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Abstract
The ability to manipulate electromagnetic radiation is key to a huge range of

current technologies, from communications and sensing to cooking and en-

ergy generation. It is expected that improving our ability to manipulate ra-

diation in new ways will lead to many new technologies, such as invisibility

cloaks and optical computing. One way to advance our ability to shape the

electromagnetic field is using materials structured at the sub wave–length

scale: metamaterials. With exotic properties not found in nature, metamate-

rials have revolutionised our ability to control fields, including light, sound,

vibration, and heat. However, despite intensive research interest for almost

two decades, the problem of designing metamaterials for specific applica-

tions remains challenging. Typical methods either make limiting assump-

tions, such as only allowing phase to be controlled, or rely on a large number

of full–wave simulations. These are particularly expensive for metamateri-

als as there is a large length scale separation between the sub–wavelength

elements of the metamaterial and the tens to hundreds of wavelength size

of the metamaterial. Additionally, there has been much interest in using

genetic algorithms or machine learning techniques to design materials, al-

though these can be hard to interpret.

In this thesis, we attempt to address some of these issues. Employing the

coupled dipole approximation to model metamaterials as collections of dipo-

lar scatterers, we derive a perturbative method for designing metamateri-

als for a wide range of applications. After formulating the basic method,

we proceed to extend it to design multi–functional metamaterials, allowing

functionality to be multiplexed. Simple proof–of–concept experiments out-

line some of the key challenges to realising the structures we design, indi-

cating where future development efforts could be focused. Switching focus
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to the elements that make up the metamaterials, we then consider how the

resonances of individual meta–atoms can be manipulated. In this context,

we derive both analytic and numerical approaches to control the scattering

for dielectric slabs, cylinders and spheres.
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Chapter 1

Introduction

“It’s of no use whatsoever...this is just an experiment that proves Maestro Maxwell
was right—we just have these mysterious electromagnetic waves that we cannot

see with the naked eye. But they are there.” – Attributed to H. Hertz

1.1 Motivation

One of the greatest unifications in physics came in 1873, when Maxwell pub-

lished his equations of electromagnetism [1]. These equations combined

two phenomena that were previously thought to be unconnected: electric-

ity and magnetism. A surprising consequence of Maxwell’s theory is that

free space supports electromagnetic waves: oscillating electric and magnetic

fields. Strikingly, the speed of these waves is related to quantities that were

taken to be proportionality constants in equations linking forces to charges

and currents, but turn out to be the material properties called permittivity

and permeability.

Shortly after Maxwell’s seminal work, Poynting calculated that electro-

magnetic waves can carry energy [2]. This was verified experimentally by

Hertz [3], using a simple dipole emitter made of two metallic spheres and

a detector that we would today call a loop antenna. Hertz’s original appa-

ratus is shown in Figure 1.1. Although Hertz himself supposedly did not

realise it, his experiments lit the way for wireless communication for the
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2 m

Emitter: Dipole Resonator
Frequency ~ 50 MHz

Receiver: Loop antenna

Figure 1.1: Hertz’s original emitter (left) and detector (right), used in the first
experimental demonstration that electromagnetic waves could transport energy (images
public domain).

next two centuries. Marconi and Braun were the fathers of wireless teleg-

raphy, for which they won the Nobel prize in 1909. Together they devel-

oped Hertz’s ideas to design devices that would bring the ability to trans-

mit information using electromagnetic radiation to the masses. Since the

first successful radio transmission from Poldhu in Cornwall to Signal Hill

in Newfoundland, wireless technology has been continuously developed

and improved for over 100 years.

Moving beyond its initial use for broadcast radio, the true ‘wireless rev-

olution’ began in the 1990s, with the proliferation of wireless networks con-

necting computers, as well as the release of hand–held devices like mobile

phones. Since then, the number and density of connected devices as well as

demand for high data rates has grown significantly meaning that today the

electromagnetic spectrum is extremely congested. The current frequency

allocations for the United Kingdom are shown in Figure 1.2. All frequen-

cies from 8.3 kHz to 275 GHz are allocated for specific purposes, such as

satellite and mobile communications, meteorological surveying or military

uses. The lack of gaps for new capabilities presents a significant barrier to

the higher data rates or device densities that will need to be achieved in
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Figure 1.2: The UK’s frequency allocations (Credit: Roke Manor Research Ltd). For
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future communications systems. There has therefore been a recent drive

towards ‘smarter’ systems, that are more frequency selective, directive or

multi–functional, to avoid unnecessary interference or competition for com-

munication frequencies.

In addition to the demands on civilian communication infrastructure,

military competition for electromagnetic advantage has never been more

intense. A previous Chief of Defence Staff, Air Chief Marshal Sir Stuart

Peach, said “...to understand, manage and control the electromagnetic envi-

ronment is a vital role in warfare at all levels of intensity. The outcome of

future operations will be decided by the protagonist who does this to de-

cisive advantage” [4]. Effective communication and sensing is essential for

battlefield advantage, however one’s opponents will attempt to degrade ac-

cess to key parts of the spectrum. To mitigate this, and to gain advantage,
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there is great desire to explore how more effective, resilient and dynamic

electromagnetic systems can be designed.

One way to control the properties of electromagnetic emitters is to ad-

just the geometry of the emitter itself. This approach has led to many dif-

ferent antenna designs for a wide range of applications [5, 6]. The disad-

vantage of this approach is that the emitters can be geometrically compli-

cated, and their functionality cannot be changed easily. One can therefore

try to move the complexity into a material layer, that should be straight-

forward to build as well as thin and light so that it can be changed to re–

configure the system for a different purpose. Metamaterials, materials that

are structured on the sub–wavelength scale to achieve designer manipu-

lation of light, are excellent candidates to fulfill this purpose. By tuning

the geometry of ‘meta–atoms’, the building blocks of metamaterials, many

different wave–manipulation effects can be achieved in electromagnetism,

acoustics and elasticity. However, current methods for the design of meta-

materials have significant drawbacks.

1.2 Outline of Thesis

In this thesis, we derive techniques for designing metamaterials, with an eye

to a wide range of antenna applications. Our aim is to derive simple, intu-

itive, numerically efficient, methods for designing metamaterials to manip-

ulate the radiation from simple emitters, making them more e.g. directive

or multi–functional. The outline of the content is as follows:

• In Chapter 2 we review the necessary background theory of electro-

magnetism, how Maxwell’s equations can be solved under the as-

sumption that the waves scatter from small dipolar particles and some
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powerful existing techniques for designing electromagnetic materials

for specific applications.

• Next, in Chapter 3, we apply perturbation theory to the solutions of

Maxwell’s equations, deriving a method for designing metamaterials

that perform single operations on the field of an emitter. We con-

sider a wide range of problems related to antenna technology, such

as improving emitted power, manipulating the radiation pattern and

changing the coupling between nearby emitters.

• Extending our method, in Chapter 4 we consider how to design pas-

sive metamaterials that can perform multiple operations on the field of

an emitter, for example to produce different radiation patterns based

on the polarisation of the emitter.

• The work of Chapter 5, undertaken jointly with Leanne Stanfield (Uni-

versity of Exeter), contains experimental validation of some of the de-

vices designed using our method. Working at microwave frequencies,

we demonstrate the ability of our method to design structures to con-

trol the radiation pattern of a simple antenna.

• In Chapter 6, we present a method for moving the resonances of scat-

tering structures, based on the position of the modes in the complex

frequency plane. This work, undertaken jointly with Dean Patient

(University of Exeter), is useful for the design of resonators for sens-

ing and emission, as well as for the design of meta–atoms with specific

purposes.

• Finally, in Chapter 7, we evaluate the limitations of our proposed tech-

niques and consider how the work of this thesis could be developed

further.
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Chapter 2

Background Theory

“It’s still magic, even if you know how it’s done.”
– Terry Pratchett, ‘A Hat Full of Sky’

Wave equations appear all over physics, describing a huge range of

phenomena including water waves, elastic waves, acoustic pressure waves

and quantum mechanical matter waves. One of the most important types

of waves for modern life are electromagnetic waves. These are used for

communications, cooking, sensing, medicine and much more. In this

chapter, we review the background theory of electromagnetic radiation,

formulating the wave equations for electric and magnetic fields. We then

consider the interaction of the electromagnetic field with dipoles, both as

emitters and as scattering objects. With this, we discuss how the electro-

magnetic wave equations can be solved for a collection of small dipolar

scatterers. Considering next how materials can be designed to manipu-

late the electromagnetic field, we overview the field of metamaterials and

key methods for designing them.
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2.1 Wave Equations Across Physics

The findings in this thesis, and of metamaterial physics in general, extend

across many domains of physics; almost anywhere the wave equation ap-

plies. To understand the implications of this statement, we now review the

ubiquity of the wave equation; from quantum mechanics to elasticity and

fluid dynamics. The wave equation for a scalar field ϕ(r, t) is

∇2ϕ(r, t) =
1
c2

∂2ϕ(r, t)
∂t2 , (2.1)

where c is the speed of the wave. This equation can be read as nothing more

than Newton’s 2nd law. The right–hand side is a second time derivative so

can be interpreted as the acceleration of the field ϕ, proportional to force. On

the left, the Laplacian is a measure of the curvature of ϕ in space. Therefore,

the wave–equation tells us that a larger curvature of the field ϕ corresponds

to a larger restoring force upon the field. With this simple reasoning, we

know that the solutions of this equation must oscillate in space and time.

One can show this mathematically, by moving to the new variables

ξ = r− ct η = r+ ct, (2.2)

so that the wave equation becomes

∂2ϕ

∂ξ∂η
= 0. (2.3)

This has the general solution

ϕ(r, t) = f (r− ct) + g(r+ ct), (2.4)
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where f and g are arbitrary functions. We see that the wave equation per-

mits waves that travel both forwards and backwards in space as time pro-

gresses.

Much of the day–to–day physics we experience is wave physics. One of

the most obvious examples of wave physics that we experience every day is

sound (acoustic pressure waves). These kinds of waves are caused by small

oscillations in compressible fluids, with the oscillation causing alternating

compression and rarefaction. For sound waves in air, the individual air

molecules only move by about 1µm. To derive the wave equation for sound,

we need only consider the continuity of the mass of the fluid that the waves

are propagating in [7]. Indeed, all of fluid mechanics can be derived from

mass continuity, and its higher moments [7, 8]. Considering a finite volume

V bounded by a surface S, the mass of fluid leaving this volume must be

given by ∮
ρv · dS, (2.5)

where v is the velocity of the fluid and ρ is the mass density of the fluid. The

amount of fluid leaving the volume must produce a decrease in the total

mass of the fluid inside that volume, per unit time, which can be written as

− ∂

∂t

∫
ρdV. (2.6)

Equating these gives

− ∂

∂t

∫
ρdV =

∮
ρv · dS, (2.7)
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which can be re–written using the divergence theorem1 we have

− ∂

∂t

∫
ρdV =

∫
∇ · (ρv)dV. (2.8)

This must be true for any closed volume we choose, therefore

∂ρ

∂t
+∇ · (ρv) = 0. (2.9)

This is a statement that the mass of the fluid must be conserved. Now, if the

fluid is under some pressure p, Newton’s 2nd law can be written as

ρ
dv
dt

= −∇p. (2.10)

Re–writing the total derivative as

dv
dt

=
∂v

∂t
+ (v · ∇) v, (2.11)

we arrive at Euler’s equation

∂v

∂t
+ (v · ∇) v = −1

ρ
∇p. (2.12)

This describes the effect of a pressure field upon the flow of a fluid. Assum-

ing that the oscillations in pressure are small, we can expand the pressure

and density variations of the fluid as

p = p0 + p1 ρ = ρ0 + ρ1 v = v1, (2.13)

1The divergence of a quantity in a volume V is equal to the flux of that quantity over a
closed surface ∂S enclosing that volume:

∫
V ∇ ·AdV =

∮
∂S A · n̂dS, where n̂ is the normal

vector of the surface.
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where p1 ≪ p0 and ρ1 ≪ ρ0. Euler’s equation then becomes

∂v1

∂t
+

1
ρ0
∇p1 = 0, (2.14)

and the continuity equation is

∂ρ1

∂t
+∇ · (ρ0v1) = 0. (2.15)

In an ideal fluid, sound is adiabatic so that changes in pressure and mass

density are connected by the thermodynamic relation

p1 =

(
∂p
∂ρ0

)
S

ρ1, (2.16)

with the subscript ‘S′ indicates that entropy is held constant while pressure

and density vary. Substituting this into the continuity equation (2.15), we

have
∂p1

∂t
+

(
∂p
∂ρ0

)
S
∇ · (ρ0v1) = 0. (2.17)

Differentiating this expression with respect to time, we arrive at the wave

equation for pressure waves in a compressible fluid

∂2p1

∂t2 +

(
∂p
∂ρ0

)
S
∇ ·

(
ρ0

∂v1

∂t

)
= 0 (2.18)

⇒ ∂2p1

∂t2 =

(
∂p
∂ρ0

)
S
∇2p1. (2.19)

We see that the speed of sound waves is given by c2 =
(

∂p
∂ρ0

)
S
, which can

also be written in terms of macroscopic quantities as c =
√

K/ρ where K is

the bulk modulus.

Another type of wave we experience every day are the waves supported

by solid bodies, elastic waves [9]. Inside a solid material, an elastic wave
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causes the distance between two points, described by the displacement vec-

tor ui = x′i − xi, to change. Splitting the solid object into small blocks with

surface S, the restoring force of each block is given by the stress tensor σik

d fi = σikdSk, (2.20)

where the first index is the direction the restoring force occurs in and the

second index is the direction a force is applied in. Einstein summation no-

tation is employed throughout this discussion. So the σxx element of the

tensor describes the restoring force in the x direction due to a force applied

in the x direction, while the σxy element describes the force exerted by the

material in the x direction when a force is applied in the y direction. For an

elastic material, Newton’s 2nd law can then be written as

∂

∂t

∫ (
ρ

∂ui

∂t

)
dV =

∫
σikdSk, (2.21)

which can be re–written using the divergence theorem as

ρ
∂2ui

∂t2 =
∂σik
∂xk

. (2.22)

To turn this into a wave equation, one needs constitutive relations between

stress σ and strain u; for isotropic materials this is given by Hooke’s law,

stated as

σik = Kullδik + 2µ

(
uik −

1
3

δikull

)
. (2.23)

Here, K is the bulk modulus, µ is the shear modulus and we have introduced

the strain tensor

uik =
1
2

(
∂ui

∂xk
+

∂uk
∂ui

)
. (2.24)
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Putting this together, the stress tensor is now

σik = K
∂ul
∂xl

δik + 2µ

(
1
2

∂ui

∂xk
+

1
2

∂uk
∂xi

− δik
3

∂ul
∂xl

)
. (2.25)

To write down the wave–equation for elastic waves, we must calculate the

divergence of the strain tensor, which is

∂σik
∂xk

=

(
K − 2

3
µ

)
∂2ul

∂xk∂xl
+ µ

(
∂2ui

∂x2
k
+

∂2uk
∂uk∂xi

)
, (2.26)

=

(
K +

1
3

)
∂2ul

∂xk∂xl
+ µ

∂2ui

∂x2
k

. (2.27)

The wave equation for elastic waves in an isotropic material is therefore

ρ
∂2ui

∂t2 =

(
K +

1
3

µ

)
∂2ui

∂xk∂xi
+ µ

∂2ui

∂x2
k

(2.28)

ρ
∂2u

∂t2 =

(
K +

1
3

µ

)
∇(∇ · u) + µ∇2u. (2.29)

If we now break up the displacement vector into longitudinal and trans-

verse parts u = uL + uT, where

∇ · uT = 0 ∇× uL = 0, (2.30)

we find that

∂2uT

∂t2 =
µ

ρ
∇2uT, (2.31)

∂2uL

∂t2 =
1
ρ

(
K +

4
3

µ

)
∇2uL. (2.32)

The transverse parts describe shear waves (S waves) and the longitudinal

parts describe pressure waves (P waves). An interesting feature of elasticity
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is that at material interfaces, S and P waves couple [9], allowing for conver-

sion between the two polarisations.

As well as waves in liquids (sound) and solids (elastics), more exotic

waves are actively being studied. To begin to understand quantum mechan-

ical waves, we can start from the dispersion relation for a massive relativistic

particle

E2 = p2c2 + m2c4, (2.33)

where E is the energy, p is the momentum, m is the mass of the particle and c

is the speed of light. Replacing energy and momentum with their operator

representations [10] E → ih̄∂t and p → −ih̄∇, yields the Klein–Gordon

equation (
−∂2ϕ

∂t2 + c2∇2
)

ϕ =
m2c4

h̄2 ϕ. (2.34)

This describes a wave propagating with the speed of light, with a source

term related to the particle mass, and is the starting point for much of rela-

tivistic quantum field theory [11, 12]. From this, we see that quantum me-

chanics is a theory of matter waves. The non–relativistic limit of the Klein–

Gordon equation can be found by taking the non–relativistic limit of the

dispersion relation

E =
√

p2c2 + m2c4. (2.35)

Taking the limit when v = p/m ≪ c, we find that

E = mc2

√
1 +

p2c2

m2c4 (2.36)

≈ mc2 +
p2

2m
. (2.37)

The first term is a global offset that does not affect the dynamics of the fields.

Replacing the momentum and energy with their operator representations,



2.2. Maxwell’s Equations and Electromagnetic Waves 15

we arrive at the Schrödinger equation

ih̄
∂Ψ
∂t

= ĤΨ, (2.38)

which connects the time derivative of the wave function Ψ to the action of

the Hamiltonian operator Ĥ upon the wave function Ψ. For a particle in an

external potential V this can be written as

ih̄
∂Ψ
∂t

= − h̄2

2m
∇2Ψ + V̂Ψ. (2.39)

While this is not of exactly the same form as the wave equation we opened

this section with (the time derivative is first order rather than second), it

shares many of the same features. For example, it has solutions of the form

f (r− vt). It is easy to verify that

Ψ = const × e
i
h̄ (p·r−Et) (2.40)

is a solution to the Schrödinger equation. This is a plane wave with wave–

vector k = p/h̄ with corresponding de–Brogilie wavelength λ = 2πh̄/p.

2.2 Maxwell’s Equations and Electromagnetic Waves

Electromagnetic phenomena have been a source of fascination since ancient

times: lightening, electric eels, static electricity all puzzled our ancestors

[13]. Not until much later was it realised that all of these phenomena are

governed by the same fundamental laws. A complete theory of (classical)
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electromagnetism was proposed by Maxwell in the late 19th century [1], de-

scribing the interaction of charges and currents through the electromagnetic

field. Written in the convenient vector notation first used by Heaviside,

Maxwell’s equations connect charges and currents to electromagnetic fields

[14, 15] as follows

∇ ·D(r, t) = ρ(r, t), (2.41a)

∇ ·B(r, t) = 0, (2.41b)

∇×E(r, t) = −∂B(r, t)
∂t

, (2.41c)

∇×H(r, t) =
∂D(r, t)

∂t
+ j(r, t). (2.41d)

Here, the charges and currents are given by: the free charge density ρ(r, t),

with units of Coulombs per unit volume; the free current density j(r, t),

with units Coulombs per unit volume meters per second. From the units,

it is clear that current j(r, t), is generated by a charge distribution in mo-

tion: j = ρv, where v is a velocity. Taking the divergence of Ampere’s law

(2.41d), it is straightforward to show that [14] charge and current are not

independent and obey the continuity equation

∇ · j(r, t) +
∂ρ(r, t)

∂t
= 0. (2.42)

The fields in the Maxwell equations are: the displacement field D with units

of charge (Coulombs) per unit area, the electric field E with units of force

per unit charge, the magnetic field strength H with units of charge per me-

ter per second and the magnetic flux density B has units of force per meter

per Ampere.

Since Maxwell’s original formulation many approximations, simplifi-

cations and tricks have been used to solve Maxwell’s equations [16–18].
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When trying to solve Maxwell’s equations in the presence of matter, the

electromagnetic properties of the medium may be characterised in terms

of macroscopic polarization P and magnetization M [16]. The quantity

P represents the density of permanent or induced dipole moments within

a material, and can be connected to bound and surface charge densities

[15]. In this way, the macroscopic polarization P is simply the sum of all

of the polarizations (dipole moments) of each molecule, per unit volume

i.e. P = ∑i pi/V = (1/V)
∫

V dVp(r). The direction of the vector P is ob-

tained from the geometric addition of each of the individual vectors pi [18].

Similarly, the quantity M = ∑i mi/V = (1/V)
∫

V dVm(r), is the magnetic

dipole moment per unit volume of a material. This can be connected to

bound currents within the material [15].

The polarization density P and the magnetization density M can be re-

lated to the fields present in Maxwell’s equations (2.41) through [15–18]

D(r, t) = ϵ0E(r, t) +P (r, t), (2.43a)

H(r, t) =
1
µ0

B(r, t)−M (r, t), (2.43b)

where ε0 = 8.85 × 10−12 Fm−1 is the permittivity of free space and µ0 =

4π × 10−7 NA−2 is the permeability of free space, both in SI units. This gives

us all of the parts we need to construct and interpret the wave equations that

follow from Maxwell’s equations.

To form the wave equations, we take the curl of Faraday’s law (2.41c)

and of Ampere’s Law (2.41d), then substitute from the constitutive rela-

tions (2.43). This procedure yields the linear inhomogeneous vector wave

equations for the electric and magnetic fields, with the currents and charges
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forming the source terms:

∇×∇×E +
1
c2

∂2E

∂t2 = −µ0
∂

∂t

(
j +

∂P

∂t
+∇×M

)
, (2.44a)

∇×∇×H +
1
c2

∂2H

∂t2 = ∇× j + µ0
∂M

∂t
+∇× ∂P

∂t
. (2.44b)

We have introduced the speed of electromagnetic waves in free space c =

1/
√

ε0µ0 ≈ 3 × 108 ms−1. Interestingly, a very similar left-hand side can be

obtained for elastic waves [9], although the expression for the wave speed

is very different. The wave equations (2.44) have a simple general interpre-

tation. Time varying free currents j, bound currents M and bound charges

P can all generate an electromagnetic field (E,H), which travels as a vec-

tor wave with a speed c in free space. The nature of the curl operator in

(2.44) acts to mix components; for example it is clear that a source current

j aligned along the Cartesian axis x̂ can produce an electromagnetic field

with components along all three Cartesian axes.

While the wave equation (2.44) has a clear physical interpretation, it is

still exactly equivalent to Maxwell’s equations (2.41). We have therefore

made no progress towards a solution. To do so, we assume that our wave

has a single fixed period of oscillation T and equivalently a fixed angular fre-

quency ω = 2π/T, with units of oscillations per second [19]. A monochro-

matic wave of this form can be conveniently written as

E(r, t) = Re
{
Eω(r)e−iωt

}
, (2.45)

where Eω(r) is a complex amplitude [14]. Assuming that all of the vector

fields in the wave equations (2.44) can be written in this way we find that

the complex amplitudes of each of the fields obey the same wave equation



2.3. Solution of the Wave Equations 19

as the fields themselves

∇×∇×Eω − ω2

c2 Eω = iωµ0 (jω − iωPω +∇×Mω) , (2.46a)

∇×∇×Hω − ω2

c2 Hω = ∇× jω − iωµ0Mω − iω∇×Pω, (2.46b)

with the time dependence removed. It is important to realise that the quan-

tities with subscript ω are now complex so the physical interpretation of

them becomes more complicated. For example E is a force per unit charge (a

quantity that must be real), while Eω is not. In free space j = P = M = 0,

so equation (2.46) can be reduced to the Helmholtz equation for each com-

ponent of the electric and magnetic field amplitudes

(
∇2 + k2

)
Eω = 0, (2.47a)(

∇2 + k2
)
Hω = 0, (2.47b)

where k = ω/c is the wavenumber. With these rearrangements and simpli-

fications, we are now ready to formulate solutions to the Helmholtz equa-

tion (2.47) and the monochromatic vector wave equation (2.46). In the sub-

sequent sections, when E,H ,P and M are used to we will be referring to

the complex amplitudes of each of these fields, defined via (2.45), and the

subscripts will be dropped. Since the complex nature of the quantities being

discussed will be manifest, we hope there will be no confusion.

2.3 Solution of the Wave Equations

In this section we shall introduce the mathematical tools that will be used

to solve the scalar and vector wave equations which follow from Maxwell’s

equations; equations (2.47) and (2.46) respectively. These tools are Green’s
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functions. Originally developed in the 1820s to solve differential equations

in electromagnetism [20], Green’s functions are a powerful tool for solv-

ing inhomogeneous linear differential equations. As the electromagnetic

Green’s function is an important and fundamental object in this work (as

well as many other areas of quantum and classical electromagnetism, con-

densed matter physics, the theory of elasticity etc.) this section will include

its derivation. Having derived the electromagnetic Green’s function, a few

of its most important properties will be established.

Green’s functions are a very general method of solving linear inhomoge-

neous differential equations [21]. This class of differential equation has the

general form

Ôu(r) = s(r). (2.48)

Given some linear differential operator Ô, with a given source term s(r),

our aim is to find the solution u(r). This is done by defining the Green’s

function as the solution to the simpler differential equation

ÔG(r, r′) = δ(r− r′). (2.49)

The expression (2.49) immediately gives the interpretation of the Green’s

function. It is the response of the system to a single Dirac delta impulse (a

‘kick’). For example, finding the Green’s function of a harmonic oscillator

where Ô = ∂2
t + ω2

0, gives the response of the oscillator to a single impulse.

To find the solution to the differential equation (2.48), u(r), in terms of the

Green’s function one must multiply both sides of (2.49) by the source term
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s(r) and integrate over all space

∫
V′

ÔG(r, r′)s(r′)dr′ =
∫

V′
δ(r− r′)s(r′)dr′,∫

V′
ÔG(r, r′)s(r′)dr′ = s(r).

(2.50)

Now, since the linear differential operator acts upon r and the integral is

over r′, the operator Ô can be brought outside the integral. As the equality

must be true for all linear differential operators, we arrive at the solution in

terms of the Green’s function

Ôu(r) = Ô
∫

V′
G(r, r′)s(r′)dr′,

u(r) =
∫

V′
G(r, r′)s(r′)dr′.

(2.51)

We have found that the solution to an inhomogeneous linear differential

equation is given by the convolution of the Green’s function of the differen-

tial operator with the source term.

Next, we must address the problem of finding an explicit form of the

Green’s function. Our aim is to solve the vector wave equations (2.46) but

first we shall solve the Helmholtz equation (2.47). The Green’s function for

the Helmholtz equation, by definition, satisfies

(
∇2 + k2

0

)
G0(r, r′) = δ(r− r′). (2.52)

We must solve this for the explicit form of G0(r, r′). This can be done by

Fourier transforming the quantities in N spatial dimensions

G0(r, r′) =
1

(2π)N

∫
G0(k)eik·(r−r′)dk (2.53)

δ(r− r′) =
1

(2π)N

∫
eik·(r−r′)dk (2.54)
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to turn the differential equation into an algebraic equation for G0(k). The

measure of integration dk in 1D is dk, in 2D is dkxdky and so on. Re-arranging

yields

G0(k) =
1

k2
0 − k2 + iη

. (2.55)

To find the explicit form of the Green’s function in real space, one must

evaluate the inverse Fourier transform of (2.55). This can be done using

standard contour integration methods [22]. Notice that it has been neces-

sary to introduce a small amount of loss η ≪ 1 in order to ensure that we

obtain outgoing (advanced) wave solutions [23]. This is an important fea-

ture of Green’s functions: they are specific to the differential operator and

the boundary conditions. If we instead required our solution to be incom-

ing waves, the sign of the loss should be reversed (shifting the location of

the poles in k space yielding the retarded solution). Evaluating the integral,

then taking the limit where η → 0, the explicit form of the Green’s function

for the Helmholtz operator with outgoing wave boundary conditions is

G0(r, r′) =



1
2ik0

eik0|r−r′|, (1D)

1
4i H(1)

0 (k0|r− r′|), (2D)

−1
4π|r−r′| e

ik0|r−r′|, (3D)

(2.56)

where H(1)
0 (z) is the Hanel funciton of the first kind of order 0.

Now that we have found the Green’s function for the Helmholtz equa-

tion, we would like to find the Green’s function for the vector wave equation

(2.46), which has the form

∇×∇× u− k2u = s(r). (2.57)
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Applying the definition of Green’s functions, the solution can be written as

u(r) =
∫

V′
G(r, r′) · s(r′)dr′ = ∑

k

∫
V′

Gjk(r, r′)sk(r
′)dr′. (2.58)

Before we find the explicit form of G(r, r′), we can already see that it must

have certain properties. Both the source term and the solution must be

vectors, so can we choose G(r, r′) to be a scalar function? Clearly not:

Maxwell’s equations imply that a current along x̂ does not generate fields

with exclusively x̂ components. We cannot choose G(r, r′) to be a vector

either: the dimensions of the result would be incorrect (vector · vector =

scalar, or vector × vectorT = matrix). We are left with a single choice for the

form of the Green’s function: a ‘dyad’ (a second order tensor). Dyads can

be thought of as operators that convert one vector to another [21]. In three

dimensions, the new vector is related to the old one by the coefficients of

the dyad Gij. These objects are found across physics, for example the mo-

ment of inertia is a dyad. It will become clear in the following derivation

of G(r, r′) that it must have this form, but these simple arguments tell us

what to expect of the result.

The Green’s function for equation (2.46) must, by definition, satisfy

∇×∇×G(r, r′)− k2G(r, r′) = 1δ(r− r′), (2.59)

where 1 = diag (1, 1, 1) is the unit tensor. Again, we must calculate the ex-

plicit form of the Green’s function. There are many ways to do this. For

example, one may work directly from Maxwell’s equations and utilise the

scalar and vector potentials [24] or use a more abstract mathematical ap-

proach by taking the Fourier transform of (2.59) and using the properties of

dyads [25]. In what follows we will use the elegant solution of Levine and
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Schwinger [26], who were among the first to introduce the concept of an

dyadic Green’s function.

We begin by taking the divergence of (2.59) to find an expression for the

divergence of G(r, r′)

∇ ·G(r, r′) = − 1
k2∇ ·

[
1δ(r− r′)

]
. (2.60)

Now, re-writing (2.59) as2

−∇2G(r, r′) +∇(∇ ·G(r, r′))− k2G(r, r′) = 1δ(r− r′), (2.61)

and substituting (2.60) yields

(∇2 + k2)G(r, r′) = −
(
1+

1
k2∇⊗∇

)
δ(r− r′) (2.62)

where ∇ ⊗∇ = (∂2/∂xi∂xj), with ⊗ denoting the tensor outer product.

Therefore, informed by (2.62), we seek a Green’s function of the form

G(r, r′) =
(
1+

1
k2∇⊗∇

)
ψ(r, r′), (2.63)

where ψ(r, r′) is a scalar function that we must determine. To do so, we

simply substitute this form of G(r, r′) into (2.62) to find that ψ(r, r′) must

satisfy the Helmholtz equation with a delta function source

(
1+

1
k2∇⊗∇

) [
(∇2 + k2)ψ = −δ(r− r′)

]
. (2.64)

By comparing the contents of the square brackets with the definition of

the Green’s function for the Helmholtz equation (2.52) we can realise that

2Using the vector calculus identity ∇×∇×A = ∇(∇ ·A)−∇2A



2.3. Solution of the Wave Equations 25

ψ(r, r′) is the Green’s function we have already determined (2.56). So, the

explicit form for the dyadic Green’s function is

G(r, r′) =
(
1+

1
k2∇⊗∇

)
eik|r−r′|

4π|r− r′| . (2.65)

While it is possible to work entirely in terms of the electromagnetic Green’s

function G(r, r′), for certain problems it is convenient to define another

Green’s function. We call this GEH(r, r′). The Green’s function GEH(r, r′)

is defined as the solution to

∇×∇×GEH(r, r′)− k2GEH(r, r′) = ∇×
[
1δ(r− r′)

]
. (2.66)

This has the form of, for example, the term involving ∇× j in (2.46b). Phys-

ically, this term describes the generation of a magnetic field due to an electric

current with non-zero vorticity (denoted by the subscripts of GEH). To find

the form of GEH(r, r′), we apply the same method as before, finding that

∇ ·GEH(r, r′) = 0. (2.67)

When substituted back into (2.66) this gives

(∇2 + k2)GEH(r, r′) = −∇×
[
1δ(r, r′)

]
, (2.68)

leading us to seek a solution of the form

GEH(r, r′) = ∇×
[
1ψ(r, r′)

]
, (2.69)
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where again ψ(r, r′) must be found. Once again, we find that ψ(r, r′) must

be the Green’s function for the Helmholtz equation

GEH(r, r′) = −∇×
[
1G0(r, r′)

]
. (2.70)

By inspection, we can see that this is equivalent to the curl of the dyadic

Green’s function. We can therefore define

GEH(r, r′) = ∇×G(r, r′) =


0 ∂/∂z −∂/∂y

−∂/∂z 0 ∂/∂x

∂/∂y −∂/∂x 0

 eik|r−r′|

4π|r− r′|

(2.71)

Evaluating the derivatives in the expressions for the Green’s functions, we

have

G(r, r′) =
[(

1 +
ikR − 1

k2R2

)
1+

3 − 3ikR − k2R2

k2R2
R⊗R

R2

]
eikR

4πR
, (2.72a)

GEH(r, r′) = (R× 1)
k
R

(
i − 1

kR

)
eikR

4πR
, (2.72b)

where R = r− r′ , R = |R| and k = ω/c is the wavenumber. These Green’s

functions are plotted in Figure 2.1. In terms of these Green’s functions, solu-

tions to the vector wave equations (2.46) for any source distribution can be

found. We now derive some general properties of these Green’s functions

that will become useful in physical contexts. A far more thorough treatment

can be found in Tai [24]; here we outline the key results.

In deriving the following properties, it is important to realise that the

two Green’s functions are tensors with two indices: one represented by the

r coordinate and one by the r′ coordinate. We would like to derive the

effect of interchanging these tensor indices. Immediately, we notice that

differentiating the Green’s function for the Helmholtz equation (2.56) with
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Gxx Gxy Gxz

Gyx Gyy Gyz

Gzx Gzy Gzz

Re[G(r, r′)]
GEH, xx GEH, xy GEH, xz

GEH, yx GEH, yy GEH, yz

GEH, zx GEH, zy GEH, zz

Re[GEH(r, r′)]

Figure 2.1: Real parts of the electromagnetic Green’s functions, shown
schematically. The figures are generated for a point source at r′ = (0, 0, 0), observed
in the x − y plane at z = 1. The symmetric nature of G(r, r′) as well as the
anti-symmetric nature of GEH(r, r′) are evident. The Green’s functions can be
interpreted as the response of the electromagnetic field to delta-like current excitations.

respect to the primed rather than the unprimed coordinates leads to a minus

sign: ∇′G0 = −∇G0, so ∇′∇′G0 = ∇∇G0. From this, we see that if we

start from the tensor Green’s function were r has been re–labelled as r′ and

vice–versa

G(r′, r) =
(
I +

1
k2∇

′ ⊗∇′
)

G0(r
′, r), (2.73)

we can then exchange r and r′ in the scalar Green’s function G0 and exploit

the fact that two derivatives over the primed coordinate are equivalent to

two derivatives over the unprimed coordinate. This leads to the observation

that the tensor Green’s function exhibits reciprocity

G(r′, r) =
(
I +

1
k2∇⊗∇

)
G0(r, r′), (2.74)

⇒ G(r′, r) = G(r, r′). (2.75)
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Now, since in free space G(r′, r) is also a symmetric dyadic (this is evident

from both Figure 2.1 and equation (2.65)), it follows that

[
G(r′, r)

]T
= G(r′, r),[

G(r′, r)
]T

= G(r, r′).
(2.76)

Applying the same reasoning to GEH(r
′, r), we see that as before an inter-

change of the primed and unprimed coordinates leads to a minus sign

GEH(r
′, r) = ∇′ ×

[
1G0(r

′, r)
]

,

= −∇×
[
1G0(r, r′)

]
,

GEH(r
′, r) = −GEH(r, r′).

(2.77)

Since GEH(r, r′) is also clearly anti-symmetric (this can be seen in Figure

2.1 or equation 2.71) we can deduce that

[
GEH(r

′, r)
]T

= −GEH(r
′, r),[

GEH(r
′, r)

]T
= GEH(r, r′).

(2.78)

These symmetry properties of the Green functions (2.76), (2.78) can be inter-

preted as representing the important physical phenomena of reciprocity. In

the next section, this will be discussed in the context of antenna radiation.

2.4 Dipole Antenna Radiation

As the main topic of this thesis is the manipulation of dipole radiation, in

this section we develop a simple model for this radiation. We will use the

electromagnetic Green’s function derived in the previous section to solve

Maxwell’s equations for the fields produced by a small oscillating electrical
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current. This is the simplest model of dipole radiation.

The definition of a dipole is two charges of opposite sign, ±q separated

by a distance d. Taking the oscillation of the dipole to be time harmonic and

the charges to be point particles, we can write the charge density of a small

dipole located at rd as

ρ(r, t) = q
[

δ

(
r− rd −

d
2
ẑ

)
− δ

(
r− rd +

d
2
ẑ

)]
e−iωt,

= −qdz∂zδ(r− rd)e−iωt.
(2.79)

Using the continuity equation (2.42), we can convert this charge density into

a current density

j = −iωpδ(r)e−iωt, (2.80)

where we have defined the dipole moment as p = qdn̂ with n̂ being a unit

vector pointing along the dipole. By convention, this points from the nega-

tive charge to the positive charge. The units of p are therefore charge times

distance.

Calculating the electric and magnetic fields due to this current distri-

bution is now straightforward. One simply substitutes the dipole current

density (2.80) into the vector wave equations (2.46)

∇×∇×E(r)− k2E(r) = ω2µ0pδ(r− rd), (2.81)

∇×∇×H(r)− k2H(r) = −iω∇× [pδ(r− rd)] , (2.82)
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Figure 2.2: Electric field of an electric dipole in free space and the normalised
far-field power distribution. Brightness indicates the magnitude of the field, while
colour indicates the phase, given by the inset colour wheel. The dipole is indicated by a
double-ended black arrow at the origin. Most radiation occurs along the axis
perpendicular to the dipole moment.

and using the definitions of the Green’s functions (2.59),(2.66) we can write

down the solution immediately

E(r) = ω2µ0G(r, rd) · p, (2.83)

H(r) = −iωGEH(r, rd) · p. (2.84)

The electric field of a dipole antenna in free space aligned along the ŷ axis

is plotted in Figure 2.2, along with its far-field radiation pattern. The above

results are valid when the antenna is small compared to the wavelength of

light: the delta functions make evaluation of the convolution integrals of

the source term and Green’s function trivial. One can go beyond the point

dipole approximation by employing the method of moments [6], although

this is not treated in this thesis.

The symmetry conditions upon the Green’s functions derived in the pre-

vious section, equations (2.76) and (2.78), are connected to reciprocity [15,

24, 27]. This is the property of the electromagnetic field that means when a

source and an observer are interchanged, the field remains the same. This
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can be understood mathematically as follows. We start by writing Faraday’s

law (2.41c) and Ampere’s law (2.41d) for two different time harmonic cur-

rents j1 and j1 as

∇×E1 = iωB1 ∇×H1 = −iωD1 + j1, (2.85a)

∇×E2 = iωB2 ∇×H2 = −iωD2 + j2. (2.85b)

Taking the dot product of (2.85a) with H2 and E2 respectively, and of (2.85b)

with −H1 and −E1 respectively, adding the results gives

(H2 ·∇×E1 −E1 ·∇×H2) + (E2 ·∇×H1 −H1 ·∇×E2)

= iω (B1 ·H2 −H1 ·B2) + iω (E1 ·D2 −D1 ·E2)

+ (j1 ·E2 − j2 ·E1) .

(2.86)

The left hand side can be re-written using a vector identity 3. Assuming that

the background medium is linear so that Di = εikEk and Bi = µikHk then we

see that B1 ·H2 = µikH1kH2k = H1 ·B2. The same is true of the second

term on the right hand side. This means that we are left with

∇ · (E1 ×H2 −E2 ×H1) = j1 ·E2 − j2 ·E1. (2.87)

Integrating this over all space, the divergence theorem can be applied to the

left hand side. We are then free to choose a surface at r → ∞ so that the

integral vanishes 4 . This leaves us with the reciprocity theorem

∫
V
j1(r) ·E2(r) =

∫
V
j2(r) ·E1(r). (2.88)

3∇ · (A×B) = (∇×A) ·B − (∇×B) ·A
4The Sommerfeld radiation condition demands that radiated power must decay to zero

at infinite distances from the sources [23]. Since the Poynting vector is S = E ×H , we see
that the left-hand side of eq. (2.87) must vanish at infinity.
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A very similar expression can be derived for magnetic dipoles and it should

be noted that this applies to only dipole emission. If one has a source with

higher multipolar moments, then an alternative form must be derived. This

is beyond the scope of this thesis, but is considered in [15].

Before seeing that electromagnetic reciprocity makes the symmetry prop-

erties of the Green’s functions inevitable, it will be useful to first interpret

the reciprocity theorem (2.88). Let us say that our source current is j1, gen-

erating an electric field E1, the explicit form the electric field generated is

given by equation (2.83). Our detector current is then j2. The reciprocity

theorem tells us that interchanging the source and detector currents does

not change the system or the fields at all. This is very useful when studying

antenna radiation, as it implies that the behavior of an antenna as an emitter

is the same as its behavior as a detector. To now show that reciprocity man-

ifests in the symmetry of the electromagnetic Green’s functions, we simply

note that in equation (2.88), jn ∼ δ(r− rn)pn and En(r) ∼ G(r, rn) · pn, as

we have already shown. Prefactors can be neglected as they are the same on

each side of the equality. Substituting these forms for current and electric

field, we find that the reciprocity theorem (2.88) leads immediately to the

symmetry of the electromagnetic Green’s function

p1 ·G(r1, r2) · p2 = p2 ·G(r2, r1) · p1, (2.89)

= p1 ·GT(r2, r1) · p2, (2.90)

G(r1, r2) = GT(r2, r1). (2.91)

Since G(r1, r2) is a symmetric tensor this is equivalent to equation (2.76).

Similar reasoning [24, 27] leads to the same reciprocity condition for GEH(r, r′),

given in equation (2.78). This also leads to a physical interpretation of the

two indices of the electromagnetic Green’s functions. The first index is the
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position of the observer/detector and second index is the position of the

source.

We now proceed to introduce a useful tool in the characterisation of

dipole radiation: the Polarized Local Density of Optical States (PLDoS). A

clear and thorough review of this quantity and its application has been pre-

sented by Barnes and Horsley [28], so here we will only outline the key con-

cepts. The time averaged power emission of a point dipole emitter, located

at rd, can be evaluated by computing the integral

⟨P⟩ = −1
2

Re
{∫

V
j(r) ·E(r)dr

}
, (2.92)

= ω3µ0Im
{∫

V
δ(r− rd)p ·G(r, rd) · p

}
, (2.93)

= ω3µ0Im {p ·G(rd, rd) · p} . (2.94)

From this, the PLDoS is defined as

ρp(p̂, rd, ω) =
2ωn2

πc2 Im {p̂ ·G(rd, rd) · p̂} , (2.95)

where p̂ is a unit vector pointing along the dipole moment of the dipole

emitter5 and n is the refractive index of the background medium. This quan-

tity gives the number of electromagnetic modes available per unit volume,

for a given dipole polarization p̂ and a given frequency, ω. The strength of

the coupling of the current in the dipole to the modes of the electromagnetic

field is characterised by the PLDoS. The larger the PLDoS, the more electro-

magnetic modes are available for the emitter to couple into, so more power

is radiated. Averaging the PLDoS over polarization and position allows one

5The vector p̂ has been left inside the Im deliberately: for chiral sources p̂ is complex.
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to obtain a hierarchy of related densities of states, with reducing specificity

ρl(r, ω) = ∑̂
p

ρp(p̂, r, ω), (2.96a)

ρ(ω) =
∫

V
drρl(r, ω). (2.96b)

Here, ρl gives the number of available states per unit volume for a given

position and frequency, but for any polarization and ρ(ω) gives the total

number of available states at a given frequency, averaged over position.

While the work of this thesis will focus upon the PLDoS in the context

of electromagnetism, its applicability goes far beyond this. Indeed, the PL-

DoS has also been used to characterise thermal and acoustic emission. To

emphasize this, the meaning of the PLDoS can be explained schematically

with a simple mechanical analogy. Figure 2.3 shows two of the modes sup-

ported by a drum (vibrating membrane), denoted by ω0,1 and ω2,5. If the

drum is struck at position r1, shown in red, then only the mode shown

in pink, ω0,1, is excited. On the other hand, if the drum is struck at po-

sition r2, shown in blue, then both modes are excited. This is exactly the

information given by the PLDoS: the number of available electromagnetic

modes available for a certain location, frequency and polarization. A fi-

nal interesting analogy to further exhibit the meaning of the PLDoS is re-

vealed by slightly re-writing equation (2.94) by defining p = p0p̂ so that

⟨P⟩ = ω2µ0p2
0Im {p̂ ·G(rd, rd) · p̂}. This has the form ⟨P⟩ ∼ Ap2

0ρp, where

A is a collection of prefactors. Writing Equation (2.94) in this way highlights

the similarity with Fermi’s Golden rule [29], which connects decay proba-

bilities to the matrix elements of the initial and final states, as well as the



2.4. Dipole Antenna Radiation 35

Figure 2.3: A mechanical analogy to explain the meaning of the Polarized
Local Density of Optical States. A drum (vibrating circular membrane) supports
several modes. Two are indicated by the pink and greens lines: ω0,1 and ω2,5
respectively. If the drum is struck at location r1, shown in red, then only the mode ω0,1
is excited while if the drum is struck at r2, shown in blue, then both modes are excited.
This information about the local availability of modes is the information that the
Polarized Local Density of Optical States gives about the electromagnetic field.

density of states into which the system can decay as

Γi→ f =
2π

h̄
|Mi f |2ρ(E f ). (2.97)

This has an identical form to ⟨P⟩ ∼ Ap2
0ρp, and the interpretations of the

terms are very similar. For a decaying atom, emitted power and decay prob-

ability are proportional. The matrix elements |Mi f | describe the strength of

the coupling of the initial and final states, while the dipole moment p0 de-

scribes how strongly the current in the dipole couples to the electric field. In

both cases the densities of states give the number of modes (or states) into

which the system can decay.

The PLDoS is a very useful tool in characterizing the effect of photonic

environments upon antenna radiation. Modifying the environment around

an antenna changes the availability of electromagnetic modes; this is clear
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from the study of waveguides and the Casimir effect [15]. This is shown in

Figure 2.4, where the effect of placing a mirror below an emitter is demon-

strated [30]. Although useful, PLDoS does not tell us where the radiation

goes, only the availability of modes. For instance, it contains no information

about which of the modes are occupied and which are empty. This means

that while the power emission of a dipole can be well characterized using

the PLDoS, the structure of the field cannot.

Now that we have formulated a way to solve Maxwell’s equations for

point dipole radiation, and seen how this radiation can be characterized

we can move towards the main topic of this thesis: the manipulation of

radiation properties.

h/  = 1

h/  = 1

0 0.5 1 1.5 2
h/
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0

3 p, / 0
3 p, / 0

Figure 2.4: The variation of emitted power (or the polarized local density of
optical states) of a dipole above a mirror. Two different polarizations of the dipole
are shown: parallel (dark red) and perpendicular (orange). The dipole emits radiation
with wavelength λ at a height h above the mirror. In both cases, the mirror is shown in
grey. The complex electric field is plotted, with brightness indicating magnitude and
colour indicating phase. For parallel polarization (red), when the dipole is on the mirror
the image source cancels the emitter completely so that ρp/ρ0 → 0. For perpendicular
polarization (orange) the image source acts to double the length of dipole leading to a
doubling of the power emission when the dipole is on the mirror surface. As the
distance of the dipoles above the mirror is increased, the power emission undergoes
‘Drexhage oscillations’ [30], before tending to free space emission as h/λ → ∞.
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2.5 Scattering: Mie Theory

In order to make analytic progress on a range of problems relevant to the

design of metamaterials, some approximations will be necessary. The first

of these has already been mentioned: our antenna can be modelled as a

point dipole. This is valid as long as the length of the dipole is significantly

smaller than the wavelength of radiation it emits. Now, when considering

how we might place some scatterers around an antenna in order to have a

desired effect upon the radiation we must make some assumptions about

the scatterers themselves. We will assume that the scatterers are small com-

pared to the wavelength of light. This means that we can treat the electric

field as being constant over the volume of the scatterer. Also, we will as-

sume that the scatterers are homogeneous, isotropic dielectric spheres. To

understand these assumptions and state them more precisely it is necessary

to sketch the full theory of electromagnetic scattering from spheres. This is

one of a surprisingly small class of electromagnetic scattering problems that

can be solved analytically.

The complete theory of electromagnetic scattering from spheres was de-

rived by Mie in 1908 [31] and has since been reviewed in full detail (c.f. [32,

33]). Here, we follow the notation of Bohren and Huffman [32] to sketch

the solution, outlining the parts important to the problems we will solve

later in the thesis and to make it clear how the assumptions outlined in the

paragraph above lead to a way of describing scattering from small spheres.

The calculation is conceptually rather simple, however working with vec-

tor fields and several families of special functions can become somewhat

involved.
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Beginning from the vector equations for monochromatic waves in free

space

(∇2 + k2)E = 0 (∇2 + k2)H = 0, (2.98)

∇ ·E = 0 ∇ ·H = 0, (2.99)

where E and H are not independent, subject to

∇×E = iωµH ∇×H = −iωεE, (2.100)

where ε = ε0εr and µ = µ0µr. The aim is to solve these equations under

scattering from a sphere of dielectric of arbitrary size. To this end, one may

introduce the vector spherical harmonics

Me
omn = ∇× (rψe

omn), Ne
omn =

∇×Me
omn

k
, (2.101)

where

ψemn = cos(mϕ)Pm
n (cos(θ))zn(kr), ψomn = sin(mϕ)Pm

n (cos(θ))zn(kr).

(2.102)

The subscript ‘e’ denotes that the solution is even and thus ∼ cos mϕ, ‘o’

denotes odd solutions that are ∼ sin mϕ, zn(kr) is any of the spherical Bessel

functions and Pm
n are the Legendre polynomials. From these definitions, it is

possible to show that M satisfies the vector Helmholtz equation as long as

ψ is a solution to the scalar Helmholtz equation. One may decompose the

scattered, incident and internal fields into these harmonics. For example,
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the scattered field can be written as

Es =
∞

∑
n=1

En(ianN
(3)
e1n − bnM

(3)
o1n), (2.103)

Hs =
k

ωµ

∞

∑
n=1

En(ibnN
(3)
o1n + anM

(3)
e1n), (2.104)

where an and bn are the Mie scattering coefficients, which must be deter-

mined. To determine these, one must apply the Maxwell boundary condi-

tions [15, 16] at the interface between the dielectric sphere and free space

[E2(r)−E1(r)]× n̂ = 0, [H2(r)−H1(r)]× n̂ = 0, r ∈ ∂S. (2.105)

This procedure yields the expressions for the Mie coefficients an and bn, for

each of the scattered modes in terms of the Riccati-Bessel functions [34]

Ψn(z) = zjn(z) ξn(z) = zh(1)n (z), (2.106)

as

an =
mΨn(mx)Ψ′

n(x)− Ψn(x)Ψn(mx)
mΨn(mx)ξ ′n(x)− ξn(x)Ψ′

n(mx)
, (2.107)

bn =
Ψn(mx)Ψ′

n(x)− mΨn(x)Ψn(mx)
Ψn(mx)ξ ′n(x)− mξn(x)Ψ′

n(mx)
. (2.108)

In these expressions x = ka is the size parameter, where a is the radius of

the spherical scatterer and m = n1/n is the refractive index contrast of the

scattering material n1 and the background n. These expressions are plotted

as functions of the size parameter in Figure 2.5. The coefficients an describe

the electric multipole modes, where a1 is the electric dipole mode, a2 is the

electric quadrupole and so on. The coefficients bn describe the magnetic

multipole modes in the same way. From Figure 2.5, it can be observed that
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Figure 2.5: The absolute value of the Mie an and bn coefficients, as functions
of the size parameter. Background refractive index is free space n = 1 and scatterers
are taken to be silicon at 550 nm, with n ∼ 4.1 + i0.041. For ka ≤ 1 (black dashed
line), the dipole modes a1, b1 dominate the scattering response.

for ka ≤ 1 the dipole response dominates. A convenient way to describe

scattering from objects is through the extinction coefficient, which charac-

terises the loss of field amplitude due to both absorption and scattering. In

terms of the Mie coefficients, the extinction coefficient of a scatterer can be

written as [32]

σext =
2π

k2 Im

{
n=∞

∑
n=1

i(2n + 1)(an + bn)

}
. (2.109)

Noting this will be useful when connecting Mie’s theory of scattering to an

alternative method to describing scattering. For small scatterers, we need

only consider the dipole a1 and b1 terms in the field expansions (2.103,

2.104). As these are the dipole terms, this assumption is called the dipole

approximation.

In the dipole approximation, one can connect the electric and magnetic

dipole moments, p and m respectively, acquired by a scatterer in response
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to applied fields as

 p

m

 =

αE 0

0 αH


E

H

 , (2.110)

where αE is the electric polarizability tensor and αH is the magnetic po-

larizability tensor [35]. This picture is commonly used for analyzing the

scattering from systems of several small dielectric scatterers (i.e. [36, 37]).

Generally, one way to interpret the components αij is how strongly the scat-

terer polarizes along the direction i in response to an applied field in the j

direction 6 . The coefficients, α depend only upon the geometry of the scat-

terer, and for isotropic scatterers have no off-diagonal elements. This is the

way of describing scattering that will be used throughout this thesis, as the

macroscopic polarization of the scatterer is related to the dipole moment as

P = pδ(r − r′) 7 for a point scatterer. This immediately gives an expres-

sion for the source terms in the vector wave equation (2.46) in terms of the

properties of the scatterers. One way to calculate the elements of the polar-

izability tensor for isotropic spherical scatterers is using the Mie coefficients.

The optical theorem [10, 38] connects the extinction cross-section of a

scatterer with polarizability α as

σext = kIm {α} . (2.111)

Simply comparing this with the expression one can derive from Mie theory

for the extinction cross-section (2.109) one can write down the expressions

for the electric and magnetic polarizabilities in terms of the Mie coefficients

6There is analogy between this and the stress tensor, for example [9]
7We have already stated that P should have units of dipole moment per volume. As the

Dirac delta is a distribution with units of inverse volume, this expression clearly has the
correct units.
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as

αE = i
6π

k3 a1, αH = i
6π

k3 b1. (2.112)

For isotropic scatterers, the polarizability tensor is diagonal, thus

αE =


1 0 0

0 1 0

0 0 1

 αE, αH =


1 0 0

0 1 0

0 0 1

 αH. (2.113)

It is possible to generalize these expressions to materials which are not spher-

ical (and therefore not isotropic) or exhibit bi-anisotropy [35]. It should also

be noted that evaluation of an and bn is not trivial. Numerical evaluation

of the derivatives of the Bessel functions can be delicate, however excellent

libraries exist in many programming languages. In this work, we make use

of the python library ‘PyMieScatt’ to evaluate an and bn [39].

2.6 The Discrete Dipole Approximation

To address the problem of designing metasurfaces, we begin by considering

a metasurface composed of sub–wavelength discrete elements that support

electric and magnetic dipole resonances. Maxwell’s equations for a fixed

frequency ω = ck, where k is the wave–number, can then be written as

∇×∇× 0

0 ∇×∇×


E

H

−k2

E

H

 =

Es

Hs

+

 ω2µ0 iωµ0∇×

−iω∇× k2


P

M

 .

(2.114)
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In this expression Es and Hs represent the source fields, for example the

field due to an emitter or a background plane wave. The source field is a so-

lution of (2.114) with the right hand side equal to zero. The total electric field

is then Etot = Es +E. The properties of the metasurface are encoded in the

polarisation density P and the magnetisation density M . This is generally

a difficult equation to solve, however the assumption that the scatterers are

sub–wavelength rk ≤ 1 means that the elements of the metasurface can be

modelled as point–like. In general, the polarisation and magnetisation den-

sities contain all multipole moments [40–42], however if we assume that

only the dipole terms are present, then we can write the polarisation and

magnetisation densities as

P = ∑
n
αEE(rn)δ(r− rn), M = ∑

n
αHH(rn)δ(r− rn), (2.115)

where E(rn), H(rn) are the fields applied to the scatterer. This reduces

the source terms in Maxwell’s equations (2.114) to a summation of delta

functions. As discussed in Section 2.3, equations of this form can be solved

with the dyadic Greens function and its curl [24, 26]

G(r, r′) =
[
1+

1
k2∇⊗∇

]
eik|r−r′|

4π|r− r′| , GEH(r, r′) = ∇×G(r, r′).

(2.116)
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The solution to Maxwell’s equations (2.114) with source terms given by

(2.115) can then be written as

E(r)

H(r)

 =

Es(r)

Hs(r)

+

n=N

∑
n=1

 ξ2G(r, rn)αE iξGEH(r, rn)αH

−iξGEH(r, rn)αE ξ2G(r, rn)αH


E(rn)

H(rn)


(2.117)

where we have chosen units such that the impedance of free space is η0 = 1

and work in terms of a dimensionless wavenumber ξ = ka, where a is a

length scale we are free to choose. This solution is not yet closed, since the

fields applied to each scatterer (E(rn),H(rn)) must be determined. To do

this, the position of each scatterer rm is substituted into (2.117) giving a sys-

tem of simultaneous equations that can be solved for the fields applied to

the scatterer. This procedure yields the following matrix equations connect-

ing the source and total fields at each scatterer

Rnm

E(rm)

H(rm)

 =

Es(rn)

Hs(rn)

 , (2.118)

where

Rnm =

1δnm − ξ2G(rn, rm)αE −iξGEH(rn, rm)αH

iξGEH(rn, rm)αE 1δnm − ξ2G(rn, rm)αH

 . (2.119)

The self–consistency condition (2.118) can be solved with standard matrix

methods [43] for the fields applied to each scatterer, which includes the

source field as well as contributions from all of the other scatterers. Once

these fields are found, the solution to Maxwell’s equations given by (2.117)
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is fully specified.

The particular physical system we consider in many numerical examples

is an arrangement of silicon spheres of radius 65 nm at a wavelength of 550

nm giving kr ≈ 0.75. For this simple choice of metasurface element, the

electric and magnetic polarisability tensors can be constructed from the Mie

coefficients [31, 44] a1 and b1 as

αE = 1i
6π

k3 a1 αH = 1i
6π

k3 b1 (2.120)

where 1 = diag(1, 1, 1) is the unit tensor. Polarisability tensors for more

complicated scatterers can be extracted from numerical modelling [38, 45],

making this method applicable to a very wide range of systems. This is

discussed in full detail in Appendix B. The key benefit is that an expensive

full–wave simulation is required for only a single scatterer, not the entire

metasurface.

2.6.1 Simple Example: Discrete Dipole Approximation For

a Scalar Field

Many of the key results of the thesis will involve designing disordered struc-

tures consisting of discrete dipolar scatterers. As leveraging the numerical

and conceptual benefits of the discrete dipole approximation will be cru-

cial for what follows, in this section we will consider some of the imple-

mentation details of the multiple scattering problem. To retain conceptual

simplicity, we will consider a scalar field obeying the Helmholtz equation.

This could be a single component of the electromagnetic field, or an acous-

tic pressure wave. The wave field will be modified by several identical

point scatterers located at {rn}, that scatter with strength αϕ(rn). Solving



46 Chapter 2. Background Theory

the multiple–scattering problem means finding the applied fields, which in-

clude both the source field as well as the effect of all of the other scatterers.

The wave–equation is therefore

(∇2 + k2)ϕ(r) = j(r) + ∑
n

αδ(r− rn)ϕ(r), (2.121)

where k is the wave–number and j(r) is the source current generating the

incident field ϕi(r). This can immediately be solved using the Green’s func-

tion, which for the 2D Helmholtz equation is the Hankel function of the first

kind

G(r, r′) =
1
4i

H(1)
0 (k|r− r′|). (2.122)

The solution to (2.121) is therefore

ϕ(r) = ϕi(r) + ∑
n

αG(r, rn)ϕ(rn). (2.123)

To find the fields applied to each scatterer ϕ(rn), we form the linear system

Rϕn = ϕi, (2.124)

where

ϕn = ϕ(rn) ϕi = ϕi(rn) (2.125)

and the interaction matrix is

Rnm =


1 n = m,

−αG(rn, rm) n ̸= m.
(2.126)

The code used to setup and solve this problem is given in Appendix A.
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An example of using this formalism to find the fields of a collection of

scatterers is shown in Figure 2.6. An incident plane wave, Figure 2.6 a), is in-

a) b)

c) d)

Figure 2.6: An example of solving the multiple scattering problem in 2D. a) An
incident plane wave is disturbed by a random distribution of scatterers. To find the
total (incident+scattered) field at each scatterer, we must form the interaction matrix
shown in b). Solving the linear system (2.124) for the fields at the scatterers allows us
to find all of the fields of the system, shown in c) and d).

cident upon 5 randomly positioned scatterers with polarisability α = 1+ i3.

The resulting scattering matrix is shown in Figure 2.6 b), with the scatterer

positions and fields shown in Figure 2.6 c), d). The interaction matrix has

1 along the diagonal, then off–diagonal elements that reflect the strength of

the coupling between the various scatterers. For example, just reading off

elements of the interaction matrix tells us that the scatterer labelled 0 inter-

acts more strongly with scatterer 4 than scatterer 1. This is because scatterer
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4 is closer: the Greens function in 2D decays as 1/
√

r (in 1D there is no decay

and in 3D there is a 1/r decay), meaning that one would expect scatterers

closer together to couple more strongly.

With the model set up, we can ask “when are multiple scattering effects

important?”. To answer this, we consider two examples using just two scat-

terers. Firstly, we keep the polarisability of the scatterers fixed and vary

the separation between them. Secondly, we keep the separation between

the scatterers fixed and vary the polarisability. In each case, we compare

full multiple scattering to the Born approximation [10, 46]. This is typically

the weak scattering approximation, were no multiple scattering is present

meaning that the total field is just

ϕBorn(r) = ϕi(r) + ∑
n

αG(r, rn)ϕi(rn). (2.127)

In this approximation it is unnecessary to perform a matrix inversion to find

the field applied to each scatterer, as it is just equal to the incident field. The

result of keeping the polarisability fixed to be α = 1 + i3 and changing the

separation is shown in Figure 2.7. Beginning with two scatterers separated

by λ, Figure 2.7 a) and b) shows the field both with and without multiple

scattering, and the error between the two characterised as

Field Error = |ϕ(r)− ϕBorn(r)|, (2.128)

shown in Figure 2.7 c). Some error is observed, although it is reasonably

small. The far–field radiation pattern from the multiple scattering approach

and the Born approximation are compared in Figure 2.7 d), showing almost

no difference. Performing the same comparison with two scatterers sepa-

rated by λ/3 in Figure 2.7 e)-h), much larger field errors are observed, as
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𝜆

𝜆/3

a) b) c) d)

e) f) g) h)

Figure 2.7: The effect of scatterer separation on the strength of multiple
scattering effects. Considering two scatterers with polarisability α = 1 + i3 separated
by a)-d) λ and e)-h) λ/3, we investigate when multiple scattering effects become
important to consider. The fields of the system under plane wave incidence are
evaluated using a), e) the Born approximation and b), f) the full multiple–scattering
formulation. The differences between the two approaches are shown in c) and g), with
the radiation patterns compared in d) and h).

well as large differences in the radiation patterns. The dependence of the

radiation pattern error, defined as the residual sum of square differences

between the multiple scattering and single scattering solutions, on both sep-

aration and polarisability is shown in Figure 2.8. The effect of the spacing,

shown in Figure 2.8 a) shows that for small scatterer spacing multiple scat-

tering effects are important, diminishing for larger separations. Oscillations

in the error are due to the multiple interaction term ∼ H(1)
0 (k|r1 − r2|) van-

ishing for certain separation values, related to the positions of the Bessel

function zeros. Figure 2.8 b) shows the effect of keeping the scatterers sep-

arated by λ, but varying the real part of the polarisability. For weak scat-

tering, or small polarisabilities, the Born approximation is valid. However,

when scatterers are close together and/or the polarisability is large, multi-

ple scattering effects must be taken into account.

These findings can be summarised as: multiple scattering effects become

crucial when scatterers are close together and/or when scattering is very
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a) b)

Figure 2.8: Effect of separation and polarisability on the radiation pattern of a
two scatterer system. a) shows the sum of squares error between the radiation
pattern, evaluated using the Born approximation and multiple scattering, as a function
of scatterer separation for a fixed polarisability. Oscillations occur due to interference
effects, although the an overall trend that multiple scattering is more important at
smaller separations can be observed. b) shows the effect of changing the real part of
the polarisability upon the error in radiation pattern, for a fixed scatterer separation of
λ. As Re[α] gets larger, so does the error, leading to the conclusion that multiple
scattering is important when scattering is strong.

strong, as is the case on resonance. Many electromagnetic systems rely on

resonances to produce strong effects, and it is typical to have many such

elements in close proximity to each other. Indeed, the field of metamateri-

als relies on closely packed resonant elements to achieve a wealth of wave

manipulations.

2.7 Metamaterials

Most materials derive their electromagnetic properties from their chemi-

cal composition, understood through the Ewald–Oseen extinction theorem

[46]. However, metamaterials derive their electromagnetic properties from

their structure, rather than chemistry. Although a lively area of current re-

search, many of the principles behind metamaterials have been known for

a long time.
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The Lucurgus cup, originating in 4th century Rome, shows a different

colour depending on whether or not it is illuminated [47]. This effect is

achieved without using dyes, but instead relies on the plasmon resonances

of small gold and silver particles suspended in the cup. When excited at op-

tical wavelengths small particulates of gold and silver, of diameter ∼ 70 nm,

support surface plasmon–polaritons changing how the material appears.

Over the last hundred years or so, ideas of metamaterials were devel-

oped greatly while also inspiring (or maybe taking inspiration from) science

fiction. In his 1965 novel “Dune”, Frank Herbert describes ‘meta–glass’,

noting its use a selective radiation filter [48]. By the 1970s, science fiction

had become science fact as many people had something that might fit the

description of ‘meta–glass’ in their homes: the door of a microwave oven.

Thin surfaces of periodically pattered metal, frequency selective surfaces

[49], can be designed to reflect, transmit or absorb radiation based upon its

frequency. Frequency selective surfaces (FSSs) have been extensively ap-

plied to microwave and radio wave problems, providing the framework for

modern metasurfaces. The field of frequency selective surfaces has given

birth to the active research topic of metasurfaces, 2D metamaterials. Ex-

tending the idea of FSSs by grading their elements in space, many novel

reflection and transmission properties can be realised. For example, one

can break Snell’s law [50, 51], make metasurface holograms [52], create very

thin optical components [53], perform polarisation conversion, perform im-

age processing [54] and solve integral equations [55].

Another concept that appeared in science fiction long before it appeared

in science is that of invisibility. H. G. Wells’s “The Invisible Man” [56], pub-

lished in 1897, describes a man who changes his refractive index such that

he is invisible. Using the fact that Maxwell’s equations in a material with
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ε = µ take the same form as they do in a gravitational field, researchers de-

veloped the theory of transformation optics. This enabled both the design

[57, 58] and experimental realisation [59] of an invisibility cloak, in the early

2000s. Grading refractive index in space has also enabled devices that sort

incident fields by their wavelength [60] or perform mode conversions [61].

Great experimental progress has been made on the fabrication of meta-

materials with complicated features and theoretical advances have produced

many interesting analytic refractive index profiles for many different pur-

poses. However, the problem of designing metamaterials that can easily be

fabricated for specific purposes remains challenging, attracting much atten-

tion over the last two decades.

2.8 Inverse Design of Metamaterials

If metamaterials are to be used to solve the current problems in, for exam-

ple, communications and stealth, techniques must be developed to design

a metamaterial for a specific application. In this section, we outline some

methods that have been developed to design metamaterials for a range of

applications.

Exploiting the fact that Maxwell’s equations retain their form under cer-

tain coordinate transformation, with different material properties, transfor-

mation optics emerged in the early 2000s with the seminal papers of Pendry

[58] and Leonhardt [57] as a fully analytic method for designing metamate-

rials. Leonhardt used this idea to design an isotropic cloak in two dimen-

sions using conformal mappings while Pendry designed a 3D cloak using

anisotropic materials. While this is a very elegant design tool, the material

properties required to deliver transformation optics can be hard to realise

experimentally. The technique also lacks flexibility, as it relies on the ability
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to find a coordinate transform that solves a given problem. Although recent

progress has seen made on this [62], it is in general an open challenge.

In addition to analytic techniques, many efficient numerical methods

have been developed to solve the inverse design problem algorithmically.

To do this, one must typically define a figure of merit: a physical quantity

that one wishes to maximise or minimise. For lensing this could be the

modulus of the field at a particular point, while for mode conversion it will

be the overlap between the existing and desired mode. Different numerical

techniques are used to address different design problems, which we now

review.

Firstly, the Gerchberg–Saxton algorithm [63] has been used extensively

[52, 53] to design metasurface holograms. This technique converts a desired

image into a phase map that must be imparted onto a plane wave. To im-

plement the required phase offset in a metamaterial, one typically uses as

‘meta–atoms’ elements that can be geometrically tuned. For example, one

can change the angle or size of a resonator to change the phase of transmis-

sion. Each pixel of the phase map then corresponds to a single meta–atom

with the correct geometric properties. This design technique is extremely

efficient and produces devices that can be easily fabricated, but is limited

to planar metamaterials that impart a phase offset. It also typically requires

many full–wave simulations to build up the meta–atom library. Recently,

the Gerchberg–Saxton algorithm was extended to include the ability to ma-

nipulate the amplitude [64] of the wave however arbitrary control of the

electromagnetic field is still not possible within this framework.

Recently, it has become standard to design metamaterials with specific

spectral properties using machine learning [65–67]. Designing a particu-

lar reflection coefficient as a function of wavelength, for example, can be
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done by generating many different meta–atom geometries, which are typi-

cally arrayed to form a metasurface. This is the training data. For each of

the generated meta–atoms, the reflection coefficient as a function of wave-

length is calculated using a full–wave solver (i.e. COMSOL [68]). With the

test input and output, a neural network can be trained to map between the

two. One can then use the neural network backwards, to predict a structure

that will produce a certain spectral response. This technique works well,

however generating the training data is time consuming and the method

overall provides little physical insight. Indeed, machine learning tools are

being applied to the output of machine learning tools to try to understand

how they work [69].

Genetic algorithms have found application in designing materials that

manipulate the field of small emitters [70] as well as a so called ‘evolved’

antenna [71]. One can construct a metamaterial from a collection of small

discrete elements that can be arranged anywhere in space around an emit-

ter. Genetic algorithms work by randomly generating many different con-

figurations of these elements, selecting the best and then combining good

solutions (crossover) and adding random changes (mutation). Currently,

genetic algorithms are the only way to distribute large numbers of discrete

scattering elements in space around an emitter to engineer its properties,

and to date only various emission efficiencies have been tuned [70]. How-

ever, they suffer from similar drawbacks to machine learning techniques.

The results of genetic algorithms are difficult to interpret physically, as they

are based upon random number generators. Also, if the fields are found us-

ing full–wave simulations then the procedure can be inefficient as genetic al-

gorithms typically require very many figure of merit calculations. It should

also be noted they do not guarantee a global minima, as is shown in [70].
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a) b)

Figure 2.9: An example of gradient descent optimisation. The objective is to
minimise the function given by Eq. 2.130. Starting from two different points, shown as
black stars, steps of size γ = 0.01 in the direction of −∇ f (x, y) are taken iteratively,
until a minima is reached. a) shows the function space and the two paths, b) shows the
progression of the value of f (x, y) along the two paths. The blue path ends in a local
minima at f (−3.17,−7.81) = −87.29 while the red path finds the global minima at
f (−3.13,−1.58) = −105.76.

Perhaps the simplest method of inverse design, understood as maximis-

ing or minimising a function, is gradient descent [72]. For some differen-

tiable multi–variate function f (x), the direction in which it decreases most

quickly is given by −∇ f , where the derivatives of the gradient are with re-

spect to the variables x. To find the set of variables {xmin} for which f (x)

is minimal, one can choose some starting point in parameter space xinitial,

evaluate the gradient of f (x), take a small step in that direction according

to

xi+1 = xi + γ∇ f (xi), (2.129)

where i denotes the iteration number and γ is the step size. The procedure

can then be repeated until a minimum is reached and the gradient vanishes.

It should be noted that, depending upon the landscape of the function f (x),

this process may not find a global minimum and instead get stuck in a local

one. The local minimum found could also depend upon the starting pa-

rameters one chooses. To illustrate this we consider an example: we seek to
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minimise Mishra’s Bird function [73], given by

f (x, y) = sin(y)e(1−cos x)2
+ cos(x)e(1−sin y)2

+ (x − y)2. (2.130)

This is commonly used optimisation test function and exhibits several local

minima as well as a global minimum at

f (−3.13,−1.58) = −105.76. In Figure 2.9, the progress of gradient descent

at two different starting points, shown as black stars, is illustrated. In each

case, Eq. 2.129 is used to find a path to the minima, however the blue path

finds a local minima at f (−3.17,−7.81) = −87.29 while the red path finds

the global minima. This limitation of the gradient descent method should

be kept in mind when it is applied to the inverse design of photonic systems.

While simple, applying this gradient descent optimisation to photon-

ics problems can be challenging. To see why, say we would like to de-

sign a dielectric structure that increases the emitted power of a small dipole

emitter with polarisation p at location r⋆. Introduced in Section 2.4, the

emitted power of a small dipole emitter can be characterised by the Pl-

DoS. To increase the emitter power we seek to maximise the PLDoS at the

location of the emitter. The figure of merit for this problem is therefore

F ∝ Im [p∗ ·E(r⋆)]. Our aim is to maximise this function with respect to the

design parameters, which here is the permittivity distribution. The figure of

merit here is a functional F [ε(r)], a function of a function, nevertheless we

can write the gradient descent for this problem as

ε(r)i+1 = ε(r)i + γ∇εF , (2.131)

where ∇ε denotes the gradient of the figure of merit with respect to the per-

mittivity distribution. Evaluation of this gradient is challenging. To attempt
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to make progress, one could apply the chain rule, giving

∇εF =
∂F
∂E

∂E

∂ε
. (2.132)

The first of these derivatives ∂F/∂E can be easily evaluated, but evaluation

of the second is not trivial. There are two strategies one could use to find the

second derivative. Firstly, one could break up the dielectric structure into

‘pixels’, change the permittivity at each pixel and see how the field changes.

This would allow one to build up the derivative bit–by–bit, however each

pixel would require a full–wave simulation making this approach very slow.

A far more efficient method, requiring only two simulations to find the en-

tire gradient has been developed in recent years: the adjoint method.

2.9 The Adjoint Method

Originally developed in structural mechanics [74], the adjoint method has

been widely applied to design a huge range of photonic devices in recent

years [75, 76]. The adjoint method provides a very efficient way of deciding

where to change a dielectric structure in order to increase a given figure

of merit. In this section we derive the key results of the adjoint method,

remembering that our overall aim is to find the derivative ∂F
∂ε .

We begin from the vector Helmholtz equation for the electric field E(r)

and a permittivity distribution ε(r), that was derived in Section (2.2) (c.f.

(2.46)),

∇×∇×E(r)− k2
0ε(r)E(r) = 0. (2.133)

Next, we apply perturbation theory to see how a small change in the per-

mittivity ε(r) → ε(r) + δε(r) changes the field E(r) → E(r) + δE(r). We

find, to leading order, that the change the the field obeys the same vector
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Helmholtz equation as before, with the addition of a source term produced

by the change in permittivity

∇×∇× δE(r)− k2
0ε(r)δE(r) = k2

0δε(r)E(r). (2.134)

As discussed in Section 2.3, inhomogeneous linear differential equations can

be solved using the Green’s function, converting the differential equation

into an equivalent integral one

δE(r) = k2
0

∫
d3r′G(r, r′)δε(r′)E(r′). (2.135)

Progress can be made by choosing a form for the perturbation to the per-

mittivity: we change the permittivity at only a single point ri by an amount

∆ε. This means we can write δε(r) = ∆εδ(r− ri), making the evaluation of

the integral trivial

δE(r) = k2
0G(r, ri)∆εE(ri). (2.136)

Now returning to the physical problem of interest, enhancing the emit-

ted power of a dipole located at r⋆, we can write down our figure of merit

as

F =
ω

2
Im [p∗ ·E(r⋆)] . (2.137)

Expanding the figure of merit to first order under small changes in the field

E(r) → E(r)+ δE(r) and substituting in the connection between a change

in the field and a change in permittivity (2.136), we find

δF =
ω

2
Im [p∗ · δE(r⋆)] , (2.138)

=
ωk2

0∆ε

2
Im [p∗ ·G(r⋆, ri) ·E(ri)] . (2.139)
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a) b) c)

e)d) f)

Figure 2.10: An example application of the adjoint method to increase the
emitted power of a small dipole. Beginning from the permittivity structure shown in
a), the dipole emitter produces the field shown in b). Iteratively applying 2.143 to
update the permittivity, with the first step shown in c), the power enhancement is
shown in d). The resulting graded index structure is shown in e), along with the
optimised field in f). Comparing the initial field b) with the final field f), a clear
enhancement at the emitter can be observed.

It does not look like we have made much progress, as we must still evaluate

the Green’s function for every single ri we would like to change. However,

we can use the reciprocity of the Green’s function G(ri, rj) = GT(rj, ri) to

re–write the expression as

δF =
ωk2

0∆ε

2
Im [E(ri) ·G(ri, r⋆) · p∗] , (2.140)

= ∆εIm
[
E(ri) ·Eadjoint(ri)

]
, (2.141)

where we have defined the adjoint field as

Eadjoint(r) =
ωk2

0
2

G(r, r⋆) · p∗. (2.142)
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This can be interpreted as the field due to a point source at r⋆ with a polari-

sation conjugate to that of the source we are trying to enhance. The adjoint

field can therefore be interpreted as the ‘time reverse’ of the emitted field.

Dividing through 2.141 by ∆ε, we find that the gradient of our figure of

merit is nothing but the dot product of the forwards field and the adjoint

field
∂F
∂ε

= Im
[
E(ri) ·Eadjoint(ri)

]
, (2.143)

evaluated at the positions we would like to change the permittivity at ri.

This means that to find how to change the permittivity, instead of need-

ing many simulations we require only two. One to find the forwards field,

with a source of polarisation p and another to find the adjoint field with a

source of polarisation p∗. The gradient can then easily be formed, and gradi-

ent descent optimisation used. An example of applying the adjoint method

to enhance the power emission of a small dipole is shown in Figure 2.10.

We begin from an initial permittivity distribution, shown in Figure 2.10 a),

where the emitter is polarised in the y direction and denoted by a red arrow

at the origin. The initial forwards field is shown in Figure 2.10 b). One can

calculate both the forwards and adjoint fields, then form the dot product

that gives the gradient, shown in Figure 2.10 c). In the regions shown in red,

the permittivity should be increased and in the regions shown in blue the

permittivity should be decreased, in order to increase the figure of merit.

Repeating this, the emitted power of the dipole is increased as can be seen

in Figure 2.10 d). The final permittivity distribution is shown in Figure 2.10

e) along with the field in Figure 2.10 f). The enhancement of the emission is

evident in the field.
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2.10 Summary & Conclusions

In this introductory chapter, we have given an overview of the wave equa-

tion in physics, noting that wave phenomena are ubiquitous and that the

theoretical framework describing very different physical situations is re-

markably similar. Throughout the thesis, analogies between wave behaviour

in acoustics, electromagnetism and quantum mechanics will be exploited

to develop new techniques and draw comparisons between seeming unre-

lated physical phenomena. Particular focus was placed on electromagnetic

waves, their emergence from Maxwell’s equations and certain interesting

limiting cases such as the Helmholtz equation if we choose to work at a

single frequency. Next, the solution of inhomogeneous equations using the

Green’s function approach was developed and the Green’s functions for the

vector and scalar Helmholtz equation were derived. We noted in particular

the expression of reciprocity in the Green’s function. Swapping the posi-

tion of a source and detector of waves does not change the fields, thus the

Green’s function is symmetric under such an interchange. Having devel-

oped a way of solving the wave equations for a given source, we proceeded

to derive a simple model for the kind of source we will be interested in: a

dipole. This is a common, simple, model for an antenna. By analogy with

Fermi’s Golden Rule, we also introduced the concept of the Local Density of

Optical States (LDOS) to describe the number of states into which an emit-

ter may radiate. As noted by Purcell, one way to modify the LDOS is to

change the photonic environment. Much of the work in this thesis will in-

volve placing scatterers around emitters to change the radiation properties.

We therefore introduced Mie theory as a model for the properties of a single

isotropic spherical scatterers. Considering then the effect of many such scat-

terers, the discrete (or coupled) dipole approximation is formulated. After a
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brief review of metamaterials and methods for designing them for specific

applications, we introduced the adjoint method. The adjoint method is a

flexible and efficient tool for designing metamaterials.
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Chapter 3

Designing Uni–functional Devices

“Talking nonsense is the sole privilege mankind possesses over the other
organisms. It’s by talking nonsense that one gets to the truth! I talk nonsense,

therefore I’m human” – Fyodor Dostoevsky, ‘Crime and Punishment’

The results of this chapter have been published in:

• J. R. Capers, S. J. Boyes, A. P. Hibbins and S. A. R. Horsely “Designing

the collective non-local responses of metasurfaces” Commn. Phys. 4

209 (2021)

• J. R. Capers, S. J. Boyes, A. P. Hibbins and S. A. R. Horsely “Design-

ing metasurfaces to manipulate antenna radiation” Proc. SPIE 12130,

Metamaterials XIII, 121300H (2022)
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Designer manipulation of electromagnetic radiation is key a to huge

range of emerging and developing technologies, from sensing and optical

computing, to next–generation communications and stealth. One way to

manipulate radiation is using materials structured at the sub–wavelength

scale: metamaterials. However, metamaterials typically have a very large

number of geometric parameters that can be tuned to achieve a given scat-

tering effect, making the modelling and design process extremely chal-

lenging. Existing design paradigms rely on either limiting approxima-

tions or numerically demanding full–wave simulations. In this chapter,

we derive a semi–analytic method for designing metamaterials built from

sub–wavelength magnetodielectric scattering elements. We then apply

this to a large range of problems, manipulating the near and far–field of

small sources as well as shaping plane waves.

3.1 Introduction

The emission properties of electromagnetic sources are not determined only

by the geometry of the source. The photonic environment also affects how

an emitter radiates. This effect was first noted by Purcell [77], who realised

that atoms in a cavity had a different decay rate to atoms in free space. By

changing the availability of the modes the emitter can radiate into, the cav-

ity modifies the rate of emission. Drexhage observed that the decay rate of

an emitter above a mirror varies based on the distance between the emit-

ter and the mirror [30]. He understood this as a simple interference effect.

The reflections from the mirror have a certain phase when they reach the

source, which depends upon the distance from the emitter and the mirror.

When the reflections are in phase with the emitter, the decay rate is en-

hanced and when the reflections are out of phase emission is suppressed.
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This interference effect is not unique to electromagnetic waves, having also

been observed for acoustic sources [78].

Modifiying the environment around an emitter to change its properties

was known in the antenna community long before Purcell’s observations.

Invented in 1926, the Yagi–Uda antenna [79] exemplifies this idea. Con-

structed from a small number of metal rods, the Yagi–Uda antenna has a

single driven element with a longer reflector behind it and several rods of

decreasing length in front of the emitter. The result of this arrangement is a

very strongly directional beam in the forwards direction. Since it is excep-

tionally simple to make, the Yagi–Uda antenna is widely used for broadcast

TV reception. In recent years, with advances in nano–fabrication technol-

ogy, common microwave or radio–wave antenna designs have been con-

structed on the nanoscale to manipulate light. Both the bow–tie antenna

[80] and the Yagi–Uda antenna [81] have been realised on the nanoscale.

Such plasmonic nanoantennas [82] hold great promise for on–chip optical

technology and optical computing.

Greater control over the emission properties can be obtained through

greater control over the structure surrounding the emitter using, for ex-

ample, metamaterials. For a periodic metasurface made of electromagnetic

dipoles, the usual Drexhage oscillations can be observed but are phase shifted

[83]. Many features of emitters can be engineered by embedding them

within [84] or on top of [85] metamaterials. For example, in a band gap,

there is no radiation at all [84]. Switching mechanisms can be employed to

adjust the coupling between emitters and the Mie resonances of the meta-

surfaces to allow tuneable emitter properties [85], useful in a wide range of

optical devices. These approaches allow for directional and spectral shaping

of light emitters [86, 87].



66 Chapter 3. Designing Uni–functional Devices

To achieve more exotic near–field manipulations, more complex geome-

tries must be placed around the emitter. Design of such geometries is often

facilitated using the adjoint method [75, 76], to find geometries of dielec-

tric that manipulate the source radiation in several interesting ways. For

example, cavities that enhance the efficiency of small emitters by factors of

thousands have been designed at optical wavelengths [88] and realised at

microwave frequencies [89]. Many quantum properties of emitters can also

be engineered [90], such as coherence [91] and energy transfer [92], by struc-

turing dielectric around an emitter. As well as the adjoint method, genetic

algorithms are a well used design paradigm. For example they have been

used to design disordered materials that enhance the decay rate of emitters

[70, 93, 94], and to design highly directional antennas [95, 96].

While great progress has been made on the design of metamaterials

that manipulate source properties, existing methods still have several draw-

backs. Graded structures designed by algorithms can have very fine fea-

tures [88] that can be difficult to manufacture. Genetic algorithms are very

effective at designing disordered metasurfaces, however their operation and

resulting structures can be difficult to interpret [69] using physical intuition.

In this chapter, we present a method for placing small dipolar scatter-

ers around an emitter to change how it radiates. This is shown schemati-

cally in Figure 3.1. Considering an emitter near an array of initially periodic

scatterers, Figure 3.1 a), we aim to find how to change the locations of the

scatters to manipulate the radiation in a particular way. The scatterers them-

selves are taken to be silicon spheres of radius 65 nm so that their scattering

properties, Figure 3.1 b), can be extracted analytically. Beginning with the

prototypical problem of enhancing power emission, we derive both a de-

sign methodology, shown schematically in Figure 3.1, along with an accom-

panying interpretation framework. We then consider engineering both the
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Figure 3.1: The system considered in our numerical examples. A schematic of
the problem is shown in (a). A dipole emitter with polarization p̂ is located at r′. This
generates source fields (Es, Hs), which are scattered by N silicon spheres located at rn.
The scatters have optical properties shown in (b). The scatterers are assumed to be
isotropic silicon spheres of radius 65 nm, with the frequency dispersion of the
polarizability extracted from experimental data [97]. A simple example of the design
process is shown in (c). The power emission of the emitter (red arrow) is enhanced by
iteratively moving passive scatterers (black dots) from their initial positions (left) to
some optimised positions (right). Colour plots show Im[E(r) · p̂], which when
evaluated at the emitter’s location is proportional to power emission. The enhancement
of this quantity at the location of the emitter is evident.

near and far–field of the emitter, manipulating directivity, coupling to other

nearby emitters and lensing.

3.2 Designing Scattering Properties

The aim is to now find a way to choose the distribution of the scatterers {rn}

to achieve a desired wave–scattering effect. We consider choosing an initial

distribution of scattterers and ask “how should the positions be changed to

increase a particular figure of merit?”. To answer this, we employ perturba-

tion theory to find how a small change in the position of a scatterer changes

the fields. This approach is similar to that of the adjoint method, described

in Section 2.9, where the effect of a small change in the spatial distribution
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of the permittivity was considered. We work in our dimensionless system

of units and begin by considering only the electric field and scatterers with

αH = 0. As in Section 2.6, we consider the governing equation

∇×∇×E − ξ2E = jsource(r) + ξ2P (r), (3.1)

with the polarisation density given by

P (r) = ∑
n
αEE(r)δ(r− rn), (3.2)

where rn is the location of the scatterer, and jsource is the source current,

which generates the incident electric field. Writing the dipole moment as

p =
∫

dVP (r), (3.3)

our aim is to find how the polarisation density is changed when a scatterer

is moved by a small amount. To this end, we proceed in a similar fashion

to how one derives the multipole expansion [41, 42], Taylor expanding the

delta function as

δ(r− rn − δrn) = δ(r− rn) + (δrn · ∇)δ(r− rn) + . . . . (3.4)

The polarisation density now has two parts: the first is the usual polari-

sation density of a dipole scatterer; the second is the small change in the

polarisation density due to a small change in the scatterer location

p = ∑
n

[∫
dVαEE(r)δ(r− rn) +

∫
dV(δrn · ∇δ(r− rn))αEE(r)

]
. (3.5)
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To deal with the second term, we note it is a property of the derivative of

the Dirac–delta function [98] that

f (x)
d

dx
δ(x − x′) = −δ(x − x′)

d f (x)
dx

, (3.6)

which can be proven by integrating by parts as

∫ ∞

−∞
ϕ(x)

d
dx

δ(x − x′)dx = ϕ(x)δ(x − x′)
∣∣∞
−∞ −

∫ ∞

−∞
δ(x − x′)

d
dx

ϕ(x)dx.

(3.7)

The boundary term is zero as the delta function evaluated anywhere other

than x = x′ is zero, leaving only the final term. Utilising this, the polarisa-

tion density is therefore

P (r) = ∑
n

δ(r− rn) [αEE(r)−αEδrn · ∇E(r)] . (3.8)

Provided we choose δrn ≪ 0, we can treat the change in polarisation den-

sity perturbatively. Inserting this into (3.1), then solving by integrating the

source terms against the Dyadic Green’s function, we find that

E(r) + δE(r) = ∑
n

ξ2 [G(r, rn)αEE(rn)−G(r, rn)αEδrn · ∇E(rn)] .

(3.9)

So, the change in the electric field due to the change in the location of a

scatterer is

δE(r) = −ξ2G(r, rn)αEδrn · ∇E(rn). (3.10)

Considering next a scatterer with αE = 0 and αH ̸= 0, the governing

equation is

∇×∇×E(r)− k2E(r) = iξ ∑
n
∇×M , (3.11)
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and the magnetisation density is

M (r) = ∑
n
αHH(r)δ(r− rn). (3.12)

As with the electric case, we consider the total magnetic dipole moment and

expand the delta functions to find

m = ∑
n

[∫
dVαHH(r)δ(r− rn) +

∫
dV(δrn · ∇δ(r− rn))αHH(r)

]
.

(3.13)

Integrating by parts to move the derivative from the delta function onto the

field, we obtain the modified magnetisation density

M (r) = ∑
n

δ(r− rn) [αHH(r)−αHδrn · ∇H(r)] . (3.14)

Using this as a source term in (3.1), we can find the change in the field due

to a small change in the position of a magnetic scatterer to be

δE(r) = −∑
n

iξGEH(r, rn)αHδrn · ∇H(rn). (3.15)

Therefore, the total change in the electric field due to a magnetodielectric

scatterer being moved by a small amount is just the sum of (3.10) and (3.15),

giving

δE(r) = −∑
n

[
ξ2G(r, rn)αEδrn · ∇E(rn) + iξGEH(r, rn)αHδrn · ∇H(rn)

]
.

(3.16)

Using identical arguments, the change in the magnetic field is

δH(r) = −∑
n

[
ξ2G(r, rn)αHδrn · ∇H(rn)− iξGEH(r, rn)αEδrn · ∇E(rn)

]
.

(3.17)
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These expressions can be used to find how changing the location of a

scatterer affects a given figure of merit, which is a functional of the field

configurations F [E,H ]. Moving one scatterer produces a small change in

the fields at every point in space, which in turn changes the figure of merit

by a small amount

F [E,H ] → F [E,H ] + δF [E,H , δE, δH ]. (3.18)

The change in the figure of merit is linear in δrn, so once we have derived the

analytic expression for δF it can be used to find an expression for a δrn that

leads to an increase in the figure of merit. Expressions for δF can be derived

in the same way as in the expressions for the change in field were derived.

Into the analytic expression for the figure of merit, we substitute E → E +

δE and H → H + δH , where δE and δH are given by (3.16) and (3.17).

Dividing the resulting expression through by δrn gives the gradient of the

figure of merit with respect to the positions of all of the scatterers. In this

way, we can begin from an initial distribution of scatterers and iteratively

calculate the set of moves for each scatterer {δrn} that increase the figure of

merit.

To illustrate how these expressions can be used, we consider trying to

enhance the emitted power of a small dipole emitter with polarisation p at

position r′. Our figure of merit is

P = −ω

2
Im
[
p∗ ·E(r′)

]
. (3.19)



72 Chapter 3. Designing Uni–functional Devices

a b
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Figure 3.2: A simple example optimisation. The aim is to enhance the emitted
power of the dipole emitter at the origin (black arrow). We consider two scatterers,
labelled A and B, that support only an electric dipole (αH = 0). (a) shows the
configuration change during the optimisation, with the colour indicated Re[Ey]. (b)
shows the evolution of the power emission.

To find the gradient of this figure of merit with respect to the locations of all

of the scatterers, we expand it under small changes in the fields

P + δP = −ω

2
Im
[
p∗ ·

(
E(r′) + δE(r′)

)]
, (3.20)

δP = −ω

2
Im
[
p∗ · δE(r′)

]
. (3.21)

Into this, we substitute the expression connecting the change in the field to

a change in the position of a scatterer

δP =
ω

2
Im
[
p∗ ·

{
ξ2G(r, rn)αEδrn · ∇E(rn)

+ iξGEH(r, rn)αHδrn · ∇H(rn)}] .
(3.22)
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Dividing through by δrn, we arrive at the gradient of the figure of merit

with respect to the position of all of the scatterers

∇rn P =
ω

2
Im
[
p∗ ·

{
ξ2G(r, rn)αE∇E(rn) + iξGEH(r, rn)αH∇H(rn)

}]
.

(3.23)

This gradient can be used to update the positions of all the scatterers to in-

crease the figure of merit using simple gradient descent optimisation, given

by

ri+1
n = ri

n + γ∇rn P, (3.24)

where γ is a small step, chosen so that the change to the fields can be con-

sidered a small perturbation. We find that the choice of γ ∼ λ/500 provides

a good balance between convergence and computation time. Similarly to

the adjoint method, our technique gives us a way to update the position of

all of the scatterers at the same time, making it very efficient. Furthermore,

only the derivative of the field is required not the derivative of the figure of

merit.

An example of using this framework to place two electric scatterers (αH =

0) around an emitter to enhance its emitted power is shown in Figure 3.2.

The two scatterers, labelled A and B start in positions indicated by the blue

dots and are shifted to the locations indicated by red dots. Power emission

is enhanced by 16% , although it is clear that this is a local minimum mean-

ing that another choice of initial condition could yield a better result. As

was discussed in Section 2.8, this is a feature of gradient descent optimi-

sation. Before proceeding to design more complex structures, we continue

with this simple example and develop some tools that can be used to better

understand the disordered structures we will design.
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3.3 Understanding Scattering Structures

We consider what information can be extracted about the scattering sys-

tem from the analytical formulation. Having the mathematical framework

provided by the discrete dipole approximation, derived in Section 2.6, from

which information can be extracted sets this method apart from design meth-

ods based on genetic algorithms or machine learning. While powerful, these

techniques offer no physical insight into the disordered scattering system.

The key object that characterises the system of scatterers is the interaction

matrix, R. All multiple scattering effects within the system are encoded

within this matrix. To illustrate the physical meaning of the R matrix, we

consider the simplest possible case: two scatterers with only an electric po-

larizability (αH = 0). In this case, the response matrix connects the fields

due to the the source, (Es,Hs), to the dipole moment induced in the scat-

terers p as,

p(r1)

p(r2)

 = αE ·

 1 −ξ2G(r1, r2) ·αE

−ξ2G(r2, r1) ·αE 1


−1

·

Es(r1)

Es(r2)

 .

(3.25)

The eigenvalues of R−1 satisfy the characteristic polynomial

λ−1 = 1±
√
[ξ2G(r1, r2) ·αE] · [ξ2G(r2, r1) ·αE]. (3.26)

This is exactly the same as (2.119) in Section 2.6, although we have used

the fact that p = αEE to re-write the left–hand side in terms of the dipole

moment rather than the field. Making use of the reciprocity of the Greens

function [24], we see that the two terms under the square root are identical.
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Therefore, the eigenvalues of R can be written down immediately

λ = diag
{

αE

1± ξ2G(r1, r2) ·αE

}
. (3.27)

One way to interpret the terms of (3.26) are as multiple scattering events

between scatterer 1 and scatterer 2. An interaction between the two electric-

dipole scatterers is comprised of scattering from r1 to r2, then back again.

This is what is expressed by the product of the Green functions in the dis-

criminant of the characteristic equation (3.26). This understanding can be

extended to more electric scatterers, and also scatterers with both electric

and magnetic dipoles, whence more complex scattering processes become

available. However, this interpretation is still evident in the form of the
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characteristic polynomials. For example, for just two electromagnetic scat-

terers (αE,αH ̸= 0), the characteristic equation is

(1 − λ)4

+ (1 − λ)2
[

G(r1, r2)αEG(r2, r1)αEξ4

−G(r1, r2)αHG(r2, r1)αHξ4

−GEH(r1, r1)αEGEH(r1, r1)αHξ2

−GEH(r1, r2)αEGEH(r2, r1)αHξ2

−GEH(r1, r2)αHGEH(r2, r1)αEξ2

−GEH(r2, r2)αEGEH(r2, r2)αHξ2
]

+ (1 − λ)
[
−G(r1, r2)αEGEH(r1, r1)αEGEH(r2, r1)αHξ4

−G(r1, r2)αEGEH(r2, r1)αEGEH(r2, r2)αHξ4

−G(r1, r2)αHGEH(r1, r1)αHGEH(r2, r1)αEξ4

−G(r1, r2)αHGEH(r2, r1)αHGEH(r2, r2)αEξ4+

G(r2, r1)αEGEH(r1, r1)αHGEH(r1, r2)αEξ4

+G(r2, r1)αEGEH(r1, r2)αHGEH(r2, r2)αEξ4

−G(r2, r1)αHGEH(r1, r1)αEGEH(r1, r2)αHξ4

−G(r2, r1)αHGEH(r1, r2)αEGEH(r2, r2)αHξ4
]

− G(r1, r2)αEG(r1, r2)αHG(r2, r1)αEG(r2, r1)αHξ8

− G(r1, r2)αEG(r1, r2)αHGEH(r2, r1)αEGEH(r2, r1)αHξ6

− G(r1, r2)αEG(r2, r1)αHGEH(r1, r1)αEGEH(r2, r2)αHξ6

+ G(r1, r2)αHG(r2, r1)αEGEH(r1, r1)αHGEH(r2, r2)αEξ6

+ G(r2, r1)αEG(r2, r1)αHGEH(r1, r2)αEGEH(r1, r2)αHξ6

+ GEH(r1, r1)αEGEH(r1, r1)αHGEH(r2, r2)αEGEH(r2, r2)αHξ4

− GEH(r1, r1)αEGEH(r1, r2)αHGEH(r2, r1)αHGEH(r2, r2)αEξ4

− GEH(r1, r1)αHGEH(r1, r2)αEGEH(r2, r1)αEGEH(r2, r2)αHξ4

+ GEH(r1, r2)αEGEH(r1, r2)αHGEH(r2, r1)αEGEH(r2, r1)αHξ4.

(3.28)
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While this is much harder to interpret, we can see that if we set αH = 0, the

purely electric case is retrieved.

Additionally, the terms can be interpreted physically:

−G(r1, r2)αHG(r2, r1)αHξ4 represents magnetic scattering between the two

scatterers. Terms of the form −GEH(r1, r2)αEGEH(r2, r1)αHξ2, read from

left to right, indicate a magnetic field applied to scatterer 1 being scattered as

an electric field, before being re–scattered as a magnetic field from scatterer

2. In what follows, we will consider the magnitude of the eigenvalues rather

than the characteristic polynomials, due to their complexity, however all of

the wave physics of the system is buried within these objects. Interestingly,

scattering systems can also be understood using graph theory approaches

[99]. This approach scales more conveniently than attempting to examine

the characteristic equation directly.

Combining the fact that eigenvalues of the interaction matrix R contain

information about the collective response of the particles with the expres-

sion for the eigenvalues (3.27), the value of eigenvalue itself can be inter-

preted as the collective polarizability of the two scatterers. The eigenvalue

itself, λ, can be viewed as the enhancement to the single scatterer polar-

izability due to multiple scattering effects. It is a dimensionless number

that characterises how strongly interacting the system is. Therefore, α−1
E ·λ

gives the enhancement of the single particle polarizability due to the multi-

ple scattering events between the two scatterers. So, if α−1
E · λ = 1 there is

no change to the single particle polarizability and multiple scattering events

provide no enhancement. On the other hand, a large α−1
E ·λ corresponds to

a large enhancement to the response of a single scatterer, due to collective

behaviour.

Additionally, the eigenmodes of the interaction matrix R represent con-

figurations of field that produce a certain collective response of the system.
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As R has no symmetries these eigenvectors do not form an orthogonal basis

[100, 101], although the left and right eigenvectors of R do. Right eigenvec-

tors are defined as satisfying

Rwn = λnwn, (3.29)

and left eigenvectors can be defined as satisfying

v†
mR = λmv

†
m, (3.30)

where ’†’ denotes the conjugate transpose (adjoint) of the vector. To see that

these form a basis, we multiply the first by v†
m and the second by wn, giving

v†
mRwn = λnv

†
mwn, (3.31)

v†
mRwn = λmv

†
mwn. (3.32)

For these to both be true, we require that

v†
mwn = δnm. (3.33)

In other words, the left and right eigen–vectors are orthogonal. Using a left

and right pair, the source field can be decomposed into the basis of these

eigenvectors, wn as

(Es,Hs)
T =

N

∑
n=1

cnwn, (3.34)
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where N is the number of scatterers and cn is a complex expansion coeffi-

cient. To find cn, we multiply each side of (3.34) by v†
m

v†
m (Es,Hs)

T =
N

∑
n=1

cnv
†
mwn (3.35)

=
N

∑
n=1

cnδnm (3.36)

⇒ cn = v†
n (Es,Hs)

T . (3.37)

The expansion coefficient cn indicates which eigenmodes contribute most

strongly to the response of the system. Identifying these modes allows the

response of the system to be understood and characterised by examining

only a few eigenmodes, rather than the whole expansion (3.34). The expan-

sion coefficient is a useful tool in characterising the response of the system.

From this decomposition, one may find which modes are excited and how

strongly so that the dominant scattering response of the system may be iso-

lated and examined.

To demonstrate the utility of the eigenvalues of the interaction matrix

and the expansion coefficient, we apply this framework to the simple scat-

tering structure shown in Figure 3.2. Our aim is to gain insight into the

optimisation procedure by considering i) the shapes of the eigenmodes of

the interaction matrix, and ii) how the dominant modes change over the

optimisation, characterised by the expansion coefficient. The modes of the

two–scatterer system are shown in Figure 3.3. The labels ’A’ and ’B’ identify

the scatterers and the modes are plotted as vectors indicating the direction

of the electric field (equivalently, dipole moment) of each scatterer. Modes

where the fields of the two scatterers are in the same direction are symmet-

ric and are coloured red, while modes where the fields are not in the same
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Initial Modes

Final Modes

A

B

A

B

Figure 3.3: Eigenmodes of the simple example optimisation. Note the two
classes of mode: anti-symmetric (i.e. initial mode 1) shown in blue and symmetric (i.e.
initial mode 2) shown in red. Eigenmodes are indicated as pairs of 3D vectors,
representing the components of the electric field in each scatterer.

direction are antisymmetric and are coloured blue. Magnitudes of the eigen-

values associated with each mode |λ| are also indicated. We observe that the

optimisation has little effect on the character of the modes. Before and af-

ter the optimisation there are 3 symmetric and 3 anti–symmetric modes and

their associated eigenvalues are unchanged. This is not very surprising, as

the configuration of the scatterers does not change drastically over the opti-

misation. If we look at the change in the expansion coefficients of the modes,

shown in Figure 3.4, we see that which modes are excited changes. The ef-

fect of the optimisation is to promote excitation of the symmetric modes,

with their expansion coefficients increasing while anti–symmetric modes

are not excited. Enhancement of the coupling between the emitter and the
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Symmetric 
modes enhanced

Figure 3.4: Demonstration of how the optimisation process changes the
relative dominance of the modes in the response of the system, as
characterised by their expansion coefficient.

symmetric modes of the systems is the mechanism for the power enhance-

ment. The magnitude of the enhancement is relatively small since the mag-

nitude of the eigenvalues associated with modes 2 and 4 is very close to

unity, meaning that the collective response of these modes is small (i.e. the

scatterers are weakly coupled). We might predict, then, that modes with

larger |λ| exhibit larger collective properties and if one could couple into

such a mode a greater power emission enhancement could be achieved.

This discussion indicates two key ways we can understand how the op-

timisation procedure achieves the goals it is given. Either the character of

the modes themselves could be changed, or which modes are excited could

be modified, or both. These simple tools will be useful when we turn to the

analysis of more complex structures.

In the next few sections, we will deploy our iterative framework and the

associated elucidative tools to address some common antenna problems.
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Figure 3.5: The result of applying our design methodology to enhance emitted
power of a dipole using 100 scatterers. In all plots, scatterers are shown as black
circles and the dipole emitter as a black arrow. (a) Shows the ŷ component of the
electric field in the initial configuration, (b) shows the progress of the power
enhancement as the optimisation progresses and (c) shows Ey in the optimised
configuration. (d) shows how the eigenvalues and expansion coefficients change due to
the optimisation. (e) and (f) show Re[Ey] of the mode with the largest expansion
coefficient in the initial and optimised structure respectively. The final mode, plotted in
(f), with eigenvalue ∼ 8 and expansion coefficient ∼ 0.5 is responsible for the power
enhancement.

3.4 Example: Emitted Power

The first problem we apply our method to is improving the emitted power

of a small dipole emitter. In the context of antennas, this is useful as minia-

turisation of antenna is well known to reduce their performance. We use pa-

rameters from optics, however our approach is length–scale agnostic, and

will be demonstrated in other wave regimes later in the thesis. Working at

a wavelength of 550 nm (green light), the scatterers are modelled as silicon

spheres of radius 65 nm. For this choice of scatterer, the polarisability tensor
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is diagonal, due to the isotropy of the scatterer, and can be found analyti-

cally from Mie theory. We start from an arbitrary initial distribution of scat-

terers, shown in Figure 3.5 (a), then apply the method we have developed

to re–distribute the scatterers to enhance radiated power.

The results of this are shown in Figure 3.5(a-c), with the progression of

the eigenmodes shown in Figure 3.5(d). An arrangement of the 100 dipo-

lar scatterers has been found, using our proposed framework, to provide a

factor of ∼ ×4.5 enhancement of the power emission of the dipole emitter.

This factor of enhancement is far smaller than can be achieved with 3D bulk

structures [88, 89], but is of the order of studies with similar assumptions

and constraints but which use genetic algorithms [70].

While the structure we have designed seems disordered, we can utilise

the tools we have developed in the previous section to gain to insight into

the device. Beginning by considering the change in the character of the

eigenmodes of the interaction matrix, we compare the mode with the largest

expansion coefficient before the optimisation, Figure 3.5(e), and after the op-

timisation Figure 3.5(f). Two key qualitative features of modes that enhance

power emission can be determined. Firstly, the mode has a large eigenvalue

corresponding to a large collective response of the scatterers. Secondly, this

mode also exhibits a strong localisation at the location of the emitter. Clearly,

this mode and the field from the dipole have a large overlap, expressed by

the large expansion coefficient of the mode shown in Figure 3.5(f). The large

collective response of the scatterer system, as well as being strongly coupled

to the emitting dipole’s field, leads to the enhancement of power emission.

While not extremely surprising, these conclusions apply to a very wide va-

riety of photonic structures designed to enhance power emission [88, 89,

102].

The results presented in Figure 3.5 also show the strength of designing
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aperiodic structures, rather than being limited to periodic ones. Design of

aperiodic structures benefits from an improved exploration of the parameter

space due to the removal of the restriction to periodic solutions. While it has

been demonstrated that periodic structures can enhance antenna radiation

[83], more compact and better performing solutions can be obtained with

aperiodic structures, as we have demonstrated in Figure 3.5. The problem of

antenna emission is not periodic, so one should not expect an emission en-

hancing structure to be periodic. To find an optimal, or even well perform-

ing, solution one is forced to consider aperiodic structures. Indeed, the bow-

tie shape of the structure shown in Figure 3.5(c) is consistent with structures

designed to enhance dipole radiation using genetic methods [102], simple

phase arguments [88] and even the widely used bow–tie antenna [5]. The

resulting structures have the same symmetry as dipole radiation: they are

left-right symmetric, but not periodic. To further accelerate our method, one

could impose the symmetry of the problem upon the solution. Such a con-

straint would be useful when designing metasurfaces with very large radius

∼ 100λ, as only half of the field gradients would need to be calculated [103].

The additional parameters available to optimise when designing aperiodic

structures can present a challenge for traditional methods based on gradient

or look-up methods. However, in the method we have proposed, these ad-

ditional degrees of freedom can be optimised while keeping the numerical

problem efficient.

We now consider the bandwidth and sensitivity to perturbations of the

structure we have designed. In Figure 3.6, we plot the power emission of a

dipole in free space, governed by the Larmor equation [14]. Also plotted is

the power emission of the dipole surrounded by the disordered structure we

have designed, shown in black. The peak in power emission occurs at 550

nm, with a bandwidth of ±5 nm. The narrow bandwidth is due to the fact



3.5. Far–field Beam 85

400 500 600 700 800 900 1000
 (nm)

0.00

0.05

0.10

0.15

P 0

400 500 600 700 800 900 1000
 (nm)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

P/
P 0

Initial
Optimized
Random Disorder

= 400 nm

= 700 nm

= 1000 nm

Figure 3.6: Bandwidth of power emission structure. Structure is shown inset, with
scatterers as black dots and emitter as red arrow. For scale, three wavelengths are
shown. The emitted power of the structure is compared relative to the emission in free
space, given by Larmor’s formula. A clear peak in performance is located at 550 nm,
with a bandwidth of ∼ 5 nm. An estimate for the upper and lower bounds on
performance due to randomly shifting all scatterers by λ/10 is shown by the red region.

that power has only been optimised at a single wavelength, as well as the

dependence of the enhancement upon interference effects of the scatterers.

The delicacy of the interference effects is also evident from the impact small

random perturbations have upon performance. Under random moves of all

scatterers by a maximum of λ/10, the change in performance is indicated

by the red band shown in Figure 3.6. Two features are of note. Firstly, the

change in performance due to all of the scatterers being perturbed is pro-

nounced, particularly at wavelengths < 600 nm. The power emission peak

at 550 nm is smeared over a wider band and reduced by 20% in the best

case (upper red line in Figure 3.6) and destroyed completely in the worst

case (lower red line in Figure 3.6). Secondly, applying random perturba-

tions does not lead to an increase in power emission at 550 nm. This implies

that our optimised solution is a local minima, so small random changes do

not improve the design.
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Figure 3.7: Re-structuring the far–field of a dipole emitter to radiated power in
a particular direction. (a) shows |E| for the initial configuration (regular array),
viewed from the far-field. (b) shows a comparison of the far-field distribution of the
Poynting vector for the initial configuration (black dashed line) and the optimised
configuration (red line). All far-field distributions are normalised to have unit amplitude.
The width of the beam in the optimised structure is ∼ 20◦. (c) shows |E| of the
optimised structure, viewed from the far-field. The initial and final scatterer locations
are shown in (d), and the change in eigenmodes and their expansion coefficients over
the optimization are shown in (e). The evolution of the properties of the eigenmode
with the largest expansion coefficient is shown in (f-i). Both the distribution of Ey in
the plane of the scatterers and the normalized far-field Poynting vector are shown. (f-g)
show the mode with the largest expansion coefficient in the initial structure, with (h-i)
showing the mode with the largest expansion coefficient in the final structure. It is clear
that the mode shown in (h-i) is responsible for the strong directivity along θ = 0◦ in the
optimised structure.

3.5 Far–field Beam

In the previous section, we demonstrated the ability of our method to ma-

nipulate the near–field of a small emitter. Next, we demonstrate the ability

of our method to manipulate the far-field of an emitter. To do this, we take

our figure of merit to be the modulus of the electric field at some target angle

θ⋆ in the far field

F = |E(θ⋆)| =
√

E∗(θ⋆) ·E(θ⋆). (3.38)
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To find, analytically, the gradient of this we expand the figure of merit under

small changes in the fields

F + δF =
√
(E∗(θ⋆) + δE∗(θ⋆)) · (E(θ⋆) + δE(θ⋆)) (3.39)

=
√
|E(θ⋆)|2 +E∗(θ⋆) · δE(θ⋆) +E(θ⋆) · δE∗(θ⋆) +O(δE2)

(3.40)

=
√
|E(θ⋆)|2 + 2Re[E∗(θ⋆) · δE(θ⋆)] +O(δE2) (3.41)

= |E(θ⋆)|

√
1 +

2Re[E∗(θ⋆) · δE(θ⋆)]

|E(θ⋆)|2
. (3.42)

To linearise this, we use the fact that the change in the field δE(θ⋆) ≪

|E(θ⋆)| so the square root can be expanded in this limit. With this, the first

order change in the figure of merit is

F =
Re[E∗(θ⋆) · δE(θ⋆)]

|E(θ⋆)|
. (3.43)

To then find the gradient, we substitute (3.16) to find

∇rnF =
1

|E(θ⋆)|
Re
[
E∗(θ⋆) ·

(
ξ2G(r⋆, rn)αE∇E(rn)

+iξGEH(r⋆, rn)αH∇H(rn))] .
(3.44)

The position vector r⋆ is the position in the x − y plane corresponding to

the angle θ⋆, i.e. x⋆ = rfar−field cos θ⋆. Radial distance of the evaluation

plane of the far–field rfar−field is chosen to be large, typically ∼ 100λ. With

this gradient, we can design structures that beam radiation into particular

directions.

In the example shown in Figure 3.7 we have sought to enhance directiv-

ity along the θ = 0 direction. Initially, the scatterers are arranged in a uni-

form square array with near and far–fields shown in Figure 3.7 (a) and (b)
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respectively. The near and far–fields of the optimised structure are shown

in Figure 3.7 (b) and (c). There is a clear enhancement of the directivity

along the θ = 0 direction, shown in Figure 3.7(b-c), with the beam having

a FWHM of ∼ 20◦. The starting and optimised scatterer arrangements are

shown in Figure 3.7(d).

As with the power emission result of the previous section, the designed

structure is difficult to interpret but by considering the eigenmodes we can

better understand how directivity can be enhanced. The change in the eigen-

values and expansion coefficients of the modes is shown in Figure 3.7(e).

The eigenvalues and expansion coefficients do not change magnitude con-

siderably as a result of the optimisation. This is demonstrated in Figure

3.7(f-i), where the leading order modes, characterised by expansion coeffi-

cient, of the system before and after the optimisation are plotted, along with

the far-field Poynting vector of the mode in each case. Both of the modes

have similar expansion coefficients and eigenvalues, but very different spa-

tial distributions. Indeed, for this application the optimisation procedure

aims to re-shape the modes rather than enhancing multiple scattering ef-

fects.

The bandwidth of the structure designed to enhance directivity along

the 0◦ direction, shown in Figure 3.7, is plotted in Figure 3.8. Directivity is

characterised as the fraction of power radiated into the 0◦ ± 10◦ band

Directivity =

∫ 10◦

−10◦ P(θ)dθ

Ptotal
. (3.45)

As with power emission, the directivity is strongly peaked at 550 nm, the

wavelength we have chosen to work at, but with a wider bandwidth of ∼ 10

nm. To investigate the effect of disorder, all of the scatterers are randomly

perturbed by λ/10 several times. The average effect on directivity is shown
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Figure 3.8: Bandwidth of directivity structure. Structure is shown inset, with the
emitter shown as a red arrow. Directivity is the percentage of power radiated into the
±10◦ range, shown inset as the green region with the magenta arrow indicating the
target direction. Performance is strongly peaked at 550 nm, with bandwidth ∼ 10 nm.
The effect of randomly perturbing all scatterer locations by λ/10 is shown as a red
dashed line. There is a ∼ 40% drop in performance at 550 nm due to disorder.

as a red dashed line in Figure 3.8. The result is little change in bandwidth

but a ∼ 40% reduction in performance at 550 nm. The effect of random

disorder on the radiation pattern at 550 nm is shown in Figure 3.9. The

far-field distribution of the design without any disorder is shown in black

and the bounds of the effect of random perturbations by λ/10 are shown in

red. Random disorder has a very large effect on the performance due to the

dependence of the designs upon interference conditions.

The previous examples have kept the emitter and the scatterers in a

plane and focused on enginerring the effects in that plane. However, our

proposed method is fully 3D and can be used to design radiation proper-

ties in or out of the plane of scatterers as well. As an example, Figure 3.10

shows the design of a structure which enhances directivity out of the plane.

A dipole emitter is located at (0, 0, λ/2) and the scatterers are constrained

to the z = 0 plane, for simplicity. Using a procedure identical to that used to

design the structure in Figure 3.7, although with the target point at z → ∞,
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Figure 3.9: Effect of disorder on performance of beaming device. Change in
far-field Poynting vector |S| of the device shown in Figure 3.7 due to random
perturbations of the designed scatterer locations by λ/10. All scatterers were randomly
perturbed 1000 times to estimate the upper and lower bounds of performance. The
black line indicates the Poynting vector for the structure with no perturbation to the
design. The red region bounds the performance when all scatterers are randomly
perturbed.

rather than x → ∞, power emission out of the plane has been increased.

This is demonstrated in Figure 3.10 (c), showing the Poynting vector in the

H-plane and exhibiting a clear peak at θ = 90◦.

3.6 Discrete ‘Luneburg Lens’

Now, we shall demonstrate how the results of our optimisation procedure

may be utilised to achieve more complex functionality. By rotating the struc-

ture designed to enhance directivity, as well as the source, a device can be

constructed which has similar functionality to a Luneburg lens [104]. The

Luneburg lens is a type of circular graded index lens that converts a point

source to a directional plane wave. Rotating the point source around the

edge of the lens allows the plane wave to be directed. This functionality
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Figure 3.10: Demonstration of manipulating radiation properties out of the
plane scatterers. The setup is shown in (a). A dipole emitter (red arrow) is located
λ/2 above the scattering structure. Scatterers begin in the positions shown as black
dots. The structure is then optimised to enhance directivity directly out of the plane:
z → ∞. The resulting structure is shown as red dots. (b) and (c) show the change in
the Poynting vector in the E and H planes, respectively. In the E plane (b), some
re-distribution occurs although without a clear aim. However in the H plane (c), there
is a well-defined main lobe at θ = 90◦, the target direction. In addition, the back lobes
are suppressed.

is shown in Figure 3.11 (a). Luneburg lenses are used extensively on air-

craft, so these is a desire to preserve their functionality while making them

smaller and lighter. Multiplexing our result shown in Figure 3.7 to achieve a

qualitatively similar functionality, is demonstrated in Figure 3.11(b-c). One

can use the indicated structure to convert a dipole source into a beam di-

rected along a single angle. By placing the source at different locations

within the structure, with the correct orientation, the beam may be rotated.

The structure proposed in Figure 3.11(b) can be fabricated without having

to grade an index, instead 288 scatterers must be arranged as indicated.

The multiplexed device has a radius comparable to conventional Luneburg

lenses, at ∼ 6λ. While the fabrication is more straightforward, the angular

resolution is not continuous as for the usual Luneburg lens. Instead, an an-

gular resolution of 45◦ can be achieved, although by making the structure

larger a higher resolution could be achieved. By multiplexing more struc-

tures it was found that the relationship between device radius and angular
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Figure 3.11: Multiplexing the design shown in Figure 3.7 to construct a
Luneburg–like lens. (a) demonstrates the function of a normal Luneburg lens of
radius R, with a refractive index graded according to the inset equation. A point source
is converted into a beam in a single direction. (b) and (c) The result of multiplexing
the structure proposed in Figure 3.7 to produce a Luneburg–like lens with a discrete
angular resolution of 45◦. By rotating the source and changing its location inside the
array the far-field Poynting vectors indicated in (b) can be observed. For example,
placing the emitter at the centre of array 2 in (b), and rotating it by 45◦ clockwise,
results in the far-field directivity labelled as 2 in (c).

resolution, in degrees, was well approximated by the following power law

(
R
λ

)
= 83.6 × resolution−0.66. (3.46)

The relationship between resolution and radius is shown in Figure 3.12.

Therefore, to achieve a resolution of 2◦, the device would have to be ∼ 50λ.
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Figure 3.12: Estimating the relationship between angular resolution of the
Luneburg lens structure and its radius.
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Figure 3.13: Designing dielectric structures that manipulate the coupling
between two nearby emitters. Beginning from an initial distribution of scatterers,
shown in the centre panels, the update equation (3.54) is used to iteratively move the
scatterers to a) increase and b) decrease the coupling between two nearby emitters.
The change in coupling over the optimisation procedure is shown in the left–hand
panels and the optimised structure is shown in the right–hand panels. The two emitters
are shown as a magenta square and a green triangle. The polarisation of the emitters in
a) is p = x̂ for the green triangle and p = ŷ for the magenta square, while in b) is
p = ŷ for both emitters. In both cases, the y component of the field is re–shaped by
moving the scatterers to exhibit either a null or peak at the location of the scatterer
shown by the magneta square.
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3.7 Nearby Emitters

Next, we consider designing a structure that manipulates the coupling be-

tween two nearby emitters. In the context of antennas, this is relevant to

base–stations where many emitters are close together but must not cross–

couple. On the other hand, increasing the coupling between nearby emitters

is useful for sensing applications.

For this problem, we have two sources located at rs,1 and rs,2 and with

electric polarisations p1,2. Employing the coupled dipole theory elucidated

in Section 2.4, we immediately see that the source terms in Maxwell’s equa-

tions are

Es(r) = ξ2G(r, rs,1) · p1 + ξ2G(r, rs,2) · p2, (3.47)

Hs(r) = −iξGEH(r, rs,1) · p1 − iξGEH(r, rs,2) · p2, (3.48)

assuming that the sources are small compared to the wavelength. The cou-

pling between the two sources is then given by the PLDoS introduced in

Section 2.4

ρ12 = Im [p∗1 ·E2(r1)] = Im [p∗2 ·E1(r2)] . (3.49)

where Ei(rj) is the field generated by the ith emitter, along with the scat-

tering structure, evaluated at the location of the jth emitter [105]. In this

way, ρ12 characterises the overlap of the fields generated by the emitters. To

design a structure that manipulates the coupling between two emitters, we

expand the figure of merit to first order under small changes in the fields at
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the second emitter

Fcoupling = Im [p∗1 · (E2(r1) + δE2(r1))] , (3.50)

δFcoupling = Im [p∗1 · δE2(r1)] . (3.51)

This is exactly the same idea behind the adjoint method, introduced in Sec-

tion 2.9. Inserting the expression for the variation of the electric field (3.16),

we find

∇rn Fcoupling = −∑
n

Im
[
p∗1 ·

{
ξ2G(r1, rn)αE∇E(rn)

+iξGEH(r1, rn)αH∇H(rn)}] .

(3.52)

This gives a way of calculating a move of the nth scatterer so that the figure

of merit is guaranteed to either increase or decrease. Using gradient descent

optimisation, as defined in equation (2.129), we update the positions of the

scatterers according to

ri+1
n = ri

n ± γ∇rn Fcoupling, (3.53)

where i is the iteration number. Consequently, the update to the scatterer

positions is taken to be

δrn ∝ ∓Im
[
p∗1 ·

{
ξ2G(r1, rn)αE∇E(rn) + iξGEH(r1, rn)αH∇H(rn)

}]
,

(3.54)

where the sign is determined by whether one wishes to increase or decrease

the figure of merit over the optimisation. One can understand (3.54) physi-

cally, by noting that we are calculating gradients in the polarisation density,

converting these to currents then propagating the field that these generate

onto emitter 1. The ± in (3.54) ensures that the field arrives with the correct
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phase to constructively or destructively interfere. An example of applying

this procedure to change the coupling between two emitters is shown in

Figure 3.13. In Figure 3.13 (a), the coupling between an electric dipole with

polarisation p = x̂, shown as a green triangle, and an electric dipole with

polarisation p = ŷ, shown as a magenta square, is enhanced. The scat-

terer positions are updated according to the upper sign of (3.54), leading to

a redistribution of the scattered field. To increase the coupling, the ŷ com-

ponent of electric field at the location of the emitter with polarisation ŷ is

increased. Another case of interest might be to reduce the coupling between

two similarly polarised nearby emitters. Taking the lower sign in the update

equation (3.54) and decreasing the coupling between two emitters with the

same polarisation, ŷ, is demonstrated in Figure 3.13b. The scatterers are

now redistributed to place a null in the field at the location of the emitter

shown by the magenta square.

3.8 Lensing

a) b) c)

Figure 3.14: Designing a disordered metamaterial version of a lens. The device
focuses the energy from a plane wave to a point, shown as the red star. The figure of
merit for this optimisation is the modulus of the electric field at the target location
(3.55); a) shows the increase of this quantity as a function of progressing optimisation
and b) is the final design. A cut of the field along the blue line is given in c) showing
the narrow focus.
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We now consider the popular problem of lensing. Traditional lenses are

made by shaping glass so that light entering it acquires a particular spa-

tially varying phase offset so that it is focused to a point [106]. Much recent

work has mimicked this behaviour using metamaterials, for optical [53] and

acoustic [107] applications. Using metamaterials, rather than traditional op-

tics, has a number of benefits. For example, metamaterials can be much

thinner than glass optics making optical devices more compact. Also, much

more complicated functionality can be achieved, including multiple foci,

holograms and polarisation control [53, 64]. While not based on phase ar-

guments, our method can be employed to design structures that focus plane

waves to particular points in space, performing a similar function to a lens.

The benefit of not being limited by simple phase arguments is that more

precise control over the field can be achieved, beyond redirection.

For this lensing problem, the source fields in the solutions to Maxwell’s

equations (2.117) are plane waves, with a particular polarisation and wave–

vector. For the example in Figure 3.14, we choose a TE polarised wave with

wave–vector k = kx̂. The figure of merit is the magnitude of the electric

field at the target location r⋆.

Flens = |E(r⋆)|. (3.55)

This is similar to the figure of merit of the example in Section 3.5, where

we wanted to beam into a particular far–field direction. Now instead, we

select a point near the structure as the target location so that the radiation

is focused there. The figure of merit can be expanded to first order under
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small changes in the fields as before

|E(r⋆)| =
√

E(r⋆) ·E∗(r⋆), (3.56)

=
√
(E(r⋆) + δE(r⋆)) · (E∗(r⋆) + δE∗(r⋆)), (3.57)

=
√
|E(r⋆)|2 + 2Re [δE(r⋆) ·E∗(r⋆)], (3.58)

= |E(r⋆)|

√
1 +

2Re [δE(r⋆) ·E∗(r⋆)]

|E(r⋆)|2
, (3.59)

≈ |E(r⋆)|+
Re [δE(r⋆) ·E∗(r⋆)]

|E(r⋆)|
. (3.60)

Substituting the expression for the variation of the fields gives the following

change in the figure of merit Flens

δFlens =
−1

|E(r⋆)| ∑
n

Re
[{

ξ2G(r⋆, rn)αE∇E(rn)

+iξGEH(r⋆, rn)αH∇H(rn)} ·E∗(r⋆)] δrn.

(3.61)

As this is linear in δrn, we can choose δrn to be proportional to the expres-

sion in the square brackets for each scatterer to guarantee that the gradient

of the figure of merit has a particular sign. The result of applying this proce-

dure is shown in Figure 3.14. A structure is designed that focuses the field

to the desired location. Fitting a Gaussian of the form

G(y) = A exp
(
(y − µ)2

2σ2

)
+ B (3.62)

to the peak, we find that the width of the focus is σ ∼ λ/3.
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a) b)

c)

Figure 3.15: The design of a metamaterial with a chosen radiation pattern. In
each case, the structure is driven by an emitter polarised along the z axis at the origin.
For each of the target radiation patterns, black dashed lines, the scatterers begin at the
locations indicated by black circles and are iteratively moved to reduce the difference
between the radiation pattern and the desired pattern (3.63). The optimised locations
of the scatterers are shown as red dots and the final radiation patterns as red lines.

3.9 Shaping the Far–field: Least Squares

The final problem we consider, is shaping the far–field Poynting vector of

an emitter. We would like |S(θ)| to have a particular shape, ϕT(θ) in the far–

field. Our aim is to design a scattering structure that produces a particular

|S(θ)| in the far–field, defined by a target angular distribution ϕT(θ). With

our framework, this can be achieved with two different figues of merit

1. The residual sum of squares between the current |S(θ)| and the target

ϕT(θ).

2. The overlap integral between |S(θ)| and ϕT(θ).

These are equivalent ways of characterising how similar the two functions

are. In this section, we use the residual sum of squares as the figure of merit,

in the next we use the overlap integral.
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Our figure of merit is therefore

FRSS = ∑
i
[|S(θi)| − ϕT(θi)]

2 . (3.63)

In order to use this figure of merit, both |S(θi)| and ϕT(θi) must be nor-

malised to range from 0 to 1. To calculate how the scatterers should be

moved to minimise this figure of merit, we expand it under small changes

in δ|S(θ)|

∑
i
[|S(θi)| − ϕT(θi)]

2 = ∑
i
(|S(θi)|+ δ|S(θi)| − ϕT(θi))

× (|S(θi)|+ δ|S(θi)| − ϕT(θi)) ,

= ∑
i
|S(θi)|2 + ϕ2

T(θi) + 2δ|S(θi)|(|S(θi)| − ϕT(θi)),

(3.64)

and retaining only first order terms, we find that

δFRSS = ∑
i
[2δ|S(θi)|(|S(θi)| − ϕT(θi)] . (3.65)

It is then necessary to find δ|S|, the variation in the Poynting vector, in terms

of the variations in the fields. Using the expression we obtained from ex-

panding the modulus of the electric field (3.60), we know that

δ|S| = Re [δS ·S∗]

|S| . (3.66)

Then, δS can be derived from the expression for the Poynting vector

S =
1
2
E ×H∗ (3.67)

=
1
2
(E + δE)× (H∗ + δH∗), (3.68)

δS =
1
2
[E × δH∗ + δE ×H∗] . (3.69)
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Substituting this into (3.65) gives us the change of the figure of merit in

terms of the changes in the fields, which are linear in δrn. As with the previ-

ous examples the expressions for the field variations, (3.16) and (3.17), can

be substituted in to yield an expression for moving the scatterers to decrease

this figure of merit. Figure 3.15 shows that structures exhibiting three arbi-

trary far-field radiation patterns can be generated using our method.

3.10 Shaping the Far–field: Overlap Integral

Figure of merit choices are not unique, and often in optimisation one should

choose the one that is easier to evaluate. As well as using the residual sum

of squares, one can use the overlap integral (inner product) to characterise

how similar the far–field distribution of the Poynting vector is to the desired

radiation pattern. We will define the 1D normalised overlap integral of two

real scalar functions ϕ(θ), ϕT(θ) as

F =

∫
dθϕ(θ)ϕT(θ)√∫

dθϕ2(θ)
∫

dθ′ϕ2
T(θ

′)
. (3.70)

Here, the functions ϕ(θ), ϕT(θ) represent some quantities in the far-field:

ϕ(θ) is the current distribution of the quantity we are interested in, eval-

uated in the far-field, and ϕT(θ) a target distribution. This figure-of-merit

quantifies the similarity between the angular distribution of ϕ(θ) and the

target ϕT(θ), ranging from 0 to 1. As will be shown, this figure-of-merit can

be used to optimize a scatterer array to determine the exact shape of the

far-field Poynting vector.

To use the figure-of-merit to calculate how to move a scatterer such that

the merit function is guaranteed to increase, we expand under variation in
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Figure 3.16: Design of far-field Poynting vector distribution, using an
alternative figure of merit. (a-c) show examples of the same procedure for three
different target distributions. In each case, the far-field power distribution of an
isotropic emitter located at the origin in engineered. Beginning from some initial
distribution of scatterers, shown as black dots, equation (3.72) is used to iteratively
move the scatterers to enhance the figure-of-merit, defined as the overlap of the
far-field Poyning vector |S(θ)| and the target distribution ϕT(θ). The optimized
locations are shown as red dots. The change in the overlap integral with iteration
number and far-field distributions are shown.

ϕ(θ) to first order ϕ(θ) → ϕ(θ) + δϕ(θ), giving

δF =

∫
dθδϕ(θ)ϕT(θ)−

∫
dθϕT(θ)ϕ(θ)∫

dθϕ2

∫
dθϕ(θ)δϕ(θ)√∫

dθϕ2(θ)
∫

dθ′ϕ2
T(θ

′)
. (3.71)

The first term of (3.71) comes from expansion of the numerator of (3.70),

while the second term is due to the expansion of the normalisation fac-

tor. To consider a specific use of this type of figure-of-merit, let us say that
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ϕ(θ) = |S(θ)| =
√
S ·S∗: the modulus of the Poynting vector in the far-

field. This describes the shape of how power is radiated. Expanding the

Poynting vector to first order as in the previous section, we find that the

expansion of the figure of merit is

δF =
1

2
√∫

dθ|S(θ)|2
∫

dθ′ϕ2
T(θ

′)
×

[∫ dθ

|S(θ)|Re {S∗(θ) · [δE ×H∗ +E × δH∗]} ϕT(θ)

−
∫

dθϕT(θ)|S(θ)|∫
dθ|S(θ)|2

∫
dθ Re {S∗(θ) · [δE ×H∗ +E × δH∗]}

] (3.72)

Substituting into this the expressions connecting the variation of the fields

due to scatterers being moved, we have an analytic expression for the gra-

dient of the figure of merit, although the integrals need to be evaluated nu-

merically. Figure 3.16 shows several examples of designing structures that

shape the emssion of a dipole. An isotropic emitter aligned along the z axis

(out of the plane) is surrounded by an array of scatterers. All numerical pa-

rameters are identical to those of Table 1 in the main paper. Applying (3.72)

to calculate how to iteratively move the scatterers, several different angu-

lar distributions of the Poynting vector can be realised to a high degree of

accuracy.

3.11 Comparison with Full–Wave Simulations

To validate our analytic work and to investigate the validity of our approx-

imations, we present a comparison with full-wave simulations, shown in

Figure 3.17. A simple design involving only 16 scatterers was generated us-

ing our design method, with the aim of enhancing directivity along the 0◦
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direction. Analytic results for both far-field radiation pattern and the com-

plex fields were compared to results from COMSOL [68]. In the full-wave

simulation, scatterers were modelled as finite silicon spheres of the correct

radius and the emitter is treated as a point source. Near and far fields of

1.5 λ

Perfectly 
Matched Layer

Air
4 λ

a b c

d

Figure 3.17: Comparison between our analytic results and a full-wave
simulation. (a) shows the designed structure. (b) shows a comparison between |S|
calculated in COMSOL and using analytic theory. Residual sum of square errors
between the analytic results and numerical results is 0.044, demonstrating excellent
agreement. (c) schematic setup of the full-wave simulation, with the emitter shown as
a red arrow and the scatterers as yellow spheres. (d) shows a detailed comparison
between the calculated fields of the analytic model compared to COMSOL. In all cases,
the emitter is shown as a black arrow at the origin. For analytic plots, scatterers are
represented as black dots indicating they are treated as points, while for COMSOL plots
the scatterers are drawn as finite circles to show how they were modelled.

the designed structure are shown in Figure 3.17 (a) and (b) respectively. The

COMSOL setup is shown in Figure 3.17 (c), with the point emitter shown as
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a red arrow. A perfectly matched layer (PML) is necessary to absorb bound-

ary reflections to simulate an infinite medium. In the plane of the scatterers,

the real and imaginary parts of the relevant components of the electric field

generated from our analytic solutions to Maxwell’s equations, within the

coupled dipole approximation, are compared with COMSOL in Figure 3.17

(d). Even though in the analytic results the scatterers are modelled as points,

while in COMSOL they have a finite size, the agreement between the fields

is excellent. This demonstrates that for our choice of system the discrete

dipole approximation works very well, and the approximations behind it

are well justified.
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Figure 3.18: Investigating the validity of the dipole approximation. (a) shows
the setup of the study. A point dipole emitter, aligned along the y axis is located at the
origin. Two silicon spheres of radius 65 nm are placed at (λ,±d/2), where d is the
scatterer separation. As d is varied, the difference between the far-field Poynting vector
calculated using COMSOL and using the analytic dipole approximation is recorded. (b)
shows how the error, characterised as the sum of square errors between the analaytic
and full-wave results, changes with separation. (c) Directly compares |E| in the
far-field calculated using COMSOL and the dipole approximation.
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During the optimisation procedure, we impose the constraint that scat-

terers cannot get too close. While the scatterers are modelled as points, they

represent physical objects with spatial extent; in this case spheres of radius

65 nm. To preserve this, we stop the scatterers from sitting on top of each

other or passing through each other. Scatterers, with radius r, are prevented

from getting any closer than 3r to avoid this issue. In addition, some works

have shown that the resonances of nearby resonators are shifted due to

near–field coupling. To investigate the robustness of our setup to this cou-

pling, a simple numerical investigation was performed using COMSOL. A

dipole emitter, aligned along the y axis, was located at the origin. One scat-

terer was placed at (λ, d/2) and another at (λ,−d/2), where d is the separa-

tion between the scatterers. Both scatterers are modelled as silicon spheres

of radius 65 nm. COMSOL’s full-wave solver was used to extract the far-

field radiation pattern and this was compared to analytic results based upon

the dipole approximation, where the scatterers are treated as points. The er-

ror, characterised as the residual sum of squares, between analytic results

and the full-wave solution was calculated for a range of separations. A

schematic of the procedure, as well as the results, are shown in Figure 3.18.

For separations ≥ 3r the error is small: of the order 10−3. At a separation

of 2r, when the scatterers are touching, the error is much larger. However,

qualitatively, the far-field radiation pattern is still reasonably well repro-

duced. These results indicate that the restriction on scatterer separation

might be relaxed without causing much error. We note that closly spaced

scatterers will interact in a manner not captured by the dipole approxima-

tion. However, it is possible to introduce correction terms [108] that allow

the coupled dipole framework to be utilised for closely spaced scatterers.
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3.12 Summary & Conclusions

In this chapter we began from Maxwell’s equations and used perturbation

theory to derive equations that connect a small change in the position of an

electric and/or magnetic dipole scatterer to the change in the electric and

magnetic fields. Utilising these analytic expressions to find an efficient op-

timisation framework, we considered figures of merit written in terms of

the fields. Such figures of merit were expanded under small changes in

the fields, into which we could substitute the expressions connecting small

changes in the fields to small changes in scatterer locations. This gives an

analytical expression for the gradient of a given figure of merit with respect

to the positions of all of the scatterers. It is key that this can be evaluated for

all scatterers simultaneously, making the resulting gradients very efficient

to find numerically. Our semi–analytic gradients are then used to perform

simple gradient descent optimisation, iteratively changing the positions of

a collection of scatterers to increase many different figures of merit. Our op-

timisation framework is applied to a wide range of antennas related prob-

lems. For example: increasing the power emission from a small emitter, key

to miniaturisation; manipulating the far–field radiation pattern of an emit-

ter; reducing the coupling between nearby emitters, crucial to constructing

base stations.

As well as a design framework, we also develop a simple paradigm for

analysing the behaviour of strongly multiple scattering structures. Decom-

posing the response of the device into the eigenmodes of the scattering

system yields three quantities of interest. First, the expansion coefficient

describes how strongly a given eigenmode is excited. Second, the eigen-

value of the mode corresponds to an ‘eigenpolarisability’, characterising

how strongly the structure responds to the input field when this mode is
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excited. Third, the spatial distribution of the field of the eigenmode dic-

tates the response of the system. The performance of the device designed

to enhance power emission is dominated by a single mode that has a large

expansion coefficient, and therefore a large overlap with the source field, as

well as a large eigenvalue, corresponding to a strong response. The struc-

ture designed to beam radiation into a particular direction has a handful of

modes with large eigenvalue and large expansion coefficient. While some

of these exhibit clear beaming into the desired direction, the resulting be-

haviour is clearly due to the interference of many eigenmodes. It remains

to be seen whether this framework can add insight to other highly scatter-

ing, disordered, systems as well as whether it can be utilised directly to aid

optimisations.
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Chapter 4

Designing Multi–Functional

Devices

“Nobody in this world can tell me what
to think, but everyone has a lesson to

teach me” – Lex Fridman

The results of this chapter have been published in:

• J. R. Capers, S. J. Boyes, A. P. Hibbins and S. A. R. Horsely “Designing

Disordered Multi–Functional Metamaterials using the Discrete Dipole

Approximation” New J. Phys. 24 113035 (2022)
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The ability to multiplex the functionality of electromagnetic materi-

als is key to the eventual application of metamaterials to communications

problems. While many techniques exist that design uni–functional meta-

materials, the design of multi–functional materials remains challenging.

Beginning from general considerations of wave–equations, we derive a

hard constraint upon wave fields that are to be supported by the same

material distribution. We then extend the method presented in the pre-

vious chapter to enable the design of multi–functional metamaterial de-

vices. Two key examples are shown to illustrate the utility of our ap-

proach. Firstly, we design a device that beam steers based on the polar-

isation of an emitter. Secondly, we design a device that sorts radiation

by its direction of incidence. Both of these devices have clear utility in

communications applications.

4.1 Introduction

To achieve the speed and bandwidth required of next–generation communi-

cations networks, it will be necessary to multiplex functionality. This means

carrying information in different wavelengths, polarisations or modes at the

same time, to increase the amount of information that can be transmitted.

One way to achieve such functionality is by using metamaterials to combine

the transmitted field then to split it up again on the receiving end. As such,

there has been much interest in the design of metamaterials that passively

perform different operations on input fields based upon their wavelength

[60, 109], polarisation [110], mode shape [61] or source position [111]. Such

multi–functional materials can be used to design devices such as spectrom-

eters [112] and even photonic computers [113]. Indeed, in optics, being able

to ‘spatially multiplex’ or transmit data using multiple spatial modes [114–
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118] has attracted significant attention. However, many of the solutions in-

volve multi–mode fibers, which are not directly applicable to wireless com-

munications problems. Instead, multi–functional metamaterials have been

used to manipulate the radiation from a source directly. This has led to

multi–functional antennas [119] that radiate differently at different wave-

lengths. If one can also modulate the material then real–time beam steering

can also be achieved [120–122]. However, designing multi–functional meta-

materials remains challenging.

To understand why the design of multi–functional materials is challeng-

ing, we consider an electric field E(r) of a fixed frequency ω = ck0, with

wave number k0, in a material with a spatially varying permittivty ε(r).

This wave obeys the vector Helmholtz equation,

∇×∇×E(r) + k2
0ε(r)E(r) = 0. (4.1)

The difficulty in the design of multi–functional materials is the problem of

finding a single material distribution (here the permittivity, ε) that performs

two (or more) desired wave transformations. This means that both of the

desired wave behaviours, E1(r) and E2(r) must be solutions to the same

Helmholtz equation,

∇×∇×E1(r) + k2
0ε(r)E1(r) = 0, ∇×∇×E2(r) + k2

0ε(r)E2(r) = 0.

(4.2)

From this statement, we can find a condition upon the two wave–fields for

this to be possible. Multiplying the first of these by E2(r) and the second

by E1(r), then taking the difference eliminates the material properties such

that

E2(r) · [∇×∇×E1(r)]−E1(r) · [∇×∇×E2(r)] = 0. (4.3)
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Integrating this over all space, then using Green’s vector identity [17], we

find that

∮
∂V

[E2(r)×∇×E1(r)−E1(r)×∇×E2(r)] · dS = 0. (4.4)

This condition, equivalent to reciprocity, places a stringent constraint on the

two wave–fields if they are to be supported by the same material, which

can be used to derive fundamental bounds on the performance of multi–

functional devices [123]. Indeed (4.4) is a generalization of Poynting’s theo-

rem, representing the conservation of the norm of the system modes; ensur-

ing for example, their orthogonality. To better understand the connection

between the above equation and energy conservation, consider the special

case where we demand the same permittivity distribution supports the so-

lution E1(r) = E and its complex conjugate (time reverse) E2(r) = E∗.

The surface integral (4.4) can then be re–written using the divergence theo-

rem,

∇ · (E ×∇×E∗ −E∗ ×∇×E) = 0. (4.5)

Applying Maxwell’s equations to convert the curls into magnetic fields ∇×

E = −iωη0H , where η0 is the impedance of free space, we find

∇ · (E ×H∗ +E∗ ×H) = 0, (4.6)

which is the usual expression for energy conservation expressed in terms of

the Poynting vector S = 1
2Re [E ×H∗].

A direct application of Eq. (4.4) to design multi–functional materials is

generally difficult. Instead several other design methodologies have emerged

recently [124]. Typically, however, these methods either employ limiting as-

sumptions such as only allowing the materials to impart a phase shift [63,
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64], or require many full–wave simulations. Even with the efficiency of the

adjoint method [76], at least two simulations are required. If one wants to

design a material that performs different functions at i.e. two wavelengths,

four full–wave simulations are required. Thus existing methods rapidly be-

come intractable when used to design multi–functional metamaterials. In

this chapter, we generalise the results of Chapter 3 to allow for the design

of multi–functional devices. Beginning with some general comments about

what is required in the design of a multi–functional device, we consider the

toy example of increasing the efficiency of an antenna while also manipu-

lating its radiation pattern. We then progress to design a device that beams

radiation into different directions based upon the polarisation of the source,

as well as a device that ‘sorts’ plane waves by their direction of incidence.

4.2 Multi–Objective Optimisation Considerations

Extending the method presented in Chapter 3 to apply to multi–functional

metamaterials, requires one to seek to increase some set of figures of merit

{F1, F2, F3 . . .}. A composite figure of merit can be constructed that is a

weighted sum of these,

F = ∑
i

wiFi, (4.7)

where wi are the weights for each figure of merit. This composite figure of

merit can be optimised in the same way as a single figure of merit, where

the overall gradient becomes

∂F
∂rn

= ∑
i

wi
∂Fi

∂rn
. (4.8)
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Key to the success of this method is a sensible choice of the weights, wi. An

appropriate choice can be informed by considering the desired properties of

the resulting device. Consider a simple example problem, shown in Figure

a) b)

c) d)
Pareto 
Front

Equal 
enhancement 

line

Figure 4.1: An example of a multi–objective optimisation problem. We seek to
shape the radiation pattern of a dipole emitter pointing out of the plane along the z
axis, while also increasing its efficiency. To achieve this, we consider placing a single
isotropic scatterer near the emitter and explore the effect this has upon the figures of
merit: the power emission and the radiation pattern. a) Shows how placing a scatterer
at a particular point changes the power emission and b) shows how the overlap integral
is changed. These represent the search spaces of the problem. The additional difficulty
posed by multi, rather than single, objective problems is shown in c). A scatterer can
only be placed in the green regions, where both figures of merit are enhanced. Each
point in the search spaces corresponds to a point in solution space, shown in d). The
blue triangle and red star are shown in both search and solution spaces to demonstrate
this. Also shown in the solution space, d), is the diagonal ‘line of equal enhancement’
representing equal performance of each figure of merit and the Pareto front [125],
which represents the acceptable solutions to the multi–objective problem.

4.1. The goal is to distribute scatterers around a point emitter at location

r′ with polarisation p = ẑ such that two figures of merit are simultaneously

maximised. More specifically, the goal is to re–shape the radiation pattern of
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an emitter, while simultaneously increasing the efficiency. The first figure of

merit is the power emitted from the dipole, given by the PLDoS first derived

in Section 2.4

F1 = P =
ω

2
Im[p∗ ·E(r′)]. (4.9)

The second is the overlap integral between the angular distribution of the

Poynting vector in the far–field, |S(θ)| and a desired angular distribution

ψT(θ)

F2 = I =
∫

dθ|S(θ)|ψT(θ)√∫
dθ|S(θ)|2

√∫
dθψ2

T(θ)
, (4.10)

where the angle θ is in the same plane as the metasurface. In the following

examples, the target distribution is

ψT(θ) =


cos2 θ 270◦ < θ < 90◦,

0 otherwise.
(4.11)

Both of these can be expanded to first order to find the gradient of the figure

of merit with respect to the scatterer locations [126], as we saw in the pre-

vious chapter. For convenience, both will be normalised by their free–space

values, P0 and I0: these are the values of the figures of merit without any

scatterers present. Considering the effect of a single scatterer upon these

figures of merit, Figure 4.1 (a) and (b) show how placing the scatterer in a

particular location increases or decreases each figure of merit. These maps

define the search space for the problem. For multi–functional problems,

however, there is the additional constraint that a scatterer should only be

placed where both figures of merit are increased. This is shown in Figure 4.1

(c); it is clear that multi–functional problems are significantly constrained

and have complex search spaces. Each scatterer location in the search spaces

Figure 4.1 (a) and (b) corresponds to a point in the solution space, shown in
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Figure 4.1 (d). To demonstrate this correspondence, the red star and blue

triangle are shown in the search and solution spaces. Each point in solution

space corresponds to a configuration of scatterers, which in our example is

one, but could be any number. The solution space, Figure 4.1 (d), has a few

interesting features. The Pareto front [125], shown as a red line, are all ac-

ceptable solutions to the multi–objective optimisation problem (i.e. where

one figure of merit cannot be improved without sacrificing the other). Along

the diagonal, the dashed magenta line, enhancement of the two figures of

merit is equal, which is often the desired outcome. It would not be very

useful to select a solution point where the emitted power is large but the

overlap is small, even if it lies on the Pareto front. This observation informs

the choice of weights in the optimisation procedure. The weights are chosen

to be proportional to the figure of merit itself,

wi ∝
1
Fi

, and normalised so that ∑
i

wi = 1. (4.12)

Choosing the weights to be proportional to 1/Fi means that when the figure

of merit is small the contribution of the gradient associated with that figure

of merit to the sum (4.8) is large, but when the figure of merit is large the con-

tribution is suppressed. Note that the figures of merit must be normalised

so that their magnitudes can be meaningfully compared, for example by di-

vision by a free space value. Choosing the weights in this way allows for

the design of multi–functional metamaterials built from discrete scatterers,

for a variety of applications. A few examples are offered in the following

section.
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4.3 Multi–functional Devices

Continuing with the example developed in the previous section and shown

in Figure 4.1, the multi–objective problem of designing a structure that re–

shapes the radiation pattern of an emitter in the plane of the metasurface,

while also increasing efficiency, is addressed. We work at a wavelength of

λ = 550 nm and the scatterers are small silicon spheres of radius 65 nm.

For this system, the polarisability tensor can be found analytically from the

Mie a1 and b1 coefficients. Our figures of merit are the radiated power (4.9)

and the overlap with the desired radiation pattern (4.10) and we choose the

weights according to (4.12). As was done in Chapter 3, we expand these

figures of merit to first order under small changes in the field to get for the

power emission

P =
ω

2
Im
[
p∗ ·E(r′)

]
, (4.13)

δP =
ω

2
Im
[
p∗ · δE(r′)

]
, (4.14)

so that
∇rn P =

ω

2
Im
[
p∗ ·

(
ξ2G(r′, rn)αE∇E(rn)

+iξ∇×G(r′, rn)αH∇H(rn)
)]

.
(4.15)

For the overlap integral, we write

δI =
1

2
√∫

dθ|S(θ)|2
∫

dθ′ϕ2
T(θ

′)

×
[∫ dθ

|S(θ)|Re {S∗(θ) · [δE ×H∗ +E × δH∗]} ϕT(θ)

−
∫

dθϕT(θ)|S(θ)|∫
dθ|S(θ)|2

∫
dθ Re {S∗(θ) · [δE ×H∗ +E × δH∗]}

]
.

(4.16)
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Into these we substitute the expressions connecting the changes in the field

to the changes in scatterer positions

δE(r) =
[
ξ2G(r, rn)αE∇E(rn) + iξ∇×G(r, rn)αH∇H(rn)

]
δrn,

(4.17)

δH(r) =
[
ξ2G(r, rn)αH∇H(rn)− iξ∇×G(r, rn)αE∇E(rn)

]
δrn,

(4.18)

giving analytic expressions for the gradients of the figures of merit.

Using these gradients, weights (4.12) and the gradient descent method,

we design the structures shown in Figure 4.2. For comparison, we also con-

sider the single–objective case where only the far–field radiation pattern is

shaped. The resulting far–field radiation patterns are shown in Figure 4.2

a), with the path of the optimisation in solution space shown in Figure 4.2

b) and the two resulting structures shown in Figure 4.2 c) and d). Exam-

ining first the radiation pattern, we note that the multi–objective optimi-

sation produces a slightly worse match to the target distribution than the

single–objective case. This is due to the trade–off between the two figures

of merit we seek to optimise. In solution space, Figure 4.2 b), we see that in

the case where only the radiation pattern is shaped (blue line) only a very

small change in emitted power is seen. Conversely, when both power and

radiation pattern are optimised, the emitted power approximately doubles

while the overlap integral also increases. Unlike the case for a single scat-

terer shown in Figure 4.1, it is impossible to plot the whole search space

and visualise the location of the Pareto front. The scatterers have a diameter

∼ λ/4 and our solution box has size 8λ, meaning that there are 322 = 1024

possible ‘pixels’ a scatterer could occupy. This means that for N scatterers,

the number of possible solutions is 1024!/(N!(1024 − N)!). For N = 64,
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a) b)

c) d)

Starting 
point

Figure 4.2: Multi–objective optimisation solutions, seeking to increase the
emitted power from a dipole while also shaping the far–field radiation pattern
into the desired double–lobed shape. For comparison, the single–objective case,
where only the radiation pattern is shaped is shown. a) shows the far–field radiation
pattern in the plane of the multi–functional structure (red) as well as the target
radiation pattern (black dashes). The case where only radiation pattern is shaped is
shown in blue. In b), the paths in solution space of the single and multi–objective cases
are shown. It is clear that our choice of weightings works well: both figures of merit
undergo similar enhancements from their starting values. When only radiation pattern
is controlled (blue line) emitted power changes little over the optimisation, however
when it is part of the composite figure of merit (red line) clear enhancement is seen at
the same time as the overlap integral is increased. The single–objective structure is
shown in c) and the multi–objective structure is shown in d), with the emitter polarised
out of the page at the origin. In this example, we work at λ = 550 nm and the
scatterers are silicon spheres of radius 65 nm.



120 Chapter 4. Designing Multi–Functional Devices

this is ≈ 1021. Despite the exceedingly large search space, which even a ge-

netic algorithm would explore only a very small portion of, our method has

found a solution that performs well. A comparison between solving this

problem using the method we present and a genetic algorithm is given in

Section 4.5.

The second example we consider is manipulating the radiation pattern

based on source polarisation. Again, we work at λ = 550 nm and use 65

nm silicon spheres as the scatterers. We aim to create beams at angles θi,

associated with source polarisation pi. Our figures of merit are therefore

Fi = |S(θi)|. (4.19)

The expansion of this to find analytically the gradient is

δFi = 2Re [S∗(θi) · δS(θi)] (4.20)

= 2Re [S∗(θi) · (δE(θi)×H∗(θi) +E(θi)× δH∗(θi))] . (4.21)

Substituting into this the expressions for the field variations (4.17, 4.18)

gives analytic expressions for ∇rn Fi. We consider the source polarisation

being either left or right circularly polarised, i.e.

p =
1√
2


1

±i

0

 . (4.22)

The Poynting vector can then be expanded to first order to find the deriva-

tives of the figures of merit for the optimisation procedure. Figure 4.3 a)

shows the radiation patterns of the designed structure excited by each of
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⎻ = 10!"

a) b)

d) e)

c)

∮ 𝑬!×∇×𝑬" ⋅ 𝑑𝑺 ∮ 𝑬"×∇×𝑬! ⋅ 𝑑𝑺

Figure 4.3: Solution to the multi–objective problem of beaming in different
directions based on the polarisation of the source. We work at optical wavelengths
λ = 550 nm, using silicon spheres of radius 65 nm as the scatterers. a) shows the
far–field Poynting vector in the plane of the metamaterial. The aim was for a right
handed source to beam into the 0◦ direction and for a left handed source to beam into
the 100◦ direction. The optimised structure is shown in b) under a right–handed
circular polarisation (RHCP) excitation and c) under left–handed circular polarisation
(LHCP) excitation. The emitter is indicated by a magneta star at the origin. The path
in solution space of the optimisation, d), shows that over the optimisation both figures
of merit are enhanced equally, due to our choice of weights. The multi–functionality
condition (4.4) is verified in panel e), by computing the integrals numerically. This
yields 10−8, which is small enough to be considered zero within the numerical error
associated with evaluating the surface integral.

the two different sources we consider. For a right-handed source, the tar-

get angle is θ = 0◦ and for a left–handed source, θ = 100◦. The far–field

Poynting vector in the plane of the metamaterial, Figure 4.3 a), also shows

clear peaks at the desired locations, which are also evident in the near–fields

shown in Figure 4.3 b) and c). The modulus of the Poynting vector on the

far–field sphere, under both left hand (LHCP) and right hand (RHCP) ex-

citation, is given in Figure 4.4. From this, it is clear that the radiation is

being sent to the desired locations. The path in solution space, Figure 4.3

d), shows that the choice of weighting has ensured that the performance of

both figures of merit remain similar over the optimisation and in the final

result. The multi–functionality condition (4.4) is considered in Figure 4.3 e).
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a) b)

Figure 4.4: Modulus of the Poynting vector in the full far–field for the
structure shown in Figure 4.3.

Forming the vector fields Ei ×∇×Ej on the surface of a sphere enclosing

the structure, integrating over the surface and taking the difference yields a

result of the order 10−8, within expected numerical error.

The third and final example we consider is designing a device for beam

sorting. Working at 15.5 GHz and using ‘metacubes’ [127] as the scattering

element. The metacubes, formed of six metal faces joined by three connect-

ing spokes, exhibit a strong dipole resonance at 15.5 GHz. Due to their

complexity the polarisability tensor cannot be found analytically. Instead,

one can model a single scatterer under plane–wave incidence using a full–

wave solver such as COMSOL [68] and integrate over the currents to find

the electric and magnetic dipole moments [38, 45], from which one can find

the polarisability tensors. This is discussed in detail in Appendix B. Op-

timisation of a structure of many complex scatterers using such full–wave

methods quickly becomes intractable. Our method presents the key bene-

fit of being able to model large systems of potentially complicated scatter-

ers, provided they can be approximated as dipoles, although it is possible

to include higher order multipoles into the formalism [40–42]. We seek a

structure of metacubes that takes plane waves from different directions and

focuses them to distinct points. A device of this sort could be used, for ex-

ample, to detect from which direction a signal is coming. The figures of
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merit for this problem are:

F1 = |E1(r1)|2, F2 = |E2(r2)|2, (4.23)

where ri denotes the location to focus the wave at for incident direction i

and Ei is the electric field produced by the structure under incidence from

direction i. The gradients of these figures of merit are

δFi = 2Re [E∗(ri) · δE(ri)] ,

∇rn Fi = 2Re
[
E∗(ri) ·

(
ξ2G(ri, rn)αE∇E(rn)

+iξ∇×G(ri, rn)αH∇H(rn))] .

(4.24)

The structure resulting from this optimisation is shown in Figure 4.5. Oper-

ation of the device when driven by a TE plane wave incident at 20◦ is shown

in Figure 4.5 a) and for a plane wave at −20◦ in Figure 4.5 b). The two differ-

ent focus points are clearly visible in the fields. The path in solution space

is shown in Figure 4.5 d), where again the choice of weighting has ensured

roughly equal performance of F1 and F2. Slices of the fields from Figure 4.5

a),b) are shown in Figure 4.5 c), indicating the large main peaks at the de-

sired focus locations. The initial and final structures are shown in 4.5 e),f).

We begin from an ordered 3D arrangement of metacubes and the optimi-

sation procedure introduces disorder to achieve the desired functionality.

The validity of the multi–functionality condition is shown in Figure 4.5 g).

Here, the numerical error is larger due to the highly oscillatory nature of the

integrands.
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a) b) c)

d)

⎻ = 10!"

e) f)

g)
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Initial Structure Final Structure

∮ 𝑬!×∇×𝑬" ⋅ 𝑑𝑺 ∮ 𝑬"×∇×𝑬! ⋅ 𝑑𝑺

Figure 4.5: Design of a multi–functional device, with its operation depending
upon the direction of incidence of a plane wave. If the wave is incident from
±20◦, the wave is focused to different locations. The performance of the device under
−20◦ incident is shown in a) and under 20◦ incidence in b), with direction of incidence
shown as a white arrow. We work at 15.5 GHz using metacubes, shown inset in a), as
the scatterers. Panel c), shows cuts of the fields under the two different incidence
angles, demonstrating peaks at the target positions. The path in solution space, d),
shows that the two figures of merit progress at the same rate over the optimisation,
leading to a structure with roughly equal performance for each figure of merit. The
initial and final structure are shown in e) and f). The multi–functionality condition
(4.4) is verified in g) by evaluating the surface integrals. The numerical error here is
larger than the results in Figure 4.3 due to the strongly oscillatory nature of the
integrand, making evaluation of the surface integral more sensitive.

4.4 An Introduction to Differential Evolution

While we use gradient descent almost exclusively as our method of opti-

misation, genetic algorithms have been used extensively [70, 71, 95, 96] to

design photonic systems. Gradient descent is simple and easy to imple-

ment, but can get stuck in local minima very easily. Genetic algorithms, are
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a particular class of so–called ‘global optimisers’, as they find global rather

than local minima. To illustrate the difference between the two approaches,

we consider optimising the Ackley function [128]

f (x, y) =− 20 exp
[
−0.2

√
0.5(x2 + y2)

]
− exp [0.5(cos 2πx + cos 2πy)] + 20 + e,

(4.25)

shown in Figure 4.6. This is a difficult function to find the minima of, as it

  

a) b)

Figure 4.6: A comparison of minimising the Ackley function with gradient
descent and a genetic algorithm. In a), gradient descent is used to find the minima,
with 5 random starting positions within the search space. Each starting position finds a
different minima, with many failing to find a global minima. b) Differential evolution is
then used. Each dot represents a population member, with different colours
representing different generations of the population. As ‘evolution’ progresses, the
population converges on the global minimum.

has very many local minima. We first try to apply gradient descent to find

the global minima. Starting at 5 randomly chosen initial positions, we fol-

low the directional gradient until a minima is found. Of the 5 starting condi-

tions shown in Figure 4.6 (a), only 1 finds the global minima at f (0, 0) = 0.

The other 4 get stuck in local minima. Genetic algorithms present a solution

to this issue, albeit at the cost of conceptual clarity.

Differential evolution is a prototypical genetic algorithm, developed by
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Storn and Price [129] in the late 1990’s. Today, many different genetic al-

gorithms exist (i.e. particle swarm optimisation, Gaussian adaptation, cel-

lular evolutionary algorithm etc.), however differential evolution is one of

the simplest to understand and implement. The differential evolution algo-

rithm requires the following ingredients

• Figure of merit: A function to be minimised f (x). In our example,

this is the Ackley function.

• Candidate Solution: A set of arguments that can be given to the merit

function to evaluate the figure of merit. Here, each candidate solution

is a point in the x − y plane, x = (x, y).

• Population: A set of candidate solutions upon which the algorithm

will act, {x1,x2,x3, . . .}. The number of candidate solutions in the

population is the population size, Np.

• Cross–over probability: Denoted by CR ∈ [0, 1], this gives the proba-

bility that members of the population will combine.

• Differential weight: Denoted by F ∈ [0, 2], this parameter controls

how combination works.

• Maximum number of generations: The maximum number of itera-

tions of the algorithm we allow, Ng.

Population size, cross–over probability, differential weight and number of

generations are all free parameters, meaning that for very complex prob-

lems they must be carefully tuned. Here, we use the standard values of

F = 0.5 CR = 0.7 Np = 10 Ng = 1000. (4.26)

The process of the algorithm is then
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• Randomly initalise the population. For our example, we randomly

choose Np random positions in the x − y plane.

• Until the stopping criteria is met (Ng reached or figure of merit smaller

than an arbitrarily small number), for each member of the population

xi, do

1. Pick 3 population members at random a, b, c.

2. Choose a 4th random member of the population as the target x⋆.

This should be different from a, b or c.

3. Generate a random index for the population R.

4. Now perform the cross-over. Generate a random number r ∼

U(0, 1).

(a) If r < CR or r = R, set y = a + F(b − c). Otherwise set

y = x⋆.

5. If f (y) < f (x⋆) then replace xi with y.

• Pick the member of the population with the lowest figure of merit, and

return it as the best solution.

Python code to perform this is given in Appendix A; differential evolution

is also built into Scipy’s ‘optimize’ toolbox [130].

Using this algorithm to find the minima of the Ackley function is shown

in Figure 4.6 (b). The starting population, shown as red dots, are distributed

randomly in space. As the generations progress, according to the differen-

tial evolution algorithm, they group around the global minima at x = 0, y =

0. Indeed, in very few iterations the algorithm finds the global minima.

For some problems, differential evolution has many advantages over

gradient descent. As we have seen, it is much better at exploring complex
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search spaces and has the benefit of not requiring any gradient evaluations,

although it does require many merit function evaluations. This is useful

when figures of merit are faster to evaluate than their gradients. The merit

function itself involves a single numerical integral, while its derivative re-

quires two numerical integrals. However, the algorithm lacks the clarity of

gradient descent and as it is based on random numbers can be difficult to

repeat the results. Finally, for high-dimensional problems one must often

perform a ‘meta-optimisation’ of the free parameters (Np, Ng, F, CR), which

is usually done using gradient descent.

In the next section, we compare the performance of differential evolution

to our method, for designing multi-functional photonic devices.

4.5 Comparing our method to Differential Evolu-

tion

We compare the results of our optimisation for both emitted power and di-

rectivity with the results of a genetic algorithm solving the same problem.

Using the differential evolution algorithm [129], with a population size of

20, and a maximum allowed iterations of 5000. The differential weight pa-

rameter is F = 0.5 and the crossover probability is CR = 0.7. This genetic

algorithm was run several times and the best solution selected. The compar-

ison between this result and the result of our local optimisation is shown in

Figure 4.7. The genetic algorithm produces a slightly higher power emission

but a slightly lower value of overlap integral. From the scatter of the solu-

tions generated by the genetic algorithm in solution space, shown in Figure

4.7, it is evident that the genetic algorithm explores more of the search space
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a) b)

c) d)

Figure 4.7: A comparison of the results of our optimisation and a genetic
algorithm seeking to shape a far–field radiation pattern while also improving
efficiency. The far–field radiation patterns are compared in a), and the solution space
paths are shown in b). The progress of our method is shown in red, and the progress of
the genetic algorithm as green dots. Each dot represents a single population member.
The final result of the genetic algorithm is shown as a blue star. The resulting
structures are shown in c) and d).

than our local optimisation. However, due to the size of the search space for

multi–functional problems, this does not provide much advantage.

4.6 Validity of the Discrete Dipole Approximation

To verify the validity of the discrete dipole approximation, we compare our

results with full–wave solutions using a finite element method numerical

solver (COMSOL Multiphysics) [68].
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The beaming device shown in Figure 4.3 has been validated by consid-

ering the nearest 20 scatterers to the source, due to memory considerations.

For this reduced system, the comparison between the discrete dipole ap-

proximation and COMSOL is shown in Figure 4.8. The scatterers here are

Left-Handed Source Right-Handed Sourcea) b) c)

Figure 4.8: Comparison between our analytic results, based on the discrete
dipole approximation, and full–wave simulations in COMSOL. Considering only
the 20 (of 64) scatterers nearest to the source of the device shown in Figure 4.3 we
compare a) the far–fields and b),c) the near–fields. For these scatterers, 65 nm radius
silicon spheres, good agreement with the discrete dipole approximation is shown.

silicon spheres of radius 65 nm, for which the electric and magnetic polaris-

abilities can be found analytically.

Validation of the ‘lensing’ device shown in Figure 4.5 of the main pa-

per is shown in Figure 4.9. We consider a TE plane wave incident upon a

small number of metacubes. Comparing the near and far fields in Figure

4.9 the main difference is in the field at the location of the scatterers, where

the discrete dipole approximation is not valid anyway. The PEC boundary

condition on the metal cubes in COMSOL ensures that the field inside the

metacubes is zero. However, in the analytics, the field on one of the scat-

terers is proportional to G(rn, rn). The real part of this expression diverges,

while the imaginary part remains finite. The divergence of the real part is

what causes the difference in the fields at the scatterer locations.
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a) b) c)

d) e)

Figure 4.9: Comparison between the discrete dipole approximation and
COMSOL for several metacubes under TE polarised plane wave incidence.
Both a) the scattered field in the far–field and b)-e) the near–fields are shown.
Excellent agreement between the analytics and full–wave simulations is found.

4.7 Summary & Conclusions

In this chapter, we generalised the results of Chapter 3 to enable the de-

sign of multi–functional photonic devices. Beginning with general consid-

erations of multi–functional materials, we derived a rather restrictive con-

straint upon vector wave–fields that must be obeyed for multi–functionality.

Taking as an illustrative example the problem of enhancing the emitted

power of a small emitter while also shaping its far–field radiation pattern,

we motivated a choice for how to weight the different components that

make up the optimisation problem. Arguing that a good multi–functional

device should perform each of its multiple roles well, we choose the weights

to be proportional to one over the figure of merit at each optimisation step.

Thus, if we begin from a point where emitted power is good but directiv-

ity is poor, directivity will be prioritised by the optimisation. Our weighted
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gradient descent optimisation procedure, with the gradients found semi–

analytically as in Chapter 3, was compared favourably to a genetic algo-

rithm, another popular method for multi–objective optimisation.

With the method developed through simple examples, we proceeded to

design two multi–functional devices. Working at optical wavelengths, us-

ing small silicon spheres as the scatterers, we designed a device that beams

radiation into different directions based upon the polarisation of the source

emitter. Then at microwave wavelengths, using ‘meta–cubes’ as the scatter-

ers, we design a 3D device that sorts waves by their direction of incidence.

It is important to note that this device cannot be modelled using full–wave

solvers such as COMSOL due to the different length scales involved. A very

fine mesh must be used around the sub–wavelength scatterers, but then the

device is tens of wavelengths across with over 100 scatterers. Leveraging

the efficiency of being able to model a single scatterer at a time to extract the

scattering properties, then using the coupled dipole approximation to find

the fields, our method is extremely efficient at dealing with these length

scale differences.
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Chapter 5

Microwave Experiments

“...the triumphant vindication of bold theories – are these not the pride and the
justification of our life’s work?” – Arthur Conan Doyle, The Valley of Fear

The work of this chapter was done jointly with Leanne D. Stanfield. JRC

performed all numerical and analytical modelling. Experiments were car-

ried out by LDS. Both authors contributed equally to the analysis of the

data.

One of the most ubiquitous types of antenna is the Yagi–Uda antenna.

Comprising a single driven element with several metal rods, forming the

‘director’, that generate a strongly directional beam in a particular direc-

tion. However, as the demand placed on communications networks has

grown, so has the requirement for more specific antenna functionalities.

In this chapter, we generalise the Yagi–Uda antenna, placing rods any-

where in a plane around an emitter to achieve arbitrary radiation patterns.
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5.1 Introduction

One of the most common types of antenna is the Yagi–Uda antenna [79].

Shown in Figure 5.1 a), the antenna has one driven element surrounded

by passive metal rods of varying length. All of the elements are uniformly

spaced by 0.2λ0, were λ0 is the desired working wavelength. The metal

rods are held in place by a dielectric support. Parameters have been taken

from the Yagi–Uda example in the COMSOL application gallery [131]. The

a) b)

c) d)

Reflector Directors

Driven 
element

Figure 5.1: Behaviour of the Yagi–Uda antenna. a) Geometry of the antenna,
comprising a single driven element and several passive metal rods acting as scatterers.
The rods are arranged so that the scattered fields interfere constructively at the desired
working frequency. b) Reflection loss of the driven element as a function of frequency.
The minima corresponds to the desired working frequency of 2.45 GHz (a common
WiFi frequency). c) The full far–field radiation pattern at f = 2.45 GHz shows a clear
uni–directional beam. d) Cuts of the far–field along the E and H planes show the
radiation pattern. Fitting Gaussians to each, we estimate that the beam width in the E
plane is 44◦ and in the H plane is 29◦.

reflection loss of the Yagi–Uda antenna, shown in Figure 5.1 b), shows that
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the Yagi–Uda antenna is rather narrow band making it useful for applica-

tions what require frequency selectivity such as television broadcasting. The

radiation pattern of the Yagi–Uda antenna, Figure 5.1 c), d) shows that a di-

rectional main beam is generated in the direction the rods are pointing, with

a beam width of 44◦ in the E-plane and 29◦ in the H-plane.

Being simple to design and straightforward to build, the Yagi–Uda an-

tenna has found great utlity over the last 100 years. However, the increasing

congestion of communications frequencies requires antenna to be more di-

rective and selective ideally while retaining the simplicity of the Yagi–Uda

antenna. The ability to design antenna for specific applications that are easy

to build, but have far more general radiation patterns than the Yagi–Uda

antenna will be crucial to the next generation and generation beyond next

communication systems. In this chapter, we apply the design framework

presented in Chapter 3 to arrange metal rods around a simple emitter. We

demonstrate the ability to engineer the far–field radiation pattern in many

ways.

5.2 Modelling the Scatterers

We begin by considering how to model the elements we will use as the scat-

terers. Seeking to work at ∼ 10 GHz, we calculate the length of rod that

will have its half–wavelength resonance at this frequency. A frequency of

10 GHz is equivalent to a wavelength of 30 mm, so the half–wavelength

length is 15 mm. We therefore use as the scatterers rods of length 15 mm

and diameter 3 mm. In order to use these scatterers in the semi–analytic de-

sign procedure, we must extract the polarisability numerically. The method

we use to do this is described in Appendix B. A schematic of the model is

shown in Figure 5.2. The metal rod is placed in an isotropic background
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ℎ = 15 mm

𝑑 = 3 mm

Perfectly matched layer

Figure 5.2: Schematic representation of how the scatterers are modelled to
find their resonances. Following the method presented in Appendix B, the scatterer is
placed in an isotropic background medium, then excited with plane waves. Integrating
over the charges and currents allows one to calculate the elements of the polarisability
tensor.

material and excited with plane waves of different polarisation and propa-

gation directions to find elements of the polarisability tensor. As expected,

this is anisotropic, with the structure

αrod
E =


0 0 0

0 0 0

0 0 1

 αrod
E , (5.1)

where the long axis of the rod is aligned along the z axis. All of the x, y com-

ponents, as well as the magnetic polarisability are negligible compared to

the z component of electric polarisability. The resulting electric polarisabil-

ity as a function of frequency is shown in Figure 5.3. The peak polarisability

is at 7 GHz, red-shifted by the effect of the thickness of the rod, as well as

end effects. Figure 5.3 shows how the modulus of the polarisability changes

as the thickness of the rods is adjusted. As the rod becomes thinner, the res-

onance moves closer to the 10 GHz expected from elementary arguments.
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Figure 5.3: Polarisability of the metal rods, as a function of frequency. The
effect of making the rods narrower is to shift the resonance towards to 10 GHz expected
of an infinitely thin wire.

Since larger polarisability provides stronger scattering, and therefore more

control over the wave-field, we elect to work at f = 7 GHz. At this fre-

quency, we have

αrod
E = 6.91 + i14.17 f = 7 GHz. (5.2)

The other ingredient we need to include in the analytic framework is the

source field. As we plan to use a non–standard emitter, this must also be

extracted numerically.

5.3 Modelling the Emitter

All of the designs so far in this thesis have used idealised point emitters to

generate the source fields. While this approximation can well describe the

half–wavelength dipole antenna [5, 16], the radiation from more complex

sources cannot be described in this way. It will therefore be necessary to

numerically characterise the emitter we are using and incorporate this into

the semi–analyic framework we have developed in Chapter 3. In the ex-

periments of this chapter, we will use a balanced half–wavelength sleeve
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antenna, shown in Figure 5.4 a). The balun prevents currents from being

Balun

Coaxial 
Cable

1 cm

1 cm

1.8 cm

a) b)

Coaxial Port

Figure 5.4: Sleeve antenna used in the experiments. For ease of measurement, we
use a sleeve antenna with a balun to prevent standing waves along the length of the
coaxial cable. The dimensions of the balun and rod have been chosen so that together
they fulfill the half–wavelength condition at 7 GHz. The emitter is modelled
numerically, to find the fields. The geometry and mesh used in COMSOL is shown in
b), and a coaxial port is used to simulate the effect of the coaxial cable.

generated down the length of the coaxial cable, which lead to additional

resonances that perturb the performance. When one designs a sleeve an-

tenna, the half–wavelength length includes both the radiation element and

the balun [5]. To operate at a frequency of 7 GHz, corresponding to a wave-

length of ∼ 4 cm, the radiating element plus the balun should have a length

of 2 cm. Just like a dipole emitter, the radiation is predominantly perpen-

dicular to the axis of the radiating rod. In previous chapters, the source was

modelled as a point dipole meaning that the source fields could be found
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analytically using the dyadic Green’s function. For more complicated emit-

ters, such as the sleeve antenna, very few analytic results exist so it is nec-

essary to numerically model the behaviour of the emitter. This was done

using COMSOL Multiphysics [68]. The modelled geometry is shown in Fig-

ure 5.4 b). A coaxial port is used to excite the structure: this is an impedance

boundary condition that simulates the effect of the coaxial cable.

Some key properties of the emitter are shown in Figure 5.5. Figure 5.5

a) b)

c) d)

Figure 5.5: Key radiation properties of the sleeve antenna. a) the |S11|
parameter shows a key dip at 7 GHz, indicating that the geometric dimensions of the
balun and rod have been chosen correctly. The radiation pattern perpendicular to the
plane of the antenna as a function of frequency was b) modelled and c) measured.
There is a clear peak in amplitude around the 7 GHz resonance, with the radiation
pattern being isotropic. Plotting d) the radiation pattern at 7 GHz, we see the isotropic
behaviour along with some background noise.

a) shows |S11| as a function of frequency. This can be thought as the reflec-

tion loss of the antenna, a measure of how much input power gets radiated.



140 Chapter 5. Microwave Experiments

A small |S11| corresponds to small reflection between the cable and the an-

tenna, so a large amount of radiated power. We observe a dip in |S11| at 7

GHz, where the antenna has been designed to be resonant. Then, in Figure

5.5 b)-d), the radiation pattern of the emitter has been measured and com-

pared with numerics. We consider the radiation pattern in the plane per-

pendicular to the axis of the antenna, as this is where the scatterers will be

placed. The radiation patterns in Figure 5.5 b) and c) are isotropic, exhibit-

ing an amplitude increase for all angles around the resonance frequency of

7 GHz. The radiation pattern at 7 GHz, shown in Figure 5.5 d), is isotropic

although with some measurement noise.

To model the scattering system, we will require the fields of the emitter

evaluated at the scatterer positions, which will change over the course of

the optimisation. There are two approaches one could employ to calculate

these fields. Firstly, one could model the emitter in COMSOL, then extract

the currents within the source. Integrating these against the Green’s func-

tion would allow one to calculate the field at any point in space. However,

this requires many numerical integral evaluations which can be sensitive to

the points on which one has chosen to export the field. Instead, we calculate

all of the fields in COMSOL and export their spatial distributions. These

are then interpolated so that one can very quickly evaluate the field at any

x − y position, or in the far–field. It should be noted that the far–fields were

extracted separately, although one could use the near–to–far field transform

[132] to map between the two. This would, however, require the calculation

of a surface integral numerically. The fields of the sleeve antenna emitter

with a balun at 7 GHz are shown in Figure 5.6. A small amount of x po-

larised field is generated, although as the scatterers have no x component

of their polarisability tensor, this will not be modified by the scatterers. The
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Figure 5.6: Electric field of the emitter, extracted from finite element
modelling.

larger z component of the field will however couple strongly to the scatter-

ers, exciting their dipole resonances.

5.4 Experimental Procedure

Once designed and constructed, the devices were experimentally charac-

terised using an Anritsu MS46122B Vector Network Analyser (VNA), and a

rotational table controlled by a Thorlabs APT Precision Motion Controller.

To determine the far-field radiation pattern, the structure underwent a full

360◦ rotation in 1◦ increments about the z-axis, parallel to the axis of the

source and the rod scatterers, in an anechoic chamber, with response mea-

sured by a Flann Dual Polarized Horn Antenna (Model DP240) for fre-

quency range 4.0 GHz to 10.0 GHz in 0.05 GHz increments. The experi-

mental setup is shown in Figure 5.7.
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Sample mounted 
on rotation stage

Anechoic Chamber

Figure 5.7: The experimental setup.

5.5 Experimental Demonstration of the Designs

Having established the key properties of the building blocks of the system,

we proceed to utilise the methodology presented in Chapter 3 to design

‘generalisations of the Yagi–Uda antenna’. Rather than arranging only a

small number of rods to create a beam in a particular direction, we begin

from a square array of 100 rods and design structures that have beams in ar-

bitrary directions. While the numerical model is exactly the discrete dipole

approximation described in Section 2.6, the source field is now extracted nu-

merically and imported into the analytic framework. The first example of

this is shown in Figure 5.8. The target radiation pattern is a beam at the 0◦

direction with a width of 10◦. Figure 5.8 a) shows the progression of the fig-

ure of merit, defined as the overlap integral between the desired and current

radiation patterns, over the optimisation. The initial and final structures are
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a) b)

d) e)

c)

Figure 5.8: Designing an array of scatterers that beams in a single direction.

shown in Figure 5.8 b), with the experimental realisation shown in Figure

5.8 c). The measured radiation pattern is shown in Figure 5.8 d), exhibiting

a clear peak at the design frequency of 7 GHz and at one particular angle.

A comparison between analytics, experiment and the target distribution is

shown in Figure 5.8 e). While similar to the behaviour of the conventional

Yagi–Uda antenna, the inclusion of many more scatterers allows for direct

control over the exact width of the beam.

Our next device illustrates the flexibility of our design procedure. The

target radiation pattern now has two beams of width 15◦ at 10◦ and 260◦.

The progression of the overlap integral, final and initial scatterer positions

and experimental sample are shown in Figure 5.9 a)-c). Measured radiation

pattern, shown in Figure 5.9 d) shows two clear beams at 7 GHz. Compari-

son of the radiation patterns predicted and measured in Figure 5.9 e) show

excellent agreement of the position and width of the main lobes, although

larger back lobes are present in the experimental data.

Next, we consider attempting to design a device that has three beams of

specified widths at specific positions, with pre–determined amplitudes. As
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a) b)

d) e)

c)

Figure 5.9: Designing an array of scatterers that beams in two directions, with
defined width.

with the two beam design, we aim to place two beams of maximum ampli-

tude and width 15◦ at 10◦ and 260◦, in addition to a beam of half amplitude

and width 45◦ at 80◦. Figure 5.10 a)-c) shows the optimisation and exper-

a) b)

d) e)

c)

Figure 5.10: Designing an array of scatterers that beams in three directions,
with defined widths and amplitudes.

imental sample. The full measured far–field radiation pattern, shown in



5.5. Experimental Demonstration of the Designs 145

Figure 5.10 d), is now harder to interpret. However the two maximum am-

plitude beams can be see at around 200◦ and 250◦, with the half–amplitude

beam appearing at around 100◦. Comparing the radiation patterns in Figure

5.10 e), good agreement between analytics and experiment can be observed.

The full far–field radiation patterns (as functions of both polar angle θ

and azimuthal angle ϕ) of each of the above designs is shown in Figure

5.11. These patterns were extracted from full-wave simulations in COMSOL

[68]. In the radiation pattern for the single beam design, shown in Figure

5.11 a), a single clear beam at ϕ ∼ 180◦, with little other radiation. For the

two beam design, shown in Figure 5.11 b), two clear main beams can be

observed. The three lobe design, shown in Figure 5.11 c), has the expected

a) c)b)

Figure 5.11: Full far–field radiation patterns of the designs presented in Figures
5.8, 5.9 and 5.10. White dashed line indicates the plane in which far–field
measurements are taken.

radiation pattern in the measurement plane, however there is significant

radiation in out of plane directions. For example, there is a large lobe at

around ϕ = 280◦, θ = 150◦.

Finally, we examine the effect of structuring the radiation pattern upon

the mismatch loss of the emitter. These measurements are shown in Figure

5.12. In all cases we see that the effect of structuring the radiation pattern at

7 GHz is to reduce the efficiency of emission. This effect was also observed

in the example consider at the start of Chapter 4, shown in Figure 4.2. To al-

leviate this, one could employ the multi–objective optimisation framework
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a) b) c)

Figure 5.12: Measured reflection loss for the designs shown in Figures 5.8, 5.9
and 5.10. In all plots, the the reference of the antenna in free space is included. The
working frequency of 7 GHz is indicated by the vertical red line.

presented in Chapter 4 to optimise both radiation pattern and power emis-

sion, although the system considered for experiments has fewer degrees of

freedom that that considered in Figure 4.2.

5.6 Sources of Error

While the experimental results of the previous section show clear proof of

concept, experimental and theoretical results do not perfectly align. Many

steps in constructing the both the experiments and the semi–analytic design

framework introduce non–negligible sources of error. In this section, we

examine some of the key sources of error and consider how they have been

addressed or could be further ameliorated.

Firstly, we consider the strength of the dipole approximation in correctly

describing our system. This is a similar investigation to that presented in

Section 3.11 of Chapter 3 and Section 4.6 of Chapter 4. The scatterers are

treated as point dipoles, however have a length that is ∼ λ/2 and a radius

that is ∼ λ/20. To check how well the dipole approximation works, we ex-

cite two scatterers with a point dipole source, polarised in the z direction.

Varying the separation d between the scatterers we track the error between

the far–field radiation pattern predicted by the point dipole approximation
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and full–wave simulations in COMSOL. Error is characterised by the resid-

ual sum of squared differences (RSS). The result of this study is shown in

Figure 5.13. One can observe that for large separations the error is small,

a) b) c)

d

Figure 5.13: Investigating the strength of the dipole approximation. a) Exciting
two rods of radius r with a point dipole source oriented in the z direction, the two
scatterers are kept at x = 1.5λ while the y distance d (in units of scatterer radius)
between them is varied. b) Comparing the far–field predicted by the point dipole
approximation with full–wave simulations in COMSOL, the error between the two is
characterised by the residual sum of squared error (RSS), indicated in red. c) The error
as a function of rod separation indicates that the dipole approximation works poorly
when d/r < 5, when the near–fields couple. For larger separations, the dipole
approximation has a consistent error of the order ∼ 0.1.

but not zero, even though we consider only two scatterers. Above separa-

tions of d/r ∼ 5 (where r is the radius of the scatterers) the error is on the

order of 0.1. As expected, for smaller separations d/r < 5 the error becomes

large as the near–fields of the scatterers interact more strongly. The near

fields of the scatterer are expressive of the exact geometry, which is an effect

not captured in the dipole approximation where the scatterer is assumed to

be a point. From this, we conclude that the dipole approximation works

well provided that the scatterers are not too close, however is not perfect.

For large numbers of scatterers, this error will be compounded. It should

be noted that the minimum separation between the rods in the designs pro-

posed in the previous section is d/r ∼ 10.

As well as the inevitable limits of the dipole approximation, several

other steps in constructing the semi–analytic design framework introduce
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error. The dielectric properties of the foam were measured and confirmed

to match the values taken from the data sheet [133]. However small un-

certainties may persist, leading to shifts in the resonances of the rods i.e.

the peak of αE will be shifted downwards as ε increases. Additionally, the

properties of the emitter might have small errors in their representation.

Modelling the emitter in COMSOL might introduce small numerical errors,

then the fields must be exported and interpolated for use in the design pro-

cedure. This may introduce additional interpolation errors. While individu-

ally small, combined these effects might produce notable differences in the

fields and radiation patterns. Although each of our simplifying assump-

tions introduces errors, it should be noted that the design of the structures

presented in the previous section is intractable using full–wave simulations.

Modelling the systems in COMSOL requires around 200 GB of RAM and

simulations take around 3 hours. The ∼ 500 iterations required for the op-

timisation procedure would therefore take around 60 days on a specialist

computer. Conversely, our simplified framework uses only ∼ 500 MB of

RAM and runs in ∼ 8 hours on a modest laptop.

In addition to the difficulties of modelling our system, the experimen-

tal procedure itself has several inherent challenges. Reflections within the

anechoic chamber are a key concern, as they would destroy the radiation

pattern. These were checked for by keeping the detector fixed, then mea-

suring the radiation pattern of the sample. The sample is then rotated to

a different starting position and measured again. If reflections are present

then we expect a feature to appear at a fixed angle that is not affected by

the rotation of the sample. This test is shown in Figure 5.14, demonstrat-

ing that no significant reflections were found. The other main experimental

challenge is the alignment of the sample. If the sample is not mounted flat

on the rotating table, then the radiation pattern will be slightly tilted. Laser



5.7. Summary & Conclusions 149

a) b)

Figure 5.14: Checking for reflections within the anechoic chamber. a) The
radiation pattern of the structure is measured from two different starting angles. If
reflections are present, we would expect a feature to appear at an angle that does not
depend upon the sample orientation. b) Rotating the two measurements onto each
other, no persistent features are observed.

alignment was used to attempt to alleviate this and the reasonable spread of

the beam above and below the plane of the emitter, evident in every panel

of Figure 5.11, should make the measurements robust to small tilts. Never-

theless, the effect of this cannot be completely discarded.

5.7 Summary & Conclusions

In this chapter we have experimentally verified the utility of our proposed

method for designing antenna. Taking for inspiration the Yagi–Uda an-

tenna, we aimed to design and realise structures made of metal rods ar-

ranged around an emitter that could shape the far–field in non–trivial ways.

We showed that radiation can be focused into beams at particular angles, of

particular widths and amplitudes. Our devices express far more control

than conventional Yagi–Uda antenna. Crucially, our semi–analytic frame-

work has enabled the design of devices that would be otherwise inaccessible

to numerical treatment.
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While our theory is strongly predictive of experimental measurements,

some differences remain. Several sources of error, both in the experiment

and modelling have been discussed. Differences in material parameters,

and the several numerical and interpolation steps are consider the key sources

of error in this work.

To extend these results further, multi–functional devices could be de-

signed using the framework of Chapter 4. However, the current implemen-

tation contains only the z component of the field. The ability to manipulate

multiple components as well as the magnetic field would provide redun-

dancy in degrees of freedom, providing more freedom to manipulate the ra-

diation. This would require scatterers that have both electric and magnetic

resonances, or could perform frequency conversion. Switching behaviour

could be added by including PIN diodes into the scatterers, so they are

either resonant or shorted. How such a system would be electrically con-

trolled without interfering with performance or measurement remains an

open question.
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Chapter 6

Manipulating Quasi–Normal

Modes

“...the developed method standing alone does not present scientific interest.
Furthermore, the research topic addressed in the manuscript does not seem to be of

interest to the broad optics and science community...” – A Deputy Editor of
Optica

The results of this chapter have been published in:

• J. R. Capers, D. A. Patient, S. A. R. Horsely “Inverse Design in the

Complex Plane: Manipulating Quasi–normal Modes” Phys. Rev. A

106 053523 (2022).

All work was done jointly with D. A. Patient. Both authors contributed

equally to the work of this chapter.
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Many photonic devices rely on resonances to give a strong response.

The frequency and linewidth of these resonances is determined by the re-

fractive index and geometry of the resonator. Inverse design of photonic

systems has attracted much attention over the previous decade, however

little attention has been paid to how to manipulate the exact properties

of resonances. In this chapter, we utilise the fact that the frequency re-

sponse of a photonic device is directly related to the complex frequencies

of the quasi–normal modes of the resonator. We present two methods

to manipulate the locations of these modes, allowing for the control of

frequency and linewidth simultaneously. Firstly, we employ an ‘eigen-

permittivity’ method, to find how to shift the permittivity of a material

so a quasi–normal occurs at a particular complex frequency. While this

method is simple, it only allows for the manipulation of a single mode.

To manipulate multiple modes, we develop an iterative procedure based

on quasinormal mode perturbation theory.

6.1 Introduction

In the previous chapters we designed many structures built from resonant

scattering elements. We chose to work at the resonant frequency of the scat-

terers as this is where the scattering response is strongest. The actual wave-

length at which the scatterers are resonant is fixed by their geometry and

material properties. In this chapter we consider applying inverse design

techniques to the problem of manipulating the position and character of the

resonances of photonic structures.

A very wide range of photonic devices rely on resonances for their oper-

ation. Some of the early examples of metamaterials relied upon plasmonic

resonances [134, 135]. These are the collective resonances of electrons in
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metals. Such resonances have been used to realise a wide range of phenom-

ena such as cavity tuneable lattice resonances [136], optical antennas [80],

breaking Snell’s law [50] and extreme field confinement [137]. However,

at optical frequencies plasmonic resonances exhibit very high losses [138],

limiting the efficiency of devices that rely upon them. Instead, materials

based on dielectric Mie resonances [138–140] have become ubiquitous. Not

only are the associated losses lower, nanofabrication of silicon has been de-

veloped by the electronics industry for decades and is now very advanced.

As such, dielectric photonic devices have been built to e.g. control spon-

taneous emission [85] and construct antennas for light [141]. In dielectric

systems there is a rich landscape of resonances is available. Interfering dif-

ferent multipoles can achieve, for example, invisibility due to the Kerker

effect [142].

We will see in the next section that radiating resonant modes are charac-

terised by complex wave–numbers, meaning that they grow in space. Con-

sequently, deciding how to normalise them is not trivial, but required if one

is to develop expansions or a perturbation theory for them. As such, there

has been much theoretical work on developing both perturbative treatments

[143, 144] and expansions of physical quantities in terms of the complex fre-

quency resonances of specific systems such as spheres [145] as well as gen-

eral open resonators [146, 147]. The mathematics of how to include ‘killing

functions’ [148] into numerical simulations to make the normalisation of

these modes easier is also an open problem. With such expansions, one can

determine the effect of specific resonances on measurable quantities such

as the Purcell factor [149]. Despite recent progress, some problems remain

with these approaches. For example, the set of resonant modes do not form

a complete basis. Recent insight from Chen et al. [150] shows that this

problem can be avoided if one keeps the wave–number real but extends the
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permittivity of the structure into the complex plane. One can then expand

in a complete set of bound states that are perfectly normalisable.

Beyond deriving field expansions in terms of quasi–normal mode fields,

there are many reasons one may want to change the location and width

of a resonance. The locations of resonances link directly to energy absorp-

tion: efficient energy harvesting requires high absorption over a large fre-

quency band [151–155], while sensing requires narrow resonances at par-

ticular wavelengths [156–159]. However, little attention has been given to

how to algorithmically design structures that exhibit resonances of particu-

lar widths at particular frequencies. Many current methods involve manu-

ally sweeping over geometric parameters to see how the resonances move

[160–162]. Such procedures are slow and require many full–wave simula-

tions. More recently, efforts have been made to apply perturbation theory

[163] to efficiently explore parameter spaces. Expressing the optimisation

problem in terms of the resonances of a system has a number of key benefits.

Firstly, the optimisation procedure and result are easy to interpret as the en-

tire paradigm is based on where resonances are located. Secondly, typically

only a few resonances contribute to the response of a resonator over a small

frequency band. This means that one only has to tune a few resonances,

rather than consider full–fields as the adjoint method usually requires. It

is only very recently that algorithmic methods for manipulating the loca-

tions of complex frequency resonances have emerged [164]. Such methods

still require full–wave simulations to find the resonances, then perturbation

theory can be used to evaluate their sensitivity to geometric parameters.

In this chapter we derive two methods for placing resonances of pho-

tonic systems at particular complex frequencies, allowing for the determi-

nation of both their resonance frequency and their spectral width. We begin

by discussing the properties of the modes we would like to manipulate,
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and comparing multiple analytic and numerical methods for finding the

resonances. We then develop a method based on the insight on Chen et al.

[150] to determine an offset one can apply to the permittivity of a structure

to place a particular resonance at a particular complex frequency. Next, by

employing perturbation theory, we formulate an iterative procedure for de-

signing graded index resonators with multiple resonances placed at desired

complex frequencies. Initially, these ideas are formulated by considering di-

electric slabs. We then extend this to consider radially symmetric resonators

in 2D and 3D. Manipulating the resonances of radially symmetric resonators

allows us to choose the multipolar character of the mode we move as well,

making our method relevant for sensing as well as in the design of dielectric

resonant antenna.

6.2 Quasi–Normal Modes: What and Why?

We will consider transverse electric fields propagating in 1D so that E(z) =

ϕ(z)x̂. The boundary conditions are therefore that the electric and magnetic

fields are continuous across a material boundary [15]. We will assume that

all of our materials have µ = 1, so we must impose that ϕ(z) and ∂zϕ(z) are

continuous across boundaries. As was shown in Section 2.2, we can then

consider solutions to the 1D Helmholtz equation

(
d2

dx2 + k2
)

ϕ(x) = 0, (6.1)

of the form

ϕ(x) = eikx. (6.2)

If k is purely real, the solutions are just propagating plane waves. However

if k is complex, with k = k′ + ik′′, then the solution is made of a complex
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and real exponential

ϕ(x) = eik′xe−k′′x. (6.3)

The sign of k′′ dictates whether the exponential grows or decays: when

k′′ > 0 the mode is localised (bound), while when k′′ < 0 the mode grows

exponentially, leaking energy. For better physical insight, we put back the

time–dependence of the solution to the wave equation, where now the fre-

quency has inherited the complex nature of k through the dispersion rela-

tion ω = ck = ω′ + iω′′. Throughout, we will use ω, k and λ = 2π/k inter-

changeably and assume they all become complex when we are discussing

quasi–normal modes. The different physical quantities will be useful for

describing different systems. With this, the full solution is then

ϕ(t, x) = ei(k′x−ω′t)e−k′′x+ω′′t. (6.4)

Now, when k′′, ω′′ < 0, we have a solution that has a propagating com-

ponent and a part that grows in space but decays in time. These traits are

characteristic of a quasi–normal mode (QNM). One can imagine a bell be-

Figure 6.1: Schematic example of a quasi–normal mode. When a bell is struck,
the initial amplitude of oscillation is large, producing radiating waves of a large
amplitude. As damping within the bell reduces the amplitude of the oscillations, the
amplitude of the radiating waves also decays. The result is a wave that seems to be
growing in space, as a result of a temporal decay. The wavelength of the resonance is
related to the wavelength of the radiating modes, with the decay rate of the mode
being related to the rate of spatial growth.

ing struck at t = 0. Initially, the bell rings with a large amplitude resulting

in sound waves of large amplitude moving outwards. At later times the
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amplitude of the bell’s oscillation decays, radiating lower amplitude sound

waves. Looking at the field at very long times, one sees the exponentially

growing field shown in Figure 6.1.

With this broad physical insight, we explore the quasi–normal modes of

a simple photonic system, considering the insight they provide. Perhaps

the simplest example of a system supporting QNMs is a homogeneous di-

electric slab (refractive index nr in some background index nb). To find the

quasi–normal modes of a step of width L centered at x = 0, we calculate the

reflection coefficient r by considering

ϕ(x) =


A
(
eiknrx + e−iknrx) |x| < L/2

e−iknbx + reiknbx x > L/2.
(6.5)

Applying continuity of the field and its derivative at x = L/2, we find that

r(k) = r0
1 − ei2kLnr

1 − r2
0e2ikLnr

, (6.6)

where

r0 =
nr − nb
nr + nb

(6.7)

is the Fresnel coefficient. We can analytically continue this function into the

complex plane, and consider for which k ∈ C, r(k) → ∞. In other words,

we can find the poles of r(k). These occur when the denominator of (6.6)

vanishes, leading to an analytic expression [165, 166] for the poles

kmL =
2πm + i ln

[
(nr − nb)

2 / (nr + nb)
2
]

2nr
, (6.8)

where m is an integer. Taking a slab of index nr = π and a background with

index nb = 1, the system and the poles are plotted in Figure 6.2. Several
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𝐴(𝑒!"#!$ + 𝑒%!"#!$) 𝑒%!"#"$
+ 𝑟 𝑒!"#"$

a) b)

c)

Figure 6.2: Example of a understanding a photonic system in terms of its
quasi–normal modes. The system is shown in a): a dielectric slab of refractive index
n = π and width L = 1 has a wave incident from the right–hand side. Matching the
field and it’s derivative at the edge of the resonator allows one to calculate the
reflection coefficient analytically, shown in b). Analytically continuing this into the
complex plane, we show c) only the magnitude and d) both magnitude and phase. We
see a row of simple poles, with their locations in the complex plane directly related to
the k associated with the quasi–normal modes.

things are of note:

1. The poles of the reflection coefficient are located in the lower half of

the complex plane. This means that k′′ < 0, corresponding to a quasi–

normal mode.

2. Associated with each pole is a zero in the reflection coefficient at Re[km].

3. The width of the zeros in reflection is determined by Im[km].

Knowing at which complex frequencies the quasi–normal modes occur at al-

lows for the numerical calculation of the fields. It is also possible to do this

analytically for this particular system [166], however we will proceed nu-

merically. From our earlier discussion, we know that quasi–normal modes

must be purely outgoing at the edge of the resonator: they must fulfil the
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radiation condition [167], which for N dimensions is

lim
r→∞

r(N−1)/2
(

∂

∂r
− ik

)
ϕ(r) = 0. (6.9)

In 1D, this becomes
dϕ

dx
= ±ikϕ(x) (6.10)

as x → ±∞ . Back–integration can be used to find the field numerically.

Starting far away from the right–hand side of the sample, we set a field

ϕ = eikmn(x)x, where km corresponds to the quasi–normal mode we would

like to find the field of. We then integrate the 1D Helmholtz equation back

to x = 0 to find the field. As this problem is left–right symmetric, the field

on the left and right of the slab are identical. For a non–symmetric index

profile n(x), the same procedure could be applied, however one would need

to impose continuity of field to connect the solutions. Code to perform this

back–integration is given in Appendix A. The fields of the quasi–normal

Figure 6.3: Fields associated with the quasi–normal modes of a dielectric slab.
These are obtained by solving the Helmholtz equation with outgoing wave boundary
conditions at particular complex frequencies.

modes of the slab, found using this method, are shown in Figure 6.3. The

modes exhibit the exponential growth in space that we expect.

Having characterised what quasi–normal modes are, we now consider

why they have attracted such interest across physics in recent years. With the

simple tools we have developed, more complicated systems can be analysed
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and understood with the help of quasi–normal modes. First used in quan-

tum mechanics to describe alpha decay [168, 169], quasi–normal modes

have since found utility in modelling radiation in many different systems,

from black holes [165], photonic resonators [166] to leaky waveguides [170,

171]. Later in this chapter, we will consider how to design resonators that

have QNMs at particular complex k values. To motivate this, we explore

Ge
SiO2

Tungsten Mirror

a)

Pole at 𝜆 = 5.15 +
𝑖 0.012 𝜇m

b)

c) d) 𝜆! = 5.15 𝜇m
Γ = 0.0129 𝜇m

Figure 6.4: Understanding a more complicated structure using the
quasi–normal mode framework. Sakurai et al. [172] designed the mirror–backed
multi–layer structure shown in a) to function as an IR absorber. The absorption and
reflection, shown in b), exhibit clear dips at around λ = 5µm. Extending the reflection
coefficient into the complex wavelength plane, a pole is found at λ = 5.15 + i0.015µm,
corresponding to a quasi–normal mode. Fitting a Lorentzian to the absorption peak, we
find that the spectral properties are directly related to the position of the quasi–normal
mode.

the multi–layer mid-IR absorber presented by Sakurai et al. [172], shown

in Figure 6.4 a). This is a multi–layer structure, designed using a genetic

algorithm, to absorb at partiuclar wavelengths. Shown in Figure 6.4 b), is a

clear peak in absorption (and corresponding nadir in reflection) at the target
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wavelength of around 5 µm. We analyse the reflection coefficient by extend-

ing it into the complex wavelength plane. This is equivalent to extending

k into the complex plane, as k = 2π/λ. Rather than expecting QNMs to

appear in the lower half of the complex plane, we now expect them to ap-

pear in the upper half. The design procedure utilised in [172] employed

little physical insight, however by looking at the reflection coefficient of the

structure as a function of complex wavelength we can understand why the

structure performs so well. Figure 6.4 shows a pole at the complex wave-

length λ = 5.15 + i0.012 µm. Fitting a Lorentzian of the form

L(λ) = Γ
(λ − λ0)2 + Γ2 (6.11)

to the absorption peak, we find parameters

λ0 = 5.15 µm Γ = 0.0129 µm. (6.12)

The location of the quasi–normal mode in the complex wavelength plane

directly relates to the properties of the resonance. This connection is a gen-

eral property of quasi–normal modes at has been utilised to decompose the

physical properties of a system into the quasi–normal modes [166]. For ex-

ample, the effect of a structured environment upon the Purcell factor of an

emitter can be decomposed in terms of the QNMs of the system [146], and

through calculating how small changes in the system perturb the QNMs,

deeper insight into sensing has been developed [173, 174].
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6.3 Finding Quasi–Normal Modes Analytically

In the previous section, we outlined how to analytically find the quasi–

normal modes of a 1D slab. The central idea was to find the complex wave–

numbers at which the scattering (or reflection) coefficient had poles. This

idea extends straightforwardly to higher dimensions and provides a useful

way to analytically find the quasi–normal modes of uniform systems. We

will consider the scalar Helmholtz equation

(
∇2 + k2n2

)
ϕ(r). (6.13)

Due to the extraordinary generality of wave phenomena, outlined in Section

2.1, this describes many types of time–harmonic waves including: pressure

waves [7], single components of the electromagnetic field [15], longitudinal

and transverse components of elastic waves [9], and even black holes [165].

6.3.1 2D: Cylinders

Consider a cylinder of index n and radius a.

(
∇2 + k2n2

)
ϕ(r) = 0 (6.14)

Where in 2D cylindrical coordinates the Laplacian is

∇2 =
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2 . (6.15)

As for the 1D slab, we consider the scattering of a plane wave from the

cylinder and aim to find the expansion coefficients. To this end, we write

the incident field as

ϕi(r) = eikx = eikr cos θ, (6.16)
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the scattered field as

ϕs(r) =


∑m amH(1)

m (kr)eimθ r > a

∑m bm Jm(nkr)eimθ r < a.
(6.17)

Our choice of functions to decompose the scattered field into ensures that

ϕs(r = 0) does not diverge and that as r → ∞, the radiation condition is

met. The asymptotic form of the Hankel functions of the first kind [175] is

lim
z→∞

H(1)
m (z) ∼

√
2

πz
ei(z−mπ

2 −π
4 ), (6.18)

which is manifestly an outgoing cylindrical wave. To find the expansion

coefficients am, bm, we re–write the incident plane wave using the Jacobi–

Anger expansion [175]

eikr cos θ = ∑
m

im Jm(kr)eimθ, (6.19)

then impose continuity of the total field ϕ(r) = ϕi(r)+ ϕs(r) and its deriva-

tive at r = a. This yields

am = −im Jm(nka)J′m(ka)− nJm(ka)J′m(nka)

Jm(nka)H(1)
m (ka)− nH(1)

m (ka)J′m(nka)
, (6.20)

where primes denote derivative of the Bessel function with respect to the

argument. Equation (6.20) is the cylindrical scalar field equivalent of Mie’s

multipole expansion that was derived in Section 2.5. This is the scattering

coefficient for the mth partial wave. As with the 1D case, the quasi–normal

mode frequencies km occur when the scattering coefficient has a pole in the

complex plane. Standard root–finding methods (i.e. Newton’s method) can

find the complex k values for which the denominator of (6.20) vanishes. This
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allows us to find the locations of the quasi–normal modes corresponding to

specific multipoles: m = 0 is the monopole, m = 1 is the dipole and so on.

6.3.2 3D: Spheres

Considering the same scattering problem, now for a sphere of radius a and

index n, the Helmholtz equation is

(
∇2 + k2n2

)
ϕ(r) = 0, (6.21)

where the Laplacian is written in spherical coordinates

∇2 f =
1
r2

∂

∂r

(
r2 ∂ f

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ f
∂θ

)
+

1
r2 sin2 θ

∂2 f
∂ϕ2 , (6.22)

with azimuthal angle ϕ and polar angle θ. As before, we consider the scat-

tering of a plane wave, so the incident field is

ϕi(r) = eikz = eikr cos θ. (6.23)

We decompose the scattered field as

ϕs(r) =


∑ℓ,m aℓ,mh(1)ℓ (kr)Pm

ℓ (cos θ)eimϕ

∑ℓ,m bℓ,m jℓ(kr)Pm
ℓ (cos θ)eimϕ

(6.24)

and the incident field into

eikr cos θ = ∑
ℓ

(2ℓ+ 1)iℓ jℓ(kr)Pℓ(cos θ), (6.25)

where hℓ(1) is the spherical Hankel function of the first kind, jℓ is the spher-

ical Bessel function, Pm
ℓ are the associated Legendre polynomials. Once
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again, the asymptotic forms of the spherical Bessel and Hankel functions

lim
z→0

jℓ(z) ∼
zℓ

(2ℓ+ 1)!!
, (6.26)

lim
z→∞

h(1)ℓ (z) ∼ i−ℓ−1 eiz

z
, (6.27)

guarantee that the scattered field does not diverge and that the radiation

condition is met. Applying continuity of the total field and its derivative at

r = a, we find that

aℓ = iℓ(2ℓ+ 1)
jℓ(nka)j′ℓ(ka)− njℓ(ka)j′ℓ(nka)

jℓ(nka)h(1)ℓ (ka)− nh(1)ℓ (ka)j′ℓ(nka)
. (6.28)

Aside from the initial pre–factor, this is the same as the case of the 2D cylin-

der (6.20), with the Bessel and Hankel functions exchanged for the spherical

Bessel and Hankel functions. Once again, Equation (6.28) is the spherical

scalar field equivalent of Mie’s multipole expansion that was derived in

Section 2.5. Root finding can then be used to find the complex k values

for which the denominator of (6.28) vanishes.

6.4 Finding Quasi–Normal Modes Numerically

In the previous section, we outlined how to find the locations of the quasi–

normal modes of uniform slabs, discs and spheres. For graded media, ana-

lytic solution is no longer generally tractable so numerical techniques must

be employed [176]. Here, we outline some simple finite difference schemes

that can be used to find the locations of quasi–normal modes of certain

graded systems. We then show how one can use finite element packages,

such as COMSOL, to find the quasi–normal modes of any systems. While

we make use of finite difference schemes, spectral methods [177] can also
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be used find the complex frequency resonances of a system. These meth-

ods have the benefit of using the whole grid to evaluate derivatives, rather

than just neighbouring points as with finite difference methods. For concep-

tual simplicity we will proceed using finite difference methods, although fu-

ture extensions might include developing spectral methods to manipulate

quasi–normal modes.

To find quasi–normal modes numerically, one must formulate the Helmholtz

equation as an eigenvalue problem for the wave–number k by discretising

the Laplacian operator. There is, however, a key difficulty: the eigenvalue

itself k is embedded within the Laplacian operator, as one must also impose

the radiation condition at the boundary. As we will see, one must linearise

the resulting expressions in terms of k, allowing for a quadratic eigenvalue

problem [178] to be formed.

6.4.1 Finite Differences in 1D

To find the quasi–normal modes of a given permittivity ε(x), we must dis-

cretise the wave–operator and impose the correct boundary conditions. Be-

ginning from the 1D Helmholtz equation

(
d2

dx2 + ε(x)k2
)

ϕ(x) = 0, (6.29)

we use the usual finite difference discretisation [43] the Laplacian

∇2ϕ ≈ ϕn+1 − 2ϕn + ϕn−1

∆x2 , (6.30)
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where ϕi = ϕ(xi). Discretising space into only 4 points, we can write this in

matrix form as

d2ϕ

dx2 ≈ 1
(∆x)2



−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −2





ϕ1

ϕ2

ϕ3

ϕ4


. (6.31)

This has the boundary condition that ϕ0 = ϕ5 = 0. Instead we would like

to impose the boundary condition on the right–hand side that

dϕ

dx
= ikϕ, (6.32)

and on the left–hand side that

dϕ

dx
= −ikϕ. (6.33)

These are the Sommerfeld radiation conditions [167], which impose that en-

ergy cannot enter the system from infinity and the energy radiated by the

system must scatter to infinity. Taking only the right–hand side we re-write

the derivative using finite differences, then can re–arrange for ϕn+1

ϕn+1 − ϕn

∆x
= ikϕn (6.34)

ϕn+1 = (ik∆x + 1)ϕn. (6.35)
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Using this expression to eliminate ϕn+1 in (6.30), we obtain a modified Lapla-

cian matrix

d2ϕ

dx2 ≈ 1
(∆x)2



(ik∆x − 1) 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 (ik∆x − 1)





ϕ1

ϕ2

ϕ3

ϕ4


. (6.36)

This now has the outgoing wave boundary condition at the edge of the slab.

To formulate the eigenvalue problem, we split this matrix into a part that

is linear in k and a part that does not contain k. Defining

L =
1

∆x2



−1 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1


(6.37)

L′ =
1

∆x2



i∆x 0 0 0

0 0 0 0

0 0 0 0

0 0 0 i∆x


(6.38)

the finite difference Helmholtz equation with outgoing wave boundary con-

ditions becomes (
L+ kL′ + k2ε(x)

)
ϕ = 0. (6.39)
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This has the form of a quadratic eigenvalue problem [178] for k. If we define

a new vector (ϕ, kϕ)T, we can form the eigenvalue problem as

 0 1

−L/ε(x) −L′/ε(x)


 ϕ

kϕ

 = k

 ϕ

kϕ

 . (6.40)

One can form this linear system and solve it using standard linear algebra

methods [43] for the eigenvalues k, which give the complex frequencies at

which the system supports a quasi–normal mode.

6.4.2 Finite Differences in 2D

We now formulate the method for 2D cylindrically symmetric permittivity

profiles. The Helmholtz equation in 2D is

(
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2 + k2ε(r)

)
ϕ(r) = 0. (6.41)

We begin by separating the radial and angular variables using the ansatz

ϕ(r, θ) = ϕ(r)eimθ, (6.42)

giving (
∂2

∂r2 +
1
r

∂

∂r
− m2

r2 + k2ε(r)

)
ϕ(r) = 0. (6.43)

We then make the substitution

ϕ(r) =
ψ(r)√

r
, (6.44)
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which removes the first derivative

(
∂2

∂r2 +
1

4r2 − m2

r2 + k2ε(r)
)

ψ(r) = 0. (6.45)

The scattering boundary condition we must impose at r = a is that

ϕ(r = a) = H(1)
m (ka), (6.46)

so

ψ(r = a) =
√

rH(1)
m (ka). (6.47)

This means that
∂ψ

∂r
= ψ(r)

(
1
2r

+ k
H(1)′

m (kr)

H(1)
m (kr)

)
. (6.48)

This is the 2D equivalent of the ϕ′ = ikϕ boundary condition we had to

apply in 1D. To keep notation compact, we define

γ(k, r) =

(
1
2r

+ k
H(1)′

m (kr)

H(1)
m (kr)

)
. (6.49)

To find how to modify the Laplacian matrix, we proceed as before, asserting

that at r = a

ψn+1 − ψn

∆r
= ψnγ(k, a) (6.50)

ψn+1 = ψn(1 + ∆rγ(k, a)). (6.51)

Just plugging this into the Laplacian operator, however, will not allow us to

set up the eigenvalue problem, as the eigenvalue k is still contained within

the function γ(k). To linearise the system, we Taylor expand γ(k) around a
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particular complex k⋆ and group terms in powers of k

γ(k, a) ≈ γ(k⋆, a) + (k − k⋆)∂kγ(k⋆, a) + . . . (6.52)

= γ(k⋆, a)− k⋆∂kγ(k⋆, a) + k∂kγ(k⋆, a) (6.53)

= A + kB. (6.54)

The derivatives of γ(k, a) with respect to k can be computed numerically

using complex differentiation [179], or analytically as

∂kγ(k, r) =
H(1)′

m (kr)

H(1)
m (kr)

+ (kr)

H(1)′′
m (kr)

H(1)
m (kr)

−
(

H(1)′
m (kr)

H(1)
m (kr)

)2
 . (6.55)

Utilising this, we find that the boundary term in the Laplacian is

ψn+1 = ψn(A∆r + 1) + kB∆rψn. (6.56)

This leads to the modified Laplacian operator, with the correct outgoing

boundary condition at r = a, which is

∂2

∂r2 ≈ 1
∆r2



−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 (A∆r − 1) + kB∆r


. (6.57)
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Splitting this into parts that are linear in k and parts that do not depend on

k, we define

L =
1

∆r2



−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 (A∆r − 1)


, L′ =

1
∆r2



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 B∆r


.

(6.58)

The 2D cylindrical Helmholtz equation with out–going wave boundary con-

ditions is thus

(
L+ kL′ +

1
4r2 − m2

r2 + k2ε(r)
)

ψ(r) = 0. (6.59)

The quadratic eigenvalue problem is therefore

 0 1

− 1
ε(r)

[
L+ 1

4r2 − m2

r2

]
− L′

ε(r)


 ψ

kψ

 = k

 ψ

kψ

 . (6.60)

6.4.3 Finite Differences in 3D

We now consider the same problem as the previous section in 3 spatial di-

mensions, so the resonators are spherical. In spherical coordinates, with a

solution of the form χ(r) = χ(r)Ym
l (θ, ϕ), the Helmholtz equation can be

written as
∂2χ

∂r2 +
2
r

∂χ

∂r
− l(l + 1)

r2 χ(r) + k2ε(r)χ(r) = 0. (6.61)

Making the substitution χ = ψ/r to eliminate the first derivative, this be-

comes
∂2ψ

∂r2 − l(l + 1)
r2 ψ + k2ε(r)ψ = 0. (6.62)
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The boundary condition for an outgoing wave is

χ(r → ∞) = h(1)ℓ (kr), (6.63)

ψ(r → ∞) = rh(1)ℓ (kr). (6.64)

Using this to calculate the boundary condition in terms of the derivative, we

find that

∂ψ

∂r
= h(1)ℓ (kr)

[
1 + (kr)

h(1)
′

ℓ (kr)

h(1)ℓ (kr)

]
(6.65)

= ψ

[
1
r
+ k

h(1)
′

ℓ (kr)

h(1)ℓ (kr)

]
= ψγ(k). (6.66)

Using the same boundary condition as for the 2D case

ψn+1 = ψn(1 + ∆rγ(k)), (6.67)

although with a slightly different expression for γ(k). Linearising, we ap-

proximate γ(k)

γ(k) = γ(k⋆) + (k − k⋆)∂kγ(k⋆) = A + kB, (6.68)

where A = γ(k⋆)− k⋆∂kγ(k⋆) and B = ∂kγ(k⋆). Defining

L =
1

∆r2



−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 (A∆r − 1)


, L′ =

1
∆r2



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 B∆r


.

(6.69)
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we can split the Helmholtz equation into

(
L+ kL′ − l(l + 1)

r2 + k2ε(r)
)

ψ = 0. (6.70)

Which can be formed into a quadratic eigenvalue problem

 0 1

− 1
ε(r)(L− l(l + 1)/r2) −L′/ε(r)


 ψ

kψ

 = k

 ψ

kψ

 . (6.71)

As our eventual aim is to manipulate the quasi–normal modes of spheres

and cylinders by grading them or by shifting their permittivities, it is essen-

tial we are able to calculate the locations of the quasi–normal modes. The

expressions derived in the previous two sections enable this for both cylin-

ders and spheres. While Mie theory can be used to calculate the complex

positions of the resonances for isotropic spheres, (6.60) and (6.71) allow us

to calculate the quasi–normal modes of isotropic and graded spheres and

give us the field of the mode ψ at the same time.

6.4.4 Finding Quasi–Normal Modes with COMSOL

Another way to find the eigenmodes of a system is to use finite element

solvers, such as COMSOL. This provides a useful validation for the analytics

and numerics we have developed in the previous few sections. Setting up a

COMSOL model to validate our results involves four main steps:

1. Set up the geometry. If we consider the example of the cylinder, this

means we need to define a cylinder of radius a, along with an air box

outside it.
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2. Define the materials. For our examples, We set the permittivity of the

cylinder to be ε = 4. COMSOL’s material library contains the proper-

ties of air.

3. Set the boundary conditions. In order to solve Maxwell’s equations the

boundary conditions must be specified. We only impose the radiation

(Sommerfeld) condition at the edge of the mode. This is equivalent to

the modification of the final element of the matrices in the previous

sections to enforce the out going wave boundary condition. We must

also add a perfectly matched layer (PML) to simulate scattering into

free space. This ensures that there is no reflection from the edges of

the computational domain.

4. Build the mesh. The system is discretised into small triangles. The

size of these should be small enough to resolve the wavelength (i.e.

minimum mesh size ∼ λ/6.

Following these steps for a cylinder of radius a = 550 nm and permittiv-

ity ε = 4 we arrive at the COMSOL model shown in Figure 6.5. A very

similar procedure can be followed for the sphere. The material domains

and boundary conditions are shown in Figure 6.5 a) with the mesh shown

in Figure 6.5 b). It can be noted that the mesh breaks the cylindrical sym-

metry of the resonator, affecting the modes that are found. Some of the

eigenmodes this model finds are shown in Figure 6.6. Each mode has the

correct character (i.e. l = 1 is a dipole etc.) and the frequency it occurs at

matches with the analytic results shown in Figure 6.7. However, the modes

are often found in pairs. This is due to the broken symmetry lifting the de-

generacy of the eigenmodes of the system. Rather than a single l = 1 mode

at f 97 + i21 THz, two modes are found very close to this frequency. Also

visible in Figure 6.6 is a drawback of using COMSOL to find quasi–normal
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ε

PML

Air

Scattering boundary 
condition

a) b)

Figure 6.5: Finding quasi–normal modes in COMSOL. a) shows a schematic for
how one sets up an eigenfrequency model in COMSOL to find quasi–normal modes. A
resonator of permittivity ε is placed inside an air box, bounded by a perfectly matched
layer (PML) to simulate radiation into free space. At the edge of the PML must be a
scattering boundary condition, equivalent to the Sommerfeld radiation condition. The
mesh, shown in b), should be fine enough to correctly resolve the wavelength in each
material domain. This means it should be finer within the dielectric material.

modes. Since quasi–normal modes grow exponentially in space away from

the resonator, the field magnitude at the internal PML edge is large. This

means that the PML can fail to totally eliminate the reflections, shifting the

eigen–frequencies. As the growth of the quasi–normal mode is dictated by

Im[k], when this is large the growth is large and the numerical error is likely

to be larger. Figure 6.6 shows this: all of the fields are plotted on the same

colour scale, and the modes with smaller l have visibly larger fields within

the PML layer.

6.4.5 Comparing the Methods

Figure 6.7 shows the comparision between the analytical, matrix and COM-

SOL methods for finding the quasi–normal modes of radially symmetric

systems. Figure 6.7 a) shows the results for an infinite cylinder of radius

a = 550 nm and permittivity ε = 4, while Figure 6.7 b) shows the results
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Field Magnitude 
f = 96.806 – i 20.776 THz

𝑙 = 1 Mode

Field Magnitude 
f = 152.36 – i 15.112 THz

𝑙 = 2 Mode

Field Magnitude 
f = 313.4 – i 4.6 THz

𝑙 = 5 Mode

Figure 6.6: Fields of the quasi–normal modes of an isotropic dielectric cylinder.
The structure we have modeled is shown in Figure 6.5.

𝜀 = 4

𝜀 = 2

a) b)

Figure 6.7: A comparison of different methods for finding the quasi–normal
modes of isotropic cylinders or spheres. a) shows the comparison for a cylinder, and
b) for a sphere.

for a sphere of radius a = 550 nm and permittivity ε = 2. All methods

agree well, with some COMSOL points exhibiting larger error, due to the
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issues discussed in the previous section. It should be noted that the ma-

trix method and COMSOL can find the mode locations for radially graded

resonators too, while the analytics cannot.

Now that we have discussed in detail how one can find the quasi–normal

modes of many different systems, we proceed to manipulate the properties

of the resonator to place quasi–normal modes at desired frequencies. We

begin with slabs of dielectric.

6.5 Moving the Quasi–Normal Modes of 1D Slabs

by Finding Eigen–Permittivities

As we noted in the previous sections, finding the quasi–normal modes of

general systems can be challenging [176]. To avoid solving a non–linear

eigenvalue problem problem, Chen et al. [150] proposed, one could work in

terms of real wave–numbers but extending the permittivity into the complex

plane. Employing the insight of Chen et. al., we write the permittivity as a

spatial variation plus a constant background ε(x) = εs(x) + εb allows us to

recast the Helmholtz equation as an eigenvalue problem for the permittivity

− 1
k2

(
d2

dx2 + k2εs(x)
)

ϕ(x) = εbϕ(x). (6.72)

Rather than using this to find the QNMs of a system, we show that this can

be used to design the complex frequencies of the QNMs.

To do this, we take a known spatially varying permittivity, such as the

dielectric step or absorber stack e.g. from [172], and choose a k ∈ C at which

we would like a QNM to occur. We then numerically solve the eigenvalue

problem Eq. (6.72) using the finite difference method Eq. (6.36), along with

standard matrix libraries, to find a complex eigen–permittivity that allows
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us to form a structure with ε(x) = εs(x) + εb with a pole at the chosen

complex frequency.

We first apply the method to the homogeneous slab. In Fig. 6.8 we design

the new structure to support a QNM at the frequency k = 1.5− 0.05i. For the

N × N Laplacian matrix, there are N possible values for εb that will satisfy

this condition. Taking the lowest absolute valued background (to minimise

numerical error) permittivity εb = −4.99− 2.32i, we find that the new struc-

ture now supports a QNM at our chosen k. This is shown in Fig. 6.8(a). The

transmission, Fig. 6.8(b), shows a large peak at the real frequency associated

with the QNM and has values |t| > 1 due to the gain that has been added

to the system. Although the location of the pole can be manipulated solely

by changing the height of the barrier, in order to manipulate the real and

imaginary parts independently, control over both the real and imaginary

permittivity is required. As might be anticipated, in order to move a pole

closer to the real frequency axis, without changing the resonant frequency,

gain is required. Conversely, loss is required to move the pole further away

from the real axis. The field profile, shown in Fig. 6.8(c), still has the expo-

nential growth characteristic of QNMs.

Next, we apply the same eigen–permittivity method to the absorbing

stack shown in Figure 6.4 a). For this structure, we must take care that the

correct boundary conditions are imposed. The opaque metal substrate re-

quires the Dirichlet boundary condition ϕ = 0, while the outgoing wave

boundary condition must be imposed at the top of the stack. Choosing

two target bandwidths, for the same resonance wavelength, λ1 = (6.5 +

0.03i)µm and λ2 = (6.5 + 0.15i)µm, we obtain background permittivities of

εb,1 = 3.27 − 0.01i and εb,2 = 3.28 + 0.29i. The effect of the background shift

on the pole locations is shown in Figure 6.9(a-b). Accordingly, the poles are
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a)

b) c)

Figure 6.8: Shifting the resonances of a dielectric slab. A background permittivity
εb = −4.99 − 2.32i is found as a solution to Eq. (6.36) which, when combined with the
original structure εs(|x| < L/2) = π2 will contain a pole at the desired complex
frequency of k = 1.5 − 0.05i. The reflection coefficient of the new structure is plotted
in the complex plane (a). The transmission along the dashed white line, where
Im[k] = 0 is plotted (b), alongside the field distribution plotted at the complex
frequency k (c). Overlaid on the transmission calculations are results found using
COMSOL Multiphysics [68].

found at the expected complex frequencies. The absorption, shown in Fig-

ure 6.9(c) plotted along the white dashed line (Im[λ] = 0) is also provided,

with a fitted Lorentzian to extract the properties of the resonances and verify

that it corresponds to the QNM frequencies.

We can also apply this design procedure to impose the condition of co-

herent perfect absorption (CPA) at a given complex frequency. This can

be understood as the time reverse of QNMs [180] were the wave is purely

incoming rather than outgoing. The wavelengths at which a structure be-

haves as a perfect absorber are related to the locations of zeros on the real

axis, rather than poles. With our eigen-permittivity formulation, we can find

the background permittivity value required to make the device a perfect ab-

sorber at a frequency of choice. To do this, we simply take the outgoing
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a)

b)

c)

a)

b)

c)

Figure 6.9: Shifting the resonances of the a multi–layer absorber. The original
absorbing stack, shown in Figure 6.4 a) has been modified into two structures that
contain a QNM at λ1 = (6.5 + 0.03i)µm and λ2 = (6.5 + 0.15i)µm respectively. The
former is close to the real axis, corresponding to a narrow bandwidth, while the latter
has a broader bandwidth. Plotted on (a) and (b) respectively are the reflection
coefficients in the complex plane, showing that a QNM is indeed located at the chosen
complex frequency. The absorption spectra of the two structures are plotted as a
function of real wavelength (c). Fitted Lorentzians in dashed red (blue) correspond to
fitting to the narrow (broad) resonance, verifying the complex frequencies of the QNMs.
For the broadband case, we must fit a sum of 3 Lorentzians to accurately model the
spectral profile, and obtain the correct fitting parameters.

boundary condition and replace it with the incoming boundary condition

dϕ(x)
dx

= ∓ikϕ(x) (6.73)

as x → ±∞. This changes the boundary elements in the Laplacian Eq. (6.36)

from ik∆x − 1 to −ik∆x − 1.

Applying the above changes to the Laplacian matrix, we can take e.g.

a slab of dielectric, and rather than choose a complex frequency, pick a

real frequency that we wish CPA to occur at. We take a dielectric slab of

length L = 1 and initial permittivity π2 and choose the arbitrary CPA fre-

quency to be 125 MHz. The resulting background permittivity required is

ϵb = −9.55 + i0.63. To verify that there is coherent perfect absorption at

the chosen frequency, we construct the scattering matrix for the slab under
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incidence from the left and right side

ϕscattered
L

ϕscattered
R

 =

rL tR

tL rR


ϕin

L

ϕin
R

 , (6.74)

noting that CPA occurs when an eigenvalue of the scattering matrix goes

to zero [180]. The scattering matrix can be constructed analytically from the

transfer matrix or found numerically in full–wave solvers such as COMSOL

[68]. In Fig. 6.10 we plot the smallest eigenvalue of the scattering matrix

of the slab as a function of frequency. A clear dip is seen at the desired

frequency. We also show field profiles both under incidence from only one

side and from both sides at different frequencies. Under incidence from

only the left side, one can see the usual interference between reflected and

incident field to the left of the slab and the constant transmitted field. Under

excitation from both sides, but away from the target CPA frequency one can

see reflection from both sides. At the target CPA frequency of 125 MHz, an

almost constant field amplitude is observed, indicating perfect absorption.

𝜀
𝑒!"#

𝑟𝑒$!"# 𝑡𝑒!"#

𝜀
𝑒!"# 𝑒$!"#

Scattering

Coherent Perfect Absorption

b)a) c)

Figure 6.10: An example of using our eigen–permittivity method to design a
structure that exhibits coherent perfect absorption (CPA). CPA is shown
schematically in a). Under incidence from one direction, the structure scatters in the
usual way, but under incidence from both sides reflection vanishes. We design a
permittivity step of length L = 1 of permittivity ε = π2 + (−3.98 + i 1.59) that
exhibits this behaviour at the desired frequency of 125 MHz. To verify this, we show b)
the smallest eigenvalues of the scattering matrix of the structure. Vanishing eigenvalue
indicates coherent perfect absorption. This can be clearly observed at the target
frequency of 125 MHz. The fields c), also indicate coherent perfect absorption. Under
excitation from one side or off of the target frequency, reflections are observed. At the
design frequency, there is a standing wave.
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Although simple to implement, this eigen–permittivity method only al-

lows you to choose the complex frequency of a single QNM. We now ex-

plore the possibility of applying an iterative method to move one or more

QNMs to desired complex frequencies, by changing the spatial variation of

the permittivity profile.

6.6 Can we move more than one mode?

One might naively expect that the eigen–permittivity method can easily be

extended to move multiple modes. For a particular target wave–number ki,

we can write the eigen–value problem as

− 1
k2

i

[
∇2

i + k2
i ε(x)

]
ϕi = εbϕi. (6.75)

We have included the index i on the Laplacian to indicate that it has been

modified to exhibit the out–going wave boundary condition associated with

wave–number ki. To try to find a permittivity shift that moves more than

one mode to a desired location, we can form a composite eigen–value prob-

lem− 1
k2

1

[
∇2

1 + k2
1ε(x)

]
0

0 − 1
k2

2

[
∇2

2 + k2
2ε(x)

]

ϕ1

ϕ2

 = εb

ϕ1

ϕ2

 . (6.76)

This system can be constructed and solved for the eigen–values, however

we find that each eigen–value only moves one of the two modes to the cor-

rect location. We demonstrate the behaviour in Figure 6.11. We choose,

arbitrarily, the two target wave–numbers to be

k1 = 0.5 − i0.5, k2 = 1.3 − i0.08. (6.77)
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a) b)

c) d)

e)

Figure 6.11: Attempting to move more than one mode using our
‘eigen–permittivity’ framework. a) For one of the eigen–permittivities, one mode is
moved to the correct location, while the other mode has zero field, shown in b). c)
Taking a different eigen–permittivity, the other mode is moved to the correct location,
d) although the field associated with the second mode is zero. Looking at the norm of
the fields for different choices of eigen–permittivity, we find that a mode with non–zero
field is placed correctly, while the other mode has zero field associated with it,
representing a trivial solution to the eigen–value problem.

For some values of εb, the first mode is placed correctly while for the others

the second is placed correctly. To understand why, we examine the eigen-

vectors of the matrix we are using to calculate εb. Figure 6.11 a), b) show

that when the second mode is placed correctly, only the ϕ2 part of (ϕ1, ϕ2)
T

is non–zero. Similarly, when mode 1 is placed correctly only ϕ1 ̸= 0, as

shown in Figure 6.11 c), d). It is evident that if either of the ϕi’s is zero

everywhere, then the eigenvalue equation

− 1
k2

[
∇2 + k2ε(x)

]
ϕ = εbϕ (6.78)

will be automatically be satisfied for any k value. Figure 6.11 e) shows how

the norm, defined as ||x|| =
√
x† · x, of each of the eigenmodes is different

for each of the eigen–permittivities. We find that the solutions alternate be-

tween ϕ1 being zero and ϕ2 being zero. This leads us to conclude that we
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cannot arbitrary place two (or more) modes of a system where the permit-

tivity is restricted to be homogeneous, even if we are allowed to add gain or

loss. Our conclusion is perhaps not surprising, as we can observe from Eq

(6.8) that the spacing between modes is related to 2π/
√

ε. We therefore can-

not change the spacing between modes in any way we like, although we can

place individual modes anywhere. This argument also holds for the homo-

geneous radially symmetric systems we will consider later in this chapter, as

the spacing between the modes of those systems is governed by the spacing

of the zeros of Bessel functions.

Noting these difficulties in placing multiple modes in systems of ho-

mogeneous permittivity, we now aim to develop a method for designing

graded materials. Such a method should allow for the placement of multi-

ple modes simultaneously.

6.7 Linking Perturbation Theory to Optimisation

In our discussion of the adjoint method in Section 2.9, we used perturba-

tion theory to connect a small change in the permittivity to a small change

in the fields. Here, we are interested in connecting a shift in a complex fre-

quency due to a small change in the dielectric structure. Perturbation theory

in quantum mechanics [10, 181] is well developed and connects changes in

a potential to shifts in energy levels. As quasi–normal modes are a gener-

alised case of this, where the energy is extended to the complex plane [168],

we seek to develop a technique similar to the adjoint method to enable the

design of graded structures with complex frequency resonances at partic-

ular locations. To this end, we begin by reviewing the key results of per-

turbation theory in quantum mechanics, before elucidating the connection

between perturbation theory and inverse design.
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Quantum mechanical systems are characterised by their Hamiltonian,

which is usually the sum of kinetic and potential energy operators of the

system

Ĥ = Ê + V̂. (6.79)

The discrete energy level spectrum of the system is then given by the eigen-

values of the Hamiltonian and the states of the system are the eigenvectors

Ĥ |ψn⟩ = En |ψn⟩ . (6.80)

A useful property of the eigenstates of the Hamiltonian is that they form an

orthogonal basis

⟨ψn|ψm⟩ = δnm. (6.81)

As an example we consider a quantum harmonic oscillator, which has the

a) b) c)

Figure 6.12: Numerically finding the eigenvalues and eigenstates of the
harmonic oscillator. Discretising the Hamiltonian (6.84) with a quadratic potential
shown in a), one can numerically find the energy levels b), comparing with the
analytical result. Due to numerical error, the smaller energies are found correctly, while
larger energies have larger errors. The eigen–vectors of the Hamiltonian matrix
represent that eigen–states of the system, shown in c).

Hamiltonian

Ĥ =
p̂2

2m
+

1
2

mω2x̂2. (6.82)
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The momentum operator in 1 dimension is [10]

p̂ = −ih̄
d

dx
. (6.83)

Working in units where h̄ = ω = m = 1, the Hamiltonian is

Ĥ = − d2

dx2 +
1
2

x2. (6.84)

Eigenvalues and eigenvectors of this operator can be found is discretising

the second derivative as a matrix in exactly the same was as in Section 6.4.

The potential, eigenvalue spectrum and first few eigenmodes are shown in

Figure 6.12. We compare the numerical eigenvalue spectrum to the well–

known analytic result

En = h̄ω

(
n +

1
2

)
, (6.85)

where n = 0, 1, 2, . . .. It should be noted that for large n the eigenvalues

found numerically exhibit significant error. This is a consequence of the dis-

cretisation of space, which introduces numerical error. Higher eigenvalues

can be made more accurate by increasing the number of points space is bro-

ken down into. Smaller eigenvalues exhibit lower errors. For this reason,

when we calculate eigen–permittivities, we usually select the lowest eigen-

value, to avoid the effect of numerical errors.

Perturbation theory answers the question: “what happens to the energy

levels and eigenstates if the Hamiltonian changes by a small amount?”. Say

we change the potential by a small amount V̂ → V̂ + δV̂. Expanding the

eigenstates and the energy level to first order

ψn → ψn + δψn En → En + δEn (6.86)
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a) b)

Figure 6.13: Using perturbation theory to calculate the shifts to the energy
levels. For a given perturbation to the quadratic Hamiltonian, shown in a), the shifts
to each energy level can be directly calculated using perturbation theory (6.89). b) The
shifts calculated using perturbation theory are compared with numerically evaluating the
energy with and without the perturbation, then subtracting the two energies. Provided
the perturbation is small, the two methods yield the same changes to the energies.

we obtain

Ĥ |δψn⟩+ δV̂ |ψn⟩ = En |δψn⟩+ δEn |ψn⟩ . (6.87)

Multiplying both sides by ⟨ψm|, we get

⟨ψm| Ĥ |δψn⟩+ ⟨ψm| δV̂ |ψn⟩ = En ⟨ψm|δψn⟩+ δEn ⟨ψm|ψn⟩ . (6.88)

Using the fact that ⟨ψm| Ĥ = ⟨ψm| Em, the first terms on each side cancel.

Then, applying orthogonality of the eigenstates, we arrive at the standard

result

δEn = ⟨ψn| δV̂ |ψn⟩ . (6.89)

Applying this framework to the harmonic oscillator example of Figure 6.12

is shown in Figure 6.13. To the usual V(x) = x2/2 potential, shown as a

black dashed curve in Figure 6.13 a), we add a small perturbation of the

form

δV(x) = 0.1 × abs
[
e−x2

sin(x − 0.5)
]

, (6.90)



6.7. Linking Perturbation Theory to Optimisation 189

where V(x) + δV(x) is plotted in red in Figure 6.13 a). The eigenstates can

be found from the discretised Hamiltonian, then integrated against δV(x),

as in (6.89), to calculate the shifts in the energy levels. The calculated δEns,

from (6.89), are compared with the numerical result, obtained by just finding

the energy levels for the potential V(x), then for V(x) + δV(x) and subtract-

ing them. This comparison is shown in Figure 6.13 b).

To connect the ideas of perturbation theory to optimisation, we re–write

(6.89) as an integral

δEn =
∫ ∞

−∞
dx|ψn(x)|2δV(x). (6.91)

Proceeding in the same way as we outlined in our discussion of the adjoint

method in Section 2.9, we write the change in the potential as a delta func-

tion at a particular position xi

δV(x) = δ(x − xi)∆V. (6.92)

This allows us to connect a small change in the position of an energy level

to a change in the potential as a continuous function given by the modulus

squared of the eigenstate
∂En

∂V
≈ |ψn(x)|2. (6.93)

One can use this gradient to design a potential that exhibits an energy level

in a particular location. Defining the figure of merit

F (V) = (En(V)− E⋆)
2, (6.94)
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where E⋆ is the target energy level. Differentiating with respect to the po-

tential V we find the gradient of the figure of merit

∂F
∂V

= 2(En − E⋆)
∂En

∂V
= 2(En − E⋆)|ϕn(x)|2. (6.95)

Using this expression, one can iteratively change the potential until an en-

ergy level occurs at a particular, pre–determined, energy. An example of

a) b) c)

Figure 6.14: Using perturbation theory to optimise a potential. Beginning from a
quadratic potential shown as a black dashed line in a), perturbation theory is used as an
optimisation tool to design the potential shown as a solid red line in a). This potential
has an energy level at the target energy E = 2, as shown by b) the energy levels and
eigenstates. The progression of the figure of merit over the iterative optimisation
procedure is shown in c).

doing this is shown in Figure 6.14. Beginning from the potential for a har-

monic oscillator V(x) = x2/2 shown in Figure 6.14 a), we seek to move

the energy level E2 = 5/2 to E2 = 2. Using (6.95), finding the eigenstates

numerically from the discretised Hamiltonian, we iteratively update the po-

tential until the energy level is at the desired location. Figure 6.14 a) shows

the new potential and 6.14 b) shows the new locations of the energy levels.

It is evident that the n = 2 level is now located at E = 2. The progression of

the optimisation is shown in Figure 6.14 c).

The ideas we have developed in this section are basically a way of mov-

ing around the eigenvalues of an operator, so it is natural to ask whether

the ideas could be extended to manipulate the locations of quasi–normal

modes in the complex plane. Now, the eigenvalues we seek to manipulate
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are not real energies but complex wave–numbers (or, equivalently, frequen-

cies). Perturbation theory, as we have reviewed it in this section is also not

suitable for quasi–normal modes. Since they have exponential growth in

space, the integrals diverge. In the next section we will review how one can

develop perturbation theory for quasi–normal modes, so that we can use

that framework to manipulate the locations of quasi–normal modes.

6.8 Perturbation theory for Quasi–Normal Modes

If one wants to use perturbation theory to manipulate quasi–normal modes,

the usual Rayleigh-Schrödinger perturbation theory of quantum–mechanics

is not suitable. Due to their characteristic exponential growth, the usual

mode normalisation (6.81) is not physical: the integral diverges. To deal

with this, perturbation theory must be re–formulated for quasi–normal modes.

Such a reformulation was first presented by Zel–Dovich [182] in his study

of alpha decay. Since then regularisation techniques have been used to ap-

ply perturbation theory to quasi–normal modes in both quantum mechan-

ics [182, 183] and electromagnetism [184]. In this section, we briefly outline

how one can derive a suitable expression for this, following closely [183,

185].

We begin from the 1D Helmholtz equation

(
d2

dx2 + k2ε(x)
)

ϕ(x) = 0. (6.96)

Making the substitution

f =
ϕ′

ϕ
, (6.97)
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where the prime denotes derivative with respect to x we re–cast this as the

Riccati equation

f ′ + f 2 + εk2 = 0. (6.98)

Expanding f , wave–number and permittivity in powers of µ

f = f0 + µ f1 + µ2 f2 + . . . , (6.99)

ε = ε0 + µε1 + µ2ε2 + . . . , (6.100)

k = k0 + µk1 + µ2k2 + . . . , (6.101)

to order µ = 1 we obtain

f ′1 + 2 f0 f1 + 2ε0k0k1 + k2
0ε1 = 0. (6.102)

This is of the form

y′(x) + p(x)y(x) = q(x), (6.103)

suggesting solution using an integrating factor. For the integrating factor,

we choose

exp
[

2
∫ x

f0(x′)dx′
]
= ϕ2

0(x). (6.104)

Multiplying both sides of (6.102) by the integrating factor and integrating

over the finite region x ∈ [L−, L+], we obtain

ϕ2
0(x) f1(x)

∣∣∣L+

L−
= −

∫ L+

L−
dxϕ2

0(x)
[
k2

0ε1 + 2ε0k0k1

]
. (6.105)

If we choose L−, L+ to be outside the resonator then the boundary condition

upon ϕ is the radiation condition ϕ′ = ±ikϕ as x → ±∞. Therefore the

boundary condition on f1 is that f1(x → ±∞) → ±ik1. Substituting this
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into the boundary term (6.105),

ik1

(
ϕ2

0(L+) + ϕ2
0(L−)

)
= −

∫ L+

L−
dxϕ2

0(x)
[
k2

0ε1 + 2ε0k0k1

]
. (6.106)

Re-arranging for the perturbation to the wave–number we find

k1 =
−1
2k0

k2
0
∫ L+

L−
dxϕ2

0(x)ε1(x)∫ L+

L−
ϕ2

0(x)ε0(x)dx + i
2k0

(ϕ2
0(L+) + ϕ2

0(L−))
. (6.107)

Comparing this with standard perturbation theory (6.91), we can note a

number of key differences. Rather than depending the modulus squared

of the wave–function, the shift in wave–number depends upon the square

of the wave function. This ensures that the shift is complex. Furthermore,

the normalisation factor of 1 due to orthogonality of the states in standard

perturbation theory is replaced with a rather more complicated expression

for quasi–normal modes. This is necessitated by the fact that ϕ(x) does not

vanish at infinity. While quantitatively different, conceptually one can still

use 6.107 to find the gradient of the wave–number’s position in the com-

plex with respect to the structure ε(x). Choosing ε1(x) = ∆εδ(x − xi), one

obtains the gradient

∂k
∂ε

=
−1
2k0

k2
0ϕ2

0(xi)∫ L+

L−
ϕ2

0(x)ε0(x)dx + i
2k0

(ϕ2
0(L+) + ϕ2

0(L−))
. (6.108)

This is true for all xi, so this expression gives a continuous function that can

be easily calculated, and used to find how to change a structure to place a

pole in a particular location.
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6.9 An Optimisation Approach to Moving the Quasi–

Normal Modes of 1D Slabs

Say we would like to move mode kn to the complex frequency k⋆. We can

write a suitable figure of merit and it’s derivative as

F = (kn − k⋆)2, (6.109)

∂F
∂ε

= 2(kn − k⋆)
∂kn

∂ε
. (6.110)

Updating the permittivity from iteration i to i + 1 is done according to

ε(i+1)(x) = ε(i)(x) + γ
∂F
∂ε

, (6.111)

where γ is the step size. This makes the evaluation of the figure of merit

gradients extremely efficient, similar to the adjoint method [76]. Combin-

ing this with gradient descent optimisation, we have found how to update

the permittivty distribution in order to arbitrarily change the complex fre-

quencies of the QNMs. This approach is very similar to the adjoint method

presented in Section 2.9, as one can find how to change the whole structure

in one calculation making evaluation of the gradient very efficient.

An example of this procedure is shown in Fig. 6.15. We begin by select-

ing a QNM of the system: the frequency of which we want to modify. The

complex wave–number of this mode can be found by root–finding in the

complex plane, using i.e. Newton’s method. Specifying a target frequency

of the pole k⋆, then using Eqns. (6.108, 6.110, 6.111) to iteratively update the

permittivity distribution allows the pole to be moved to the desired complex

frequency. At every iteration, ϕn and kn must be re–calculated. In the exam-

ple of Fig. 6.15 we move the pole originally at k = 1− 0.1i to k⋆ = 0.8− 0.01i,
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a) b)

c) d)

Figure 6.15: An example of using our iterative method to manipulate the poles
of a dielectric slab. Beginning from a) a step of dielectric which supports a QNM at
k = 1 − 0.1i, our iterative method designs the permittivity distribution shown in b),
which supports a QNM at the desired frequency k⋆ = 0.8 − 0.01i. The resulting
transmission of the structure is shown in c), and compared to a full–wave solver.
Fitting a Lorentzian to the transmission peak associated with k⋆, we extract find that
the peak is at k0 = 0.799 with width Γ = 0.0109. The path of the pole over the
optimisation is shown in d).

and show that yields a structure with a peak in transmission at the designed

frequency with the designed width. It should be noted that while we can

move the pole to an arbitrary complex frequency, complete control of both

the real and imaginary parts of the permittivity is required. While this re-

mains experimentally challenging, a recent study [186] has demonstrated

the ability to implement arbitrary loss and gain distributions in space.
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a) b)

c) d)

Figure 6.16: An example of using the iterative method we present to move 3
poles to desired complex frequencies at the same time. Beginning from a
permittivity step shown in a), the real poles associated with Re[k] = 1, 2, 3 are moved
to the targets: k1 = 0.8 − 0.007i, k2 = 3.5 − 0.008i and k3 = 1.8 − 0.009i. The
resulting permittivity profile is shown in b) and its transmission coefficient in c). Clear
peaks are seen at the three target values of k. The path of the poles over the
optimisation is shown in d).

As another example of this method, we consider trying to move several

poles simultaneously. In Fig. 6.16 we take the poles originally at k = 1 −

0.1i, 2 − 0.1i and 3 − 0.1i and move them to three different values k1, k2 and

k3. Interestingly, due to the presence of other nearby poles, the transmission

profile of the resulting structure becomes more complex, however a clear

narrow transmission peaks associated with k1, k2 and k3 are evident. If one

controls all poles of interest over a given range of k values, almost complete
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control over the transmission profile can be obtained.

6.10 Moving the Quasi–Normal Modes of 2D Ra-

dially Symmetric Resonators

As we have already discussed, the method that was presented in the previ-

ous section can easily be adapted to spherically symmetric resonators. Us-

ing the results derived in Section 6.4.2, in this section we demonstrate that

both the eigen–permittivity method and the iterative method can be applied

to design isotropic or graded cylinders with resonances in particular loca-

tions. The key advantage of considering radially symmetric resonators is

that we can choose the multipolar nature of the mode being manipulated.

Beginning with a cylinder of radius r = 550 nm and isotropic permittiv-

ity ε = 4, the initial modes are distributed in the complex frequency plane

as shown in Figure 6.17 a). Applying the framework presented in Section

6.4.2 to move the m = 1 mode from 97 − i21 THz to 100 − i THz, we find

that one must apply a background permittivity of εb = −0.046 + i0.483.

Once this has been added, the locations of the new modes are shown in Fig-

ure 6.17 b), where the target location is shown as a red star. Verification of

the effect of moving the resonance on the scattering behaviour of the cylin-

der is shown in Figure 6.17 c). Using full–wave simulations in COMSOL, a

plane wave is scattered from the cylinder with permittivity ε = 4 + εb and

the scattered power is calculated by integrating the power outflow from a

closed loop around the cylinder. A clear peak is seen at f = 100 THz, with

a width of 1 THz, corresponding to the m = 1 resonance we have moved.

To verify that the scattering resonance has the correct multipolar nature, the

field is shown inset in Figure 6.17 c). Next, we try to manipulate the m = 3
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Lorentzian parameters:
𝑓! = 100 THz
𝛾 = 0.997 THz

𝜀 = 4

𝑚 = 0

𝑚 = 1

𝑚 = 2

𝑚 = 3

Increasing m

𝑚 = 1

𝑚 = 0

a) b) c)

Figure 6.17: Using the eigen–permittivity method to move the dipole resonance
of an isotropic cylinder. a) The original mode locations of the resonator. We seek to
move the m = 1 mode from 97-i21 THz to 100-i THz. Solving the resulting eigenvalue
problem, we find that this requires a background permittivity of εb = −0.046 + i0.483.
b) shows the resonances of the new system. c) The scattering behaviour of the new
resonator under plane wave incidence, with the field at 100 THz shown inset.

resonance. Beginning, as before, from a cylinder of radius r = 550nm and

permittivity ε = 4 the m = 3 resonance is located at f ∼ 200 − i10 THz.

We aim to place this at f = 150 − i2 THz. Solving the associated eigen-

value problem, we find the background permittivity that must be added is

εb = 4.15+ i0.007. Adding this, the locations of the modes are shown in Fig-

ure 6.18 a). The scattering behaviour of the resonator is shown in Figure 6.18

b), with the field associated with each resonance shown inset. Lorentzians

are plotted (not fitted) with central frequencies and widths given by the real

and imaginary parts of the resonances respectively. A mode indeed appears

at f = 150 THz with the correct width and multipolar nature.

Next, we demonstrate that our iterative method can be applied to design

graded cylinders that exhibit resonances at specific complex frequencies.

For graded cylinders, both the position of the resonances and the associ-

ated field can be found from the results of Section 6.4.2. The perturbation

theory developed in Section 6.8 can be utilised to manipulate cylindrical

resonances without modification (indeed, Zel’Dovich’s original calculation

[182] was carried out for spherically symmetric potentials and arrived at an

identical result). Figure 6.19 shows the application of this framework to de-

sign a graded cylinder with a quadrupole (m = 2) resonance at 100-i2 THz.
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f = 110 – i 5.5 THz

f = 190 – i 0.93 THz

f = 150 – i 2 THz

a) b)

Figure 6.18: Using the eigen–permittivity method to place the m = 3 mode of
an isotropic cylinder. We seek to move the m = 3 mode to 150-i2 THz, requiring a
background permittivity of εb = 4.15 + i0.007. a) The locations of the quasi–normal
modes. b) Full–wave simulations verifying the scattering behaviour of the cylinder.
Peak locations and widths can be related directly to pole locations, and the fields
shown inset verify the multipolar nature of the modes.

Beginning from a cylinder of radius r = 550nm and permittivity ε = 4, the

permittivity profile is updated iteratively until the pole is in the correct loca-

tion. The movement of the pole over the iterative optimisation is shown in

a) b)

Initial pole location

Target pole 
location

c) e)d)

Figure 6.19: Designing a graded cylinder with a quadrupole resonance at
100-i2 THz. a) The iterative movement of the m = 2 mode from 152-i15 THz to the
desired complex frequency of 100 - i2 THz. Panels b) and c) show the resulting
permittivity distribution, which has the pole structure shown in d). Full–wave
simulations of the scattered power indicate peaks corresponding to each pole, with inset
fields show that each mode exhibits the expected multipolar nature.
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Figure 6.19 a), with the resulting permittivity profile shown in b) and c). The

pole locations of the graded cylinder are shown in Figure 6.19 d). Scattering

from the graded cylinder was found using COMSOL and is shown in Figure

6.19 e). Clear peaks can be associated with the resonances shown in Figure

6.19 d) and correspond to strong scattering. Fields associated with each key

scattering mode are shown inset, to that verify the multipolar nature of the

modes is as expected.

6.11 General Resonators

So far we have discussed how to find and manipulate the quasi–normal

modes of slabs of dielectric or radially symmetric resonators. In the final

section of this chapter, we will indicate how one could extend our method

to resonators or any shape in 1D, 2D or 3D. To illustrate this we consider

a 2D square dielectric resonator, shown in Fig. 6.20(a). The resonator is

a silicon cross inside a gallium arsenide square. To find how to change the

permittivity to place a pole at a particular complex frequency, we must solve

the eigenvalue problem Eq. (6.72) in 2D. To do this, we use COMSOL’s

coefficient form PDE interface, which allows one to solve problems of the

form

λ2eaϕ − λdaϕ +∇ · (−c∇ϕ − αϕ + γ) + β∇ϕ + aϕ = f , (6.112)

where λ is the eigenvalue. Choosing the coefficients to be ea = 0, c = 1, da =

1, a = −k2ε, this becomes exactly the eigenvlaue problem we would like to

solve

∇2ϕ + k2εϕ = −λϕ, (6.113)
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𝜀! = 16.6 + 𝑖 0.33

𝜀" = 16.4 + 𝑖 2.4

550 nm

137.5 nm412.5 nm

a) b)

c) d)

Figure 6.20: An example of using our eigen–permittivity framework to place
the quasi-normal modes of a 2D resonator. The resonator, shown inset in a), is
made of two different permittivities, ε1 (silicon at 550 nm) and ε2 (gallium arsenide at
550 nm). We apply our framework to find a permittivity offset to move a pole to the
complex frequency (500 + 1i) THz. The background is εb = −1.37 + i0.88. To verify
the location of the pole, we excite the resonator with a point electric dipole, located at
(-1100 nm, 0), and calculate the total scattered power, shown in b). A clear peak is
present in the spectrum of the shifted structure at the desired frequency of 500 THz,
which is not present in the spectrum of the un–shifted structure. Examining the fields
of the resonator driven by a nearby dipole at a frequency of 500 THz, c) and d), we see
that the excitation of the mode in the sifted structure greatly increase the scattering.

where λ = k2εb. The outgoing wave boundary condition can be applied to

the outside edge of the resonator using the ‘flux/source’ boundary condi-

tion. Generally, this boundary condition is

−n · (−c∇ϕ + αϕ + γ) = g − ϕu, (6.114)
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where n is a unit–vector normal to the surface of the resonator at a given

point. It is not necessary for n to be normal to the surface, it only needs to

point outwards. With our parameter choices this becomes

n · ∇ϕ = −qϕ. (6.115)

Setting q = ik gives the correct out–going boundary condition. Solving this

eigenvalue problem for the 2D geometry shown in Fig. 6.20(a), and choos-

ing the location of the pole to be f = 500 + 1i THz, we find a background

permittivity of εb = −1.37 + i0.88. To verify that a QNM is now located at

the correct complex frequency, we excite the resonator with a nearby point

dipole and examine the total scattered power before and after the permittiv-

ity shift is applied. This is shown in Fig. 6.20(b). Once the shift is applied,

there is a clear peak in scattered power at the desired wavelength. Addi-

tionally, the fields when the resonator is driven at 500 THz are shown in

Fig. 6.20(c-d). Once the permittivty of the resonator is shifted, scattering at

the desired frequency is greatly enhanced by the presence of the QNM.

6.12 Summary & Conclusions

Scattering from photonic resonators depends heavily upon the properties of

the resonances supported by the structure. These resonances can be quasi–

normal modes: complex frequency bound states of the system, with a char-

acteristic negative imaginary part of the wavenumber. If one examines,

for example, the scattering from an object, peaks in the scattering cross–

section correspond to quasi–normal modes. The wavelength of peaks in

scattering corresponds to the real part of the quasi–normal mode, while the
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width of the resonance is directly related to the imaginary part of the quasi–

normal mode. Motivated by this direct correspondence, we have derived

two methods for manipulating the locations of the resonances of dielectric

slabs, cylinders and spheres.

The first method is based upon formulating an eigenvalue problem for

a shift to the permittivity so that the structure supports a resonance at a

particular location. The second method is an iterative procedure, based on

perturbation theory for quasi–normal modes. While the iterative technique

is slower, it has the benefit of being able to move multiple modes at the same

time.
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Chapter 7

Conclusions & Future Work

“Education never ends, Watson. It is a series of lessons, with the greatest for the
last.” – Arthur Conan Doyle, His Last Bow

7.1 Thesis Summary

The aim of this thesis was to develop simple and efficient techniques to de-

sign electromagnetic materials. Usually, there are great numerical problems

posed by the large difference in scales between the sub–wavelength reso-

nant elements that make up the metamaterial, and the size of the metamate-

rial itself which could have dimensions of the order of tens or hundreds of

wavelengths. To overcome this, we employ the coupled–dipole framework

to separate the modelling of the scatterer and the entire metamaterial.

To this end, in Chapter 2 we introduce the key theoretical tools that are

used throughout the thesis. This includes a brief review of Maxwell’s equa-

tions and Mie scattering theory to describe the scattering from a single reso-

nant object, characterised by its electric and magnetic polarisability tensors.

Calculating the scattering of a source field (i.e. a plane wave or a dipole

source) from a metasurface made of such elements is then facilitated using

the coupled–dipole formalism. We conclude this introductory chapter with

a brief review of inverse design techniques in the context of electromag-

netism, indicating the key challenges they face.
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Seeking to address the challenges of numerical complexity while pre-

serving conceptual simplicity, in Chapter 3 we derive a simple, efficient and

versatile method for designing metamaterial devices. Applying perturba-

tion theory to the coupled–dipole approximation, we can derive analytic ex-

pressions for gradients of figures of merit, enabling efficient optimisations.

To illustrate the utility of our framework, we design devices that shape the

near and far–field of a small emitter as well as manipulate plane waves.

Extending these ideas, in Chapter 4, we develop a framework for de-

signing multi–functional metamaterial devices. We design a device that op-

erates at optical wavelengths to produce different radiation patterns based

on the polarisation of the source emitter. Using more complex scatterers, we

also design a device at microwave wavelengths that sorts waves by their an-

gle of incidence. We also find that our method compares favourably to the

widely used inverse design paradigm, a genetic algorithm.

In Chapter 5 we experimentally realise some uni–functional designs at

microwave wavelength, using metal rods as the scattering elements and a

complicated monopole emitter as the source.

Finally, in Chapter 6 we consider how to shift the resonances of photonic

structures, by directly manipulating the locations of their quasi–normal modes

in the complex plane. We present both a semi–analytic eigen–permittivity

framework as well as an iterative numerical technique based on perturba-

tion theory to manipulate the resonances of arbitrary structures. The abil-

ity to tune the resonances of photonic resonators is key to multi–band be-

haviour as well as to designing structures that could be used to form a meta-

surface.
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7.2 Future Work

Many outstanding challenges remain, which can be broadly divided into

two categories. Firstly, there are many incremental changes to our inverse

design frameworks that could be made. Secondly, different physical chal-

lenges could be addressed using our methods.

Beginning with the first category: incremental changes. Our dipole based

inverse design framework, developed in Chapters 3-5, would benefit from

many improvements. A key problem we have not solved is how to best

choose the initial distribution of the scatterers. Where the scattering ele-

ments begin is key to the result of the optimisation, although throughout

this thesis initial distributions have been chosen arbitrarily. This is a gen-

eral problem in inverse design in photonics. While some progress has been

made on how to choose initial graded permittivity distributions [187], how

to do this for discrete scatterers is unclear. It may be possible to develop an

additive procedure, such as Bennett et al. [90], although this has not been ex-

plored. Furthermore, it has been noted that convergence is affected by many

properties of the problems [188–190], particularly the learning rate [92, 191].

Little attention has been given to these features of our optimisation frame-

work, as we have instead focused on the application of our techniques. For

instance, due to recent interest in optimisation for fitting machine learning

models [72], it is known that for many optimisation problems better results

can be obtained using stochastic gradient descent [192], simulated anneal-

ing [43] or the ‘Adam’ optimiser [193], instead of basic gradient descent.

The immediate next steps of our method for manipulating the resonances

of photonic structures, presented in Chapter 6, are as follows. As it has

been formulated, our methods are immediately applicable to design graded

cylinders or spheres. With this development, one could overlap modes to
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construct anapole resonances [194], super–scatterers [195, 196] or Kerker ef-

fects [197]. To make the results of the optimisation easier to build, our search

could be restricted to lossy materials however the framework could be eas-

ily extended to include material dispersion effects [176].

In addition to adjustments to our methods, many different physical chal-

lenges could be addressed using the frameworks we have developed in this

thesis. Key to the next generation of communication systems is the ability

to widen the bandwidth of emitters. This is something that has not been

addressed: all of our designs are optimised at only a single frequency. One

way to do this might be to vary the size, and thereby resonance frequency,

of the constituent elements of the metamaterial. The theory for doing this is

well developed [198, 199], and has recently been applied to design photonic

devices [200] although not with an eye to improving bandwidth. Such an

approach may allow for the saturation of performance limits on size and

bandwidth, such as the Chu–Harrington limit [201–203] for antennas and

the Rozanov limit [204] for absorbers.

As well as addressing antenna bandwidth, the frameworks we have de-

veloped might find utility in modelling electromagnetic systems with large

length scale separations. Being able to model and characterise individ-

ual ‘meta–atoms’ then assemble them into larger structures allows one to

model the behaviour of systems that are otherwise numerically inaccessi-

ble. As communications frequencies are pushed upwards into mm–waves

and beyond, atmospheric scattering will become an important effect. Cur-

rent channel models do not properly account for multiple scattering effects

[205], presenting a key challenge for next–generation communications. The

power of our frameworks to include all scattering effects at small length

scales, as well as effects over very many wavelengths make the methods we
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have used throughout the thesis attractive candidates to address this prob-

lem. Our methods also have the benefit that they scale with the number of

scatterers, not the volume of space one wishes to model. Thus, modelling

propagation over long distances, normally numerically impossible, does not

increase the computational burden.

Beyond electromagnetism, our design methods may find utility in en-

gineering other wave regimes such as acoustics or elasticity. Even though

the field on inverse design began in the field of structural mechanics [74],

it is under utilised to manipulate elastic waves. In the field of elastic meta-

materials, there have been many great advances in engineering the band–

structures for energy harvesting [206], roton–like dispersion [207] and the

observation of topological effects [208, 209], to name only a few. Much

work focuses on modelling elastic materials as thin plates [9], on which

flexural waves can propagate. These waves can be manipulated by grad-

ing the thickness of the sheet [210] or by pinning masses to the sheet [211–

215]. The inverse design problem, of how to grade or pin a sheet in particu-

lar places in order to manipulate the waves in a particular way has not been

extensively addressed: the methods we have presented are immediately ap-

plicable to such problems. Such approaches would have utility for energy

harvesting, vibration isolation and sensing if one could manipulate surface

acoustic waves. Furthermore, it has recently been noted that elastic reso-

nances can also be understood in terms of quasi–normal modes [216, 217].

The methods we present in Chapter 6 might also be applicable to elastic

systems, with some modification.

With some generalisation, the methods we have developed might also

be applicable to the design of time–varying materials. There has been much

recent interest in time–varying materials within the metamaterials commu-

nity due to the unique physics they can exhibit. For example, time–varying
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materials can exhibit wave–amplification without gain [218] and mimicking

black–hole physics [219]. Recent experiments in acoustics [220, 221] have

realised such materials using arrays of dipoles where the response function

can be tuned, demonstrating amplification and frequency conversion. In

principle, our approach to optimisation within the coupled–dipole frame-

work could be extended to dipoles that are distributed in space, but also

have a temporal response that can be tuned. Such a system could be re-

alised in electromagnetism with fast–switching diodes.
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Appendix A

Code Snippets

Many results throughout this thesis were generated using custom Python

code. In this appendix, some snippets are collected to aid reproducibility.

Key to the results of Chapters 3–5 is the solution of the multiple scatter-

ing problem. Section A.1 contains code that solves the multiple scattering

problem for a scalar field. In Chapter 4, the results of our multi–functional

design method are compared to a genetic algorithm. The code for the ge-

netic algorithm was written from scratch, and is included in Section A.2.

Finally, one way the fields of the quasi–normal modes were calculated

in Chapter 6 was using back–integration. The code that performs this is

given in Section A.3.

A.1 Multiple Scattering Code

Here, we include code that solves the multiple scattering problem for a sim-

ple scalar field. Extension to full vector electromagnetism is conceptually

straightforward, although the Green’s function becomes a tensor.

import numpy as np

import scipy.linalg as spl

import scipy.special as sps
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lm = 1.0 # Wavelength

k = 2.0*np.pi/lm # Wave number

alpha = 1.0+3*1j # Polarisability

Ns = 5 # Number of scatterers

scatterer_locations = 2.0*np.random.random((Ns,2))−1.0 # Random

scatterer positions

# Define the Green’s function

def G(x,xp,y,yp,k):

z = (x−xp)+1j*(y−yp)

r = np.abs(z)

return (1.0/(4.0*1 j ) )*sps.hankel1(0, k*r)

# Define the incident field

def phii(x,y,k) :

return np.exp(1j*k*x)

# Calculate the total field

def phi(x,y,k,pts,alpha):

# Evaluate the incident field at the scatterers

inc_field = phii(pts [:,0], pts [:,1], k)

# Construct the interation matrix

A = np.zeros((Ns, Ns), dtype=complex)

for i in range(Ns):

for j in range(Ns):
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A[i, j ] = −alpha*G(pts[i ,0], pts[ j ,0], pts[ i ,1], pts[ j ,1], k)

np.fill_diagonal (A, 1.0)

# Solve the linear system for the fields applied to each scatterer

applied_field = spl .solve(A,inc_field)

# Construct the total field

total_field = phii(x,y,k)

for n in range(Ns):

total_field += alpha * G(x,pts[n ,0], y,pts[n ,1], k) * applied_field

[n]

return total_field

A.2 Differential Evolution Algorithm

This code performs global optimisation of a function using the differential

evolution genetic algorithm, propose by Storn and Price [129]. This code

was written by JRC, with reference to [222].

import numpy as np

import numpy.random as npr

class DifferentialEvolution :

def __init__( self , bounds, popsize, max_generations, merit_func,

args):

self .bounds = bounds
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self .pop_size = popsize

self . individual_size = len(bounds)

self .max_generations = max_generations

self .merit_func = merit_func

self .args = args

self .F = 0.5

self .CR = 0.7

def _x_to_pts(self ,x) :

N = len(x)

Np = int(N/2)

pts = np.asarray(x).reshape((Np, 2))

return pts

def printInfo( self ) :

print("Population Size : %i" %self.pop_size)

print("Max. Generations : %i" %self.max_generations)

print("Individual Size : %i" %self.individual_size)

print("F : %lf" %self.F)

print("CR : %lf" %self.CR)

print("Bounds : " , self .bounds)

def make_initial_population(self) :

self .population = []

for i in range(self .pop_size):

individual = []
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for j in range(self . individual_size) :

individual.append(npr.uniform(self.bounds[j][0], self .

bounds[j][1]) )

self .population.append(individual)

def impose_bounds(self, vec, bounds):

for i ,elem in enumerate(vec):

if elem < self .bounds[i][0]:

vec[i ] = self .bounds[i][0]

elif elem > self .bounds[i][1]:

vec[i ] = self .bounds[i][1]

def solve( self ) :

# Generate a random population

self .make_initial_population()

self . fom_hist = []

self .pop_hist = []

for iteration in range(self .max_generations):

for i , indiv in enumerate(self.population):

## Perform the mutation

# Can choose to either loop through the population in

order , or select an index at random to be the target

idx_options = np.arange(0, self .pop_size). tolist ()
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R = npr.choice(idx_options)

# Just loop over the population in index order

if False:

idx_options.remove(i)

idxs = npr.choice(idx_options, size=3)

target_idx = i

x_t = self .population[target_idx] # Target

individual

x1, x2, x3 = np.array(self .population[idxs[0]]) , np.

array(self .population[idxs[1]]) , np.array(self .

population[idxs[2]])

# Choose a random member of the population as the target

if True:

idxs = npr.choice(idx_options, size=4)

target_idx = idxs[3]

x_t = self .population[target_idx] # Target

individual

x1, x2, x3 = np.array(self .population[idxs[0]]) , np.

array(self .population[idxs[1]]) , np.array(self .

population[idxs[2]])

v = list (x1 + self .F *(x2 − x3))

# Impose the bounds

self . impose_bounds(v, self.bounds)
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## Crossover

x_trial = []

for j ,element in enumerate(x_t):

r = npr.uniform(0,1)

if r <= self .CR or r == R:

x_trial .append(v[j])

else :

x_trial .append(x_t[j])

## Check

fom_xt = self .merit_func(x_t, * self .args)

fom_xtrial = self .merit_func(x_trial , * self .args)

if fom_xtrial < fom_xt:

self .population[target_idx] = x_trial

foms_it = []

for indiv in self .population:

foms_it.append( self.merit_func(indiv, * self .args) )

self . fom_hist.append(foms_it)

self .pop_hist.append(self.population.copy())

foms = []

for i ,element in enumerate(self.population):

foms.append(self.merit_func(element, *self.args))

mx = np.argmax(np.array(foms))
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# Outputs

self . fom_hist = np.asarray(self . fom_hist)

self . result = self .population[mx]

self .final_fom = foms[mx]

def fom(params):

x = params[0]

y = params[1]

return −20*np.exp(−0.2*np.sqrt(0.5*(x**2+y**2))) − np.exp(0.5*(np.cos

(2.0*np.pi*x)+np.cos(2.0*np.pi*y))) + np.e + 20

if __name__=="__main__":

# Define the bounds array

Ns = 1

bounds = []

xi = 2*( np.random.rand(2*Ns) − 1 )

for i , xi in enumerate(xi):

bounds.append((−4, 4))

opt = DifferentialEvolution(bounds, popsize=10, max_generations

=1000, merit_func=fom, args=())

opt.solve()

sln = opt. result

f1 = fom(sln)

print("Minima found: f(%lf,%lf) = %lf" %(sln[0], sln [1], f1) )
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A.3 Back–Integration for Quasi–Normal Modes

This code numerically calculates the fields associated with quasi–normal

modes, by back integrating the field. To implement this using Python’s

‘odeint’ function, one must break up the real and imaginary parts of the

differential equation one seeks to solve.

# Import modules

import numpy as np

from scipy.integrate import odeint

# Define slab properties

nr = np.pi

nb = 1.0

L = 1.0

# We’re finding the field of the mth mode

midx = 4

# Analytic expression for the QNM frequencies

def roots(m):

r0 = (nr−nb)/(nr+nb)

return 1j *np.log(r0**2) /(2.0*nr) + np.pi*m/nr

# Refractive index profile

def n(x) :

if np.abs(x) < L/2:

return nr

elif np.abs(x) > L/2:
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return nb

n=np.vectorize(n)

km = roots(midx)

# Split the x coordinates into left and right

x_right = 5*np.linspace(0, 1, 500)

x_left = −1.0*x_right [1:]

x = np.concatenate((np.flip( x_left ) ,x_right) )

# Define the field and its derivative

def dpsi(psi , x) :

ph = psi[0]+1j *psi [1]

dph = psi[2]+1j*psi [3]

Dph = dph

D2ph = −n(x)**2*km**2*ph

return [ np.real(Dph), np.imag(Dph), np.real(D2ph), np.imag(D2ph) ]

# Back−integrate using odeint

sln_r = odeint(dpsi, [1.0, 0.0, −np.imag(km), np.real(km)], x_right

[::−1])

sln_l = odeint(dpsi, [1.0, 0.0, np.imag(km), −np.real(km)], x_left [::−1])

# Results are the left and right solutions

phir = ( sln_r [:,0] + 1j * sln_r [:,1] ) [::−1]

phil = ( sln_l [:,0] + 1j * sln_l [:,1] ) [::−1]
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The Finite Element Method

In several chapters of the main thesis, the finite element solver COMSOL

is used extensively to validate numerical or analytical results and when

designing experiments, the electric and magnetic polarisabilities of com-

plex resonators are calculated numerically. This chapter introduces the

principles of the finite element method, though a simple example, then

outlines how the properties of complex resonators can be extracted.

B.1 A Simple Example

Consider trying to solve the inhomogeneous Helmholtz equation

(
∇2 + ε(r)k2

)
u(x) = s(r) (B.1)

numerically. If one discretises the differential operator using finite differ-

ences [43], then the grid points are uniformly spaced. The resulting matrix

equation

Au = s (B.2)

will be sparse, but may still be too large to invert, particularly in 2D or 3D.

Instead, it is beneficial to be able to change the size of the mesh in different
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regions of space so that a dense mesh can be focused where it is needed and

a sparse mesh used elsewhere. For example, if the system is made of two

materials with different refractive indices n1 = 1 and n2 = 10 then the wave

length in material 2 is 10 times smaller than that in material 1. Rather than

having to discretise all space finely enough to capture the smaller wave-

length, the ability to change the size of the mesh in space makes the solution

far more efficient. To do this, one can break space up into finite elements,

the size of which does not have to be uniform. Following closely Burnett

[223], we consider a simple example to explain the key steps in constructing

a finite element solution to a differential equation. A detailed and compre-

hensive discussion of the finite element method is beyond the scope of this

thesis.

We will construct the finite element solution to the 1D inhomogeneous

Helmholtz equation with the following boundary conditions

(
d2

dx2 + k2ε(x)
)

u(x) = 1, u(0) = 0, u(1) = 0. (B.3)

We being by finding the weak form of (B.3) by multiplying both sides by a

test function ϕi(x) then integrating the first term by parts, to find

∫ 1

0
ϕi(x)

d2u
dx2 dx +

∫ 1

0
ε(x)ϕi(x)u(x)dx =

∫ 1

0
ϕi(x)dx (B.4)

ϕi(x)
du
dx

∣∣∣∣1
0
−
∫ 1

0

dϕi

dx
du
dx

dx +
∫ 1

0
ε(x)ϕi(x)u(x)dx =

∫ 1

0
ϕi(x)dx (B.5)

The test functions, ϕi(x), are chosen to satisfy the boundary conditions (B.3),

so the boundary term vanishes 1. The simplest choice for the test functions

1For other boundary conditions such as the radiation boundary condition u′ = iku, this
term does not vanish and is moved to the right–hand side as an additional source term
[223].
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is piecewise linear functions of the form

ϕi(x) =



0 x < xi−1

x−xi−1
xi−xi−1

xi−1 < x < xi

xi+1−x
xi+1−xi

xi < x < xi+1

0 x > xi.

(B.6)

These are plotted in Figure B.1 for a uniform discretisation. Preemptively

𝜙!"# 𝜙!"# 𝜙!$# 𝜙!$%

Basis Functions

Figure B.1: Piecewise linear basis functions used to perform the finite element
discretisation.

calculating the derivative of these we find

dϕi

dx
=



0 x < xi−1

1
xi−xi−1

xi−1 < x < xi

− 1
xi+1−xi

xi < x < xi+1

0 x > xi.

(B.7)

Now, writing the solution as a decomposition of the test functions

u(x) = ∑
j

cjϕj(x), (B.8)
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and substituting this, we have

(
−
∫ 1

0

dϕi

dx
dϕj

dx
dx + k2

∫ 1

0
ϕi(x)ϕj(x)dx

)
cj =

∫ 1

0
ϕi(x)dx. (B.9)

This is now a matrix system that can be assembled and solved for the coeffi-

cients cj that define the solution. All that remains is to evaluate the integrals,

which are nothing but integrals over the triangular basis functions or their

derivatives. Three cases can be considered i = j and i = j ± 1. It is evident

from the choice of basis functions and Figure B.1 that there is no overlap

between basis function i and i ± 2. Therefore, the linear system will be tridi-

agonal like the finite difference case but the elements will be numerically

different, based on how the systems is discretised.

To obtain and explicit form of the matrix that must be inverted to obtain

the coefficients cj, we now evaluate the integrals. This gives

∫ 1

0
ϕi(x)dx =

xi+1 − xi−1

2
. (B.10)

∫ 1

0

dϕi

dx
dϕj

dx
dx =


1

xi−xi−1
+ 1

xi+1−xi
i = j

− 1
xi+1−xi

|i − j| = 1.
(B.11)

∫ 1

0
ϕi(x)ϕj(x)dx =


xi−xi−1

3 − xi+1−xi
3 i = j

xi+1−xi
6 |i − j| = 1.

(B.12)

Choosing a wavelength of λ = 1/2, so k = 4π, this system can be con-

structed and solved using standard matrix methods. The solution is shown

in Figure B.2, compared with the analytical solution

uanalytic(x) = 0.00633257 − 0.00633257 cos(kx), (B.13)
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Figure B.2: Comparison of the finite element and analytic solution.

which was obtained using Mathematica. The finite element solution used

for comparison is in a random irregular grid with 100 nodes.

While this section has illustrated the key concepts behind the finite ele-

ment method, extension to higher dimensions and more complicated bound-

ary conditions is far from trivial. Rather than triangles, the basis functions

become tetrahedrons so the integrals are more complicated. Additionally,

while we have used linear basis functions greater accuracy can be achieved

with higher orders i.e. quadratic or cubic basis functions. Some of the issues

around extensions to higher dimensions are discussed in [224].

B.2 Perfectly Matched Layers

Many of the COMSOL models in the main thesis are terminated by perfectly

matched layers (PMLs). In this section, we will briefly review why they are

used and how they work, following [225, 226].

PMLs are reflectionless layers one puts at the edge of simulations to sim-

ulate scattering into free space. When analytically solving Maxwell’s equa-

tions, one could choose to use the radiation condition, which prevents radi-

ation arriving to the system. PMLs fulfill the same condition in numerical
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solutions: preventing artificial reflections from the edge of the computa-

tional domain, they can the thought of as ‘numerical anechoic material’.

PMLs were originally introduced in the 1990’s [227] using a ‘split field’ for-

mulation, whereby the usual electromagnetic field acquired additional arti-

ficial terms due to the absorbing boundary layer. However, a conceptually

neater way of understanding PMLs as coordinate transformations was soon

realised by Chew et al. [228].

a) b)

Figure B.3: Coordinate mapping description of perfectly matched layers. a)
shows how the x coordinate is deformed at x = 0 to acquire a linear imaginary part. b)
The effect of this mapping upon a propagating wave is to introduce a spatial decay,
without reflection. This simulates emission into free space.

To understand the action of PMLs, we can consider the 1D wave equa-

tion

c2 ∂2ϕ

∂x2 =
∂2ϕ

∂t2 , (B.14)

which has a usual plane wave solution

ϕ = ei(kx−ωt) (B.15)

with ω = ck. Analytically continuing the spatial coordinate into the com-

plex plane x̃ = x′ + ix′′ we see that the solution acquires a decay

ϕ = ei(kx′−ωt)e−kx′′ . (B.16)
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As long as x′′ > 0, this is like having an absorbing material. We write the

coordinate mapping from the real x coordinate to the complex x̃ as

x̃ = x + i f (x). (B.17)

A possible mapping is illustrated in Figure B.3 a). Aiming to see how the

coordinate mapping affects the wave equation in real space, we re–write the

derivative

∂x̃ =

(
1 + i

d f
dx

)
∂x, (B.18)

where we also define d f /dx = σ(x)/ω. Therefore, the coordinate transfor-

mation changes the x derivatives in the wave equation to

∂

∂x
→
(

1

1 + i σ(x)
ω

)
∂

∂x
. (B.19)

The wave–equation, for a fixed frequency therefore becomes

[
∂2

∂x2 +

(
1 + i

σ(x)
ω

)2

k2

]
ϕ(x) = 0. (B.20)

This is equivalent to the wave being in a material with refractive index

n(x) = 1 + i
σ(x)

ω
. (B.21)

In the regions where f (x) = 0, and therefore σ(x) = 0, the coordinate

stretching has no effect upon the solution to the wave equation. How-

ever, in the PML regions where f (x), σ(x) ̸= 0, making the spatial coordi-

nate complex introduces an artificial lossy material that has no reflection.

This is shown in Figure B.3 b). Since d f /dx = σ(x)/ω, we know that
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f (x) =
∫ x

σ(x′)dx′/ω, we can write the solution to the wave equation as

ϕ(x) = eik(x+i f (x)) (B.22)

= eikxe−
k
ω

∫ x
σ(x′)dx′ . (B.23)

This shows us that in regions where σ = 0, the solution is just the usual

propagating wave, while the wave gets absorbed in the PML region. We

also note that introducing the factor of 1/ω in the definition of σ means that

the decay within the PML is governed by (inverse) wave speed k/ω, mak-

ing the behaviour of the PML frequency independent. This means that all

wavelengths are attenuated at the same rate. Now, we can tuncate the com-

putational domain so only the exponential tails will reflect from the edge,

and the reflections will be attenuated on their return. So, provided the PML

is an appropriate thickness, the reflections from the edge of the domain will

be exponentially small.

B.3 Calculating Polarizability

While the polarisability of simple systems can be extracted analytically from

the Mie coefficients, for more complicated systems it must be found numer-

ically. This was done in Chapter 4, to find the polarisability of the meta–

cubes to design a multi-functional ‘beam sorter’ and in Chapter 5 to find the

polarisability of metal rods. In each case, we followed closely the methods

proposed by Yazdi and Komjani [229, 230]. One can calculate the polaris-

ability tensor by exciting the scatterer with a plane wave, then evaluating

the induced electric and magnetic dipole moments. The dipole moments
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can then be easily connected to the components of the polarisability, as

p = αEE m = αHH . (B.24)

The direction and polarisation of the plane wave is chosen to give certain

components of the tensors αE,αH. For example, to find the z components

one chooses a plane wave polarised in the z direction and propagating as

eikyy, so that the field over the scatterer in the z direction is uniform. This

procedure can easily be followed in full–wave solvers, such as COMSOL:

the dipole moments can be found by numerically integrating either charge

or polarisation density in the dipole case

p =
∫

dVrρ(r) =
∫

P (r)dV (B.25)

and the cross product of position with current for the magnetic dipole.

m =
1
2

∫
dVr× j. (B.26)

To test this method, we evaluate the polarisability of a silicon sphere of

radius 65 nm, across optical frequencies. Mie theory can be used to ana-

lytically calculate the polarisability of such a scatterer, so the numerics and

analytics can be meaningfully compared to validate the method. Since the

scatterer is isotropic, the polarisability tensor is diagonal with the elements

along the diagonal all being equal. The numerical and anlytical results are

compared in Figure B.4. Figure B.4a) shows a schematic of the model: the

scatterer is excited with the plane wave, which induces charge and current

densities. The dispersive nature of the refractive index of silicon, Figure

B.4b), is taken into account with data from Green [97], being used for both

the analytical and numerical calculations. The resulting polarisabilities are
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𝜌(𝒓)

𝒋(𝒓)

a) b)

c) d)

Figure B.4: Numerical calculation of the electric and magnetic polarisability of
isotropic silicon spheres. a) shows the method. The scatterer is illuminated with a
plane wave in a particular direction with a particular polarisation, related to which
column of the polarisability tensor one wants to calculate. The incident field excites
charges and currents within the resonator. Integrating over these over space yields the
electric and magnetic dipole moments, which are used to form the polarisability. b)
shows the dispersion of the refractive index of silicon, which must be included in the
model. The numerically calculated electric and magnetic polarisabilities are shown in c)
and d) respectively, and compared with the analytic solutions from Mie theory.

shown in Figure B.4c), d). With this method, the polarisabilities of more

complicated scatterers can be found. The cases we will consider are reason-

ably simple, however even anisotropic and bianisotropic scatterers can be

addressed using this framework.
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