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Since the first animal antimicrobial peptides (AMPs) were discovered in insects, Drosophila melanogaster has emerged 
as a powerful model for their characterization. Drosophila AMPs have been used extensively to monitor the activity of 
the Toll and Imd NF-kB pathways, but little was known of their precise functions. In this review, we summarize recent 
findings on the function of Drosophila AMPs not only for antimicrobial defense, but also in the gut, tumor control, and 
neurology. The integration of these new studies allows a new framework to be drawn that explains how AMPs can 
contribute simultaneously to microbe killing whilst also regulating important host cellular functions. These functions 
require that AMPs target not only negatively charged microbes but also aberrant host cells.  
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Introduction 
 
Antimicrobial peptides (AMPs) are small, positively charged peptides that contribute to innate 
defenses by targeting the negatively charged membranes of microbes [1,2]. Upon encountering 
microbial cell envelopes, AMPs get embedded in the hydrophobic regions of lipid membranes leading 
to membrane destabilization and ultimately cell death [3]. Since the first animal AMPs were 
discovered in silk moths [4], insects and particularly Drosophila melanogaster AMPs have 
commanded a great deal of attention. There are currently seven well-characterized families of 
inducible AMPs in D. melanogaster, including 21 AMP/AMP-like genes (Box 1). The activities of these 
AMPs have been determined either in vitro or deduced by comparison with homologous peptides of 
other insects: Drosomycin (seven genes) and Metchnikowin show antifungal activity [5,6]; Cecropins 
(four inducible genes) and Defensin have both antibacterial and some antifungal activities [7–10]; and 
Drosocin, Attacins (four genes) and Diptericins (two genes) primarily exhibit antibacterial activity [11–
15]. While most of these genes are strongly induced in the fat body in response to systemic infection, 
many show specific patterns of expression in tissues such as the trachea, gut, ganglia, or 
reproductive tracts [16,17]. In the systemic response following microbial recognition, these AMPs are 
regulated by the Toll and Imd NF-kB signaling pathways. Accordingly, AMPs are often used as 
readouts to monitor the activity of these immune pathways. Beyond the well-known AMPs, there are a 
number of other short peptides induced upon infection whose activities await characterization. Over 
15 years after their initial discovery [18], one group of peptides regulated by the Toll pathway was 
united as the ‘Bomanins,’ which share a 16-residue domain [19]. A deletion removing ten of the twelve 
Bomanin genes revealed that they play an essential role in defense against Gram-positive bacteria 
and fungi [19]. While Bomanins contribute to microbial killing in the fly hemolymph, microbicidal 
activity in vitro has not yet been demonstrated [20]. Owing to technical limitations now solved by 
CRISPR/ Cas9, it is only recently that generating loss-of-function mutants for AMP genes has become 
approachable. Here we summarize recent functional data on AMPs in host defense, microbiota 
control, and other roles beyond infection as these immune peptides have been implicated in brain 
function, tumor control, aging, and neurodegenerative disease. We then try to unify these findings by 
proposing a framework for how AMPs can work both in host defense and other physiological 

processes. AMPs as antimicrobials controlling pathogens Many studies have described the 
action of Drosophila AMPs using purified or recombinant peptides, revealing that they display potent 
antimicrobial activity in vitro. However it was unclear to what extent these AMPs contribute to host 
defense in vivo. Previously, Tzou et al. [10] combined immune-deficient mutations with 
overexpression of endogenous AMPs, rescuing survival in their immune deficient flies. The rescue 
phenotypes observed in this study were consistent with previous in vitro studies; for instance, the fly 
Defensin was effective in suppressing Gram-positive bacterial growth [21]. In a separate study, 
knockdown of AttC or DptB by RNAi resulted in increased alphavirus replication upon infection [22]. 
Recently, Hanson et al. [23] deleted multiple AMP families of D. melanogaster, generating various 
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individual and combined AMP mutants, including a strain lacking ten AMP genes. This study shows 
that the classic Drosophila AMPs primarily defend against Gram-negative bacteria and some fungi. 
Surprisingly, flies lacking these classic AMPs showed little susceptibility to Gram-positive bacterial 
infection, while Bomanins were essential to defense against Gram-positive bacteria and fungi. 
Collectively, these studies link the logical organization of Toll and Imd signaling, showing that Toll or 
Imd-specific microbes elicit the production of downstream effectors required to fight the classes of 
microbes that activate these pathways (Figure 1). This functional in vivo study also shows that groups 
of AMPs function in additive or synergistic fashions, complementing recent findings in vitro and in 
beetles [24,25]. However it also highlighted highly specific and important roles for individual AMPs in 
host-pathogen interactions. For instance, Diptericin alone appears to be required for defence against 
Providencia rettgeri infection, despite Diptericin being dispensable to defense against other 
Providencia species. The specific interaction between Diptericin and P. rettgeri is furthered by the 
observation that an amino acid polymorphism in the Diptericin A gene predicts survival to P. rettgeri 
[26]. Together, this suggests that Diptericins contribute to survival to P. rettgeri-like bacteria in the 
wild. Another example of specificity is the critical requirement of the proline-rich AMP Drosocin in 
defense against Enterobacter cloacae [23]. It would have been impossible to predict such unbridled 
specificity from in vitro approaches, highlighting that our present understanding of the precise roles for 

AMPs in an in vivo context is just the tip of the iceberg. AMPs in microbiota control In contrast to 
systemic immunity, the immune responses in epithelial surfaces such as the gut must tolerate the 
presence of beneficial microbes while responding to and eliminating potential pathogens. This implies 
a tight and specific regulation of the immune response in epithelia, carefully balancing immune 
activation and bacterial tolerance. In plants, hydra, other insects, and mammals, it has been proposed 
that the release of AMPs not only suppresses pathogens, but also shapes the microbiota by 
promoting colonization by beneficial microbes from the environment [27,28]. The role of AMPs in 
shaping the intestinal microbiota has not been characterized to the same extent in Drosophila. AMPs 
are mostly produced in the anterior midgut where they are thought to eliminate ingested pathogens; 
though AMP expression patterns in the digestive tract are complex [17,29]. Transcriptome analyses 
comparing the gut transcriptome of germ-free and conventionally reared flies have shown that the 
microbiota triggers the expression of several AMP genes in the Drosophila gut, notably Attacins AttA 
and AttD mostly regulated by the Imd pathway, and also Drosomycin-like 2 and 3 regulated by JAK-
STAT [30,31]. As microbiota load increases upon aging, expression of AMPs increases in a 
compensatory manner [32,33]. The higher bacterial count in the gut of Imd-deficient flies supports the 
notion that intestinal AMPs control the microbiota. However, the Imd pathway has other immune 
functions in the gut such as regulating enterocyte shedding [34] and digestive enzymes [91], and 
Duox-dependent and Nox-dependent production of reactive oxygen species [35]. Peristaltic 
movement and acidity could also be major players in the regulation of the gut microbiota [36–38]. It 
has been proposed that Drosophila symbiotic microbes promote Imd signaling for the production of 
immune tolerance genes rather than production of antibacterial agents [39]. Accordingly, the 
expression of several AMP genes, but not negative regulators (e.g. PGRP-LB, PGRP-SC) is 
repressed in the gut by the transcription factor Caudal. In caudal mutants with high AMP expression in 
the gut, there is a shift in microbiota composition towards deleterious microflora [84]. This supports 
the notion that chronic AMP expression might actually select for AMP-resistant members of microbial 
communities that would lead to increased intestinal damage. Use of AMP mutant flies may help to 

better define the role of AMPs amongst other mechanisms in the control of microbiota. Antitumor 
role of AMPs In vitro studies show that some AMPs have anti-tumor activity, and these AMPs are 

currently the focus of translational studies to be used as a treatment in combination with cellular 
antitumor therapy [40]. Whether these activities apply in vivo for endogenous AMPs, and what 
mechanisms allow these molecules to attack aberrant host cells are debated. Two recent studies 
[41,42] have highlighted the antitumor effect of Drosophila AMPs. Araki et al. [41] found that several 
AMP genes are upregulated in Drosophila mxcmbn1 larvae, a mutation causing hematopoietic tumors. 
Downregulation of Toll and Imd immune pathways exacerbated tumor growth, while overexpression of 
specific AMPs significantly suppressed hematopoietic organ hyperplasia. Their study reveals that 
some AMPs have cytotoxic effects that enhance apoptosis exclusively in the tumor cells in vivo. In 
another study, Parvy et al. [42], demonstrated that Defensin has potent anti-tumor activity in a disc-
large (dlg) imaginal disc tumor model; Parisi et al. previously showed that humoral components of the 
immune system restrict dlg tumor growth [43]. In their recent study, Parvy et al. [42] show that 
Defensin, remotely secreted from tracheal and fat body tissues, cooperates with the Drosophila TNF-
like molecule Eiger to drive tumor cell death. Interestingly, Eiger produced by macrophages provokes 
exposure of phosphatidylserine (PS) in tumor cells altering the charge of the outer leaflet of the 
plasma membrane. The addition of PS would make these tumors selectively sensitive to the action of 



Defensin. Using a Defensin mutation, they further revealed that Defensin contributes to tumor cell 
elimination by promoting apoptosis. Parvy et al., provides one of the first in vivo demonstrations for an 
endogenous AMP acting as an anti-cancer agent, and describes a mechanism that explains tumor 
cell sensitivity to the action of AMPs [42]. Further studies should decipher whether AMPs indeed 
contribute to tumor elimination in more physiologically relevant contexts, and what AMP 

characteristics contribute to tumor elimination. Impact of AMPs on brain function and 
neurodegeneration The potential for AMPs to act in the normal functioning of the nervous system is 
implied by commonalities between AMPs and neuropeptides (reviewed extensively in Ref. Brogden et 
al. [44]). Amongst many immune processes, various Drosophila antimicrobial peptides may be 
involved in gene networks relating to memory [45]. Surprisingly, the antibacterial peptide Diptericin B 
(DptB) and the glucan binding like 3 gene (GNBP-like3) appear to be specifically required for long-
term memory formation [46]. Importantly, the tissue of expression played a key role in memory effects: 
GNBP-like3 expression derived from neurons, while DptB was expressed by the perineural fat body 
specific to the fly head. How non-cell-autonomous DptB can affect memory formation is puzzling, but 
an unknown host factor may import AMPs like DptB from the hemolymph into nervous tissue. In 
Caenorhabditis elegans nematodes, the antimicrobial peptide NLP-29 drives neurodegeneration 
through binding to its cognate G-protein coupled receptor NPR-12 [47]. Finally, Toda et al. [48] 
recently described a Drosophila neuropeptide nemuri, with similarity to a vertebrate cathelicidin that 
both regulates sleep and promotes survival upon infection. Globally these studies suggest that certain 
AMPs could be important regulators of brain function; however, how they contribute to these 
processes remains an enigma. Recent evidence pertaining to neurodegenerative diseases has also 
implicated AMPs as causative agents. There is a growing appreciation that the Alzheimer’s peptide 
Amyloid-ß is in fact an antimicrobial peptide [49], and that Alzheimer’s disease may in part be an 
immune process [50]. An antimicrobial role for the Parkinson’s disease protein a-synuclein has also 
been described, further supporting a link between neurodegenerative diseases and innate immune 
mechanisms [51,52]. However the precise fashions through which AMPs promote neurodegeneration 
remain unresolved. While functional evidence has not established AMPs as causative agents of 
neurodegeneration in flies, a number of studies implicate Toll and Imd NF-kB immune signaling in 
neurodegenerative diseases. Toll signalling molecules are involved in normal brain development [53], 
and suppressing Toll activity rescues neurodegeneration in Drosophila models of ALS, Amyloid-ß 
toxicity, and traumatic brain injury [54–56]. Meanwhile in the fly model for Ataxia-Telangiectasia 
(ATM), loss-of-function of ATM leads to Relish-dependent neurodegeneration [57]. Similarly, knockout 
of the negative regulator of Imd signalling dnr1 leads to neurodegeneration associated with a strong 
increase in AMP expression in the head. Blocking AMP expression by silencing Relish in glia 
suppresses dnr1-induced neurodegeneration [58]. An interesting recent study further showed onset of 
neurodegeneration in flies correlates with aging-associated increases in antimicrobial peptide 
expression in the head [59], and overexpression of AMPs is sufficient to promote neurodegenerative 
symptoms [58]. Meanwhile in human disease models using a rough-eye phenotype, knockdown of 
Relish and even individual AMPs can somewhat rescue eye morphology following heterologous 
expression of disease proteins [85]. Some studies also implicate the intestinal microbiota as a 
contributor to age-dependent neurodegeneration and suggest that this effect is mediated by Imd 
signalling [59,60]. While there is no doubt that the Imd pathway contributes to neurodegeneration and 
brain aging, the precise role of AMPs and other Imd-related processes remains to be investigated. It 
is noteworthy that components of the Imd pathway can regulate autophagy in the brain and could also 
contribute to Imd mediated neurodegeneration [61,62,86]. The key question is now to determine 
whether AMPsare passive bystanders in neuronalprocesses, or if they are active players in neuronal 

homeostasis. AMPs and aging Aging in humans is associated with senescence of the immune 
system with two symptoms: reduced ability to combat infection and a chronic activation of 
inflammation (aka ‘inflammaging’). This is also observed in Drosophila that display an age-dependent 
reduction in hemocyte number and activity, and increasing lag in mounting the systemic antimicrobial 
response [63–65]. Importantly in the present context, an increase in antimicrobial peptide expression 
is a hallmark of aging in Drosophila [66,67]. It is tempting to speculate that this increase is somehow 
correlated with increased abundanceofbacteriain thegut.Howevera recent study showed that while the 
downstream components of the Imd pathway were involved in increased AMP expression with aging, 
Imd itself was not associated with this increased AMP expression [68]. This increased systemic 
activation of immune genes is seemingly derived through a separate mechanism from canonical Imd 
signaling, possibly through insulin signaling (e.g. FOXO), which is known to drive expression of some 
AMPs [69]. Age-associated increase in oxidative stress is also likely to increase the involvement of 
immune processes to control damaged tissues [70,71]. Supporting the involvement of AMPs in 
response to oxidative stress, Diptericin overexpression rescues viability in flies subjected to hyperoxia 



[72]. The aging-associated increase in systemic AMP expression could contribute positively or 
negatively to aging, or may simply be a symptom of aging (discussed in Ref. Min and Tatar [64]). All 
these studies on neurodegeneration and aging converge on the notion that AMPs are beneficial in 
early stages of life by fighting infection, but may be deleterious in older flies. Such interactions are 

supported by trade offs between fitness and inducible immune defenses [73,74,87]. Conclusion: a 
general framework to understand the role of AMPs on host cells Functional studies have now 
validated the general roles for AMPs in host defense; however, a surprising observation is the high 
degree of specificity for some AMPs in host-pathogen interactions. Also changing is the notion that 
Drosophila AMPs are evolutionarily static as recent studies indicate they evolve rapidly at the 
sequence level under both diversifying and balancing selective pressures (Box 2 on AMP gene 
evolution). These findings of Darwinian selection on AMPs come at a time when functional studies are 
highlighting multitudinous roles for AMPs in various cellular processes beyond infection. While famous 
for its role in the antibacterial immune response, the Imd pathway is also involved in many processes 
such as cell competition, virus control, resistance to dessication, cell delamination, resistance to 
hyperoxia or hypoxia, autophagy, and more. The existence of AMP-deficient lines now allows us to 
disentangle the precise role of AMPs compared to other downstream targets of Imd in these 
processes. We now need a general framework to understand how microbe-killing AMPs can also 
target host cells. The common opinion is that AMPs as cationic molecules specifically target bacteria 
and fungi due to their negatively charged membranes, while eukaryotic membranes are protected by 
virtue of being more positively charged and by containing cholesterol. The fact that AMPs can target 
specific host cells such as tumor cells suggests that these eukaryotic cells undergo major changes at 
the membrane that render them susceptible to AMPs. Phosphotidylserine is a negatively charged lipid 
found in the inner membrane layer, and PS exposure is used as an ‘eat-me’ signal to recruit 
phagocytes to apoptotic cells [89,90]. The study by Parvy et al. [42] suggests that PS exposure is not 
just a signal for phagocytes but could make cancer cells sensitive to the action of AMPs. Thus, both 
cellular phagocytosis and humoral AMPs contribute to eliminate abnormal cells that are marked for 
elimination by changes in their membrane. PS exposure could therefore be a mechanism signaling 
aberrant non-self to the immune system that allows control of tumors. Brain tissues are extremely 
enriched in PS [75], and it is tempting to speculate that exposure of PS by neurons marks them to be 
targeted by both glial cells and AMPs (Figure 2). Increased immune expression, experienced 
following infection or injury, could lead to AMP-mediated neuron destruction culminating in 
neurodegeneration. Indeed, events of neurodegeneration are often increased upon infection and brain 
injury. It would be interesting to know if PS exposure can also modulate AMP-neuron interactionsin 
contexts such as memory formation. Changes in membrane composition may thus underlie the 
interaction of the immune system with altered self in both normal and pathologic situations. Future 
studies need to decipher how the immune system is activated by tumors or in the nervous system. 
Such studies could reveal further synergy of cellular and humoral responses to promote tumor 
elimination and perhaps even neurodegeneration. Far from being simple boring immune effectors, 
AMPs appear to be involved in physiological processes beyond expectation. Studies in Drosophila 
utilizing its exquisite genetics may shed light on their role, an important next step for rapid 
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Figure captions 

 

Box 1 Summary of Drosophila AMPs 

The 3D structures of antimicrobial peptides are known for some AMPs (left) [76,77]. The present summary of AMP-like genes and 

Bomanins (right) describes gene family members, genomic location, concentration in vivo upon immune activation, size, and gene-

specific characteristics. 

 

Figure 1 

A simplified overview of the systemic antimicrobial response. Recognition of certain pathogen types leads to downstream production of 

AMPs specifically useful against those pathogen types. In most cases these effectors show broad-spectrum importance against many 

pathogens (e.g. Bomanin, the combined action of Drosocin, Attacin, and Diptericin). However in some instances, specific AMPs are the 

primary contributors to a successful defense response (Diptericin against P. rettgeri, Drosocin against E. cloacae). 

 

Box 2 AMP gene evolution  

AMP genes show widespread copy number variation in different lineages, suggesting that duplication and gene loss play an important 

role in AMP adaptive evolution to pathogens [78]. However AMP duplications in Drosophila tend to largely resemble their ancestral state 

(e.g. Cecropins, Attacins, Bomanins), which initially suggested that AMP sequences themselves were evolutionarily static, and instead 

host-pathogen immune arms races played out at the level of recognition and signaling [78,81]. More recently, increased available 

sequence data and improved detection algorithms have established a new view of Drosophila AMP evolution that proposes AMP 

sequence responds to shifts in host ecology and associated pathogen pressures. Rapid evolution of Diptericin sequence has been 

observed within Drosophila [80], and convergent evolution towards Diptericin B-like genes has occurred in both fruit-feeding Drosophilid 

and Tephritid flies [88]. At the population level, balancing selection maintains polymorphisms in many AMPs [82], possibly responding to 

seasonal variation or other dynamic selective pressures [83]. Supporting the notion of dynamic pathogen pressures, Diptericin A null 

alleles are segregating in African populations [88], and balancing selection on Diptericin A maintains a Serine/Arginine polymorphism 

that strongly predicts susceptibility to P. rettgeri infection [26��]. As Diptericin is seemingly the only AMP necessary for defense against 

this bacteria [23��], such incredibly specific roles for individual AMPs in host defense defies previous logic that AMPs contribute in 

largely redundant fashions, and cements the idea that AMPs are key mediators of defense against infection. Future studies should 

evaluate the consequences of favored alleles on AMP activity in host defense as well as possible trade-offs involving AMPs beyond 

infection. 

 

Figure 2 

Model for Antimicrobial peptide activity in different contexts. AMPs are small cationic and amphipathic peptides that interfere with the 

negatively charged membranes of microbes (right). Because of their amphipathic nature and positive charge, AMPs can bind to the 

membrane and form pores or otherwise disrupt membrane integrity. Eukaryotic cells are usually insensitive to AMPs as their 

membranes are less negatively charged than microbes and contain cholesterol (left). Recent studies have shown that certain cancer 

cells expose PS at their surface, making them more negatively charged (middle). It is possible that PS exposure in various cells (and 

possibly other membrane changes that alter their assymetry), not only provide an ‘eat-me’ signal to phagocytes, but also makes them 

susceptible to AMPs. Thus, changes in the membrane (such as PS exposure) provide a general mechanism to signal ‘abberant cells’ to 

be targeted for elimination. 
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