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Collaborative Mobile Edge Computing

Yongchao Zhang, Jia Hu, Geyong Min

Abstract—Collaborative mobile edge computing (MEC) is a
new paradigm that allows cooperative peer offloading among
distributed MEC servers to balance their computing workloads.
However, the highly dynamic workloads and wireless network
conditions pose great challenges to achieving efficient task of-
floading in collaborative MEC. To address this challenge, digital
twin (DT) has emerged as one promising solution by building
a high-fidelity virtual mirror of the physical MEC to simulate
its behaviors and help make optimal operational decisions. In
this paper, we propose a DT-driven intelligent task offloading
framework for collaborative MEC, where DT is employed to map
the collaborative MEC system into a virtual space and optimize
the task offloading decisions. We model the task offloading
process as a Markov decision process (MDP) with the objective of
maximizing the MEC system’s total income from providing com-
puting services, and then develop a deep reinforcement learning
(DRL)-based intelligent task offloading scheme (INTO) to jointly
optimize the peer offloading and resource allocation decisions. An
efficient action refinement method is proposed to ensure that the
action selected by the DRL agent is feasible. Experimental results
show that our proposed approach can effectively adapt the task
offloading decisions according to the dynamic environment, and
significantly improve the MEC system’s income through extensive
comparison with three state-of-the-art algorithms.

Index Terms—Edge computing; digital twin; task offloading;
deep reinforcement learning

I. INTRODUCTION

RECENT years have witnessed an exponential growth in
the number of Internet-of-Things (IoT) devices being

connected such as smart home devices and wearable devices.
It is predicted that more than 30 billion IoT devices will be
deployed in the world by 2027 [1]. Constrained by limited
computing and energy resources, IoT devices usually cannot
fulfill the stringent performance requirements of computation-
intensive and delay-sensitive tasks. To meet the ever-increasing
computational demands, mobile edge computing (MEC) has
been proposed as a promising approach, which deploys cloud-
like computing resources at the network edge, e.g., base
stations (BSs), to offer real-time computing services for the
nearby IoT devices [2], [3]. By providing computing capabili-
ties in close proximity to the IoT devices, MEC enables timely
responses to the delay-sensitive applications, and significantly
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reduces the traffic loads in the core networks. However, due
to the spatial and temporal variations of dynamic compu-
tational demands, the workloads on different MEC servers
may be severely imbalanced [4], [5]. The servers with heavy
workloads suffer from serious performance degradation, while
those with lots of unused computing resources have a low
resource utilization. In order to improve the system perfor-
mance, collaborative MEC has become a compelling solution
by exploiting the cooperations among MEC servers [6], where
peer offloading among MEC servers is enabled to balance the
computing workloads. Such a collaborative mechanism can
greatly enhance the utilization of computation resources and
improve the system performance of MEC.

In collaborative MEC, it is crucial to design an effec-
tive task offloading scheme to satisfy the stringent perfor-
mance requirements of computation tasks (e.g., service delay)
constrained by the limited computation resources in MEC
servers. However, it confronts two critical challenges. First,
the heterogeneity of computation tasks (in terms of sizes,
required resources, and tolerance delay), spatial diversity of
computational demands, and limited computing resources of
MEC servers have to be fully considered when optimizing the
task offloading decisions. Second, the task offloading decisions
are temporally coupled over consecutive time slots during the
long-term system performance optimization process. However,
the computational demands, wireless network environment,
and resource availability of the MEC servers are all time-
varying and highly stochastic, which are hard to be accurately
predicted in practice.

There have been some works investigating the task offload-
ing problem in collaborative MEC [6]–[9]. Li et al. [6] intro-
duced social trust into the cooperative offloading to identify
trustworthy edge servers, and proposed an online learning-
based task offloading strategy. Sahni et al. [7] studied the
multi-hop multi-task partial computation offloading problem
to minimize the average completion time of all tasks. Despite
these efforts, how to optimize the task offloading strategy
online and guarantee its capability before practical application
to proactively adapt to the system dynamics in practice is
still a challenging problem [10]. To address this issue, digital
twin (DT) has emerged as a desirable solution, which is a
high-fidelity virtual representation of physical assets. Different
from traditional simulation models, DT is a dynamic mapping
that is able to adaptively update itself based on the real-
time data from the physical world and historical data. In
addition to monitoring the real-time system running status,
DT can also simulate the behavior and evolvement trend of
the physical entities, as well as accurately predict the effect
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of specific control strategies on a real system, which supports
the optimization of decision-making with a low cost.

With these attractive capabilities, DT has been applied in
existing studies assisting the design of computation offloading
and resource allocation scheme in MEC [11]–[14]. Huynh
et al. [11] focused on the computation offloading problem
in DT-aided wireless edge networks with the objective of
minimizing task latency. Liu et al. [12] proposed a DT-
assisted task offloading scheme based on deep reinforcement
learning (DRL) where blockchain was applied to ensure data
safety. Dong et al. [13] studied the joint user association,
resource allocation, and offloading probabilities optimization
problem in DT-empowered MEC system to minimize the
energy consumption. However, the DT-assisted collaborative
MEC has not yet been explored in the literature. To the best of
our knowledge, this work is the first of its kind to incorporate
DT in the optimization of task offloading for collaborative
MEC.

In this paper, we focus on the intelligent task offloading
problem in DT-driven collaborative MEC to maximize the
MEC system’s system income from providing computing
services subject to the constraints of available computation
resources and service delay. We leverage DT to create a
high-fidelity digital replica of the physical collaborative MEC
system, and deploy the proposed intelligent task offloading
strategy in the DT domain for training, evaluation, and per-
formance improvement. The major contributions of this paper
are summarized as follows:

• We propose a new DT-driven collaborative MEC frame-
work for achieving intelligent and efficient task offload-
ing, where digital models of computation tasks, wireless
channels, and edge serves are built to mirror the real
MEC system. Given the proposed framework, we for-
mulate a novel Markov decision process (MDP)-based
income maximization problem while fully considering
the temporal-spatial computational demands as well as
heterogeneous and limited computing resources.

• We develop a novel DRL-based intelligent task offloading
algorithm with the support of DT to jointly optimize
the peer offloading and resource allocation decisions. An
efficient action refinement approach is developed to map
the action given by actor network to a valid one. The
salient feature of our proposed algorithm is model-free,
thus it does not require any prior system knowledge to
make decisions.

• We conduct extensive experiments to validate the effi-
ciency of the proposed DT-driven task offloading ap-
proach. The results show that our approach can effectively
adapt to the changes in the MEC environment. Moreover,
extensive comparison experiments with three state-of-the-
art algorithms demonstrate that our proposed algorithm
can significantly increase the MEC system’s total income.

The rest of this paper is organized as follows. Related
work is presented in Section II. Section III introduces the
system model and formulates an income maximization prob-
lem. Section IV proposes an online DRL-based algorithm to
solve the above problem. Section V conducts the performance

evaluation and Section VI concludes this paper.

II. RELATED WORK

In this section, we briefly summarize the existing works on
the task offloading and DT in MEC.

A. Task Offloading in MEC

Task offloading and resource allocation in MEC is a popular
topic and has been explored extensively. To alleviate the heavy
computation workloads in the BSs located in hot spots, there
are two main strategies, including computation offloading from
BSs to remote clouds and collaborative computing among BSs.
There have been some works considering the computation
offloading between BSs and clouds. In [15], Ren et al. focused
on the communication and computing resources allocation
problem to minimize latency, and proposed an optimal task
splitting strategy to determine the communication resource
allocation, as well as a closed-form computing resource al-
location strategy. Ning et al. [16] investigated the multi-user
offloading and resource allocation problem, and proposed a
heuristic algorithm to solve it. Yao et al. [17] proposed a
blockchain-empowered task offloading for MEC to minimize
the delay and energy consumption, and developed a truthful in-
centive mechanism to encourage each participant to contribute
its computation resources. However, different from the remote
clouds, in the collaborative MEC, the computing capacities of
BSs are typically limited. In addition, the task offloading and
resource allocation decisions are more coupled. These make
the above works not applicable for collaborative MEC systems.

Some recent studies on collaborative MEC systems have
also been conducted. Jia et al. [18] focused on how to balance
workload between multiple cloudlets, and devised a scalable
algorithm to minimize response time. In [19], Xiao et al. stud-
ied the task cooperative offloading among multiple computing
nodes, and proposed a task forwarding algorithm based on
the alternating direction method of multipliers. Wu et al. [20]
focused on the load balancing and task admission problem
and aimed at minimizing system cost. An online algorithm
was designed based on the Lyapunov optimization technique.
However, these works [18]–[20] did not consider the dynamics
and heterogeneity of task demands in different MDs. Chen
et al. [21] investigated the workload peer offloading among
MEC-enabled small-cell BSs, and proposed an online peer
offloading algorithm to minimize system delay cost. Although
[21] considered that different MDs might have diverse task
demands, it did not take the dynamics of task demand into
account.

B. Digital Twin in MEC

Given the advantages in system simulation as well as
verification and validation, DT has been successfully applied
in the field of MEC. Huynh et al. [11] formulated the compu-
tation offloading in DT-assisted edge network as the latency
minimization problem, and proposed an iterative optimization
algorithm to solve this non-convex problem. Xu et al. [14]
focused on the scenario of DT-empowered Internet of vehicle,



3

TABLE I
SUMMARY OF KEY NOTATIONS

Notation Definition
N Set of N BSs
Ui Set of Ui IoT devices in the coverage of BS i
pij Transmission power of IoT devices
QE

ij(t) Queue length of the energy buffer in IoT devices
eij(t) Estimated energy harvested by IoT devices
zij(t) Data size of computation tasks
vij(t) Processing density of computation tasks
δij(t) Maximum tolerance delay of computation tasks
gij(t) Award for completing computation tasks
hij(t) Channel power gain between IoT devices and BSs
Gij(t) Signal interference experienced by IoT devices
B Wireless channel bandwidth
ιij(t) Wireless channel transmission rate of IoT devices
dwij(t) Wireless transmission delay of IoT devices
Ci′

i (t) Data transmission rate between BS i and BS i′

Fi(t) Computing capacity of BS i at time slot t
xij(t) Computation offloading decision of each computation task
yi

′
ij(t) Peer offloading decision of each computation task

f i′
ij (t) Computing resources that BSs allocate to each task

and applied deep Q-learning algorithm to learn the service
offloading strategy. Sun et al. [22] employed DT to simulate
the mobile devices and edge servers in MEC, and proposed a
Lyapunov-based offloading scheme to minimize the offloading
delay subject to the long-term migration cost. Dai et al. [23]
built the digital network topology and stochastic task arrival
models for industrial IoT systems, and formulated a stochastic
optimization problem to maximize the energy efficiency. Al-
though some efforts have been made to adopt DT in the task
offloading and resource allocation for MEC, the application of
DT in collaborative MEC is still largely unexplored. To fill this
gap, we present a DT-driven collaborative MEC framework,
and develop an intelligent algorithm to optimize the task
offloading decisions.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. DT-Driven Collaborative MEC

We consider a DT-driven collaborative MEC as shown in
Fig. 1, which includes a physical network and a DT network.
The physical network consists of N BSs indexed by N =
{1, 2, · · · , N}, each of which is equipped with a MEC server
to provide computing services. Some BSs are connected via
high-speed wired optical fibers, which can be used to send task
requests and results among BSs, enabling the cooperative peer
offloading. In the coverage of each BS i ∈ N , there are Ui

IoT devices in total, the set of which is denoted as Ui. Each
IoT device is equipped with an energy harvesting module (e.g.,
solar and radio frequency harvester) to collect energy from the
environment. The harvested energy will be stored in a local
energy buffer (e.g., battery) to power data transmission and
task processing. In this paper, we adopt a widely used time-
slotted system (indexed by t = 0, 1, · · · ), which divides the
operating period into several time slots with equal duration τ .
The key notations are summarized in Table I.

At the beginning of time slot t, each MD generates a
computation task to be offloaded. The DT network consists

Real-time 
Data

Control
Information

Physical Network

Digital twin Network

MEC server

BS

IoT device

high-speed 
links

Fig. 1. DT-driven collaborative MEC

of the digital models of all the above physical entities (i.e.,
IoT devices and BSs), which monitors the real-time system
running status as well as simulate and predict the behaviors
of these physical entities. Specifically, a digital model is
built for each IoT device to monitor their task offloading
requests, energy harvesting rate, available energy resources,
etc. The digital models of BSs are used to monitor the requests
from IoT devices, network topology, and available computing
resources in the MEC servers. In addition, the digital model
of the wireless communication environment is created in the
DT network to map the real-time status of wireless channels
between IoT devices and BSs. The original constructions of
these digital models are performed offline at the initialization
time, while they will be updated online to capture the real-time
changes of physical entities.

At each time slot t, for the IoT device j served by BS i,
its digital model can be represented as a four-tuple, which is

DK
ij = {pij , QE

ij(t), eij(t),Oij(t)}, (1)

where pij is the transmission power, QE
ij(t) denotes the queue

length of the energy buffer (i.e., the amount of stored energy)
[24], eij(t) is the estimated amount of energy that will be
harvested during time slot t, and Oij(t) is the computation
task to be offloaded. For the task Oij(t), it can be further
represented by a tuple < zij(t), vij(t), δij(t), gij(t) >. zij(t)
is the data size (in bits), vij(t) is the task processing density
(i.e., the required CPU cycles to compute one bit data),
δij(t) denotes the maximum tolerance delay (in second) from
generation to completion, and gij(t) denotes the fee IoT
devices would pay (i.e., task award) if the task is completed
within the given deadline. The value of vij(t) can be obtained
by using the call-graph analysis method [25]–[27], which
generates a call-graph of the computation task and analyzes
in detail the computational complexity of each node and edge
within this graph. Besides, we here consider the delay-sensitive
computation tasks, whose maximum tolerance delay is shorter
than the slot length τ [28], [29].

At the beginning of each time slot t, the offloading decision
of task Oij(t) is indicated by a binary variable xij(t) ∈ {0, 1}.
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When xij(t) = 1, it will first be transmitted to its serving BS;
otherwise, it will be discarded [29] and xij(t) = 0. Then,
the maximum achievable communication rate of IoT device j
served by BS i is as follows:

ιij(t) = B log2(1 +
pijhij(t)

BN0 + Gij(t)
), (2)

where B is the wireless channel bandwidth, pij is the transmit
power, hij(t) denotes the channel power gain estimated by the
DT of wireless communication network based on the current
status and historical data, N0 denotes Gaussian noise power
spectrum density, and Gij is the interference from other IoT
devices. In this paper, we consider the intra-cell interference
among IoT devices that are simultaneously transmitting to the
same BS. Therefore, Gij(t) can be calculated by

Gij(t) =
∑

k∈Ui\j

xik(t)pikhik(t). (3)

In addition, we assume that orthogonal frequency bands are
allocated to adjacent BSs, so that the inter-cell interference
can be eliminated [30], [31].

Then, if Oij(t) is offloaded, its wireless communication
delay is

dwij(t) =
zij(t)xij(t)

ιij(t)
. (4)

When an IoT device offloads its computation task to BS,
it should have sufficient energy to support the offloading
operation. Thus, the following constraint should be satisfied:

pij(t)d
w
ij(t)xij(t) ≤ QE

ij(t). (5)

Based on the above definitions, the queue length of the energy
buffer in each IoT device evolves as follows:

QE
ij(t+ 1) = QE

ij(t) + eij(t)− xij(t)pij(t)dwij(t). (6)

At each time slot t, the digital model of BS i can be repre-
sented by a three-tuple {Oij(t)|j∈Ui , C

i′

i (t)|i′∈N\{i}, Fi(t)}.
Ci′

i (t) is the data transmission rate between BS i and BS i′.
When i = i′, Ci′

i (t) is equal to∞ because the transmission de-
lay within one BS is zero. Moreover, if there is no connection
between BS i and BS i′, Ci′

i (t) equals 0. Fi(t) is the available
computing resources (i.e., CPU frequency) of the MEC server
in BS i at time slot t.

Let the peer offloading decision from BS i to BS i′ denote
by a binary variable yi

′

ij(t), which is

yi
′

ij(t) =

{
1, BS i offloads task Oij(t) to BS i′;

0, otherwise.
(7)

Note that if xij(t) = 0, yi
′

ij(t) should also be 0. Then, if
task Oij(t) is determined to be transmitted to BS i′, the
transmission delay on the wired link is

dcij(t) =
zij(t)xij(t)y

i′

ij(t)

Ci′
i (t)

. (8)

And if task Oij(t) is decided to be processed in its originally
serving BS without peer offloading, dcij(t) = 0 and yiij(t) = 1.

Let f i
′

ij(t) represent the CPU frequency that BS i′ allocates
to task Oij(t). It is worth noting that if yi

′

ij(t) = 0, f i
′

ij(t) is
also equal to zero. Then, the computing delay of task Oij(t)
is

dmij (t) =
zij(t)vij(t)xij(t)∑N

i′=1 f
i′
ij(t)

. (9)

As the computing resources in each MEC server are limited,
the resource allocation decisions should satisfy the following
inequality:

Ui∑
j=1

N∑
i=1

f i
′

ij(t) ≤ Fi′(t),∀i′ ∈ N . (10)

B. Problem Formulation

To capture the dynamics in task demand and system envi-
ronment, we here use a discrete-time MDP to model the task
offloading problem. We first describe MDP briefly.

1) MDP: As a powerful tool for describing the stochastic
environment, MDP has been widely used to conduct planning
and decision-making while facing uncertainties. An MDP
usually can be defined as a five-tuple, (S,A,P,R, γ), where
S denotes the state space, A denotes the action space, P is
the state transition function, R is the reward function and
γ ∈ [0, 1) is the discount factor. Define a policy π as a map
from state to action, which is π : S→ A. At the beginning of
the t-th slot, the system agent observes the current system
s(t) ∈ S, and takes a corresponding action a(t) ∈ A
based on the predetermined policy π. After executing the
selected action, the agent can receive an immediate reward
r(s(t),a(t)) ∈ R. Then, the system state transfers from
s(t) to s(t + 1) according to the state transition function
P (s(t + 1)|s(t),a(t)) ∈ P. For a given policy π, a state-
value function V π(s) = E[

∑∞
t=0 γ

tr(s(t),a(t))|s(0) = s, π]
is defined to represent the expected cumulative discounted
reward by adopting policy π when starting from state s. The
agent’s aim is to find an optimal policy π∗ to maximize
the expected cumulative discounted reward, which is π∗ =
argmax

π
V π(s),∀s ∈ S.

2) MDP-based income maximization problem: Based on
the MDP, an optimization problem is formulated to maximize
the expected long-term income. The details of this optimiza-
tion problem are presented below:

(1) State: At the beginning of each time slot t, the system
state, s(t), consists of the following components:

• zij(t): the data size of each task.
• vij(t): the processing density of each task.
• δij(t): the maximum tolerance delay of each task.
• gij(t): the award of each task.
• ιij(t): the wireless channel transmission rate of each IoT

device.
• Ci′

i (t): the data transmission rate of each wired link.
• QE

ij(t): the queue length of energy buffer in each IoT
device.

• Fi(t): the available computing capacity in each BS.
(2) Action: In the formulated MDP, the following three

decisions need to be made: 1) whether the computation task
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in each IoT device is offloaded to BSs for processing or not,
2) which offloaded tasks need to be further transmitted to
other BSs via peer offloading; and 3) how many computing
resources should be allocated to each offloaded task. Thus, the
action, a(t), consists of the following components:

• xij(t): the computation offloading decision of each task.
• yi

′

ij(t): the peer offloading decision of each task.
• f i

′

ij(t): the allocated computing resources to each task.
(3) State transition probability: At the given state s(t),

if the selected action is a(t), the probability that the cur-
rent state evolves into the new state s(t + 1) is defined as
p(s(t+1)|s(t),a(t)). Notice that we target to design a model-
free computation offloading strategy, which means that it does
not require an explicit model to describe the state transition
probability.

(4) Income function: After the action a(t) is executed, an
immediate income, denoted by r(t), will be received, which
is the total award of all the tasks which are completed within
the deadline. Specifically,

r(t) =

N∑
i=1

Ui∑
j=1

gij(t)xij(t) · 1{dij(t) ≤ δij(t)}, (11)

where dij(t) = dwij(t)+d
c
ij(t)+d

m
ij (t) represents the comple-

tion duration of task Oij(t), and 1{dij(t) ≤ δij(t)} ∈ {0, 1}
indicates whether the task can be completed before its deadline
or not. Note that since the output of computation tasks is often
much smaller than their input size in practice, the transmission
delay of result returning is negligible, which is a common
setting in the related literature [26], [32].

Based on the above definitions, the income maximization
problem (IMP) can be formulated as below:

max

∞∑
t=0

γt
N∑
i=1

Ui∑
j=1

gij(t)xij(t) · 1{dij(t) ≤ δij(t)},

s.t. (5), (6), and (10),

C1 : xij(t) ∈ {0, 1}, ∀j ∈ Ui,∀i ∈ N ,
C2 : yi

′

ij(t) ∈ {0, 1}, ∀j ∈ Ui,∀i, i′ ∈ N ,

C3 :

N∑
i′=1

yi
′

ij(t) = xij(t), ∀j ∈ Ui,∀i ∈ N ,

C4 : 0 ≤ f i
′

ij(t) ≤ Fi′(t), ∀j ∈ Ui,∀i, i′ ∈ N .

(12)

Here, C1 indicates that a task can be either offloaded to MEC
or discarded. C2 states that a BS can transmit the extra tasks
to other nearby BSs for computing or not. C3 ensures that
each offloaded task can and only can be processed by one BS.
C4 denotes the maximum computing resources each task can
be allocated.

Remark: IMP is a stochastic optimization problem be-
cause the task demand, wireless channel state, and available
computing capacity are all random variables. As IMP is a
long-term optimization problem, the future information of the
random variables is required to derive the optimal solutions to
IMP. However, this information is usually unknown and hard
to predict accurately. Therefore, it is highly challenging to
optimize the peer offloading and resource allocation decisions
without the requirement of future system information.

IV. DT-ASSISTED INTELLIGENT TASK OFFLOADING
ALGORITHM

In this section, we design a DT-assisted intelligent task
offloading algorithm to solve IMP, which applies DRL to
optimize the peer offloading and resource allocation decisions
through the interaction with DT network. Compared to the
traditional approaches such as heuristic algorithms, DRL has
two major advantages: (1) Thanks to the model-free feature,
it can iteratively learn an optimal control policy through
trial and error, without explicitly building a model of the
system environment; (2) By leveraging the deep learning
with the powerful representation ability to approximate the
value/policy functions, DRL can effectively tackle the com-
plicated optimization problem under a highly dynamic time-
varying system. Next, we introduce the background of DRL
and present the proposed DRL-based intelligent task offloading
algorithm.

A. DRL Background

DRL is a powerful machine learning method that combines
deep neural networks (DNNs) and reinforcement learning (RL)
to handle complicated control tasks, such as robotics. For a
conventional RL problem, an agent constantly interacts with
the environment to learn an optimal control policy through trial
and error, with the objective of maximizing the cumulative
reward it received from the environment. In RL, Q-learning
is a common model-free approach, which computes the Q-
values of all the state-action pairs and stores them in a tabular
form. The Q-value represents the expected cumulative reward
obtained by taking a specific action a at a given state s, which
is expressed by

Q(s, a) =E[
∞∑
t=0

γtr(t)|s0 = s, a0 = a],

= r(s, a) + γ
∑
s′

(P (s′|s, a)max
a′

Q(s′, a′)),
(13)

where s′ is the next state after s.
Then, the temporal-difference method based on Bellman

equation can be applied to update the Q-value, which is

Q(s, a)← Q(s, a) +ϖ[r(s, a) + γmax
a′

Q(s′, a′)−Q(s, a)],

(14)
where ϖ represents the learning rate. However, the cost of
computing and searching a Q-table is extremely high under
a large state and action space. To solve this problem, DNNs
can be integrated with RL to approximate the value and/or
policy function, which is known as DRL. With the powerful
representation learning of DNN, DRL can effectively learn
a control strategy directly from the high-dimensional and
complicated system, which presents great improvements over
RL in terms of better policy and convergence time.

The DRL can be classified into two main categories, which
are value-based DRL and policy-gradient-based DRL. How-
ever, for the value-based approach, such as deep Q-learning
[33], a large action space would pose a big difficulty in select-
ing the optimal action from all the available actions. In such
a context, we apply a policy-gradient-based DRL approach,
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i.e., deep deterministic policy gradient (DDPG) algorithm, to
solve IMP, which uses deep function approximators to learn
the true Q-values and optimal policy. Unlike the value-based
DRL approach, DDPG could directly output a deterministic
action based on the current system state, and does not need to
traverse all the states and actions. Thanks to this advantage,
it has been widely and successfully applied in many fields,
such as robotic control and process cooperative control [34],
[35]. In the following, we devise an intelligent task offloading
algorithm by taking advantage of DDPG algorithm.

B. Proposed Intelligent Task Offloading Algorithm

Define Q(s,a) as the Q-value for state-action pair (s,a),
which can be regarded as the expected cumulative discounted
income when action a is executed at state s. Following
the framework of DDPG, a critic network is introduced
to approximate the Q-values. More specifically, a DNN is
adopted to construct the critic network, which is represented
by Q(s,a) ≈ Q(s,a|θQ), where θQ denotes the parameters of
this critic network. In addition, another different DNN (called
actor network) is created to generate the deterministic action,
which is represented by â = ϕ(s|θϕ), where θϕ denotes the
parameters of this actor network. At each slot, according to
the current system state, the actor network could generate
a deterministic action. However, this output action generally
cannot be taken directly because it is continuous. In this case,
we need to map it to a new feasible action in the discrete space.
A common approach is Wolpertinger policy, whose main idea
is finding κ-nearest-neighbor valid actions and then selecting
the action with the maximum Q-value from these κ actions
[36]. But, it is impractical to apply this strategy in this paper
because looking for κ-nearest-neighbor valid actions is very
complicated and time-consuming.

To address this problem, we propose a new fast action
refinement approach to map the action generated by the actor
network into a valid one. Specifically, we first map action â(t)
to a discrete action which satisfies constraints C1, C2 and C3
in IMP. Inspired by the idea of Wolpertinger policy, we select
the nearest neighbor discrete action as follows:

a′(t) = argmina(t)∈A′(t)|a(t)− â(t)|, (15)

where A′(t) denotes the set of valid actions satisfying con-
straints C1, C2 and C3. It can be seen that compared with
the Wolpertinger policy which searches for κ-nearest-neighbor
actions in A(t), our approach just needs to look for one action
under the looser constraints. Hence, our approach can avoid
the heavy computation cost in lookups.

Then, a′(t) is modified to satisfy constraint (5). Specifically,
given offloading actions x̂ij(t), ŷi

′

ij(t) ∈ a′(t) of task Oij(t), if
the IoT device has no sufficient energy to conduct computation
offloading, x̂ij(t) and ŷi

′

ij(t), ∀i′ ∈ N , are set to zero, which
are

x̂ij(t) =

{
0, if (5) is not satisfied,
x̂ij(t), else,

(16)

ŷi
′

ij(t) =

{
0, if (5) is not satisfied,
ŷi

′

ij(t), else.
(17)

Algorithm 1: Fast action refinement approach
Input : Action â(t) generated by actor network.
Output: A valid action a(t).

1 Obtain the nearest neighbor discrete action a′(t)
according to (15);

2 Modify action a′(t) according to (16) and (17);
3 for each BS i ∈ N do
4 Obtain the set of tasks, Υi, which are to be

processed in BS i ;
5 while constraint (10) is not satisfied do
6 Search for the task Oij(t) with the lowest

value of ϱij(t) in Υi ;
7 Set x̂ij(t) = 0, ŷi

′

ij(t) = 0,∀i′ ∈ N ;
8 Υi ← Υi \Oij(t).

Finally, we refine action a′(t) to meet constraint (10).
Recall that the optimization objective is to maximize the total
system income. It is obvious that a higher income would be
achieved when prioritizing the computation tasks with bigger
awards but fewer resource demands. In such a context, we
define the processing priority for each computation task as
follows. Given the offloading decisions xij(t) and yi

′

ij(t),
if the offloaded tasks are required to be completed before
their deadlines, the minimum computing resource that the BS
should allocate is

li
′

ij(t) =
zij(t)vij(t)xij(t)y

i′

ij(t)

δij(t)− dwij(t)− dcij(t)
. (18)

Then, the processing priority of each computation task is
calculated as ϱij(t) =

gij(t)

li
′

ij(t)
. We can observe that if a task

has either a higher award or fewer resource demands, its
processing priority would become larger. Given ϱij(t) of all
the offloaded tasks, if one BS does not have enough computing
capacity (which is constrained by (10)), it would discard the
tasks (i.e., let x̂ij(t) = 0, ŷi

′

ij(t) = 0,∀i′ ∈ N ) with the
lowest value of ϱij(t) until the computation demands of all
the remaining tasks can be fulfilled. In this way, the proposed
approach seeks to maximize the income as much as possible
while satisfying the constraint (10). Algorithm 1 presents the
details of the proposed action refinement approach.

Fig. 2 shows the training framework of the DT-assisted
intelligent task offloading algorithm. Given the DT of real
physical system, the intelligent task offloading algorithm is
applied in the digital world to learn the optimal policy based
on the feedback from DT. At each time slot t, the DRL
agent takes the current system state given by the DT as
the inputs of actor network, and determines the action to be
taken according to Algorithm 1. Notably, before this step, in
order to effectively explore the whole action space, a random
noise would be added to the output action â(t). Specifically,
â(t) = ϕ(s(t)|θϕ)+η(t), where η(t) is a normally distributed
random noise. After performing the selected action a(t) on
the DT, the DT simulates the future evolvement of the system,
and gives an immediate reward r(t) and a new system state
s(t+ 1). Then, based on the current state as well as the next
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Fig. 2. Training framework of DT-assisted intelligent task offloading algo-
rithm

state and reward given by DT, the DRL agent calculates the
TD error to update the parameters of actor and critic networks.

In DDPG, critic and actor networks are trained in a super-
vised way. To improve the training stability, a replay memory
Ω is utilized to store the system experience. In each slot, agent
stores the experience tuple ϑ(t) in the replay memory Ω,
where ϑ(t) = (s(t),a(t), r(t), s(t+1)). If the replay memory
does not have enough space to store the new experience
records, the oldest experience record would be discarded.
In the training process, a mini-batch samples, Λ ∈ Ω, is
chosen randomly from the replay memory for training the
critic and actor networks. Besides, to further improve the
learning stability, two separate target networks are introduced.
Specifically, a copy of critic network, Q′(s,a|θQ′

), and a copy
of actor network, ϕ′(s|θϕ′

), are built respectively.
When training the critic network, θQ is updated according to

the Bellman equation as in Q-learning. The goal is to minimize
the loss function L(θQ) = (ρ − Q(s,a|θQ))2, where ρ =

r(s,a) + γQ′(s′, ϕ(s′|θϕ′
)|θQ′

), and s′ is the next state after
state s. Based on the mini-batch experiences Λ, θQ can be
updated by

θQ =: θQ + αQ · E(s,a,r(s,a),s′)∈Λ[∇θQL(θQ)], (19)

where αQ is the critic network’s learning rate.
When training the actor network, DDPG uses a simple

and low-computational deterministic policy gradient method
where the main idea is to move the policy in the direction
of Q(s,a)’s gradient for maximizing the Q-value. Thus, by
taking the derivative of Q(s, ϕ(s|θϕ)|θQ) with respect to θϕ,
it can be obtained that ∇θϕQ(s, ϕ(s|θϕ)|θQ) = ∇θϕϕ(s) ·
∇aQ(s,a|θQ)|a=ϕ(s|θϕ). Then, based on the mini-batch ex-
periences Λ, θϕ can be updated by the following equation:

θϕ =: θϕ + αϕ · Es∈Λ[∇θϕϕ(s) · ∇aQ(s,a|θQ)|a=ϕ(s|θϕ)],

(20)

where αϕ is the actor network’s learning rate.
When the network training is finished, the parameters of the

target networks are updated as follows:

θQ′
= ε1θ

Q + (1− ε1)θQ′
, (21)

Algorithm 2: DRL-based intelligent task offloading
algorithm (INTO)

1 Randomly initialize parameters θQ and θϕ in critic
and actor networks;

2 Set parameters in target networks, i.e., θQ′
:= θQ and

θϕ′
:= θϕ;

3 Initialize replay memory Ω;
4 for t = 0, 1, 2, · · · do
5 Generate a proto-action â(t) = ϕ(s(t)|θϕ) + η(t)

according to current system state;
6 Obtain a valid action a(t) by using Algorithm 1;
7 Perform action a(t), observe the immediate income

r(t) and new state s(t+ 1);
8 Store experience tuple

ϑ(t) = (s(t),a(t), r(t), s(t+ 1)) in replay
memory Ω;

9 Randomly sample a mini-batch of experience
tuples, Λ, from Ω;

10 Compute target value for critic network:
ρ = r(s,a) + γQ′(s′, ϕ(s′|θϕ′

)|θQ′
);

11 Update critic network parameters with (19);
12 Update actor network parameters with (20);
13 Update the parameters in target networks with (21)

and (22).

θϕ′
= ε2θ

ϕ + (1− ε2)θϕ′
, (22)

where ε1, ε2 ≪ 1 are the parameters controlling the update
rate. The proposed DRL-based intelligent task offloading al-
gorithm, INTO, is given by Algorithm 2 in detail. By continu-
ously interacting with the external environment, the proposed
algorithm updates the actor and critic networks based on the
received rewards via the stochastic gradient ascent method
in (19) and (20), aiming to iteratively improve its learned
policy. Therefore, instead of explicitly building a model of
the underlying environment dynamics, the proposed algorithm
is able to directly learn the optimal offloading policy through
trial and error, which is considered model-free.

After completing the training phase, the DRL agent utilizes
the well-trained actor network to make offloading decisions.
At the beginning of each decision-making time step, the DRL
agent observes the current system state and feeds it as inputs
to the actor network to generate a possible action. Then, this
generated action will be adjusted by using the proposed fast
action refinement approach (i.e., Algorithm 1), to obtain a
feasible action. Subsequently, the DRL agent performs the
obtained feasible action and observes the resulting new state.

V. PERFORMANCE EVALUATION

In this section, a series of experiments are conducted to
evaluate the performance of INTO. We first investigate the
impacts of several parameters on INTO, and then compare
INTO with three baseline algorithms to show the effectiveness
of INTO.

We consider a collaborative MEC system consisting of
three BSs, which are BS-1, BS-2, and BS-3. Similar to
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TABLE II
EXPERIMENTS PARAMETERS

Parameter Value

The number of neurons in each hidden
(1500, 600)

layer of critic network

The number of neurons in each hidden
(3000, 1000)

layer of actor network

Learning rate of critic network 0.0001

Learning rate of actor network 0.0001

Update rate of critic network 0.001

Update rate of actor network 0.001

Batch size 64

Replay memory size 3000

Discount factor 0.99

[37], there are 30, 55, and 80 IoT devices in each BS
respectively, and the data size of the generated task follows
a uniform distribution, i.e., zij(t) ∼ U [50, 80] kbit. The
processing density is uniformly distributed within [3000, 8000]
cycles/bit, the maximum delay δij(t) ∼ U [0.2, 2]s [38], and
the award of each task gij(t) ∼ U [1, 3]. According to [39],
the transmission power pij(t) of each IoT device follows a
uniform distribution on [50, 180] mW. The harvested energy
per slot eij(t) ∼ U [1, 1.5] mW. In addition, the channel
bandwidth B = 1 MHz [40], the noise power spectrum
density N0 = 1 · 10−8 W/Hz, the computing capacity of each
BS Fi(t) = 5 GHz, and the transmission rate between two
different BSs Ci′

i (t) = 100 Mbps [41]–[43]. Both the critic
and actor networks are constructed by an input layer, two
hidden layers, and an output layer. Other parameters in this
evaluation are listed in Table II.

A. Parameter Analysis

We here present the impacts of the learning rate, discount
factor, task award, task processing density, wireless channel
gain, and harvested energy arrival rate on the performance of
INTO.

1) Impact of learning rate: Fig. 3(a) depicts the average
income curve of INTO under different network learning rates.
In this experiment, the learning rates of both critic and actor
networks are set to 0.0001, 0.001, and 0.01, respectively. From
Fig. 3(a), we can observe that a smaller learning rate has a
higher income. This is because a smaller learning rate means a
shorter learning step and it is more likely to achieve the global
optimum. In contrast, a larger learning rate would lead to a
longer learning step, and then the learning process may miss
the global optimum. In addition, it can be seen that the income
curve converges after about 600 slots when the learning rate
is 0.01. And when the learning rates are 0.001 and 0.0001,
the income curve converges after about 1000 slots and 1500
slots, respectively. It shows that decreasing the learning rate
would slow down the convergence speed. The reason is that the
reduction in the learning rate causes the learning step becomes
shorter, naturally it requires more steps and time to converge.
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Fig. 3. Average income with different learning rates and discount factors.

2) Impact of discount factor: Fig. 3(b) plots the average
income curve of INTO under different discount factors, where
the discount factor γ is set to 0.59, 0.79, and 0.99, respectively.
We can observe that as the discount factor rises, the average
income also increases. This is because a smaller discount
factor means that future income does not count much. As a
result, the selected action just could improve the income in
a very short period of time. While a larger discount factor
endows INTO more foresight when updating strategy, then
the income that future action brings is given more attention.
Thus, the long-term income can be improved even more when
adopting a larger discount factor.

3) Impact of task award: Fig. 4(a) shows the number of
offloading IoT devices (i.e., the IoT devices whose tasks are
decided to be offloaded) covered by each BS with different
task awards. In this experiment, we set the task awards
of the IoT devices covered by BS-1 as ξ · g1j(t), where
ξ = 1, 1.5, 2, 2.5 and 3, respectively. Meanwhile, the task
awards of the rest IoT devices remain unchangeable. We can
see from Fig. 4(a) that with the increase of award scale factor
ξ, the number of offloading IoT devices in BS-1 rises, and
those in both BS-2 and BS-3 reduce. This is because when
the award scale factor increases, processing the tasks offloaded
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(b) Impact of task processing density

Fig. 4. Number of offloading IoT devices covered by each BS with different
task awards and task processing densities.

from the IoT devices in BS-1 would obtain more income.
In this case, in order to maximize the income, the system
would offload more tasks from the IoT devices in BS-1, and
naturally fewer tasks in the IoT devices covered by BS-2
and BS-3 would be offloaded. It shows that INTO is able to
effectively figure out and prioritize the tasks with larger awards
to improve the income, and dynamically adjust the offloading
decisions according to the changeable task award. In addition,
in Fig. 4(a), we can also see that the number of offloading IoT
devices in BS-1 is less than that in BS-2, and the number of
offloading IoT devices in BS-3 is the largest. The reason is
that the number of IoT devices in BS-1 is the smallest, and
that in BS-3 is the largest.

4) Impact of task processing density: Fig. 4(b) shows the
number of offloading IoT devices covered by each BS with
different task processing densities. In this experiment, the
task processing densities of the IoT devices covered by both
BS-2 and BS-3 are set as ζ · v2j(t) and ζ · v3j(t), where
ζ = 1, 1.1, 1.2, 1.3 and 1.4, respectively. And the task pro-
cessing densities of the IoT devices covered by BS-1 remain
the same. We can see from Fig. 4(a) that as processing density
scale factor ζ rises, the number of offloading IoT devices in
BS-1 increases, and those in both BS-2 and BS-3 decrease.
The reason is that with the rise of ζ, processing the same
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(b) Impact of harvested energy arrival rate

Fig. 5. Number of offloading IoT devices covered by each BS with different
wireless channel gains and harvested energy arrival rates.

amount of data from the IoT devices covered by both BS-2 and
BS-3 would require more computing resources. By contrast,
the required computing resources of the IoT devices in BS-1
become fewer. With the aim of maximizing the income under
the limited resources, more tasks in the IoT devices covered
by BS-1 are intended to be offloaded, and the number of
offloading IoT devices in both BS-2 and BS-3 would reduce
accordingly. Fig. 4(b) indicates that INTO can dynamically
adjust the offloading decisions to adapt to the changeable task
processing density.

5) Impact of wireless channel gain: Fig. 5(a) shows the
number of offloading IoT devices covered by each BS with
different wireless channel gains. In this experiment, the wire-
less channel gain of each IoT device is set as σ ·hij(t), where
σ ranges from 0.2 to 1.2 with an increment of 0.2. From Fig.
5(a), we can see that with the increase of channel gain scale
factor σ, the numbers of offloading IoT devices in the three
BSs all increase. This is because as wireless channel gain
rises, the transmission energy consumption in each IoT device
would reduce, then more IoT devices would have enough
energy to conduct computation offloading. In addition, we can
also observe that the total number of offloading IoT devices
almost remains unchangeable eventually even though channel
gain is increasing. The reason is that the system is limited
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Fig. 6. Performance comparisons of INTO, OLNPO, LPWPO, and DDQN.

by its computing ability and it cannot support more tasks
for computing. In this case, even if the channel gain keeps
increasing, the total number of offloading IoT devices would
stay the same.

6) Impact of harvested energy arrival rate: Fig. 5(b) shows
the number of offloading IoT devices covered by each BS with
different harvested energy arrival rates. In this experiment, the
harvested energy arrival rate of each IoT device is set as ρ ·
eij(t), where ρ ranges from 0.2 to 1.2 with an increment of
0.2. From Fig. 5(b), it can be seen that as the harvested energy
arrival rate scale factor ρ rises, the numbers of offloading IoT
devices in the three BSs all increase. The reason is that with
the increase of harvested energy arrival rate, the stored energy
in each IoT device would become larger, and naturally more
IoT devices can offload their tasks to MEC. Similarly, it can
also be observed that with the increasing harvested energy
arrival rate, the total number of offloading IoT devices almost
does not change in the end. This is also because although IoT
devices have more energy to conduct computation offloading,
the computing resources in the system are still limited.

B. Comparison Experiments

Here, we compare INTO with three baseline algorithms in
term of average income:

• Only local no peer offloading (OLNPO) [21]: Its main
idea is that each BS can and only can process the
tasks which are offloaded from the IoT devices within

its coverage. In other words, each BS is not allowed
to transmit its tasks to other BSs and help other BSs
compute tasks.

• Local priority with peer offloading (LPWPO): In LP-
WPO, each BS prioritizes the tasks offloaded from the
IoT devices within its coverage. Only when one BS can
process all the tasks offloaded from the IoT devices it
serves, can it help other BSs compute tasks

• Double deep Q-network (DDQN) [44], [45]: It is one
kind of value-based deep reinforcement learning algo-
rithm, which is used to solve (12). It contains two fully
connected layers where the number of neurons is 1000
and 600, respectively. Both the learning rate and updating
rate of the target network are set to 0.001.

Fig. 6(a) plots the average income of INTO, OLNPO,
LPWPO, and DDQN with different task sizes. The task size of
each IoT device is set as χ · zij(t), where χ ranges from 1 to
1.6 with an increment of 0.1. It can be seen that when the size
scale factor χ rises, the average income reduces. The reason is
that increasing task size leads to a larger resource demand. In
this case, the number of tasks that can be processed would
reduce, and the average income would also decrease. Fig.
6(b) shows the average income of INTO, OLNPO, LPWPO,
and DDQN with different computing capacities. From Fig.
6(b), we can observe that as computing capacity increases, the
average income also rises. It is a reasonable result because
a larger computing capacity means that more tasks can be
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processed, naturally the average income would rise. Fig. 6(c)
depicts the average income of INTO, OLNPO, LPWPO, and
DDQN under varying task delays. The maximum delay for
the computation task is set as δij(t) ∼ U [0.2 ·ψ, 2]s, where ψ
ranges from 1 to 4 with a step of 0.5. We can observe that as
the task delay increases, the average income also rises. It is
because when the maximum tolerance delay of computation
tasks becomes larger, more tasks can be completed by each
BS, leading to a higher system income. Fig. 6(d) presents
the average income of INTO, OLNPO, LPWPO, and DDQN
with different channel bandwidths. It is expected that with
the increase of channel bandwidth, the average income will
rise. Such a phenomenon can be seen in Fig. 6(d). It is due to
that increasing channel bandwidth will reduce the transmission
delay, resulting in a larger computing delay each task can
tolerate. In this case, BSs are able to process more computation
tasks before their deadlines, which yields a higher income.

In Fig. 6, we can clearly see that the average income
of INTO is always larger than those of OLNPO, LPWPO,
and DDQN. This is because INTO can make full use of the
computing resources in the whole collaborative MEC system,
and prioritize the tasks with higher awards and lower resource
demands based on the whole system state. However, OLNPO
cannot effectively utilize the spare resources in other BSs,
thereby resulting in lots of waste of resources; LPWPO is
unable to optimize the income from the view of the whole
system because each BS prioritizes the tasks of the IoT devices
it serves. For the DDQN, it will suffer from the curse of
dimensionality problem when the action space is too large,
which makes the learning inefficient.

VI. CONCLUSION

This paper investigates the task offloading problem in DT-
driven collaborative MEC systems. To overcome the challenge
brought by the unknown system dynamics, a novel DRL-
based algorithm, INTO, is proposed. INTO does not require
any prior system knowledge to make offloading decisions,
which makes it more practical in the real world. In addition,
INTO can optimize the long-term income in an online way,
and automatically tune the offloading and resource allocation
decisions as the task demand and system environment change.
Extensive experiment results show that INTO can achieve a
higher income and is able to be adaptive to the dynamic system
environment.
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