
g
k(k+1)

2 A(
1

2
; 0, . . . ,0)

k

∏
j=1

j!

(2j)!
.
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6.6.2 Fourth Moment

Proposition 6.6.2 implies that the leading order for the fourth moment is given by

∑
u∈Ig+1

L(
1

2
, χu)

4

∼
2

4725

q2g+1

ζA(2)
g10A(

1

2
; 0,0,0,0) ,

where

A(
1

2
; 0,0,0,0) =∏

P

(1 −
h4(∣P ∣)

∣P ∣10(∣P ∣ + 1)
)

and

h4(x) = 30x9 − 109x8 + 210x7 − 274x6 + 272x5 − 210x4 + 119x3 − 45x2 + 10x − 1.

6.6.3 Fifth Moment

Proposition 6.6.2 implies that the leading order for the fifth moment is given by

∑
u∈Ig+1

L(
1

2
, χu)

5

∼
2

4465125

q2g+1

ζA(2)
g15A(

1

2
; 0,0,0,0,0) ,

where

A(
1

2
; 0,0,0,0,0) =∏

P

(1 −
h5(∣P ∣)

∣P ∣15(∣P ∣ + 1)
)

and

h5(x) = 65x14 − 385x13 + 1220x12 − 2613x11 + 4263x10 − 5725x9 + 6540x8

− 6275x7 + 4875x6 − 2965x4 + 1360x4 − 455x3 + 105x2 − 15x + 1.

6.7 Conjectural Asymptotic Formulae for the mo-

ments of L (1
2 + it, χu)

In this section, we will use Conjecture (6.4.43) to write down an asymptotic formula

for

∑
u∈Ig+1

L(
1

2
+ it, χu)

k

, (6.7.1)

where t ≠ 0 is real and fixed. Using techniques similar to that done in Section 6.5.1, we

will show that, for the first moment, (6.4.43) agrees with (6.1.8) when α = it. We will

then use the methods of [KO08, Lemma 3] to show how to obtain an explicit conjecture

for the leading order asymptotic of (6.7.1) for a general integer k.
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6.7.1 Conjectured Asymptotic Formulae

Letting α1 = . . . = αk = it in (6.4.43), we have that

∑
u∈Ig+1

L(
1

2
+ it, χu)

k

= ∑
u∈Ig+1

q−giktQk(2g + 1) + o (q2g+1) , (6.7.2)

where

Qk(x)

=
(−1)

k(k−1)
2 2k

k!

1

(2πi)k ∮
. . .∮

G(z1, . . . , zk)∆(z2
1 , . . . , z

2
k)∏

k
j=1 zj

∏
k
j=1(zj − it)

k(zj + it)k
q
x
2 ∑

k
j=1 zjdz1 . . . dzk,

(6.7.3)

∆(z1, . . . , zk) is the Vandermonde determinant defined in (6.1.3),

G(z1, . . . , zk) =
k

∏
j=1

X (
1

2
+ zj)

− 1
2

A(
1

2
; z1, . . . , zk) ∏

1≤i≤j≤k
ζA(1 + zi + zj). (6.7.4)

and the path of integration encloses the ±it’s.

6.7.2 First Moment

For the first moment, (6.7.2) predicts that

∑
u∈Ig+1

L(
1

2
+ it, χu) = ∑

u∈Ig+1
q−gitQ1(2g + 1) + o (q2g+1) ,

where

Q1(x) =
1

πi ∮
G(z1)∆(z2

1)
2z1q

x
2
z1

(z1 − it)(z1 + it)
dz1.

From (6.7.4) we have that

G(z1) = A(
1

2
; z1)X (

1

2
+ z1)

− 1
2

ζA(1 + 2z1).

From the definition of the Vandermonde determinant and the definition of X(s), we

have that

∆(z2
1)

2 = 1 and X (
1

2
+ zj)

− 1
2

= q−
z1
2 .

Thus

Q1(x) =
1

πi ∮
A (1

2 ; z1) ζA(1 + 2z1)z1q
x
2
z1q−

z1
2

(z1 − it)(z1 + it)
dz1. (6.7.5)

From Lemma 6.4.4 we have

A(
1

2
; z1) =∏

P

(1 −
1

∣P ∣1+2z1
)
⎛

⎝

1

2

⎛

⎝
(1 −

1

∣P ∣
1
2
+z1

)

−1

+ (1 +
1

∣P ∣
1
2
+z1

)

−1
⎞

⎠
+

1

∣P ∣

⎞

⎠
(1 +

1

∣P ∣
)

−1

.
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We want to compute the integral (6.7.5), where the contour is a small circle around the

origin that encloses the ±it’s. Let

g(z1) =
A (1

2 ; z1) ζA(1 + 2z1)z1q
x
2
z1q−

z1
2

(z1it)(z1 + it)
,

then g(z1) has a simple pole at z1 = it and z1 = −it (there is no pole at z1 = 0 since the

z1 term in the numerator cancels the simple pole that comes from the zeta function).

We have that

Res(g(z1); z1 = 0) = lim
z→it

(z − it)A (1
2 ; z1) ζA(1 + 2z1)z1q

x
2
z1q−

z1
2

(z1 + it)(zi − it)

=
A (1

2 ; it) ζA(1 + 2it)q
it
2
(x−1)

2
.

Similarly, we have that

Res(g(z1); z1 = −it) = lim
z→−it

(z + it)A (1
2 ; z1) ζA(1 + 2z1)z1q

x
2
z1q−

z1
2

(z1 + it)(z1 − it)

=
A (1

2 ;−it) ζA(1 − 2it)q−
it
2
(x−1)

2
.

Furthermore, we know that

A(
1

2
; it) = P (1 + 2it) and A(

1

2
;−it) = P (1 − 2it),

and from the definition of ζA(s) we see that

ζA(1 − 2it) = −q−2itζA(1 + 2it).

Using the residue theorem we have

1

πi ∮
A (1

2 ; z1) ζA(1 + 2z1)z1q
x
2
z1q−

z1
2

(z1 − it)(z1 + it)
dz1

= ζA(1 + 2it) (q
it
2
(x−1)P (1 + 2it) − q−

it
2
(x−1)−2itP (1 − 2it)) .

We therefore have

∑
u∈Ig+1

L(
1

2
+ it, χu) = ∑

u∈Ig+1
q−gitQ1(2g + 1) + o (q2g+1)

= q−gitζA(1 + 2it) (qgitP (1 + 2it) − q−it(g+2)P (1 − 2it)) ∑
u∈Ig+1

1

+ o (q2g+1) .

Using Lemma 2.7.3, we conclude that, for the first moment, (6.7.2) predicts that

∑
u∈Ig+1

L(
1

2
+ it, χu) =

2q2g+1

ζA(2)
ζA(1 + 2it) (P (1 + 2it) − q−2it(g+1)P (1 − 2it)) + o (q2g+1) .

(6.7.6)
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Comparing (6.7.6) and (6.1.8), we see that the main and the principal lower order

terms are the same. Hence Theorem 6.1.3 proves (6.7.2), for k = 1, with an error term

O (g2
g
2 qg(

3
2
−it)).

6.7.3 Leading order for general k

In this subsection, we use the methods of Keating and Odgers [KO08] to obtain the

leading order asymptotic for the moments of L (1
2 + it, χu) for a general integer k. To

do this will first need to prove the following lemma.

Lemma 6.7.1. Suppose F is a symmetric function of k variables regular near (0, . . . ,0)

and f(s) has a simple pole of residue 1 at s = 0 and is otherwise analytic in a neigh-

bourhood of s = 0. Let

K (q2g+1;w1, . . . ,wk) = ∑
εj=±1

e
1
2

log(q2g+1)∑kj=1 εjwjF (ε1w1, . . . , εkwk) ∏
1≤i≤j≤k

f(εiwi + εjwj)

and define I (q2g+1;k, iβ) to be the value of K when w1 = . . . = wk = iβ for a fixed real

β ≠ 0. Then we have

I(q2g+1;k, iβ) ∼ (q2g+1)
kiβ
2 F (iβ, . . . , iβ)f(2iβ)

k(k+1)
2 . (6.7.7)

Proof. Let

G (q2g+1;w1, . . . ,wk) = e
1
2

log(q2g+1)∑kj=1wjF (w1, . . . ,wk) ∏
1≤i≤j≤k

f(wi +wj), (6.7.8)

then by Lemma 6.4.5 we have

∑
εj=±1

G (q2g+1; ε1w1, . . . , εkwk) =
(−1)

k(k−1)
2

(2πi)k
2k

k! ∮
. . .∮ G (q2g+1; z1, . . . , zk)

×
∆(z2

1 , . . . , z
2
k)

2∏
k
j=1 zj

∏
k
i=1∏

k
j=1(zi −wj)(zi +wj)

dz1 . . . dzk.

Thus

I (q2g+1;k; iβ) =
(−1)

k(k−1)
2

(2πi)k
2k

k! ∮
. . .∮ G (q2g+1; z1, . . . , zk)

×
∆(z2

1 , . . . , z
2
k)

2∏
k
j=1 zj

∏
k
j=1(zj − iβ)

k(zj + iβ)k
dz1 . . . dzk. (6.7.9)

For each β ≠ 0 each contour in the integral I (q2g+1, k, iβ) can be continuously deformed

to two smaller circular contours centered at the poles ±iβ connected by two straight

lines (whose contribution cancel). Therefore we can consider the multiple contour in-

tegral as a sum of 2k integrals in which each zj runs over one of the smaller circular
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contours.

With εj = ±1, let Γεjiβ be a circle with center εjiβ and radius less than ∣β∣. Thus let

J (q2g+1;k, iβ; Γε1iβ, . . . ,Γεkiβ) be the value of the multiple contour (6.7.9) but with the

zj contour changed to Γεjiβ. Hence

J (q2g+1;k, iβ; Γε1iβ, . . . ,Γεkiβ) =
(−1)

k(k−1)
2

(2πi)k
2k

k! ∮Γε1iβ
. . .∮

Γεkiβ
G (q2g+1; z1, . . . , zk)

×
∆(z2

1 , . . . , z
2
k)

2∏
k
j=1 zj

∏
k
j=1(zj − iβ)

k(zj + iβ)k
dz1 . . . dzk

and

I (q2g+1;k, iβ) = ∑
εj=±1

J (q2g+1;k, iβ; Γε1iβ, . . . ,Γεkiβ) .

Using the change of variables zj =
2vj

log(q2g+1) + εjiβ, we have

dzj =
2dvj

log (q2g+1)
,

G (q2g+1; z1, . . . , zk) = G(q2g+1;
2v1

log (q2g+1)
+ ε1iβ, . . . ,

2vk
log (q2g+1)

+ εkiβ) ,

∆(z2
1 , . . . , z

2
k)

2 = ∆
⎛

⎝
(

2v1

log (q2g+1)
+ ε1iβ)

2

, . . . ,(
2vk

log (q2g+1)
+ εkiβ)

2
⎞

⎠

2

and

(zj − iβ)
k(zj + iβ)

k = (
2vj

log (q2g+1)
)

k

(
2vj

log (q2g+1)
+ 2εjiβ)

k

Thus

J (q2g+1;k, iβ; Γε1iβ, . . . ,Γεkiβ)

=
(−1)

k(k−1)
2

(2πi)k
2k

k! ∮Γ0

. . .∮
Γ0

G(q2g+1;
2v1

log (q2g+1)
+ ε1iβ, . . . ,

2vk
log (q2g+1)

+ εkiβ)

×
∆(( 2v1

log(q2g+1) + ε1iβ)
2
, . . . , ( 2vk

log(q2g+1) + εkiβ)
2
)

2

∏
k
j=1 (

2vj
log(q2g+1) + εjiβ)

∏
k
j=1 (

2vj
log(q2g+1))

k
(

2vj
log(q2g+1) + 2εjiβ)

k

×
2dv1

log (q2g+1)
. . .

2dvk
log (q2g+1)

,

where Γ0 is a circle centered at the origin with radius less than ∣β∣. Furthermore from
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(6.7.8) we have

G(q2g+1;
2v1

log (q2g+1)
+ ε1iβ, . . . ,

2vk
log (q2g+1)

+ εkiβ)

= e
1
2

log(q2g+1)∑kj=1(
2vj

log(q2g+1)
+εjiβ)

F (
2v1

log (q2g+1)
+ ε1iβ, . . . ,

2vk
log (q2g+1)

+ εkiβ)

× ∏
1≤i≤j≤k

f (
2vi + 2vj

log (q2g+1)
+ (εi + εj)iβ) .

Also, from the definition of the Vandermonde determinant, we have

∆
⎛

⎝
(

2v1

log (q2g+1)
+ ε1iβ)

2

, . . . ,(
2vk

log (q2g+1)
+ εkiβ)

2
⎞

⎠

2

= ∏
1≤i<j≤k

⎛

⎝
(

2vj
log (q2g+1)

+ εjiβ)

2

− (
2vi

log (q2g+1)
+ εiiβ)

2
⎞

⎠

2

= ∏
1≤i<j≤k

(
2vj + 2vi

log (q2g+1)
+ (εj + εi)iβ)

2

(
2vj − 2vi

log (q2g+1)
+ (εj − εi)iβ)

2

.

We also have
2dv1

log (q2g+1)
. . .

2dvk
log (q2g+1)

= (
2

log (q2g+1)
)

k

dv1 . . . dvk

and
k

∏
j=1

(
2vj

log (q2g+1)
)

k

= (
2

log (q2g+1)
)

k2 k

∏
j=1

vkj .

Combining the above we have

J (q2g+1;k, iβ; Γε1iβ, . . . ,Γεkiβ)

= (
1

2
log (q2g+1))

k(k−1)
e

1
2

log(q2g+1)∑kj=1 εjiβ
(−1)

k(k−1)
2

(2πi)k
2k

k! ∮Γ0

. . .∮
Γ0

e∑
k
j=1 vj

× F (
2v1

log (q2g+1)
+ ε1iβ, . . . ,

2vk
log (q2g+1)

+ εkiβ)

× ∏
1≤i<j≤k

f (
2vi + 2vj

log (q2g+1)
+ (εi + εj)iβ)

× ∏
1≤i<j≤k

(
2vj + 2vi

log (q2g+1)
+ (εj + εi)iβ)

2

(
2vj − 2vi

log (q2g+1)
+ (εj − εi)iβ)

2

×
k

∏
j=1

f (
2(2vj)

log (q2g+1)
+ 2εjiβ)

∏
k
j=1 (

2vj
log(q2g+1) + εjiβ)

∏
k
j=1 v

k
j (

2vj
log(q2g+1) + 2εjiβ)

k
dv1 . . . dvk.

Also we have

∏
1≤i<j≤k

f (
2vi + 2vj

log (q2g+1)
+ (εi + εj)iβ) = ∏

1≤i<j≤k
εj=εi

f (
2vi + 2vj

log (q2g+1)
+ 2εjiβ) ∏

1≤i<j≤k
εj=−εi

f (
2vi + 2vj

log (q2g+1)
)
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and

∏
1≤i<j≤k
εj=−εi

f (
2vi + 2vj

log (q2g+1)
) = ∏

1≤i<j≤k
εj=−εi

f (
2vi + 2vj

log (q2g+1)
)(

2vi + 2vj
log (q2g+1)

)(
2vi + 2vj

log (q2g+1)
)

−1

.

Thus with β fixed, real and away from 0, we have, as g →∞ that

J (q2g+1;k, iβ; Γε1iβ, . . . ,Γεkiβ)

∼ (
1

2
log (q2g+1))

k(k−1)
e

1
2

log(q2g+1)∑kj=1 εjiβF (ε1iβ, . . . , εkiβ)

× ∏
1≤i<j≤k
εj=εi

f(2εjiβ)
k

∏
j=1

f(2εjiβ)(2iβ)
k(k−1) ∏

k
j=1(εjiβ)

∏
k
j=1(2εjiβ)

k

(−1)
k(k−1)

2

(2πi)k
2k

k! ∮Γ0

. . .∮
Γ0

e∑
k
j=1 vj

× ∏
1≤i<j≤k
εj=εi

(
2vj − 2vi

log (q2g+1)
)

2

∏
1≤i<j≤k
εj=−εi

(
2vj + 2vi

log (q2g+1)
)

1

∏
k
j=1 v

k
j

dv1 . . . dvk,

where we have also used the fact that ε2j = 1 for all j. Simplifying we get

J (q2g+1;k, iβ; Γε1iβ, . . . ,Γεkiβ)

∼ (
1

2
log (q2g+1))

k(k−1)
e

1
2

log(q2g+1)∑kj=1 εjiβF (ε1iβ, . . . , εkiβ)
k

∏
j=1

ε1−kj

× ∏
1≤i<j≤k
εj=εi

f(2εjiβ)
k

∏
j=1

f(2εjiβ)
(−1)

k(k−1)
2

k!

1

(2πi)k ∮Γ0

. . .∮
Γ0

e∑
k
j=1 vj

× ∏
1≤i<j≤k
εj=εi

(
2vi + 2vj

log (q2g+1)
)

2

∏
1≤i<j≤k
εj=−εi

(
2vj + 2vi

log (q2g+1)
)

1

∏
k
j=1 v

k
j

dv1 . . . dvk.

The leading order term arises when εj = 1 for all j. Thus

I (q2g+1;k, iβ) ∼ e
1
2

log(q2g+1)∑kj=1 iβF (iβ, . . . , iβ)f(2iβ)
k(k+1)

2

×
(−1)

k(k−1)
2

k!

1

(2πi)k ∮Γ0

. . .∮
Γ0

e∑
k
j=1 vj
∏1≤i<j≤k(vj − vi)

2

∏
k
j=1 v

k
j

dv1 . . . dvk.

The proof follows by using the fact that

(−1)
k(k−1)

2

k!

1

(2πi)k ∮
. . .∮ e∑

k
j=1 vj

∆(z1, . . . , zk)2

∏
k
j=1 v

k
j

dv1 . . . dvk = 1.

∎

Recall from (6.4.42), we have that

∑
u∈Ig+1

L(
1

2
+ α1, χu) . . . L(

1

2
+ αk, χu)

=
⎛
⎜
⎝
∑

u∈Ig+1

∏
k
j=1 (q

2g+1)
− 1

2 ∑
k
j=1 αj X (1

2 + αj)
1
2

(log q)
k(k+1)

2

∑
εj=±1

K(ε1α1, . . . , εkαk)
⎞
⎟
⎠
(1 + o(1)),
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2 + it, χu)

where

K(ε1α1, . . . , εkαk) =
k

∏
j=1

(q2g+1)
1
2 ∑

k
j=1 εjαj X (

1

2
+ εjαj)

− 1
2

×A(
1

2
; ε1α1, . . . , εkαk) ∏

1≤i≤j≤k
ζA(1 + εiαi + εjαj)(log q).

Applying Lemma 6.7.1 with

f(s) = ζA(1 + s) log q,

F (α1, . . . , αk) =
k

∏
j=1

X (
1

2
+ αj)

− 1
2

A(
1

2
;α1, . . . , αk)

and

K (q2g+1;α1, . . . , αk) = ∑
εj=±1

(q2g+1)
1
2 ∑

k
j=1 εjαj F (ε1α1, . . . , εkαk) ∏

1≤i≤j≤k
f(εiαi + εjαj),

and letting α1 = . . . = αk = it, where t ≠ 0 is real and fixed, we have that

∑
u∈Ig+1

L(
1

2
+ it, χu)

k

∼ ∑
u∈Ig+1

(q2g+1)
−kit
2 X (1

2 + it)
k
2

(log q)
k(k+1)

2

(q2g+1)
kit
2 X (

1

2
+ it)

− k
2

A(
1

2
; it, . . . , it)

× ζA(1 + 2it)
k(k+1)

2 (log q)
k(k+1)

2 .

Simplifying and using Lemma 2.7.3 we obtain the following result.

Proposition 6.7.2. Conditional on Conjecture 6.2.1 and for a fixed real t ≠ 0 we have

that, as g →∞ the following holds

∑
u∈Ig+1

L(
1

2
+ it, χu)

k

∼
2q2g+1

ζA(2)
A(

1

2
; it, . . . , it) ζA(1 + 2it)

k(k+1)
2 . (6.7.10)
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Chapter 7

Autocorrelation of Ratios of

L-functions in Even characteristic

7.1 Autocorrelation of Ratios of L-functions over

the Rational Function Field

The generalisation of (6.1.1) is to conjecture an asymptotic formula for the mean-value

of ratios of products of L-functions. More precisely, the generalised problem of (6.1.1)

is to understand the asymptotic behaviour of

∑
D∈H2g+1

∏
K
k=1L (1

2 + αk, χD)

∏
Q
q=1L (1

2 + γq, χD)
, (7.1.1)

when q ≡ 1(mod 4) is fixed and g → ∞, where L(s,χD) is the quadratic Dirichlet L-

function and H2g+1 is the hyperelliptic ensemble defined in Section 2.6.2 and Section

2.6.3 respectively. In this setting, Andrade and Keating [AK14] adapted the recipe of

Conrey, Farmer and Zirnbauer [CFZ08] to conjecture ratios of products of quadratic

Dirichlet L-functions in function fields, which is seen to be the generalisation of Con-

jecture 6.1.1. Their conjecture reads.

Conjecture 7.1.1 (Andrade and Keating). Suppose that the real parts of αk and γq are

positive and that q odd is the fixed cardinality of the finite field Fq. Let D = {L(s,χD) ∶

D ∈ H2g+1} be the family of L-functions associated with the quadratic character χD.

Furthermore, let XD(s) = ∣D∣
1
2
−sX(s) where

X(s) = q−
1
2
+s.

That is XD(s) is the factor in the functional equation

L(s,χD) = XD(s)L(1 − s,χD).
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Then we have

∑
D∈H2g+1

∏
K
k=1L (1

2 + αk, χD)

∏
Q
q=1L (1

2 + γq, χD)

= ∑
D∈H2g+1

∑
ε∈{−1,1}K

∣D∣
1
2 ∑

K
k=1(εkαk−αk)

K

∏
k=1

X (
1

2
+
αk − εkαk

2
)

× YD(ε1α1, . . . , εKαK ;γ)AD(ε1α1, . . . , εKαK ;γ) + o(∣D∣),

where

AD(α;γ) =∏
P

∏1≤j≤k≤K (1 − 1

∣P ∣1+αj+αk
)∏1≤q<r≤Q (1 − 1

∣P ∣1+γq+γr )

∏
K
k=1∏

Q
q=1 (1 − 1

∣P ∣1+αk+γq )

×
⎛

⎝
1 + (1 +

1

∣P ∣
)

−1

∑
0<∑k ak+∑q cq is even

∏
Q
q=1 µ(P

cq)

∣P ∣∑k ak(
1
2
+αk)+∑q cq( 1

2
+γq)

⎞

⎠

and

YD(α;γ) =
∏1≤j≤k≤K ζA(1 + αj + αk)∏1≤q<r≤Q ζA(1 + γq + γr)

∏
K
k=1∏

Q
q=1 ζA(1 + αk + γq)

.

If we let

HD,∣D∣,α,γ(w) = ∣D∣
1
2 ∑

K
k=1wk

K

∏
k=1

X (
1

2
+
αk −wk

2
) × YD(w1, . . . ,wK ;γ)AD(w1, . . . ,wK ;γ),

then the conjecture may be formulated as

∑
D∈H2g+1

∏
K
k=1L (1

2 + αk, χD)

∏
Q
q=1L (1

2 + γq, χD)

= ∑
D∈H2g+1

∣D∣−
1
2 ∑

K
k=1 αk ∑

ε∈{−1,1}K
HD,∣D∣,α,γ(ε1α1, . . . , εKαK ;γ) + o(∣D∣).

In a recent paper, Bui, Florea and Keating [BFK21a] used the upper bounds on negative

moments of Dirichlet L-functions (6.1.4) to prove special cases of the Ratios Conjec-

ture 7.1.1. More specifically they proved the following result.

Theorem 7.1.2 (Bui, Florea and Keating). Let 0 < R(βj) < 1
2 for 1 ≤ j ≤ k. Let

α = max{∣R(α1)∣, . . . , ∣R(αk)∣} and β = min{R(β1), . . . ,R(βk)}. Then Conjecture 7.1.1

holds for 1 ≤ k ≤ 3 with the error term Ek where

E1 ≪ε

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

q−gβ(3+2α)+εgβ if 0 ≤R(α1) <
1
2 and β ≫ g−

1
2
+ε,

q−gβ(3−4α)+εgβ if − 1
2 <R(α1) < 0 and β ≫ g−

1
2
+ε,

E2 ≪ε q
−gβmin{ 1−4α

1+β
, 1−2α
2+β

}+εgβ if α <
1

4
and β ≫ g−

1
4
+ε,

and

E3 ≪ε q
−gβmin{

1
4−4α

β
,
1
2−4α

3+β
}+εgβ

if α <
1

16
and β ≫ g−

1
6
+ε.
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Andrade, Jung and Shamesaldeen [AJS21] also stated a conjecture for the ratios of

products of Dirichlet L-functions with the quadratic character χP , where P is a monic

irreducible polynomial in Fq[T ], which is seen to be the generalisation of Conjecture

6.1.2. Their conjecture reads.

Conjecture 7.1.3 (Andrade, Jung and Shamesaldeen). Suppose that the real parts of

αk and γq are positive and that q odd is the fixed cardinality of the finite field Fq. Let

P = {L(s,χP ) ∶ P ∈ P2g+1} be the family of L-functions associated with the quadratic

character χP . Furthermore, let XP (s) = ∣P ∣
1
2
−sX(s) where

X(s) = q−
1
2
+s.

That is XP (s) is the factor in the functional equation

L(s,χP ) = XP (s)L(1 − s,χP ).

Then we have

∑
P ∈P2g+1

∏
K
k=1L (1

2 + αk, χP )

∏
Q
q=1L (1

2 + γq, χP )

= ∑
P ∈P2g+1

∑
ε∈{−1,1}K

∣P ∣−
1
2 ∑

K
k=1(εkαk−αk)

K

∏
k=1

X (
1

2
+
αk − εkαk

2
)

× YP(ε1α1, . . . , εKαK ;γ)AP(ε1α1, . . . , εKαK ;γ) + o(∣P ∣),

where

AP(α;γ) =∏
P

∏1≤j≤k≤K (1 − 1

∣P ∣1+αj+αk
)∏1≤m<r≤Q (1 − 1

∣P ∣1+γq+γr )

∏
K
k=1∏

Q
q=1 (1 − 1

∣P ∣1+αk+γq )

×
⎛

⎝
1 + ∑

0<∑k ak+∑q cq is even

∏
Q
q=1 µ(P

cq)

∣P ∣
1
2 ∑k ak(

1
2
+αk)+∑q cq( 1

2
+γq)

⎞

⎠

and

YP(α;γ) =
∏1≤j≤k≤K ζA(1 + αj + αk)∏1≤q<r≤Q ζA(1 + γq + γr)

∏
K
k=1∏

Q
q=1 ζA(1 + αk + γq)

.

In this chapter, we will develop to even characteristic the heuristic developed in [CFZ08,

AK14, AJS21] which will lead to a conjecture for the ratios of products of Dirichlet L-

functions L(s,χu) with u ∈ Ig+1, where L(s,χu) is the Dirichlet L-function defined in

Section 2.7.3 and Ig+1 is the set defined in Section 2.7.1. The main result in this chapter

is the following.

Conjecture 7.1.4. Suppose that the real parts of αk and γq are positive and that q is a

power of 2 which is the fixed cardinality of the finite field Fq. Let U = {L(s,χu) ∶ u ∈ Ig+1}
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be the family of L-functions associated with the quadratic character χu. Furthermore,

let Xu(s) = (q2g+1)
1
2
−s
X(s) where

X(s) = q−
1
2
+s.

That is Xu(s) is the factor in the functional equation

L(s,χu) = Xu(s)L(1 − s,χu).

Then we have

∑
u∈Ig+1

∏
K
k=1L (1

2 + αk, χu)

∏
Q
q=1L (1

2 + γq, χu)

= ∑
u∈Ig+1

∑
ε∈{−1,1}K

(q2g+1)
1
2 ∑

K
k=1(εkαk−αk)

K

∏
k=1

X (
1

2
+
αk − εkαk

2
)

×AU(ε1α1, . . . , εKαK ;γ)YU(ε1α1, . . . , εKαK ;γ) + o (q2g+1) ,

where

AU(α;γ) =∏
P

∏1≤j≤k≤K (1 − 1

∣P ∣1+αj+αk
)∏1≤q<r≤Q (1 − 1

∣P ∣1+γq+γr )

∏
K
k=1∏

Q
q=1 (1 − 1

∣P ∣1+αk+γq )

×
⎛

⎝
1 + (1 +

1

∣P ∣
)

−1

∑
0<∑k ak+∑q cq is even

∏
Q
q=1 µ(P

cq)

∣P ∣∑k ak(
1
2
+αk)+∑q cq( 1

2
+γq)

⎞

⎠

and

YU(α;γ) =
∏1≤j≤k≤K ζA(1 + αj + αk)∏1≤q<r≤Q ζA(1 + γq + γr)

∏
K
k=1∏

Q
q=1 ζA(1 + αk + γq)

.

If we let

HI,α,γ(w) = (q2g+1)
1
2 ∑

K
k=1wk

K

∏
k=1

X (
1

2
+
αk −wk

2
)AU(w1, . . . ,wK ;γ)YU(w1, . . . ,wK ;γ),

then the Conjecture may be formulated as

∑
u∈Ig+1

∏
K
k=1L (1

2 + αk, χu)

∏
Q
q=1L (1

2 + γq, χu)

= ∑
u∈Ig+1

(q2g+1)
− 1

2 ∑
K
k=1 αk

∑
ε∈{−1,1}K

HI,α,γ(ε1α1, . . . , εKαK) + o (q2g+1) .

7.2 Applying the Ratios Conjecture for L-functions

in Even characteristic

In this section, we will obtain a conjectural asymptotic formula for

∑
u∈Ig+1

∏
K
k=1L (1

2 + αk, χu)

∏
Q
q=1L (1

2 + γq, χu)
, (7.2.1)
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where the set Ig+1 is defined in Section 2.7.1 and the family U = {L(s,χu) ∶ u ∈ Ig+1}

is a symplectic family. By the “approximate” functional equation, Lemma 6.3.1, the

L-functions in the numerator can be written as

L(s,χu) = ∑
f∈A+

≤g

χu(f)

∣f ∣s
+Xu(s) ∑

f∈A+
≤g−1

χu(f)

∣f ∣1−s
, (7.2.2)

where Xu(s) = qg(1−2s) and, by (2.4.2), those L-functions in the denominator can be

written as
1

L(s,χu)
=∏

P

(1 −
χu(P )

∣P ∣s
) = ∑

f∈A+

µ(f)χu(f)

∣f ∣s
, (7.2.3)

where µ(f) is the Möbius function defined in Section 2.2. In the numerator, we replace

L(s,χu) with the completed L-function Λ(s,χu), which is defined in Section 2.7.3. Thus

we will apply the recipe to

∑
u∈Ig+1

∏
K
k=1 Λ (1

2 + αk, χu)

∏
Q
q=1L (1

2 + γq, χu)
. (7.2.4)

We will recover Conjecture 7.1.4 by using the fact that

Λ(s,χu) = Xu(s)
− 1

2L(s,χu). (7.2.5)

Using (7.2.3), we have

∑
u∈Ig+1

∏
K
k=1 Λ (1

2 + αk, χu)

∏
Q
q=1L (1

2 + γq, χu)

= ∑
u∈Ig+1

K

∏
k=1

Λ(
1

2
+ αk, χu) ∑

h1,...,hQ
hi monic

µ(h1) . . . µ(hQ)χu(h1) . . . χu(hQ)

∏
Q
q=1 ∣hq ∣

1
2
+γq

.

From (6.4.11), we further know that

K

∏
k=1

Λ(
1

2
+ αk, χu) = ∑

ε∈{−1,1}K

K

∏
k=1

Xu (
1

2
+ εkαk)

− 1
2

∑
m1,...,mK
mj monic

χu(m1 . . .mK)

∏
K
k=1 ∣mk∣

1
2
+εkαk

,

thus

∑
u∈Ig+1

∏
K
k=1 Λ (1

2 + αk, χu)

∏
Q
q=1L (1

2 + γq, χu)

= ∑
u∈Ig+1

∑
ε∈{−1,1}K

K

∏
k=1

Xu (
1

2
+ εkαk)

− 1
2

∑
m1,...,mK
h1,...,hQ

mj ,hi monic

∏
Q
q=1 µ(hq)χu (∏

K
k=1mk∏

Q
q=1 hq)

∏
K
k=1 ∣mk∣

1
2
+εkαk∏

Q
q=1 ∣mq ∣

1
2
+γq

.
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Following the recipe, we average the summand over fundamental discriminants u ∈ Ig+1.

Thus, using Lemma 6.4.2, we have that

lim
g→∞

1

#Ig+1
∑

u∈Ig+1
∑

ε∈{−1,1}K

K

∏
k=1

Xu (
1

2
+ εkαk)

− 1
2

∑
m1,...,mK
h1,...,hQ

mj ,hi monic

∏
Q
q=1 µ(hq)χu (∏

K
k=1mk∏

Q
q=1 hq)

∏
K
k=1 ∣mk∣

1
2
+εkαk∏

Q
q=1 ∣hq ∣

1
2
+γq

= ∑
ε∈{−1,1}K

K

∏
k=1

Xu (
1

2
+ εkαk)

− 1
2

∑
m1,...,mK
h1,...,hQ

mj ,hi monic

∏
Q
q=1 µ(hq)δ (∏

K
k=1mk∏

Q
q=1 hq)

∏
K
k=1 ∣mk∣

1
2
+εkαk∏

Q
q=1 ∣hq ∣

1
2
+γq

,

where

δ(n) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∏P ∣n (1 + 1
∣P ∣)

−1
if n is a square,

0 otherwise.

Let

GU(α;γ) = ∑
m1,...,mK
h1,...,hQ

mj ,hi monic

∏
Q
q=1 µ(hq)δ (∏

K
k=1mk∏

Q
q=1 hq)

∏
K
k=1 ∣mk∣

1
2
+εkαk∏

Q
q=1 ∣hq ∣

1
2
+γq

,

then we can express GU(α;γ) as a convergent Euler product, provided that R(αk) > 0

and R(γq) > 0. Thus

GU(α;γ) =∏
P

⎛

⎝
1 + (1 +

1

∣P ∣
)

−1

∑
0<∑k ak+∑q cq is even

∏
Q
q=1 µ(P

cq)

∣P ∣∑k ak(
1
2
+αk)+∑q cq( 1

2
+γq)

⎞

⎠
.

We can use the Euler product expression to write GU in terms of the zeta function

which will enable us to locate the zeros and poles. We have

GU(α;γ) =∏
P

⎛

⎝
1 + (1 +

1

∣P ∣
)

−1

×
⎡
⎢
⎢
⎢
⎣
∑

1≤j≤k≤K

1

∣P ∣(
1
2
+αj)+( 1

2
+αk)

+ ∑
1≤q<r≤Q

µ(P )2

∣P ∣(
1
2
+γq)+( 1

2
+γr)

+
K

∑
k=1

Q

∑
q=1

µ(P )

∣P ∣(
1
2
+αk)+( 1

2
+γq)

+ . . .
⎤
⎥
⎥
⎥
⎦

⎞

⎠

where . . . indicates that the terms converge. Since

ζA(s) =∏
P

(1 −
1

∣P ∣s
)

−1

=∏
P

∞
∑
j=0

(
1

∣P ∣s
)

j

,

then the terms with ∑
K
k=1 ak +∑

Q
q=1 cq = 2 contribute to the poles and zeros. The poles

come from the terms with aj = ak = 1 for 1 ≤ j ≤ k ≤K and cq = cr = 1 for 1 ≤ q < r ≤ Q.

The terms with ak = cq = 1 for 1 ≤ k ≤ K and 1 ≤ q ≤ Q contribute to the zeros. Thus,

the contribution of all these zeros and poles is

YU(α;γ) =
∏1≤j≤k≤K ζA(1 + αj + αk)∏1≤q<r≤Q ζA(1 + γq + γr)

∏
K
k=1∏

Q
q=1 ζA(1 + αk + γq)

.
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When factoring out YU from GU , we are left with an Euler product AU , where

AU(α;γ) =∏
P

∏1≤j≤k≤K (1 − 1
∣P ∣1+αk+γq )∏1≤q<r≤Q (1 − 1

∣P ∣1+γq+γr )

∏
K
k=1∏

Q
q=1 (1 − 1

∣P ∣1+αk+γq )

×
⎛

⎝
1 + (1 +

1

∣P ∣
)

−1

∑
0<∑k ak+∑q is even

∏
Q
q=1 µ(P

cq)

∣P ∣∑k ak(
1
2
+αk)+∑q cq( 1

2
+γq)

⎞

⎠
. (7.2.6)

Furthermore, AU is absolutely convergent for all the variables in the small discs around

zero. Combining all this, we get

∑
u∈Ig+1

∏
K
k=1 Λ (1

2 + αk, χu)

∏
Q
q=1L (1

2 + γq, χu)
= ∑
u∈Ig+1

∑
ε∈{−1,1}K

K

∏
k=1

Xu (
1

2
+ εkαk)

− 1
2

×AU(ε1α1, . . . , εKαK ;γ)YU(ε1α1, . . . , εKαK ;γ) + o (q2g+1) .

Using (7.2.5) and the definition of Xu(s), we have

∑
u∈Ig+1

∏
K
k=1L (1

2 + αk, χu)

∏
Q
q=1L (1

2 + γq, χu)

= ∑
u∈Ig+1

∑
ε∈{−1,1}K

(q2g+1)
1
2 ∑

K
k=1(εkαk−αk)

K

∏
k=1

X (
1

2
+ αk)

1
2

X (
1

2
+ εkαk)

− 1
2

×AU(ε1α1, . . . , εKαK ;γ)YU(ε1α1, . . . , εKαK ;γ) + o (q2g+1) . (7.2.7)

To obtain the formulae stated in Conjecture 7.1.4, we require the following Lemma.

Lemma 7.2.1. We have

X (
1

2
+ αk)

1
2

X (
1

2
+ εkαk)

− 1
2

=X (
1

2
+
αk − εkαk

2
) .

Proof. The proof follows directly from the definition of X(s). ∎

Therefore, using Lemma 7.2.1, we have that (7.2.7) becomes

∑
u∈Ig+1

∏
K
k=1L (1

2 + αk, χu)

∏
Q
q=1L (1

2 + γq, χu)

= ∑
u∈Ig+1

∑
ε∈{−1,1}K

(q2g+1)
1
2 ∑

K
k=1(εkαk−αk)

K

∏
k=1

X (
1

2
+
αk − εkαk

2
)

×AU(ε1α1, . . . , εKαK ;γ)YU(ε1α1, . . . , εKαK ;γ) + o (q2g+1) .

If we let

HI,α,γ(w) = (q2g+1)
1
2 ∑

K
k=1wk

K

∏
k=1

X (
1

2
+
αk −wk

2
)AU(w1, . . . ,wK ;γ)YU(w1, . . . ,wK ;γ),
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then

∑
u∈Ig+1

∏
K
k=1L (1

2 + αk, χu)

∏
Q
q=1L (1

2 + γq, χu)

= ∑
u∈Ig+1

(q2g+1)
− 1

2 ∑
K
k=1 αk

∑
ε∈{−1,1}K

HI,α,γ(ε1α1, . . . , εKαK ;γ) + o (q2g+1) ,

which is precisely the formulae given in Conjecture 7.1.4.

7.3 Refinements of the Conjecture

In this section, we derive a closed form expression for AU(α;γ). The main results in

the section are the following.

Lemma 7.3.1. We have

1 + (1 +
1

∣P ∣
)

−1

∑
0<∑k ak+∑q cq is even

∏
Q
q=1 µ(P

cq)

∣P ∣∑k ak(
1
2
+αk)+∑q cq( 1

2
+γq)

=
1

1 + 1
∣P ∣

⎛
⎜
⎜
⎜
⎝

1

2

∏
Q
q=1 (1 − 1

∣P ∣
1
2+γq

)

∏
K
k=1 (1 − 1

∣P ∣
1
2+αk

)
+

1

2

∏
Q
q=1 (1 + 1

∣P ∣
1
2+γq

)

∏
K
k=1 (1 + 1

∣P ∣
1
2+αk

)
+

1

∣P ∣

⎞
⎟
⎟
⎟
⎠

.

Using Lemma 7.3.1 and (7.2.6), we immediately obtain Corollary 7.3.2, which states

the closed form expression of AU(α;γ), which is the same expression given in Conjec-

ture 7.1.4.

Corollary 7.3.2. We have

AU(α;γ) =∏
P

∏1≤j≤k≤K (1 − 1

∣P ∣1+αj+αk
)∏1≤q<r≤Q (1 − 1

∣P ∣1+γq+γr )

∏
K
k=1∏

Q
q=1 (1 − 1

∣P ∣1+αk+γq )

×
1

1 + 1
∣P ∣

⎛
⎜
⎜
⎜
⎝

1

2

∏
Q
q=1 (1 − 1

∣P ∣
1
2+γq

)

∏
K
k=1 (1 − 1

∣P ∣
1
2+αk

)
+

1

2

∏
Q
q=1 (1 + 1

∣P ∣
1
2+γq

)

∏
K
k=1 (1 + 1

∣P ∣
1
2+αk

)
+

1

∣P ∣

⎞
⎟
⎟
⎟
⎠

.

Proof of Lemma 7.3.1. Suppose that

f(x) = 1 +
∞
∑
n=1

unx
n,

then

∑
0<n is even

unx
n =

1

2
(f(x) + f(−x) − 2)
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and so

1 + (1 +
1

∣P ∣
)

−1

∑
0<n is even

unx
n = 1 + (1 +

1

∣P ∣
)

−1

(
1

2
(f(x) + f(−x) − 2))

=
1

1 + 1
∣P ∣

(
f(x) + f(−x)

2
+

1

∣P ∣
) . (7.3.1)

Thus if we let

f (
1

∣P ∣
) = ∑

ak,cq

∏
Q
q=1 µ(P

cq)

∣P ∣∑k ak(
1
2
+αk)+∑q cq( 1

2
+γq)

,

then

f (
1

∣P ∣
) =∑

ak

1

∣P ∣∑k ak(
1
2
+αk)
∑
cq

∏
Q
q=1 µ(P

cq)

∣P ∣∑q cq(
1
2
+γq)

=∑
ak

K

∏
k=1

1

∣P ∣ak(
1
2
+αk)
∑
cq

Q

∏
q=1

µ(P cq)

∣P ∣cq(
1
2
+γq)

=
∏
Q
q=1 (1 − 1

∣P ∣
1
2+γq

)

∏
K
k=1 (1 − 1

∣P ∣
1
2+αk

)
. (7.3.2)

Combining (7.3.1) and (7.3.2) proves the lemma. ∎

7.4 The final form of the Conjecture

In this section, we present a form of the Ratios Conjecture 7.1.4 using contour integrals.

To do this, we will need the following Lemma.

Lemma 7.4.1 ([CFZ08, Lemma 6.8]). Suppose that F (z) = F (z1, . . . , zK) is a function

of K variables, which is symmetric and regular near (0, . . . ,0). Suppose further that

f(s) has a simple pole of residue 1 at s = 0 but is otherwise analytic in ∣s∣ ≤ 1. Let

either

H(z1, . . . , zK) = F (z1, . . . , zK) ∏
1≤j≤k≤K

f(zj + zk)

or

H(z1, . . . , zK) = F (z1, . . . , zK) ∏
1≤j<k≤K

f(zj + zk).

If ∣αk∣ < 1, then

∑
ε∈{−1,1}K

H(ε1α1, . . . , εKαK)

=
(−1)

K(K−1)
2 2K

K!

1

(2πi)K ∫∣zi∣=1

H(z1, . . . , zK)∆(z2
1 , . . . , z

2
K)2∏

K
k=1 zk

∏
K
j=1∏

K
k=1(zk − αj)(zk + αj)

dz1 . . . dzK ,
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and

∑
ε∈{−1,1}K

sgn(ε)H(ε1α1, . . . , εKαK)

=
(−1)

K(K−1)
2 2K

K!

1

(2πi)K ∫∣zi∣=1

H(z1, . . . , zK)∆(z2
1 , . . . , z

2
K)2∏

K
k=1αk

∏
K
j=1∏

K
k=1(zk − αj)(zk + αj)

dz1 . . . dzK .

We are now in a position to present the final form of the Ratios Conjecture for Dirichlet

L-functions in even characteristic using the integrals introduced in Lemma 7.4.1. If we

let

F (z1, . . . , zK ;γ) = (q2g+1)
1
2 ∑

K
k=1 zk

K

∏
k=1

X (
1

2
+
αk − zk

2
)AU(z1, . . . , zK ;γ)

and

∏
1≤j≤k≤K

f(zj + zk) = YU(z1, . . . , zK ;γ),

then using the same notation as given in Conjecture 7.1.4, we let

HI,α,γ(z1, . . . , zK)

= (q2g+1)
1
2 ∑

K
k=1 zk

K

∏
k=1

X (
1

2
+
αk − zk

2
)AU(z1, . . . , zK ;γ)YU(z1, . . . , zK ;γ),

where

∑
u∈Ig+1

∏
K
k=1L (1

2 + αk, χu)

∏
Q
q=1L (1

2 + γq, χu)

= ∑
u∈Ig+1

(q2g+1)
− 1

2 ∑
K
k=1 αk

∑
ε∈{−1,1}K

HI,α,γ(ε1α1, . . . , εKαK) + o (q2g+1) .

Thus, using Lemma 7.4.1, Conjecture 7.1.4 can be written as follows.

Conjecture 7.4.2. Suppose that the real parts of αk and γq are positive. Then

∑
u∈Ig+1

∏
K
k=1L (1

2 + αk, χu)

∏
Q
q=1L (1

2 + γq, χu)
= ∑
u∈Ig+1

(q2g+1)
− 1

2 ∑
K
k=1 αk

(−1)
K(K−1)

2 2K

K!

1

(2πi)K ∫∣zi∣=1

HI,α,γ(z1, . . . , zK)∆(z2
1 , . . . , z

2
K)2∏

K
k=1 zk

∏
K
j=1∏

K
k=1(zk − αj)(zk + αj)

dz1 . . . dzK + o (q2g+1) .
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Chapter 8

Applications of the Ratios

Conjecture in Even characteristic

8.1 Applications of the Ratios Conjecture in Func-

tion Fields

8.1.1 The One-Level Density

As an application of the Ratios Conjecture 7.1.1 Andrade and Keating [AK14] used the

methods of Conrey and Snaith [CS07] to derive a formula for the one-level density for

the zeros of quadratic Dirichlet L-functions L(s,χD) with D ∈ H2g+1, where H2g+1 is

the hyperelliptic ensemble and L(s,χD) is the Dirichlet L-function which are defined in

Section 2.6.2 and Section 2.6.3 respectively. In particular, they obtained the following

result.

Theorem 8.1.1 (Andrade and Keating). Assuming the Ratios Conjecture 7.1.1, the

one-level density for the zeros of the family of quadratic Dirichlet L-functions associated

with hyperelliptic curves given by the affine equation CD ∶ y2 = D(T ), where D ∈ H2g+1,

is given by

∑
D∈H2g+1

∑
γD

f(γD)

=
1

2π ∫

π
log q

− π
log q

f(t) ∑
D∈H2g+1

⎛

⎝
log ∣D∣ −

X ′

X
(

1

2
− it) + 2

⎛

⎝

ζ ′A(1 + 2it)

ζA(1 + 2it)

+A′
D(it; it) − (log q)∣D∣−itX (

1

2
+ it) ζA(1 − 2it)AD(−it; it)

⎞

⎠

⎞

⎠
dt + o(∣D∣),

where γD is the ordinate of a generic zero of L(s,χD), f is an even and periodic nice
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test function, X(s) = q−
1
2
+s,

AD(−r; r) =∏
P

(1 −
1

∣P ∣
)

−1

(1 −
1

(∣P ∣ + 1)∣P ∣1−2r
−

1

∣P ∣ + 1
)

and

A′
D(r; r) =∑

P

log ∣P ∣

(∣P ∣1+2r − 1)(∣P ∣ + 1)
.

Bui and Florea [BF18] studied the one-level density of the zeros of quadratic Dirichlet

L-functions L(s,χD), when averaged over the hyperelliptic ensemble H2g+1. Specifi-

cally, when the Fourier transform of the test function is restricted in some interval,

they computed some lower order terms which is not predicted by the Ratios Conjecture

7.1.1. In a recent paper Bui, Florea and Keating [BFK21b] used the Ratios Conjecture

7.1.1 to write down formulas for the one and two level densities of the zeros of quadratic

Dirichlet L-functions in function fields. More precisely, they used the Ratios Conjecture

7.1.1 to predict the Type-0 and Type-I terms for the one-level density and the Type-0,

Type-I and Type-II for the two-level density. For a certain range, they also rigorously

computed the Type-0 and Type-I for each of the one and two level densities and showed

they agree with the predicted conjecture.

Andrade, Jung and Shamesaldeen [AJS21] used the Ratios Conjecture 7.1.3 to derive

a formula for the one-level density of the zeros of quadratic Dirichlet L-functions asso-

ciated with monic, irreducible polynomials in Fq[T ]. In particular they obtained the

following result. ,

Theorem 8.1.2 (Andrade, Jung and Shamesaldeen). Assuming the Ratios Conjec-

ture 7.1.3 we have that

∑
P ∈P2g+1

∑
γP

f(γP )

=
1

2π ∫

π
log q

− π
log q

f(t) ∑
P ∈P2g+1

⎛

⎝
log ∣P ∣ −

X ′

X
(

1

2
− it)

+ 2(
ζ ′A(1 + 2it)

ζA(1 + 2it)
− (log q)∣P ∣−itX (

1

2
+ it) ζA(1 − 2it))

⎞

⎠
dt + o(∣P ∣),

where γP is the ordinate of a generic zero of L(s,χP ), f is an even and periodic suitable

test function and X(s) = q−
1
2
+s.

8.1.2 Non-Vanishing of L (12 , χ)

In the function field setting, we want to obtain results about non-vanishing of Dirichlet

L-functions L(s,χ) at the central point s = 1
2 . In this setting Li [Li18] showed that
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L (s,χ) vanish infinitely often at s = 1
2 , and thus showing that the function field ana-

logue of Chowla’s conjecture is false. However, the conjectures of Katz and Sarnak

[KS99a] predict that L (1
2 , χD) ≠ 0 for 100% of discriminants D. Using their one-level

density results, Bui and Florea [BF18] proved, unconditionally, that the proportion of

L(s,χD) which do not vanish at s = 1
2 is greater than 94%.

In a recent paper, Andrade and Best [AB22] used the Ratios Conjecture 7.1.1 and mol-

lified moments to show that, conditional on the Ratios Conjecture 7.1.1, the proportion

of L(s,χD) which do not vanish at s = 1
2 is 100%. In particular they obtained the

following result.

Theorem 8.1.3 (Andrade and Best). Conditional on the Ratios Conjecture 7.1.1, we

have
1

#H2g+1
∑

D∈H2g+1

L( 1
2
,χD)≠0

1 ≥ 1 + o(1)

as g →∞.

8.2 Statement of Main Results

In this chapter, we will present two applications of the Ratios Conjecture 7.1.4. Firstly,

we will use the conjecture to obtain a formula for the one-level density for the zeros

of quadratic Dirichlet L-function L(s,χu) with u ∈ Ig+1, where Ig+1 and L(s,χu) are

defined in Section 2.7.1 and Section 2.7.3 respectively. In particular, assuming the

Ratios Conjecture 7.1.4 we obtain the following result.

Theorem 8.2.1. Assuming the Ratio Conjecture 7.1.4, the one-level density for the

zeros of quadratic Dirichlet L-functions associated with the quadratic character χu with

u ∈ Ig+1 is given by

∑
u∈Ig+1

∑
γu

f(γu)

=
1

2π ∫

π
log q

− π
log q

f(t) ∑
u∈Ig+1

⎛

⎝
log (q2g+1) −

X ′

X
(

1

2
− it) + 2

⎛

⎝

ζ ′A(1 + 2it)

ζA(1 + 2it)

+A′
U(it; it) − (log q) (q2g+1)

−it
X (

1

2
+ it) ζA(1 − 2it)AU(−it; it)

⎞

⎠

⎞

⎠
dt + o (q2g+1) ,

where γu is the ordinate of a generic zero of L(s,χu), f is an even and periodic nice

test function, X(s) = q−
1
2
+s,

AU(−r; r) =∏
P

(1 −
1

∣P ∣
)

−1

(1 −
1

(∣P ∣ + 1)∣P ∣1−2r
−

1

∣P ∣ + 1
)
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and

A′
U(r; r) =∑

P

log ∣P ∣

(∣P ∣1+2r − 1)(∣P ∣ + 1)
.

Also, we will use the Ratios Conjecture 7.1.4 and mollified moments to show that the

proportion of L(s,χu) which do not vanish at s = 1
2 is 100%. In particular, conditional

on the Ratios Conjecture 7.1.4 we obtain the following result.

Theorem 8.2.2. Conditional in the Ratios Conjecture 7.1.4, we have

1

#Ig+1
∑

u∈Ig+1
L( 1

2
,χu)≠0

1 ≥ 1 + o(1) (8.2.1)

as g →∞.

8.3 An Application of the Ratios Conjecture in Even

Characteristic: The One-Level Density

In this section, we present an application of the Ratios Conjecture for Dirichlet L-

functions in even characteristic, namely we derive a formula for the one-level density of

the zeros of quadratic Dirichlet L-functions L(s,χu).

8.3.1 Applying the Ratios Recipe

In this subsection, we establish an asymptotic formula for

RU(α;γ) = ∑
u∈Ig+1

L (1
2 + α,χu)

L (1
2 + γ,χu)

, (8.3.1)

following the recipe described in Chapter 7. Following this recipe, we use Lemma 6.3.1

to express the Dirichlet L-function in the numerator as

L(s,χu) = ∑
m∈A+

≤g

χu(m)

∣m∣
1
2
+α

+X (
1

2
+ α) ∑

m∈A+
≤g−1

χu(m)

∣m∣
1
2
−α
, (8.3.2)

and we write the Dirichlet L-function in the denominator as

1

L(s,χu)
= ∑
h∈A+

µ(h)χu(h)

∣h∣s
. (8.3.3)

From Lemma 6.4.2, we know that when averaging over the family #Ig+1, we retain only

square terms, since

∑
u∈Ig+1

χu(n) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

a(n)#Ig+1 + small if n is a square,

small if n is not a square,
(8.3.4)
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where

a(n) =∏
P ∣n

∣P ∣

∣P ∣ + 1
, (8.3.5)

and, from Lemma 2.7.3, #Ig+1 = 2q2g+1

ζA(2) . We compute the square terms and complete

the sum by extending the range of the summation to include all monic polynomials.

We then identify and factor out the appropriate zeta factors which are multiplied by

an absolutely convergent Euler product. From the definition of RU(α, γ) and X (s), we

have

RU(α, γ) = ∑
u∈Ig+1

∑
m∈A+

≤g

∑
h∈A+

χu(m)µ(h)χu(h)

∣m∣
1
2
+α∣h∣

1
2
+γ

+ (q2g+1)
−α
X (

1

2
+ α) ∑

u∈Ig+1
∑

m∈A+
≤g−1

∑
h∈A+

χu(m)µ(h)χu(h)

∣m∣
1
2
−α∣h∣

1
2
+γ

. (8.3.6)

Considering the first sum in (8.3.6) and the terms mh = ◻, we have, from (8.3.4),

∑
h,m∈A+

∑
u∈Ig+1

µ(h)χu(mh)

∣m∣
1
2
+α∣h∣

1
2
+γ

= #Ig+1 ∑
m,h∈A+
mh=◻

µ(h)a(mh)

∣m∣
1
2
+α∣h∣

1
2
+γ
. (8.3.7)

We want to express the sum on the right-hand side of (8.3.7) as an Euler product so

that we can identify and factor out the appropriate zeta factors. To do this, we have

∑
m,h∈A+
mh=◻

µ(h)a(mh)

∣m∣
1
2
+α∣h∣

1
2
+γ

= ∑
j∈A+

∑
m,h∈A+
mh=◻=j2

µ(h)a(mh)

∣m∣
1
2
+α∣h∣

1
2
+γ

= ∑
j∈A+

a(j2) ∑
m,h∈A+
mh=◻=j2

µ(h)a(mh)

∣m∣
1
2
+α∣h∣

1
2
+γ
.

Let

ψ(j2) = ∑
m,h∈A+
mh=j2

µ(h)

∣m∣
1
2
+α∣h∣

1
2
+γ
,

then

∑
j∈A+

a(j2)ψ(j2) =∏
P

(1 +
∞
∑
ν=1

a(P 2ν)ψ(P 2ν)) .

Let mh = P 2ν , and let m = P e1 and h = P e2 . Then mh = P 2ν and e1 + e2 = 2ν. Hence

ψ(p2ν) = ∑
e1,e2≥0
e1+e2=2ν

µ(P e2)

∣P ∣e1(
1
2
+α)∣P ∣e2(

1
2
+γ)

.

Therefore we have

∑
j∈A+

a(j2)ψ(j2) =∏
P

⎛
⎜
⎜
⎝

1 +
∞
∑
ν=1

a(P 2ν) ∑
e1,e2≥0
e1+e2=2ν

µ(P e1)

∣P ∣e1(
1
2
+α)∣P ∣e2(

1
2
+γ)

⎞
⎟
⎟
⎠

=∏
P

⎛
⎜
⎝
∑

e1,e2≥0
e1+e2 even

µ(P e2)a(P e1+e2)

∣P ∣e1(
1
2
+α)∣P ∣e2(

1
2
+γ)

⎞
⎟
⎠
.
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From the definition of the Möbius function, we know that µ(P e2) equals zero except

when e2 equals 0 or 1. When e2 equals 0, we have

∑
e1 even

a(P e1)

∣P ∣e1(
1
2
+α)

=
∞
∑
e1=0

a(P 2e1)

∣P ∣e1(1+2α)

= 1 +
∞
∑
e1=1

a(P 2e1)

∣P ∣e1(1+2α)

= 1 +
∣P ∣

∣P ∣ + 1

∞
∑
e1=1

(
1

∣P ∣1+2α
)

e1

= 1 +
∣P ∣

∣P ∣ + 1

1

∣P ∣1+2α

1

(1 − 1
∣P ∣1+2α)

.

Similarly, if e2 = 1 we have

∑
e1 odd

a(P e1+1)µ(P )

∣P ∣e1(
1
2
+α)∣P ∣

1
2
+γ

= −
1

∣P ∣
1
2
+γ

∞
∑
e1=0

a(P 2e2+2)

∣P ∣(2e1+1)( 1
2
+α)

= −
∣P ∣

∣P ∣ + 1

1

∣P ∣1+α+γ

∞
∑
e1=0

(
1

∣P ∣1+2α
)

e1

= −
∣P ∣

∣P ∣ + 1

1

∣P ∣1+α+γ
1

(1 − 1
∣P ∣1+2α)

.

Combining this, we have

∑
j∈A+

a(j2)ψ(j2) =∏
P

⎛
⎜
⎝

1 +
∣P ∣

∣P ∣ + 1

1

∣P ∣1+2α

1

(1 − 1
∣P ∣1+2α)

−
∣P ∣

∣P ∣ + 1

1

∣P ∣1+α+γ
1

(1 − 1
∣P ∣1+2α)

⎞
⎟
⎠
.

Factoring out the appropriate terms, we have that

∑
m,h∈A+
mh=◻

µ(h)a(mh)

∣m∣
1
2
+α∣h∣

1
2
+γ

=
ζA(1 + 2α)

ζA(1 + α + γ)
∏
P

(1 −
1

∣P ∣1+α+γ
)

−1

(1 −
1

∣P ∣1+2α(∣P ∣ + 1)
−

1

∣P ∣α+γ(∣P ∣ + 1)
) ,

where the product over monic irreducible polynomials P is absolutely convergent when

R(α),R(γ) > 1
4 . We can use similar methods for the other term in (8.3.4) which leads

to the following conjecture.

Conjecture 8.3.1. With −1
4 < R(α) < 1

4 , 1
log(q2g+1) ≪ R(γ) < 1

4 and I(α),I(γ) ≪

(q2g+1)
1−ε

for every ε > 0, we have

RU(α;γ) = ∑
u∈Ig+1

L (1
2 + α,χu)

L (1
2 + γ,χu)

= ∑
u∈Ig+1

(AU(α;γ)
ζA(1 + 2α)

ζA(1 + α + γ)
+ (q2g+1)

−α
X (

1

2
+ α)AU(−α;γ)

ζA(1 − 2α)

ζA(1 − α + γ)
)

+ o (q2g+1) , (8.3.8)
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where

AU(α;γ) =∏
P

(1 −
1

∣P ∣1+α+γ
)

−1

(1 −
1

∣P ∣1+2α(∣P ∣ + 1)
−

1

∣P ∣α+γ(∣P ∣ + 1)
) . (8.3.9)

8.3.2 An Asymptotic formula for the Logarithmic Derivative

of L(s,χu)

To obtain the one-level density from the Ratios Conjecture, we need an asymptotic

formula for

∑
u∈Ig+1

L
′

(1
2 + r,χu)

L (1
2 + r,χu)

. (8.3.10)

First we note that

∑
u∈Ig+1

L
′

(1
2 + r,χu)

L (1
2 + r,χu)

=
∂

∂α
RU(α;γ)

RRRRRRRRRRRα=γ=r

. (8.3.11)

Next, we have that

∂

∂α

ζA(1 + 2α)

ζA(1 + α + γ)
AU(α;γ)

RRRRRRRRRRRα=γ=r

=
ζ
′

A(1 + 2r)

ζA(1 + 2r)
AU(r; r) +A

′

U(r; r)

and

∂

∂α
((q2g+1)

−α
X (

1

2
+ α)

ζA(1 − 2α)

ζA(1 − α + γ)
AU(−α;γ))

RRRRRRRRRRRα=γ=r

= −(log q) (q2g+1)
−r
X (

1

2
+ r) ζA(1 − 2r)AU(−r; r),

where

AU(r; r) = 1,

AU(−r; r) =∏
P

(1 −
1

∣P ∣
)

−1

(1 −
1

(∣P ∣ + 1)∣P ∣1−2r
−

1

∣P ∣ + 1
) ,

and

A
′

U(r; r) =∑
P

log ∣P ∣

(∣P ∣1+2r − 1)(∣P ∣ + 1)
.

Thus, using the calculations stated above, we have that the Ratios Conjecture 7.1.4

implies the following.

Theorem 8.3.2. Assuming Conjecture 8.3.1, 1
log(q2g+1) ≪R(r) < 1

4 and I(r) ≪ε (q2g+1)
1−ε

,

we have

∑
u∈Ig+1

L
′

(1
2 + r,χu)

L (1
2 + r,χu)

= ∑
u∈Ig+1

(
ζ
′

A(1 + 2r)

ζA(1 + 2r)
+A

′

U(r; r) − (log q) (q2g+1)
−r
X (

1

2
+ r) ζA(1 − 2r)AU(−r; r)) + o (q

2g+1) .
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8.3.3 The One-Level Density

In this subsection, we derive Theorem 8.2.1, which states a formula for the one-level

density for the zeros of Dirichlet L-functions L(s,χu), complete with lower order terms.

Let γu denote the ordinate of a generic zero of L(s,χu) on the half line. As L(s,χu) is

a function in q−s and so is periodic with period 2πi
log q , thus we can confine our analysis

of the zeros to − πi
log q ≤ I(s) ≤ πi

log q . We consider the one-level density

S1(f) = ∑
u∈Ig+1

∑
γu

f(γu), (8.3.12)

where f is a 2π
log q -periodic even test function and holomorphic. By Cauchy’s Theorem,

we have that

S1(f) = ∑
u∈Ig+1

1

2πi
(∫

(c)
−∫

(1−c)
)
L
′

(s,χu)

L(s,χu)
f (−i(s −

1

2
))ds, (8.3.13)

where (c) denotes a vertical line from c − πi
log q to c + πi

log q and 1
2 +

1
log(q2g+1) < c <

3
4 . The

integral along the (c)-line is equal to

1

2π ∫

π
log q

− π
log q

f (−i(c + it −
1

2
)) ∑

u∈Ig+1

L
′

(c + it, χu)

L(c + it, χu)
dt. (8.3.14)

Moving the path of integration to c = 1
2 as the integral is regular at t = 0 and using

Theorem 8.3.2, we get that the integral along the (c)-line is equal to

1

2π ∫

π
log q

− π
log q

f(t) ∑
u∈Ig+1

⎛

⎝

ζ
′

A(1 + 2it)

ζA(1 + 2it)
+A

′

U(it; it)

− (log q) (q2g+1)
−it
X (

1

2
+ it) ζA(1 − 2it)AU(−it; it)

⎞

⎠
dt + o (q2g+1) .

(8.3.15)

For the integral along the (1 − c)-line, we use the change s → 1 − s and we use the

functional equation
L
′

(1 − s,χu)

L(1 − s,χu)
=
X

′

u(s)

Xu(s)
−
L
′

(s,χu)

L(s,χu)

where
X

′

u(s)

Xu(s)
= − log (q2g+1) +

X
′

(s)

X(s)
.

Thus, the integral along the (1 − c)-line is equal to

1

2π ∫

π
log q

− π
log q

f(t) ∑
u∈Ig+1

⎛

⎝
log (q2g+1) −

X
′

X
(

1

2
− it)

+ (
ζ
′

A(1 + 2it)

ζA(1 + 2it)
+A

′

U(it; it) − (log q) (q2g+1)
−it
X (

1

2
+ it) ζA(1 − 2it)AU(−it; it))

⎞

⎠
dt

+ o (q2g+1) . (8.3.16)
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Combining (8.3.12), (8.3.13), (8.3.15) and (8.3.16), we obtain Theorem 8.2.1.

8.3.4 The Scaled One-Level Density

Defining

f(t) = h(
t(2g log q)

2π
)

and scaling the variable t from Theorem 8.2.1 as

τ =
t(2g log q)

2π
,

we have that

∑
u∈Ig+1

∑
γu

f (γu
2g log q

2π
)

=
1

2g log q ∫
g

−g
h(τ) ∑

u∈Ig+1

⎛

⎝
log (q2g+1) −

X
′

X
(

1

2
−

2πiτ

2g log q
) + 2

⎛

⎝

ζ
′

A (1 + 4πiτ
2g log q)

ζA (1 + 4πiτ
2g log q)

+A
′

U (
2πiτ

2g log q
;

2πiτ

2g log q
) − (log q)e−

2πiτ
2g log q

log(q2g+1)

×X (
1

2
+

2πiτ

2g log q
) ζA (1 −

4πiτ

2g log q
)AU (−

2πiτ

2g log q
;

2πiτ

2g log q
)
⎞

⎠

⎞

⎠
dτ + o (q2g+1) . (8.3.17)

Writing

ζA(1 + s) =
1

log q

1

s
+

1

2
+

1

12
(log q)s +O(s2)

we have
ζ
′

A(1 + s)

ζA(1 + s)
= −

1

s
+

1

2
log q −

1

12
(log q)2s +O(s3).

Therefore as g →∞, only the log (q2g+1) term, the
ζ
′

A
ζA

and the final term in the integral

(8.3.17) contribute. Thus we have that

∑
u∈Ig+1

∑
γu

f (γu
2g log q

2π
)

∼
1

2g log q ∫
∞

−∞
h(τ) ((#Ig+1) log (q2g+1) − (#Ig+1)

2g log q

2πiτ
+ (#Ig+1)

2g log q

2πiτ
e−2πiτ)dτ.

Since h is an even test function, the middle term drops out and the last term can be

duplicated with a change of sign. Thus we get

lim
g→∞

1

#Ig+1
∑

u∈Ig+1
∑
γu

f (γu
2g log q

2π
)

= ∫
∞

−∞
h(τ) (1 +

e−2πiτ

4πiτ
−
e2πiτ

4πiτ
)dτ

= ∫
∞

−∞
h(τ) (1 +

1

4πiτ
(− (cos(2πτ) + i sin(2πτ)) + (cos(2πτ) − i sin(2πτ))))dτ

= ∫
∞

−∞
h(τ) (1 −

sin(2πτ)

2πτ
)dτ.
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Therefore for q a fixed power of 2 and as g → ∞, the one-level density for the scaled

zeros have the same form as the one-level density of the eigenvalues of matrices from

USp(2g) with respect with the Haar measure, which was obtained in [KS99b].

8.4 An Application of the Ratios Conjecture in Even

Characteristic: Non-Vanishing of L (1
2, χu)

In this section, we present another application of the Ratios Conjecture 7.2.1 for

Dirichlet L-functions in even characteristic, namely, conditionally on the Ratios Con-

jecture 7.1.4 we will prove that the proportion of quadratic L-functions L (1
2 , χu) which

does not equal zero is 100%. To do this, we need to introduce a mollifier, similar to

that done in [AB22], and prove results for the mollified first and second moments.

8.4.1 The Mollifier

Since the Riemann hypothesis for zeta functions associated with curves over finite fields

has been proved (see Section 2.5 and Section 2.7.3 for more details), we know that

1

L(s,χu)
= ∑
f∈A+

µ(f)χu(f)

∣f ∣s
(8.4.1)

is absolutely convergent for R(s) > 1
2 . Truncating this sum and multiplying by a

smoothing function leads to the mollifier

M(χu, P ) = ∑
f∈A+
∣f ∣≤y

µ(f)χu(f)
√

∣f ∣
P

⎛
⎜
⎝

log ( y
∣f ∣)

log y

⎞
⎟
⎠
, (8.4.2)

where P is a polynomial satisfying P (0) = 0 and y = (q2g)θ for θ > 0.

Remark 8.4.1. If we let n = qdeg(f), then we see that the mollifier (8.4.2) is exactly

the same as the mollifier used in the sumber field setting [CS07]. The mollifier (8.4.2)

is also the same mollifier used in [AB22].

We will write this sum as an integral using the following result.

Lemma 8.4.2 ([RM08, Exercise 4.1.6]). For c > 0 and every integer n ≥ 1 we have

1

2πi ∫(c)

xz

zn+1
dz =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
n!(logx)n if x ≥ 1,

0 if x < 1.
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Let P be a polynomial satisfying P (0) = 0, then we can write it as P (x) = ∑n≥1 pnx
n.

Therefore we have

M(χu, P ) = ∑
f∈A+
∣f ∣≤y

µ(f)χu(f)
√

∣f ∣
∑
n≥1

pn
logn y

logn (
y

∣f ∣
) .

Thus, using Lemma 8.4.2 and the definition of the mollifier, we can rewrite (8.4.2) as

M(χu, P ) =∑
n≥1

pnn!

logn y

1

2πi ∫(c)

yz

zn+1

1

L (1
2 + z,χu)

dz. (8.4.3)

Remark 8.4.3. To obtain the non-vanishing result Theorem 8.2.2, we first need to

obtain, conditional on the Ratios Conjecture 7.1.4, asymptotic formulas for the first

and second mollified moments which will be done in Section 8.4.2 and Section 8.4.3

respectively. Using these results, the Cauchy-Schwartz inequality and letting the length

of the mollifier grow arbitrary large (i.e. θ →∞) we obtain the result.

8.4.2 The Mollified First Moment

In this subsection, we prove, conditional on the Ratios Conjecture 7.1.4, an asymptotic

formula for the mollified first moment, which is defined as

M(α;P ) ∶= ∑
u∈Ig+1

L(
1

2
+ α,χu)M(χu, P ). (8.4.4)

where α≪ 1
g . Thus, in this subsection, we prove the following result.

Theorem 8.4.4. For Q an even polynomial, P a polynomial satisfying P (0) = 0 and

for any θ > 0 we have

Q(
1

g log q

d

dα
) ∑
u∈Ig+1

Λ(
1

2
+ α,χu)M(χu, P )

RRRRRRRRRRRα=0

=
2q2g+1

ζA(2)
(P (1)Q(1) +

1

2θ
P ′(1)∫

1

0
Q(t)dt +O(g−1)) , (8.4.5)

where Λ(s,χu) is the completed L-function defined in Section 2.7.3.

Remark 8.4.5. In Theorem 8.4.4 and Theorem 8.4.7 we only consider Q even since,

by the functional equation (2.7.12), Λ(k) (1
2 , χu) = 0 if k is odd.

To prove Theorem 8.4.4 we first need to prove the following result.

Lemma 8.4.6. For P a polynomial satisfying P (0) = 0, we have

M(α,P ) =
2q2g+1

ζA(2)
(

1 + q−2gα

2
P (1) +

1 − q−2gα

2α log y
P ′(1) +O (g−1)) (8.4.6)

uniformly for α≪ 1
g .
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Proof. Let P be a polynomial satisfying P (0) = 0, then we write P (x) = ∑n≥1 pnx
n.

Therefore, using (8.4.3) in (8.4.4) we have

M(α;P ) =∑
n≥1

pnn!

logn y

1

2πi ∫(c)

yz

zn+1 ∑
u∈Ig+1

L (1
2 + α,χu)

L (1
2 + z,χu)

dz. (8.4.7)

From Conjecture 8.3.1, we know that

∑
u∈Ig+1

L (1
2 + α,χu)

L (1
2 + z,χu)

= ∑
u∈Ig+1

(AU(α; z)
ζA(1 + 2α)

ζA(1 + α + z)
+ q−2gαAU(−α; z)

ζA(1 − 2α)

ζA(1 − α + z)
) + o (q2g+1) , (8.4.8)

where

AU(α, z) =∏
p

(1 −
1

∣P ∣1+α+z
)

−1

(1 −
1

∣P ∣1+2α(∣P ∣ + 1)
−

1

∣P ∣α+z(∣P ∣ + 1)
) .

Thus if we let

Iα(y) = ζA(1 + 2α)∑
n≥1

pnn!

logn y
Jα(y) (8.4.9)

where

Jα(y) =
1

2πi ∫(c)

yz

zn+1

AU(α; z)

ζA(1 + α + z)
dz, (8.4.10)

then using Lemma 2.7.3 we have

M(α;P ) =
2q2g+1

ζA(2)
(Iα(y) + q

−2gαI−α(y) + o(1)) . (8.4.11)

Since ζA(s) ≠ 0 for all s, then 1
ζA(s) has no poles anywhere. Then moving the contour

from R(z) = c to R(z) = −δ where δ > 0 is sufficiently small so that the Euler product

is absolutely convergent, we get that Jα(y) is given by the residue at z = 0 plus the

integral along the line R(z) = −δ. We can write the residue at z = 0 as a contour integral

with the contour a circle of radius ≍ 1
g and for the integral along the line R(z) = −δ, we

have

∣
1

2πi ∫(−δ)

yz

zn+1

AU(α, z)

ζA(1 + α + z)
dz∣ ≪ y−δ ∫

∞

−∞

1

∣t∣n+1
dt (8.4.12)

and since the integral on the right-hand side of (8.4.12) exists, then the contribution of

the integral along the line R(z) = −δ is bounded above by y−δ. Thus combining all this

we get

Jα(y) =
1

2πi ∮
yz

zn+1

AU(α; z)

ζA(1 + α + z)
dz +O (y−δ) . (8.4.13)

On the circular contour ∣z∣ ≍ 1
g and with α ≍ 1

g , we have the Taylor expansion

AU(α; z)

ζA(1 + α + z)
= (α + z)AU(0; 0) log q +O (g−2) . (8.4.14)
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Furthermore, since AU(0; 0) = 1, then we have

Jα(y) =
1

2πi ∮
yz

zn+1
(log q(α + z) +O(g−2))dz.

Furthermore, on this circular contour and with y = (q2g)θ, we have, by the Estimation

Lemma, [ST18, Lemma 6.41],

∣
g−2

2πi ∮
yz

zn+1
dz∣ ≪ gn−2.

Thus

Jα(y) =
log q

2πi ∮
yz

zn+1
(α + z)dz +O (gn−2) . (8.4.15)

Using the residue theorem, we have

1

2πi ∮
yz

zn+1
dz =

logn y

n!

and so

∑
n≥1

pnn!

logn y

1

2πi ∮
yz

zn+1
dz =∑

n≥1

pn = P (1) (8.4.16)

and

∑
n≥1

pnn!

logn y

1

2πi ∮
yz

zn
dz =∑

n≥1

npn
log y

=
P ′(1)

log y
. (8.4.17)

Thus combining (8.4.9), (8.4.15), (8.4.16) and (8.4.17) together, we have

Iα(y) = log qζA(1 + 2α) (αP (1) +
1

log y
P ′(1) +O (g−2)) . (8.4.18)

For α ≍ 1
g , we have the Laurent expansion

ζA(1 + 2α) =
1

2α log q
+O(1) ≪ g

and so we have that

Iα(y) =
1

2
P (1) +

1

2α log y
P ′(1) +O (g−1) (8.4.19)

uniformly on any fixed annulus α ≍ 1
g . Using (8.4.19) we can rewrite (8.4.11) as

M(α;P ) =
1 + q−2gα

2
P (1) +

1 − q−2gα

2α log y
P ′(1) +O (g−1) . (8.4.20)

SinceM(α;P ) and the main term on the right hand side of (8.4.20) are holomorphic for

α≪ 1
g , then the error term is also holomorphic in this region. Thus, by the maximum

modulus principle, (8.4.20) holds uniformly for α≪ 1
g . ∎
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Proof of Theorem 8.4.4. Define

N (α;P ) ∶= ∑
u∈Ig+1

Λ(
1

2
+ α,χu)M(χu, P ). (8.4.21)

From the definition of the completed L-function defined in Section 2.7.3, we know that

Λ (1
2 + α,χu) = q

gαL (1
2 + α,χu). Thus by Lemma 8.4.6 we have

N (α;P ) =
2q2g+1

ζA(2)
(
qgα + q−gα

2
P (1) +

qgα − q−gα

2α log y
P ′(1) +O (g−1)) (8.4.22)

uniformly for α ≪ 1
g . Let α = a

g log q then we have qgα = q
a

log q = e
a

log q
log q = ea. Similarly

q−gα = e−a. Then by the definition of sinh and cosh and with y = (q2g)θ we have

N (
a

g log q
;P) =

2q2g+1

ζA(2)
(P (1) cosha +

sinha

2aθ
P ′(1) +O (g−1)) . (8.4.23)

Let Q be an even polynomial, then

Q(
d

da
) cosha

RRRRRRRRRRRa=0

= Q(1) (8.4.24)

and

Q(
d

da
)

sinha

a

RRRRRRRRRRRa=0

= Q(
d

da
)∫

1

0
cosh(at)dt = ∫

1

0
Q(t)dt. (8.4.25)

Combining (8.4.23), (8.4.24) and (8.4.25), we have

Q(
d

da
)N (

a

g log q
;P)

RRRRRRRRRRRa=0

=
2q2g+1

ζA(2)
(P (1)Q(1) +

1

2θ
P ′(1)∫

1

0
Q(t)dt +O (g−1)) .

Using the change of variables α = a
g log q so that d

da =
dα
da

d
dα = 1

g log q
d
dα and (8.4.21) com-

pletes the proof of Theorem 8.4.4. ∎

8.4.3 The Mollified Second Moment

In this subsection, we prove, conditional on the Ratios Conjecture 7.1.4, an asymptotic

formula for the mollified second moment, which is defined as

M(α,β;P1, P2) ∶= ∑
u∈Ig+1

L(
1

2
+ α,χu)L(

1

2
+ β,χu)M(χu, P1)M(χu, P2), (8.4.26)

where α,β ≪ 1
g . Thus, in this subsection, we prove the following result.
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Theorem 8.4.7. For even polynomials Q1 and Q2 and polynomials P1 and P2 satisfying

P1(0) = P ′
1(0) = P2(0) = P ′

2(0) = 0 and for every θ > 0 we have

Q1 (
1

g log q

d

dα
)Q2 (

1

g log q

d

dβ
) ∑
u∈Ig+1

Λ(
1

2
+ α,χu)Λ(

1

2
+ β,χu)M(χu, P1)M(χu, P2)

RRRRRRRRRRRα=β=0

=
2q2g+1

ζA(2)

⎛

⎝

1

8θ ∫
1

0
∫

1

0
(

1

θ
P ′′

1 (r)Q̃1(u) − 4θP1(r)Q
′
1(u))(

1

θ
P ′′

2 (r)Q̃2(u) − 4θP2(r)Q
′
2(u))dudr

+
1

4
(

1

θ
P ′

1(1)Q̃1(1) + 2P1(1)Q1(1))(
1

θ
P ′

2(1)Q̃2(1) + 2P2(1)Q2(1)) +O (g−1)
⎞

⎠
,

(8.4.27)

where

Q̃(u) = ∫
u

0
Q(t)dt

and Λ(s,χu) is the completed L-function defined in Section 2.7.3.

To prove Theorem 8.4.7, we first need to prove the following result.

Lemma 8.4.8. For polynomials P1 and P2 satisfying P1(0) = P ′
1(0) = P2(0) = P ′

2(0) = 0

we have

M(α,β;P1, P2) (8.4.28)

=
2q2g+1

ζA(2)

⎛

⎝

αβ log y

4
(

1 − q−2g(α+β)

α + β
+
q−2gα − q−2gβ

α − β
)∫

1

0
P1(r)P2(r)dr

+
1

4
(1 + q−2gα) (1 + q−2gβ)∫

1

0
(P1(r)P

′
2(r) + P

′
1(r)P2(r))dr

+
1

4 log y
(
(1 + q−2gα)(1 − q−2gβ)

β
+

(1 − q−2gβ)(1 + q−2gβ)

α
)∫

1

0
P ′

1(r)P
′
2(r)dr

+
1

4 log y
(

1 − q−2g(α+β)

α + β
+
q−2gβ − q−2gα

α − β
)∫

1

0
(P1(r)P

′′
2 (r) + P ′′

1 (r)P2(r))dr

+
1

4αβ log2 y
(1 − q−2gα) (1 − q−2gβ)∫

1

0
(P ′

1(r)P
′′
2 (r) + P ′′

1 (r)P ′
2(r))dr

+
1

4αβ log3 y
(

1 − q−2g(α+β)

α + β
+
q−2gα − q−2gβ

α − β
)∫

1

0
P ′′

1 (r)P ′′
2 (r)dr +O (g−1)

⎞

⎠
(8.4.29)

uniformly for α,β ≪ 1
g .

Proof. Let P1 and P2 be polynomials satisfying P1(0) = P ′
1(0) = P2(0) = P ′

2(0) = 0.

Then we can write the polynomials as P1(x) = ∑m≥2 p1,mxm and P2(x) = ∑n≥2 p2,nxn.
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Therefore, using (8.4.3) twice in (8.4.26) we have

M(α,β;P1, P2) = ∑
m,n≥2

p1,mp2,nm!n!

logm+n y

×
1

(2πi)2 ∫(c)
∫

(c)

yw+z

wm+1zn+1 ∑
u∈Ig+1

L (1
2 + α,χu)L (1

2 + β,χu)

L (1
2 +w,χu)L (1

2 + z,χu)
dwdz

(8.4.30)

for any c > 0. From the Ratios Conjecture 7.1.4 we have that

∑
u∈Ig+1

L (1
2 + α,χu)L (1

2 + β,χu)

L (1
2 +w,χu)L (1

2 + z,χu)

= ∑
u∈Ig+1

⎛

⎝
AU(α,β;w, z)YU(α,β;w, z) + q−2gαAU(−α,β;w, z)YU(−α,β;w, z)

+ q−2gβAU(α,−β;w, z)YU(α,−β;w, z) + q−2g(α+β)AU(−α,−β;w, z)YU(−α,−β;w, z)
⎞

⎠

+ o (q2g+1) ,

where

AU(α,β;w, z)

=∏
P

(1 − 1
∣P ∣1+α+β ) (1 − 1

∣P ∣w+z )

(1 − 1
∣P ∣1+α+w ) (1 − 1

∣P ∣1+α+z ) (1 − 1
∣P ∣1+β+w ) (1 − 1

∣P ∣1+β+z )

×
⎛

⎝
1 +

1

∣P ∣α+β(∣P ∣ + 1)
+

1

∣P ∣w+z(∣P ∣ + 1)
+

1

∣P ∣1+α+β+w+z(∣P ∣ + 1)
+

1

∣P ∣2(1+α+β)(∣P ∣ + 1)

−
1

∣P ∣α+w(∣P ∣ + 1)
−

1

∣P ∣α+z(∣P ∣ + 1)
−

1

∣P ∣β+w(∣P ∣ + 1)

−
1

∣P ∣β+z(∣P ∣ + 1)
−

1

∣P ∣1+2α(∣P ∣ + 1)
−

1

∣P ∣1+2β(∣P ∣ + 1)

⎞

⎠
(8.4.31)

and

YU(α,β;w, z) =
ζA(1 + 2α)ζA(1 + α + β)ζA(1 + 2β)ζA(1 +w + z)

ζA(1 + α +w)ζA(1 + α + z)ζA(1 + β +w)ζA(1 + β + z)
.

Thus if we let

Iα,β(y) = ζA(1 + 2α)ζA(1 + α + β)ζA(1 + 2β) ∑
m,n≥2

p1,mp2,nm!n!

logm+n y
Jα,β(y) (8.4.32)

where

Jα,β(y) =
1

(2πi)2 ∫(c)
∫

(c)

yw+z

wm+1zn+1

×
ζA(1 +w + z)AU(α,β;w, z)

ζA(1 + α +w)ζA(1 + α + z)ζA(1 + β +w)ζA(1 + β + z)
dwdz, (8.4.33)
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then using Lemma 2.7.3 we have

M(α,β;P1, P2)

=
2q2g+1

ζA(2)
(Iα,β(y) + q

−2gαI−α,β(y) + q
−2gβIα,−β(y) + q

−2g(α+β)I−α,−β(y) + o(1)) . (8.4.34)

For R(w + z) > 0 we write
yw+z

w + z
= ∫

y

0
uw+z

du

u
,

thus

Jα,β(y) =
1

(2πi)2 ∫
y

1
∫

(c)
∫

(c)

uw+z

wm+1zn+1

×
(w + z)ζA(1 +w + z)AU(α,β;w, z)

ζA(1 + α +w)ζA(1 + α + z)ζA(1 + β +w)ζA(1 + β + z)
dwdz

du

u
.

(8.4.35)

The integration in u is over 1 ≤ u ≤ y as for u < 1 the contours can be moved to the right

so that the integrands in w and z equal zero. Since ζA(s) ≠ 0 for all s , then 1
ζA(s) has

no poles anywhere. Furthermore, ζA(s) has a simple pole at s = 1, thus ζA(1 + w + z)

has a pole at w = −z, therefore (w + z)ζA(1 + w + z) is analytic at w = −z. Hence the

poles of the integrand of (8.4.35) occur when w = z = 0. Therefore moving the contours

from R(w) = R(z) = c to R(w) = R(z) = −δ where δ > 0 is sufficiently small so that

the Euler product (8.4.31) is absolutely convergent, we have that Jα,β(y) is given by

the residue at w = z = 0 plus the integrals along the R(w) =R(z) = −δ. We express the

residue at w = z = 0 as contour integrals where the contour is a circle of radius ≍ 1
g and

using similar calculations as those done in the proof of Lemma 8.4.6, we see that the

integrals along the line R(w) = −δ and R(z) = −δ is bounded above by u−δ. Letting

2δ = ε, we have that

RRRRRRRRRRR
∫

y

1
∫

(−δ)
∫

(−δ)

uw+z

wm+1zn+1

×
(w + z)ζA(1 +w + z)AU(α,β;w, z)

ζA(1 + α +w)ζA(1 + α + z)ζA(1 + β +w)ζA(1 + β + z)
dwdz

du

u

RRRRRRRRRRR

≪ ∫
y

1
u−ε

du

u
≪ 1.

On the circular contours ∣w∣ ≍ 1
g and ∣z∣ ≍ 1

g and with α ≍ 1
g and β ≍ 1

g , we have the

Taylor expansion

(w + z)ζA(1 +w + z)AU(α,β;w, z)

ζA(1 + α +w)ζA(1 + α + z)ζA(1 + β +w)ζA(1 + β + z)

= (α +w)(α + z)(β +w)(β + z)AU(0,0; 0,0) log3 q +O (g−5) .
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Using the fact that AU(0,0; 0,0) = 1, we have

Jα,β(y)

=
1

(2πi)2 ∫
y

1
∮ ∮

uw+z

wm+1zn+1
((α +w)(α + z)(β +w)(β + z) log3 q +O(g−5))dwdz

du

u
.

On these circular contours and with y = (q2g)θ, we have, by the Estimation Lemma,

∣
g−5

(2πi)2 ∫
y

1
∮ ∮

uw+z

wm+1zn+1
dwdz

du

u
∣ ≪ gm+n−5

∫
y

1
u

1
g
du

u
≪ gm+n−4.

Thus

Jα,β(y)

=
log3 q

(2πi)2 ∫
y

1
(∮

uw

wm+1
(α +w)(β +w)dw)(∮

uz

zn+1
(α + z)(β + z)dz)

du

u
+O (gm+n−4) .

Expanding and computing the residue where we use the fact that for k ∈ {0,1,2} and

i ∈ {1,2} we have

∑
n≥2

pi,nn!

logn y

1

2πi ∮
uz

zn+1−k dz =
1

logk y
P

(k)
i (

logu

log y
) ,

we get that

Iα,β(y) = ζA(1 + 2α)ζA(1 + α + β)ζA(1 + 2β) log3 q

×
⎛

⎝
∫

y

1
(αβP1 (

logu

log y
) +

α + β

log y
P ′

1 (
logu

log y
) +

1

log2 y
P ′′

1 (
logu

log y
))

× (αβP2 (
logu

log y
) +

α + β

log y
P ′

2 (
logu

log y
) +

1

log2 y
P ′′

2 (
logu

log y
))

du

u
+O (g−4)

⎞

⎠
.

Using the change u = yr we have

Iα,β(y) = ζA(1 + 2α)ζA(1 + α + β)ζA(1 + 2β) log3 q log y

×
⎛

⎝
∫

1

0
(αβP1(r) +

α + β

log y
P ′

1(r) +
1

log2 y
P ′′

1 (r))

× (αβP2(r) +
α + β

log y
P ′

2(r) +
1

log2 y
P ′′

2 (r))dr +O (g−4)
⎞

⎠
.

For α,β ≍ 1
g and ∣α + β∣ ≫ 1

g , we have the Laurent expansion

ζA(1 + 2α)ζA(1 + α + β)ζA(1 + 2β) =
1

4αβ(α + β) log3 q
+O (g2) ≪ g3.
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Thus

Iα,β(y) =
log y

4αβ(α + β) ∫
1

0
(αβP1(r) +

α + β

log y
P ′

1(r) +
1

log2 y
P ′′

1 (r))

× (αβP2(r) +
α + β

log y
P ′

2(r) +
1

log2 y
P ′′

2 (r))dr +O (g−1)

uniformly on any fixed annuli such that α,β ≍ 1
g and ∣α + β∣ ≫ 1

g . Multiplying out we

have

Iα,β(y) =
αβ log y

4(α + β) ∫
1

0
P1(r)P2(r)dr

+
1

4 ∫
1

0
(P1(r)P

′
2(r) + P

′
1(r)P2(r))dr

+
α + β

4αβ log y ∫
1

0
P ′

1(r)P
′
2(r)dr

+
1

4(α + β) log y ∫
1

0
(P1(r)P

′′
2 (r) + P ′′

1 (r)P2(r))dr

+
1

4αβ log2 y
∫

1

0
(P ′

1(r)P
′′
2 (r) + P ′′

1 (r)P ′
2(r))dr

+
1

4αβ(α + β) log3 y
∫

1

0
P ′′

1 (r)P ′′
2 (r)dr +O (g−1) . (8.4.36)

Using (8.4.36), we can rewrite (8.4.34) as

M(α,β;P1, P2)

=
2q2g+1

ζA(2)

⎛

⎝

αβ log y

4
(

1 − q−2g(α+β)

α + β
+
q−2gα − q−2gβ

α − β
)∫

1

0
P1(r)P2(r)dr

+
1

4
(1 + q−2gα)(1 + q−2gβ)∫

1

0
(P1(r)P

′
2(r) + P

′
1(r)P2(r))dr

+
1

4 log y
(
(1 + q−2gα)(1 − q−2gβ)

β
+

(1 − q−2gα)(1 + q−2gβ)

α
)∫

1

0
P ′

1(r)P
′
2(r)dr

+
1

4 log y
(

1 − q−2g(α+β)

α + β
+
q−2gβ − q−2gα

α − β
)∫

1

0
(P1(r)P

′′
2 (r) + P ′′

1 (r)P2(r))dr

+
1

4αβ log2 y
(1 − q−2gα)(1 − q−2gβ)∫

1

0
(P ′

1(r)P
′′
2 (r) + P ′′

1 (r)P ′
2(r))dr

+
1

4αβ(α + β) log3 y
(

1 − q−2g(α+β)

α + β
+
q−2gα − q−2gβ

α − β
)∫

1

0
P ′′

1 (r)P ′′
2 (r)dr +O (g−1)

⎞

⎠
.

(8.4.37)

Since M(α,β;P1, P2) and the main term on the right hand side of (8.4.37) are holo-

morphic for α,β ≪ 1
g , then the error term is holomorphic in this region too. Thus by

the maximum modulus principle (8.4.37) holds uniformly for α,β ≪ 1
g . ∎
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Proof of Theorem 8.4.7. Define

N (α,β;P1, P2) ∶= ∑
u∈Ig+1

Λ(
1

2
+ α,χu)Λ(

1

2
+ β,χu)M(χu, P1)M(χu, P2),

From the definition of the completed L-function, we know that Λ (1
2 + α,χu)Λ (1

2 + β,χu) =

qg(α+β)L (1
2 + α,χu)L (1

2 + β,χu), then by Lemma 8.4.8 we have

N (α,β;P1, P2)

=
2q2g+1

ζA(2)

⎛

⎝

αβ log y

4
(
qg(α+β) − q−g(α+β)

α + β
+
qg(β−α) − qg(α−β)

α − β
)∫

1

0
P1(r)P2(r)dr

+
1

4
(qgα + q−gα) (qgβ + q−gβ)∫

1

0
(P1(r)P

′
2(r) + P

′
1(r)P2(r))dr

+
1

4 log y
(
(qgα + q−gα) (qgβ − q−gβ)

β
+

(qgβ + q−gβ) (qgα − q−gα)

α
)∫

1

0
P ′

1(r)P
′
2(r)dr

+
1

4 log y
(
qg(α+β) − q−g(α+β)

α + β
+
qg(α−β) − qg(β−α)

α − β
)∫

1

0
(P1(r)P

′′
2 (r) + P ′′

1 (r)P2(r))dr

+
1

4αβ log2 y
(qgα − q−gα) (qgβ − q−gβ)∫

1

0
(P ′

1(r)P
′′
2 (r) + P ′′

1 (r)P ′
2(r))dr

+
1

4αβ log3 y
(
qg(α+β) − q−g(α+β)

α + β
+
qg(β−α) − qg(α−β)

α − β
)∫

1

0
P ′′

1 (r)P ′′
2 (r)dr +O (g−1)

⎞

⎠

uniformly for α,β ≪ 1
g . Let α = a

g log q and β = b
log q , then by the definition of sinh and

cosh and with y = (q2g)θ we have

N (
a

g log q
,

b

g log q
;P1, P2) =

2q2g+1

ζA(2)

⎛

⎝
2θ∫

1

0
a sinh(au)b sinh(bu)du∫

1

0
P1(r)P2(r)dr

+ cosha cosh b∫
1

0
(P1(r)P

′
2(r) + P

′
1(r)P2(r))dr

+
1

2θ
(

sinha cosh b

a
+

sinh b cosha

b
)∫

1

0
P ′

1(r)P
′
2(r)dr

+ ∫
1

0
cosh(au) cosh(bu)du∫

1

0
(P1(r)P

′′
2 (r) + P ′′

1 (r)P2(r))dr

+
1

4θ2

sinha

a

sinh b

b ∫
1

0
(P ′

1(r)P
′′
2 (r) + P ′′

1 (r)P ′
2(r))dr

+
1

8θ3 ∫
1

0

sinh(au)

a

sinh(bu)

b
du∫

1

0
P ′′

1 (r)P ′′
2 (r)dr +O (g−1)

⎞

⎠
.

Let Q be an even polynomial, then we have

Q(
d

da
)a sinh(au)

RRRRRRRRRRRa=0

= Q(
d

da
)
d

du
cosh(au)

RRRRRRRRRRRa=0

=
d

du
Q(u) = Q′(u),

Q(
d

da
) cosha

RRRRRRRRRRRa=0

= Q(1)
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and

Q(
d

da
)

sinh(au)

a

RRRRRRRRRRRa=0

= Q(
d

da
)∫

u

0
cosh(at)dt

RRRRRRRRRRRa=0

= ∫
u

0
Q(t)dt =∶ Q̃(u).

Thus, let Q1 and Q2 be even polynomials and define

N (Q1,Q2;P1, P2) = Q1 (
d

da
)Q2 (

d

db
)N (

a

g log q
,

b

g log q
;P1, P2)

RRRRRRRRRRRa=b=0

,

then we have

N (Q1,Q2;P1, P2) =
2q2g+1

ζA(2)

⎛

⎝
2θ∫

1

0
Q′

1(u)Q
′
2(u)du∫

1

0
P1(r)P2(r)dr

+Q1(1)Q2(1)∫
1

0
(P1(r)P

′
2(r) + P

′
1(r)P2(r))dr

+
1

2θ
(Q1(1)Q̃2(1) + Q̃1(1)Q2(1))∫

1

0
P ′

1(r)P
′
2(r)dr

+
1

2θ ∫
1

0
Q1(u)Q2(u)du∫

1

0
(P1(r)P

′′
2 (r) + P ′′

1 (r)P2(r))dr

+
1

4θ2
Q̃1(1)Q̃2(1)∫

1

0
(P ′

1(r)P
′′
2 (r) + P ′′

1 (r)P ′
2(r))dr

+
1

8θ3 ∫
1

0
Q̃1(u)Q̃2(u)du∫

1

0
P ′′

1 (r)P ′′
2 (r)dr +O (g−1)

⎞

⎠
. (8.4.38)

To write (8.4.38) in the form seen in the statement of Theorem 8.4.7 we need to recall

the following identities, which all follow from integration by parts:

∫
1

0
(P1(r)P

′
2(r) + P

′
1(r)P2(r))dr = P1(1)P2(1),

∫
1

0
(P ′

1(r)P
′′
2 (r) + P ′′

1 (r)P ′
2(r))dr = P

′
1(1)P

′
2(1),

∫
1

0
P ′′

1 (r)P2(r)dr = P
′
1(1)P2(1) − ∫

1

0
P ′

1(r)P
′
2(r)dr

and

∫
1

0
Q̃1(u)Q

′
2(u)du = Q̃1(1)Q2(1) − ∫

1

0
Q1(u)Q2(u)du.
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2 , χu)

Using the above identities, we also have

∫
1

0
Q1(u)Q2(u)du∫

1

0
(P1(r)P

′′
2 (r) + P ′′

1 (r)P2(r))dr

= ∫
1

0
∫

1

0
Q1(u)Q2(u)P1(r)P

′′
2 (r)dudr + ∫

1

0
∫

1

0
Q1(u)Q2(u)P

′′
1 (r)P2(r)dudr

= ∫
1

0
P1(r)P

′′
2 (r)dr (Q1(1)Q̃2(1) − ∫

1

0
Q′

1(u)Q̃2(u)du)

+ ∫
1

0
P ′′

1 (r)P2(r)dr (Q̃1(1)Q2(1) − ∫
1

0
Q̃1(u)Q

′
2(u)du)

= Q1(1)Q̃2(1)∫
1

0
P1(r)P

′′
2 (r)dr + Q̃1(1)Q2(1)∫

1

0
P ′′

1 (r)P2(r)dr

− ∫
1

0
∫

1

0
P1(r)P

′′
2 (r)Q′

1(u)Q̃2(u)dudr − ∫
1

0
∫

1

0
P ′′

1 (r)P2(r)Q̃1(u)Q
′
2(u)dudr

= Q1(1)Q̃2(1) (P1(1)P
′
2(1) − ∫

1

0
P ′

1(r)P
′
2(r)dr)

+ Q̃1(1)Q2(1) (P
′
1(1)P2(1) − ∫

1

0
P ′

1(r)P
′
2(r)dr)

− ∫
1

0
∫

1

0
P1(r)Q

′
1(u)P

′′
2 (r)Q̃2(u)dudr − ∫

1

0
∫

1

0
P ′′

1 (r)Q̃1(u)P2(r)Q2(u)dudr.

Thus, combining the above results together, we have

N (Q1,Q2;P1, P2)

=
2q2g+1

ζA(2)

⎛

⎝
2θ∫

1

0
∫

1

0
P1(r)Q

′
1(u)P2(r)Q

′
2(u)dudr +Q1(1)Q2(1)P1(1)P2(1)

+
1

2θ
(P1(1)Q1(1)P

′
2(1)Q̃2(1) + P

′
1(1)Q̃1(1)P2(1)Q2(1))

−
1

2θ
(∫

1

0
∫

1

0
(P1(r)Q

′
1(u)P

′′
2 (r)Q̃2(u) + P

′′
1 (r)Q̃1(u)P2(r)Q

′
2(u))dudr)

+
1

4θ2
Q̃1(1)Q̃2(1)P

′
1(1)P

′
2(1) +

1

8θ3 ∫
1

0
∫

1

0
P ′′

1 (r)Q̃1(u)P
′′
2 (r)Q̃2(u)dudr +O (g−1)

⎞

⎠
.

(8.4.39)

Factorising (8.4.39) completes the proof of Theorem 8.4.7. ∎

8.4.4 Proof of Theorem 8.2.2

In this subsection, we combine Theorem 8.4.4 and Theorem 8.4.7 to prove Theo-

rem 8.2.2.

Proof of Theorem 8.2.2. Using Theorem 8.4.4 with P (x) = x2 and Q(x) = 1, and using

the definition of the completed L-function we have that

∑
u∈Ig+1

L(
1

2
, χu)M(χu, P ) =

2q2g+1

ζA(2)
(1 +

1

θ
+O (

1

g
)) . (8.4.40)
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Similarly, using Theorem 8.4.7 with P (x) = P1(x) = P2(x) = x2 and Q(x) = Q1(x) =

Q2(x) = 1 and using the definition of the completed L-function we have that

∑
u∈Ig+1

L(
1

2
, χu)

2

M(χu, P )2 =
2q2g+1

ζA(2)
(

1

6θ3
+ (1 +

1

θ
)

2

+O (
1

g
)) . (8.4.41)

An application of the Cauchy-Schwartz inequality gives us that

∑
u∈Ig+1

L( 1
2
,χu)≠0

1 ≥
∑u∈Ig+1 (L (1

2 , χu)M (χu, P ))
2

∑u∈Ig+1 ∣L (1
2 , χu)M (χu, P )∣

2 . (8.4.42)

Thus using (8.4.40) and (8.4.41) in (8.4.42) we have, as g →∞ that

1

#Ig+1
∑

u∈Ig+1
L( 1

2
,χu)≠0

1 ≥
(1 + 1

θ
)

2

1
6θ3 + (1 + 1

θ
)

2 + o(1).

Letting the length of the mollifier grow arbitrary large (i.e. letting θ →∞) proves the

result. ∎

156



Chapter 9

The Twisted Second Moment of

Dirichlet L-functions in Fq[T ]

9.1 Twisted Moments of Dirichlet L-functions in

Function Fields

In function fields it is an interesting problem to understand the asymptotic behaviour

of

∑
∗

χ(mod Q)
∣L(

1

2
, χ)∣

2k

, (9.1.1)

where Q is a polynomial in Fq[T ] with q being a power of an odd prime, χ is a prim-

itive Dirichlet character modulo Q, L(s,χ) is a Dirichlet L-function associated to the

Dirichlet character χ, which are defined in Section 2.3 and Section 2.4 respectively, and

the sum being over all primitive Dirichlet characters modulo Q.

For Q a monic irreducible polynomial in Fq[T ], Tamam [Tam14] proved an asymptotic

formula for the second and fourth moments of (9.1.1), where the sum is over all primitive

Dirichlet characters modulo Q.

Theorem 9.1.1 (Tamam). Let Q be a monic irreducible polynomial in Fq[T ], then we

have
1

φ(Q)
∑

χ(mod Q)
χ≠χ0

∣L(
1

2
, χ)∣

2

= deg(Q) − 1 −
1

(q
1
2 − 1)2

(1 −
2

∣Q∣
1
2 + 1

)

and
1

φ(Q)
∑

χ(mod Q)
χ≠χ0

∣L(
1

2
, χ)∣

4

=
q − 1

12q
(deg(Q))4 +O ((deg(Q))3) .
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When summing over all primitive Dirichlet characters of modulus R, where R is a monic

polynomial in Fq[T ], Andrade and Yiasemides [AY21] proved an asymptotic formula

for the second and fourth moments of (9.1.1).

Theorem 9.1.2 (Andrade and Yiasemides). Let R be a monic polynomial in Fq[T ],

then we have

1

φ∗(R)
∑

∗

χ(mod R)
∣L(

1

2
, χ)∣

2

=
φ(R)

∣R∣
deg(R) +O (logω(R)) (9.1.2)

and

∑
∗

χ(mod R)
∣L(

1

2
, χ)∣

4

=
1 − q−1

12
φ∗(R)∏

P ∣R
(
(1 − ∣P ∣−1)

3

1 + ∣P ∣−1
)(deg(R))

4
⎛
⎜
⎝

1 +O
⎛
⎜
⎝

¿
Á
ÁÀ ω(R)

deg(R)

⎞
⎟
⎠

⎞
⎟
⎠

(9.1.3)

where ω(R) is the number of prime divisors of R and φ∗(R) in the number of primitive

Dirichlet characters of modulus R.

Yiasemides [Yia21] conjectured higher moments of (9.1.1) where the sum is over all

primitive Dirichlet characters of modulus R, where R is a monic polynomial in Fq[T ]

and showed that the conjecture agrees with (9.1.2) and (9.1.3).

Conjecture 9.1.3 (Yiasemides). For all non-negative integers k it is conjectured that

1

φ∗(R)
∑

∗

χ(mod R)
∣L(

1

2
, χ)∣

2k

∼ Ck(deg(R))k
2

,

for some explicit constant Ck as deg(R)→∞.

Furthermore, Andrade and Yiasemides [AY21] proved an asymptotic formula for the

second moment of (9.1.1) when the sum is over all primitive Dirichlet characters modulo

R, where R is a square-full polynomial in Fq[T ].

Theorem 9.1.4 (Andrade and Yiasemides). Let R be a square-full polynomial, that is

if P ∣R then P 2∣R and let χ be a Dirichlet character modulo R. Then

∑
∗

χ(mod R)
∣L(

1

2
, χ)∣

2

=
φ(R)3

∣R∣
deg(R) + (

φ(R)

∣R∣2
−
φ(R)2

∣R∣2
)∑
P ∣R

deg(R)

∣P ∣ − 1

+
1

(q
1
2 − 1)2

⎛

⎝
−
φ(R)3

∣R∣2
+ 2

φ(R)

∣R∣
1
2

∏
P ∣R

(1 −
1

∣P ∣
1
2

)
⎞

⎠
.

Another problem in function fields is to understand the asymptotic behaviour of twisted

moments of Dirichlet L-functions, when averaged over primitive Dirichlet characters of
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modulus Q. If we let P and H be monic irreducible polynomials in Fq[T ], then a

problem is to establish an asymptotic formula for

S(P ;H) = ∑
χ(mod P )
χ≠χ0

∣L(
1

2
, χ)∣

2

χ(H). (9.1.4)

Motivated by the methods of Young [You11b] in the number field setting, Djanković

[Dja18] established a reciprocity formula involving S(P ;H) and S(H;−P ). In partic-

ular he proved the following result.

Theorem 9.1.5 (Djanković). For any two monic irreducible polynomials P,H ∈ Fq[T ]

with H ≠ P and deg(H) ≤ deg(P ), we have the following reciprocity formula between

the twisted second moments:

∣P ∣
1
2

φ(P )
S(P ;H) −

∣H ∣
1
2

φ(H)
S(H;−P ) =

∣P ∣
1
2

∣H ∣
1
2

(deg(P ) − deg(H) − ζA (
1

2
)

2

)

+ ζA (
1

2
)

2

(1 − 2
∣P ∣

1
2

φ(P )
(1 − ∣P ∣−

1
2) + 2

∣H ∣
1
2

φ(H)
(1 − ∣H ∣−

1
2)) .

Similarly, we also want to understand the second moment of Dirichlet L-functions with

two twists when averaged over primitive Dirichlet characters modulo Q in function

fields. If we let H,K and Q be monic irreducible polynomials in Fq[T ] and restrict

the sum further to be over all even or odd Dirichlet characters modulo Q, where the

definition of an odd and even Dirichlet characters is stated in Section 2.3, then a problem

is to establish an asymptotic formula for

S±(Q;H,K) =
∣Q∣

1
2

φ±(Q)
∑

±

χ(mod Q)
χ≠χ0

∣L(
1

2
, χ)∣

2

χ(H)χ̄(K), (9.1.5)

where φ±(Q) denotes the number of even or odd Dirichlet characters modulo Q. Moti-

vated by the methods of Bettin [Bet16], Djanković, D̄okić and Lelas [DD̄L21] established

a triple reciprocity formula involving S−(Q;H,K), S−(H;K,−Q) and S−(K;H,−Q)

and involving S+(Q;H,K), S+(H;K,Q) and S+(K;H,Q). In particular, they proved

the following results.

Theorem 9.1.6 (Djanković, D̄okić and Lelas). Let H, K and Q be distinct monic

irreducible polynomials in Fq[T ] such that deg(H) + deg(K) ≤ deg(Q). Then we have

the following triple reciprocity formulas:

S−(Q;H,K) = S−(H;K,−Q) + S−(K;H,−Q)

+
∣Q∣

1
2

∣HK ∣
1
2

(deg(Q) − deg(H) − deg(K))
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and

S+(Q;H,K) = S+(H;K,Q) + S+(K;H,Q)

+
∣Q∣

1
2

∣HK ∣
1
2

(deg(Q) − deg(H) − deg(K) − ζA (
1

2
)

2

(q − 1))

− 2ζA (
1

2
)

2

(
∣Q∣

1
2 − 1

φ+(Q)
−

∣H ∣
1
2 − 1

φ+(H)
−

∣K ∣
1
2 − 1

φ+(K)
) .

9.2 Statement of Main Results

In this chapter, we will obtain asymptotic formulas for

1

φ∗(R)
∑

∗

χ(mod R)
∣L(

1

2
, χ)∣

2

χ(H) and
1

φ∗(R)
∑

∗

χ(mod R)
∣L(

1

2
, χ)∣

2

χ(H)χ̄(K) (9.2.1)

where H, K and R are monic polynomials in Fq[T ], φ∗(R) denotes the number of

primitive Dirichlet characters modulo R and the sum is over all primitive Dirichlet

characters modulo R. In particular we prove the following results.

Theorem 9.2.1. Let H and R be monic polynomials in Fq[T ] with deg(H) < deg(R).

Then

1

φ∗(R)
∑

∗

χ(mod R)
∣L(

1

2
, χ)∣

2

χ(H) = ∣H ∣
1
2
φ(R)

∣R∣
deg(HR) +O (∣H ∣

1
2 logω(R)) , (9.2.2)

where ω(R) is the function defined in Section 2.2, φ∗(R) denotes the number of primi-

tive Dirichlet characters modulo R and the sum is over all primitive Dirichlet characters

modulo R.

Theorem 9.2.2. Let H, K and R be monic polynomials in Fq[T ] with deg(H) +

deg(K) < deg(R). Then

1

φ∗(R)
∑

∗

χ(mod R)
∣L(

1

2
, χ)∣

2

χ(H)χ̄(K) = ∣HK ∣
1
2
φ(R)

∣R∣
deg(HKR) +O (∣HK ∣

1
2 logω(R)) ,

(9.2.3)

where ω(R) is the function defined in Section 2.2, φ∗(R) denotes the number of primi-

tive Dirichlet characters modulo R and the sum is over all primitive Dirichlet characters

modulo R.

Remark 9.2.3. In Theorem 9.2.1 and Theorem 9.2.2, we take the sum over all prim-

itive Dirichlet characters of modulus R, where R is a monic polynomial in Fq[T ]. In

particular, we do not restrict these sums to odd or even Dirichlet characters that was

considered in Theorem 9.1.6.
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From Theorem 9.2.1 and Theorem 9.2.2 we immediately have the following corollaries.

Corollary 9.2.4. Under the same assumptions as Theorem 9.2.1, we have

1

φ∗(R)
∑

∗

χ(mod R)
∣L(

1

2
, χ)∣

2

χ(H) ∼ ∣H ∣
1
2
φ(R)

∣R∣
deg(HR) (9.2.4)

as deg(R)→∞.

Corollary 9.2.5. Under the same assumptions Theorem 9.2.2, we have

1

φ∗(R)
∑

∗

χ(mod R)
∣L(

1

2
, χ)∣

2

χ(H)χ̄(K) ∼ ∣HK ∣
1
2
φ(R)

∣R∣
deg(HKR) (9.2.5)

as deg(R)→∞.

Remark 9.2.6. Using Lemma 2.2.4 and Lemma 2.2.7 we can see that logω(R)
φ(R)

∣R∣
deg(R)

tends

to zero as deg(R) tends to infinity and thus verifying the asymptotic formulas (9.2.2),

(9.2.3), (9.2.4) and (9.2.5).

9.3 Preliminary Lemmas

In this section, we state and prove results which will be needed to prove Theorem 9.2.1

and Theorem 9.2.2. We start by stating the approximate function equation for ∣L (1
2 , χ)∣

2
.

Lemma 9.3.1 ([GZ22a, Lemma 2.5]). Let χ be a primitive Dirichlet character of mod-

ulus R. Then we have

∣L(
1

2
, χ)∣

2

= 2 ∑
A,B∈A+

deg(AB)<deg(R)

χ(A)χ̄(B)

∣AB∣
1
2

+O (∣R∣−
1
2
+ε) . (9.3.1)

The next lemma will be used to obtain the main term of Theorem 9.2.1 and Theo-

rem 9.2.2.

Lemma 9.3.2. Let H and R be fixed monic polynomials in Fq[T ] with deg(H) < deg(R)

and let x be a positive integer. If x ≥ deg(R) − deg(H), then

∑
A∈A+

≤x

(AH,R)=1

1

∣A∣
= ∣H ∣

φ(R)

∣R∣
(x + deg(H)) +O (∣H ∣ logω(R)) . (9.3.2)

Whereas if x < deg(R) − deg(H), then

∑
A∈A+

≤x

(AH,R)=1

1

∣A∣
= ∣H ∣

φ(R)

∣R∣
(x+deg(H))+O (∣H ∣ logω(R))+O (

2ω(R)(x + deg(H))

qx
) . (9.3.3)
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Proof. We have

∑
A∈A+

≤x

(AH,R)=1

1

∣A∣
= ∑
A∈A+

≤x

1

∣A∣
∑

E∣(AH,R)
µ(E) = ∑

A∈A+
≤x

1

∣A∣
∑
E∣AH
E∣R

µ(E) = ∑
E∣R

µ(E) ∑
A∈A+

≤x

E∣AH

1

∣A∣
. (9.3.4)

Since E∣AH then EL = AH for some L ∈ A+ with deg(L) = deg(A)+deg(H)−deg(E) ≤

x+deg(H)−deg(E). Furthermore, since EL = AH, then ∣EL∣ = ∣AH ∣ and so 1
∣A∣ =

∣H ∣
∣E∣∣L∣ .

Also, since there does not exist any polynomials L ∈ A+ with deg(L) < 0, then, for the

sum over all L ∈ A+ with deg(L) ≤ x + deg(H) − deg(E), we can restrict the sum over

E∣R further to the sum over E∣R with deg(E) ≤ x + deg(H). Thus combining (9.3.4)

and the above arguments we have

∑
A∈A+

≤x

(AH,R)=1

1

∣A∣
= ∣H ∣ ∑

E∣R
deg(E)≤x+deg(H)

µ(E)

∣E∣
∑
L∈A+

deg(L)≤x+deg(H)−deg(E)

1

∣L∣
.

We know that, for a non-negative integer y,

∑
L∈A+

≤y

1

∣L∣
=

y

∑
k=0

q−k ∑
L∈A+

k

1 =
y

∑
k=0

1 = y + 1,

and so

∑
A∈A+

≤x

(AH,R)=1

1

∣A∣
= ∣H ∣ ∑

E∣R
deg(E)≤x+deg(H)

µ(E)

∣E∣
(x + deg(H) − deg(E) + 1)

= ∣H ∣∑
E∣R

µ(E)

∣E∣
(x + deg(H) − deg(E) + 1)

− ∣H ∣ ∑
E∣R

deg(E)>x+deg(H)

µ(E)

∣E∣
(x + deg(H) − deg(E) + 1). (9.3.5)

Using (2.2.1), (2.2.2) and Lemma 2.2.3 we have

∑
E∣R

µ(E)

∣E∣
(x + deg(H) − deg(E) + 1) =

φ(R)

∣R∣
(x + deg(H)) +O (logω(R)) . (9.3.6)

If x + deg(H) ≥ deg(R), then there is no E∣R with deg(E) > deg(R) and so the final

term on the right-hand side of (9.3.5) is empty. Thus for x + deg(H) ≥ deg(R)

∑
E∣R

deg(E)>x+deg(H)

µ(E)

∣E∣
(x + deg(H) − deg(E) + 1) = 0. (9.3.7)

Whereas for x + deg(H) < deg(R), we have that if deg(E) > x + deg(H), then x +

deg(H) − deg(E) + 1 ≤ deg(E) − deg(E) ≤ deg(E) and so

∑
E∣R

deg(E)>x+deg(H)

µ(E)

∣E∣
(x + deg(H) − deg(E) + 1) ≪ ∑

E∣R
deg(E)>x+deg(H)

∣µ(E)∣

∣E∣
deg(E). (9.3.8)
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As deg(E) ≤ ∣E∣ for deg(E) > x + deg(H), then

∑
E∣R

deg(E)>x+deg(H)

∣µ(E)∣deg(E)

∣E∣
≪
x + deg(H)

qx+deg(H) ∑
E∣R

deg(E)>x+deg(H)

∣µ(E)∣. (9.3.9)

Furthermore, since ∣µ(E)∣ ≥ 0, then

∑
E∣R

deg(E)>x+deg(H)

∣µ(E)∣ ≤ ∑
E∣R

∣µ(E)∣ = 2ω(R), (9.3.10)

where the final equality follows from Lemma 2.2.5. Combining (9.3.8), (9.3.9) and

(9.3.10) we have

∑
E∣R

deg(E)>x+deg(H)

µ(E)

∣E∣
(x + deg(H) − deg(E) + 1) ≪

2ω(R)(x + deg(H))

qx+deg(H) (9.3.11)

which completes the proof. ∎

Finally, the following lemmas will be used to create a suitable bound for the error term

of Theorem 9.2.1 and Theorem 9.2.2.

Lemma 9.3.3. Let F , H and R be fixed monic polynomials in Fq[T ] where F ∣R and

let z < deg(R). Then

∑
A,B∈A+

deg(AB)=z
AH≡B(mod F )

AH≠B
(ABH,R)=1

1

∣AB∣
1
2

≪
q
z
2 (z + 1)∣H ∣

∣F ∣
. (9.3.12)

Proof. We consider three cases, deg(AH) > deg(B), deg(AH) < deg(B) and deg(AH) =

deg(B) where AH ≠ B.

If we first consider the case deg(AH) > deg(B) and suppose that deg(A) = i, then

since AH ≡ B(mod F ) and AH ≠ B we have that AH = LF +B for some L ∈ A where

deg(AH) = deg(LF +B). Furthermore since A,H,F and B are monic, then L is monic.

Also, since deg(AH) > deg(B), then deg(LF ) > deg(B) and so, by Proposition 2.1.1

deg(LF +B) = deg(LF ). Thus, using the above and Proposition 2.1.1 again, we have

that deg(L) = deg(A) + deg(H) − deg(F ) = i + deg(H) − deg(F ). Furthermore, since

deg(AB) = z and deg(A) = i, then deg(B) = z − deg(A) = z − i where 0 ≤ i ≤ z and

163



Chapter 9. The Twisted Second Moment of Dirichlet L-functions in Fq[T ]

∣AB∣−
1
2 = q−

z
2 . Combining all the above we have that

∑
A,B∈A+

deg(AB)=z
deg(AH)>deg(B)
AH≡B(mod F )

AH≠B
(ABH,R)=1

1

∣AB∣
1
2

≤ q−
z
2

z

∑
i=0

∑
L∈A+

deg=i+deg(H)−deg(F )

∑
B∈A+

deg(B)=z−i

1

= q
z
2

z

∑
i=0

q−i ∑
L∈A+

deg(L)=i+deg(H)−deg(F )

1 =
q
z
2 ∣H ∣

∣F ∣

z

∑
i=0

1 =
q
z
2 (z + 1)∣H ∣

∣F ∣
.

(9.3.13)

Similarly, if we consider the case deg(AH) < deg(B) and suppose that deg(B) = i,

then since AH ≡ B(mod F ) and AH ≠ B, then we have that B = LF +AH for some

L ∈ A where deg(B) = deg(LF + AH). Furthermore since A,H,F and B are monic,

then L is monic. Also, since deg(B) > deg(AH), then deg(LF ) > deg(AH) and so by

Proposition 2.1.1 deg(LF+AH) = deg(LF ). Thus using the above and Proposition 2.1.1

we have that deg(L) = deg(B)−deg(F ). Furthermore since deg(AB) = z and deg(B) =

i, then ∣AB∣−
1
2 = q−

z
2 and deg(A) = z − deg(B) = z − i where 0 ≤ i ≤ z. Thus combining

the above we have

∑
A,B∈A+

deg(AB)=z
deg(B)>deg(AH)
AH≡B(mod F )

AH≠B
(ABH,R)=1

1

∣AB∣
1
2

≤ q−
z
2

z

∑
i=0

∑
L∈A+

deg(L)=i−deg(F )

∑
A∈A+

deg(A)=z−i

1

= q
z
2

z

∑
i=0

q−i ∑
L∈A+

deg(L)=i−deg(F )

1 =
q
z
2

∣F ∣

z

∑
i=0

1 =
q
z
2 (z + 1)

∣F ∣
. (9.3.14)

Finally, if we consider the case where deg(AH) = deg(B) = i, then 2i = deg(ABH) =

z + deg(H) and so deg(B) = i = z+deg(H)
2 . Furthermore since AH ≡ B(mod F) and

AH ≠ B, then AH = LF + B where L ∈ A with deg(AH) = deg(LF + B). Since

deg(AH) = deg(B) where A, H and B are monic, then by Proposition 2.1.1 and the

above arguments we have that deg(LF ) < deg(B) = z+deg(H)
2 . Thus combining the above

and using the argument stated previously we have

∑
A,B∈A+

deg(AB)=z
deg(AH)=deg(B)
AH≡B(mod F )

AH≠B
(ABH,R)=1

1

∣AB∣
1
2

≤ q−
z
2 ∑

B∈A+
deg(B)= z+deg(H)

2

∑
L∈A

deg(L)< z+deg(H)

2
−deg(F )

1

≪
∣H ∣

1
2

∣F ∣
∑
B∈A+

deg(B)= z+deg(H)

2

1 =
q
z
2 ∣H ∣

∣F ∣
. (9.3.15)

164



9.3. Preliminary Lemmas

Combining all the cases proves the result. ∎

Remark 9.3.4. The inequality that occurs in (9.3.13), (9.3.14) and (9.3.15) comes

from the removal of the condition of (ABH,R) = 1. Although, we could consider this

condition, it maybe harder to evaluate and we obtain a desirable bound without it. We

similarly do this in (9.3.17), (9.3.18) and (9.3.19) with the condition (ABHK,R) = 1.

Lemma 9.3.5. Let F , H, K and R be fixed monic polynomials in Fq[T ] where F ∣R

and let z < deg(R). Then

∑
A,B∈A+

deg(AB)=z
AH≡BK(mod F )

AH≠BK
(ABHK,R)=1

1

∣AB∣
1
2

≪
q
z
2 (z + 1)∣HK ∣

∣F ∣
. (9.3.16)

Proof. The proof is similar to the proof of Lemma 9.3.3 and [Yia21, Lemma 6.4], but

will be presented here too. We consider three cases, deg(AH) > deg(BK), deg(AH) <

deg(BK) and deg(AH) = deg(BK) where AH ≠ BK.

If we consider the first case deg(AH) > deg(BK) and suppose that deg(A) = i, then

since AH ≡ BK(mod F ) and AH ≠ BK we have that AH = LF +BK for some L ∈ A
where deg(AH) = deg(LF +BK). Furthermore, since A, H, K, F and B are all monic,

then L is monic. Also, since deg(AH) > deg(BK), then deg(LF ) > deg(BK) and so

by Proposition 2.1.1 deg(LF +BK) = deg(LF ). Invoking Proposition 2.1.1 again and

the above we see that deg(L) = deg(AH)−deg(F ) = i+deg(H)−deg(F ). Furthermore

since deg(AB) = z and deg(A) = i, then deg(B) = z − deg(A) = z − i where 0 ≤ i ≤ z and

∣AB∣−
1
2 = q−

z
2 . Combining the above we have

∑
A,B∈A+

deg(AB)=z
deg(AH)>deg(BK)
AH≡BK(mod F )

AH≠BK
(ABHK,R)=1

1

∣AB∣
1
2

≤ q−
z
2

z

∑
i=0

∑
L∈A+

deg(L)=i+deg(H)−deg(F )

∑
B∈A+

deg(B)=z−i

1

= q
z
2

z

∑
i=0

q−i ∑
L∈A+

deg(L)=i+deg(H)−deg(F )

1 =
q
z
2 ∣H ∣

∣F ∣

z

∑
i=0

1 =
q
z
2 (z + 1)∣H ∣

∣F ∣
.

(9.3.17)

Similarly, if we consider the case where deg(BK) > deg(AH) and suppose that deg(B) =

i, then since AH ≡ BK(mod F ) and AH ≠ BK, then BK = LF +AH for some L ∈ A
with deg(BK) = deg(LF +AH). Furthermore, since A, H, K, F and B are all monic,

then L is monic. Also, since deg(BK) > deg(AH), then deg(LF ) > deg(AH) and
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so by Proposition 2.1.1 deg(LF + AH) = deg(LF ). Invoking Proposition 2.1.1 again

and the above we see that deg(L) = deg(B) + deg(K) − deg(F ) = i + deg(K) − deg(F ).

Furthermore since deg(AB) = z and deg(B) = i, then deg(A) = z − deg(B) = z − i and

∣AB∣−
1
2 = q−

z
2 . Combining the above and using the arguments stated previously we have

∑
A,B∈A+

deg(AB)=z
deg(BK)>deg(AH)
AH≡BK(mod F )

AH≠BK
(ABHK,R)=1

1

∣AB∣
1
2

≤ q−
z
2

z

∑
i=0

∑
L∈A+

deg(L)=i+deg(K)−deg(F )

∑
A∈A+

deg(A)=z−i

1

= q
z
2

z

∑
i=0

q−i ∑
L∈A+

deg(L)=i+deg(K)−deg(F )

1 =
q
z
2 ∣K ∣

∣F ∣

z

∑
i=0

1 =
q
z
2 (z + 1)∣K ∣

∣F ∣
.

(9.3.18)

Finally, if we consider the case where deg(AH) = deg(BK) = i. Then 2i = deg(ABHK) =

z + deg(HK) and so deg(B) = i − deg(K) = z+deg(H)−deg(K)
2 . Furthermore since AH ≡

BK(mod F ) and AH ≠ BK then AH = LF +BK where deg(AH) = deg(LF +BK).

Since deg(AH) = deg(BK) where A, B, H and K are monic, then by Proposi-

tion 2.1.1 and the arguments stated above we have deg(LF ) < deg(BK) and so deg(L) <

i − deg(F ) = z+deg(HK)
2 − deg(F ). Furthermore since deg(AB) = z then ∣AB∣−

1
2 = q−

z
2 .

Thus combining the above and using the arguments stated previously we have

∑
A,B∈A+

deg(AB)=z
deg(AH)=deg(BK)
AH≡BK(mod F )

AH≠BK
(ABHK,R)=1

1

∣AB∣
1
2

≤ q−
z
2 ∑

B∈A+
deg(B)= z+deg(H)−deg(K)

2

∑
L∈A

deg(L)< z+deg(HK)

2
−deg(F )

1

≪
∣HK ∣

1
2

∣F ∣
∑
B∈A+

deg(B)= z+deg(H)−deg(K)

2

1 =
q
z
2 ∣H ∣

∣F ∣
. (9.3.19)

Combining all the above cases proves the result. ∎

Lemma 9.3.6. For all R ∈ A+ and ε > 0 we have

2ω(R)∣R∣
1
2 deg(R)

φ∗(R)
≪ε ∣R∣ε−

1
2 . (9.3.20)

Proof. For deg(R) ≤ q we know, by [Yia20, (A.2.3)] that φ∗(R)
∣R∣ ≫ 1. Thus for deg(R) ≤ q

we have
2ω(R)∣R∣

1
2 deg(R)

φ∗(R)
≪

2ω(R)deg(R)

∣R∣
1
2

≪
2ω(R)

∣R∣
1
2
−ε
.

From Lemma 2.2.5 we know that 2ω(R) ≪ ∣R∣ε, thus (9.3.20) holds for deg(R) ≤ q.
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For deg(R) > q we know by Lemma 2.2.7 and Lemma 2.3.6 that

φ∗(R) ≫
φ(R)

logq logq ∣R∣
≫

∣R∣

(logq logq ∣R∣)2
.

Thus if deg(R) > q, then

2ω(R)∣R∣
1
2 deg(R)

φ∗(R)
≪

2ω(R)deg(R)(logq logq ∣R∣)2

∣R∣
1
2

≪ε
2ω(R)

∣R∣
1
2
−ε

Finally, from Lemma 2.2.5, we know that 2ω(R) ≪ ∣R∣ε, then (9.3.20) holds for deg(R) > q

and thus completes the proof. ∎

9.4 Proof of Theorem 9.2.1

In this section, we use results stated previously to prove Theorem 9.2.1.

Proof of Theorem 9.2.1. Using the approximate function equation Lemma 9.3.1 we have

1

φ∗(R)
∑

∗

χ(mod R)
∣L(

1

2
, χ)∣

2

χ(H)

=
2

φ∗(R)
∑

∗

χ(mod R)
∑

A,B∈A+
deg(AB)<deg(R)

χ(A)χ̄(B)χ(H)

∣AB∣
1
2

+O
⎛

⎝

∣R∣−
1
2
+ε

φ∗(R)
∑

∗

χ(mod R)
χ(H)

⎞

⎠
. (9.4.1)

Using the definition of Dirichlet characters and φ∗(R) we have

∣R∣−
1
2
+ε

φ∗(R)
∑

∗

χ(mod R)
χ(H) ≪

∣R∣−
1
2
+ε

φ∗(R)
∑

∗

χ(mod R)
1 = ∣R∣−

1
2
+ε.

Using the orthogonality relation Lemma 2.3.8, we have

2

φ∗(R)
∑

∗

χ(mod R)
∑

A,B∈A+
deg(AB)<deg(R)

χ(A)χ̄(B)χ(H)

∣AB∣
1
2

=
2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)
AH≡B(mod F )
(ABH,R)=1

1

∣AB∣
1
2

. (9.4.2)

For the second sum on the right-hand side of (9.4.2), we will consider the contribution

of the diagonal, AH = B, and the off-diagonal, AH ≠ B, terms separately. Thus we
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write

2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)
AH≡B(mod F )
(ABH,R)=1

1

∣AB∣
1
2

=
2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)
AH≡B(mod F )

AH=B
(ABH,R)=1

1

∣AB∣
1
2

+
2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)
AH≡B(mod F )

AH≠B
(ABH,R)=1

1

∣AB∣
1
2

.

Considering the contribution of the diagonal, AH = B, terms we have that ∣AB∣−
1
2 =

∣H ∣−
1
2 ∣A∣−1 and deg(AB) = deg(ABH) − deg(H) = 2deg(A) + deg(H). Thus the double

sum over A,B ∈ A+ with deg(AB) < deg(R), AH = B and (ABH,R) = 1 becomes a

single sum over A ∈ A+ with deg(A) < 1
2(deg(R)−deg(H)) and (AH,R) = 1. Therefore

using the arguments stated above and Corollary 2.3.9 we have

2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)

AH=B
(ABH,R)=1

1

∣AB∣
1
2

=
2

∣H ∣
1
2

∑
A∈A+

deg(A)<deg(R)−deg(H)

2
(AH,R)=1

1

∣A∣
. (9.4.3)

Using Lemma 9.3.2 with x = deg(R)−deg(H)
2 − 1 we have

2

∣H ∣
1
2

∑
A∈A+

deg(A)<deg(R)−deg(H)

2
(AH,R)=1

1

∣A∣
= ∣H ∣

1
2
φ(R)

∣R∣
(deg(H) + deg(R)) +O (∣H ∣

1
2 logω(R)) . (9.4.4)

For the contribution of the off-diagonal terms we have

∑
A,B∈A+

deg(AB)<deg(R)
AH≡B(mod F )

AH≠B
(ABH,R)=1

1

∣AB∣
1
2

=
deg(R)−1

∑
z=0

∑
A,B∈A+

deg(AB)=z
AH≡B(mod F )

AH≠B
(ABH,R)=1

1

∣AB∣
1
2

. (9.4.5)

Using Lemma 9.3.3 we have

∑
A,B∈A+

deg(AB)<deg(R)
AH≡B(mod F )

AH≠B
(ABH,R)=1

1

∣AB∣
1
2

≪
deg(R)−1

∑
z=0

∣H ∣q
z
2 (z + 1)

∣F ∣
≪

∣H ∣∣R∣
1
2 deg(R)

∣F ∣
. (9.4.6)
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Thus using (9.4.6) we have

2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)
AH≡B(mod F )

AH≠B
(ABH,R)=1

1

∣AB∣
1
2

≪
∣H ∣∣R∣

1
2 deg(R)

φ∗(R)
∑

EF=R
∣µ(E)∣

φ(F )

∣F ∣
.

(9.4.7)

Combining (9.4.7), Lemma 2.2.5 and the fact that φ(R)
∣R∣ ≤ 1 we have

2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)
AH≡B(mod F )

AH≠B
(ABH,R)=1

1

∣AB∣
1
2

≪
2ω(R)∣H ∣∣R∣

1
2 deg(R)

φ∗(R)
. (9.4.8)

Furthermore, combining (9.4.8) and Lemma 9.3.6, we have

2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)
AH≡B(mod F )

AH≠B
(ABH,R)=1

1

∣AB∣
1
2

≪
2ω(R)∣H ∣∣R∣

1
2 deg(R)

φ∗(R)
≪ ∣H ∣∣R∣ε−

1
2 .

(9.4.9)

Since deg(H) < deg(R), then there is some ε > 0 such that deg(H) ≤ (1 − 2ε)deg(R).

Thus ∣H ∣
1
2 ∣R∣ε−

1
2 = q

1
2

deg(H)+(ε− 1
2
)deg(R) ≤ q

1
2
(1−2ε)deg(R)+(ε− 1

2
)deg(R) = 1. Therefore combin-

ing the above with (9.4.9), we get

2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)
AH≡B(mod F )

AH≠B
(ABH,R)=1

1

∣AB∣
1
2

≪ ∣H ∣
1
2 . (9.4.10)

Combining the above completes the proof of Theorem 9.2.1. ∎

9.5 Proof of Theorem 9.2.2

In this section we use similar methods to that seen in the proof of Theorem 9.2.1 to

prove Theorem 9.2.2.

Proof of Theorem 9.2.2. Using the approximate functional equation, Lemma 9.3.1, we
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have

1

φ∗(R)
∑

∗

χ(mod R)
∣L(

1

2
, χ)∣

2

χ(H)χ̄(K)

=
2

φ∗(R)
∑

∗

χ(mod R)
∑

A,B∈A+
deg(AB)<deg(R)

χ(A)χ̄(B)χ(H)χ̄(K)

∣AB∣
1
2

+O
⎛

⎝

∣R∣−
1
2
+ε

φ∗(R)
∑

∗

χ(mod R)
χ(H)χ̄(K)

⎞

⎠
.

(9.5.1)

Using the definition of Dirichlet characters and φ∗(R) we have

∣R∣−
1
2
+ε

φ∗(R)
∑

∗

χ(mod R)
χ(H)χ̄(K) ≪

∣R∣−
1
2
+ε

φ∗(R)
∑

∗

χ(mod R)
1 = ∣R∣−

1
2
+ε.

Using the orthogonality relation Lemma 2.3.8, we have

2

φ∗(R)
∑

∗

χ(mod R)
∑

A,B∈A+
deg(AB)<deg(R)

χ(A)χ̄(B)χ(H)χ̄(K)

∣AB∣
1
2

=
2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)
AH≡BK(mod F )
(ABHK,R)=1

1

∣AB∣
1
2

. (9.5.2)

For the second sum on the right-hand side of (9.5.2) we will consider the contribution

of the diagonal, AH = BK, and off-diagonal, AH ≠ BK, terms separately. Thus we

write

2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)
AH≡BK(mod F )
(ABHK,R)=1

1

∣AB∣
1
2

=
2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)
AH≡BK(mod F )

AH=BK
(ABHK,R)=1

1

∣AB∣
1
2

+
2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)
AH≡BK(mod F )

AH≠BK
(ABHK,R)=1

1

∣AB∣
1
2

. (9.5.3)

Considering the contribution of the diagonal, AH = BK, terms we have that ∣AB∣−
1
2 =

∣H ∣−
1
2 ∣K ∣

1
2 ∣A∣−1 and deg(AB) = deg(ABHK)−deg(HK) = 2deg(A)+deg(H)−deg(K).

Thus the double sum overA,B ∈ A+ with deg(AB) < deg(R), AH = BK and (ABHK,R) =
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1 becomes a single sum over A ∈ A+ with deg(A) < 1
2(deg(R) + deg(K) − deg(H)) and

(AH,R) = 1. Therefore using the arguments stated above and Corollary 2.3.9 we have

2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)

AH=BK
(ABHK,R)=1

1

∣AB∣
1
2

=
2∣K ∣

1
2

∣H ∣
1
2

∑
A∈A+

deg(A)<deg(R)+deg(K)−deg(H)

2
(AH,R)=1

1

∣A∣
. (9.5.4)

Using Lemma 9.3.2 with x = 1
2(deg(R) + deg(K) − deg(H)) − 1 we have

2∣K ∣
1
2

∣H ∣
1
2

∑
A∈A+

deg(A)<deg(R)+deg(K)−deg(H)

2
(AH,R)=1

1

∣A∣

= ∣HK ∣
1
2
φ(R)

∣R∣
(deg(R) + deg(H) + deg(K)) +O (∣HK ∣

1
2 logω(R)) .

For the contribution of the off-diagonal terms we have

∑
A,B∈A+

deg(AB)<deg(R)
AH≡BK(mod F )

AH≠BK
(ABHK,R)=1

1

∣AB∣
1
2

=
deg(R)−1

∑
z=0

∑
A,B∈A+

deg(AB)=z
AH≡BK(mod F )

AH≠BK
(ABHK,R)=1

1

∣AB∣
1
2

. (9.5.5)

Using Lemma 9.3.5 we have

∑
A,B∈A+

deg(AB)<deg(R)
AH≡BK(mod F )

AH≠BK
(ABHK,R)=1

1

∣AB∣
1
2

≪
deg(R)−1

∑
z=0

∣HK ∣q
z
2 (z + 1)

∣F ∣
≪

∣HK ∣∣R∣
1
2 deg(R)

∣F ∣
. (9.5.6)

Thus using (9.5.6) we have

2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)
AH≡BK(mod F )

AH≠BK
(ABHK,R)=1

1

∣AB∣
1
2

≪
∣HK ∣∣R∣

1
2 deg(R)

φ∗(R)
∑

EF=R
∣µ(E)∣

φ(F )

∣F ∣
.

(9.5.7)

Combining (9.5.7), Lemma 2.2.5 and the fact that φ(R)
∣R∣ ≤ 1 we have

2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)
AH≡BK(mod F )

AH≠BK
(ABHK,R)=1

1

∣AB∣
1
2

≪
2ω(R)∣HK ∣∣R∣

1
2 deg(R)

φ∗(R)
. (9.5.8)
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Furthermore, combining (9.5.8) and Lemma 9.3.6 we have

2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)
AH≡BK(mod F )

AH≠BK
(ABHK,R)=1

1

∣AB∣
1
2

≪
2ω(R)∣HK ∣∣R∣

1
2 deg(R)

φ∗(R)
≪ ∣HK ∣∣R∣ε−

1
2 .

(9.5.9)

Since deg(H)+deg(K) < deg(R), then there is some ε > 0 such that deg(H)+deg(K) ≤

(1 − 2ε)deg(R). Thus ∣HK ∣
1
2 ∣R∣ε−

1
2 = qdeg(H)+deg(K)+(ε− 1

2
)deg(R) ≤ q(1−2ε)deg(R)+(ε− 1

2
)deg(R) =

1. Thus, combining the above and (9.5.9) we have

2

φ∗(R)
∑

EF=R
µ(E)φ(F ) ∑

A,B∈A+
deg(AB)<deg(R)
AH≡BK(mod F )

AH≠BK
(ABHK,R)=1

1

∣AB∣
1
2

≪ ∣HK ∣
1
2 . (9.5.10)

Combining everything completes the proof of Theorem 9.2.2.

∎
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Appendix A

Completing the proof of

Lemma 3.6.6

A.1 Introduction

In this appendix we prove that

Aog−1,1,2 + Â2 + Ã2 −A
e
g,2,1 −A

e
g,2,2 −A

e
g−1,2,1 −A

e
g−1,2,2 −A

o
g,2 −A

o
g−1,2 (A.1.1)

equals zero. For the terms corresponding to the residues at u = q−1 and u = q−2, it was

already shown, in Chapter 3, that (A.1.1) equals zero, thus it remains to show that,

for the terms corresponding to the residue at u = 0, (A.1.1) equals zero. To do this, we

will use induction on g and consider two cases: g even and g odd. This appendix also

appears in [AM21].

A.2 g even

Let g = 2m for m ∈ Z, we will show, by induction on m, that (A.1.1) equals zero for all

m ≥ 1. For the base case, m = 1, (A.1.1) is equalling to

1

ζA(2)

⎛

⎝
q

9
2 (C(0) + C′(0)) + q4(C(0)(1 + q) + C′(0)) + q

11
2 C(0) + q

13
2 C(0) − q

11
2 C(0)

+ q5(C(0)(q + q2) + C′(0)) − q4(C(0)(1 + q2) + C′(0)) − q
9
2 (C(0)(1 + q2) + C′(0))

− q5(C(0)(1 + q2) + C′(0))
⎞

⎠
. (A.2.1)
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Rearranging (A.2.1), we see that it is equal to

1

ζA(2)

⎛

⎝
C(0) ((q4 + q

9
2 + q5 + q

11
2 + q6 + q

13
2 + q7) − (q4 + q

9
2 + q5 + q

11
2 + q6 − q

13
2 + q7))

+ C′(0) ((q4 + q
9
2 + q5) − (q4 + q

9
2 + q5))

⎞

⎠
,

which clearly equals zero. Assume that (A.1.1)= 0 for m = t. Then

1

ζA(2)

⎛

⎝
q3t+ 3

2

t

∑
n=0

C(n)(0)

n!
+ q3t+1

t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

qk + q3t+ 5
2

t−1

∑
n=0

C(n)(0)

n!

t−1−n
∑
k=0

qk

+ q3t+ 7
2

t−1

∑
n=0

C(n)(0)

n!

2(t−1−n)

∑
k=t−1−n

qk − q3t+ 5
2

t−1

∑
n=0

C(n)(0)

n!

t−1−n
∑
k=0

q2k + q3t+2
t

∑
n=0

C(n)(0)

n!

2(t−n)

∑
k=t−n

qk

− q3t+1
t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

q2k − q3t+ 3
2

t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

q2k − q3t+2
t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

q2k
⎞

⎠
= 0.

(A.2.2)

For m = t + 1, (A.1.1) equals

1

ζA(2)

⎛

⎝
q3t+ 9

2

t+1

∑
n=0

C(n)(0)

n!
+ q3t+4

t+1

∑
n=0

C(n)(0)

n!

t+1−n
∑
k=0

qk + q3t+ 11
2

t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

qk

+ q3t+ 13
2

t

∑
n=0

C(n)(0)

n!

2(t−n)

∑
k=t−n

qk − q3t+ 11
2

t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

q2k + q3t+5
t+1

∑
n=0

C(n)(0)

n!

2(t+1−n)

∑
k=t+1−n

qk

− q3t+4
t+1

∑
n=0

C(n)(0)

n!

t+1−n
∑
k=0

q2k − q3t+ 9
2

t+1

∑
n=0

C(n)(0)

n!

t+1−n
∑
k=0

q2k − q3t+5
t+1

∑
n=0

C(n)(0)

n!

t+1−n
∑
k=0

q2k
⎞

⎠
.

(A.2.3)

Rearranging (A.2.3), we have that (A.1.1)=(A.2.4)+(A.2.5), where

q3

ζA(2)

⎛

⎝
q3t+ 3

2

t

∑
n=0

C(n)(0)

n!
+ q3t+1

t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

qk + q3t+ 5
2

t−1

∑
n=0

C(n)(0)

n!

t−1−n
∑
k=0

qk

+ q3t+ 7
2

t−1

∑
n=0

C(n)(0)

n!

2(t−1−n)

∑
k=t−1−n

qk − q3t+ 5
2

t−1

∑
n=0

C(n)(0)

n!

t−1−n
∑
k=0

q2k + q3t+2
t

∑
n=0

C(n)(0)

n!

2(t−n)

∑
k=t−n

qk

− q3t+1
t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

q2k − q3t+ 3
2

t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

q2k − q3t+2
t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

q2k
⎞

⎠

(A.2.4)
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A.3. g odd

and

1

ζA(2)

⎛

⎝
q3t+ 9

2
C(t+1)(0)

(t + 1)!
+ q3t+4

t+1

∑
n=0

C(n)(0)

n!
qt+1−n + q3t+ 11

2

t

∑
n=0

C(n)(0)

n!
qt−n

− q3t+ 13
2

t−1

∑
n=0

C(n)(0)

n!
qt−1−n + q3t+ 13

2

t−1

∑
n=0

C(n)(0)

n!
q2(t−n)−1(1 + q) + q3t+ 13

2
C(t)(0)

t!

− q3t+ 11
2

t

∑
n=0

C(n)(0)

n!
q2(t−n) − q3t+5

t

∑
n=0

C(n)(0)

n!
qt−n + q3t+5

t

∑
n=0

C(n)(0)

n!
q2(t−n)+1(1 + q)

+ q3t+5C
(t+1)(0)

(t + 1)!
− q3t+4

t+1

∑
n=0

C(n)(0)

n!
q2(t+1−n)

− q3t+ 9
2

t+1

∑
n=0

C(n)(0)

n!
q2(t+1−n) − q3t+5

t+1

∑
n=0

C(n)(0)

n!
q2(t+1−n)⎞

⎠
(A.2.5)

Using the inductive hypothesis, we have that (A.2.4) equals zero, therefore it remains

to show that (A.2.5) equals zero. Rearranging (A.2.5) we see that it is equal to

1

ζA(2)

⎛

⎝
− q3t+ 13

2

t

∑
n=0

C(n)(0)

n!
q2(t−n) + q3t+4C

(t+1)(0)

(t + 1)!
+ q3t+ 11

2
C(t)(0)

t!

+ q3t+ 11
2

t−1

∑
n=0

C(n)(0)

n!
q2(t−n) + q3t+ 13

2

t−1

∑
n=0

C(n)(0)

n!
q2(t−n) + q3t+ 13

2
C(t)(0)

t!

− q3t+ 11
2

t

∑
n=0

C(n)(0)

n!
q2(t−n) + q3t+6

t

∑
n=0

C(n)(0)

n!
q2(t−n) + q3t+7

t

∑
n=0

C(n)(0)

n!
q2(t−n)

− q3t+7
t

∑
n=0

C(n)(0)

n!
q2(t−n) − q3t+4

t+1

∑
n=0

C(n)(0)

n!
q2(t+1−n)⎞

⎠
. (A.2.6)

Rearranging (A.2.6), we see that it is equal to

1

ζA(2)

⎛

⎝
q3t+ 11

2 (1+ q
1
2 + q+ q

3
2 )

t

∑
n=0

C(n)(0)

n!
q2(t−n) − q3t+ 11

2 (1+ q
1
2 + q+ q

3
2 )

t

∑
n=0

C(n)(0)

n!
q2(t−n)⎞

⎠
,

which equals zero. Thus (A.1.1)= 0 for m = t + 1, and so, by induction, (A.1.1)= 0 for

all g ≥ 1 even.

A.3 g odd

Now let g = 2m+ 1. We will show, by induction on m, (A.1.1) equals zero for all m ≥ 0.

For the base case, m = 0, (A.1.1) is equal to

1

ζA(2)

⎛

⎝
q

5
2 (C(0) + C′(0)) + q

7
2C(0) + q3C(0) + q4C(0) − q3C(0) + q

9
2C(0) − q

7
2C(0)

− q4C(0) − q
5
2 (C(0)(1 + q2) + C′(0))

⎞

⎠
. (A.3.1)
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Rearranging (A.3.1) we see that it is equal to

1

ζA(2)
(C(0) ((q

5
2 + q3 + q

7
2 + q4 + q

9
2) − (q

5
2 + q3 + q

7
2 + q4 + q

9
2)) + C′(0) (q

5
2 − q

5
2))

which clearly equals zero. Assume that (A.1.1)= 0 for m = t. Then

1

ζA(2)

⎛

⎝
q3t+ 5

2

t+1

∑
n=0

C(n)(0)

n!
+ q3t+ 7

2

t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

qk + q3t+3
t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

qk

+ q3t+4
t

∑
n=0

C(n)(0)

n!

2(t−n)

∑
k=t−n

qk − q3t+3
t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

q2k + q3t+ 9
2

t

∑
n=0

C(n)(0)

n!

2(t−n)

∑
k=t−n

qk

− q3t+ 7
2

t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

q2k − q3t+4
t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

q2k − q3t+ 5
2

t+1

∑
n=0

C(n)(0)

n!

t+1−n
∑
k=0

q2k
⎞

⎠
= 0.

(A.3.2)

For m = t + 1, (A.1.1) equals

1

ζA(2)

⎛

⎝
q3t+ 11

2

t+2

∑
n=0

C(n)(0)

n!
+ q3t+ 13

2

t+1

∑
n=0

C(n)(0)

n!

t+1−n
∑
k=0

qk + q3t+6
t+1

∑
n=0

C(n)(0)

n!

t+1−n
∑
k=0

qk

+ q3t+7
t+1

∑
n=0

C(n)(0)

n!

2(t+1−n)

∑
k=t+1−n

qk − q3t+6
t+1

∑
n=0

C(n)(0)

n!

t+1−n
∑
k=0

q2k + q3t+ 15
2

t+1

∑
n=0

C(n)(0)

n!

2(t+1−n)

∑
k=t+1−n

qk

− q3t+ 13
2

t+1

∑
n=0

C(n)(0)

n!

t+1−n
∑
k=0

q2k − q3t+7
t+1

∑
n=0

C(n)(0)

n!

t+1−n
∑
k=0

q2k − q3t+ 11
2

t+2

∑
n=0

C(n)(0)

n!

t+2−n
∑
k=0

q2k
⎞

⎠
.

(A.3.3)

Rearranging (A.3.3), we see that (A.1.1)=(A.3.4)+(A.3.5), where

q3

ζA(2)

⎛

⎝
q3t+ 5

2

t+1

∑
n=0

C(n)(0)

n!
+ q3t+ 7

2

t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

qk + q3t+3
t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

qk

+ q3t+4
t

∑
n=0

C(n)(0)

n!

2(t−n)

∑
k=t−n

qk − q3t+3
t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

q2k + q3t+ 9
2

t

∑
n=0

C(n)(0)

n!

2(t−n)

∑
k=t−n

qk

− q3t+ 7
2

t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

q2k − q3t+4
t

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

q2k − q3t+ 5
2

t+1

∑
n=0

C(n)(0)

n!

t−n
∑
k=0

q2k
⎞

⎠

(A.3.4)
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A.3. g odd

and

1

ζA(2)

⎛

⎝
q3t+ 11

2
C(t+2)(0)

(t + 2)!
+ q3t+ 13

2

t+1

∑
n=0

C(n)(0)

n!
qt+1−n + q3t+6

t+1

∑
n=0

C(n)(0)

n!
qt+1−n

− q3t+7
t

∑
n=0

C(n)(0)

n!
qt−n + q3t+7

t

∑
n=0

C(n)(0)

n!
q2(t+1−n)−1(1 + q) + q3t+7C

(t+1)(0)

(t + 1)!

− q3t+6
t+1

∑
n=0

C(n)(0)

n!
q2(t+1−n) − q3t+ 15

2

t

∑
n=0

C(n)(0)

n!
qt−n

+ q3t+ 15
2

t

∑
n=0

C(n)(0)

n!
q2(t+1−n)−1(1 + q) + q3t+ 15

2
C(t+1)(0)

(t + 1)!
− q3t+ 13

2

t+1

∑
n=0

C(n)(0)

n!
q2(t+1−n)

− q3t+7
t+1

∑
n=0

C(n)(0)

n!
q2(t+1−n) − q3t+ 11

2

t+2

∑
n=0

C(n)(0)
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⎠
. (A.3.5)

By the inductive hypothesis (A.3.4) equals zero, therefore it remains to show that

(A.3.5) equals zero. Rearranging (A.3.5), we see that it equals

1

ζA(2)

⎛

⎝
− q3t+ 15

2

t+1

∑
n=0

C(n)(0)

n!
q2(t+1−n) + q3t+ 13

2
C(t+1)(0)

(t + 1)!
+ q3t+6C

(t+1)(0)

(t + 1)!

+ q3t+6
t

∑
n=0

C(n)(0)

n!
q2(t+1−n) + q3t+7

t

∑
n=0

C(n)(0)

n!
q2(t+1−n) + q3t+7C

(t+1)(0)

(t + 1)!

− q3t+6
t+1

∑
n=0

C(n)(0)

n!
q2(t+1−n) + q3t+ 13

2

t

∑
n=0

C(n)(0)

n!
q2(t+1−n) + q3t+ 15

2

t

∑
n=0

C(n)(0)

n!
q2(t+1−n)

+ q3t+ 15
2
C(t+1)(0)

(t + 1)!
− q3t+ 13

2

t+1

∑
n=0

C(n)(0)

n!
q2(t+1−n) − q3t+7

t+1

∑
n=0

C(n)(0)

n!
q2(t+1−n)⎞

⎠
.

(A.3.6)

Rearranging (A.3.6) we see that it equals

1

ζA(2)

⎛

⎝
q3t+6(1+q

1
2 +q+q

3
2 )

t+1

∑
n=0

C(n)(0)

n!
q2(t+1−n)−q3t+6(1+q

1
2 +q+q

3
2 )

t+1

∑
n=0

C(n)(0)

n!
q2(t+1−n)),

which equals zero. Thus (A.1.1)= 0 for m = t + 1, and so, by induction, (A.1.1) for all

g ≥ 1 odd. This completes the proof of Lemma 3.6.6.

∎
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mann, Paris, 1948.

[Yia20] M. Yiasemides. Dirichlet L-functions and their Derivatives in Function

Fields. PhD thesis, University of Exeter, 2020.

[Yia21] M. Yiasemides. The Hybrid Euler-Hadamard Product Formula for Dirichlet

L-functions in Fq[T ]. (Preprint). arXiv:2107.02037, 2021.

[You09] M. Young. The first moment of quadratic Dirichlet L-functions. Acta Arith.,

138(1):73–99, 2009.

[You11a] M.P. Young. The fourth moment of Dirichlet L-functions. Ann. of Math. (2),

173(1):1–50, 2011.

[You11b] M.P. Young. The reciprocity law for the twisted second moment of Dirichlet

L-functions. Forum Math., 23(6):1323–1337, 2011.

[Zac19] R. Zacharias. Mollification of the fourth moment of Dirichlet L-functions.

Acta Arith., 191(3):201–257, 2019.

186


	Introduction
	The Riemann zeta-function
	Moments of the Riemann zeta-function
	Dirichlet L-functions
	Mean Value Theorems of Primitive Dirichlet L-functions
	Mean Value Theorems of Quadratic Dirichlet L-functions
	Random Matrix Theory
	Overview of Thesis

	Background on Function Fields
	Function Field Preliminaries
	Multiplicative Functions on Fq[T]
	Dirichlet characters in Function Fields
	Dirichlet L-functions in Function Fields
	Zeta functions associated with curves
	Quadratic Function Field in Odd characteristic
	Characters and the Reciprocity Law
	Quadratic Dirichlet L-functions
	The Hyperelliptic Ensemble

	Quadratic Function Field in Even characteristic
	Quadratic extensions of k
	Hasse Symbol
	Quadratic L-functions


	The First Moment of L(12,) for Real Quadratic Function Fields
	Introduction and Statement of Result
	Overview of Chapter
	Preliminary Lemmas
	Setup of the Problem
	Contribution from M term
	Contribution from V Square
	Main Result
	Notation and Preliminary Results
	Outline of the proof of  and , Proposition0  ??1 3.6.1
	Degree f even
	Degree f Odd
	Contribution From A terms
	Contribution from B terms

	Error from non-square V
	Bounding Se(V)
	Bounding So(V)

	Proof of  and , Proposition0  ??1 3.7.1

	The Mean Value of |K2(O)| in the Inert Imaginary Quadratic Function Fields
	The Algebraic K group K2(O)
	The Mean Value of |K2(O)| in Function Fields
	Preliminaries
	Proof of  and , Theorem0  ??1 4.2.3

	Rudnick and Soundararajan's Theorem over Prime Polynomials for the Rational Function Field
	Lower bounds of Dirichlet L-functions in Function Fields
	Preliminary Lemmas
	Proof of  and , Theorem0  ??1 5.1.2
	Set Up of the Proof
	Estimating S2
	Estimating S1


	Integral Moments of L-functions in Even Characteristic
	Moments of Dirichlet L-functions in Function Fields
	Statement of Result
	Preliminary Lemmas
	Heuristic Derivation of the Conjecture
	Analogies between Classical L-functions and L-functions over Function Fields
	Applying the recipe for L-functions in Even characteristic
	Putting the Conjecture into a more useful form
	The Integral Representation of the Conjecture

	Some Conjectural Formulae for Moments of L(12,u)
	First Moment
	Second Moment
	Third Moment

	Leading order Asymptotic for the Moments of L(12,u)
	Leading order for general k
	Fourth Moment
	Fifth Moment

	Conjectural Asymptotic Formulae for the moments of L(12+it,u)
	Conjectured Asymptotic Formulae
	First Moment
	Leading order for general k


	Autocorrelation of Ratios of L-functions in Even characteristic
	Autocorrelation of Ratios of L-functions over the Rational Function Field
	Applying the Ratios Conjecture for L-functions in Even characteristic
	Refinements of the Conjecture
	The final form of the Conjecture

	Applications of the Ratios Conjecture in Even characteristic
	Applications of the Ratios Conjecture in Function Fields
	The One-Level Density
	Non-Vanishing of L(12,)

	Statement of Main Results
	An Application of the Ratios Conjecture in Even Characteristic: The One-Level Density
	Applying the Ratios Recipe
	An Asymptotic formula for the Logarithmic Derivative of L(s,u)
	The One-Level Density
	The Scaled One-Level Density

	An Application of the Ratios Conjecture in Even Characteristic: Non-Vanishing of L(12,u)
	The Mollifier
	The Mollified First Moment
	The Mollified Second Moment
	Proof of  and , Theorem0  ??1 8.4.7


	 The Twisted Second Moment of Dirichlet L-functions in Fq[T]
	Twisted Moments of Dirichlet L-functions in Function Fields
	Statement of Main Results
	Preliminary Lemmas
	Proof of  and , Theorem0  ??1 9.2.2
	Proof of  and , Theorem0  ??1 9.2.1

	Completing the proof of  and , Theorem0  ??1 9.2.2
	Introduction
	g even
	g odd


