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1  |  INTRODUC TION

Social network analysis is arguably one of the most popular frame-
works in the study of sociality (Croft et al., 2016). In many scientific 

contexts, network connections (edges) are inferred from observa-
tional data, such as human observers recording social interactions 
between monkeys or biologgers capturing proximity events between 
people. The type of data used to infer networks and the manner in 
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Abstract
1. Animal social networks are often constructed from point estimates of edge 

weights. In many contexts, edge weights are inferred from observational data, 
and the uncertainty around estimates can be affected by various factors. Though 
this has been acknowledged in previous work, methods that explicitly quantify 
uncertainty in edge weights have not yet been widely adopted and remain unde-
veloped for many common types of data. Furthermore, existing methods are un-
able to cope with some of the complexities often found in observational data, and 
do not propagate uncertainty in edge weights to subsequent statistical analyses.

2. We introduce a unified Bayesian framework for modelling social networks based 
on observational data. This framework, which we call BISoN, can accommodate 
many common types of observational social data, can capture confounds and 
model effects at the level of observations and is fully compatible with popular 
methods used in social network analysis.

3. We show how the framework can be applied to common types of data and how 
various types of downstream statistical analyses can be performed, including 
non- random association tests and regressions on network properties.

4. Our framework opens up the opportunity to test new types of hypotheses, make 
full use of observational datasets, and increase the reliability of scientific infer-
ences. We have made both an R package and example R scripts available to en-
able adoption of the framework.
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which the data are collected affects both the interpretation of social 
network analyses and their accuracy (Whitehead, 2008a).

Networks are usually constructed by taking a normalised mea-
sure of sociality, such as the proportion of sampling periods each 
pair spends engaged in a social behaviour (e.g. the Simple Ratio 
Index [SRI]; Cairns & Schwager, 1987). These normalised measures 
ensure that pairs that are observed for longer are not erroneously 
determined to be more social (Whitehead, 2008a). This is import-
ant because observing social events can be challenging and uniform 
sampling over all pairs is not always possible (Croft et al., 2008). 
Though normalised measures of social structure will not be biased 
by sampling time, they will be accompanied by varying levels of cer-
tainty. For example, edge weights will be treated as a certain 0.5 for 
both a case where individuals have been seen together once and 
apart once, and equally where individuals have been together 100 
times and apart 100 times. Existing solutions to this problem aim 
to either a priori quantify accuracy and power of social networks 
(Hart et al., 2021; Whitehead, 2008b), filter out highly uncertain 
data points (James et al., 2009) or include sampling effort as terms 
in statistical models (Franks et al., 2021). These existing solutions 
can be useful, but also necessarily lose information and may intro-
duce biases into analyses. Though uncertainty is likely present in 
most measurements (e.g. age, size or perhaps even sex), the above- 
mentioned studies have highlighted that uncertainty due to sam-
pling effort can be orders of magnitude greater than other sources 
of measurement uncertainty. Any major sources of uncertainty can 
drastically impact the performance of statistical models, so it is im-
portant that uncertainty due to sampling effort is accounted for 
properly (Wasserman, 2004). Despite this, methods to fully estimate 
and propagate uncertainty through social network analyses remain 
largely underdeveloped.

In this paper, we introduce BISoN: a general unified Bayesian 
framework for modelling social network data. BISoN captures un-
certainty in edge weights, making full use of available data; prop-
agates uncertainty through downstream analyses; and can control 
for social and non- social effects at any level (individual, dyad, 
group, observation, etc). Any type of social network analysis can 
be conducted within our framework, including dyadic and nodal 

regressions, non- random edge weight tests and estimation of struc-
tural network properties. The BISoN framework comprises (a) an 
edge weight model, dependent on data type, that builds edge weights 
and networks with uncertainty from empirical data, and (b) down-
stream analyses that use estimated edge weights to take into ac-
count uncertainty in the network. This manuscript is intended as 
a technical overview of BISoN and assumes some familiarity with 
the main concepts of Bayesian statistics and social network analy-
sis. Readers unfamiliar with the Bayesian statistical workflow and 
social network analysis are directed to introductory texts such as 
Kruschke (2015), McElreath (2020), Carrington et al. (2005), and 
Croft et al. (2008). We will focus on how our framework can be ap-
plied to animal systems but the underlying principle can be applied 
to any type of network analysis where network edges are inferred. 
The BISoN framework presents an opportunity to generate reliable, 
flexible and rich scientific inference in the study of social systems.

2  |  BISoN— BAYESIAN INFERENCE OF 
SOCIAL NET WORKS

In the following section, we outline the three edge weight models 
we have developed for binary, count, and duration data (see Table 1 
for definitions of these types of data). For brevity, the models are 
presented without detailing any specific priors but when fitting 
these models, priors should always be specified, and the choice of 
prior should depend on the context and the question in hand (van 
de Schoot et al., 2021). These edge weight models can be used to 
generate estimates for network edge weights �ij. We describe how 
to obtain edge weight estimates for binary, count and duration data 
below. Once estimates for edge weights �ij are obtained, they can 
be used in downstream analyses. We will briefly outline three types 
of analyses that propagate uncertainty through the analysis. These 
analyses are: (1) testing for non- random edge weights, (2) dyadic re-
gression and (3) nodal regression. When presenting the downstream 
analyses, for brevity, we will refer to them in the context of the count 
data model but these downstream analyses are freely applicable to 
all types of data. An overview of the BISoN modelling workflow is 

Data type Description Edge interpretation

Binary The presence or absence 
of a social event for 
each dyad is recorded 
in each sampling 
period

Probability of (or proportion of time) engaging in a 
social event in a fixed period of time

Count The number of social 
events for each dyad 
is recorded in each 
sampling period

Rate of occurrence of social events per unit time

Duration The amount of time each 
dyad spends engaged 
in a social event is 
recorded in each 
sampling period

Proportion of time spent engaging in a social 
event

TA B L E  1  Definitions of the three 
types of social observational data we 
have developed models for. Examples of 
standard edge weight interpretations are 
included in the third column.
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shown in Figure 1. The models we present here are simple exam-
ples that can be extended and refined in many ways. These methods 
will be useful and reliable, providing they are used appropriately in 
the context of the data, the scientific question and with appropri-
ate diagnostic tools (Kruschke, 2015; McElreath, 2020). We have 
released an R package to enable most common types of model and 
analysis to be used by researchers, at: https://doi.org/10.5281/ze-
nodo.7611719 (Hart et al., 2022). We have also provided example 
code for users wishing to develop advanced bespoke models, at: 
https://doi.org/10.5281/zenodo.6603327.

2.1  |  Quantifying uncertainity in edge weights

2.1.1  |  Edge weight model: Binary data

To demonstrate the notion behind BISoN, we will first describe the 
edge weight model for the case of binary data. We define binary 
data as the case where the presence or absence of a social event per 
fixed sampling period is recorded. First, note that for binary data, 
edge weights are commonly defined as:

where Xij is the number of presence/absence social events that oc-
curred between i  and j, and Dij is the number of sampling periods 
where it is considered possible for a social event to have been ob-
served between i  and j. The exact definition will depend on context, 

but this may often be the number of periods in which at least one of the 
individuals of the dyad was seen.

The edge weight is therefore equivalent to the probability of i  
and j engaging in a social event in any given sampling period. This 
can also be interpreted as an estimate of the proportion of time i  
and j spend engaging in a social event. Let us refer to this probabil-
ity (or proportion) as pij. Without making any additional assumptions 
beyond that of the standard SRI calculation, an equivalent formu-
lation is

Note that the maximum likelihood estimate for pij in this process 
is Xij ∕Dij = Wij. The binomial process is the natural process for multi-
ple Bernoulli trials, which makes this formulation a natural extension 
of point estimates for edge weights. In a Bayesian context, the pa-
rameter pij is treated as a random variable, and inherently captures 
any uncertainty around its value. A similar formulation was used by 
(Farine & Strandburg- Peshkin, 2015) to estimate uncertainty over 
edge weights using a beta conjugate prior over the pij parameters (as 
detailed in Fink, 1997).

Social data can sometimes be influenced by non- social effects at 
the observation level. For example, varying levels of habitat visibility 
depending on location, variance in observer reliability, or time of day 
can all affect the recorded observations of social events. These ef-
fects cannot be modelled by aggregating social events Xij at the dyad 
level. To solve this, we propose to model these effects by decompos-
ing the binomial process over the aggregated observations to distinct 
Bernoulli processes over unaggregated observations, as follows:

Wij =
Xij

Dij

,

Xij ∼ Binomial
(
Dij, pij

)
.

F I G U R E  1  Schematic overview of the BISoN framework. Different types of observation data in various levels of aggregation are fed 
into the appropriate edge weight model for the type of data. The edge weight model generates posterior distributions over edge weights, 
quantifying uncertainty over them. Posterior edge weights can be visualised in a sociogram with uncertainty, or extracted as an edge list 
with credible intervals. Posterior edge weights can also be extracted for downstream analyses such as regression analyses, non- random 
edge weight tests and more.
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where p(n)
ij

 is the probability of a social event occurring between i  and 
in the nth observation of i  and j, and �ij is the edge weight between i  
and j. The ellipsis represents additional terms that can be included (if 
desired) to model various effects. The term logit

(
p
(n)

ij

)
 can be seen as 

analogous to the predictor terms in regression models. In the location- 
dependent visibility example, including an observation- level location 
effect will account for this visibility effect. When additional effects are 
included, the edge weight will become an estimate of relative sociality 
in the presence of non- social effects. We use a linear combination of 
effects in these examples for simplicity, but the effects could equally 
be modelled as non- linear functions if deemed necessary in context. 
Alternatively dyad-  or individual- level effects can also be included to 
separate out different types of social effect.

The binary data model can also be used for group- based (gam-
bit of the group) data (Whitehead & Dufault, 1999). If being used 
for group data, an additional term in the model can be used to ac-
count for non- independence within group observations. See the 
Supporting Information (S1) for further discussions on these points.

2.1.2  |  Edge weight model: Count data

The same concept as above can also be applied to the case of count 
data, where counts of social events between individuals per sam-
pling period are recorded. First, note that for count data, point es-
timates of edge weights are often also defined as Wij = Xij ∕Dij but 
where Xij is the total number of social events that occurred between 
i  and j, and Dij is the total amount of time a social event could have 
been observed between i  and j.

The edge weight is therefore equivalent to the rate at which i  
and j engaged in a social event per unit time. Let us refer to this 
rate as �ij. When events occur with a fixed rate, the number of 
events expected per unit time is described by the Poisson process 
(Wasserman, 2004). Since we assume that the rate of events char-
acterises edge weights well, then without making any additional as-
sumptions, we can model social events as

where �ij is the underlying rate parameter. When modelled in a 
Bayesian framework, this provides a natural way to model the uncer-
tainty around edge weights because the maximum likelihood estimate 
for �ij is Xij ∕Dij = Wij (Held & Bové, 2014).

Again, this model does not allow observation- level effects to be 
modelled, so we must decompose the aggregated data into the orig-
inal sampling periods. Fortunately, the sum of Poisson- distributed 
random variables is also described by a Poisson distribution. This 
means that the full model can take a similar form to the previous 
model:

where �(n)
ij

 is the rate at which social events occur between i  and j in 
the n- th observation of i  and j, D(n)

ij
 is the length of time of the n- th sam-

pling period for the dyad, and �ij is again the edge weight between i  
and j. As above, the ellipsis represents potential additional effects that 
could be included in the model if necessary. This is discussed in a later 
section and in the Supporting Information (S2).

2.1.3  |  Edge weight model: Duration data

The edge weight model for duration data is slightly more complex 
than those of the binary and count data models, because it models 
two different types of data simultaneously: the duration of social 
events, and the frequency with which they occur. With duration 
data, the edge weight is again calculated using Wij = Xij ∕Dij, but 
where Xij is the amount of time i  and j were seen engaged in a 
social event and Dij is the maximum amount of time i  and j could 
have been seen engaged in a social event. The total amount of 
time Xij is the sum of times from Kij social events. The edge weight 
is then modelled as the proportion of time tij each dyad could en-
gage in a social event that is actually spent engaging in the social 
event:

where �ij is the mean event duration for the dyad and �ij is the 
mean rate of events per unit time for the dyad. Inter- arrival times 
in a Poisson process are distributed according to the exponential 
distribution, so we use this to model the duration of social events 
once they have started. The count of events can again be considered 
to be a Poisson process. Bringing these two assumptions together 
gives the following model (see Supporting Information S2 for the full 
derivation):

The mean event time �ij is modelled inherently in t(n)
ij

 and can be 
recovered from the fitted model afterwards using �ij = �ij ∕�ij.

2.1.4  |  Accounting for social and non- social effects

By modelling social events at the observation- level rather than the 
dyad- level, it is possible to account for observation- level effects 
that may influence the estimated edge weights. An example of this 
is where the study population might move through various locations 

X
(n)

ij
∼Bernoulli

(
p
(n)

ij

)

logit
(
p
(n)

ij

)
=�ij+ …

,

Xij ∼ Poisson
(
�ijDij

)
,

X
(n)

ij
∼Poisson

(
�
(n)

ij
D

(n)

ij

)

log
(
�
(n)

ij

)
=�ij+ …

,

tij = �ij�ij,

X
(n)

ij
∼Exponential

(
�ij∕t

(n)

ij

)

Kij∼Poisson
(
�ijDij

)

logit
(
t
(n)

ij

)
=�ij+ …

.
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with different visibilities, leading to location- dependent missed so-
cial events. Assuming that variation in sociality between location is 
not of direct interest to the researcher, we can include a location 
effect in the model. An example of how this can be achieved in the 
count model is

where L(n)
ij

 is a location effect corresponding to the location of the 
social events observed for the dyad ij in the n- th observation pe-
riod. The location effect has an adaptive normal prior centered at 
zero (often known as a random effect). The location effect is de-
signed to capture the differences in visibility at different locations. 
Note that if more direct information such as vegetation density is 
available that can directly model, for example, visibility, this will al-
ways be preferable to weaker proxy variables. In theory, the effect 
of visibility on edge weights will always be negative but we choose 
to model it without bounds. This is because the true visibilities in 
different locations are unknown, so the edge weights cannot be 
estimated exactly, only proportionally. It is therefore unnecessary 
to place an upper bound on the visibility effect, making the model 
easier to fit.

Depending on the assumed causal process that generates ob-
servations, it will not always be possible to control for non- social 
effects in this way, as the social effect of interest may partially 
be borne out through apparent non- social effects, such as space 
use. For example individuals may genuinely be more social in some 
locations than others, and controlling for location would remove 
the social effect of interest. A discussion on the considerations 
around modelling non- social effects is included in the Supporting 
Information (S7).

3  |  DOWNSTRE AM ANALYSIS WITH 
UNCERTAINT Y

The previous section has shown how uncertainty can be estimated 
over edge weights. Once these estimates have been obtained, it 
is then possible to conduct various types of statistical analysis 
on the network while propagating uncertainty through the entire 
analysis. This approach will lead to lower ‘false positive’ error rates 
because network quantities will have higher variances. Despite 
this, because the uncertainty captured by BISoN reflects true un-
certainty in the data, it will also have a ‘false negative’ error rate 
no higher than comparable analyses that do not quantify uncer-
tainty. In this section we will discuss how several common types 
of social network analysis can be applied to social networks con-
structed with BISoN edge weight models. In particular, we outline 
how three specific types of network analysis can be conducted: (1) 
testing for non- random edge weights, (2) dyadic regression and (3) 
nodal regression.

3.1  |  Testing for non- random edge weights

BISoN enables a Bayesian test analogous to the classic non- random 
association test developed by (Bejder et al., 1998) from a species 
co- occurrence test developed by (Manly, 1995), and originally pro-
posed as the ‘chance sociogram’ by (Moreno & Jennings, 1938). At 
its core, this test asks whether the structure of an observed network 
is an artefact of sampling alone or if there is genuine variation in 
edge weights between individuals. If the structure of an observed 
network is simply due to sampling, then there is no variation in edge 
weight, and each dyad is equally likely to engage in social events as 
all other dyads. In BISoN, this is equivalent to

where � is now a single edge weight parameter shared between all 
dyads, indicating no variation in underlying edge weights between 
dyads. This model constitutes the null hypothesis H0 of random 
edge weights. This can be compared to the alternative hypoth-
esis H1 of non- random edge weights, where the � parameter is 
replaced with a dyad- level parameter �ij, allowing each dyad to 
exhibit a different edge weight. In a Bayesian context, these two 
models (H0:�ij = � vs. H1:�ij ≠ �) can be compared using the Bayes 
factor. Instead of attempting to reject the null model, as in null 
hypothesis significance testing, the Bayes factor quantifies the 
support for or against the hypotheses. The Bayes factor in favour 
of H1 over H0 is defined as

where P
(
H1|X

)
 and P

(
H0|X

)
 denote the probability of the alterna-

tive hypothesis and the null hypothesis given the data X respec-
tively. P

(
X|H1

)
 and P

(
X|H0

)
 are known as the marginal likelihoods, 

and can be estimated numerically from a fitted model (Gronau 
et al., 2017). The Bayes factor can be directly interpreted as the 
relative likelihood of the competing hypotheses. For example, a 
Bayes factor of 5 in favour of H1 over H0 would indicate that H1 
is 5 times more likely than H0 given the data and model. A useful 
property of Bayes factors is that they can quantify support for 
or against hypotheses and can even be used to compare multiple 
hypotheses.

The original test from (Bejder et al., 1998) is extendable to test for 
non- random associations within categories (such as sex combination 
or age difference). However, it requires continuous variables such 
as age difference to be discretised into categories. Discretising vari-
ables is generally not ideal, and removes information, weakens sta-
tistical power, and can lose useful insights (Altman & Royston, 2006). 
Our proposed test can account for variables such as age without dis-
cretisation. This can be achieved by adding variables to the predictor 
in the following way:

X
(n)

ij
∼Poisson

(
�
(n)

ij
d
(n)

ij

)

log
(
�
(n)

ij

)
=�ij+L

(n)

ij

L
(n)

ij
∼Normal

(
0, �2

L

)
,

X
(n)

ij
∼Poisson

(
�
(n)

ij
D

(n)

ij

)

log
(
�
(n)

ij

)
=�+L

(n)

ij

,

BF10 =
P
(
H1|X

)

P
(
H0|X

) =
P
(
X|H1

)

P
(
X|H0

)
P
(
H1

)

P
(
H0

) ,
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where �Age is a parameter describing the effects of age on the log rate 
of social events, and Aij is the age difference for the dyad ij. In addition 
to modelling continuous variables, this approach to the non- random 
edge weight testing also makes it possible to compare multiple com-
peting hypotheses of edge structure, model the effects of different 
dyad- level covariates, and compare hypotheses relating to global net-
work metrics such as network density or clustering coefficients.

3.2  |  Dyadic regression

A common type of analysis in studies of social networks is to con-
sider factors that affect edge weights. This type of analysis is often 
called dyadic regression, where explanatory factors such as sex or 
age difference are regressed against edge weight. The edge weights 
in dyadic regression are non- independent, as variables such as age 
difference or sex difference are inherently linked to individual- level 
attributes. This means that effects due to age or sex in individual i  
affect all dyads that connect i . This non- independence can be con-
trolled for by including node- level effects in the regression (Tranmer 
et al., 2014).

Using the count data example discussed earlier, we propose to 
conduct dyadic regression using a standard regression model of the 
form:

where �0 is the intercept parameter, �1 is the slope parameter, ui are 
parameters accounting for the effect of some edges sharing the same 
node, � is the standard deviation of the residuals, and �u is a hyper-
prior for the standard deviation of the edge- sharing effect (undefined 
here to avoid suggesting a default prior). The u parameters are used 
to capture non- independence of dyads, and are sometimes known as 
multi- membership effects (Tranmer et al., 2014). Further discussion of 
multi- membership models in social network analysis can be found in 
(Hart et al., 2021). The dashed line indicates that the model can be fit in 
two separate parts: the first part being the edge weight model, and the 
second part being the dyadic regression model. It is not strictly neces-
sary to separate out the model like this, but doing so makes it possible 
to fit the edge weight model once and conduct multiple types of anal-
ysis on it afterwards without fitting the entire model again. The �0 and 
�1 parameters can be interpreted in the same way as usual regression 
coefficients, and will be accompanied with posterior distributions de-
scribing plausible values of the coefficients.

The model shown here is intended as a minimal example of a sim-
ple linear regression with node- level effects to account for the non- 
independence of edges. The regression can be extended to support 
different family distributions, hierarchical effects, non- linearities 
and more. We have included examples of diagnostics and some ex-
tensions in the example code.

3.3  |  Nodal regression

The final common type of network analysis we will cover here is 
nodal regression, where a regression is performed to analyse the re-
lationship between a nodal network metric (such as centrality) and 
nodal traits (such as age and sex). These analyses are usually used to 
assess how network position depends on various biological factors, 
but can also be used where network position is a predictor. Since 
node metrics are derivative measures of the network, uncertainty in 
edge weights should ideally propagate through to node metrics, and 
on to coefficients in regression analyses, giving an accurate estimate 
of the total uncertainty in inferred parameters. The core of the nodal 
regression is similar to dyadic regression, taking the form

where �0 is the intercept parameter, �1 is the slope parameter, and � is 
the standard deviation of the residuals. Mi(�) denotes the node metric 
estimates when applied to the edge weights estimated in the top part 
of the model.

Calculating node metrics within the model may present a practi-
cal challenge when using standard model fitting software, as many 
node metrics cannot be described purely in terms of closed- form 
equations (Freeman, 1978). In this case, splitting up the model 
along the dashed line becomes an important step, as it allows the 
edge weights to be estimated using a standard piece of software, 
and leaves the regression part of the model to be fit using a sam-
pler that supports numeric estimates of network centralities. As 
part of the code we have made available, we have written a custom 
Metropolis- Hastings sampler that maintains the joint distribution 
of edge weights, rather than sampling edge weights independently. 
This ensures that the effect of any structure in the observation data 
(such as location effects) is maintained and propagated through to 
the node metric estimates, and subsequently to regression coeffi-
cient estimates.

4  |  E X AMPLE: SYNTHETIC DATA SET

To demonstrate our framework, we present an example based 
on a synthetic dataset of social events simulating count data. The 
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synthetic dataset was generated by assigning underlying undirected 
edge weights to 28 dyads corresponding to all possible pairs of 8 
individuals living in a closed social group. Individuals 1– 4 were as-
signed to a treatment condition and individuals 4– 8 were assigned 
to a control. Dyads between two individuals within the treatment 
condition were assigned a higher edge weight than other dyads, to 
induce an effect of treatment condition on centrality. Social events 
were simulated from a Poisson point process based on both the un-
derlying edge weight and an observation- level, non- social effect of 
location. There were six possible locations for observations of social 
events that were used to simulate the effect of varying visibilities 
in different locations. Between 10 and 50 observation periods of 
fixed length (arbitrary time units) were simulated for each dyad. Full 
details of the simulation can be found in the example code.

The synthetic dataset describes the count of events for each ob-
servation period, therefore the appropriate model for this data is the 
count model. The full model was defined as

where X(n)

ij
 is the count of social events between i  and j in their n- th 

observation period, �(n)
ij

 is the social event rate from the corresponding 
period, D(n)

ij
 is the length of the corresponding sampling period (fixed 

to 1 here for simplicity), �ij is the dyad- level edge weight, and L(n)
ij

 is an 
observation- level effect corresponding to one of the six locations. The 
prior distributions were chosen using a prior predictive check to ensure 
the parameters only take on biologically plausible values. The model 
was implemented in Stan, and fitted in R, using the package Rstan (R 
Core Team, 2020; Stan Development Team, 2020). Other approaches 
such as integrated nested Laplace approximation may also be used, see 
the Supporting Information for a brief discussion of available fitting 
algorithms (S6) (Rue et al., 2009).

The model fit was checked visually by examining the chains 
and computing the Gelman- Rubin R̂ convergence statistic 
(Gelman & Rubin, 1992). Once the model fit was verified, the 

parameter estimates of edge weights �ij between dyads were ex-
tracted. Figure 2a shows a sociogram visualisation of the network 
based on edge weight estimates �ij, where the bands around edges 
are proportional to the widths of the 95% credible intervals. At this 
point the estimated network can be treated much the same as a 
standard network of point estimates, as long as care is taken to pre-
serve uncertainty through subsequent analyses. To demonstrate the 
power of BISoN for conducting downstream analyses, we conducted 
a regression analysis where the response was eigenvector central-
ity and the predictor was a categorical variable with two categories, 
representing the treatment condition. To improve model fit, the re-
sponse was standardised by subtracting the mean and dividing by 
the standard deviation. The model specification for the regression 
analysis was

where EVi denotes the standardised eigenvector centrality for the i
- th node, �Treat[i] is the effect parameter corresponding to the treat-
ment condition (control or treatment) for the i- th sample, and � is the 
standard deviation of the residuals. The regression model was fit using 
our custom Metropolis- Hastings sampler and chain convergence was 
checked visually and with the R̂ statistic. Posterior predictive checks 
were used to ensure the model fitted the data well.

The posterior distributions of unstandardised eigenvector cen-
tralities for the eight nodes are shown in Figure 2b. The treatment 
condition parameters are interpretable as the mean standardised 
eigenvector centrality of nodes for each of the two conditions. 
The 95% credible interval for the control parameter �Control was 
[
− 1.27, − 0.36

]
, with a median of − 0.83, and for the treatment pa-

rameter �Treatment was 
[
0.35, 1.29

]
, with a median of 0.85. One of the 

many benefits of Bayesian inference is that posterior distributions 
of different parameters can themselves be used gain statistical in-
sights. In this case, the question of real interest is the difference 
between the two treatment conditions: �Treatment − �Control. This 
quantity can simply be calculated by subtracting the posteriors cor-
responding to the treatment parameter from those corresponding to 

X
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(n)

ij
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(n)

ij

)

log
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�
(n)

ij
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=�ij+L
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,

F I G U R E  2  (a) Sociogram visualisation 
of a network generated from uncertain 
edge weights. The width of edges denotes 
their weights, and the bands around the 
edges are proportional to the width of 
their 95% credible intervals. Low edge 
weights are arbitrarily removed from 
this plot (though not the analysis) for 
visualisation purposes. (b) Posterior 
distributions of node- level eigenvector 
centralities for each node in the network. 
Nodes 1– 4 are those assigned to the 
treatment and nodes 5– 8 to the control.
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the control parameter. We found that the difference in standardised 
centrality between treatment conditions, �Treatment − �Control, had a 
95% credible interval of 

[
0.99, 2.33

]
 and a median of 1.69. The pos-

terior distribution of the difference is also shown in Figure 2b. This 
indicates that the treatment condition appears to correlate strongly 
with a higher centrality.

This brief example outlines just some of the types of analysis 
that can be carried out in our framework. We have included several 
additional examples in the code included with this paper.

5  |  E X AMPLE: SOUTHERN RESIDENT 
KILLER WHALES

To demonstrate BISoN on empirical data, we used a publicly- 
available dataset of near- surface physical contact interactions 
between 22 southern resident killer whales (Orcinus orca) (Weiss 
et al., 2021). We fitted a BISoN count edge model to the data and 
ran a regression analysis to study the associations between node 
strength and both age and sex. See Supporting Information (S4) 
for replicable code of this analysis. We opted for a standard linear 
model with a Gaussian family distribution, implemented using the 
bison_brm function in bisonR. From previous work, we expected a 
negative association between node centrality and age, and we also 
expected males to be less central than females (Weiss et al., 2021). 
Our findings were in line with this, and we found a negative as-
sociation of age with centrality, with an estimated age coefficient 
of −0.57 (95% CI: −0.80, −0.35). We also found that males had a 
lower centrality than females, with an estimated sex coefficient 
of −9.99 (95% CI: −15.32, −4.67). We hope this findings serve as a 
useful empirical example of how BISoN can be used to run regres-
sion analyses.

6  |  DISCUSSION

In this paper, we presented BISoN, a general, highly flexible frame-
work for modelling and analysing social networks. BISoN uses models 
of data collection processes to quantify uncertainty in edge weights. 
These models are versatile, and can be extended to capture addi-
tional social and non- social effects. We demonstrated how uncer-
tainty in the network can then be propagated through to subsequent 
analyses, such as regressions involving network centrality. We have 
provided example code for how to implement the BISoN framework 
in R with Stan at: https://doi.org/10.5281/zenodo.6603327.

BISoN acknowledges the inherent uncertainty in inferred edge 
weights, and by propagating this through downstream analyses 
can offer nuanced, balanced and powerful statistical analyses, fo-
cused on quantifying biological effects and the uncertainty around 
them. As well as propagating uncertainty into downstream analyses, 
the edge weight model itself can also be adapted to ask questions 
about individual variation in gregariousness, reciprocation of di-
rected behaviours, and underlying differentiation of edge weights, 

among many others (see the Supporting Information S3 for further 
information).

We see BISoN as a generalised synthesis and extension of a 
wide range of existing methods. In particular, for binary data, BISoN 
implements a variant of the beta binomial measurement error model, 
which has been previously used in animal social network analy-
sis (Farine & Strandburg- Peshkin, 2015; Fink, 1997; Fuller, 1987). 
BISoN's mechanism for modelling multiple effects was inspired 
by generalised linear models, and can be seen as an extension 
of social relations models (Kenny & La Voie, 1984; McCulloch & 
Searle, 2004). This concept was introduced to the animal social 
network literature by (Whitehead & James, 2015) as generalised 
affilitation indices. The BISoN framework shares some conceptual 
similarities with the recently developed STRAND framework, but 
implements measurement models specifically designed for com-
mon types of empirical data, and allows propagation of uncertainty 
to downstream analyses.

One of the main benefits of our framework is its inherent flexi-
bility but this also introduces a number of considerations when using 
it. Setting priors is an important part of Bayesian modelling, and it is 
important that they reflect realistic prior expectations of parameter 
values (van de Schoot et al., 2021). The priors included in the exam-
ple code are not intended as good defaults, and instead the priors 
should be determined by careful consideration of the meaning of the 
parameter, prior expectations of likely values for the parameter, and 
using prior predictive checks (Conn et al., 2018). It is also important 
to note that using additional terms and altering the predictor part of 
the model can change the interpretation of model parameters, which 
may require the priors to be altered as well.

Another consideration is that network centrality measures based 
on binarised edges, such as degree and transitivity, have a slightly dif-
ferent interpretation in this framework. This is because, even though 
a particular dyad may never have been seen interacting in, say 100 
samples, it is still possible that they would interact in the the 101st 
sample. The edge weight models BISoN uses naturally acknowledge 
this, so there is uncertainty around all edge weights. If binarised 
centralities are needed, there are two possible ways to use them in 
BISoN: (1) the edge weights can be thresholded, to generate a binary 
distribution on 0 and 1 for each edge; or (2) the edge weights can be 
assigned to categories, and membership of a specific category (e.g. 
weak or strong) becomes the new binary measure, again maintaining 
uncertainty over the membership. Option 1 can simply be applied 
to the sampling posterior by choosing a biologically relevant cut- off 
point and applying the threshold. In some cases this approach may 
prove challenging because it requires mapping domain knowledge 
and the question, in context, to a single threshold point for the anal-
ysis. Option 2 requires partial pooling over edge weights, assuming 
that they are drawn from a mixture of distributions, and assigns each 
edge weight to each type of connection with a certain probability. 
This approach is conceptually similar to the social bond categori-
sation method introduced by (Ellis et al., 2021). If it is biologically 
sensible to believe there are different categories of connections in 
a system, this can provide a natural and principled way to compute 
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binary network measures (see Supporting Information S5 for an ex-
ample of how to do this).

A final consideration of our modelling framework is that, though 
non- social effects can be modelled in the predictor, this alone can-
not remove some non- social effects, and could instead absorb the 
social effect of interest, depending on the underlying causal system. 
We recommend that these effects be treated with caution, and used 
only with explicit assumptions about the underlying causal system. 
These considerations are also discussed in further depth in the 
Supporting Information (S7) using causal models.

The versatility of our proposed framework makes the approach 
powerful, but comes with a number of limitations. Though highly 
flexible, one important constraint on BISoN is that knowledge of 
sampling effort will be required to properly model the processes 
that generate observations. On a practical level, BISoN models will 
usually need to be fit using a Markov chain Monte Carlo (MCMC) 
sampler. MCMC can be slow and computationally expensive, espe-
cially with large datasets. If additional effects are not included, this 
issue can be partially overcome by aggregating data at the dyad- 
level and fitting collapsed versions of the models (see Supporting 
Information S8). Furthermore, MCMC methods do not guaran-
tee convergence, so additional checks will be required to make 
sure the sampler has performed correctly (Cowles & Carlin, 1996; 
Draper, 2008). Together these limitations make the process of model 
building, fitting and checking a more complex undertaking than sim-
ply building networks from point estimates. However, in return for 
these investments, researchers will have access to a powerful suite 
of tools that can make maximum use of hard- won data.

The BISoN framework is open- ended and can be extended in 
many ways. One particularly useful aspect of the Bayesian approach 
is the ability to treat data with uncertainty. This allows missing 
data to be modelled within the statistical model without the need 
for repeated model fitting routines. Furthermore, missing data can 
be estimated from other variables, which could be especially use-
ful in populations where traits such as age are often estimated or 
unknown (Little & Rubin, 2002). Another potential direction for the 
framework is to move beyond static sociality measures and instead 
explicitly model the dynamics of edge weights, as discussed by 
(Pinter- Wollman et al., 2014). Dynamic edge weights could be mod-
elled by incorporating autoregressive time series models into the 
framework (Wei, 2013). This would make it possible to model the 
general trends in edge weights, how changes in edge weights prop-
agate through the network, and even model flow processes such as 
disease or information transmission.

7  |  CONCLUSION

Uncertainty affects all social network analyses, yet until now has 
been difficult to quantify. The BISoN framework we have introduced 
is designed to help quantify uncertainty and ensure it is preserved 
through subsequent analyses to give robust and reliable statistical 
inference. Our framework is general and widely applicable to almost 

any type of social relational data. Estimated edge weights from our 
models can be used with many different types of downstream analy-
sis while propagating uncertainty. We believe the ideas presented 
in this paper are only the first step in developing powerful, flexible 
and robust statistical models for social networks. BISoN has the po-
tential to enable us to ask a wide range of nuanced questions, and 
obtain a deeper insight into the nature of sociality.
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